Vol. 11, No. 6, 2017

Download this article
Download this article For screen
For printing
Recent Issues

Volume 16
Issue 8, 1777–2003
Issue 7, 1547–1776
Issue 6, 1327–1546
Issue 5, 1025–1326
Issue 4, 777–1024
Issue 3, 521–775
Issue 2, 231–519
Issue 1, 1–230

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Author Index
To Appear
Other MSP Journals
This article is available for purchase or by subscription. See below.
Classifying tilting complexes over preprojective algebras of Dynkin type

Takuma Aihara and Yuya Mizuno

Vol. 11 (2017), No. 6, 1287–1315

We study tilting complexes over preprojective algebras of Dynkin type. We classify all tilting complexes by giving a bijection between tilting complexes and the braid group of the corresponding folded graph. In particular, we determine the derived equivalence class of the algebra. For the results, we develop the theory of silting-discrete triangulated categories and give a criterion for silting-discreteness.

PDF Access Denied

We have not been able to recognize your IP address as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

preprojective algebras, tilting complexes, silting-discrete, braid groups, derived equivalences
Mathematical Subject Classification 2010
Primary: 16G10
Received: 19 February 2016
Revised: 5 February 2017
Accepted: 17 April 2017
Published: 16 August 2017
Takuma Aihara
Department of Mathematics
Tokyo Gakugei University
Tokyo 184-8501
Yuya Mizuno
Graduate School of Mathematics
Nagoya University
Nagoya 464-8602