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Distinguished-root formulas
for generalized Calabi–Yau hypersurfaces

Alan Adolphson and Steven Sperber

By a “generalized Calabi–Yau hypersurface” we mean a hypersurface in Pn of
degree d dividing n+ 1. The zeta function of a generic such hypersurface has
a reciprocal root distinguished by minimal p-divisibility. We study the p-adic
variation of that distinguished root in a family and show that it equals the product
of an appropriate power of p times a product of special values of a certain p-adic
analytic function F . That function F is the p-adic analytic continuation of the
ratio F(3)/F(3p), where F(3) is a solution of the A-hypergeometric system of
differential equations corresponding to the Picard–Fuchs equation of the family.

1. Introduction

Dwork [1963; 1969] was the first to obtain p-adic analytic formulas for eigenvalues
of Frobenius. In [Dwork 1969, Section 6], he developed an analytic theory of
Frobenius for families of hypersurfaces: Frobenius acts semilinearly on the space of
local solutions of the Picard–Fuchs equation and preserves p-adic growth conditions.
In particular, p-adically bounded local solutions and p-adic unit eigenvalues of
Frobenius are closely related. In this article, we apply these ideas (with some
modifications) to obtain p-adic analytic formulas for the unique eigenvalue of
minimal p-divisibility for what we call generalized Calabi–Yau hypersurfaces.

The Legendre family of elliptic curves was the first case to be studied in detail.
In characteristic zero the Picard–Fuchs equation is of order 2, but Igusa [1958]
noted that in odd characteristic p it has only one series solution (up to p-th powers).
The truncation of the unique series solution 2 F1

( 1
2 ,

1
2 ; 1;3

)
in characteristic zero

at the (p− 1)-st term makes sense in characteristic p and is the unique solution in
characteristic p. Furthermore, for the elliptic curve in characteristic p, the number
of rational points is determined modulo p by this truncation. Dwork used the
Frobenius action on local solutions of Picard–Fuchs to give a much more precise
result, namely, a formula for the unit root of the zeta function of a nonsupersingular
elliptic curve of the Legendre family in terms of special values of the p-adic analytic
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continuation of the ratio 2 F1
( 1

2 ,
1
2 ; 1;3

)
/2 F1

( 1
2 ,

1
2 ; 1;3

p
)

[Dwork 1969, (6.29)].
Similar formulas have been found as well for the Dwork family of hypersurfaces by
Dwork [1969] and J.-D. Yu [2009], more general families of varieties by N. Katz
[1985], and for families of toric exponential sums [Dwork 1974; Adolphson and
Sperber 1984; 1987b; 2012].

Novel features of this work are that we obtain explicit formulas for very gen-
eral families of generalized Calabi–Yau hypersurfaces where the defining form is
subject only to condition (1.9) below. We avoid in particular any hypothesis of
nonsingularity. Dwork had suggested this might in fact be possible in his 1962
International Congress talk [1963, Section 5]. This is achieved here in part by
adopting the A-hypergeometric point of view, which makes it easy to write down
the explicit solution (1.15) of the Picard–Fuchs equation satisfied by the differential
form (1.10), and by avoiding any computations involving the cohomology of the
hypersurfaces in the family.

In addition, we apply here the dual theory associated with Dwork’s θ∞-splitting
function. While this is technically more complicated than the dual theory associated
with the θ1-splitting function used in [Dwork 1964], the advantage is that our results
are valid for all primes rather than just all sufficiently large primes.

We proceed now to make precise the main results. Let

fλ(x0, . . . , xn)=

N∑
j=1

λ j x a j ∈ F×q [x0, . . . , xn] (1.1)

be a homogeneous polynomial of degree d ≥ 2 over the finite field Fq , q = pa ,
p a prime. Let N denote the set of nonnegative integers. For each j we write
a j = (a0 j , . . . , anj )∈Nn+1 with

∑n
i=0 ai j = d and x a j = xa0 j

0 · · · x
anj
n . Let Xλ ⊆ Pn

Fq

be defined by the vanishing of fλ and let X ′λ ⊆ An+1
Fq

be the affine cone over Xλ.
By [Ax 1964] we have for all s

card X ′λ(Fqs )≡ 0 (mod qµs), (1.2)

where µ is the least nonnegative integer that is greater than or equal to n+1
d − 1.

Equivalently,
card Xλ(Fqs )≡

1
1−qs (mod qµs) (1.3)

for all s.
This latter congruence can be expressed in terms of the zeta function of Xλ.

Define a function Pλ(t) by

Pλ(t)=
(
Z(Xλ/Fq , t)(1− t)(1− qt) · · · (1− qn−1t)

)(−1)n
.

When the fiber Xλ is smooth, Pλ(t) is the characteristic polynomial of Frobenius
acting on middle-dimensional primitive cohomology. In this case, Pλ(t) has degree
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d−1((d − 1)n+1
+ (−1)n+1(d − 1)). In the general setting, we have only that Pλ(t)

is a rational function [Dwork 1960]. The congruence (1.3) is equivalent to the
assertion that all reciprocal zeros ρ and reciprocal poles σ of Pλ(t) satisfy

ordq ρ, ordq σ ≥ µ, (1.4)

where ordq is the p-adic valuation normalized by ordq q = 1 [Ax 1964; Katz 1971,
Proposition 2.4].

The integer µ has Hodge-theoretic significance. Let Y ⊆ Pn
C

be a smooth
hypersurface of degree d and let {hi,n−1−i

}
n−1
i=0 be the Hodge numbers of the primitive

part of middle-dimensional cohomology of Y (the hi,n−1−i depend only on n and d).
Then i =µ is the smallest value of i for which hi,n−1−i

6= 0 and, as such, is referred
to as the Hodge type of Y . Furthermore, for Xλ smooth over Fq the rational function
Pλ(t) is a polynomial and, by [Illusie 1990], the generic smooth Xλ has exactly
hµ,n−1−µ reciprocal zeros ρ satisfying ordq ρ = µ.

In this paper we focus our attention on cases where hµ,n−1−µ
= 1, i.e., where

the polynomial Pλ(t) has a unique reciprocal zero ρ with smallest q-ordinal µ
for generic smooth Xλ. By standard formulas for Hodge numbers — a convenient
source, with references, is [Adolphson and Sperber 2006, (1.3)] — this occurs when
d is a divisor of n+ 1. From the definition of µ, we then have

n+ 1= d(µ+ 1), (1.5)

which we assume from now on. We refer to these varieties as generalized Calabi–
Yau hypersurfaces. (The case µ = 0 is the classical case of projective Calabi–
Yau hypersurfaces.) Assuming only this condition, one can refine the description
of Pλ(t).

For j = 1, . . . , N , put

a+j = (a j , 1)= (a0 j , a1 j , . . . , anj , 1) ∈ Nn+2.

Let 31, . . . , 3N be indeterminates and set

H(3) =
∑

u=(u1,...,uN )∈NN∑N
j=1 u j a+j =(p−1)(1,...,1,µ+1)

3
u1
1 · · ·3

uN
N

u1! · · · uN !
∈ (Q∩Zp)[31, . . . , 3N ]. (1.6)

Note that the conditions on the summation imply 0≤ u j ≤ p− 1 for j = 1, . . . , N .
We denote by H(3) ∈ Fp[31, . . . , 3N ] the reduction mod p of H(3).

We express the rational function Pλ(t) as a ratio Pλ(t)= P (1)λ (t)/P (2)λ (t), where
P (1)λ (t) and P (2)λ (t) are relatively prime polynomials with integer coefficients and
constant term 1. By (1.4) we have

P (1)λ (q−µt), P (2)λ (q−µt) ∈ 1+ tZ[t].
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We prove the following result in Section 7.

Proposition 1.7. Let fλ be as in (1.1) and suppose (1.5) holds. Let λ̂ ∈Qp(ζq−1)
N

be the Teichmüller lifting of λ. Then P (2)λ (q−µt)≡ 1 (mod q) and

P (1)λ (q−µt)≡ 1− t
a−1∏
i=0

((−1)µ+1 H(λ̂pi
)) (mod p).

As an immediate consequence of Proposition 1.7, we get a criterion for the
zeta function of a generalized Calabi–Yau hypersurface to have a reciprocal root
distinguished by minimal p-divisibility.

Proposition 1.8. Under the hypotheses of Proposition 1.7, the rational function
Pλ(t) has a unique reciprocal root of q-ordinal µ if and only if H(λ) 6= 0. Further-
more, when H(λ) 6= 0, that reciprocal root is a reciprocal zero, not a reciprocal
pole, of Pλ(t).

When H(λ) 6= 0, we denote by ρmin(λ) the unique reciprocal root of Pλ(t) having
q-ordinal µ. Let Fq denote an algebraic closure of Fq . We call the set

{λ ∈ FN
q | H(λ) 6= 0}

the Hasse domain for the family.
It can happen that the sum defining H(3) is empty, for example, if fλ is the

diagonal hypersurface of degree d dividing n+1 and p 6≡ 1 (mod d). To guarantee
that for all primes p the polynomial H(3) is not identically zero, we make the
assumption that µ+ 1 of the vectors {a j }

N
j=1 sum to the vector (1, . . . , 1), say,

µ+1∑
j=1

a j = (1, . . . , 1). (1.9)

The monomial
∏µ+1

j=1 (3
p−1
j /(p− 1)!) then appears in H(3) and, as a consequence,

the subset of (F×q )N where H(λ) 6=0 is nonempty. Equation (1.9) is equivalent to the
condition that x a1 · · · x aµ+1 = x0 x1 · · · xn . For example, in the case of Calabi–Yau
hypersurfaces where d = n+ 1 and µ= 0, this just says that x0 x1 · · · xn must be
one of the monomials that appear in fλ. Our main goal in this paper is to give
a p-adic analytic description of ρmin(λ) in terms of A-hypergeometric functions
when H(λ) 6= 0.

Let U ⊆ Pn
C

be the open complement of a smooth hypersurface Y defined by a
homogeneous polynomial g of degree d. Under the hypothesis (1.5), there is an
n-form on U which can be expressed in homogeneous coordinates as∑n

i=0(−1)i xi dx0 · · · d̂x i · · · dxn

gµ+1 . (1.10)
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This n-form determines a cohomology class in H n
DR(U ), and also, by applying

the residue map, a cohomology class in H n−1
DR (Y ). The one-dimensional space

spanned by this cohomology class is the Hodge subspace of “colevel” µ. When Y
varies in a family, this cohomology class satisfies a Picard–Fuchs equation. The
A-hypergeometric equation that describes the variation of ρmin(λ) when H(λ) 6= 0
is the A-hypergeometric version of this Picard–Fuchs equation.

We describe the relevant A-hypergeometric system. Let A = {a+j }
N
j=1 and let

L ⊆ ZN be the lattice of relations on the set A:

L =
{

l = (l1, . . . , lN ) ∈ ZN
∣∣∣ N∑

j=1

l j a+j = 0
}
.

For each l= (l1, . . . , lN )∈ L , we define a partial differential operator �l in variables
{3 j }

N
j=1 by

�l =
∏
l j>0

(
∂

∂3 j

)l j
−

∏
l j<0

(
∂

∂3 j

)−l j
. (1.11)

For β = (β0, β1, . . . , βn+1) ∈ Cn+2, the corresponding Euler (or homogeneity)
operators are defined by

Zi =

N∑
j=1

ai j3 j
∂

∂3 j
−βi (1.12)

for i = 0, . . . , n+ 1. The A-hypergeometric system with parameter β consists of
(1.11) for l ∈ L and (1.12) for i = 0, 1, . . . , n+ 1.

