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We study tilting complexes over preprojective algebras of Dynkin type. We
classify all tilting complexes by giving a bijection between tilting complexes and
the braid group of the corresponding folded graph. In particular, we determine the
derived equivalence class of the algebra. For the results, we develop the theory of
silting-discrete triangulated categories and give a criterion for silting-discreteness.
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1. Introduction

1A. Background and motivation. Derived categories are nowadays considered as
a fundamental object in many branches of mathematics including representation
theory and algebraic geometry. Among others, one of the most important problems
is to understand their equivalences. Derived equivalences provide a lot of interesting
connections between various different objects and they are also quite useful to study
structures of the categories.

It is known that derived equivalences are controlled by tilting objects (complexes)
[Rickard 1989; Keller 1994] and therefore these constructions have been extensively
studied. As a tool for studying tilting objects, Keller and Vossieck [1988] introduced
the notion of silting objects (Definition 2.1), which is a generalization of tilting
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objects. After that, it was shown that their mutation properties are much better than
tilting ones and they yield a nice combinatorial description [Aihara and Iyama 2012]
(see Definition 2.3). Furthermore, silting objects have turned out to have deep con-
nections with several important objects such as cluster tilting objects and t-structures,
for example [Adachi et al. 2014; Buan et al. 2011; Koenig and Yang 2014; Brüstle
and Yang 2013; Iyama et al. 2014; Qiu and Woolf 2014; Broomhead et al. 2016].

One of the aims of this paper is to give a further development of the mutation
theory of silting objects. In particular, we study a criterion when a triangulated
category is silting-discrete (Definition 2.2). A remarkable property of this class is
that all silting objects are connected to each other by iterated mutation and this fact
allows us to achieve a comprehensive understanding of the categories.

Another aim of the paper is, by applying this technique, to classify all tilting
complexes of preprojective algebras of Dynkin type. Since preprojective algebras
were introduced in [Gel’fand and Ponomarev 1979; Dlab and Ringel 1980; Baer
et al. 1987], it turned out that they have fundamental importance in representation
theory as well as algebraic and differential geometry. We refer to [Ringel 1998]
for quiver representations, [Lusztig 1991; 2000; Kashiwara and Saito 1997] for
quantum groups, [Auslander and Reiten 1996; Crawley-Boevey 2000] for Kleinian
singularities, [Nakajima 1994; 1998; 2001] for quiver varieties, and [Geiß et al.
2006; 2011] for cluster algebras.

For the case of preprojective algebras of non-Dynkin type, its tilting theory has
been extensively studied in [Buan et al. 2009; Iyama and Reiten 2008]. In particular,
they show that certain ideals parametrized by the Coxeter group (see Theorem 4.1)
give tilting modules over the preprojective algebra and this fact provides a method
for studying the derived category. On the other hand, in the case of Dynkin type,
they are no longer tilting modules. Moreover, there is no spherical objects in this
case and a similar nice theory had never been observed. In this paper, via a new
strategy, we succeed in classifying all tilting complexes as described below.

1B. Our results. To explain our results, we give the following set-up. Let 1 be a
Dynkin graph and 3 the preprojective algebra of 1.

First we study two-term tilting complexes of 3. For this purpose, we use τ -
tilting theory. Mizuno [2014] showed that the above ideals are support τ -tilting
3-modules (Theorem 4.1). Then, combining the results of [Adachi et al. 2014], we
obtain a bijection between two-term silting complexes of 3 and the Weyl group
(Theorem 4.1). Moreover we analyze this connection in more detail and we can
give a classification of two-term tilting complexes of 3 using the folded graph 1f

of 1 (Definition 3.2) given by the following correspondences.

1 A2n−1,A2n D2n D2n+1 E6 E7 E8

1f Bn D2n B2n F4 E7 E8
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Then our first result is summarized as follows.

Theorem 1.1 (Theorem 4.2). Let W1f be the Weyl group of 1f and 2-tilt3 the set
of isomorphism classes of basic two-term tilting complexes of Kb(proj3). Then we
have a bijection

W1f ←→ 2-tilt3.

We remark that we can give not only a bijection but also an explicit description
of all two-term tilting complexes (Theorem 4.1). On the other hand, we study
an important relationship between two-term silting complexes and silting-discrete
categories. More precisely, we give the following criterion of silting-discreteness
(tilting-discreteness).

Theorem 1.2 (Theorem 2.4, Corollary 2.11). Let A be a finite dimensional al-
gebra (respectively, finite dimensional self-injective algebra). The following are
equivalent.

(a) Kb(projA) is silting-discrete (respectively, tilting-discrete).

(b) 2-siltP A (respectively, 2-tiltP A) is a finite set for any silting (respectively,
tilting) complex P.

(c) 2-siltP A (respectively, 2-tiltP A) is a finite set for any silting (respectively, tilt-
ing) complex P which is given by iterated irreducible left silting (respectively,
tilting) mutation from A.

Here 2-siltP A (respectively, 2-tiltP A) denotes the subset of silting (respectively,
tilting) objects T in Kb(projA) such that P ≥ T ≥ P[1] (Definition 2.2). An
advantage of this theorem is that we can understand the condition of all silting (re-
spectively, tilting) objects by studying a certain special class of silting (respectively,
tilting) objects. Then, we can apply Theorem 1.2 and obtain the following result.

Theorem 1.3 (Theorem 5.1, Proposition 5.4). The endomorphism algebra of any ir-
reducible left tilting mutation (Definition 2.3) of3 is isomorphic to3. In particular,
the condition (b) of Theorem 1.2 is satisfied and hence Kb(proj3) is tilting-discrete.

Then Theorem 1.3 implies that any tilting complexes are obtained from 3 by
iterated irreducible mutation. As a consequence of this result, we determine the
derived equivalence class of 3 as follows.

Corollary 1.4 (Theorem 5.1). Any basic tilting complex T of 3 satisfies

EndKb(proj3)(T )∼=3.

In particular, the derived and Morita equivalence classes coincide.

In fact, we give a more detailed description about tilting complexes. Indeed,
using Theorem 1.1 and Corollary 1.4, we can show that irreducible tilting mutation
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satisfy braid relations (Proposition 6.1), which provide a nice relationship between
the braid group and tilting complexes (see [Brav and Thomas 2011; Seidel and
Thomas 2001; Grant 2013; Khovanov and Seidel 2002]).

Recall that the braid group B1f is defined by generators ai (i ∈1f
0) with relations

(ai a j )
m(i, j)

= 1 for i 6= j (see Section 3B for m(i, j)), that is, the difference with
W1f is that we do not require the relations a2

i = 1 for i ∈ 1f
0. We denote by µ+i

(respectively, µ−i ) the irreducible left (respectively, right) tilting mutation associated
with i ∈1f

0.
Then we can define the map from the braid group to tilting complexes and it

gives a classification of tilting complexes as follows.

Theorem 1.5 (Theorem 6.6). Let B1f be the braid group of 1f and tilt3 the set of
isomorphism classes of basic tilting complexes of 3. Then we have a bijection

B1f → tilt3, a = aεi1i1
· · · aεikik

7→ µa(3) := µεi1i1
◦ · · · ◦µεikik

(3).

