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Masser and Vaaler have given an asymptotic formula for the number of algebraic
numbers of given degree d and increasing height. This problem was solved by
counting lattice points (which correspond to minimal polynomials over Z) in
a homogeneously expanding star body in Rd+1. The volume of this star body
was computed by Chern and Vaaler, who also computed the volume of the
codimension-one “slice” corresponding to monic polynomials; this led to results
of Barroero on counting algebraic integers. We show how to estimate the volume
of higher-codimension slices, which allows us to count units, algebraic integers
of given norm, trace, norm and trace, and more. We also refine the lattice point-
counting arguments of Chern-Vaaler to obtain explicit error terms with better
power savings, which lead to explicit versions of some results of Masser–Vaaler
and Barroero.
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1. Introduction

A classical theorem of Northcott states that there are only finitely many elements
of Q of bounded degree and height. It’s then natural to ask, for interesting subsets
S ⊂Q of bounded degree, how the number of elements of bounded height grows as
we let the height bound increase. More precisely, one considers the asymptotics of

N (S,H)= #{x ∈ S | H(x)≤H},

where H(x) is the absolute multiplicative Weil height of x ; see, for example,
[Bombieri and Gubler 2006, p. 16].

Many of the oldest instances of such asymptotic statements concern elements
of a fixed number field. Schanuel [1979, Corollary] proved that, for any number
field K, as H grows,

N (K ,H)= cK ·H2[K :Q]
+ O(H2[K :Q]−1 logH),

where the constant cK involves all the classical invariants of the number field K,
and the logH factor disappears for K 6=Q.

Lang [1983, Chapter 3, Theorem 5.2] states analogous asymptotics for the ring
of integers OK and its unit group O∗K :

N (OK ,H)= γK ·H[K :Q](logH)r + O(H[K :Q](logH)r−1),

N (O∗K ,H)= γ
∗

K · (logH)r + O((logH)r−1),

where r is the rank of O∗K and γK and γ ∗K are unspecified constants. That first count
was later refined to a multiterm asymptotic by Widmer [2016, Theorem 1.1].

More recently, natural subsets that aren’t contained within a single number
field have been examined. Masser and Vaaler [2008, Theorem] determined the
asymptotic for the entire set Qd = {x ∈Q | [Q(x) :Q] = d}:

N (Qd ,H)=
d · Vd

2ζ(d + 1)
·Hd(d+1)

+ O(Hd2
(logH)), (1-1)

where the logH factor disappears for d ≥ 3, and Vd is an explicit positive constant
that we’ll define shortly.

This asymptotic was deduced from results of Chern and Vaaler [2001] (discussed
at length in Section 2), which also imply an asymptotic for the set Od of all algebraic
integers of degree d , as noted in [Widmer 2016, (1.2)]. It was sharpened by Barroero
[2014, Theorem 1.1, case k =Q]:

N (Od ,H)= d · Vd−1 ·Hd2
+ O(Hd(d−1)(logH)), (1-2)

where again the logH factor disappears for d ≥ 3.
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After algebraic numbers and integers, it’s natural to turn to the problem of
counting units and other interesting sets of algebraic numbers. It’s also desirable
to obtain versions of these estimates with explicit error terms. These are the two
purposes of this paper.

We establish counts of units, algebraic integers of given norm, given trace, and
given norm and trace in Corollaries 1.2 through 1.5, which follow from the more
general Theorem 1.1 stated below. As for explicit error bounds, we have made
several improvements to the existing literature. The lack of explicit error terms in
the results (1-1) and (1-2) is inherited from results of Chern and Vaaler [2001] on
counting polynomials. Specifically, on p. 6 they mention that it would be of interest
to make the implied constant in their Theorem 3 explicit, but they were unable to do
so. In this paper we are able to make this constant explicit (Theorem 7.1 below), and
we also prove an analogous result for monic polynomials (Theorem 8.1). We use
these to obtain versions of (1-1) and (1-2) that are uniform in both H and d . These,
along with an explicit version of our result on counting units, are summarized below
in Theorem 1.10.

Results. Throughout the paper, we will understand the minimal polynomial of an
algebraic number to be its minimal polynomial over Z; we obtain this by multiplying
the minimal monic polynomial over Q by the smallest positive integer such that all
its coefficients become integers.

Counting algebraic integers, as in (1-2), is equivalent to counting only those
algebraic numbers whose minimal polynomials have leading coefficient 1. Our
primary goal in this paper is to count algebraic numbers of fixed degree and bounded
height subject to specifying any number of the leftmost and rightmost coefficients of
their minimal polynomials. Besides specializing to the cases of algebraic numbers
and algebraic integers above, this will allow us to count units, algebraic integers
with given norm, algebraic integers with given trace, and algebraic integers with
given norm and trace.

To state our theorem, we need a little notation. Our asymptotic counts will
involve the Chern-Vaaler constants

Vd = 2d+1(d + 1)s
s∏

j=1

(2 j)d−2 j

(2 j + 1)d+1−2 j , (1-3)

where s=b(d−1)/2c. These constants are volumes of certain star bodies discussed
later.

For integers m, n, and d with 0< m, 0≤ n, and m+ n ≤ d , and integer vectors
È ∈ Zm and Er ∈ Zn, we write N (d, È, Er ,H) for the number of algebraic numbers of
degree d and height at most H, whose minimal polynomials are of the form

f (z)= `0zd
+· · ·+`m−1zd−(m−1)

+xmzd−m
+· · ·+xd−nzn

+rd−n+1zn−1
+· · ·+rd .
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Lastly, we set g= d−m−n. In the statements below, the implied constants depend
on all parameters stated other than H.

Theorem 1.1. Fix d , È ∈ Zm, and Er ∈ Zn as above. Assume that `0 > 0, that

gcd(`0, . . . , `m−1, rd−n+1, . . . , rd)= 1,

and that rd 6= 0 if n > 0. Then, as H→∞,

N (d, È, Er ,H)= d · Vg ·Hd(g+1)
+ O(Hd(g+ 1

2 ) logH).

This generalizes the situation one faces when counting algebraic integers, whose
minimal polynomials are monic (m = 1, n = 0, È= (1)). Certain special cases are
of particular interest, and we prove stronger power savings terms for them.

Corollary 1.2. Let d ≥ 2, and let N (O∗d ,H) denote the number of units in the
algebraic integers of height at most H and degree d over Q. Then, as H→∞,

N (O∗d ,H)= 2d · Vd−2 ·Hd(d−1)
+ O(Hd(d−2)).

Corollary 1.3. Let ν 6= 0 be an integer, d ≥ 2, and let NNm=ν(d,H) denote the
number of algebraic integers with norm ν, of height at most H and degree d over Q.
Then, as H→∞,

NNm=ν(d,H)= d · Vd−2 ·Hd(d−1)
+ O(Hd(d−2)).

Corollary 1.4. Let τ be an integer, d ≥ 2, and let NTr=τ (d,H) denote the number
of algebraic integers with trace τ , of height at most H and degree d over Q. Then,
as H→∞,

NTr=τ (d,H)= d · Vd−2 ·Hd(d−1)
+


O(H), if d = 2,
O(H3 logH), if d = 3,
O(Hd(d−2)), if d ≥ 4.

Corollary 1.5. Let ν 6=0 and τ be integers, d≥3, and let NNm=ν,Tr=τ (d,H) denote
the number of algebraic integers with norm ν, trace τ , of height at most H and
degree d over Q. Then, as H→∞,

NNm=ν,Tr=τ (d,H)= d · Vd−3 ·Hd(d−2)
+ O(Hd(d−3)).

Remark 1.6. For two real-valued functions f and g with the same domain, we write
f =O(g) to mean there exist positive constants C and C ′ such that | f (x)|≤C |g(x)|
for all x > C ′. In Theorem 1.1, the implied constants depend on d, È, and Er ; in
Corollary 1.2 on d; in Corollary 1.3 on d and ν; in Corollary 1.4 on d and τ ; and
in Corollary 1.5 on d , ν, and τ .
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Remark 1.7. In Corollaries 1.3 through 1.5, the main term of the asymptotic doesn’t
depend on the specific coefficients being enforced. Thus these may be interpreted
as results on the equidistribution of norms and traces.

Remark 1.8. The type of counts found in this paper are related to Manin’s con-
jecture, which addresses the asymptotic number of rational points of bounded
height on Fano varieties. Counting points of degree d and bounded height in Q,
or equivalently, on P1, can be transferred to a question of counting rational points
of bounded height on the d-th symmetric product of P1, which is Pd. This is what
Masser and Vaaler implicitly do when they count algebraic numbers by counting their
minimal polynomials (as does this paper; see the Methods section below). However,
one needs to use a nonstandard height on Pd ; Le Rudulier [2014, Théorème 1.1]
takes this approach explicitly, thereby reproving and generalizing (the main term
of) the result of Masser and Vaaler. It should be noted, though, that while the shape
of the main term — a constant times the appropriate power of the height — follows
from known results on Manin’s conjecture, explicitly determining the constant in
front relies ultimately on an archimedean volume calculation of Chern and Vaaler.

Barroero’s count of algebraic integers of degree d corresponds to counting
rational points on Pd that are integral with respect to the hyperplane at infinity. As
noted in [Le Rudulier 2014, Remarque 5.3], the shape of his count’s main term
then follows from general results on counting integral points of bounded height on
equivariant compactifications of affine spaces [Chambert-Loir and Tschinkel 2012,
Theorem 3.5.6].

Our own units count corresponds to counting points on Pd integral with respect
to two hyperplanes, and does not appear to follow from any results currently in the
literature.

Remark 1.9. The algebraic number and integer counts of (1-1) and (1-2) have also
been extended to arbitrary base number fields [Masser and Vaaler 2007; Barroero
2014] and to vectors of algebraic numbers [Schmidt 1995; Gao 1995; Widmer 2009;
2016; Guignard 2017]. We expect there should be extensions of our new counts to
these contexts as well.

The second goal of this paper is to give explicit error terms, which we feel is
especially justified in this context, beyond general principles of error-term morality.
Namely, it’s natural to ask questions about properties of “random algebraic numbers”
(or random algebraic integers, random units, etc.). For example: “What’s the
probability that a random element of Q generates a Galois extension of Q?”

How to make sense of a question like this? There are models from other arithmetic
contexts; for example, if we’re asked “What’s the probability that a random positive
integer is square-free?” we know what to do: count the number of square-free
integers from 1 to N, divide that by N, and ask if that proportion has a limit as
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N grows. (Answer: Yes, 6/π2). Note that the easiest part is dividing by N, the
number of elements in your finite box. In order to make sense of probabilistic
statements in the context of Q, one would like to first take a box of bounded height
and degree (which will have only finitely many algebraic numbers by Northcott),
determine the relevant proportion within that finite box, and then let the box size
grow. But now the denominator in question is far from trivial; unlike counting the
number of integers from 1 to N, estimating how many algebraic numbers are in a
height-degree box is a more delicate matter.

In the context of Q, where there are two natural parameters to increase (the
height and the degree), the gold standard for a “probabilistic” result would be that
it holds for any increasing set of height-degree boxes such that the minimum of the
height and degree goes to infinity. To prove results that even approach this standard
(e.g., one might require that the height of the boxes grows at least as fast as some
function of the degree), one likely needs good estimates for how many numbers are
in a height-degree box to begin with. Without an estimate that holds uniformly in
both H and d , one would be justified in making statements about random elements
in Q of fixed degree d , but not random elements of Q overall. Thus controlling the
error terms in the theorems above is crucial.

To this end, in this paper we give explicit error bounds for the algebraic number
counts of Masser and Vaaler, the algebraic integer counts of Barroero, and our own
unit counts. Below pd(T ) is a polynomial defined in Section 2 whose leading term
is Vd−1T d, so our result is consistent with (1-2).

Theorem 1.10. Let Qd denote the set of algebraic numbers of degree d over Q, let
Od denote the set of algebraic integers of degree d over Q, and let O∗d denote the
set of units of degree d over Q in the ring of all algebraic integers. For all d ≥ 3,

(i)
∣∣∣N (Qd ,H)−

d ·Vd
2ζ(d+1)

Hd(d+1)
∣∣∣≤ 3.37 · (15.01)d

2
·Hd2

for H ≥ 1;

(ii) |N (Od ,H)− dpd(Hd)| ≤ 1.13 · 4ddd2d2
·Hd(d−1) for H ≥ 1; and

(iii) |N (O∗d ,H)− 2dVd−2 ·Hd(d−1)
| ≤ 0.0000126 · d34d(15.01)d

2
·Hd(d−1)−1

for H ≥ d2d+1/d .

Methods. The starting point of all our proofs is the relationship between the height
of an algebraic number and the Mahler measure of its minimal polynomial. Recall
that the Mahler measure µ( f ) of a polynomial with complex coefficients

f (z)= w0zd
+w1zd−1

+ · · ·+wd = w0(z−α1) · · · (z−αd) ∈ C[z],

with w0 6= 0, is defined by

µ( f )= |w0|

d∏
i=1

max{1, |αi |},
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and µ(0) is defined to be zero. It’s immediate that the Mahler measure is multi-
plicative: µ( f1 f2)= µ( f1)µ( f2).

Crucially for our purposes, if f (z) is the minimal polynomial of an algebraic
number α, then (see, for example, [Bombieri and Gubler 2006, Proposition 1.6.6])

µ( f )= H(α)d.

Thus, in order to count degree d algebraic numbers of height at most H, we can
instead count minimal integer polynomials of Mahler measure at most Hd.

We identify a polynomial with its vector of coefficients, so that counting integer
polynomials amounts to counting lattice points. To do this we employ techniques
from the geometry of numbers, which make rigorous the idea that, for a reasonable
subset of Euclidean space, the number of integer lattice points in the set should be
approximated by its volume. So for example, the number of integer polynomials
with degree at most d and Mahler measure at most T should be roughly the volume
of the set of such real polynomials

{ f ∈ R[z]deg≤d | µ( f )≤ T } ⊂ Rd+1.