The A-hypergeometric system satisfied by the n-form (1.10) is obtained by taking
the parameter β to be

b := −
µ+1∑
j=1

a+j = (−1, . . . ,−1,−µ− 1) ∈ Cn+2 (1.13)

(using (1.9) above). Let v = (−1, . . . ,−1, 0, . . . , 0) ∈ CN (−1 repeated µ+ 1
times followed by 0 repeated N −µ− 1 times). Then

N∑
j=1

v j a+j = b (1.14)

and v has minimal negative support in the terminology of Saito–Sturmfels–Takayama
[Saito et al. 2000], so by [Saito et al. 2000, Proposition 3.4.13] we get a series
solution of this A-hypergeometric system. Let L ′ be the subset of L consisting of all
l= (l1, . . . , lN ) such that l j ≤0 for j =1, . . . , µ+1 and l j ≥0 for j =µ+2, . . . , N .
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The series solution is (31 · · ·3µ+1)
−1 F(3), where

F(3)=
∑
l∈L ′

(−1)
∑µ+1

j=1 l j
∏µ+1

j=1 (−l j )!∏N
j=µ+2 l j !

N∏
j=1

3
l j
j . (1.15)

Since the last coordinate of each a+j equals 1, the condition l ∈ L implies
that

∑N
j=1 l j = 0, and hence that F(3) is homogeneous of degree 0 in the 3 j .

For j = 1, . . . , µ + 1, the 3 j occur to nonpositive powers in F(3), while for
j = µ+ 2, . . . , N , the 3 j occur to nonnegative powers in F(3). The coefficients
of the series F(3) are integers by [Adolphson and Sperber 2013, Proposition 5.2]
and it has constant term 1. Therefore it converges and assumes unit values on the
set

D =
{
(31, . . . , 3N ) ∈ CN

p

∣∣ |3 j |> 1 for 1≤ j ≤ µ+ 1

and |3 j |< 1 for µ+ 2≤ j ≤ N
}

(where Cp denotes the completion of an algebraic closure of Qp). Note that the
Laurent polynomial (31 · · ·3µ+1)

−(p−1)H(3) has only nonpositive powers of 3 j

for j = 1, . . . , µ+1, only nonnegative powers of3 j for j =µ+2, . . . , N , and con-
stant term ((p− 1)!)−(µ+1). This implies that (31 · · ·3µ+1)

−(p−1)H(3) assumes
unit values on D. In particular, F(3)/F(3p) and ((31 · · ·3µ+1)

−(p−1)H(3))−1

assume unit values on D and can be represented by convergent series there.
Note that D is a subset of

D+ :=
{
3 ∈ CN

p

∣∣ |3 j | ≥ 1 for 1≤ j ≤ µ+ 1, |3 j | ≤ 1 for µ+ 2≤ j ≤ N ,

and |(31 · · ·3µ+1)
−(p−1)H(3)| = 1

}
.

Let R′ be the Cp-vector space of uniform limits on D+ of rational functions whose
numerators are polynomials in {3−1

j }
µ+1
j=1 and {3 j }

N
j=µ+2 and whose denominators

are powers of (31 · · · 3µ+1)
−(p−1)H(3). The elements of R′ define functions

on D+. Since H(3) has coefficients in Zp, we have H(3p) ≡ H(3)p (mod p).
This implies that the set D+ is closed under the mapping 3→ 3p, and that if
ξ(3) ∈ R′ then ξ(3p) ∈ R′ also.

Our main result is the following.

Theorem 1.16. Under hypotheses (1.5) and (1.9), the ratio F(3) := F(3)/F(3p)

lies in R′. Let λ ∈ (F×q )
N and let λ̂ ∈ Qp(ζq−1)

N be its Teichmüller lifting. If
H(λ) 6= 0, then λ̂pi

∈ D+ for i = 0, . . . , a− 1 and

ρmin(λ)= qµ
a−1∏
i=0

F(λ̂pi
).
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Examples. (1) When d = n+1 and µ= 0, Theorem 1.16 gives a unit root formula
assuming only that x0 · · · xn is one of the monomials appearing in fλ. If fλ defines
a smooth hypersurface, then Pλ(t) is a polynomial and this is its unique unit root.
Consider for instance the Dwork family of hypersurfaces:

fλ(x0, . . . , xn)= λ1x0 · · · xn + λ2xn+1
0 + λ3xn+1

1 + · · ·+ λn+2xn+1
n .

One computes that L ′ = {(−(n+ 1)l, l, . . . , l) ∈ Zn+2
| l ∈ N} and

F(3)=
∞∑

l=0

(−1)(n+1)l((n+ 1)l)!
(l!)n+1

(
32 · · ·3n+2

3n+1
1

)l

.

By Theorem 1.16, the ratio F(3)= F(3)/F(3p) defines a function on D+ and
the product

∏a−1
i=0 F(λ̂pi

) gives the unit reciprocal zero of Pλ(t) when H(λ) 6= 0.
The more usual way of normalizing the Dwork family is

xn+1
0 + · · ·+ xn+1

n − (n+ 1)3−1/(n+1)x0 · · · xn,

which we can recover from the specialization31 7→−(n+1)3−1/(n+1) and3 j 7→ 1
for j = 2, . . . , n+ 2, giving

F(−(n+ 1)3−1/(n+1), 1, . . . , 1)=
∞∑

l=0

((n+ 1)l)!
(l!)n+1(n+ 1)(n+1)l3

l

= n Fn−1(1/(n+ 1), . . . , n/(n+ 1); 1, . . . , 1;3).

The assertion of Theorem 1.16 for this normalization of the Dwork family was
recently proved by Yu [2009].

(2) Let

fλ(x0, . . . , x5)= λ1x0x1x2+ λ2x3x4x5+

5∑
i=0

λi+3x3
i .

One computes that

L ′ = {l1(−3, 0, 1, 1, 1, 0, 0, 0)+ l2(0,−3, 0, 0, 0, 1, 1, 1) | l1, l2 ∈ N},

and hence

F(3)=
∞∑

l1,l2=0

(−1)l1+l2(3l1)!(3l2)!

(l1!)3(l2!)3

(333435)
l1(363738)

l2

3
3l1
1 3

3l2
2

.

By Theorem 1.16, the ratio F(3)= F(3)/F(3p) defines a function on D+ and
q
∏a−1

i=0 F(λ̂pi
) equals the reciprocal zero ρmin(λ) of Pλ(t) with ordq ρmin(λ) = 1

when H(λ) 6= 0.
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Remark. Even when there is no choice of µ + 1 elements of the set {a j }
N
j=1

satisfying (1.9), results similar to Theorem 1.16 may be true. For example, suppose
that p ≡ 1 (mod d) and that

a j = (0, . . . , 0, d, 0, . . . , 0) for j = 1, . . . , n+ 1,

where the d occurs in the ( j − 1)-st coordinate (i.e., the polynomial fλ is a defor-
mation of the diagonal hypersurface). Equation (1.14) remains valid if we choose

v = (−1/d, . . . ,−1/d, 0, . . . , 0),

where the −1/d is repeated n+ 1 times. Since this vector v has minimal negative
support, there is a corresponding series solution of the A-hypergeometric system
with parameter b given by [Saito et al. 2000, Proposition 3.4.13]. And by [Adolphson
and Sperber 2013, Corollary 3.6], this series has p-integral coefficients for p ≡ 1
(mod d). Arguments similar to those of this article then show that an analogue of
Theorem 1.16 is true for this series solution when p ≡ 1 (mod d).

This paper is organized as follows. In Section 2 we collect some notation
that is used throughout the paper. In Section 3 we recall some estimates from
[Dwork 1962] that play a key role in what follows. In Section 4 we show that
Theorem 1.16 is equivalent to the same statement with F(3) replaced by a related
series G(3). The series G(3) depends on the prime p but satisfies better p-adic
estimates than F(3). (Without introducing G(3), we would only be able to prove
Theorem 1.16 for almost all primes.) We use these estimates in Sections 5 and 6
to prove that G(3)/G(3p) and some related series are elements of R′. Finally, in
Section 7, we prove Proposition 1.7 and derive the formula for ρmin(λ) in terms of
special values of G(3)/G(3p) at Teichmüller points.

In a future work, we hope to treat as well the case in which the first nonvanishing
Hodge number h := hµ,n−1−µ is > 1. In this case, the (higher) Hasse–Witt matrix
is h× h and, as in the case h = 1, its entries may be described in terms of power
series solutions of appropriate A-hypergeometric systems.

2. Notation

For the convenience of the reader we collect in this section some notation that will
be used throughout the paper.

Let NA ⊆ Zn+2 be the semigroup generated by A and let M ⊆ Zn+2 be the
abelian group generated by A. Note that M lies in the hyperplane

∑n
i=0 ui = dun+1

in Rn+2. Set M−=M∩(Z<0)
n+2, M+=M∩Nn+2. We denote by δ− the truncation

operator on formal Laurent series in variables x0, . . . , xn+1 that preserves only those
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terms having all exponents negative:

δ−

( ∑
k∈Zn+2

ck xk
)
=

∑
k∈(Z<0)n+2

ck xk .

We use the same notation for formal Laurent series in a single variable t :

δ−

( ∞∑
k=−∞

ck tk
)
=

−1∑
k=−∞

ck tk .

It is convenient to note that if ξ1 and ξ2 are two series for which the product ξ1ξ2 is
defined and for which δ−(ξ2)= 0, then δ−

(
δ−(ξ1)ξ2

)
= δ−(ξ1ξ2).

Let E ⊆ ZN be the set

E = {(l1, . . . , lN ) | l j ≤ 0 for 1≤ j ≤ µ+ 1 and l j ≥ 0 for µ+ 2≤ j ≤ N }.

Note that, in the notation of Section 1, L ′ = L ∩ E . We need to consider series in
the 3 j that, like F(3) in (1.15), have exponents lying in E . For u ∈ NA, put

Eu =

{
(ν1, . . . , νN ) ∈ E

∣∣∣ N∑
j=1

ν j a+j = u
}
.

Let Cp be the completion of an algebraic closure of Qp. For each u ∈ M , put

Ru =

{
ξ(3)=

∑
ν∈Eu

cν
N∏

j=1

3
ν j
j

∣∣∣ cν ∈ Cp and {|cν |}ν is bounded
}
.

We define the degree of a monomial 3ν to be
∑N

j=1 ν j a+j ∈ M . The series in Ru

are convergent and bounded on D and are homogeneous of degree u.
For each u ∈ M , let R′u be the space of uniform limits on D+ of sequences of ra-

tional functions of the form h(3)/((31 · · ·3µ+1)
−(p−1)H(3))k , where h(3)∈ Ru

is a Laurent polynomial and k ∈ N. The elements of R′u define functions on D+.
Since ((31 · · ·3µ+1)

−(p−1)H(3))−1 lies in R′0, we have R′u ⊆ Ru .
The set R0 is a ring, Ru is a module over R0, R′0 is a subring of R0, and R′u is a

module over R′0. We define a norm on Ru by setting, for ξ(3)=
∑

ν∈Eu
cν
∏N

j=13
ν j
j ,

|ξ | = sup
ν

|cν |.

Note that for ξ(3) ∈ Ru , we have |ξ | = sup3∈D |ξ(3)| (for example, apply the
argument of [Dwork 1962, Lemma 1.2]). Furthermore, if ξ(3) ∈ R′u , then

|ξ | = sup
3∈D
|ξ(3)| = sup

3∈D+
|ξ(3)|

since this equality holds for Laurent polynomials in R′u . Both Ru and R′u are
complete in this norm.
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From the discussion in Section 1 we see that F(3)/F(3p) ∈ R0. To prove
the first assertion of Theorem 1.16 we need to show that F(3)/F(3p) ∈ R′0.
In Section 4, we show that this is equivalent to the same assertion for a related
function G(3), for which the desired assertion is proved in Corollary 5.17.