We now describe the organization of this paper.
In Section 2, we deal with triangulated categories and study some properties of

silting-discrete categories. In particular, we give a criterion of silting-discreteness.
We also investigate a Bongartz-type lemma for silting objects. In Section 3, we
recall definitions and some results related to preprojective algebras. In Section 4,
we explain a connection between two-term silting complexes and the Weyl group.
In particular, we characterize two-term tilting complexes in terms of the subgroup
of the Weyl group and this observation is crucial in this paper. In Section 5, we
show that preprojective algebras of Dynkin type are tilting-discrete. It implies
that any tilting complex is obtained by iterated mutation from an arbitrary tilting
complex. In Section 6, we show that there exists a map from the braid group to
tilting complexes and we prove that it is a bijection.

Notation. Throughout this paper, let K be an algebraically closed field and D :=
HomK (−, K ). For a finite dimensional algebra 3 over K , we denote by mod3 the
category of finitely generated right 3-modules and by proj3 the category of finitely
generated projective 3-modules. We denote by Db(mod3) the bounded derived
category of mod3 and by Kb(proj3) the bounded homotopy category of proj3.

2. Silting-discrete triangulated categories

In this section, we study silting-discrete triangulated categories. In particular, we
give a criterion for silting-discreteness. Moreover we apply this theory for tilting-
discrete categories for self-injective algebras. We also study a relationship between
silting-discrete categories and a Bongartz-type lemma.

Throughout this section, let T be a Krull–Schmidt triangulated category and
assume that it satisfies the following property:
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• For any object X of T , the additive closure add X is functorially finite in T .

For example, it is satisfied if T is the homotopy category of bounded complexes
of finitely generated projective modules over a finite dimensional algebra, which is
a main object in this paper.

2A. Criteria for silting-discreteness. Let us start with recalling the definition of
silting objects [Aihara and Iyama 2012; Buan et al. 2011; Keller and Vossieck
1988].

Definition 2.1. (a) We say an object P in T is presilting (respectively, pretilting)
if it satisfies HomT (P, P[i])= 0 for any i > 0 (respectively, i 6= 0).

(b) We call an object P in T silting (respectively, tilting) if it is presilting (respec-
tively, pretilting) and the smallest thick subcategory containing P is T .

We denote by silt T (respectively, tilt T ) the set of isomorphism classes of basic
silting objects (respectively, tilting objects) in T .

It is known that the number of nonisomorphic indecomposable summands of a
silting object does not depend on the choice of silting objects [Aihara and Iyama
2012, Corollary 2.28]. Moreover, for objects P and Q of T , we write P ≥ Q if
HomT (P, Q[i]) = 0 for any i > 0, which gives a partial order on silt T [Aihara
and Iyama 2012, Theorem 2.11].

Then we give the definition of silting-discrete triangulated categories as follows.

Definition 2.2. (a) We call a triangulated category T silting-discrete if for any
P ∈ silt T and any ` > 0, the set

{T ∈ silt T | P ≥ T ≥ P[`]}

is finite. Note that the property of being silting-discrete does not depend on the
choice of silting objects [Aihara 2013, Proposition 3.8]. Hence it is equivalent
to say that, for a silting object A ∈ T and any ` > 0, the set

{T ∈ silt T | A ≥ T ≥ A[`]}

is finite. Similarly, we call T tilting-discrete if, for a tilting object A ∈ T and
any ` > 0, the set {T ∈ tilt T | A ≥ T ≥ A[`]} is finite.

(b) For a silting object P of T , we denote by 2-siltP T the subset U of silt T such
that P ≥U ≥ P[1]. We call T 2-silting-finite if 2-siltP T is a finite set for any
silting object P of T . Note that the finiteness of 2-siltP T depends on a silting
object P in general. Similarly, we denote by 2-tiltP T the subset U of tilt T
such that P ≥U ≥ P[1].

Moreover we recall mutation for silting objects [Aihara and Iyama 2012, Theo-
rem 2.31].
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Definition 2.3. Let P be a basic silting object of T and decompose it as P= X⊕M .
We take a triangle

X
f
// M ′ // Y // X [1]

with a minimal left (add M)-approximation f of X . Then µ+X (P) := Y⊕M is again
a silting object, and we call it the left mutation of P with respect to X . Dually, we
define the right mutation µ−X (P).

1 Mutation will mean either left or right mutation.
If X is indecomposable, then we say that mutation is irreducible. In this case,
we have P > µ+X (P) and there is no silting object Q satisfying P > Q > µ+X (P)
[Aihara and Iyama 2012, Theorem 2.35].

Moreover, if P and µ+X (P) are tilting objects, then we call it the (left) tilting
mutation. In this case, if there exists no nontrivial direct summand X ′ of X such
that µ+X ′(T ) is tilting, then we say that tilting mutation is irreducible ([Chan et al.
2015, Definition 5.3]).

We remark that all silting objects of a silting-discrete category are reachable by
iterated irreducible mutation [Aihara 2013, Corollary 3.9].

Our first aim is to show the following theorem.

Theorem 2.4. The following are equivalent.

(a) T is silting-discrete.

(b) T is 2-silting-finite.

(c) For a silting object A ∈ T , 2-siltP T is a finite set for any silting object P
which is given by iterated irreducible left mutation from A.

We note that the theorem is different from [Qiu and Woolf 2014, Lemma 2.14],
where the partial order is defined by a finite sequence of tilts; our partial order is
valid for any silting objects.

Now we give some examples of silting-discrete categories.

Example 2.5. Let 3 be a finite dimensional algebra. Then Kb(proj3) is silting-
discrete if:

(a) 3 is a path algebra of Dynkin type, which immediately follows from the
definition.

(b) 3 is a local algebra [Aihara and Iyama 2012, Corollary 2.43].

(c) 3 is a representation-finite symmetric algebra [Aihara 2013, Theorem 5.6],
which is also tilting-discrete.

(d) 3 is a derived discrete algebra of finite global dimension [Broomhead et al.
2016, Proposition 6.8].

1The convention of µ+ and µ− is different from [Mizuno 2014] in which the converse notation is
used.
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(e) 3 is a Brauer graph algebra whose Brauer graph contains at most one cycle
of odd length and no cycle of even length [Adachi et al. 2015], which is also
tilting-discrete.

For a proof of Theorem 2.4, we will introduce the following terminology.

Definition 2.6. We define a subset of silt T

∇A(T ) := {U ∈ silt T | A ≥U ≥ A[1] and U ≥ T },

where A is a silting object and T is a presilting object in T satisfying A ≥ T . Note
that we have T ≥ A[`] for some `≥ 0 [Aihara and Iyama 2012, Proposition 2.4].

Moreover, we say that a silting object P is minimal in ∇A(T ) if it is a minimal
element in the partially ordered set ∇A(T ).

To keep this notation, we will make the following assumption.

Assumption 2.7. In the rest of this section, we always assume that T admits a
silting object A and a presilting object T satisfying A ≥ T .

Then we give the following key proposition.

Proposition 2.8. If a silting object P is minimal in ∇A(T ) and T ≥ A[`] for some
` > 0, then we have T ≥ P[`− 1].

For a proof, we recall the following proposition. See [Aihara and Iyama 2012,
Proposition 2.23, 2.24, 2.36] and [Aihara 2013, Proposition 2.12].