Note that by multiplicativity of the Mahler measure, this set is the same as T Ud ,
where

Ud := { f ∈ R[z]deg≤d | µ( f )≤ 1}.

The set Ud will be our primary object of study. It is a closed, compact “star
body,” i.e., a subset of euclidean space closed under scaling by numbers in [0, 1].
Chern and Vaaler [2001, Corollary 2] explicitly determined the volume of Ud . In
a rather heroic calculation, they showed that Vd := vold+1(Ud) is given by the
positive rational number in (1-3).∗ Thus by geometry of numbers, and noting that
vol(T Ud) = T d+1

· vol(Ud), one expects the number of integer polynomials of
degree at most d and Mahler measure at most T to be approximately T d+1

· Vd .
Chern and Vaaler proved this is indeed the case. Masser and Vaaler then showed
how to refine this count of all such polynomials to just minimal polynomials, which
let them prove the algebraic number count in (1-1).

What if you only want to count algebraic integers? Again, the above approach
suggests you should do that by counting their minimal polynomials. Algebraic
integers are characterized by having monic minimal polynomials. Thus one is
naturally led to seek the volume of the “monic slice” of T Ud consisting of those
real polynomials with leading coefficient 1. However, these slices are no longer
dilations of each other, so their volumes aren’t determined by knowing the volume
of one such slice. Still, Chern and Vaaler were able to compute the volumes of

∗Our Ud is the same as what would be denoted by Sd+1 in the notation of [Chern and Vaaler
2001], and our Vd matches their Vd+1. Our subscripts correspond to the degree of the polynomials
being counted rather than the dimension of the space.
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monic slices of T Ud ; rather than a constant times a power of T, they are given by a
polynomial in T, whose leading term is Vd−1T d. Geometry of numbers can then be
applied again to obtain the algebraic integer count in (1-2).

In order to count units of degree d , or algebraic integers with given norm and/or
trace, one needs to take higher-codimension slices. For example, the minimal
polynomial of a unit will have leading coefficient 1 and constant coefficient±1. But
one quickly discovers that these higher-dimensional slices have volumes that are, in
general, no longer polynomial in T. Rather than trying to explicitly calculate these
volumes, we depart from the methods of earlier works, and instead approximate
the volumes of such slices.

When we cut a dilate T Ud by a certain kind of linear space, then as T grows
the slices look more and more like a lower-dimensional unit star body; this will be
explained in Section 4. This explains the appearance of the volume Vd in all of our
asymptotic counts. We also use a careful analysis of the boundary of Ud to show
that the above convergence happens relatively fast; this makes our approximations
precise enough to obtain algebraic number counts with good power-saving error
terms.

We state here our main result on counting polynomials. For nonnegative integers
m, n, and d with 0 < m + n ≤ d, and integer vectors È ∈ Zm and Er ∈ Zn, let
M(d, È, Er , T ) denote the number of polynomials f of the form

f (z)= `0zd
+· · ·+`m−1zd−(m−1)

+xmzd−m
+· · ·+xd−nzn

+rd−n+1zn−1
+· · ·+rd

with Mahler measure at most T, where xm, . . . , xd−n are integers. Let g= d−m−n.
Combining our volume estimates with a counting principle of Davenport, we

obtain the following.

Theorem 1.11. For all 0< m+ n ≤ d , È ∈ Zm, and Er ∈ Zn, as T →∞,

M(d, È, Er , T )= Vg · T g+1
+ O(T g).

Here the implied constant depends on d , È, and Er .
Now we briefly discuss the methods used in the second half of the paper to

prove our explicit results, and how these results fit in with the literature. [Chern
and Vaaler 2001, Theorem 3], the main ingredient in (1-1), gives an asymptotic
count of the number of integer polynomials of given degree d and Mahler measure
at most T. The error term in this result contains a full power savings — order T d

against a main term of order T d+1 — but the implied constant in the error term is
not made explicit. They do produce an explicit error term of order T d+1−1/d in
[op. cit., Theorem 5] using [op. cit., Theorem 4], which is a quantitative statement
on the continuity of the Mahler measure.

Our Theorem 7.1 below makes the constant in the error term explicit in [op. cit.,
Theorem 3], using a careful study of the boundary of Ud . We apply the classical
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Lipschitz counting principle in place of the Davenport principle; the latter is not
very amenable to producing explicit bounds. Theorem 8.1 is the analogous result to
Theorem 7.1 for monic polynomials, and is obtained in a similar manner. However,
the application of the Lipschitz principle is more delicate in this case. We also
prove an explicit version of our Theorem 1.11 counting polynomials with specified
coefficients (Theorem 9.3). For this result we also apply [op. cit., Theorem 4], and,
reminiscent of Chern and Vaaler’s application, this method yields an inferior power
savings.

We now describe the organization of the paper. In Section 2 we collect key facts
about the unit star body Ud , including a detailed discussion of its boundary. In
Section 3 we describe the counting principles we use to estimate the difference
between the number of lattice points in a set and the set’s volume. In Section 4
we estimate the volume of the sets in which we must count lattice points to prove
Theorem 1.11; this theorem is then proved in Section 5. In Section 6 we transfer our
counts for polynomials to counts for various kinds of algebraic numbers, thereby
proving Theorem 1.1 and Corollaries 1.2 through 1.5. This involves using a version
of Hilbert’s irreducibility theorem to account for reducible polynomials.

The rest of the paper is devoted to obtaining explicit versions of these counts.
In Section 7 we prove the aforementioned explicit version of [op. cit., Theorem 3]
on counting polynomials of given degree and bounded Mahler measure, and in
Section 8 we do the same for the count of monic polynomials. Section 9 contains a
version of the general Theorem 1.11 with an explicit error term, at the cost of weaker
power savings. In Section 10 we begin to convert our explicit counts of polynomials
to explicit counts of minimal polynomials. The main piece of this is showing that
the reducible polynomials are negligible. We follow the techniques for this used
by Masser and Vaaler (sharper than the more general Hilbert irreducibility method
described above), obtaining explicit bounds. In Section 11 we prove our final explicit
results on counting algebraic numbers, including explicit versions of Masser and
Vaaler’s result (1-1), Barroero’s result (1-2), and Corollaries 1.2 and 1.3. Finally,
we include an appendix with some estimates for various expressions involving
binomial coefficients which occur in our explicit error terms throughout the paper.

2. The unit star body

In this section we discuss some properties of the unit star body

Ud := { Ew ∈ Rd+1
| µ( Ew)≤ 1}.

Since for all f ∈ R[x] and t ∈ R we have

µ(t f )= |t |µ( f ), (2-1)
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it’s easy to see that Ud is in fact a (symmetric) star body. Furthermore, Ud is
compact; it is closed because µ is continuous [Mahler 1961, Lemma 1], and we can
see it is bounded by classical results that bound the coefficients of a polynomial in
terms of its Mahler measure, for example the following (see [Mahler 1976, p. 7]
and [Bombieri and Gubler 2006, Lemma 1.6.7 and its proof]).

Lemma 2.1 (Mahler). Every polynomial

f (z)= w0zd
+w1zd−1

+ · · ·+w0 ∈ C[z]

has coefficients satisfying

|wi | ≤

(d
i

)
µ( f ), i = 0, . . . , d. (2-2)

Furthermore, we have the following double inequality comparing Mahler measure
with the sup-norm of coefficients:( d

bd/2c

)−1
‖ Ew‖∞ ≤ µ( Ew)≤

√
d + 1‖ Ew‖∞, for all Ew ∈ Rd+1. (2-3)

Volumes. As mentioned in the introduction, the exact volume of Ud was determined
by Chern and Vaaler [2001, Corollary 2]:

Vd := vold+1(Ud)= 2d+1(d + 1)s
s∏

j=1

(2 j)d−2 j

(2 j + 1)d+1−2 j ,

where s = b(d − 1)/2c. (Here volN denotes Lebesgue measure on RN.)
We record some numerical information about the volume of Ud . We note that a

result like Lemma 2.2 below would follow quite easily from the asymptotic formula
for log Vd given in [op. cit., (1.31)]. However, this formula was given without proof
and contains an error. The correct version of that formula is apparently (using our
notation):

log Vd =−
1
2

d log d+
(1

2
log 2π+1

)
d− 5

4
log d+

(
3ζ ′(−1)+ 1

2
+

1
3

log 2
)
+

19θ2
12d

,

where |θ2| ≤ 1. In this corrected version, the constant term differs from what was
printed in [op. cit.] by log 2. Since in this paper we are mainly interested in the
maximum of Vd , we settle for the following simpler result that can be proved quickly.

Lemma 2.2. We have

Vd ≤ V15 =
2658455991569831745807614120560689152
13904872587870848957579157123046875

=
2121

320 · 59 · 79 · 116 · 134 ≈ 191.1888

for all d ≥ 0, and
lim

d→∞
Vd = 0.
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Proof. Note using Stirling’s estimates (see (A-1) in the appendix) that for any
positive integer s,

s∏
j=1

{
2 j

2 j + 1

}
=

2ss!
(2s+ 1)!/(2ss!)

=
4ss!2

(2s+ 1)!

≤
4s(e1−sss+1/2)2

√
2πe−2s−1(2s+ 1)2s+3/2

≤
4s(e2−2ss2s+1)

√
2πe−2s−1(2s)2s+3/2

≤
e34ss2s+1

√
2π4s23/2s2s+1√s

≤
e3

4
√
πs
.

Suppose that d is odd, so we may take s =
⌊ d−1

2

⌋
=
⌊
(d+1)−1

2

⌋
. Then

Vd+1

Vd
=

2d+2(d + 2)s

2d+1(d + 1)s

s∏
j=1

{
(2 j)d+1−2 j

(2 j)d−2 j

} s∏
j=1

{
(2 j + 1)d+1−2 j

(2 j + 1)d+2−2 j

}

= 2
(

d + 2
d + 1

)s s∏
j=1

{
2 j

2 j + 1

}
≤

(
d + 2
d + 1

)s

·
e3

2
√
πs
.

If d is even and s =
⌊ d−1

2

⌋
=

d
2 − 1, then

⌊
(d+1)−1

2

⌋
= s+ 1. Then

Vd+1

Vd
=

2d+2(d + 2)s+1

2d+1(d + 1)s
·

d
(d + 1)2

s∏
j=1

{
(2 j)d+1−2 j

(2 j)d−2 j

} s∏
j=1

{
(2 j + 1)d+1−2 j

(2 j + 1)d+2−2 j

}

= 2
(d + 2)s

(d + 1)s
·

d2
+ 2d

d2+ 2d + 1

s∏
j=1

{
2 j

2 j + 1

}
≤

(
d + 2
d + 1

)s

·
e3

2
√
πs
.

In either case, the ratio of successive terms tends to zero, so in fact Vd decays to
zero faster than exponentially, proving the second claim of our lemma. For the first
claim, it suffices to compute enough values of Vd . We see the maximum is attained
at d = 15, as advertised. �

For any T ≥ 0, by (2-1)

vold+1({ Ew ∈ Rd+1
| µ( Ew)≤ T })= vold+1(T Ud)= Vd · T d+1.

Chern and Vaaler (see [2001, (1.16)], corrected as in [Barroero 2014, footnote on
p. 38]) also computed the volume of the “monic slice”

Wd,T := {(w0, . . . , wd) ∈ T Ud | w0 = 1}. (2-4)

They showed:

vold(Wd,T )= pd(T ) := Cd2−s
{s!}−1

s∑
m=0

(−1)m(d − 2m)s
( s

m

)
T d−2m, (2-5)
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where again

s =
⌊d−1

2

⌋
and Cd = 2d

s∏
j=1

( 2 j
2 j+1

)d−2 j
.

Note that, since pd(T ) is a polynomial in T, we automatically have (carefully
inspecting the leading term):

vold(Wd,T )= Vd−1 · T d
+ O(T d−1).

For other slices besides the monic one, we will have to work harder (in Section 4)
to obtain such power savings. Along the way, it will become clear why the leading
coefficient takes the form it does.

Remark 2.3. Above, and throughout the paper, for a measurable set S ⊂ RN and
n < N, we will sometimes write voln(S). In this case, S will always be a subset
contained in an affine space defined by fixing N − n coordinates of RN, and then
voln(S) will always denote the Lebesgue measure of the projection of S to Rn given
by simply forgetting the fixed coordinates. For ease of notation, we will sometimes
drop the subscript when it is clear from context.

Semialgebraicity. Next we establish a qualitative result we will need in proving
Theorem 1.11. A (real) semialgebraic set is a subset of euclidean space which is
cut out by finitely many polynomial equations and/or inequalities, or a finite union
of such subsets. Recall that the class of semialgebraic sets is closed under finite
unions and intersections, and also closed under projections by the Tarski–Seidenberg
theorem [Bierstone and Milman 1988, Theorem 1.5].

Lemma 2.4. The set Ud ⊂ Rd+1 is semialgebraic.

Proof. Our proof is similar to that of [Barroero 2014, Lemma 4.1]. For each
j = 0, . . . , d, we wish to define a semialgebraic set Sj ⊂ Rd+1 corresponding to
degree j polynomials in Ud . We start by constructing auxiliary subsets of Rd+1

×C j

corresponding to the polynomials’ coefficients and roots, where C is identified with
R2 in the obvious way. We define

S0
j =

{
(0, . . . , 0, wd− j , . . . , wd , α1, . . . , αj ) ∈ Rd+1

×C j
∣∣ wd− j 6= 0 and

wd− j z j
+wd− j+1z j−1

+ · · ·+wd = wd− j (z−α1) · · · (z−αj )
}
,

where the equalities defining the set are given by equating the real part of each
elementary symmetric function in the roots α1, . . . , αj with the corresponding
coefficient wi , and setting the imaginary part to zero. To enforce the inequality
µ((0, . . . , 0, wd− j , . . . , wd))≤ 1, we define S1

j to comprise those elements of S0
j

such that all products of subsets of {α1, . . . , αj } are less than or equal to 1/|wd− j |
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in absolute value. Finally, we let Sj be the projection of S1
j onto Rd+1. Now simply

note that

Ud = {0} ∪
d⋃

j=0

Sj . �

Remark 2.5. Note that for any T > 0 the dilation T Ud is also semialgebraic, and
is defined by the same number of polynomials (and of the same degrees) as is Ud .