Let γ0 be a zero of the series
∑
∞

i=0 t pi
/pi having ordp γ0 = 1/(p− 1), where

ordp is the p-adic valuation normalized by ordp p = 1 (the role of γ0 is discussed
more fully in the next section). Define S to be the Cp-vector space of formal series

S =
{
ξ(3, x)=

∑
u∈M−

ξu(3)γ
un+1
0 xu

∣∣∣ ξu(3) ∈ Ru and {|ξu|}u is bounded
}
.

Let S′ be defined analogously with the condition “ξu(3) ∈ Ru” being replaced by
“ξu(3) ∈ R′u”. Define a norm on S by setting

|ξ(3, x)| = sup
u
{|ξu|}.

Both S and S′ are complete under this norm.

3. Some p-adic estimates

We begin by recording some basic p-adic estimates from [Dwork 1962, Section 4]
that will play a role in what follows. Let AH(t)= exp

(∑
∞

i=0 t pi
/pi

)
be the Artin–

Hasse series, a power series in t that has p-integral coefficients, and set

θ(t)= AH(γ0t)=
∞∑

i=0

θi t i .

We then have
ordp θi ≥

i
p−1

. (3.1)

We define θ̂ (t)=
∏
∞

j=0 θ(t
p j
), which gives θ(t)= θ̂ (t)/θ̂(t p). If we set

γ j =

j∑
i=0

γ
pi

0

pi , (3.2)

then

θ̂ (t)= exp
( ∞∑

j=0

γ j t p j
)
=

∞∏
j=0

exp(γ j t p j
). (3.3)

Since (pi/(p− 1))− i is an increasing function of i for i ≥ 1, we have from the
definition of γ0 that

ordp γ j =
p j+1

p− 1
− ( j + 1). (3.4)
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We estimate each of the series exp(γ j t p j
)=

∑
∞

k=0(γ j t p j
)k/k! . We have

ordp
γ k

j

k!
= k

(
p j+1

p− 1
− ( j + 1)

)
−

k− sk

p− 1

= k(p j
+ p j−1

+ · · ·+ p− j)+
sk

p− 1
, (3.5)

where sk denotes the sum of the digits in the p-adic expansion of k. It follows that
if exp(γ j t p j

)=
∑
∞

i=0 a( j)
i t i , then a( j)

i = 0 if p j - i , while if i = p j k then we have

ordp a( j)
i =

i
p j (p

j
+ p j−1

+ · · ·+ p− j)+
si

p− 1

= i
(

1+
1
p
+ · · ·+

1
p j−1 −

j
p j

)
+

si

p− 1
(3.6)

(using si = sk). This equation implies that ordp a( j1)
i ≥ ordp a( j2)

i if j1 ≥ j2. It
follows that for all j ≥ 1,

ordp a( j)
i ≥ ordp a(1)i ≥

i(p− 1)
p
+

si

p− 1
≥

si

p− 1
= ordp a(0)i . (3.7)

If we write θ̂ (t)=
∑
∞

i=0 θ̂i (γ0t)i/ i ! , then (3.3) and (3.7) imply

ordp θ̂i ≥ 0. (3.8)
We also need the series

θ̂1(t)=
∞∏
j=1

exp(γ j t p j
)=:

∞∑
i=0

θ̂1,i

i !
(γ0t)i . (3.9)

Note that θ̂ (t)= exp(γ0t)θ̂1(t). Using the relation si1 + si2 ≥ si1+i2 , (3.7) implies

ordp θ̂1,i ≥
i(p− 1)

p
. (3.10)

Define a series θ̂1(3, x) by the formula

θ̂1(3, x)=
N∏

j=1

θ̂1(3 j x
a+j ). (3.11)

Expanding the product (3.11) according to powers of x , we get

θ̂1(3, x) =
∑

u=(u0,...,un+1)∈NA

θ̂1,u(3)γ
un+1
0 xu, (3.12)

where

θ̂1,u(3) =
∑

k1,...,kN∈N∑N
j=1 k j a+j =u

( N∏
j=1

θ̂1,k j

k j !

)
3

k1
1 · · ·3

kN
N . (3.13)
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We have similar results for the reciprocal power series

θ̂1(t)−1
=

∞∏
j=1

exp(−γ j t p j
).

If we write

θ̂1(t)−1
=

∞∑
i=0

θ̂ ′1,i

i !
(γ0t)i , (3.14)

then the coefficients satisfy

ordp θ̂
′

1,i ≥
i(p− 1)

p
. (3.15)

We also have

θ̂1(3, x)−1
=

N∏
j=1

θ̂1(3 j x
a+j )−1, (3.16)

which we again expand in powers of x as

θ̂1(3, x)−1
=

∑
u=(u0,...,un+1)∈NA

θ̂ ′1,u(3)γ
un+1
0 xu (3.17)

with

θ̂ ′1,u(3) =
∑

k1,...,kN∈N∑N
j=1 k j a+j =u

( N∏
j=1

θ̂ ′1,k j

k j !

)
3

k1
1 · · ·3

kN
N . (3.18)

We also define

θ(3, x)=
N∏

j=1

θ(3 j x
a+j ). (3.19)

Expanding the right-hand side in powers of x , we have

θ(3, x)=
∑

u∈NA

θu(3)xu, (3.20)

where
θu(3)=

∑
ν∈NN

θ (u)ν 3ν (3.21)

and

θ (u)ν =

{∏N
j=1 θν j if

∑N
j=1 ν j a+j = u,

0 if
∑N

j=1 ν j a+j 6= u,
(3.22)

so θu(3) is homogeneous of degree u. The equation
∑N

j=1 ν j a+j = u has only
finitely many solutions ν ∈ NN , so θu(3) is a polynomial in the 3 j . Equations
(3.1) and (3.22) show that

ordp θ
(u)
ν ≥

∑N
j=1 ν j

p− 1
=

un+1

p− 1
. (3.23)
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We observe one congruence that will allow us to simplify some later formulas.
From (3.2) and (3.4) with j = 1 we have

γ0+
γ

p
0

p
≡ 0 (mod γ0 p p−1).

Multiplying this congruence by p/γ0 gives γ p−1
0 ≡−p (mod p p), so, a fortiori,

γ
p−1

0 ≡−p (mod p2) for all primes p. (3.24)

4. Generating series for A-hypergeometric functions

In Dwork’s theory, hypergeometric functions often appear in contiguous families
as coefficients of a generating series. We describe the relevant generating series
that will appear in our situation.

Consider the formal series ζ(t) defined by

ζ(t)=
∞∑

l=0

(−1)ll!t−l−1. (4.1)

We note that the series ζ(t) shares a property with the exponential series exp t :
differentiating a term of the series with respect to t equals the term of the series
involving the next lower power of t .

We define the formal generating series F(3, x) by the formula

F(3, x)= δ−

( µ+1∏
j=1

ζ(γ03 j x
a+j )

N∏
j=µ+2

exp(γ03 j x
a+j )

)
, (4.2)

where δ− is as defined in Section 2. A straightforward calculation shows that

F(3, x)=
∑

u∈M−

Fu(3)γ
un+1
0 xu, (4.3)

where

Fu(3)= (31 · · ·3µ+1)
−1

∑
l∈E

b+
∑N

j=1 l j a+j =u

(−1)
∑µ+1

j=1 l j

∏µ+1
j=1 (−l j )!∏N
j=µ+2 l j !

N∏
j=1

3
l j
j . (4.4)

It follows from the definition of ζ(t) that for j = 1, . . . , µ+ 1,

∂

∂3 j
ζ(γ03 j x

a+j )= γ0 x a+j ζ(γ03 j x
a+j )−

1
3 j
.

A straightforward calculation then gives

∂

∂3 j
F(3, x)= δ−(γ0 x a+j F(3, x)) (4.5)
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for j = 1, . . . , µ+ 1. Equivalently, for u ∈ M− we have by (4.3)

∂

∂3 j
Fu(3)= Fu−a+j

(3). (4.6)

More generally, if l1, . . . , lN are nonnegative integers, then

N∏
j=1

(
∂

∂3 j

)l j
Fu(3)= Fu−

∑N
j=1 l j a+j

(3). (4.7)

In particular we have, from the definition of the box operators,

�l(Fu(3))= 0 for all l ∈ L and all u ∈ M−. (4.8)

It is immediate from (4.4) that Fu(3) satisfies the Euler operators (1.12) with
β = u, hence by (4.8) the series Fu(3) satisfies the A-hypergeometric system with
parameter β = u.

Comparing (4.4) with (1.15), one sees that

Fb(3)= (31 · · ·3µ+1)
−1 F(3), (4.9)

a series which we noted in Section 1 has integer coefficients.

Lemma 4.10. For all u ∈ M−, the series Fu(3) given by (4.4) has integer coeffi-
cients.

Proof. Enlarge the set {x a j }
N
j=1 by adding additional monomials {x a j }

Ñ
j=N+1, so that

{x a j }
Ñ
j=1 consists of all monomials of degree d in x0, . . . , xn . As in (4.2) and (4.3),

we define

F̃(3, x)= δ−

( µ+1∏
j=1

ζ(γ03 j x
a+j )

Ñ∏
j=µ+2

exp(γ03 j x
a+j )

)
and set

F̃(3, x)=
∑

u∈M̃−

F̃u(3)γ
un+1
0 xu,

where M̃ ⊆ Zn+2 denotes the abelian group generated by the set {(a j , 1)}Ñj=1 and
M̃− = M̃ ∩ (Z<0)

n+2. The same argument that proved (4.7) shows that if l1, . . . , lÑ
are nonnegative integers, then

Ñ∏
j=1

(
∂

∂3 j

)l j
F̃u(3)= F̃u−

∑N
j=1 l j a+j

(3).

Note that for u ∈ M−, the series Fu(3) is obtained from the series F̃u(3) by setting
3 j = 0 for j = N + 1, . . . , Ñ . To prove the lemma, it thus suffices to prove that
F̃u(3) has integer coefficients for all u ∈ M̃−.
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Every monomial in x0, . . . , xn of degree divisible by d is a product of monomials
of degree d . In particular, if xv is such a monomial which is divisible by x0 · · · xn ,
then one can write

xv = x a1 · · · x aµ+1

Ñ∏
j=1

x l j a j

for some nonnegative integers l1, . . . , lÑ . It follows from this that every u ∈ M̃−
can be written in the form

u = b−
Ñ∑

j=1

l j a+j

for some nonnegative integers l1, . . . , lÑ . We thus have

Ñ∏
j=1

(
∂

∂3 j

)l j
F̃b(3)= F̃u(3). (4.11)

The series F̃b(3) has integer coefficients by [Adolphson and Sperber 2013, Propo-
sition 5.2]. It now follows from (4.11) that F̃u(3) also has integer coefficients. �

We can improve the conclusion of Lemma 4.10. Fix u ∈ M−. There are finitely
many N -tuples (k1, . . . , kN ) ∈ NN such that

u+
N∑

j=1

k j a+j ∈ M−. (4.12)

Define Ku to be the least common multiple of the integers
∏N

j=1 k j ! over all
(k1, . . . , kN ) ∈ NN satisfying (4.12).

Lemma 4.13. For u ∈ M−, all coefficients of the series Fu(3) are divisible by Ku .

Proof. Let (k1, . . . , kN ) ∈ NN satisfy (4.12) and put

w = u+
N∑

j=1

k j a+j ∈ M−.