Proposition 2.9. Let P be a silting object of T . Then the following hold.

(a) There exists `≥ 0 such that P ≥ T ≥ P[`] if and only if there exist triangles

T1 // P0
f0
// T0 := T // T1[1],

...
...

...
...

T`−1 // P`−2
f`−2

// T`−2 // T`−1[1],

T` // P`−1
f`−1

// T`−1 // P`[1],

0 // P`
f`

// T` // 0,

where fi is a minimal right (add P)-approximation of Ti for 0≤ i ≤ `.

(b) In the situation of (a), if ` 6= 0, then there is a nonzero direct summand
X ∈ add(P`) such that the irreducible left mutation µ+X (P)≥ T.

Using Proposition 2.9, we give a proof of Proposition 2.8.
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Proof of Proposition 2.8. Since P is minimal in ∇A(T ), we have

P ≥ T ≥ A[`] ≥ P[`].

Then, by Proposition 2.9(a), there exist triangles

T1 // P0
f0
// T0 := T // T1[1],

...
...

...
...

T`−1 // P`−2
f`−2

// T`−2 // T`−1[1],

T` // P`−1
f`−1

// T`−1 // P`[1],

0 // P`
f`

// T` // 0,

where fi is a minimal right (add P)-approximation of Ti for 0≤ i ≤ `.
Similarly, since we have P ≥ A[1] ≥ P[1], there is a triangle

Q1 // Q0
f
// A[1] // Q1[1], (2-1)

where f is a minimal right (add P)-approximation of A[1] and Q1 ∈ add P .

(i) We show that P` belongs to add Q1. First, we have HomT (T, A[1+ `]) = 0
by the definition of T ≥ A[`]. Hence it follows from [Aihara and Iyama 2012,
Lemma 2.25] that (add P`)∩ (add Q0)= 0.

On the other hand, since A[1] is a silting object, we find that Q0⊕ Q1 is also a
silting object by the sequence (2-1). From [Aihara and Iyama 2012, Theorem 2.18],
it is observed that add P = add(Q0⊕ Q1) and hence P` belongs to add Q1.

(ii) We show that T ≥ P[`− 1]. Suppose that P` 6= 0. Then we can take a direct
summand X 6= 0 of P` such that µ+X (P)≥ T from Proposition 2.9(b).

On the other hand, (i) implies that X belongs to add Q1. Since P ≥ A[1] ≥ P[1],
by applying Proposition 2.9(b) to the sequence (2-1), we see that µ+X (P)≥ A[1].
Thus, one gets a silting object µ+X (P) such that P > µ+X (P) ≥ A[1] satisfying
µ+X (P) ≥ T , which is a contradiction to the minimality of P . Therefore, we
conclude that P` = 0. Hence we get T ≥ P[`− 1] by Proposition 2.9(a). �

On the other hand, we can easily check the following lemma.

Lemma 2.10. Let A be a silting object. If 2-siltA T is a finite set, then there exists
a minimal element in ∇A(T ).

Then we give a proof of Theorem 2.4, which provides a criterion of silting-
discreteness.

Proof of Theorem 2.4. It is obvious that the implications (a)⇒ (b)⇒ (c) hold.
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We show that the implication (c)⇒ (a) holds. Let T be a silting object such that
A ≥ T ≥ A[`] for some ` > 0. Since 2-siltA T is a finite set, there exists a minimal
object P in ∇A(T ). Hence we get P ≥ T ≥ P[`− 1] by Proposition 2.9.

Thus, one obtains

{T ∈ silt T | A ≥ T ≥ A[`]} ⊆
⋃

P∈2-siltA T

{U ∈ silt T | P ≥U ≥ P[`− 1]}.

By [Aihara 2013, Theorem 3.5], the finiteness of 2-siltA T implies that P can be
obtained from A by iterated irreducible left mutation. Therefore, our assumption
yields that 2-siltP T is also a finite set. Repeating this argument leads to the
assertion. �

Moreover, using a statement analogous to Proposition 2.9 (see [Chan et al. 2015,
Section 5]), we give a criterion for tilting-discreteness for self-injective algebras as
follows.

Corollary 2.11. Let 3 be a basic finite dimensional self-injective algebra and
T := Kb(proj3). Then the following are equivalent.

(a) T is tilting-discrete.

(b) T is 2-tilting-finite.

(c) 2-tiltP T is a finite set for any tilting object P which is given by iterated
irreducible left tilting mutation from 3.

Proof. It is obvious that the implications (a)⇒ (b)⇒ (c) hold.
We show that the implication (c)⇒ (a) holds. Let T be a tilting object such

that 3 ≥ T ≥ 3[`] for some ` > 0. Since 2-tilt3 T is a finite set, there exists a
minimal tilting object P in ∇3(T ). Then, by [Chan et al. 2015, Proposition 5.10,
Theorem 5.11], an argument the same as that of Proposition 2.9 works for tilting
objects and irreducible tilting mutation. Hence we obtain Proposition 2.8 for tilting
objects and one can get P ≥ T ≥ P[`− 1].

Thus, one obtains

{T ∈ tilt T | 3≥ T ≥3[`]} ⊆
⋃

P∈2-tilt3 T

{U ∈ tilt T | P ≥U ≥ P[`− 1]}.

By [Chan et al. 2015, Theorem 5.11], the finiteness of 2-tilt3 T implies that P can
be obtained from 3 by iterated irreducible left tilting mutation. Therefore, our
assumption yields that 2-tiltP T is also a finite set. Repeating this argument leads
to the assertion. �

Finally, as an application of Theorem 2.4, we show that silting-discrete categories
satisfy a Bongartz-type lemma. For this purpose, we give the following definition.
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Definition 2.12. We call a presilting object T in T partial silting if it is a direct
summand of some silting object, that is, there exists an object T ′ such that T ⊕ T ′

is a silting object.

One of the important questions is if any presilting object is partial silting or not
[Brüstle and Yang 2013, Question 3.13]. We will show that it has a positive answer
in the case of silting-discrete categories.

Let us recall the following result.

Proposition 2.13 [Aihara 2013, Proposition 2.16]. Let T be a presilting object
in T . If A ≥ T ≥ A[1], then T is partial silting.

Then we can improve Proposition 2.13 as follows.

Proposition 2.14. Let T be a presilting object in T such that A ≥ T . Assume that
for any silting object B in T such that A ≥ B ≥ T , there exists a minimal object
in ∇B(T ).

Then there exists a silting object P in T satisfying P ≥ T ≥ P[1]. In particular,
T is partial silting.

Proof. We can take ` ≥ 0 such that A ≥ T ≥ A[`] by [Aihara and Iyama 2012,
Proposition 2.4]. It is enough to show the statement for ` ≥ 2. Since there is a
minimal silting object in∇A(T ), which we denote by A1, we have A1≥T ≥ A1[`−1]
by Proposition 2.8. By our assumption, we can repeat this argument and we obtain
a sequence

A = A0 ≥ A1 ≥ · · · ≥ A`−1 ≥ T ≥ A`−1[1] ≥ · · · ≥ A1[`− 1] ≥ A[`],

where Ai+1 is a minimal object in ∇Ai(T ) for 0≤ i ≤ `−2. Thus, we get the desired
silting object P := A`−1.