Boundary parametrizations. Next we describe the parametrization of the boundary
of Ud , which consists of vectors corresponding to polynomials with Mahler measure
exactly 1. The simple idea behind the parametrization is that such a polynomial is
the product of a monic polynomial with all its roots inside (or on) the unit circle,
and a polynomial with constant coefficient ±1 and all its roots outside (or on)
the unit circle. Recall that Ud is a compact, symmetric star body in Rd+1. The
parametrization is described in [Chern and Vaaler 2001, Section 10]. We briefly
summarize the key points here. The boundary ∂Ud is the union of 2d + 2 “patches”
Pεk,d , for k = 0, . . . , d, ε =±1. The patch Pεk,d is the image of a certain compact
set J ε

k,d under the map

bεk,d : R
k
×Rd−k

→ Rd+1,

defined by

bεk,d
(
(x1, . . . , xk), (y0, . . . , yd−k−1)

)
= Bk,d

(
(1, x1, . . . , xk), (y0, . . . , yd−k−1, ε)

)
, (2-6)

and
Bk,d

(
(x0, x1, . . . , xk), (y0, . . . , yd−k)

)
= (w0, . . . , wd),

with

wi =

k∑
l=0

d−k∑
m=0

l+m=i

xl ym, i = 0, . . . , d. (2-7)

Note that this simply corresponds to the polynomial factorization

w0zd
+ · · ·+wd = (x0zk

+ · · ·+ xk) · (y0zd−k
+ · · ·+ yd−k).

The sets J ε
k,d are given by

J ε
k,d = Jk × K ε

d−k ⊆ Rk
×Rd−k,

where
Jk = {Ex ∈ Rk

| µ(1, Ex)= 1} (2-8)

and
K ε

d−k = {Ey ∈ Rd−k
| µ(Ey, ε)= 1}.
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It will also be useful in Section 8 to have a parametrization of ∂Wd,T , the
boundary of a monic slice (see (2-4)), along the lines of that given for ∂Ud above.
Consider a monic polynomial

f (z)= zd
+w1zd−1

+ · · ·+wd ∈ R[z],

having Mahler measure equal to T ≥ 1 and roots α1, . . . , αd ∈C. We note that such
a polynomial can be factored as f (z) = g1(z)g2(z), where g1 and g2 ∈ R[z] are
monic, µ(g1) = 1 (forcing µ(g2) = T ), the constant coefficient of g2 is ±T, and
deg(g1)= k ∈ {0, . . . , d − 1}. To do this, we simply let

g1(z)=
∏
|αi |<1

(z−αi ) and g2(z)=
∏
|αi |≥1

(z−αi ).

It is easy to check that g1 and g2 have the desired properties. For k = 0, . . . , d − 1,
we let Jk be as in (2-8), and let

Y εT
d−k = {Ey ∈ Rd−k−1

| µ(1, Ey, εT )= T }

and
LεT

k,d = Jk × Y εT
d−k ⊆ Rk

×Rd−k−1,

for each k = 0, . . . , d − 1 and ε =±1. We also define

βεT
k,d
(
(x1, . . . , xk), (y1, . . . , yd−k−1)

)
= Bεk,d

(
(1, x1, . . . , xk), (1, y1, . . . , yd−k−1, εT )

)
,

(2-9)

similarly to (2-6).
We have that ∂Wd,T is covered by the 2d “patches”

βεT
k,d(L

εT
k,d). (2-10)

3. Counting principles

We’ll need a counting principle of Davenport to estimate the number of lattice
points in semialgebraic sets.

Theorem 3.1 (Davenport). Let S be a compact, semialgebraic subset of Rn defined
by at most k polynomial equalities and inequalities of degree at most l. Then the
number of integer lattice points contained in S is equal to

voln(S)+ O(max{vol(S), 1}),

where vol(S) denotes the maximum, for m = 1, . . . , n − 1, of the volume of the
projection of S onto the m-dimensional coordinate space given by setting any n−m
coordinates equal to zero. The implicit constant in the error term depends only on
k, l, and n.
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Remark 3.2. This follows from the main theorem of [Davenport 1951], as described
immediately after its statement. (The argument for this reduction was corrected
in [Davenport 1964].) Davenport’s principle has been generalized in a couple
directions, to allow for lattices other than the standard integer lattice [Barroero
and Widmer 2014, (1.2)], and to apply to sets definable in any o-minimal structure
[op. cit., Theorem 1.3], of which semialgebraic sets are but one example. However,
the above version will suffice for our purposes.

For our explicit error estimates we will use a different counting principle, namely
a refinement of the classical Lipschitz counting principle due to Spain [1995]. The
classical principle allows one to estimate the difference between the number of lattice
points in a set and the set’s volume: one uses that the boundary is parametrized by
finitely many Lipschitz maps, and that a Lipschitz map sends a cube in the domain
into a cube in the codomain. In our case it will be convenient to use “tiles” other
than cubes in the domain. This could be achieved by precomposing the maps with
other maps which cover our tiles with the images of cubes, but we feel the following
alternative formulation is intuitive and less awkward in application.

Theorem 3.3. Let S ⊂ Rn be a set whose boundary ∂S is contained in the images
of finitely many maps φi : Ji → Rn, where I is a finite set of indices and each Ji is a
set. For each i ∈ I, assume that Ji can be covered by mi sets Ti,1, . . . , Ti,mi , with
the property that for each j the image φi (Ti, j ) is contained in a translate of [0, 1]n

inside Rn. Then
|#(S ∩Zn)− voln(S)| ≤ 2n

∑
i∈I

mi .

Proof. We follow the “every other tile” approach of [Spain 1995]. The number of
lattice points in S differs from the volume of S by at most the number of integer
vector translates of the half-open unit tile [0, 1)n ⊆ Rn that meet the boundary ∂S.
Consider the set E of tiles which are even integer vector translates of [0, 1)n; it is
clear that any translate of [0, 1]n meets exactly one such tile. Since ∂S is contained
in at most

∑
i∈I mi translates of [0, 1]n, this means that at most that many tiles

from E meet ∂S. But Rn is partitioned by 2n sets of tiles which, like E , are made
up of “every other tile.” (Explicitly, these sets are of the form E + Ev, where Ev is a
vector with entries only 0 and 1.) The bound claimed in the theorem follows. �

4. Volumes of slices of star bodies

We keep all the notation established just before Theorem 1.11 in the introduction,
so d,m, n, È= (`0, . . . , `m−1) ∈Zm , and Er = (rd−n+1, . . . , rd) ∈Zn† are fixed, and

†For this section we could take È and Er to be real vectors, but this will not be important for our
results.
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again we set g = d −m− n. Let T be a positive real number. We continue to use
the volume convention of Remark 2.3. The primary step in proving Theorem 1.11
is to estimate the volume of the slice

S(T )= S È,Er (T ) :=
{
Ew = (w0, . . . , wd) ∈ Rd+1

∣∣∣ µ( Ew)≤T,
wi=`i for i=0,...,m−1
wj=rj for j=d−n+1,...,d

}
(4-1)

as T grows. Specifically, we show the following.

Theorem 4.1. We have

volg+1(S(T ))= VgT g+1
+ O(T g), as T →∞.

We won’t obtain an explicit error estimate of this strength, but in Section 9 we
will discuss how to obtain an explicit error term of order T g+1−1/d.

The idea of the proof of Theorem 4.1 is as follows. Because µ(T Ew)= Tµ( Ew)
for all T ≥ 0, and all Ew ∈ Rd+1,

{ Ew ∈ Rd+1
| µ( Ew)≤ T } = T { Ew ∈ Rd+1

| µ( Ew)≤ 1} = T Ud .

Let
Ev = (`0, . . . , `m−1, 0, . . . , 0, rd−n+1, . . . , rd) ∈ Rd+1,

and for each t ∈ [0,∞), set

Wt := t Ev+Span{em, em+1, . . . , ed−n} ⊂ Rd+1, (4-2)

where e0, e1, . . . , ed are standard basis vectors for Rd+1. Then for T > 0,

S(T )=W1 ∩ T Ud = T (W1/T ∩ Ud), (4-3)

and since W1/T is (g+ 1)-dimensional, this means

volg+1(S(T ))= T g+1 volg+1(W1/T ∩ Ud). (4-4)

Letting t = 1/T, we should expect that

volg+1(W1/T ∩ Ud)= volg+1(Ud ∩ (W0+ t Ev))→ volg+1(Ud ∩W0) as t→ 0,

unless the boundary of Ud were to intersect with W0 in an unusual way; for example,
if Ud were a cube and W0 was a plane containing one of the faces. This basic idea
of using continuity of volumes of slices appears in the proof of [Sinclair 2008,
Theorem 1.5]. We will show below that volg+1(Ud ∩W0)= Vg, whence the main
term in the statement of Theorem 4.1. We’ll obtain a full power savings by showing
that the boundary of Ud is never tangent to W0.‡

‡As an exercise to see why tangency is a problem, consider the length of cross-sections of a disk
as the cross-sections slide toward a tangent line.
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Proposition 4.2. Let S⊂R×RN be a compact set bounded by finitely many smooth
hypersurfaces Hi , i = 1, . . . ,m. Assume each boundary component Hi ∩ ∂S has
smooth intersection with (i.e., is not tangent to) the hyperplane {0}×RN, and that
these boundary components Hi ∩ ∂S have pairwise disjoint interiors. Then

V (t) := volN (S ∩ ({t}×RN ))

satisfies
V (t)= V (0)+ O(t), as t→ 0+.

Proof. We denote points in R × RN by (x, y1, . . . , yN ). For each t ≥ 0, let
S[0,t] = S ∩ ([0, t] ×RN ), and let St = S ∩ ({t}×RN ). Let F denote the constant
vector field (1, 0, . . . , 0) on R×RN. By the divergence theorem,∮

∂S[0,t]
F · dEs =

∫
S[0,t]
∇ · F dvolN+1 =

∫
S[0,t]

0 dvolN+1 = 0,

where the first integral is with respect to the surface measure with outward normal.
Note that our assumption that {0} × RN is not tangent to any of the Hi means
that neither is the parallel hyperplane {t} ×RN for t sufficiently small. Now let
Rt = ([0, t] ×RN )∩ ∂S, and note that, as long as t is small enough to avoid the
aforementioned tangencies, the boundary of S[0,t] decomposes into three pieces
with disjoint interiors as follows:

∂S[0,t] = S0 ∪ St ∪ Rt .

and so
0=

∮
∂S[0,t]

F · dEs =
∫

S0

F · dEs+
∫

St

F · dEs+
∫

Rt

F · dEs

=−V (0)+ V (t)+
∫

Rt

F · dEs,

where ∫
Rt

F · dEs =
∑

i

∫
Hi∩Rt

F · dEs.

Now we must show that

|V (t)− V (0)| =
∣∣∣∣∫

Rt

F · dEs
∣∣∣∣= O(t). (4-5)

Since S is compact, the set Rt is contained in a “pizza box” [0, t]× [−M,M]N

for some positive number M independent of t . Fix i ∈ {1, . . . ,m}. By assumption,
Hi ∩ ∂S is not tangent to the hyperplane {x = 0}, but since Hi is smooth and we’re
working in a compact set, we know Hi ∩ ∂S is not tangent to {x = t} for any t
sufficiently small. This means that, by the implicit function theorem, for t sufficiently
small and any point P ∈ Hi ∩ Rt , we have that Hi coincides in an open subset
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U⊆Hi∩Rt containing P with the graph of a function yr= f (x, y1, . . . , ŷr , . . . , yN )

for some r ∈ {1, . . . , N } which depends on P. So we have f : V → [−M,M],
where V is an open subset of [0, t]× [−M,M]N−1. Letting En denote the outward
unit normal,∫

U
F · dEs =

∫
U

F · En ds =
∫
· · ·

∫
V
∓
∂ f
∂x

dx dy1 · · · ˆdyr · · · dyN , (4-6)

where the sign in the final integral is − or + depending on whether En is an upward
or downward normal to the graph of f , respectively.

By our nontangency assumption again, the partial derivative ∂ f/∂x is bounded
in absolute value inside our pizza box by a constant K which does not depend on
U, i , or t as t→ 0. By compactness, finitely many of these neighborhoods U cover
Hi ∩ Rt , and the number of neighborhoods required — call this number n — can
be chosen independent of t or i . Using (4-6), we estimate the integral in (4-5) as
follows:∣∣∣∣∫

Rt

F · dEs
∣∣∣∣≤ m∑

i=1

∣∣∣∣∫
Hi∩Rt

F · dEs
∣∣∣∣≤ m∑

i=1

∫
Hi∩Rt

|F · En| ds ≤
m∑

i=1

∑
U

∫
U
|F · En| ds

≤

m∑
i=1

∑
U

∫ M

−M
· · ·

∫ M

−M

∫ t

0

∣∣∣∂ f
∂x

∣∣∣ dx dy1 · · · ˆdyr · · · dyN

≤ m · n · [(2M)N−1t]K = O(t). �

Now we verify that the boundary of Ud satisfies the hypotheses of Proposition 4.2.
We refer to the parametrization of said boundary described in Section 2, and follow
that notation. As noted in [Chern and Vaaler 2001, Section 10], the condition of
the boundary components having disjoint interiors is satisfied here — this can be
readily verified directly from the description of the parametrization. Let H = H ε

k,d
be one of the hypersurfaces which bound Ud . The hypersurface H is the image of
Rk
×Rd−k under the map b = bεk,d described in (2-6).

Proposition 4.3. Let Ev = (`0, . . . , `m−1, 0, . . . , 0, rd−n+1, . . . , rd) ∈ Rd+1, and let

W0 = Span{em, em+1, . . . , ed−n} and W = Span{Ev, em, em+1, . . . , ed−n},

where e0, e1, . . . , ed are standard basis vectors for Rd+1. Then W0 is not tangent to
H ∩W at any point.

