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Following work of Bugeaud, Corvaja, and Zannier for integers, Ailon and Rudnick
prove that for any multiplicatively independent polynomials, a, b ∈ C[x], there is
a polynomial h such that for all n, we have

gcd(an
− 1, bn

− 1) | h

We prove a compositional analog of this theorem, namely that if f, g ∈ C[x]
are compositionally independent polynomials and c(x) ∈ C[x], then there are at
most finitely many λ with the property that there is an n such that (x −λ) divides
gcd( f ◦n(x)− c(x), g◦n(x)− c(x)).

Bugeaud, Corvaja, and Zannier [2003] obtained an upper bound for the greatest
common divisors among two families of integer sequences. More precisely, let a
and b be two positive integers that are multiplicatively independent and let ε > 0 be
given. Then for all n, we have gcd(an

− 1, bn
− 1)�ε exp(εn) where the implied

constant is independent of n.
Since Bugeaud, Corvaja, and Zannier’s paper appeared, there have been many

extensions and generalizations of their results (see, for example, [Ailon and Rudnick
2004; Silverman 2004a; 2004b; 2005; Corvaja and Zannier 2005; 2008; 2013;
Luca 2005; Murty and Murty 2011; Zannier 2012; Ghioca et al. 2017a; 2017b;
Huang 2017]). In particular, Ailon and Rudnick [2004] obtained a stronger upper
bound in the setting of function fields of characteristic zero. They showed that for
two multiplicatively independent nonconstant polynomials a, b ∈ C[x], there is a
polynomial h ∈ C[x], depending on a and b such that gcd(an

− 1, bn
− 1) | h for

all positive integer n. We note here that the result of Ailon and Rudnick also holds
when one takes the greatest common divisors of am

− 1 and bn
− 1 across all pairs

of positive integers m and n (not merely those where m = n).
Instead of taking multiplicative powers of polynomials, one can consider iterated

compositions of polynomials and look for an upper bound on the degrees of the
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greatest common divisors among two such sequences of polynomials as asked by
A. Ostafe [2016, Problem 4.2]. In this paper, we prove a compositional analog of
theorem of Ailon and Rudnick described above.

In the following, for a polynomial q , we let q◦n denote the composition of q with
itself n times. To state our theorem precisely, we need a definition of compositional
independence.

Definition. We say two polynomials f and g are compositionally independent if
the semigroup generated by f and g under composition is isomorphic to the free
semigroup with two generators. This is equivalent to the property that whenever
i1, . . . , is , j1, . . . , js , `1, . . . , `t , m1, . . .mt are positive integers such that

f ◦i1 ◦ g◦ j1 ◦ · · · ◦ f ◦is ◦ g◦ js = f ◦`1 ◦ g◦m1 ◦ · · · ◦ f ◦`t ◦ g◦mt ,

we must have s = t , and ik = `k , jk = mk for k = 1, . . . , s.

Under the compositional independence condition, our first result is the finiteness
of the irreducible factors of gcd( f ◦m(x)− c(x), g◦n(x)− c(x)) where f, g and c
are polynomials with complex coefficients. More precisely, we have the following
theorem which answers Ostafe’s question.

Theorem 1. Let f (x) and g(x) be two compositionally independent polynomials
in C[x], at least one of which has degree greater than one. Suppose that c(x) is
not a compositional power of f or g. Then there are at most finitely many λ ∈ C

such that
(x − λ) | gcd( f ◦m(x)− c(x), g◦n(x)− c(x))

for some positive integers m, n.

The restriction on the degrees of the two polynomials f and g in Theorem 1
is necessary. As the examples at the beginning of Section 3 demonstrate that
Theorem 1 must be modified when f and g are both linear. If we restrict to the
case m = n in Theorem 1, then we still obtain a finiteness result when the two
polynomials f and g are both linear.

Theorem 2. Let f and g be two compositionally independent linear polynomials
and let c be any polynomial. Then there is a polynomial h ∈ C[x] such that

gcd( f ◦n(x)− c(x), g◦n(x)− c(x)) | h

for all positive integers n.