The second assertion immediately follows from the first one and Proposition 2.13.
�

As a consequence, we obtain the following theorem.

Theorem 2.15. If T is silting-discrete, then any presilting object is partial silting.

Proof. Take a presilting object T in T . If T is presilting, then so is T [i] for any i .
Hence we can assume that A ≥ T . Then, by Theorem 2.4 and Lemma 2.10, T
satisfies the assumption of Proposition 2.14 and hence we obtain the conclusion. �

We remark that in [Broomhead et al. 2016, Secion 5] the authors also discuss
the Bongartz completion using a different type of the partial order.

3. Basic properties of preprojective algebras of Dynkin type

In this section, we review some definitions and results we will use in the rest of
this paper.
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3A. Preprojective algebras. Let Q be a finite connected acyclic quiver. We denote
by Q0 vertices of Q and by Q1 arrows of Q. We denote by Q the double quiver
of Q, which is obtained by adding an arrow a∗ : j → i for each arrow a : i → j
in Q1. The preprojective algebra 3Q =3 associated to Q is the algebra K Q/I ,
where I is the ideal in the path algebra K Q generated by the relation of the form∑

a∈Q1

(aa∗− a∗a).

We remark that3 does not depend on the orientation of Q. Hence, for a graph1,
we define the preprojective algebra by 31 = 3Q , where Q is a quiver whose
underlying graph is 1. We denote by 10 vertices of 1.

Let1 be a Dynkin graph (by Dynkin graph we always mean the one of type ADE).
The preprojective algebra of 1 is finite dimensional and self-injective [Brenner
et al. 2002, Theorem 4.8]. Without loss of generality, we may suppose that vertices
are given as in Figure 1 and let ei be the primitive idempotent of 3 associated
with i ∈ 10. We denote the Nakayama permutation of 3 by ι : 10 → 10 (i.e.,
D(3eι(i)) ∼= ei3). Then, one can check that we have ι = id if 1 is type D2n, E7

and E8. Otherwise, we have ι2 = id and it is given as follows.

ι(1)= 1 and ι(i)= i + n− 1 for i ∈ {2, · · · , n} if A2n−1,

ι(i)= i + n for i ∈ {1, · · · , n} if A2n,

ι(1)= n and ι(i)= i for i /∈ {1, n} if D2n+1,

ι(3)= 5, ι(4)= 6 and ι(i)= i for i ∈ {1, 2} if E6.

3B. Weyl group. Let 1 be a graph from Figure 1. The Weyl group W1 associated
to 1 is defined by the generators si and relations (si s j )

m(i, j)
= 1, where

m(i, j) :=


1 if i = j,
2 if no edge between i and j in 1,
3 if there is an edge i j in 1,
4 if there is an edge i 4 j in 1.

For w ∈W1, we denote by `(w) the length of w.
Let 1 be a Dynkin graph, 3 the preprojective algebra and ι the Nakayama

permutation of 3. Then ι acts on an element of the Weyl group W1 by ι(w) :=
sι(i1)sι(i2) · · · sι(ik) for w = si1si2 · · · sik ∈W1. We define the subgroup W ι

1 of W1 by

W ι
1 := {w ∈W | ι(w)= w}.
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A2n−1 : n · · · 2 1 (n+ 1) · · · (2n− 1)

A2n : n · · · 2 1 (n+ 1) · · · 2n

Bn (n ≥ 1) : 1 4 2 · · · (n− 1) n

Dn (n ≥ 4) :

1

2 3 · · · (n− 1)

n

En (n = 6, 7, 8) :

1

4 3 2 5 · · · n

F4 : 1 2 4 3 4

Figure 1. Dynkin graphs with vertex labels.

Let w0 be the longest element of W1. Note that we have w0ww0 = ι(w) for
w ∈ W1 [Erdmann and Snashall 1998]. In particular we have w0w = ww0 for
any W ι

1.

Theorem 3.1. Let 1 be a Dynkin (ADE) graph whose vertices are given as in
Figure 1 and W1 the Weyl group of1. Let1f be a graph given by the following type.

1 A2n−1,A2n D2n D2n+1 E6 E7 E8

1f Bn D2n B2n F4 E7 E8

Then we have W ι
1 = 〈ti | i ∈1

f
0〉, where

ti :=


si if i = ι(i) in 1,
si sι(i)si if there is an edge i ι(i) in 1,
si sι(i) if no edge between i and ι(i) in 1,

(T)

and W ι
1 is isomorphic to W1f .

Proof. This follows from the above property of the Nakayama permutation and
[Carter 1989, Chapter 13]. �

Definition 3.2. We call the graph 1f given in Theorem 3.1 the folded graph of 1.

Example 3.3. (a) Let 1 be a graph of type A5. Then one can check that W ι
1 is

given by 〈s1, s2s4, s3s5〉 and this group is isomorphic to W1f , where 1f is a
graph of type B3.
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(b) Let 1 be a graph of type A6. Then one can check that W ι
1 is given by

〈s1s4s1, s2s5, s3s6〉 and this group is isomorphic to W1f , where 1f is a graph
of type B3.

(c) Let 1 be a graph of type D5. Then one can check that W ι
1 is given by

〈s1s5, s2, s3, s4〉 and this group is isomorphic to W1f , where 1f is a graph of
type B4.

(d) Let 1 be a graph of type E6. Then one can check that W ι
1 is given by

〈s1, s2, s3s5, s4s6〉 and this group is isomorphic to W1f , where 1f is a graph of
type F4.

3C. Support τ -tilting modules and two-term silting complexes. In this subsec-
tion, we briefly recall the notion of support τ -tilting modules introduced in [Adachi
et al. 2014], and its relationship with silting complexes. We refer to [Adachi et al.
2014; Iyama and Reiten 2014] for a background of support τ -tilting modules.

Let 3 be a finite dimensional algebra and we denote by τ the AR translation
[Auslander et al. 1995].

Definition 3.4. (a) We call X in mod3 τ -rigid if Hom3(X, τ X)= 0.

(b) We call X in mod3 τ -tilting if X is τ -rigid and |X | = |3|, where |X | denotes
the number of nonisomorphic indecomposable direct summands of X .

(c) We call X in mod3 support τ -tilting if there exists an idempotent e of 3 such
that X is a τ -tilting (3/〈e〉)-module.

We can also describe these notions as pairs as follows.

(d) We call a pair (X, P) of X ∈mod3 and P ∈ proj3 τ -rigid if X is τ -rigid and
Hom3(P, X)= 0.

(e) We call a τ -rigid pair (X, P) a support τ -tilting (respectively, almost complete
support τ -tilting) pair if |X | + |P| = |3| (respectively, |X | + |P| = |3| − 1).

We say that (X, P) is basic if X and P are basic, and we say that (X, P) is
a direct summand of (X ′, P ′) if X is a direct summand of X ′ and P is a direct
summand of P ′. Note that a basic support τ -tilting module X determines a basic
support τ -tilting pair (X, P) uniquely [Adachi et al. 2014, Proposition 2.3]. Hence
we can identify basic support τ -tilting modules with basic support τ -tilting pairs.
We denote by sτ-tilt3 the set of isomorphism classes of basic support τ -tilting
3-modules.