We will break up the proof of this proposition into three lemmas.

Lemma 4.4. The subspace W0 does not meet H unless

n ≤ k ≤ d −m.
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If those inequalities hold and P = (w0, . . . , wd) = b(x1, . . . , xk, y0, . . . , yd−k−1)

is a point in H ∩W0, then

y0 = · · · = ym−1 = xk−n+1 = · · · = xk = 0. (4-7)

Proof. Suppose that the inequalities are satisfied. We’ll prove vanishing of the
parameters yi , by induction on 0≤ i ≤ m− 1. If m = 0, there’s nothing to prove.
Otherwise, for the base case i = 0, by the definition of W0 we have w0 = 0, but also
w0 = y0 by the definition of b in (2-6). For arbitrary i , we again have wi = 0, while
by the definition of b, every summand in the formula for wi is of the form xi− j yj

for j < i , except for the summand yi . Thus we’re done by induction. Essentially
the same proof works for the vanishing of xk−n+1, . . . , xk .

However, if n> k, then the above argument would imply that x0=0, but we know
x0 = 1, a contradiction. Similarly, if k > d−m, the above would give 0= yd−k = ε,
also a contradiction. �

Lemma 4.5. The tangent space TP(H) of H at P is the row space of the following
d × (d + 1) matrix, where the first (d − k) rows represent the tangent vectors
(∂w0/∂yj , . . . , ∂wd/∂yj ), j = 0, . . . , d − k− 1, and the last k rows represent the
tangent vectors (∂w0/∂xi , . . . , ∂wd/∂xi ), i = 1, . . . , k. Let q = d− k− 1 for ease
of reading:

(Db)T =



1 x1 x2 · · · · · · xk 0 0 · · · · · · 0
0 1 x1 x2 · · · · · · xk 0 · · · · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...

0 · · · · · · 0 1 x1 x2 · · · · · · xk 0
0 y0 y1 · · · · · · yq ε 0 · · · · · · 0
0 0 y0 y1 · · · · · · yq ε 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0 0 · · · · · · 0 y0 y1 · · · · · · yq ε



.

Lemma 4.6. The projection of TP(H) onto W⊥0 is surjective.

Proof. Using Lemma 4.4, the image of that projection contains the row space (in
appropriate coordinates) of the following matrix, obtained by taking the first m
columns and first m rows of the above matrix, as well as its last n columns and last
n rows:

C :=
[

A 0
0 B

]
,
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where

A =


1 x1 x2 · · · xm−1

0 1 x1 · · · xm−2
...
. . .

. . .
. . .

...
...

. . .
. . . x1

0 · · · · · · 0 1


is an m×m-matrix, and

B =



ε 0 · · · · · · 0

yq ε
. . .

...
...

. . . ε
. . .

...

yq−n+3
. . .

. . .
. . . 0

yq−n+2 · · · yq−1 yq ε


is an n× n-matrix.

Thus C is a block diagonal matrix (we’ve used the vanishing of parameters
described in (4-7) here) with determinant εn

6= 0, so its row space is all of W⊥0 . �

Proof of Proposition 4.3. We seek a tangent vector to H at P which is contained in
W \W0. By Lemma 4.6, TP(H) surjects onto the positive-dimensional space W⊥0 .
Since its kernel under this map is exactly W0, a vector must exist as desired. �

Proof of Theorem 4.1. We begin by noting that we may identify Ud ∩W0 ⊆ Rd+1

with Ug ⊆ Rg+1 as follows.
Define a map τ : Rg+1

→ Rd+1 by

τ(wm, . . . , wd−n)= (0, . . . , 0︸ ︷︷ ︸
m

, wm, . . . , wd−n, 0, . . . , 0︸ ︷︷ ︸
n

) ∈W0,

which corresponds to multiplying the polynomial corresponding to the input by zn.
Notice that this operation preserves the Mahler measure. It’s also clear that τ maps
Ug isometrically onto Ud ∩W0, so we conclude that

volg+1(Ud ∩W0)= volg+1(Ug)= Vg. (4-8)

Using Proposition 4.3, we can apply Proposition 4.2 to the set S = Ud ∩W,
considered as a subset of W ∼= R×Rg+1 (so we are setting N = g+ 1). Here for
t ≥ 0,

S ∩ ({t}×Rg+1)= Ud ∩Wt .

Then Proposition 4.2 gives

volg+1(Ud ∩W1/T )= volg+1(Ud ∩W0)+ O(1/T ).
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Now by (4-4) and (4-8),

volg+1(S(T ))=
(
volg+1(Ud ∩W0)+ O(1/T )

)
· T g+1

= Vg · T g+1
+ O(T g),

completing our proof. �

5. Lattice points in slices: proof of Theorem 1.11

Now that we have an estimate for the volume of S(T ), we want to in turn estimate
the number of integer lattice points in S(T ), via Theorem 3.1. Note that this is
the same as the number of integer lattice points of S′(T ), which will denote the
projection of S(T ) on W0 ∼= Rg+1. Note that vol(S(T ))= vol(S′(T )).

Since Ud is semialgebraic by Lemma 2.4 (and thus T · Ud as well), it is clear
that the number and degrees of the polynomial inequalities and equalities needed to
define S′(T ) are independent of T. Thus to apply Theorem 3.1, it remains only to
bound the volumes of projections of S′(T ) on coordinate planes.

For Ew ∈ S′(T ), by (2-3),

‖ Ew‖∞ ≤ ‖( È, Ew, Er)‖∞ ≤
( d
bd/2c

)
µ( È, Ew, Er)≤

( d
bd/2c

)
T,

so S′(T ) is contained inside a cube of side length 2
( d
bd/2c

)
T in Rg+1. Thus for

j = 1, . . . , g, any projection of S′(T ) on a j-dimensional coordinate plane is
contained inside a cube of side length 2

( d
bd/2c

)
T in R j, and thus has volume at most(

2
( d
bd/2c

)
T
) j
,

which is certainly O(T g) for j = 1, . . . , g.
By Theorem 3.1, we now get

M(d, È, Er , T )= vol(S′(T ))+ O(T g),

and so by Theorem 4.1,

M(d, È, Er , T )= Vg · T g+1
+ O(T g).

6. Proofs of Theorem 1.1 and corollaries

In this section we transfer our counts for degree d polynomials in Theorem 1.11 to
the counts for degree d algebraic numbers in Theorem 1.1. This only requires esti-
mating the number of reducible polynomials, because the hypotheses of Theorem 1.1
(fixing a positive number of coefficients which must be coprime) ensure that the only
irreducible polynomials we count are actually minimal polynomials of degree d .
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We’ll apply a version of Hilbert’s irreducibility theorem to achieve the most
general result, which is the last ingredient needed to prove Theorem 1.1. However,
in various special cases we work a little harder to improve the power savings, which
will prove the sharper results of Corollaries 1.2 through 1.5.

We keep the notation and hypotheses of Theorem 1.1, fixing d,m, n, È ∈ Zm,
and Er ∈ Zn. Furthermore, we let Mred(d, È, Er , T ) denote the number of reducible
integer polynomials of the form

f (z)= `0zd
+· · ·+`m−1zd−(m−1)

+xmzd−m
+· · ·+xd−nzn

+rd−n+1zn−1
+· · ·+rd ,

and as before we set g = d −m− n.

Proposition 6.1. We have

Mred(d, È, Er , T )= O(T g+1/2 log T ). (6-1)

Proof. One of our hypotheses is that, if n > 0, then rd 6= 0; that is, we don’t want
f (z) to be divisible by z. It’s not hard to see that, under this hypothesis, the “generic
polynomial” f (xm, . . . , xd−n, z) defined above is irreducible in Z[xm, . . . , xd−n, z],
by the following argument. Suppose f factors nontrivially as f = f1 f2. Since f
has degree 1 in xm , without loss of generality f1 has degree 1 in xm and f2 has
degree 0 in xm . Let f1 = g1xm + g2, where g1 and g2 are in Z[xm+1, . . . , xd−n, z],
so we have f = f2g1xm + f2g2, which means that f2g1 = zd−m. We discover that
f2 is (plus or minus) a power of z, and so f was divisible by z all along.

Now our proposition follows immediately from a quantitative form of Hilbert’s
irreducibility theorem [Cohen 1981, Theorem 2.5]. In the notation of the cited
theorem, we are setting r =1 and s= g+1. Cohen uses the `∞ norm on polynomials
rather than Mahler measure, but these are directly comparable by (2-3). It’s worth
noting that, as can be inferred from Section 2 of that reference, the implied constant
in (6-1) depends only on d , g, and ‖( È, Er)‖∞, and could in principle be effectively
computed. �

In the situations of Corollaries 1.2 through 1.5, we can obtain stronger bounds.

Proposition 6.2. For d ≥ 2 and r ∈ Z \ {0},

Mred(d, (1), (r), T )= O(T d−2).

For d ≥ 3, t ∈ Z, and r ∈ Z \ {0},

Mred(d, (1, t), (r), T )= O(T d−3).

For d ≥ 2, T ≥ 1, and t ∈ Z,

Mred(d, (1, t), ( ), T )=


O(
√

T ) if d = 2,
O(T log T ) if d = 3,
O(T d−2) if d > 3.
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We postpone the proof until Section 10, where we’ll prove it with explicit
constants. For now, we show how Theorem 1.1 and Corollaries 1.2 through 1.5
follow from our results so far.

Proof of Theorem 1.1 and Corollaries 1.2 through 1.5. By Theorem 1.11 we have

M(d, È, Er , T )= Vg · T g+1
+ O(T g). (6-2)

We write Mirr(d, È, Er , T ) for the corresponding number of irreducible degree d
polynomials with specified coefficients. Since È is nonempty and `0 6= 0,

Mirr(d, È, Er , T )=M(d, È, Er , T )−Mred(d, È, Er , T ). (6-3)

Applying Theorem 1.11 and Proposition 6.1, we see that

Mirr(d, È, Er , T )= Vg · T g+1
+ O(T g+1/2 log T ). (6-4)

By our assumption that the specified coefficients had no common factor, and that
`0 > 0, any irreducible polynomial counted will be a minimal polynomial. Thus
each of the degree d irreducible polynomials f we count corresponds to exactly d
algebraic numbers α1, . . . , αd of degree d and height at most H, where Hd

= T,
since µ( f )= H(αi )

d for i = 1, . . . , d . In other words,

N (d, È, Er ,H)= dMirr(d, È, Er ,Hd). (6-5)

Now Theorem 1.1 follows from (6-4).
Corollaries 1.3, 1.4, and 1.5 follow similarly, by replacing the general upper

bound for reducible polynomials in Proposition 6.1 with the sharper bounds in
Proposition 6.2. The count for units in Corollary 1.2 follows immediately from
Corollary 1.3, since an algebraic number is a unit exactly if it is an algebraic integer
with norm ±1. �

7. Counting polynomials: explicit bounds

Let M(≤d, T ) denote the number of polynomials in Z[z] of degree at most d and
Mahler measure at most T. The following is an explicit version of [Chern and Vaaler
2001, Theorem 3]. To condense notation, we define for each d ≥ 0 the constants

P(d)=
d∏

j=0

(d
j

)
, (7-1)

and

A(d)=
d∑

k=0

P(k)P(d − k).
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Theorem 7.1. For d ≥ 1 and T ≥ 1,

|M(≤d, T )− vol(Ud)T d+1
| ≤ κ0(d)T d,

where

κ0(d)= 4d+1 A(d)
(

d
( d
bd/2c

)
+ 1

)d

≤ 40 4
√

2π3/4e−3
· d−1/4

· (4
√

2e3/2π−3/2)d · (2
√

e)d
2

≤ 5.59 · (15.01)d
2
.

Proof. We refer to the parametrization of the boundary of Ud detailed on page 1397.
The boundary ∂(T Ud) is parametrized by 2d + 2 maps of the form

T bεk,d : J
ε

k,d → ∂(T Ud)⊆ Rd+1,

T bεk,d(Ex, Ey)=
(
T f0(Ex, Ey), . . . , T fd(Ex, Ey)

)
,

where
fi (Ex, Ey) := wi

(
(1, Ex), (Ey, ε)

)
, for i = 0, . . . , d ,

and wi is as in (2-7).
Fix for the moment k ∈ {0, . . . , d} and ε ∈ {±1}. If (Ex, Ey) lies in any J ε

k,d , then
µ(1, Ex)= µ(Ey, ε)= 1, and so by (2-2), ‖(Ex, Ey)‖∞ ≤

( d
bd/2c

)
, and so

‖(Ex, Ey)‖2 ≤
√

d ‖(Ex, Ey)‖∞ ≤
√

d ·
( d
bd/2c

)
. (7-2)

Also, for any i ∈ {0, . . . , d}, by (2-7),

‖∇ fi (Ex, Ey)‖∞ ≤max{1, ‖(Ex, Ey)‖∞}. (7-3)

Now for any i ∈ {0, . . . , d} and for any (Ex1, Ey1), (Ex2, Ey2) ∈ J ε
k,d , using (7-2) and

(7-3),

|T fi (Ex1, Ey1)− T fi (Ex2, Ey2)|

= T | fi (Ex1, Ey1)− fi (Ex2, Ey2)|

≤ T · sup
(Ex,Ey)∈J

‖∇ fi (Ex, Ey)‖2 · ‖(Ex1, Ey1)− (Ex2, Ey2)‖2

≤ T ·
√

d · sup
(Ex,Ey)∈J

‖(Ex, Ey)‖∞ ·
√

d · ‖(Ex1, Ey1)− (Ex2, Ey2)‖∞

≤ T ·
√

d ·
( d
bd/2c

)
·
√

d · ‖(Ex1, Ey1)− (Ex2, Ey2)‖∞

= d ·
( d
bd/2c

)
· T · ‖(Ex1, Ey1)− (Ex2, Ey2)‖∞.
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We obtain the Lipschitz estimate

‖T bεk,d(Ex1, Ey1)− T bεk,d(Ex2, Ey2)‖∞ ≤ K T · ‖(Ex1, Ey1)− (Ex2, Ey2)‖∞, (7-4)

where

K = K (d) := d ·
( d
bd/2c

)
≤
√

d · 2d.