It follows from (4.7) that

N∏
j=1

(
∂

∂3 j

)k j
Fw(3)= Fu(3).

By Lemma 4.10, Fw(3) has integer coefficients, so an elementary calculation shows
that the coefficients of Fu(3) are divisible by

∏N
j=1 k j ! . �

Although the relevant hypergeometric functions appear as coefficients in the
series F(3, x), it is necessary for our proof of Theorem 1.16 to work with a related
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series which satisfies better p-adic estimates. Define G(3, x) to be

G(3, x)= δ−(F(3, x)θ̂1(3, x))

= δ−

(( µ+1∏
j=1

ζ(γ03 j x
a+j )θ̂1(3 j x

a+j )

)( N∏
j=µ+2

θ̂ (3 j x
a+j )

))
. (4.14)

If we set
G(3, x)=

∑
u∈M−

Gu(3)γ
un+1
0 xu, (4.15)

then we have from (3.12) and (4.3) that

Gu(3) =
∑

u(1)∈M−,u(2)∈NA
u(1)+u(2)=u

Fu(1)(3)θ̂1,u(2)(3). (4.16)

Let Ku(1) be defined as in Lemma 4.13. By (3.13) we have

Gu(3) =
∑

u(1)∈M−,u(2)∈NA
u(1)+u(2)=u

K−1
u(1) Fu(1)(3)

·

∑
k1,...,kN∈N∑N
j=1 k j a+j =u(2)

( N∏
j=1

θ̂1,k j

)
Ku(1)∏N
j=1 k j !

3
k1
1 · · ·3

kN
N . (4.17)

The series K−1
u(1) Fu(1)(3) has integral coefficients by Lemma 4.13, and the ratio

Ku(1)/
∏N

j=1 k j ! is an integer by the definition of Ku(1) . For each u(2) ∈ NA in the
inner sum on the right-hand side of (4.17) we have

ordp

N∏
j=1

θ̂1,k j ≥
1
p

( N∑
j=1

k j (p− 1)
)
=

1
p
(u(2)n+1(p− 1)) (4.18)

by (3.10). This implies that the series on the right-hand side of (4.17) converges to
a series with p-integral coefficients, and hence

|Gu(3)| ≤ 1 for all u ∈ M−. (4.19)

To simplify notation, for u, u(1) ∈ M− set

Cu,u(1) =
∑

k1,...,kN∈N∑N
j=1 k j a+j =u−u(1)

( N∏
j=1

θ̂1,k j

)
Ku(1)∏N
j=1 k j !

3
k1
1 · · ·3

kN
N

(a finite sum). Note that Cu,u(1) is p-integral by the definition of Ku(1) , Cu,u = 1,
and ordp Cu,u(1) > 0 for u 6= u(1) by (4.18). Then (4.17) becomes

Gu(3)= Fu(3)+
∑

u(1)∈M−
u(1) 6=u

Cu,u(1)K
−1
u(1) Fu(1)(3). (4.20)
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Furthermore, the estimate (4.18) implies that Cu,u(1)→ 0 as u(1)→∞, in the sense
that for any κ > 0, the estimate ordp Cu,u(1) > κ holds for all but finitely many u(1).

By analogy with (4.9) we define G(3) ∈ R0 by

Gb(3)= (31 · · ·3µ+1)
−1G(3). (4.21)

Lemma 4.22. We have G(3, x)∈ S, |G(3, x)| = |Gb(3)| = 1, and G(3) assumes
unit values on D.

Proof. The preceding calculation shows that G(3, x) ∈ S and |G(3, x)| ≤ 1.
Equation (4.20) shows that

G(3)≡ F(3) (mod γ0).

We noted in Section 1 that F(3) assumes unit values on D, hence the same is true
of G(3). It then follows from (4.21) that |Gb(3)| = 1. �

Remark. The congruence G(3)≡ F(3) (mod γ0) shows that the constant term
of G(3) is a p-adic unit and that the series G(3) ∈ R0 has p-integral coefficients.
This implies that the reciprocal series G(3)−1 also has constant term a p-adic unit
and p-integral coefficients.

Before proceeding to the main result of this section, we show that the Gu(3)

satisfy the analogue of Lemma 4.13.

Lemma 4.23. For u ∈ M−, the coefficients of the series K−1
u Gu(3) are p-integral.

Proof. By (4.17), it suffices to prove that the coefficients of Fu(1)(3)/
∏N

j=1 k j ! are
divisible by Ku whenever k1, . . . , kN ∈ N satisfy

u(1)+
N∑

j=1

k j a+j = u. (4.24)

By the definition of Ku , this is equivalent to showing that if l1, . . . , lN ∈ N satisfy

u+
N∑

j=1

l j a+j ∈ M−, (4.25)

then the coefficients of Fu(1)(3)/
∏N

j=1 k j ! are divisible by
∏N

j=1 l j ! . The equations
(4.24) and (4.25) imply that

u(1)+
N∑

j=1

(k j + l j )a+j ∈ M−, (4.26)

so by Lemma 4.13 the coefficients of Fu(1)(3) are divisible by
∏N

j=1(k j + l j )! .
Since (k j + l j )! is divisible by k j !l j ! , the result follows. �
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Theorem 4.27. (a) The ratio Fu(3)/F(3) lies in R′u for all u ∈ M− if and only
if the ratio Gu(3)/G(3) lies in R′u for all u ∈ M−. When either of these
equivalent conditions is satisfied, the ratios Fu(3)/G(3) and Gu(3)/F(3)
also lie in R′u for all u ∈ M−.

(b) If either of the equivalent conditions of part (a) is satisfied, then the ratio
F(3) := F(3)/F(3p) lies in R′0 if and only if the ratio G(3) :=G(3)/G(3p)

lies in R′0. Furthermore, if this is the case, then for any λ ∈ (F×q )
N with

H(λ) 6= 0, we have
a−1∏
i=0

F(λ̂pi
)=

a−1∏
i=0

G(λ̂pi
),

where λ̂ ∈Qp(ζq−1)
N denotes the Teichmüller lifting of λ.

Proof. Suppose that the ratios Fu(3)/F(3) lie in R′u for all u ∈ M−. Divide (4.20)
by F(3):

Gu(3)

F(3)
=

Fu(3)

F(3)
+

∑
u(1)∈M−
u(1) 6=u

Cu,u(1)K
−1
u(1)

Fu(1)(3)

F(3)
. (4.28)

Since F(3) assumes unit values and |Fu(3)| ≤ 1 on D, we have |Fu(3)/F(3)| ≤ 1
on D+. Our earlier observation that Cu,u(1)→ 0 as u(1)→∞ then shows that this
series converges to an element of R′u that is bounded by 1.

Taking u = b in (4.28) and multiplying both sides by 31 · · ·3µ+1 gives

G(3)
F(3)

= 1+
∑

u(1)∈M−
u(1) 6=b

31 · · ·3µ+1Cb,u(1)K
−1
u(1)

Fu(1)(3)

F(3)
.

Thus G(3)/F(3)∈ R′0 and it assumes unit values on D+. This equation also shows
that |G(3)/F(3)− 1| < 1, so the reciprocal of G(3)/F(3) can be written as a
geometric series to give

F(3)
G(3)

= 1+
∑

u(1)∈M−
u(1) 6=b

31 · · ·3µ+1C ′b,u(1)K
−1
u(1)

Fu(1)(3)

F(3)

for some polynomials C ′b,u(1) whose coefficients have positive p-ordinal and ap-
proach 0 as u(1)→∞. Thus the ratio F(3)/G(3) also lies in R′0 and assumes
unit values on D+. It now follows that the product

Gu(3)

G(3)
=

Gu(3)

F(3)
F(3)
G(3)

lies in R′0. This proves one direction of part (a).
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For the other direction, suppose that the ratios Gu(3)/G(3) lie in R′u . It follows
from (4.14) that

F(3, x)= δ−(G(3, x)θ̂1(3, x)−1). (4.29)

This leads to the analogue of (4.17):

Fu(3) =
∑

u(1)∈M−,u(2)∈NA
u(1)+u(2)=u

K−1
u(1)Gu(1)(3)

·

∑
k1,...,kN∈N∑N
j=1 k j a+j =u(2)

( N∏
j=1

θ̂ ′1,k j

)
Ku(1)∏N
j=1 k j !

3
k1
1 · · ·3

kN
N , (4.30)

where the θ ′1,k j
are defined by (3.14) and Lemma 4.23 tells us that the K−1

u(1)Gu(1)(3)

have p-integral coefficients. One can then argue as before since the θ̂ ′1,k j
also satisfy

the estimate (4.18) (see (3.15)). This completes the proof of part (a).
When the equivalent conditions of part (a) are satisfied, we showed in the proof

of part (a) that the ratio H(3) := G(3)/F(3) lies in R′0 and assumes unit values
there. The same assertions are true for its reciprocal. The first assertion of part (b)
then follows from the equation

G(3)
G(3p)

=
F(3)

F(3p)

H(3)
H(3p)

(4.31)

on D. Since H is a function on D+, we have H(λ̂pa
)=H(λ̂) when λ̂pa

= λ̂, so

a−1∏
i=0

H(λ̂pi
)

H(λ̂pi+1
)
= 1.

The second assertion of part (b) now follows from (4.31). �

Once we establish one of the equivalent conditions of part (a) of Theorem 4.27,
part (b) implies that Theorem 1.16 is equivalent to the following statement (the
assertion of Theorem 1.16 with F(3) replaced by G(3)).

Theorem 4.32. Under hypotheses (1.5) and (1.9), the ratio G(3) :=G(3)/G(3p)

lies in R′0. Let λ ∈ (F×q )
N and let λ̂ ∈ Qp(ζq−1)

N be its Teichmüller lifting. If
H(λ) 6= 0, then λ̂pi

∈ D+ for i = 0, . . . , a− 1 and

ρmin(λ)= qµ
a−1∏
i=0

G(λ̂pi
).

Sections 5 and 6 are devoted to establishing the conditions of Theorem 4.27(a).
In Section 7 we prove Proposition 1.7 and Theorem 4.32.
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5. Contraction mapping

We construct a map φ on a certain space of formal series whose coefficients are
p-adic series. Hypothesis (1.5) will then imply that φ is a contraction mapping.

Let
ξ(3, x)=

∑
ν∈M−

ξν(3)γ
νn+1
0 xν ∈ S.

We claim that the product θ(3, x)ξ(3p, x p) is well defined as a formal series in x .
Formally, we have

θ(3, x)ξ(3p, x p)=
∑
ρ∈M

ζρ(3)xρ,

where
ζρ(3) =

∑
u∈NA, ν∈M−

u+pν=ρ

γ
νn+1
0 θu(3)ξν(3

p). (5.1)

Since θu(3) is a polynomial, the product θu(3)ξν(3
p) is clearly well defined.

It follows from (3.21), (3.23), and the equality u + pν = ρ that the coefficients
of γ νn+1

0 θu(3) all have p-ordinal at least (ρn+1/(p− 1))− νn+1. Since |ξν(3)| is
bounded independently of ν and there are only finitely many terms on the right-hand
side of (5.1) with a given value of νn+1, the series (5.1) converges to an element
of Rρ . This estimate also shows that if ξ(3, x) ∈ S′, then ζρ(3) ∈ R′ρ .

For ξ(3, x) ∈ S, define

α∗(ξ(3, x))= δ−(θ(3, x)ξ(3p, x p))

=

∑
ρ∈M−

ζρ(3)xρ .