Finally we recall an important relationship between support τ -tilting modules
and two-term silting complexes. We write silt3 := siltKb(proj3) and tilt3 :=
tiltKb(proj3) for simplicity. We denote by 2-silt3 (respectively, 2-tilt3) the subset
of silt3 (respectively, tilt3) consisting of two-term (i.e., it is concentrated in the
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degree 0 and −1) complexes. Note that a complex T is two-term if and only if
3≥ T ≥3[1].

Then we have the following nice correspondence.

Theorem 3.5 [Adachi et al. 2014, Theorem 3.2, Corollary 3.9]. Let 3 be a finite
dimensional algebra. There exists a bijection 9 : sτ-tilt3→ 2-silt3,

(X, P) 7→9(X, P) :=


−1
P1

X
f
−→

0
P0

X
⊕ ∈ Kb(proj3),

P

where P1
X

f
// P0

X
// X // 0 is a minimal projective presentation of X. More-

over, it gives an isomorphism of the partially ordered sets between sτ-tilt3 and
2-silt3.

By the above correspondence, we can give a description of two-term silting
complexes by calculating support τ -tilting modules, which is much simpler than
calculations of two-term silting complexes.

4. Two-term tilting complexes and Weyl groups

In this section, we characterize 2-term tilting complexes in terms of the Weyl group.
In particular, we provide a complete description of 2-term tilting complexes.

Throughout this section, let 1 be a Dynkin (ADE) graph with 10 = {1, . . . , n},
3 the preprojective algebra of 1 and Ii :=3(1− ei )3, where ei is the primitive
idempotent of 3 associated with i ∈10. We denote by 〈I1, . . . , In〉 the set of ideals
of 3 which can be written as

Ii1 Ii2 · · · Iik

for some k ≥ 0 and i1, . . . , ik ∈10. Note that it has recently been understood that
these ideals play an important role in several situations, for example [Iyama and
Reiten 2008; Buan et al. 2009; Geiß et al. 2011; Oppermann et al. 2015; Baumann
and Kamnitzer 2012; Baumann et al. 2014].

Then we use the following important results.

Theorem 4.1. (a) There exists a bijection W1→ 〈I1, . . . , In〉, which is given by
w 7→ Iw = Ii1 Ii2 · · · Iik for any reduced expression w = si1 · · · sik .

(b) There exist bijections

W1→ sτ-tilt3 → 2-silt3,

w 7→ (Iw, Pw) 7→ Sw :=9(Iw, Pw).

(c) The Weyl group W1 acts transitively and faithfully on 2-silt3 by

si · (Sw) := µi (Sw)∼= Ssiw,
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where µi is the silting mutation associated with i ∈10.

Proof. (a) This follows from [Mizuno 2014, Theorem 2.14; Buan et al. 2009,
III.1.9].

(b) This follows from [Mizuno 2014, Theorem 2.21] and Theorem 3.5.

(c) By [Mizuno 2014, Theorem 2.16], W1 acts transitively and faithfully on sτ-tilt3
by mutation of support τ -tilting pairs (see [Adachi et al. 2014, Theorems 2.18, 2.28]
for mutation of support τ -tilting pairs). On the other hand, [Adachi et al. 2014,
Corollary 3.9] implies that the bijection (b) gives the compatibility of mutation of
support τ -tilting pairs and two-term silting complexes. Hence we get the conclusion.

�

Now, the aim of this section is to show the following result.

Theorem 4.2. Let 1 be a Dynkin graph, 3 the preprojective algebra of 1 and ι
the Nakayama permutation of 3.

(a) Let ν be the Nakayama functor of 3. Then ν(Iw)∼= Iw if and only if ι(w)=w.

(b) We have a bijection

W ι
1→ 2-tilt3, w 7→ Sw.

(c) Let 1f be the folded graph of 1 (Definition 3.2) and define 〈ti | i ∈1f
0〉 by (T)

of Theorem 3.1. Then 〈ti | i ∈1f
0〉 acts transitively and faithfully on 2-tilt3.

For a proof, we recall the notion of g-vectors of support τ -tilting modules. See
[Mizuno 2014, Section 3; Adachi et al. 2014, Section 5] for details.

Let K0(proj3) be the Grothendieck group of the additive category proj3, which
is isomorphic to the free abelian group Zn , and we identify the set of isomorphism
classes of projective 3-modules with the canonical basis e1, . . . , en of Zn .

For a 3-module X , take a minimal projective presentation

P1
X

// P0
X

// X // 0

and let g(X)= (g1(X), · · · , gn(X))t := [P0
X ] − [P

1
X ] ∈ Zn. Then, for any w ∈W1

and i ∈10, we define a g-vector by

Zn
3 gi (w)=

{
g(ei Iw) if ei Iw 6= 0,
−eι(i) if ei Iw = 0.

Then we define a g-matrix of a support τ -tilting 3-module Iw by

g(w) := (g1(w), . . . , gn(w)) ∈ GLn(Z).

Note that the g-vectors form a basis of Zn [Adachi et al. 2014, Theorem 5.1].
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On the other hand, we define a matrix Mι := (eι(1), . . . , eι(n)) ∈GLn(Z) and, for
X ∈ GLn(Z), we define

ι(X) := Mι · X ·Mι.

Clearly the left multiplication (respectively, right multiplication) of Mι to X gives a
permutation of X from j-th to ι( j)-th rows (respectively, columns) for any j ∈10

and M2
ι = id.

Moreover, we recall the following definition (see [Mizuno 2014, Definition 3.5]).

Definition 4.3 [Björner and Brenti 2005]. The contragradient r : W1→ GLn(Z)

of the geometric representation is defined by

r(si )(e j )= ri (e j )=

{
e j , i 6= j,
−ei +

∑
k — i

ek, i = j,

where the sum is taken over all edges of i in 1. We regard ri as a matrix of GLn(Z)

and this extends to a group homomorphism.

Lemma 4.4. For any i ∈10, we have

ι(ri )= rι(i).

Proof. Since the left multiplication (respectively, right multiplication) of Mι gives a
permutation of rows (respectively, columns) from j-th to ι( j)-th for any j ∈10,
this follows from the definition of ri and rι(i). �

Lemma 4.5. For any w ∈W1, we have

ι(g(w))= g(ι(w)).

Proof. Let w = si1 · · · sik be an expression of w. Then, by [Mizuno 2014, Proposi-
tion 3.6], we conclude

g(w)= rik · · · ri1 .

Hence we have

ι(g(w))= Mι(rik . . . ri1)Mι

= (Mιrik Mι) · · · (Mιri1 Mι) (M2
ι = id)

= rι(ik) . . . rι(i1) (Lemma 4.4)

= g(ι(w)). �

Moreover, we give the following lemma.

Lemma 4.6. Let w ∈W1.

(a) ν(Iw) is also a support τ -tilting 3-module. In particular, there exists some
w′ ∈W1 such that ν(Iw)∼= Iw′ .
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(b) For the above w′, we have

g(w′)= ι(g(w)).