We now apply the Lipschitz counting principle from Section 3. Fix T ≥ 1, so

dK T e ≤ K T + 1≤ (K + 1)T .

Since T bεk,d satisfies the Lipschitz estimate (7-4), the image under T bεk,d of any
translate of [0, 1/dK T e]d is contained in a unit cube in Rd+1.

Let Qε
k,d(T ) denote the number of d-cubes of side length 1/dK T e required to

cover J ε
k,d . The easiest way to get an estimate for this quantity would be to note

that each J is contained in a cube of side length 2 ·
( d
bd/2c

)
. However, we can

do significantly better than this without too much effort, using the bounds on the
individual coordinates (coefficients) from Lemma 2.1.

Using (2-2), we see that J ε
k,d is contained in the cuboid

{
(x1, . . . , xk, y0, . . . , yd−k−1)∈Rk

×Rd−k
∣∣∣ |x`| ≤ (k

`

)
, |ym | ≤

(d−k
m

)
, ∀`,m

}
,

and therefore J ε
k,d can be covered by

k∏
`=1

2
(k
`

)
·

d−k−1∏
m=0

2
(d−k

m

)
= 2d P(k) · P(d − k)

unit d-cubes. Hence surely,

Qε
k,d(T )≤ 2d P(k)P(d − k)dK T ed ≤ 2d P(k)P(d − k)((K + 1)T )d. (7-5)

Using Theorem 3.3 we conclude that

|M(≤d, T )− vol(Ud)T d+1
| ≤ 2d+1

∑
k,ε

Qε
k,d(T )

≤ 2d+1
· 2

d∑
k=0

2d P(k)P(d − k)(K + 1)d T d

= 4d+1 A(d)(K + 1)d T d
= κ0(d)T d.
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We now estimate κ0(d) as in the statement of the theorem, using Lemma A.1 from
the appendix:

κ0(d)= 4d+1 A(d)
(

d
( d
bd/2c

)
+ 1

)d

≤ 4d+1 A(d)
(

2d
( d
bd/2c

))d

≤ 4d+1 A(d)
(2e
π

√
d 2d

)d

≤
(
40 4
√

2π3/4e−3)d−1/4(4
√

2e3/2π−3/2)d(2
√

e)d
2

= a
bdcd2

4
√

d
≤ a(bc)d

2
= 40 4
√

2π3/4e−3
· (8
√

2π−3/2e2)d
2

≤ 5.59 · (15.01)d
2
,

where a = 40 4
√

2π3/4e−3, b = 4
√

2e3/2π−3/2, and c = 2
√

e. �

Remark 7.2. As each J ε
k,d is measurable, it follows that for each d ,

Qε
k,d(T )∼ vol(J ε

k,d) · ((K + 1)T )d , as T →∞. (7-6)

Notice that
vol(J ε

k,d)= pk(1) · pd−k(1),

where pd(T ) is as defined in (2-5). The sharpest way to proceed would be to
explicitly estimate the error in (7-6). Comparing (7-6) with (7-5): how much does
vol(J ε

k,d) differ from 2d P(k)P(d − k)?

8. Counting monic polynomials: explicit bounds

Let Wd,T denote the subset of Rd corresponding to monic polynomials of degree d
in R[z] with Mahler measure at most T, i.e.,

Wd,T = { Ew = (w1, . . . , wd) ∈ Rd
| µ(1, Ew)≤ T }.

We want to estimate the number of lattice points M1(d,T ) in this region. Note that,
in the notation of the introduction, we have M1(d,T )=M(d, (1), (), T ). Recall
that the volume of Wd,T is given by the Chern-Vaaler polynomial pd(T ), as defined
in (2-5).

We define, for d a nonnegative integer,

B(d)=
d−1∑
k=0

P(k)P(d − k)γ (k)d−k−1γ (d − k)k,

where P is as defined in (7-1), and γ (k) :=
( k
bk/2c

)
.



Slicing the stars 1411

Theorem 8.1. For all d ≥ 2 and T ≥ 1,

|M1(d,T )− pd(T )| ≤ κ1(d)T d−1,

where
κ1(d)= 4ddd−1 B(d)≤ 4ddd−12d2

.

Proof. Our starting point is the parametrization of the boundary ∂Wd,T given in
Section 2, which consists of the patches described in (2-9) and (2-10). As opposed
to the previous proof, we’ll need to be a bit more careful in our application of
Theorem 3.3. Instead of a Lipschitz estimate of the form

‖output1− output2‖∞ ≤ [constant] · ‖input1− input2‖∞,

we’ll estimate each component of the parametrization separately, which will lead to
an argument where the parameter space is tiled by “rectangles” instead of “squares.”
We fix k ∈ {0, . . . , d − 1} and ε ∈ {±1}, and set L= LεT

k,d. We write

βεT
k,d(Ex, Ey)= (1, g1(Ex, Ey), . . . , gd(Ex, Ey)).

We have

|gi (Ex1, Ey1)− gi (Ex2, Ey2)| ≤ sup
(Ex,Ey)∈L

∣∣∇gi (Ex, Ey) · ((Ex1, Ey1)− (Ex2, Ey2))
∣∣

≤ sup
(Ex,Ey)∈L

( k∑
`=1

∣∣∣ ∂gi
∂x`

(Ex, Ey)
∣∣∣|x1,`− x2,`| +

d−k−1∑
m=1

∣∣∣ ∂gi
∂ym

(Ex, Ey)
∣∣∣|y1,m − y2,m |

)
.

By (2-2), if (Ex, Ey) ∈ L, then we must have |x`| ≤
(k
`

)
≤ γ (k), for each `= 1, . . . , k,

and |ym | ≤ T
(d−k

m

)
, for each m = 1, . . . , d − k − 1. Now notice that each partial

derivative ∂gi/∂x`, as a function, is either equal to 1, εT, or yi−`, and thus has
absolute value at most T

(d−k
i−`

)
≤ T γ (d − k). By the same token, each ∂gi/∂ym

is equal to either 1 or xi−m , and thus has absolute value at most
( k

i−m

)
≤ γ (k).

Applying this to the inequality above gives

|gi (Ex1, Ey1)− gi (Ex2, Ey2)|

≤ kγ (d − k)T ‖Ex1− Ex2‖∞+ (d − k− 1)γ (k)‖Ey1− Ey2‖∞. (8-1)

Suppose for the moment that 0< k < d − 1. Now if 1
p +

1
q = 1, and if

‖Ex1− Ex2‖∞ ≤
1

pkγ (d − k)T
and

‖Ey1− Ey2‖∞ ≤
1

q(d − k− 1)γ (k)
,
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then (8-1) will give

|gi (Ex1, Ey1)− gi (Ex2, Ey2)| ≤ 1.

So, if P is a cube in Rk with sides parallel to the axes and side length

1
dpγ (d − k)kT e

, (8-2)

and if Q is a cube in Rd−k−1 with sides parallel to the axes and side length

1
dq(d − k− 1)γ (k)e

, (8-3)

then βεT
k,d(P ×Q) is contained in a unit d-cube with sides parallel to the axes in Rd.

If k = 0, we take q = 1 in (8-3), and βεT
k,d(Q) is contained in a unit d-cube with

sides parallel to the axes in Rd. Similarly, if k = d− 1, then we take p = 1 in (8-2),
and we have the same result for βεT

k,d(P).
This is the first part of preparing to apply Theorem 3.3. We let Rεk,d(T ) denote

the minimum number of such “rectangles” P ×Q required to cover L. As we
argued in the previous section for the sets J ε

k,d, we see that L can be covered by

k∏
`=1

2
(k
`

)
·

d−k−1∏
m=1

2T
(d−k

m

)
= 2d−1 P(k)P(d − k) · T d−k−1

unit cubes. Since each unit cube can be covered by

dpkγ (d − k)T ek · dq(d − k− 1)γ (k)ed−k−1

of our rectangles,

Rεk,d(T )≤ 2d−1 P(k)P(d − k)dpkγ (d − k)T ek · dq(d − k− 1)γ (k)ed−k−1 T d−k−1,

for 0< k < d − 1. Similarly, when k = 0,

Rεk,d(T )≤ 2d−1 P(k)P(d − k) · [(d − k− 1)γ (k)]d−k−1 T d−k−1,

and when k = d − 1,

Rεk,d(T )≤ 2d−1 P(k)P(d − k) · [kγ (d − k)T ]k T d−k−1.
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Following the proof in the previous section, by Theorem 3.3,

|M1(d,T )− pd(T )|

≤

∑
k,ε

2d Rεk,d(T )

≤ 2d
·2

d−1∑
k=0

2d−1P(k)P(d−k)dpkγ (d−k)T ek · dq(d−k−1)γ (k)ed−k−1T d−k−1

= 4d
d−1∑
k=0

P(k)P(d−k)dpkγ (d−k)T ek · dq(d−k−1)γ (k)ed−k−1T d−k−1,

where we understand that{
dpkγ (d − k)T ek = 1 when k = 0,
dq(d − k− 1)γ (k)ed−k−1

= 1 when k = d − 1,

and similarly below.
It will now be convenient to set

p = d−1
k

and q = d−1
d−k−1

.

Note that if k = 0 we have q = 1, and p does not appear; similarly if k = d − 1 we
have p = 1, and q does not appear. We conclude our proof, assuming T ≥ 1:

|M1(d,T )− pd(T )|

≤ 4d
d−1∑
k=0

P(k)P(d−k)(pk+1)k(q(d−k−1)+1)d−k−1γ(k)d−k−1γ(d−k)k T d−1

= 4d
d−1∑
k=0

P(k)P(d−k)dkdd−k−1γ(k)d−k−1γ(d−k)k T d−1

= 4ddd−1 B(d)T d−1
= κ1(d)T d−1.

Finally, we note that B(d)≤ 2d2
by Lemma A.2 from the appendix. �

9. Lattice points in slices: explicit bounds

The goal of this section is to prove a version of the lattice point-counting re-
sult Theorem 1.11 with an explicit error term, albeit with worse power savings —
Theorem 9.3 stated below. As a byproduct of the proof, we also obtain an explicit
version of our volume estimate Theorem 4.1. Our explicit version of Theorem 1.11
makes it possible to estimate the quantities in Corollaries 1.2 through 1.5 with
explicit error terms.
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We start with some notation. Fix d,m, n, È, Er , and T > 0 as in Section 1, and
again set g = d−m−n. Let π : Rd+1

→ Rg+1 denote the projection forgetting the
first m and last n coordinates, given by

π(w0, . . . , wd)= (wm, . . . , wd−n).

Let S(T ) be as defined in (4-1). For t ∈ [0,∞), define Wt as in (4-2), and set

Bt := π(Wt ∩ Ud).

By (4-3),

π(S(T ))= π(T (W1/T ∩ Ud))= Tπ((W1/T ∩ Ud))= T B1/T . (9-1)

Also note that by (4-8),

vol(B0)= volg+1(Ud ∩W0)= Vg. (9-2)

For subsets A and A′ of a common set, we use the usual notation for a symmetric
difference A4A′ = (A∪ A′) \ (A∩ A′). Note that for T > 0,

T (A4A′)= (T A)4(T A′),

for any two subsets A and A′ of a common euclidean space.
The following lemma is the main tool of this section. We postpone its proof until

the end.

Lemma 9.1. Let

k1 = k1(d, È, Er) := 2d2
dd(m+ n)‖( È, Er)‖∞ and δT := (k1/T )1/d.

If T ≥ k1, then

B04B1/T ⊆ {Ex ∈ Rg+1
| 1− δT ≤ µ(Ex)≤ 1+ δT }

= [(1+ δT )Ug] \ [(1− δT )Ug].

(9-3)

Using this result we take a brief detour to make the advertised explicit volume
estimate. Compare the following with Theorem 4.1, in which we obtain a better
power-savings in the error term, though in that theorem the error term is not made
explicit.

Theorem 9.2. Let S(T )= S È,Er (T ). If T ≥ k1, then

|volg+1(S(T ))− VgT g+1
| ≤ cT g+1−1/d,

where
c = c(d, È, Er)= 2d+1(((m+ n)‖( È, Er)‖∞)1/d · d · Vg

)
.
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Proof. Using (9-1) and (9-2),∣∣∣∣volg+1(S(T ))
T g+1 − Vg

∣∣∣∣
= |vol(B1/T )− vol(B0)| ≤ vol(B04B1/T )

≤ vol({Ex ∈ Rg+1
| 1− δT ≤ µ(Ex)≤ 1+ δT }) (by Lemma 9.1)

= 2δT Vg =
c

T 1/d . �

In Section 4 we estimated the volume of S(T ) in order to estimate the number
of lattice points in that set. Here, by contrast, we actually don’t require a volume
estimate; Lemma 9.1 allows us to directly estimate the number of lattice points in
S(T ), which we have denoted M(d, È, Er , T ), as follows.

Theorem 9.3. Let k1 = k1(d, È, Er) be as in Lemma 9.1, and κ0 as defined in
Theorem 7.1. For all T ≥ k1,

|M(d, È, Er , T )− Vg · T g+1
| ≤ κ(d, È, Er)(T g+1−1/d),

where

κ(d, È, Er)= (g+ 1)2g+1k1/d
1 Vg + (g2gk1/d

1 + 1)κ0(g).

We note for later that Vg ≤ 2 · 15g2
for all g ≥ 0, and so

κ(d, È, Er)≤ (g+ 1)2g+1k1/d
1 (Vg + κ0(g))

≤ d(g+ 1)2d+g+1(m+ n)1/d‖È, Er‖∞(Vg + κ0(g)) (9-4)

≤ (2+ a)d(g+ 1)2d+g+1(m+ n)1/d‖ È, Er‖∞(bc)g
2
,

where a, b, and c are the constants appearing in the end of the proof of Theorem 7.1
(note that bc > 15).