For ρ ∈ M−, put ηρ(3)= γ
−ρn+1
0 ζρ(3), so that

α∗(ξ(3, x))=
∑
ρ∈M−

ηρ(3)γ
ρn+1
0 xρ (5.2)

with (by (5.1))

ηρ(3) =
∑

u∈NA, ν∈M−
u+pν=ρ

γ
−ρn+1+νn+1
0 θu(3)ξν(3

p). (5.3)

Proposition 5.4. The map α∗ is an endomorphism of S and S′, and for ξ(3, x) ∈ S
we have

|α∗(ξ(3, x))| ≤ |pµ+1ξ(3, x)|. (5.5)

Proof. By (5.2), the proposition follows from the estimate

|ηρ(3)| ≤ |pµ+1ξ(3, x)| for all ρ ∈ M−.
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Using (5.3), we see that this estimate follows in turn from the estimate

|γ
−ρn+1+νn+1
0 θu(3)| ≤ |pµ+1

|

for all u ∈ NA and ν ∈ M− with u+ pν = ρ. From (3.21) and (3.23) we see that
all coefficients of γ−ρn+1+νn+1

0 θu(3) have p-ordinal greater than or equal to

−ρn+1+ νn+1+ un+1

p− 1
.

Since u + pν = ρ, this expression simplifies to −νn+1, which is greater than or
equal to µ+ 1 because ν ∈ M−. �

Note that the equality −νn+1 =µ+1 occurs for only one point ν ∈ M−, namely,
ν = (−1, . . . ,−1,−µ− 1) (= b). The following corollary is then an immediate
consequence of the proof of Proposition 5.4.

Corollary 5.6. If ξb(3)= 0, then |α∗(ξ(3, x))| ≤ |pµ+2ξ(3, x)|.

We examine the polynomial θ−(p−1)b(3) to determine its relation to H(3). Let

V =
{
v = (v1, . . . , vN ) ∈ NN

∣∣∣ N∑
j=1

v j a+j =−(p− 1)b
}
.

From (3.21) and (3.22) we have

θ−(p−1)b(3)=
∑
v∈V

( N∏
j=1

θv j

)
3
v1
1 · · ·3

vN
N .

Clearly v j ≤ p−1 for all j , so θv j =γ
v j
0 /v j ! . Furthermore,

∑N
j=1 v j = (p−1)(µ+1),

so this formula can be written

θ−(p−1)b(3)= γ
(p−1)(µ+1)
0

∑
v∈V

3
v1
1 · · ·3

vN
N

v1! · · · vN !
.

It now follows from (3.24) that

(−p)µ+1 H(3)≡ θ−(p−1)b(3) (mod pµ+2). (5.7)

Corollary 5.8. The Laurent polynomial (31 · · ·3µ+1)
−(p−1)θ−(p−1)b(3) is an in-

vertible element of R′0 with

|(31 · · ·3µ+1)
−(p−1)θ−(p−1)b(3)| = |pµ+1

|.

Proof. It is clear that (31 · · ·3µ+1)
−1 H(3) is an invertible element of R′0 of

norm 1. The assertion of the corollary then follows from (5.7). �
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Let ξ(3, x) ∈ S and let η(3, x) = α∗(ξ(3, x)). Then η(3, x) is given by the
right-hand side of (5.2), and by (5.3) we have

ηb(3)=
∑

u∈NA, ν∈M−
u+pν=b

γ
µ+1+νn+1
0 θu(3)ξν(3

p)

= θ−(p−1)b(3)ξb(3
p) +

∑
u∈NA, ν∈M−

u+pν=b
−νn+1≥µ+2

γ
µ+1+νn+1
0 θu(3)ξν(3

p). (5.9)

Lemma 5.10. Let ξ(3, x) ∈ S (resp. ξ(3, x) ∈ S′) with
(∏µ+1

i=1 3i
)
ξb(3) an in-

vertible element of R0 (resp. R′0) and |ξb(3)| = |ξ(3, x)|. Then
(∏µ+1

i=1 3i
)
ηb(3)

is also an invertible element of R0 (resp. R′0) and

|η(3, x)| = |ηb(3)| = |pµ+1ξb(3)|.

Proof. First note that( µ+1∏
j=1

3 j

)
θ−(p−1)b(3)ξb(3

p)

=

(( µ+1∏
j=1

3 j

)−(p−1)

θ−(p−1)b(3)

)
·

(( µ+1∏
j=1

3 j

)p

ξb(3
p)

)
,

where the right-hand side is a product of two invertible elements by Corollary 5.8
and our hypothesis. Also by Corollary 5.8, it has norm

|pµ+1ξb(3)| = |pµ+1ξ(3, x)|. (5.11)

Equation (5.9) gives(∏µ+1
j=1 3 j

)
ηb(3)(∏µ+1

j=1 3 j
)
θ−(p−1)b(3)ξb(3p)

= 1 +
∑

u∈NA, ν∈M−
u+pν=b
−νn+1≥µ+2

γ
µ+1+νn+1
0

(∏µ+1
j=1 3 j

)
θu(3)ξν(3

p)(∏µ+1
j=1 3 j

)
θ−(p−1)b(3)ξb(3p)

. (5.12)

From (3.21), (3.23), and the condition u+ pν = b it follows that each term in
γ
µ+1+νn+1
0 θu(3) has p-ordinal greater than or equal to

µ+ 1+ νn+1

p− 1
+
−pνn+1−µ− 1

p− 1
=−νn+1 ≥ µ+ 2.

Corollary 5.8 and our hypothesis then imply that each term in the summation on the
right-hand side of (5.12) has norm < 1 and that this norm approaches 0 as ν→∞,



Distinguished-root formulas for generalized Calabi–Yau hypersurfaces 1339

in the sense that for any κ > 0 this norm is < κ for all but finitely many ν. This
proves that the right-hand side of (5.12) is invertible and has norm equal to 1. The
assertions of the lemma now follow from (5.12) and the relations

|ηb(3)| ≤ |η(3, x)| ≤ |pµ+1ξ(3, x)| = |pµ+1ξb(3)|,

where the second inequality follows from Proposition 5.4 and the equality holds by
hypothesis. �

Put

T = {ξ(3, x) ∈ S | ξb(3)= (31 · · ·3µ+1)
−1 and |ξ(3, x)| = 1}

and T ′=T∩S′. It follows from Lemma 5.10 that if ξ(3, x)∈T (resp. ξ(3, x)∈T ′),
then 31 · · ·3µ+1ηb(3) is invertible in R0 (resp. in R′0). We may thus define

φ(ξ(3, x))=
α∗(ξ(3, x))

31 · · ·3µ+1ηb(3)
.

Lemma 5.10 also implies that∣∣∣∣ α∗(ξ(3, x))
31 · · ·3µ+1ηb(3)

∣∣∣∣= 1,

so φ(T )⊆ T and φ(T ′)⊆ T ′.

Proposition 5.13. The operator φ is a contraction mapping on the complete metric
space T . More precisely, if ξ (1)(3, x), ξ (2)(3, x) ∈ T , then∣∣φ(ξ (1)(3, x))−φ(ξ (2)(3, x))

∣∣≤ |p| · ∣∣ξ (1)(3, x)− ξ (2)(3, x)
∣∣.

Proof. We have (in the obvious notation)

φ(ξ (1)(3, x))−φ(ξ (2)(3, x))

=
α∗(ξ (1)(3, x))

31 · · ·3µ+1η
(1)
b (3)

−
α∗(ξ (2)(3, x))

31 · · ·3µ+1η
(2)
b (3)

=
α∗(ξ (1)(3, x)− ξ (2)(3, x))

31 · · ·3µ+1η
(1)
b (3)

−α∗(ξ (2)(3, x))
η
(1)
b (3)− η

(2)
b (3)

31 · · ·3µ+1η
(1)
b (3)η

(2)
b (3)

.

By Corollary 5.6 and Lemma 5.10 we have∣∣∣∣α∗(ξ (1)(3, x)− ξ (2)(3, x))

31 · · ·3µ+1η
(1)
b (3)

∣∣∣∣≤ |p| · ∣∣ξ (1)(3, x)− ξ (2)(3, x)
∣∣.
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Since η(1)b (3)− η
(2)
b (3) is the coefficient of x b in α∗(ξ (1)(3, x)− ξ (2)(3, x)), we

have
|η
(1)
b (3)− η

(2)
b (3)| ≤

∣∣α∗(ξ (1)(3, x)− ξ (2)(3, x))
∣∣

≤ |pµ+2
| ·
∣∣ξ (1)(3, x)− ξ (2)(3, x)

∣∣
by Corollary 5.6. We have |η(1)b (3)η

(2)
b (3)| = |p2µ+2

| by Lemma 5.10, so by (5.5)∣∣∣∣α∗(ξ (2)(3, x))
η
(1)
b (3)− η

(2)
b (3)

31 · · ·3µ+1η
(1)
b (3)η

(2)
b (3)

∣∣∣∣≤ |p| · ∣∣ξ (1)(3, x)− ξ (2)(3, x)
∣∣.

This establishes the proposition. �

By a well-known theorem, Proposition 5.13 implies that φ has a unique fixed
point in T . And since φ is stable on T ′, that fixed point must lie in T ′. This fixed
point of φ is related to a certain eigenvector of α∗.

Theorem 5.14. We have α∗(G(3, x))= pµ+1G(3, x).

The proof of Theorem 5.14 will be given in the next section. In the remain-
der of this section, we use Proposition 5.13 and Theorem 5.14 to prove that
G(3)/G(3p) lies in R′0. This establishes the first sentence of Theorem 4.32.
Note that G(3, x)/G(3) ∈ T by the remark following Lemma 4.22.

Proposition 5.15. The unique fixed point of φ in T is G(3, x)/G(3); hence
G(3, x)/G(3) ∈ T ′. In particular, for each u ∈ M−, the ratio Gu(3)/G(3)
lies in R′u .

Proof. We have

α∗
(

G(3, x)
G(3)

)
=
α∗(G(3, x))

G(3p)
=

(
pµ+1G(3)

G(3p)

)
G(3, x)

G(3)
, (5.16)

where the second equality follows from Theorem 5.14. By the definition of φ, this
implies the result. �

Corollary 5.17. With the above notation, G(3)/G(3p) lies in R′0.

Proof. Since α∗ is stable on S′, Proposition 5.15 implies that the right-hand side
of (5.16) lies in S′. Since the coefficient of γ−µ−1

0 x b on the right-hand side of (5.16)
is pµ+1(31 · · ·3µ+1)

−1G(3)/G(3p), the result follows. �

6. Proof of Theorem 5.14

Consider the space of formal series

C =
{
ξ =

∞∑
i=0

ci i !γ−i−1
0 t−i−1

∣∣∣ {ci }
∞

i=0 is bounded
}
.
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Recall that δ− is the truncation operator on series:

δ−

( ∞∑
i=−∞

di t−i−1
)
=

∞∑
i=0

di t−i−1.

Lemma 6.1. The map δ− ◦ θ̂1(t) is an isomorphism of C with itself. The inverse
isomorphism is δ− ◦ θ̂1(t)−1. (We use θ̂1(t) as an operator to mean multiplication
by θ̂1(t), and likewise θ̂1(t)−1.)

Proof. Let ξ =
∑
∞

j=0 c j j !γ− j−1
0 t− j−1

∈ C and let k be a nonnegative integer. To
simplify the estimate, assume that the c j are bounded by 1. The coefficient of t−k−1

in the product θ̂1(t)ξ is∑
i− j−1=−k−1

c j j !γ− j−1
0

θ̂1,i

i !
γ i

0 =

( ∞∑
i=0

θ̂1,i ci+k
(i + k)!

i !k!

)
k!γ−k−1

0 .

We have, by (3.10),

ordp θ̂1,i ci+k
(i + k)!

i !k!
≥

i(p− 1)
p
+
−si+k + si + sk

p− 1
≥

i(p− 1)
p

.