Proof. (a) Let (Iw, Pw) be a basic support τ -tilting pair of 3, where Pw is the
corresponding projective 3-module. By Theorem 3.5, we have the two-term silting
complex in Kb(proj3) by

Sw := (P1
Iw

f
→ P0

Iw)⊕ Pw[1] ∈ Kb(proj3),

where
P1

Iw

f
// P0

Iw
// Iw // 0

is a minimal projective presentation of Iw.
Then ν(Sw)= (ν(P1

Iw)→ν(P
0
Iw))⊕ ν(Pw)[1] ∈ K

b(proj3) is clearly a two-term
silting complex. Hence, by Theorem 3.5, (ν(Iw), ν(Pw)) is also a basic support τ -
tilting pair of 3. Thus, by Theorem 4.1, there exists w′ ∈W1 such that ν(Iw)∼= Iw′ .

(b) Take i ∈10. First assume that ei Iw 6= 0 and take a minimal projective presenta-
tion of ei Iw

P1
→ P0

→ ei Iw→ 0.

By applying ν to this sequence, we have

ν(P1)→ ν(P0)→ ν(ei Iw)→ 0.

Because [ν(e j3)] = [eι( j)3] = Mι[e j3] for any j ∈10, we have

[(ν(P0)] − [(ν(P1)] = Mι([P0
] − [P1

])= Mι(gi (w)).

Then, since we have ν(ei Iw)∼= eι(i) Iw′ , we obtain gι(i)(w′)= Mι(gi (w)).
Next assume that ei Iw = 0. Then we have gi (w) = −eι(i) by the definition.

Because ν(e j3)∼= eι( j)3 for any j ∈10, we obtain gι(i)(w′)=−ei = Mι(gi (w)).
Consequently, we have

g(w′)= (g1(w′), . . . , gn(w′))

= (gι(1)(w′), . . . , gι(n)(w′)) ·Mι

= (Mι(g1(w)), . . . ,Mι(gn(w))) ·Mι

= Mι · (g1(w), . . . , gn(w)) ·Mι

= ι(g(w)).

This finishes the proof. �

For the proof of Theorem 4.2 we recall the following nice property.

Theorem 4.7 [Adachi et al. 2014, Theorem 5.5]. The map X→ g(X) induces an
injection from the set of isomorphism classes of τ -rigid pairs for 3 to K0(proj3).
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Proof of Theorem 4.2. (a) We have the following equivalent conditions

ν(Iw)∼= Iw⇔ ι(g(w))= g(w) (Lemma 4.6 and Theorem 4.7)

⇔ g(ι(w))= g(w) (Lemma 4.5)

⇔ Iι(w) ∼= Iw (Theorem 4.7)

⇔ ι(w)= w (Theorem 4.1).

Thus we get the desired result.

(b) A silting complex Sw is a tilting complex if and only if ν(Sw)∼= Sw (see [Aihara
2013, Appendix]). Hence (a) implies that it is equivalent to say that ι(w)=w. This
proves our claim.

(c) By (b) and Theorem 3.1, the action of Theorem 4.1 induces the action of
〈ti | i ∈1f

0〉 on 2-tilt3. �

Example 4.8. Let 1 be a graph of type A3 and 3 the preprojective algebra of 1.
Then the support τ -tilting quiver of 3 [Adachi et al. 2014, Definition 2.29] is given
in Figure 2.

The framed modules indicate ν-stable modules [Mizuno 2015] (i.e., Iw ∼= ν(Iw)),
which is equivalent to say that ι(w)= w. Hence Theorems 3.1 and 4.2 imply that
these modules are in bijection with the elements of the subgroup W ι

1 = 〈s1s3, s2〉

and this group is isomorphic to the Weyl group of type B2.

5. Preprojective algebras are tilting-discrete

In this section, we show that preprojective algebras of Dynkin type are tilting-
discrete. It implies that all tilting complexes are connected to each other by succes-
sive tilting mutation [Chan et al. 2015, Theorem 5.14; Aihara 2013, Theorem 3.5].
From this result, we can determine the derived equivalence class of the algebra.

Throughout this section, let 1 be a Dynkin graph with 10 = {1, . . . , n}, 3 the
preprojective algebra of 1, ei the primitive idempotent of 3 associated with i ∈10

and 1f the folded graph of 1. We also keep the notation of previous sections.
The aim of this section is to show the following theorem.

Theorem 5.1. Let 3 be a preprojective algebra of Dynkin type.

(a) Kb(proj3) is tilting-discrete.

(b) Any basic tilting complex T of 3 satisfies EndKb(proj3)(T )∼=3. In particular,
the derived equivalence class coincides with the Morita equivalence class.

Notation. Let 1̃ be an extended Dynkin graph obtained from1 by adding a vertex 0
(i.e., 1̃0 = {0} ∪10) with the associated arrows. Since

W1 = 〈s1, . . . , sn〉 ⊂W1̃ = 〈s1, . . . , sn, s0〉,
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Figure 2. Diagram for Example 4.8.

we can regard elements of W1 as those of W1̃. We denote by 3̃ the m-adic
completion of the preprojective algebra of 1̃, where m is the ideal generated by
all arrows. It implies that the Krull–Schmidt theorem holds for finitely generated
projective 3̃-modules. Moreover we denote Ĩi := 3̃(1− ei )3̃, where ei is the
primitive idempotent of 3̃ associated with i ∈ 1̃0.

Recall that, by Theorem 4.1, we have a bijection between W1̃ and 〈 Ĩ1, . . . , Ĩn, Ĩ0〉

[Buan et al. 2009, III.1.9] and hence for each element w ∈ W1̃, we can define
Ĩw := Ĩi1 · · · Ĩik , where w = si1 · · · sik is a reduced expression. Furthermore, it is
shown that Ĩw is a tilting 3̃-module [Buan et al. 2009, Theorem III.1.6].

Note that if i 6= 0 ∈ 1̃0, then we have

3= 3̃/〈e0〉 and Ii = Ĩi/〈e0〉.

In particular, for w ∈W1, we have Ĩw/〈e0〉 = Iw and hence 3̃/ Ĩw ∼=3/Iw.
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Recall that we can describe the two-term silting complex of Kb(proj3) by

Sw :=


P1

Iw
f
−→ P0

Iw
⊕

Pw

where P1
Iw

f
// P0

Iw
// Iw // 0 is a minimal projective presentation of Iw.

Then we show that Ĩw⊗L
3̃
3 gives a two-term silting complex Sw.

Proposition 5.2. For w ∈W1, Ĩw⊗L
3̃
3 is isomorphic to Sw in Db(mod3).

Proof. Since Ĩw is a tilting 3̃-module, we have a minimal projective resolution

0 // P̃1
g
// P̃0 // Ĩw // 0.

By applying the functor −⊗3̃3, we have the following exact sequence [Mizuno
2014, Proposition 3.2]

0→ ν−1(3/Iw)→ P̃1⊗3̃3
g⊗3
−−→ P̃0⊗3̃3→ Ĩw⊗3̃3→ 0.

Because we have an isomorphism in Db(mod3̃)

Ĩw⊗L
3̃
3∼=

(
· · · → 0→ P̃1⊗3̃3

g⊗3
−−→ P̃0⊗3̃3→ 0→ · · ·

)
,

one can check that Ĩw⊗L
3̃
3 is isomorphic to Sw (Theorem 3.5). �

For w∈W1, we denote the inclusion by i : Ĩw ↪→ 3̃. Then we show the following
lemma.