Proof. We let Z(�) denote the number integer lattice points in a subset � of
euclidean space. Again applying (9-1),

M(d, È, Er , T )= Z(S(T ))= Z(π(S(T ))= Z(T B1/T ).

Also note that

Z(T B0)=M(≤g, T ),
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which we estimated in Section 7. Therefore, using the triangle inequality and
Theorem 7.1,

|M(d, È, Er , T )− Vg · T g+1
|

= |Z(T B1/T )− Vg · T g+1
|

≤ |Z(T B1/T )− Z(T B0)| + |Z(T B0)− Vg · T g+1
|

≤ |Z(T B1/T )− Z(T B0)| + κ0(g)T g. (9-5)

Clearly,

|Z(T B1/T )− Z(T B0)| ≤ Z((T B1/T )4(T B0))= Z(T (B1/T4B0)),

and by Lemma 9.1,

T (B1/T4B0)⊆ [(T + T δT )Ug] \ [(T − T δT )Ug].

Hence, applying Theorem 7.1 a second time and using an elementary estimate from
the mean value theorem, we find that

|Z(T B1/T )− Z(T B0)|

≤ Z((T + T δT )Ug)− Z((T − T δT )Ug)

≤ Vg[(T + T δT )
g+1
− (T − T δT )

g+1
]κ0(g)[(T + T δT )

g
− (T − T δT )

g
]

≤ Vg(g+ 1)(T + T δT )
g(2T δT )+ κ0(g)g(T + T δT )

g−1(2T δT ).

Recall that δT = k1/d
1 T−1/d. Assuming T ≥ k1 means that δT ≤ 1. Combining

the estimate just obtained with (9-5), we achieve

|M(d, È, Er , T )− Vg · T g+1
|

≤ Vg(g+ 1)(2T )g · 2T 1−1/d
· k1/d

1

+ gκ0(g)(2T )g−1
· 2T 1−1/d

· k1/d
1 + κ0(g)T g

≤ [(g+ 1)2g+1k1/d
1 Vg + (g2gk1/d

1 + 1)κ0(g)]T g+1−1/d. �

Proof of Lemma 9.1. We will require the following Lipschitz-type estimate for the
Mahler measure [Chern and Vaaler 2001, Theorem 4], which is a quantitative form
of the continuity of Mahler measure:

Theorem 9.4 (Chern–Vaaler). For any Ew1, Ew2 ∈ Rd+1,

|µ( Ew1)
1/d
−µ( Ew2)

1/d
| ≤ 2‖ Ew1− Ew2‖

1/d
1 , (9-6)

where ‖ Ew‖1=
∑d

i=0|wi | is the usual `1-norm of a vector Ew= (w0, . . . , wd)∈Rd+1.
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If µ( Ew1) and µ( Ew2) are both less than some constant k, then (9-6) yields

|µ( Ew1)−µ( Ew2)| = |µ( Ew1)
1/d
−µ( Ew2)

1/d
| ·

d∑
i=1

(µ( Ew1)
(d−i)/dµ( Ew2)

(i−1)/d)

≤ 2‖ Ew1− Ew2‖
1/d
1 · dk(d−1)/d. (9-7)

We will shortly apply this observation with k = 2d. We assume T ≥ k1.
Let Ex be a vector in B04B1/T , and write

Ex0 = τ(Ex)= (E0m, Ex, E0n) ∈ Rd+1 and ExT =

( È
T
, Ex, Er

T

)
∈ Rd+1.

Notice that µ(Ex0) = µ(Ex) because τ preserves Mahler measure, as noted in the
proof of Theorem 4.1.

Since Ex ∈ B04B1/T , it’s clear that either

µ(Ex0)≤ 1< µ(ExT ). (9-8)

or

µ(ExT )≤ 1< µ(Ex0). (9-9)

must hold. In either case,

1− |µ(Ex0)−µ(ExT )| ≤ µ(Ex0)≤ 1+ |µ(Ex0)−µ(ExT )| (9-10)

First, suppose Ex is in B0, but not in B1/T , so (9-8) holds. Then, by (2-3) and our
assumption that T ≥ k1,

µ(ExT )≤ ‖ExT ‖∞
√

d + 1≤max{‖Ex0‖∞, 1}
√

d + 1

≤

( d
bd/2c

)√
d + 1 max{µ(Ex0), 1} ≤ 2d , (9-11)

as in the statement of the proposition. Here we have used that
( d
bd/2c

)√
d + 1≤ 2d ;

see, for example, [Bombieri and Gubler 2006, Lemma 1.6.12]. Note that the second
inequality in (9-11) follows because T ≥ ‖( È, Er)‖∞. On the other hand, if Ex is in
B1/T , but not in B0, so that (9-9) holds, then by applying (2-3) again, we have, in
the same fashion as before:

µ(Ex0)≤ ‖Ex‖∞
√

g+ 1≤max{‖ExT ‖∞, 1}
√

d + 1≤max{µ(ExT ), 1} ≤ 2d .

Since in either case we have that both µ(Ex0) and µ(ExT ) are at most 2d, we may
apply (9-7) to achieve

|µ(Ex0)−µ(ExT )| ≤ 2‖Ex0− ExT ‖
1/d
1 · d(2

d)(d−1)/d. (9-12)
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Note that

‖Ex0 − ExT ‖1 =

m−1∑
i=0

|`i |/T +
d∑

i=d−n+1

|ri |/T ≤ (m + n)‖( È, Er)‖∞/T,

which, combined with (9-12), yields

|µ(Ex0)−µ(ExT )| ≤ δT .

Now we combine with (9-10), and conclude that 1− δT ≤ µ(Ex) ≤ 1+ δT. This
completes our justification of (9-3), which concludes our proof of Lemma 9.1. �

10. Reducible and imprimitive polynomials

In this section we begin to transfer our explicit counts for polynomials of degree
at most d to explicit counts for algebraic numbers of degree d, by counting their
minimal polynomials. In most cases, this simply means bounding the number of
reducible polynomials, because the hypotheses imposed in Theorem 1.1 don’t allow
for any irreducible polynomials to be counted other than minimal polynomials of
degree d. We’ll apply a version of Hilbert’s irreducibility theorem to achieve the
most general bound, which will finish off the proof of Theorem 1.1. However, in
various special cases we work a little harder to improve the power savings.

In the one case we consider outside the hypotheses of Theorem 1.1, namely
polynomials with no coefficients fixed, we must also address the presence of
imprimitive degree d polynomials and lower-degree polynomials.

Several times in our arguments we use the following estimate: if a ≥ 2, then

K∑
k=1

ak
=

aK+1
−a

a−1
≤

aK+1

a/2
= 2aK. (10-1)

We write

P(d) :=
d∏

j=0

(d
j

)
, for d ≥ 0,

and

Cm,n(d) :=
d−n∏
j=m

(
2
(d

j

)
+ 1

)
, for 0≤ m+ n ≤ d .

All polynomials. Let M(d,T ) denote the number of integer polynomials of degree
exactly d and Mahler measure at most T, and let Mred(d,T ) denote the number of
such polynomials that are reducible. Recall that M(≤d, T ) denotes the number of
integer polynomials of degree at most d and Mahler measure at most T. By (2-2),
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for all d ≥ 0 and T > 0,

M(d,T )≤M(≤d, T )≤ C0,0(d)T d+1
≤ c02d+1 P(d)T d+1, (10-2)

where c0 = 3159/1024, using Lemma A.3 from the appendix.

Proposition 10.1. We have

Mred(d,T )≤
{

1758 · T 2 log T, if d = 2 and T ≥ 2,
16c2

04d P(d − 1) · T d, if d ≥ 3 and T ≥ 1.

Proof. For a reducible polynomial f of degree d and Mahler measure at most T, there
exist 1≤ d2≤ d1≤ d−1 such that f = f1 f2, where each fi is an integer polynomial
with deg( fi )= di . Of course we have d = d1+d2. Let k be the unique integer such
that 2k−1

≤ µ( f1) < 2k. We have 1 ≤ k ≤ K, where K =
⌊

log T/log 2
⌋
+ 1, and

µ( f2)≤ 21−k T.
Given such a pair (d1, d2), by (10-2) there are at most c02d1+1 P(d1)2k(d1+1)

choices of such an f1, and at most c02d2+1 P(d2)(21−k T )d2+1 choices for f2. First
assume that d1 > d2. We’ll use below that P(d1)P(d2) is always at most P(d− 1),
by Lemma A.4 in the appendix. Summing over all possible k and applying (10-1),
the number of pairs of polynomials is at most

K∑
k=1

c02d1+1 P(d1)c02d2+1 P(d2)2k(d1+1)(21−k T )d2+1

= 4c2
02d P(d1)P(d2)(2T )d2+1

K∑
k=1

2k(d1−d2)

≤ 4c2
02d P(d − 1)(2T )d2+1

[2 · 2K (d1−d2)]

≤ 8c2
02d P(d − 1)(2T )d1+1

≤ 16c2
02d2d1 P(d − 1)T d.

If instead d1 = d2 = d/2, (so in particular d is even), then the first line above is
at most

4c2
02d P(d − 1)(2T )d1+1K .

In the case d = 2, note that for T ≥ 2 we have K ≤ (2/log 2) log T, and so

Mred(2, T )≤ 4c2
022 P(1)(2T )1+1K ≤ 64c2

0T 2 2
log 2

log T

=
128c2

0

log 2
· T 2 log T ≤ 1758 · T 2 log T .
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Whenever T ≥ 1 we have K ≤ 2T, and thus for even d ≥ 4,

4c2
02d P(d − 1)(2T )d1+1K ≤ 8c2

02d2d1 P(d − 1)T d/2+1
· 2T

≤ 16c2
02d2d1 P(d − 1)T d,

so we have the same bound we had when we assumed d2 < d1.
Finally, for any d ≥ 3, summing over the possible values of d1 gives that

Mred(d,T )≤
d−1∑

d1=dd/2e

16c2
02d2d1 P(d − 1)T d

≤ 16c2
02d P(d − 1)T d

d−1∑
d1=1

2d1

= 16c2
02d P(d − 1)T d(2d

− 2)

≤ 16c2
04d P(d − 1) · T d. �

We follow the proof of [Masser and Vaaler 2008, Lemma 2] in counting primitive
polynomials, but we’ll keep track of implied constants. For n = 1, 2, . . . , let
Mn(≤d, T ) denote the number of nonzero integer polynomials of degree at most d
and Mahler measure at most T, such that the greatest common divisor of the
coefficients is n. We let Mn(d,T ) denote the corresponding number of polynomials
with degree exactly d , so M1(d,T ) is the number of primitive polynomials of degree
d and Mahler measure at most T. Recall that κ0(d) is a function of d appearing in
Theorem 7.1.

Theorem 10.2. For all d ≥ 2 and T ≥ 1,∣∣∣M1(d,T )− Vd
ζ(d+1)

T d+1
∣∣∣≤ (Vd

d
+ 1

)
T +

(
C0,0(d − 1)+ ζ(d)κ0(d)

)
T d,

where ζ is the Riemann zeta-function.

Proof. Being careful to account for the zero polynomial,

M(≤d, T )− 1=
∑

1≤n≤T

Mn(≤d, T )=
∑

1≤n≤T

M1(≤d, T/n).

By Möbius inversion (below we commit a sin of notation overloading and let µ
denote the Möbius function), this tells us that

M1(≤d, T )=
∑

1≤n≤T

µ(n)[M(≤d, T/n)− 1].
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Combining this with Theorem 7.1 and (10-2),∣∣∣∣M1(d,T )− Vd T d+1
∑

1≤n≤T

µ(n)
nd+1

∣∣∣∣
=

∣∣∣∣M1(d,T )−M1(≤d,T )+
T∑

n=1

µ(n)[M(≤d,T/n)− 1] − Vd T d+1
T∑

n=1

µ(n)
nd+1

∣∣∣∣
≤M1(≤d − 1,T )+

T∑
n=1

|µ(n)| +
T∑

n=1

|M(≤d,T/n)− Vd(T/n)d+1
|

≤M(≤ d − 1,T )+ T +
T∑

n=1

κ0(d)(T/n)d

≤ C0,0(d − 1)T d
+ T + κ0(d)T d

T∑
n=1

1
nd

≤ T +
(
C0,0(d − 1)+ ζ(d)κ0(d)

)
T d.

This in turn gives∣∣∣M1(d,T )− Vd
ζ(d+1)

T d+1
∣∣∣

≤ Vd T d+1
∞∑

n=T+1

n−(d+1)
+ T +

(
C0,0(d − 1)+ ζ(d)κ0(d)

)
T d

≤

(Vd
d
+ 1

)
T +

(
C0,0(d − 1)+ ζ(d)κ0(d)

)
T d ,

by applying the integral estimate
∞∑

n=T+1

n−(d+1)
≤ d−1T−d.

This establishes the theorem. �

Monic polynomials. Next, let M1(d,T ) denote the number of monic integer poly-
nomials of degree d and Mahler measure at most T, and let Mred

1 (d,T ) denote the
number of such polynomials that are reducible. Using (2-2), for all d ≥ 0 and T > 0,

M1(d,T )≤ C1,0(d)T d
≤ c12d P(d)T d,

where c1 =
1053
512 , from Lemma A.3 in the appendix.

We’ll assume d ≥ 2. In estimating the number of reducible monic polynomials,
we follow the pattern of the proof of Proposition 10.1, noting that if a monic
polynomial is reducible, its factors can be chosen to be monic. Using the same
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notation as in that proof, we have that the number of pairs of monic polynomials of
degree d1 and d2, with d1 > d2, is at most

K∑
k=1

c12d1 P(d1)c12d2 P(d2)2kd1(21−k T )d2 = c2
12d P(d1)P(d2)(2T )d2

K∑
k=1

2k(d1−d2)

≤ 2c2
12d2d1 P(d − 1)T d−1.

Noting that
16c2

1

log 2
< 98,

we continue almost exactly as in Proposition 10.1 and obtain the following.