This shows that the series
∑
∞

i=0 θ̂1,i ci+k(i + k)!/(i !k!) converges and is bounded
by 1. Hence δ− ◦ θ̂1(t) maps C into itself. Since the coefficients of the reciprocal
power series θ̂1(t)−1

=
∏
∞

j=1 exp(−γ j t p j
) satisfy the same estimate (3.15), the

same argument shows that δ− ◦ θ̂1(t)−1 also maps C into itself and hence is the
inverse of δ− ◦ θ̂1(t). �

Define an operator D′ on C by

D′ = δ− ◦
(

t d
dt
−

∞∑
j=0

γ j p j t p j
)
= δ− ◦ θ̂ (t) ◦ t d

dt
◦ θ̂ (t)−1. (6.2)

Proposition 6.3. The operator D′ has a one-dimensional (over Cp) kernel as an
operator on the space C.

Proof. If ξ ∈ C is a solution of D′, then δ−(θ̂1(t)−1ξ) lies in C by Lemma 6.1 and
is a solution of the operator

δ− ◦

(
t d
dt
− γ0 t

)
= δ− ◦ exp(γ0 t) ◦ t d

dt
◦ exp(−γ0 t). (6.4)

Conversely, if ξ ∈C is a solution of (6.4), then δ−(θ̂1(t)ξ) lies in C and is a solution
of D′. Thus it suffices to show that (6.4) has a unique solution (up to scalars) in C .
Applying the operator (6.4) to ξ =

∑
∞

i=0 ci i !γ−i−1
0 t−i−1

∈ C gives

∞∑
i=0

(−ci − ci+1)(i + 1)!γ−i−1
0 t−i−1,
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from which it is clear that the solutions of (6.4) in C are scalar multiples of

q(t) :=
∞∑

i=0

(−1)i i !γ−i−1
0 t−i−1. (6.5)

This completes the proof. �

Define

Q(t)= δ−(θ̂1(t)q(t))=
∞∑

i=0

Qi i !γ−i−1
0 t−i−1. (6.6)

From Lemma 6.1 we have Q(t) ∈ C ; the proof of Lemma 6.1 shows that the Qi

are p-integral. From the proof of Proposition 6.3 we get the following corollary.

Corollary 6.7. The solutions of D′ in C are the scalar multiples of Q(t).

For ξ(t)=
∑
∞

i=0 ci i !γ−i−1
0 t−i−1

∈ C , define α′(ξ) to be

α′(ξ)= δ−(θ(t)ξ(t p)).

Proposition 6.8. The operator α′ maps C into itself.

Proof. For k ≥ 0, the coefficient of t−k−1 in θ(t)ξ(t p) is∑
i, j≥0

j−pi−p=−k−1

θ j ci i !γ−i−1
0 .

We may assume the ci to be p-integral, in which case we have the estimate

ordp θ j ci i !γ−i−1
0 ≥

j
p− 1

+
i − si

p− 1
−

i + 1
p− 1

=
j − si − 1

p− 1
.

Since i is a linear function of j (k is fixed) and si is bounded above by a positive
multiple of log i , this estimate shows that the series converges. The condition
j − pi − p =−k− 1 gives j + k = pi + (p− 1), which implies

s j+k = si + (p− 1).

Since s j + sk ≥ s j+k , we get the estimate

ordp θ j ci i !γ−i−1
0 ≥

j − s j + (p− 1)
p− 1

−
sk + 1
p− 1

.

The first term on the right-hand side is always ≥ 1, which implies that we can write∑
i, j≥0

j−pi−p=−k−1

θ j ci i !γ−i−1
0 = pdk k!γ−k−1

0

for some dk which is p-integral. This proves the proposition. �

Proposition 6.9. We have D′ ◦α′ = pα′ ◦ D′ as operators on C.
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Proof. Let ξ(t)=
∑
∞

i=0 ci i !γ−i−1
0 t−i−1

∈ C . The proof of Proposition 6.8 shows
that

α′(ξ(t))=
∞∑

i=0

ci i !γ−i−1
0 α′(t−i−1).

From the definition of D′, it is clear that

D′(ξ(t))=
∞∑

i=0

ci i !γ−i−1
0 D′(t−i−1),

so to prove the commutativity relation of the proposition it suffices to verify it on
the t−i−1. If we let 8 be the map that sends an element ξ(t) ∈ C to ξ(t p), then the
formal factorizations of α′ as

α′ = δ− ◦ θ̂ (t) ◦8 ◦ θ̂ (t)−1

and D′ in (6.2) may be used to compute the actions on the t−i−1. This reduces the
assertion of the proposition to the obvious equality

t d
dt
◦8= p8 ◦ t d

dt
. �

It follows from Corollary 6.7 and Proposition 6.9 that Q(t) is an eigenvector
of α′. More precisely, we have the following result.

Proposition 6.10. α′(Q(t))= pQ(t).

Proof. Let C∗ be the space of series

C∗ =
{
η(t)=

∞∑
i=0

ciγ
i
0 t i

∣∣∣ {ci } is bounded
}

and let C∗0 be the subset consisting of those series η ∈ C∗ with c0 = 0. The
differential operator D := td/dt +

∑
∞

j=0 γ j p j t p j
acts on C∗, and by [Adolphson

and Sperber 2000, Theorem 3.8] the map D : C∗→ C∗0 is an isomorphism.
Define ψ : C∗→ C∗ by ψ

(∑
∞

i=0 ciγ
i
0 t i
)
=
∑
∞

i=0 cpiγ
pi

0 t i and let α : C∗→ C∗

be the composition ψ ◦θ(t). A calculation analogous to the proof of Proposition 6.9
shows that as operators on C∗,

α ◦ D = pD ◦α. (6.11)

We have a commutative diagram with exact rows

0 −−−→ C∗0 −−−→ C∗ −−−→ Cp −−−→ 0y yD

yD

y y
0 −−−→ C∗0

id
−−−→ C∗0 −−−→ 0 −−−→ 0

(6.12)
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where C∗0→C∗ is the inclusion, C∗0→C∗0 is the identity, and C∗→Cp is the map
defined by setting t = 0. Since D : C∗→ C∗0 is an isomorphism, the long-exact
cohomology sequence associated to (6.12) implies that there is an isomorphism
Cp ∼= C∗0/DC∗0 which identifies 1 ∈ Cp with the class D(1)+ DC∗0 ∈ C∗0/DC∗0 . It
is easily seen that α(1) ∈ 1+C∗0 , so (6.11) implies

α(D(1))= pD(α(1))≡ pD(1) (mod DC∗0 ). (6.13)

It follows that the induced action of α on Cp ∼= C∗0/DC∗0 is multiplication by p.
Define a pairing between the spaces C and C∗0 : for ξ =

∑
∞

i=0 ci i !γ−i−1
0 t−i−1

∈ C
and η =

∑
∞

i=0 biγ
i+1
0 t i+1

∈ C∗0 , put

〈ξ, η〉 =

∞∑
i=0

bi ci i ! .

The series on the right-hand side converges because the {ci } and {bi } are bounded
and i ! → 0 as i→∞. Note that if u ∈ Z>0 and v ∈ Z<0, then

〈tv, D(tu)〉 = −〈D′(tv), tu
〉 =


u if u+ v = 0,
γ j p j if u+ v =−p j for some j ,
0 otherwise,

which implies that
〈D′(ξ), η〉 = −〈ξ, D(η)〉 (6.14)

for ξ ∈ C and η ∈ C∗0 . A direct calculation also shows that

〈α′(tv), tu
〉 = 〈tv, α(tu)〉 = θ−pv−u,

which implies that
〈α′(ξ), η〉 = 〈ξ, α(η)〉 (6.15)

for ξ ∈ C and η ∈ C∗0 . We then have

〈α′(Q(t)), D(1)〉 = 〈Q(t), α(D(1)〉 = 〈Q(t), pD(1)+ η〉

for some η ∈ DC∗0 by (6.13). But 〈Q(t), DC∗0 〉 = 0 by (6.14) and Corollary 6.7, so
we get

〈α′(Q(t)), D(1)〉 = p〈Q(t), D(1)〉.

Since we already know that α′(Q(t)) is a scalar multiple of Q(t), the proposition
will follow from this equality once we have checked that 〈Q(t), D(1)〉 6= 0.

We have D(1)=
∑
∞

j=0 γ j p j t p j
and Q(t)=

∑
∞

i=0 Qi i !γ−i−1
0 t−i−1, so

〈Q(t), D(1)〉 =
∞∑
j=0

γ j p j Q p j−1(p
j
− 1)!γ−p j

0 . (6.16)

We have, by (3.4) and the p-integrality of the Qi ,
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ordp γ j p j Q p j−1(p
j
−1)!γ−p j

≥
p j+1

p− 1
−( j+1)+ j+

p j
− 1− j (p− 1)

p− 1
−

p j

p− 1
,

which simplifies to

ordp γ j p j Q p j−1(p
j
− 1)!γ−p j

≥

j∑
i=0

(pi
− 1).

The right-hand side of this inequality is an increasing function of j , positive for
j > 0, so to prove the expression (6.16) is not zero, it suffices to show that Q0, the
contribution to the sum on the right-hand side of (6.16) for j = 0, is a unit. From
the definition (6.6) we compute

Q0 =

∞∑
i=0

(−1)i θ̂1,i .

The desired assertion about Q0 then follows from (3.10) and the fact that θ̂1,0=1. �

Proposition 6.10 implies that

θ(t)Q(t p)= A(t)+ pQ(t)

for some series A(t) in nonnegative powers of t . Replacing t in this equation by
3i x a+i for i = 1, . . . , µ+ 1 and multiplying gives

µ+1∏
i=1

θ(3i x a+i )Q(3p
i x pa+i )=

µ+1∏
i=1

(
A(3i x a+i )+ pQ(3i x a+i )

)
, (6.17)

where A(3i x a+i ) is a series in nonnegative powers of x a+i . Our choice of the set
{a+i }

µ+1
i=1 implies that an integral linear combination

∑µ+1
i=1 li a+i lies in M− only if

li < 0 for i = 1, . . . , µ+ 1. It follows that when the product on the right-hand side
of (6.17) is expanded, all terms except for

∏µ+1
i=1 pQ(3i x a+i ) are annihilated by δ−,

so we get

δ−

( µ+1∏
i=1

θ(3i x a+i )Q(3p
i x pa+i )

)
= δ−

( µ+1∏
i=1

pQ(3i x a+i )

)
.

But δ−
(∏µ+1

i=1 pQ(3i x a+i )
)
=
∏µ+1

i=1 pQ(3i x a+i ), giving finally

δ−

( µ+1∏
i=1

θ(3i x a+i )Q(3p
i x pa+i )

)
= pµ+1

µ+1∏
i=1

Q(3i x a+i ). (6.18)

Lemma 6.19. We have

G(3, x)= δ−

(( µ+1∏
j=1

Q(3i x a+i )

)( N∏
j=µ+2

θ̂ (3 j x
a+j )

))
.
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Proof. From the definitions of F(3, x) and q(t) we have

F(3, x)= δ−

( µ+1∏
j=1

q(3 j x
a+j )

N∏
j=µ+2

exp(γ03 j x
a+j )

)
.

From the definitions of G(3, x) and θ̂1(3, x) (see (4.14) and (3.11)), we get

G(3, x)= δ−

( µ+1∏
j=1

q
(
3 j x

a+j
) N∏

j=µ+2

exp
(
γ03 j x

a+j
) N∏

j=1

θ̂1
(
3 j x

a+j
))
.