Putting Theorem 2 together with Theorem 1 under the condition that the compo-
sition power m = n, then for any polynomials c(x) we have the same conclusion.
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Theorem 3. Let f and g be two compositionally independent polynomials. Then
there are at most finitely many λ ∈ C such that

(x − λ) | gcd( f ◦n(x)− c(x), g◦n(x)− c(x))

for some positive integer n.

We note that Theorem 2 is a compositional analog of Ailon and Rudnick’s
result for linear polynomials. To obtain a theorem that is parallel to their result for
nonlinear polynomials, we need a bound for the multiplicity of each irreducible
factor that divides the greatest common divisors. In general, one cannot expect
such a bound exists. For instance, take f (x)= x3

+ x2, g(x)= x3
+5x2 and c= 0.

Then, for any positive integer n, we have

x2n
| gcd( f ◦n(x), g◦n(x))

Hence, in this case there does not exist a polynomial h divisible by all the greatest
common divisors of the sequences in question. To get control on the bound of the
multiplicities of irreducible factors dividing the greatest common multiples, we
need one extra condition.

Definition. We say that ξ ∈ C is in a ramified cycle of a polynomial q if there is a
positive integer i such that q◦i (ξ)= ξ and (q◦i )′(ξ)= 0.

Once we exclude this sort of possibility, we are able to show that there exists a
polynomial that is divisible by all the greatest common divisors of the compositional
sequences formed by f and g.

Theorem 4. Let f (x) and g(x) be two compositionally independent polynomials
of degree greater than one in C[x]. Suppose that c(x) is not a compositional power
of f or g. Suppose furthermore that c(x) is not equal to a constant c that is in a
ramified cycle of both f and g. Then there is a polynomial h ∈ C[x] such that

gcd( f ◦m(x)− c(x), g◦n(x)− c(x)) | h

for all positive integers m and n.

Remark. (1) One might naturally ask if the theorems of this paper still hold when
one replaces gcd( f ◦m(x)− c(x), g◦n(x)− c(x)) with

gcd( f ◦m(x)− c1(x), g◦n(x)− c2(x))

for any c1(x), c2(x)∈C[X ] (with c1(x) and c2(x) not necessarily equal). The proof
of Theorem 1 goes through without change to treat this generalization as long as
f (x), g(x), c1(x), c2(x) ∈Q[x]; we believe that the case of complex coefficients
can probably also be treated with some additional work. We do not, however, have
an idea of how to generalize Theorem 2 to treat the case where c1(x) 6= c2(x).
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(2) In the situation considered by Ailon and Rudnick, the number 1 is not in a
ramified cycle of any powering map. In fact, any nonzero polynomial c(x) is not in
a ramified cycle of any powering map.

We give a brief description of the organization of our paper and explain the ideas
of the proofs. In Section 1, we set up notations and provide some background about
canonical height functions associated to rational maps on the projective line over a
global field. After the preliminaries in Section 1, we begin to prove our results.

We prove Theorem 1 in Section 2. The proof is split into two parts. We first
treat the case where neither f nor g is linear. This is done in Proposition 8. An
additional ingredient is required for the case where one of f and g is linear; we
treat this case separately in Proposition 9. Then Theorem 1 is just the combination
of these two propositions. We sketch the proof of Proposition 8 here. Assume that
the set of λ that are roots of

gcd
(

f ◦m(x)− c(x), g◦n(x)− c(x)
)

is infinite as m and n run through all positive integers. Then these numbers have
the property that the canonical heights ĥ f (λ) and ĥg(λ) both converge to zero (see
Lemma 6). Applying equidistribution theorems in arithmetic dynamics, following
the pattern of [Ghioca and Tucker 2010; Baker and DeMarco 2011; Ghioca et al.
2015], we conclude that both polynomials f and g have the same Julia set in
the complex plane. Then the work of Baker and Erëmenko [1987] and Schmidt
and Steinmetz [1995] shows that a compositional relation between f and g exists.
Thus we get a contradiction to the assumption that f and g are compositionally
independent and finish the proof.