Proposition 10.3. We have

Mred
1 (d,T )≤

{
98 · T log T, if d = 2 and T ≥ 2,
2c2

14d P(d − 1) · T d−1, if d ≥ 3 and T ≥ 1.

Monic polynomials with given final coefficient. Next we want to bound the num-
ber of reducible, monic, integer polynomials with fixed constant coefficient. For r
a nonzero integer, let Mred(d, (1), (r), T ) denote the number of reducible monic
polynomials with constant coefficient r , degree d, and Mahler measure at most T.
Using (2-2), we have for all d ≥ 0 and T > 0 that

M(d, (1), (r), T )≤ C1,1(d)T d−1
≤ c22d−1 P(d)T d−1,

where c2 =
351
256 , from Lemma A.3 in the appendix.

Let ω(r) denote the number of positive divisors of r . We’ll assume d > 2; if
d = 2, we easily have the constant bound Mred(d, (1), (r), T )≤ ω(r)+ 1.

For a polynomial f counted by Mred(d, (1), (r),T ), there exist 1≤d2≤d1≤d−1
such that f = f1 f2, where each fi is an integer polynomial with deg( fi )=di , and of
course the constant coefficient of f is the product of those of f1 and f2. Define k as
in the previous two cases. Given such a pair (d1, d2), summing over the 2ω(r) pos-
sibilities for the final coefficient of f1 there are at most 2ω(r)c22d1−1 P(d1)2k(d1−1)

choices of such an f1, and then at most c22d2−1 P(d2)(21−k T )d2−1 choices for f2.
The rest proceeds essentially as before, and we find that:

Proposition 10.4. For T ≥ 1,

Mred(d, (1), (r), T )≤
{
ω(r)+ 1, if d = 2,
1
2ω(r)c

2
24d P(d − 1) · T d−2, if d ≥ 3.

Monic polynomials with a given second coefficient. For our next case, we want
to bound the number of reducible, monic, integer polynomials with a given second
leading coefficient. Let Mred(d, (1, t), ( ), T ) denote the number of reducible monic
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polynomials of degree d ≥ 3 (we’ll treat d = 2 separately at the end) with integer
coefficients, second leading coefficient equal to t , and Mahler measure at most T.

Proposition 10.5. For all t ∈ Z,

Mred(d, (1, t), ( ), T )≤


1
2

√
t2+ 4T + 1, if d = 2 and T ≥ 1,

96
log 2

· T log T, if d = 3 and T ≥ 2,

d22d−1 P(d − 1) · T d−2, if d ≥ 4 and T ≥ 1.

Proof. As before, we write such a polynomial as f = f1 f2, with

f1(z)= zd1 + x1zd1−1
+ · · · xd1 and f2(z)= zd2 + y1zd2−1

+ · · · yd2 .

Also as before, we enforce 1≤ d2 ≤ d1 ≤ d − 1 to avoid double-counting, and we
define k as in the previous three cases. For 1≤ i ≤ d1 and 1≤ j ≤ d2,

|xi | ≤

(d1
i

)
2k and |yj | ≤

(d2
j

)
21−k T. (10-3)

We also, of course, have
x1+ y1 = t. (10-4)

First assume d1 > d2+ 1. Observe that the number of integer lattice points (x1, y1)

in [−M1,M1] × [−M2,M2] such that x1 + y1 = t is at most 2 min{M1,M2} + 1.
So the number of (x1, . . . , xd1, y1, . . . , yd2) satisfying (10-3) and (10-4) is at most

(
2 min{d12k, d221−k T }+ 1

) d1∏
j=2

[
2
(d1

j

)
2k
+ 1

]
·

d2∏
j=2

[
2
(d2

j

)
21−k T + 1

]
≤
(
2 min{d12k, d221−k T }+ 1

)
·C2,0(d1)2k(d1−1)

·C2,0(d2)(21−k T )d2−1

≤ (2d · 21−k T )(2T )d2−12k(d1−d2) · 2d1−1 P(d1) · 2d2−1 P(d2)

≤ d2d−1 P(d − 1)(2T )d22k(d1−d2−1), (10-5)

using Lemma A.3. Summing over all the possibilities 1 ≤ k ≤ K, the number of
possible pairs f1 and f2 of degrees d1 and d2, respectively, is at most

d2d−1 P(d − 1)(2T )d2

K∑
k=1

2(d1−d2−1)k
≤ d2d−12d2 P(d − 1)T d2[2 · 2K (d1−d2−1)

]

≤ d2d−12d1 P(d − 1)T d−2. (10-6)

Now, if d1 = d2 = d/2 (in this case d must be even), then the geometric sum above
becomes

∑K
k=1 2−k

≤ 1. So for d ≥ 4 again we obtain the estimate (10-6) we
achieved assuming d1 > d2+ 1. If d1 = d2+ 1 (so d is odd), then the number of
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possible pairs is at most d2d−1 P(d− 1)(2T )d2 K, which does not exceed (10-6) for
d ≥ 5, and for d = 3, T ≥ 2 is at most

3 · 23−1 P(2)(2T )1 2 log T
log 2

=
96

log 2
· T log T,

which gives us the d = 3 case of the proposition. Finally, for d ≥ 4 we sum over
the at most d/2 possibilities for (d1, d2), yielding

Mred(d, (1, t), ( ), T )≤ d22d−1 P(d − 1)T d−2.

For the case d = 2, we’ll see that the error term is on the order of
√

T . Note that
we are simply counting integers c such that the polynomial

f (z)= (z2
+ t z+ c)= (z+ x1)(z+ y1)

has Mahler measure at most T. Since we know |c| ≤ T, it suffices to control
the size of {x1 ∈ Z | |x1(t − x1)| ≤ T }, which is itself bounded by the size of
{x1 ∈ Z | x2

1 − t x1 ≤ T }. By the quadratic formula, that last set is simply{
x1 ∈ Z

∣∣∣ t−
√

t2+4T
2

≤ x1 ≤
t+
√

t2+4T
2

}
,

which has size at most
√

t2+ 4T + 1. To better bound the number of c of the form
x1(t − x1), note that such a c can be written in this form for exactly two values
of x1, except for at most one value of c for which x1 is unique (this occurs when t is
even). So overall, the number of such c with |c| ≤ T is at most 1

2

√
t2+ 4T + 1. �

Monic polynomials with given second and final coefficient. For our final case, we
want to bound the number of monic, reducible polynomials with a given second
leading coefficient t ∈ Z and given constant coefficient 0 6= r ∈ Z. We can clearly
assume that d ≥ 3 since we’re imposing three coefficient conditions. We write
Mred(d, (1, t), (r), T ) for the number of reducible monic polynomials of degree d
with integer coefficients, second leading coefficient equal to t , and constant coeffi-
cient equal to r . We’ll show this is O(T d−3) in all cases. While we don’t write an ex-
plicit bound for the error term, it should be clear from our proof that this is possible.

Proposition 10.6. For all d ≥ 3, t ∈ Z, and r ∈ Z \ {0},

Mred(d, (1, t), (r), T )= O(T d−3).

Proof. As before, we write such a polynomial as f = f1 f2, with

f1(z)= zd1 + x1zd1−1
+ · · · xd1 and f2(z)= zd2 + y1zd2−1

+ · · · yd2 .

We always enforce 1≤ d2 ≤ d1 ≤ d − 1 to avoid double-counting. We’ll consider
the count in several different cases. First, if d2 = 1, then f2 = z+ yd2 , so we must
have yd2 | r and yd2 + x1 = t . Thus there are only 2ω(r) possible choices of f2;
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each choice will in turn determine xd1 and x1, so we have O(T d1−2)= O(T d−3)

choices of f1 altogether, by Theorem 1.11. Note that this completely covers the
case d = 3.

Now assume d2 ≥ 2, so d ≥ 4. There are again only 2ω(r) possible choices
of yd2 , and each one will determine what xd1 is (they must multiply to give r ). Fix
a choice of yd2 for now.

Assume first that d1> d2+1. Again take k between 1 and K =blog T/log 2c+1,
and assume that 2k−1

≤ µ( f1) ≤ 2k, so µ( f2) ≤ 21−k T. Almost exactly as in
(10-5), we get that the number of (x1, . . . , xd1−1, y1, . . . , yd2−1) contributing to
Mred(d, (1, t), (r), T ) is at most

(
2 min{d12k, d221−k T }+ 1

)
·

d1−1∏
i=2

[
2
(d1

i

)
2k
+ 1

]
·

d2−1∏
j=2

[
2
(d2

j

)
(21−k T )+ 1

]
≤ (2d · 21−k T ) · 2k(d1−2)C2,1(d1) · (21−k T )d2−2C2,1(d2)

= d2d2C2,1(d1)C2,1(d2)T d2−12(d1−d2−1)k

≤
1
64

d2d2d2 P(d − 1)T d2−12(d1−d2−1)k,

using Lemmas A.3 and A.4. Summing over all the possibilities 1 ≤ k ≤ K, the
number of possible pairs f1 and f2 of degrees d1 and d2, respectively, is at most

1
64

d2d2d2 P(d − 1)T d2−1
K∑

k=1

2(d1−d2−1)k
≤

1
32

d2d2d1 P(d − 1)T d1−2

≤
1
32

d2d2d1 P(d − 1)T d−3, (10-7)

which is certainly O(T d−3).
Next, if d1 = d2 = d/2 (in this case d must be even), then the expression in

(10-7), which contains a partial geometric sum that’s bounded by 1, is at most

1
64

d2d2d2 P(d − 1)T d/2−1,

which is certainly O(T d−3) since d ≥ 4. Lastly, if d1 = d2+ 1, (so d ≥ 5), then
d2 ≤ d − 3, and (using K ≤ 2T ) the expression in (10-7) is at most

1
64

d2d2d2 P(d − 1)T d2−1K ≤ 1
32

d2d2d2 P(d − 1)T d2

≤
1
32

d2d2d2 P(d − 1)T d−3,
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which is O(T d−3). Finally, we sum over the 2ω(r) possibilities for yd2 and the at
most d/2 possibilities for (d1, d2) and obtain overall that

Mred(d, (1, t), (r), T )= O(T d−3). �

11. Explicit results

Let N (Qd ,H) denote the number of algebraic numbers of degree d over Q and
height at most H. We give an explicit version of the main theorem of Masser and
Vaaler [2008], which follows from Theorem 7.1, our explicit version of [Chern and
Vaaler 2001, Theorem 3].

Theorem 11.1. For all d ≥ 2 and H ≥ 1,

∣∣∣N (Qd ,H)−
dVd

2ζ(d+1)
Hd(d+1)

∣∣∣≤{16690 ·H4 logH, if d = 2 and H ≥
√

2,

3.37 · (15.01)d
2
·Hd2

, if d ≥ 3 and H ≥ 1.

Proof. We combine Proposition 10.1 and Theorem 10.2 to estimate the number
of irreducible, primitive (i.e., having relatively prime coefficients) polynomials
of degree d and Mahler measure at most Hd; we write Mirr,prim(d,Hd) for this
number. Each pair of such a polynomial and its opposite corresponds to d algebraic
numbers of degree d and height at most H (the roots). So

N (Qd ,H)=
d
2
Mirr,prim(d,Hd),

and∣∣∣N (Qd ,H)−
dVd

2ζ(d+1)
Hd(d+1)

∣∣∣
≤

∣∣∣d2Mirr,prim(d,Hd)−
d
2
M1(d,Hd)

∣∣∣+ ∣∣∣d2M1(d,Hd)−
dVd

2ζ(d+1)
Hd(d+1)

∣∣∣
≤

d
2

(
Mred(d,Hd)+

∣∣∣M1(d,Hd)−
Vd

ζ(d+1)
Hd(d+1)

∣∣∣),
and it follows from Proposition 10.1 and Theorem 10.2 that(d

2

)−1∣∣∣N (Qd ,H)−
dVd

2ζ(d+1)
Hd(d+1)

∣∣∣
≤

(Vd
d
+ 1

)
Hd
+
(
C0,0(d − 1)+ ζ(d)κ0(d)

)
Hd2

+

{
1758H4 log(H2), if d = 2 and H2

≥ 2,
16c2

04d P(d − 1)Hd2
, if d ≥ 3 and H2

≥ 1.
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Here κ0(d) is the constant from Theorem 7.1, and c0 = 3159/1024. The d = 2 case
of our theorem follows immediately, as(V2

2
+ 1

)
+C0,0(1)+ ζ(2)κ0(2)+ 2 · 1758=

(8
2
+ 1

)
+ 8000ζ(2)+ 9+ 3516

< 16690.

We now turn to d ≥ 3, where∣∣∣N (Qd ,H)−
dVd

2ζ(d+1)
Hd(d+1)

∣∣∣≤ θ0(d) ·Hd2
,

with

θ0(d)=
d
2

(
1+ Vd

d
+ ζ(d)κ0(d)+C0,0(d − 1)+ 16c2

04d P(d − 1)
)

=

[
ζ(d)+

1
κ0(d)

+
Vd

dκ0(d)
+

C0,0(d − 1)
κ0(d)

+
16c2

04d P(d − 1)
κ0(d)

]
dκ0(d)

2
.

Note that the quantity in brackets above decreases for d ≥ 3 (for this it may be
helpful to consult Lemma 2.2 and compute a few values of Vd ) and so is no more
than

λ0 := ζ(3)+
1

κ0(3)
+

V3

3κ0(3)
+

C0,0(2)
κ0(3)

+
16c2

043 P(2)
κ0(3)

.

So, using the notation of the end of the proof of Theorem 7.1,∣∣∣N (Qd ,H)−
dVd

2ζ(d+1)
Hd(d+1)

∣∣∣≤ θ0(d) ·Hd2
≤ λ0

dκ0(d)
2
·Hd2

≤
λ0
2

ad3/4bdcd2
·Hd2

≤
aλ0

2
(bc)d

2
·Hd2

≤ 3.37 · (15.01)d
2
·Hd2

. �

Next, we record an explicit version of [Barroero 2014, Theorem 1.1] in the case
k = Q, i.e., an explicit estimate for the number of algebraic integers of bounded
height and given degree over Q. This explicit estimate follows from our Theorem 8.1,
which improved the power savings of [Chern and Vaaler 2001, Theorem 6]. We
write N (Od ,H) for the number of algebraic integers of degree d over Q and height
at most H.