Lemma 5.3. Let w0 be the longest element of W1. For w ∈ W ι
1, we have isomor-

phisms p : Ĩw⊗L
3̃

Ĩw0 → Ĩw0 ⊗
L
3̃

Ĩw and q : Ĩw⊗L
3̃
3̃→ 3̃⊗L

3̃
Ĩw, which make the

following diagram commutative

Ĩw⊗L
3̃

Ĩw0

id⊗i
//

∼= p
��

Ĩw⊗L
3̃
3̃

∼= q
��

Ĩw0 ⊗
L
3̃

Ĩw
i⊗id

// 3̃⊗L
3̃

Ĩw

Proof. Because `(w0w
−1)+`(w)= `(w0), [Buan et al. 2009, Propositions II.1.5(a),

II.1.10] gives the following commutative diagram:

Ĩw0

i
// 3̃

∼=

��

Ĩw0w−1 ⊗
L
3̃

Ĩw
i⊗i
//

∼=

OO

3̃⊗L
3̃
3̃
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Hence we have

Ĩw⊗L
3̃

Ĩw0

id⊗i
// Ĩw⊗L

3̃
3̃

i⊗id
// 3̃⊗L

3̃
3̃

∼=

��

Ĩw⊗L
3̃

Ĩw0w−1 ⊗
L
3̃

Ĩw
i⊗i⊗i

//

∼=

OO

3̃⊗L
3̃
3̃⊗L

3̃
3̃

Since w ∈ W ι
1, we have w0w = ww0 (Section 3B) and hence Ĩw0w−1 = Ĩw−1w0 .

Then similarly we have the following commutative diagram

Ĩw⊗L
3̃

Ĩw−1w0 ⊗
L
3̃

Ĩw
i⊗i⊗i

//

∼=

��

3̃⊗L
3̃
3̃⊗L

3̃
3̃

Ĩw0 ⊗
L
3̃

Ĩw
i⊗id

// 3̃⊗L
3̃

Ĩw
id⊗i

// 3̃⊗L
3̃
3̃

∼=

OO

Moreover we have the following commutative diagram

Ĩw⊗L
3̃
3̃

∼=

��

i⊗id
// 3̃⊗L

3̃
3̃

∼=

��

3̃⊗L
3̃

Ĩw⊗L
3̃
3̃

id⊗i⊗id
// 3̃⊗L

3̃
3̃⊗L

3̃
3̃

3̃⊗L
3̃

Ĩw

∼=

OO

id⊗i
// 3̃⊗L

3̃
3̃

∼=

OO

Put L := Ĩw⊗L
3̃

Ĩw−1w0⊗
L
3̃

Ĩw. Consider a morphism u : L→ Ĩw and the triangle

· · · // 3̃/ Ĩw[−1] // Ĩw
i
// 3̃ // 3̃/ Ĩw // . . . .

If i ◦ u = 0, then there exists a map v : L→ 3̃/ Ĩw[−1] which makes commutative
the diagram

L

u
��

v

zz

· · · // 3̃/ Ĩw[−1] // Ĩw
i
// 3̃ // 3̃/ Ĩw // . . .

Because H i (L)= 0 for any i > 0, we get v= 0 and hence u = 0. Thus the above
diagrams provide the required morphisms. �

From the above results, we have the following nice consequence.
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Proposition 5.4. For any w ∈W ι
1, we have an isomorphism

EndKb(proj3)( Ĩw⊗
L
3̃
3)∼=3.

In particular, the endomorphism algebra of any basic two-term tilting complex is
isomorphic to 3.

Proof. Letw0 be the longest element of W1. Since Ĩw0 =〈e0〉, we have the following
exact sequence

0 // Ĩw0
// 3̃ // 3 // 0.

Then applying the functor Ĩw⊗L
3̃
− to the exact sequence, we have the triangle

Ĩw⊗L
3̃

Ĩw0
// Ĩw⊗L

3̃
3̃ // Ĩw⊗L

3̃
3 // Ĩw⊗L

3̃
Ĩw0[1].

Similarly, applying the functor −⊗L
3̃

Ĩw to the first exact sequence, we have the
triangle

Ĩw0 ⊗
L
3̃

Ĩw // 3̃⊗L
3̃

Ĩw // 3⊗L
3̃

Ĩw // Ĩw0 ⊗
L
3̃

Ĩw[1].

By Lemma 5.3, we have the following commutative diagram

Ĩw⊗L
3̃

Ĩw0
//

p∼=
��

Ĩw⊗L
3̃
3̃ //

q∼=
��

Ĩw⊗L
3̃
3 //

r
��

Ĩw⊗L
3̃

Ĩw0[1]

��

Ĩw0 ⊗
L
3̃

Ĩw // 3̃⊗L
3̃

Ĩw // 3⊗L
3̃

Ĩw // Ĩw0 ⊗
L
3̃

Ĩw[1]

and the isomorphism r . Because Ĩw is a tilting module [Buan et al. 2009, Theo-
rem III.1.6] and we have 3̃∼=Hom3̃( Ĩw, Ĩw) [Buan et al. 2009, Proposition II.1.4],
we obtain

RHom3( Ĩw⊗L
3̃
3, Ĩw⊗L

3̃
3)∼= RHom3̃( Ĩw, Ĩw⊗L

3̃
3)

∼= RHom3̃( Ĩw,3⊗
L
3̃

Ĩw)
∼=3⊗

L
3̃

RHom3̃( Ĩw, Ĩw)
∼=3⊗

L
3̃
3̃

∼=3.

Then by taking the 0th part, we get the assertion. The second statement immediately
follows from the first one, Theorem 4.2 and Proposition 5.2. �
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Corollary 5.5. Let T be a tilting complex which is given by iterated irreducible left
tilting mutation from 3. Then we have

EndKb(proj3)(T )∼=3.

Proof. Let T =µ+(`)◦· · ·◦µ
+

(1)(3), where µ denotes irreducible left tilting mutation.
We proceed by induction on `. Assume that, for T ′=µ+(`−1)◦· · ·◦µ

+

(1)(3), we have
EndKb(proj3)(T ′)∼=3. Then we have an equivalence F : Kb(proj3)→ Kb(proj3)

such that F(T ′)∼=3 [Rickard 1989]. Therefore we have EndKb(proj3)(µ
+

(`)(T
′))∼=

EndKb(proj3)(µ
+

(`)(3)) and hence it is isomorphic to 3 by Proposition 5.4. �

Now we are ready to give a proof of Theorem 5.1.

Proof of Theorem 5.1. (a) We will check the condition (c) of Corollary 2.11.
Recall that 2-tiltT 3 := {U ∈ tilt3 | T ≥ U ≥ T [1]}. We denote by ] 2-tiltT 3

the number of 2-tiltT 3.
By Theorem 4.2, the set 2-tilt33= 2-tilt3 is finite. Let T be a tilting complex

which is given by iterated irreducible left tilting mutation from 3. Then we have
EndKb(proj3)(T )∼=3 from Corollary 5.5. Therefore, we have an equivalence

F : Kb(proj3)→ Kb(proj3)

such that F(T )∼=3 and hence we get

]
{
U ∈ tilt3

∣∣ T ≥U ≥ T [1]
}
= ]

{
F(U ) ∈ tilt3

∣∣3≥ F(U )≥3[1]
}
.