Using the definitions of θ̂ (t) and θ̂1(t) (see (3.3) and (3.9)), this equation may be
rewritten as

G(3, x)= δ−

( µ+1∏
j=1

(q(3 j x
a+j )θ̂1(3 j x

a+j ))

N∏
j=µ+2

θ̂ (3 j x
a+j )

)
.

The assertion now follows from the definition of Q(t) (see (6.6)). �

We can now prove Theorem 5.14. First note that since θ(t) = θ̂ (t)/θ̂(t p), we
have

N∏
j=µ+2

θ
(
3 j x

a+j
) N∏

j=µ+2

θ̂
(
3

p
j x pa+j

)
=

N∏
j=µ+2

θ̂
(
3 j x

a+j
)
. (6.20)

We now compute:

α∗(G(3, x))

= δ−

( N∏
j=1

θ(3 j x
a+j )δ−

(( µ+1∏
i=1

Q(3p
i x pa+i )

)( N∏
j=µ+2

θ̂ (3
p
j x pa+j )

)))

= δ−

(( µ+1∏
i=1

θ(3i x a+i )Q(3p
i x pa+i )

)( N∏
j=µ+2

θ(3 j x
a+j )

N∏
j=µ+2

θ̂ (3
p
j x pa+j )

))

= pµ+1δ−

(( µ+1∏
i=1

Q(3i x a+i )

)( N∏
j=µ+2

θ̂ (3 j x
a+j )

))
= pµ+1G(3, x),

where the first equality follows from Lemma 6.19, the next-to-last equality follows
from (6.18) and (6.20), and the last equality follows from Lemma 6.19.

7. Zeta functions

Let fλ(x0, . . . , xn) be as defined in Section 1. We associate to fλ exponential sums

Sλ(m) =
∑

x∈An+2(Fqm )

9
(
TrFqm /Fp(xn+1 fλ(x0, . . . , xn))

)
,
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where 9 : Fp→Qp(ζp)
× is the additive character satisfying

9(1)≡ 1+ γ0 (mod γ 2
0 ).

We denote the corresponding L-function by Lλ(t):

Lλ(t)= exp
( ∞∑

m=1

Sλ(m)
tm

m

)
.

Recall the relationship [Adolphson and Sperber 2008, (2.3)] between Lλ(t) and the
rational function Pλ(t) defined in Section 1:

Lλ(t)(−1)n+1
= (1− qn+1t)(−1)n Pλ(qt)

Pλ(q2t)
. (7.1)

We first prove Proposition 1.7 and then prove the last assertion of Theorem 4.32.
We begin by reviewing the expression for Lλ(t) that comes from Dwork’s trace
formula [Adolphson and Sperber 2008, Section 2]. For s ∈ Z, let Ls be the space
of series

Ls =

{ ∑
u∈Nn+2

cuγ
pun+1

0 xu
∣∣∣ n∑

i=0

ui − dun+1 = s, cu ∈ Cp, and {cu} is bounded
}
.

For a subset I = {i1, . . . , ik} ⊆ {0, . . . , n+ 1}, define

L I =

{
L−k if n+ 1 6∈ I ,
Ld−k+1 if n+ 1 ∈ I .

We construct a de Rham-type complex as follows. For k = 0, . . . , n+ 1, let

�k
=

⊕
0≤i1<···<ik≤n+1

L{i1,...,ik} dxi1 · · · dxik .

Define d :�k
→�k+1 by

d(ξ dxi1 · · · dxik )=

n+1∑
i=0

∂ξ

∂xi
dxi dxi1 · · · dxik

for ξ ∈ L{i1,...,ik}. Define f̂λ to be the Teichmüller lifting of xn+1 fλ:

f̂λ(x0, . . . , xn+1)=

N∑
j=1

λ̂ j x
a+j ∈Qp(ζq−1)[x0, . . . , xn+1].

Set

h =
∞∑
j=0

γ j x
p j

n+1 f̂ σ
j
(x p j

),
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where

f̂ σ (x p)=

N∑
j=1

λ̂
p
j x pa+j ,

and note that dh ∈�1. We observe that in general, if ω1 ∈�
k1 and ω2 ∈�

k2 , then
ω1 ∧ω2 ∈�

k1+k2 . Let D :�k
→�k+1 be defined by

D(ω)= dω+ dh ∧ω.

This gives a complex (�•, D).
We define the Frobenius operator on this complex. From (3.19) we have

θ(λ̂, x)=
N∏

j=1

θ(λ̂ j x
a+j ). (7.2)

We also need to consider the series θ0(λ̂, x) defined by

θ0(λ̂, x)=
a−1∏
i=0

N∏
j=1

θ((λ̂ j x
a+j )pi

)=

a−1∏
i=0

θ(λ̂pi
, x pi

). (7.3)

Define an operator ψ on formal power series by

ψ

( ∑
u∈Nn+2

cu xu
)
=

∑
u∈Nn+2

cpu xu . (7.4)

Denote by αλ̂ the composition

αλ̂ := ψ
a
◦ θ0(λ̂, x),

where θ0(λ̂, x) is used as an operator to represent multiplication by θ0(λ̂, x).
We define a map αλ̂,• :�

•
→�• by additivity and the formula

αλ̂,k(ξ dxi1 · · · dxik )=
qn+2−k

xi1 · · · xik

αλ̂(xi1 · · · xikξ) dxi1 · · · dxik , (7.5)

when ξ ∈ L{i1,...,ik}. Note that in this case xi1 · · · xikξ and αλ̂(xi1 · · · xikξ) lie in L0.
The map αλ̂,• is a map of complexes and by the Dwork trace formula (as formulated
by Robba; see [Adolphson and Sperber 2008, Section 2]) we have

Lλ(t)=
n+2∏
k=0

det(I − tαλ̂,k |�
k)(−1)k+1

. (7.6)

The factors on the right-hand side of (7.6) are p-adic entire functions.
We now combine (7.1) and (7.6) to get a formula for Pλ(qt). First of all, for

I = {i1, . . . , ik} ⊆ {0, 1, . . . , n+ 1}, let L I
0 ⊆ L0 be the image of L I dxi1 · · · dxik
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under the map φ defined by

ξ dxi1 · · · dxik → xi1 · · · xikξ.

We have a commutative diagram

L I dxi1 · · · dxik

φ
−−−→ L I

0

α
λ̂,k

y yqn+2−kα
λ̂

L I dxi1 · · · dxik

φ
−−−→ L I

0

in which the horizontal arrows are isomorphisms, hence there is a product decom-
position

det(I − tαλ̂,k |�
k)=

∏
|I |=k

det(I − qn+2−k tαλ̂ | L
I
0). (7.7)

Combining this with (7.6) gives

Lλ(t) =
∏

I⊆{0,1,...,n+1}

det(I − qn+2−|I |tαλ̂ | L
I
0)
(−1)|I |+1

. (7.8)

Note that xu
∈ L I

0 if and only if
∑n

i=0 ui = dun+1 and ui > 0 for i ∈ I . Suppose
I ⊆{0, 1, . . . , n} and I 6=∅. If xu

∈ L I
0 then un+1>0 also, and hence L I

0= L I∪{n+1}
0 .

It follows that for such I we have

det(I − qn+1−|I |tαλ̂ | L
I
0)= det

(
I − qn+2−|I∪{n+1}|tαλ̂ | L

I∪{n+1}
0

)
. (7.9)

We can therefore rewrite (7.8) as

Lλ(t)=
det
(
I − qn+1tαλ̂ | L

{n+1}
0

)
det(I − qn+2tαλ̂ | L

∅
0 )

·

∏
∅6=I⊆{0,1,...,n}

(
det(I − qn+2−|I |tαλ̂ | L

I
0)

det(I − qn+1−|I |tαλ̂ | L
I
0)

)(−1)|I |+1

. (7.10)

We examine the first quotient on the right-hand side of (7.10) more closely. It is easy
to see that the quotient L∅

0 /L{n+1}
0 is one-dimensional, spanned by the constant 1,

and that αλ̂ acts on this quotient as the identity map. We therefore have

det(I − qn+1tαλ̂ | L
∅
0 )= (1− qn+1t) det

(
I − qn+1tαλ̂ | L

{n+1}
0

)
.

Thus (7.10) implies

Lλ(t)(−1)n+1
= (1− qn+1t)(−1)n

·

∏
I⊆{0,1,...,n} det(I − qn+2−|I |tαλ̂ | L

I
0)
(−1)n+|I |∏

I⊆{0,1,...,n} det(I − qn+1−|I |tαλ̂ | L
I
0)
(−1)n+|I |

. (7.11)
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Comparing (7.1) and (7.11) now gives the desired formula:

Pλ(qt)=
∏

I⊆{0,1,...,n}

det(I − qn+1−|I |tαλ̂ | L
I
0)
(−1)n+1+|I |

. (7.12)

For notational convenience, we set 0 = {0, 1, . . . , n}.

Proposition 7.13. (a) The entire function det(I − tαλ̂ | L00 ) has at most one
reciprocal zero of q-ordinal equal to µ+ 1; all other reciprocal zeros have
q-ordinal > µ+ 1. If it has a reciprocal zero of q-ordinal equal to µ+ 1, then
all other reciprocal zeros have q-ordinal ≥ µ+ 2.

(b) The reciprocal zeros of det(I − qn+1−|I |tαλ̂ | L
I
0) all have q-ordinal ≥ µ+ 2

for I ( {0, 1, . . . , n}.

Proof. Consider first the case I =∅, i.e., the entire function det(I −qn+1tαλ̂ | L
∅
0 ).

All reciprocal zeros are divisible by qn+1 and n+1≥µ+2 since n+1= d(µ+1)
and we are assuming d ≥ 2.

Now suppose that I 6=∅ and let

ω(I )=min{un+1 | xu
∈ L I

0}.

Since xu
∈ L I

0 if and only if
∑n

i=0 ui = dun+1 and ui > 0 for i ∈ I , we have
ω(I )= d|I |/d e, where dze denotes the least integer that is ≥ z.

It follows from [Adolphson and Sperber 1987a, Proposition 4.2] that the first side
of the Newton polygon of deg(I − tαλ̂ | L

I
0) has slope ≥ω(I ). Hence all reciprocal

zeros of the entire function det(I − qn+1−|I |tαλ̂ | L
I
0) have q-ordinal greater than

or equal to
n+ 1− |I | +

⌈
|I |/d

⌉
. (7.14)

First take I =0, i.e., |I | = n+1. In this case the hypothesis that n+1= d(µ+1)
reduces the expression (7.14) to µ+ 1. Furthermore, since (1, . . . , 1, µ+ 1) is the
unique element u with xu

∈ L00 and un+1 = µ+ 1, it follows from [Adolphson and
Sperber 1987a, Proposition 4.2] that the Newton polygon of det(I − tαλ̂ | L

0
0 ) has

a lower bound whose first side has slope µ+ 1 and length 1. This implies that
det(I − tαλ̂ | L

0
0 ) has at most one reciprocal zero of q-ordinal equal to µ+ 1 and

all other reciprocal zeros have q-ordinal > µ+ 1. This proves the first sentence of
part (a). If det(I − tαλ̂ | L

0
0 ) has a reciprocal zero of q-ordinal equal to µ+ 1, then

by [Adolphson and Sperber 1987a, Proposition 4.2] the second side of its Newton
polygon has slope ≥ µ+ 2. This proves the second sentence of (a).