Theorem 11.2. We have∣∣N (Od ,H)− d · pd(Hd)
∣∣≤ {584 ·H2 logH, if d = 2 and H ≥

√
2,

1.13 · 4ddd2d2
·Hd(d−1), if d ≥ 3 and H ≥ 1.

Proof. We follow the idea of the previous proof. Now that we require polynomials
to be monic, we never count two irreducible polynomials with the same set of roots,
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and so combining Theorem 8.1 and Proposition 10.3 we obtain:

d−1∣∣N (Od ,H)− d · pd(Hd)
∣∣

≤ κ1(d)Hd(d−1)
+

{
98H2 log(H2), if d = 2 and H2

≥ 2,
2c2

14d P(d − 1)Hd(d−1), if d ≥ 3 and H2
≥ 1,

where c1 = 1053/512. We immediately have the d = 2 case of our theorem, as
κ1(2)= 96. Assuming d ≥ 3,∣∣N (Od ,H)− d · pd(Hd)

∣∣≤ θ1(d) ·Hd(d−1),

where

θ1(d)= dκ1(d)+ 2c2
1d4d P(d − 1)= dκ1(d)

[
1+

2c2
14d P(d − 1)
κ1(d)

]
.

The quantity in brackets decreases for d ≥ 3, and so is no more than

λ1 := 1+
2c2

143 P(2)
κ1(3)

≤ 1.13,

and the result follows from the estimate for κ1(d) stated in Theorem 8.1. �

We can also prove an explicit version of our Corollary 1.3, albeit with worse
power savings.

Theorem 11.3. For each d ≥ 2, ν a nonzero integer, and H ≥ d · 2d+1/d
|ν|1/d,∣∣NNm=ν(d,H)− dVd−2 ·Hd(d−1)∣∣

≤

{
(64
√

2|ν| + 8) ·H+ 2ω(ν)+ 2, if d = 2,
0.0000063|ν|ω(ν) · d34d(15.01)d

2
·Hd(d−1)−1, if d ≥ 3,

where ω(ν) is the number of positive integer divisors of ν.

Proof. Our proof proceeds very similarly to the last two. Let r = (−1)dν. Using
Theorem 9.3 and Proposition 10.4, we have for all H ≥ d · 2d+1/d

|ν|1/d :

d−1∣∣NNm=ν(d,H)− d · Vd−2 ·Hd(d−1)∣∣
≤ κ

(
d, (1), (r)

)
Hd(d−1−1/d)

+

{
ω(r)+ 1, if d = 2,
1
2
ω(r)c2

24d P(d − 1) ·Hd(d−2), if d ≥ 3,

where κ(d, (1), (r)) is as defined in Theorem 9.3, and

c2 =
351
256

.
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Consider the case d = 2. By definition (stated in Theorem 9.3)

κ(2, (1), (r))= (0+ 1)20+1[24
· 22(1+ 1)|r |

]1/2V0+ (0+ 1)κ0(0)

= 32
√

2|r | + 4,

using V0 = 2 and κ0(0)= 4. Therefore,∣∣NNm=ν(2,H)− 2 · V0 ·H2∣∣≤ 2
(
(32
√

2|r | + 4)H+ω(r)+ 1
)

= (64
√

2|r | + 8) ·H+ 2ω(r)+ 2.

Now we assume d ≥ 3, so∣∣NNm=ν(d,H)− d · Vd−2 ·Hd2
−d
∣∣≤ θ2(d, r)Hd2

−d−1,

where, using (9-4) and letting a, b, and c be as in the end of the proof of Theorem 7.1,

θ2(d, r)= d
(
κ(d, (1), (r))+ 1

2ω(r)c
2
24d P(d − 1)

)
≤ d · (2+ a)d(d − 1)22d−1+1/d

|r |(bc)(d−1)2
+

d
2
ω(r)c2

24d P(d − 1)

≤ d322d−1
|r |ω(r)(bc)d

2
[
(2+ a)d(d − 1)21/d

(bc)2d−1ω(r)d2 +
c2

2 P(d − 1)

d2(bc)d2
|r |

]
≤ d322d−1

|r |ω(r)(bc)d
2
[
(2+ a)21/d

(bc)2d−1 +
c2

2 P(d − 1)

d2(bc)d2

]
.

As the quantity in brackets just above decreases for d ≥ 3, it does not exceed

(2+ a)21/3

(bc)5
+

c2
2 P(2)

32(bc)9
≤ 0.0000126,

completing our proof. �

We can immediately state the following explicit unit count, since counting units
amounts to counting algebraic integers of norm ±1.

Theorem 11.4. For each d ≥ 2 and H ≥ d · 2d+1/d,∣∣N (O∗d ,H)− 2dVd−2 ·Hd(d−1)∣∣
≤

{
(128
√

10)H+ 8, if d = 2,
0.0000126 · d34d(15.01)d

2
·Hd(d−1)−1, if d ≥ 3.

Finally, since Proposition 10.5 gives an explicit bound, it is also possible to
obtain an explicit estimate for NTr=τ (d,H) similar to that of Theorem 11.3; we
leave this to the interested reader.
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Appendix: Combinatorial estimates

This appendix contains estimates for the combinatorial functions appearing in some
of the constants in this paper. For any integer d ≥ 0, define

P(d) :=
d∏

j=0

(d
j

)
,

Cm,n(d) :=
d−n∏
j=m

(
2
(d

j

)
+ 1

)
, for 0≤ m+ n ≤ d ,

A(d) :=
d∑

k=0

P(k)P(d − k),

B(d) :=
d−1∑
k=0

P(k)P(d − k)γ (k)d−k−1γ (d − k)k,

where γ (k) :=
( k
bk/2c

)
.

Stirling’s inequality is the following estimate for factorials, which we will use
several times:

√
2π · kk+1/2e−k

≤ k! ≤ e · kk+1/2e−k, for all k ≥ 1. (A-1)

Using this we can easily see that

γ (k)≤
e · 2k

π
√

k
. (A-2)

Lemma A.1. For all d ≥ 1,

A(d)≤ (10 4
√

2π3/4e−3)ed2/2+d(2π)−d/2d−d/2−1/4.

Proof. We write

8(d) :=

√
ed2+d

(2π)dd!
.

Note that of course the first and last factor appearing in the product P(d) are 1, so
they may be omitted when convenient. Also notice that

P(d)=
d∏

k=1

kk

k!
.
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Using Stirling’s inequality,

P(d)=
d∏

j=1

j j

j !
≤

d∏
j=1

e j
√

2π j
=

exp
( 1

2(d
2
+ d)

)
√

2π
d√

d!
=

√
ed2+d

(2π)dd!
. (A-3)

Therefore,
P(d)≤8(d), for all d ≥ 0. (A-4)

Now, for all d ≥ 1,

A(d)=
d∑

k=0

P(k)P(d − k)≤
d∑

k=0

8(k)8(d − k)

=

d∑
k=0

√
ek2+k

(2π)kk!
·

√
e(d−k)2+d−k

(2π)d−k(d − k)!

=8(d)
d∑

k=0

√(d
k

)
ek2
−dk
=8(d)

(
2+

d−1∑
k=1

√(d
k

)
ek2
−dk

)
. (A-5)

Now, since k2
− dk =−k(d − k) ≤ −(d − 1) when 1 ≤ k ≤ d − 1, we can easily

estimate the sum

d−1∑
k=1

√(d
k

)
ek2
−dk
≤ 2d
· e1−d

= e ·
(2

e

)d
. (A-6)

The interested reader will easily verify that

A(d)
8(d)

≤
A(2)
8(2)

= 10π
√

2e−3
≈ 2.21198 (A-7)

for 0≤ d ≤ 8, and by (A-5) and (A-6), we can easily check that

A(d)
8(d)

≤ 2+ e ·
(2

e

)d
< 2.2

for d ≥ 9.
Finally, we estimate 8(d) using Stirling’s inequality again:

8(d)≤

√
ed2+d

(2π)d
·

ed
√

2πd · dd
= ed2/2+d(2πd)−d/2−1/4. (A-8)

Combining with (A-7) completes the proof. �

Lemma A.2. For all d ≥ 0,
B(d)≤ 2d2

.
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Proof. We can readily verify the inequality for d ≤ 3, so we’ll assume below that
d ≥ 4, and proceed by induction. Suppose that

B(d − 1)≤ 2(d−1)2.

Notice that

P(d)= dd

d!
P(d − 1), (A-9)

and also that γ (d)≤ 2γ (d − 1) for all d ≥ 1. We also easily have P(d)≤ ed2/2+d

from the previous proof. Using these facts, we calculate:

B(d)− P(d − 1)

=

d−2∑
k=0

P(k)P(d − k)γ (k)d−k−1γ (d − k)k

≤

d−2∑
k=0

P(k)
(d − k)d−k

(d − k)!
P(d − k− 1)γ (k)d−k−2γ (k)2kγ (d − k− 1)k

≤

d−2∑
k=0

[
ed−k2k
√

2π(d − k)
γ (k+ 1)

]
P(k)P(d − k− 1)γ (k)d−k−2γ (d − k− 1)k

≤

d−2∑
k=0

[
ed−k2k
√

2π(d − k)
e · 2k+1

π
√

k+ 1

]
P(k)P(d − k− 1)γ (k)d−k−2γ (d − k− 1)k

≤

d−2∑
k=0

[
e
√

2
π3/2

ed(4/e)k
√
(d − k)(k+ 1)

]
P(k)P(d − k− 1)γ (k)d−k−2γ (d − k− 1)k .

We note that (d − k)(k+ 1)≥ d holds whenever 0≤ k ≤ d − 2, and continue the
calculation:

B(d)− P(d − 1)

≤

[
e
√

2
π3/2 ·

ed(4/e)d
√

d

] d−2∑
k=0

P(k)P(d − 1− k)γ (k)d−1−k−1γ (d − 1− k)k

=

[
e
√

2
π3/2 ·

4d
√

d

]
B(d − 1)≤

[
e
√

2
π3/2 ·

4d
√

d

]
2(d−1)2

=

[
e
√

2
π3/2 ·

4d
√

d

]
2
4d 2d2

=

[
e · 23/2

π3/2
√

d

]
2d2
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Therefore,

B(d)≤ P(d − 1)+
[

e · 23/2

π3/2
√

d

]
2d2

≤

[
P(d)d!
dd2d2 +

e · 23/2

π3/2
√

d

]
2d2

≤

[
e

1
2 d2
+d
· e
√

d
ed2d2 +

e · 23/2

π3/2
√

d

]
2d2

=

[
e
√

d
(√e

2

)d2

+
e · 23/2

π3/2
√

d

]
2d2

≤ 2d2
,

where the final inequality holds for any d ≥ 4. �

Lemma A.3. We have

C0,0(d)≤
3159
1024

· 2d+1 P(d), for all d ≥ 0,

C1,0(d)≤
1053
512
· 2d P(d), for all d ≥ 0,

C1,1(d)≤
351
256
· 2d−1 P(d), for all d ≥ 1,

C2,0(d)≤ 2d−1 P(d), for all d ≥ 1,

C2,1(d)≤
1
2
· 2d−2 P(d), for all d ≥ 2.

(A-10)

Proof. We’ll prove the bound for C0,0(d), and leave the other cases as exercises.
The inequality (A-10) is easily verified for d ≤ 3, and we have equality for d = 4.
If we set

R(d) :=
C0,0(d)

2d+1 P(d)
=

d∏
j=0

2
(d

j

)
+ 1

2
(d

j

) ,

then to establish (A-10) it will suffice to show that

R(d + 1)
R(d)

≤ 1, for d ≥ 4.

We’ll use the standard identity(d+1
j

)
=

d+1
d+1− j

(d
j

)
.
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We have

R(d + 1)
R(d)

=

( d+1∏
j=0

2
(d+1

j

)
+ 1

2
(d+1

j

) )/( d∏
j=0

2
(d

j

)
+ 1

2
(d

j

) )

=
3
2

d∏
j=0

(d
j

)(d+1
j

) · 2(d+1
j

)
+ 1

2
(d

j

)
+ 1

=
3
2

d∏
j=0

d + 1− j
d + 1

·

2 d+1
d+1− j

(d
j

)
+ 1

2
(d

j

)
+ 1

=
3
2

d∏
j=0

2
(d

j

)
+

d+1− j
d+1

2
(d

j

)
+ 1

=
3
2

d∏
j=0

[
1−

j

(d + 1)
(
2
(d

j

)
+ 1

)]

≤
3
2

d∏
j=d−2

[
1−

j

(d + 1)
(
2
(d

j

)
+ 1

)]

=
3
2
·

4d6
+ 10d5

+ 6d4
+ 8d3

+ 20d2
+ 24d + 18

6d6+ 15d5+ 12d4+ 9d3+ 15d2+ 12d + 3

=
2d6
+ 5d5

+ 3d4
+ 4d3

+ 10d2
+ 12d + 9

2d6+ 5d5+ 4d4+ 3d3+ 5d2+ 4d + 1
≤ 1, for d ≥ 4. �

Lemma A.4. If d ≥ 2 and 1≤ k ≤ d − 1, then

P(k)P(d − k)≤ P(d − 1).

Proof. We have

P(k)P(d − k) =
k−1∏
j=0

(k
j

) d−k−1∏
i=0

(d−k
i

)
≤

k−1∏
j=0

(d−1
j

) d−k−1∏
i=0

(d−1
i

)

=

k−1∏
j=0

(d−1
j

) d−k−1∏
i=0

( d−1
d−1−i

)
=

k−1∏
j=0

(d−1
j

) d−1∏
j=k

(d−1
j

)
= P(d − 1).

We have equality if and only if k = 1 or k = d − 1. �
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