Thus it is also finite and we obtain the statement.

(b) Let T be a basic tilting complex such that 3≥ T . Since 3 is tilting-discrete, T
is obtained by iterated irreducible left tilting mutation from 3 [Chan et al. 2015,
Theorem 5.11; Aihara 2013, Theorem 3.5]. Thus the statement follows from
Corollary 5.5. Because for any tilting complex T , we have 3 ≥ T [`] for some `
[Aihara and Iyama 2012, Proposition 2.4] and EndKb(proj3)(T )∼=EndKb(proj3)(T [`]),
we get the conclusion from the above argument. �

6. Tilting complexes and braid groups

In this section, we show that irreducible mutation satisfy the braid relations and we
give a bijection from the elements of the braid group to the set of tilting complexes.

We keep the notation of previous sections.
Define W ι

1 = 〈ti | i ∈1
f
0〉 by (T) of Theorem 3.1. By Theorems 4.1 and 4.2, we

have Sti = µ+i (3) (i ∈1f
0) in Db(mod3), where µ+i is given as a composition of
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left silting mutation as follows

µ+i :=


µ+i if i = ι(i) in 1,
µ+i ◦µ

+

ι(i) ◦µ
+

i if there is an edge i — ι(i) in 1,
µ+i ◦µ

+

ι(i) if there is no edge between i and ι(i) in 1.

Moreover, we let

eti :=

{
ei if i = ι(i) in 1,
ei + eι(i) if i 6= ι(i) in 1.

Then, it is easy to check that µ+i (3)= µ
+

(eti3)
(3) and hence we have

Sti =


−1

eti3
f
−→

0
Rti

⊕ ∈ Kb(proj3),

(1− eti )3

where f is a minimal left (add((1−eti )3))-approximation.
Thus µ+i is an irreducible left tilting mutation of 3 and any irreducible left

tilting mutation of 3 is given as µ+i for some i ∈1f
0. Dually, we define µ−i so that

µ−i ◦µ
+

i = id [Aihara and Iyama 2012, Proposition 2.33].
Let F1f be the free group generated by ai (i ∈1f

0). Then we define the map

F1f → tilt3,

a = a
εi1
i1
· · · a

εik
ik
7→ µa(3) := µ

εi1
i1
◦ · · · ◦µ

εik
ik
(3).

Then we give the following proposition.

Proposition 6.1. For any a ∈ F1f , we let T := µa(3). Then we have the following
braid relations in Db(mod3):

µ+i ◦µ
+

j (T )∼= µ+j ◦µ
+

i (T ) if 6 ∃ an edge between i and j in 1f,

µ+i ◦µ
+

j ◦µ
+

i (T )∼= µ+j ◦µ
+

i ◦µ
+

j (T ) if ∃ an edge i j in 1f,

µ+i ◦µ
+

j ◦µ
+

i ◦µ
+

j (T )∼= µ+j ◦µ
+

i ◦µ
+

j ◦µ
+

i (T ) if ∃ an edge i 4 j in 1f.

Proof. By Theorem 4.2, the assertion holds for T =3. Moreover, by Theorem 5.1,
T satisfies EndKb(proj3)(T )∼=3 and hence we have an equivalence F :Kb(proj3)→

Kb(proj3) such that F(T )∼=3. Since mutation is preserved by an equivalence, the
assertion holds for T . �

Now we recall the following definition.

Definition 6.2. The braid group B1f is defined by generators ai (i ∈ 1f
0) and

relations (ai a j )
m(i, j)

= 1 for i 6= j (i.e., the difference with W1f is that we do not
require the relations a2

i = 1 for i ∈ 1f
0). Moreover we denote the positive braid

monoid by B+1f .
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As a consequence of the above results, we have the following proposition.

Proposition 6.3. There is a map

B1f → tilt3, a 7→ µa(3).

Moreover, it is surjective.

Proof. The first statement follows from Proposition 6.1. Since 3 is tilting-discrete,
any tilting complex can be obtained from 3 by iterated irreducible tilting mutation
[Chan et al. 2015, Theorem 5.11; Aihara and Iyama 2012, Theorem 3.5]. Thus the
map is surjective. �

Finally, we will show that the map of Proposition 6.3 is injective.
Recall that T > µa(T ) for any a ∈ B+1f (Definition 2.3). Then we have the

following result.

Lemma 6.4. The map

B+1f → tilt3, a 7→ µa(3)

is injective.

Proof. We denote by `(a) the length of a ∈ B+1f , that is, the number of elements of
the expression a. We show by induction on the length of B+1f . Take b, c ∈ B+1f such
that µb(3)∼= µc(3) in Db(mod3). Without loss of generality, we can assume that
`(b)≤ `(c).

If `(b) = 0, (or equivalently, b = id), then µb(3) = 3. Then we have c = id
because otherwise 3> µc(3).

Next assume that `(b) > 0 and the statement holds for any element if the length
is less than `(b). We write b= b′ai and c= c′a j for some b′, c′ ∈ B+1f and i, j ∈1f

0.
If i = j , then µb′(3) ∼= µc′(3) and the induction hypothesis implies that b′ = c′

and hence b = c.
Hence assume that i 6= j . Then we define

ai, j :=


ai a j if no edge between i and j in 1f,

ai a j ai if there is an edge i j in 1f,

ai a j ai a j if there is an edge i
4

j in 1f.

Then µai, j (3) is a meet of µai (3) and µa j (3) by Theorem 4.2, [Mizuno 2014,
Theorem 2.30] and [Adachi et al. 2014, Corollary 3.9]. Therefore we get µai, j (3)≥

µb(3) since µai (3)≥ µb(3) and µa j (3)≥ µc(3)∼= µb(3).
Because 3 is tilting-discrete and 3 > µai, j (3), there exists d ∈ B+1f such that

µd(µai, j (3)) = µdai, j (3)
∼= µb(3). Then we have µdai, j a−1

i
(3) ∼= µb′(3). Since

we have dai, j a−1
i ∈ B+1f , the induction hypothesis implies that dai, j a−1

i = b′ and
hence dai, j = b. Similarly, we have µdai, j a−1

j
(3)∼=µc′(3) and we get dai, j a−1

j = c′.
Therefore, we get b = dai, j = c′a j = c and the assertion holds. �
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As an immediate consequence, we obtain the following result (cf. [Brav and
Thomas 2011, Lemma 2.3]).

Proposition 6.5. The map

B1f → tilt3, a 7→ µa(3)

is injective.

Proof. It is enough to show that µa(3)∼=3 in Db(mod3) implies a = id. In fact,
µa(3)∼= µa′(3) implies µaa′−1(3)∼=3. Then if aa′−1

= id, then we get a = a′.
It is well-known that any element a ∈ B1f is given by a=b−1c for some b, c∈ B+1f

[Kassel and Turaev 2008, Section 6.6]. Hence, µa(3)∼=3 is equivalent to saying
that µb−1c(3)

∼=3. Then we have µb(3)∼= µc(3) and Lemma 6.4 implies b = c.
Thus we get the assertion. �

Consequently, we obtain the following conclusion.

Theorem 6.6. There is a bijection

B1f → tilt3, a 7→ µa(3).

Proof. The statement follows from Propositions 6.3 and 6.5. �
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