Next take |I | = n. The expression (7.14) reduces to

1+
⌈n

d

⌉
= 1+

⌈
µ+ 1− 1

d

⌉
= µ+ 2

since d ≥ 2. Furthermore, (7.14) cannot decrease when |I | decreases, which proves
part (b) of the proposition. �
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Recall from Section 1 that we write Pλ(t)= P (1)λ (t)/P (2)λ (t), where P (1)λ (t) and
P (2)λ (t) are relatively prime polynomials with integer coefficients and constant term
1 which satisfy

P (1)λ (q−µt), P (2)λ (q−µt) ∈ 1+ tZ[t].

Proposition 7.13, together with (7.12), shows that

P (2)λ (q−µt)≡ 1 (mod q)

and that P (1)λ (q−µt) (mod p) has degree at most 1 in t . To complete the proof of
Proposition 1.7 it suffices, by Proposition 7.13(a), to show that

Tr(αλ̂ | L
0
0 )≡ qµ+1

a−1∏
i=0

((−1)µ+1 H(λ̂pi
)) (mod pqµ+1). (7.15)

Using (5.7), one sees that (7.15) is equivalent to the following assertion.

Proposition 7.16. For λ ∈ (F×q )
N , we have

Tr(αλ̂ | L
0
0 )≡

a−1∏
i=0

θ−(p−1)b(λ̂
pi
) (mod pqµ+1).

Proof. Consider the series

θ0(λ̂, x)=
∑
w∈NA

θ0,w(λ̂)xw.

By (7.3) we have

θ0,w(λ̂) =
∑

u(0),...,u(a−1)
∈NA∑a−1

i=0 pi u(i)=w

a−1∏
i=0

θu(i)(λ̂
pi
). (7.17)

Let U ⊆Nn+2 be the set of all exponents u such that xu
∈ L00 . For w ∈U , a direct

calculation shows that

αλ̂(x
w)=

∑
u∈U

θ0,qu−w(λ̂)xu . (7.18)

It then follows from the Dwork trace formula that

Tr(αλ̂ | L
0
0 )=

∑
w∈U

θ0,(q−1)w(λ̂). (7.19)

Equation (7.17) gives

θ0,(q−1)w(λ̂) =
∑

u(0),...,u(a−1)
∈NA∑a−1

i=0 pi u(i)=(q−1)w

a−1∏
i=0

θu(i)(λ̂
pi
). (7.20)



1352 Alan Adolphson and Steven Sperber

It follows from (3.21) and (3.23) that

ordp θ0,(q−1)w(λ̂)

≥min
{a−1∑

i=0

u(i)n+1

p− 1

∣∣∣ u(0), . . . , u(a−1)
∈ NA and

a−1∑
i=0

pi u(i) = (q − 1)w
}
. (7.21)

We prove Proposition 7.16 by studying this estimate for w ∈U .
Fix u(0), . . . , u(a−1)

∈ NA with

a−1∑
i=0

pi u(i) = (q − 1)w (7.22)

and w ∈U . We define inductively a sequence w(0), . . . , w(a) ∈U such that

u(i) = pw(i+1)
−w(i) for i = 0, . . . , a− 1. (7.23)

First of all, take w(0) = w. Then (7.22) shows that u(0)+w(0) = pw(1) for some
w(1) ∈ Zn+2; since u(0) ∈ NA and w(0) ∈ U we conclude that w(1) ∈ U . Suppose
that for some 0< k ≤ a− 1 we have defined w(0), . . . , w(k) ∈U satisfying (7.23)
for i = 0, . . . , k − 1. Substituting pw(i+1)

−w(i) for u(i) for i = 0, . . . , k − 1 in
(7.22) gives

−w(0)+ pkw(k)+

a−1∑
i=k

pi u(i) = paw−w. (7.24)

Since w(0) =w, we can divide this equation by pk to get w(k)+u(k) = pw(k+1) for
some w(k+1)

∈ Zn+2. Since u(k) ∈ NA and (by induction) w(k) ∈U , we conclude
that w(k+1)

∈U . This completes the inductive construction. Note that in the special
case k = a− 1, this computation gives w(a) = w.

Summing (7.23) over i = 0, . . . , a− 1 and using w(0) = w(a) = w gives

a−1∑
i=0

u(i) = (p− 1)
a−1∑
i=0

w(i). (7.25)

Hence
a−1∑
i=0

u(i)n+1

p− 1
=

a−1∑
i=0

w
(i)
n+1. (7.26)

Since w(i) ∈U , we have{
w
(i)
n+1 = µ+ 1 if w(i) = (1, . . . , 1, µ+ 1),

w
(i)
n+1 ≥ µ+ 2 if w(i) 6= (1, . . . , 1, µ+ 1).

(7.27)
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It now follows from (7.26) that

a−1∑
i=0

u(i)n+1

p−1

{
= a(µ+1) if w(i)= (1, . . . , 1, µ+1) for i = 0, . . . , a−1,
≥ a(µ+1)+1 otherwise.

(7.28)

Therefore, by (7.23),
∑a−1

i=0 u(i)n+1/(p− 1) = a(µ + 1) if and only if for all i ,
u(i) = (p− 1)(1, . . . , 1, µ+ 1).

By (7.21), this implies that if w 6= (1, . . . , 1, µ+ 1), then

θ0,(q−1)w(λ̂)≡ 0 (mod pqµ+1).

If w = (1, . . . , 1, µ+ 1), this implies by (7.20) that

θ0,(q−1)(1,...,1,µ+1)(λ̂)≡

a−1∏
i=0

θ(p−1)(1,...,1,µ+1)(λ̂
pi
) (mod pqµ+1).

Since −b= (1, . . . , 1, µ+ 1), (7.19) now implies the proposition. �

Let λ ∈ (F×q )
N . In the course of proving Proposition 1.7, we have shown that

H(λ) 6= 0 is a necessary and sufficient condition for det(I − tαλ̂ | L00 ) to have a
unique reciprocal zero of q-ordinal equal to µ+ 1. To prove the last assertion of
Theorem 4.32, it suffices by (7.12) and Proposition 7.13 to prove the following result.

Theorem 7.29. If λ ∈ (F×q )
N and H(λ) 6= 0, then qµ+1∏a−1

i=0 G(λ̂pi
) is an eigen-

value of αλ̂ on L00 .

Before beginning the proof of Theorem 7.29, we give an alternate description of
det(I − tαλ̂ | L

0
0 ). Let

M̂− =
{

u = (u0, . . . , un+1) ∈ (Z<0)
n+2

∣∣∣ n∑
i=0

ui = dun+1

}
,

M̂+ =
{

u = (u0, . . . , un+1) ∈ (Z>0)
n+2

∣∣∣ n∑
i=0

ui = dun+1

}
.

Set
B =

{
ξ∗ =

∑
u∈M̂−

c∗uγ
pun+1

0 xu
∣∣∣ c∗u→ 0 as u→−∞

}
,

a p-adic Banach space with norm |ξ∗| = supu∈M̂−
{|c∗u|}. We define a pairing

〈 , 〉 : B× L00 → Cp as follows. If

ξ =
∑

u∈M̂+

cuγ
pun+1

0 xu
∈ L00 and ξ∗ =

∑
u∈M̂−

c∗uγ
pun+1

0 xu
∈ B,

define
〈ξ∗, ξ〉 =

∑
u∈M̂+

cuc∗
−u,



1354 Alan Adolphson and Steven Sperber

the constant term of the product ξ∗ξ . This pairing identifies B with the dual space
of L00 , the space of continuous linear mappings from L00 to Cp; see [Serre 1962,
Proposition 3]. We extend the definition of the mapping 8 defined in the proof of
Proposition 6.9 by setting

8

(∑
u∈Zn

cu xu
)
=

∑
u∈Zn

cu x pu .

Consider the formal composition α∗
λ̂
= δ− ◦ θ0(λ̂, x) ◦8a , where again θ0(λ̂, x)

represents multiplication by θ0(λ̂, x).

Proposition 7.30. The operator α∗
λ̂

is an endomorphism of B which is adjoint to
αλ̂ : L

0
0 → L00 .

Proof. Since α∗
λ̂

is the a-fold composition of the operators δ− ◦ θ(λ̂pi
, x) ◦8 and

αλ̂ the a-fold composition of the operators ψ ◦ θ(λ̂pi
, x) for i = 0, . . . , a − 1,

it suffices to check that δ− ◦ θ(λ̂, x) ◦ 8 is an endomorphism of B adjoint to
ψ ◦ θ(λ̂, x) : L00 → L00 . Let ξ∗(x) =

∑
v∈M̂−

c∗vγ
pvn+1

0 xv ∈ B. The proof that the
product θ(λ̂, x)ξ∗(x p) is well defined is analogous to the proof of convergence
of (5.1). We have

δ−(θ(λ̂, x)ξ∗(x p))=
∑

u∈M̂−

C∗u γ
pun+1

0 xu,

where
C∗u =

∑
w+pv=u

θw(λ̂)c∗vγ
p(vn+1−un+1)

0 . (7.31)

Note that by (3.23),

ordp θw(λ̂)γ
p(vn+1−un+1)

0 ≥
wn+1

p− 1
+

pvn+1

p− 1
−

pun+1

p− 1
=−un+1 (7.32)

since w+ pv = u. Since c∗v→ 0 as v→−∞, this implies that the series on the
right-hand side of (7.31) converges. Furthermore, the estimate (7.32) then shows
that C∗u → 0 as u→−∞. We conclude that δ−(θ(λ̂, x)ξ∗(x p)) ∈ B. In fact, (7.32)
implies

|δ−(θ(λ̂, x)ξ∗(x p))| ≤ |pµ+1ξ∗(x)|,

since un+1 ≤−(µ+ 1) for all u ∈ M−. �

Proof of Theorem 7.29. From Proposition 7.30, it follows by [Serre 1962, Proposi-
tion 15] that

det(I − tαλ̂ | L
0
0 )= det(I − tα∗

λ̂
| B), (7.33)

so to complete the proof of Theorem 7.29 it suffices to show that if H(λ) 6= 0, then
α∗
λ̂

has an eigenvector in B with eigenvalue qµ+1∏a−1
i=0 G(λ̂pi

). From (5.16) we
have

α∗
(

G(3, x)
G(3)

)
= pµ+1G(3)

G(3, x)
G(3)

.
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It follows by iteration that for m ≥ 0,

(α∗)m
(

G(3, x)
G(3)

)
= pm(µ+1)

( m−1∏
i=0

G(3pi
)

)
G(3, x)

G(3)
. (7.34)

From (4.15) we have

G(3, x)
G(3)

=

∑
u∈M−

(
γ
−(p−1)un+1
0

Gu(3)

G(3)

)
γ

pun+1
0 xu .

By Proposition 5.15, the ratio Gu(3) :=Gu(3)/G(3) lies in R′u . We may therefore
evaluate the Gu(3) at 3= λ̂:

G(3, x)
G(3)

∣∣∣∣
3=λ̂

=

∑
u∈M−

(
γ
−(p−1)un+1
0 Gu(λ̂)

)
γ

pun+1
0 xu .

Since γ−(p−1)un+1
0 → 0 as u→∞, this expression lies in B. It is straightforward to

check that the specialization of the left-hand side of (7.34) with m = a at 3= λ̂ is
exactly α∗

λ̂

(
G(3, x)/G(3)|3=λ̂

)
, so specializing (7.34) with m = a at 3= λ̂ gives

α∗
λ̂

( ∑
u∈M−

(
γ
−(p−1)un+1
0 Gu(λ̂)

)
γ

pun+1
0 xu

)
= qµ+1

( a−1∏
i=0

G(λ̂pi
)

)( ∑
u∈M−

(
γ
−(p−1)un+1
0 Gu(λ̂)

)
γ

pun+1
0 xu

)
. (7.35)

This equation shows that qµ+1∏a−1
i=0 G(λ̂pi

) is an eigenvalue of α∗
λ̂
. �
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