Section 3 is devoted to the proof of Theorem 2 and Theorem 3. The proof of
Theorem 2 is quite different, as the tools used to prove Theorem 1 are no longer
applicable to the case where both polynomials f and g are linear. The proof for
this case relies heavily on diophantine methods, in particular an application of
results from [Corvaja and Zannier 2005], Roth’s theorem, and a lemma of Siegel.
These results are used to prove the case where everything is defined over Q, in
Proposition 15. The general case of Theorem 2 then follows via specialization.
Theorem 3 follows easily by combining Theorem 1 and Theorem 2.

We prove Theorem 4 in Section 4. It is sufficient to bound the multiplicities of
the roots of gcd( f ◦m(x)− c(x), g◦n(x)− c(x)) in Theorem 1 provided that c(x) is
not a constant in a ramified cycle of both f and g. The analysis on the bound of
the multiplicity used here is similar to those used in [Morton and Silverman 1995,
Lemma 3.4]. We provide such a bound in Lemma 16. Then, Theorem 4 follows
from Theorem 1 coupled with Lemma 16. Finally, we end this paper by raising
several questions for further study in Section 5.
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1. Preliminaries

In this section, we set up some notations and recall facts from the theory of height
functions that will be used in this paper.

Let K be a field of characteristic 0 equipped with a set of inequivalent absolute
values (places) �K , normalized so that the product formula holds. More precisely,
for each v ∈�K there exists a positive integer Nv such that for all α ∈ K ∗ we have∏
v∈�|α|

Nv
v = 1 where for v ∈ �K , the corresponding absolute value is denoted

by | · |v. Examples of product formula fields (or global fields) are number fields
and function fields of projective varieties which are regular in codimension 1 over
another field k (see [Lang 1983, §2.3] or [Bombieri and Gubler 2006, §1.4.6]).

We let Cv be the completion of an algebraic closure of Kv, a completion of K
with respect to | · |v . When v is an archimedean valuation, then Cv = C. We fix an
extension of | · |v to an absolute value of Cv which by abuse of notation, we still
denote by | · |v.

If K is a number field, we let �K be the set of all absolute values of K which
extend the (usual) absolute values of Q. For each v ∈ �K , we let v0 denote the
(unique) absolute value of Q such that v|Q = v0 and we let Nv := [Kv :Qv0]. If K
is a function field of a projective normal variety V defined over a field k, then �K

is the set of all absolute values on K associated to the irreducible divisors of V.
Then there exist positive integers Nv (for each v ∈�K ) such that

∏
v∈�K
|x |Nvv = 1

for each nonzero x ∈ K . (See [Lang 1983; Serre 1997] for more details).
Let L be a finite extension of K , and let �L be the set of all absolute values

of K which extend the absolute values in �K . For each w ∈�L extending some
v ∈�K we let Nw := Nv · [Lw : Kv]. The (naive) Weil height of any point x ∈ L is
defined as

h(x)= 1
[L : K ]

∑
w∈�L

Nw · log max{1, |x |w}.

To ease the notation, we set ‖x‖v := |x |Nvv for x ∈ K .
Let f ∈ K (x) be any rational map of degree d ≥ 2. Then the global canonical

height ĥ f (x) of x ∈ K associated to f is given by the limit

ĥ f (x)= lim
n→∞

h( f n(x))
dn

(see [Call and Silverman 1993] for details). In addition, Call and Silverman
proved that the global canonical height decomposes as a sum of the local canonical
heights, i.e.,

ĥ f (x)=
1

[K (x) : K ]

∑
σ :K (x)→K

∑
v∈�K

Nv ĥ f,v(xσ ), (4.1)
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where σ runs through all embeddings of K (x) into K and for each v ∈ �K the
function ĥ f,v is the local canonical height associated to f . For the existence and
functorial property of the local canonical height see [Call and Silverman 1993,
Theorem 2.1].

The following facts about height functions are well known.

Proposition 5. Let f ∈ K (x) be a rational function of degree d ≥ 2 defined over K .
There are constants c1, c2, c3, and c4, depending only on d , such that the following
estimates hold for all x ∈ K :

(a)
∣∣h( f (x))− dh(x)

∣∣≤ c1h( f )+ c2.

(b)
∣∣ ĥ f (x)− h(x)

∣∣≤ c3h( f )+ c4.

(c) ĥ f ( f (x))= d ĥ f (x).

(d) If K is a number field then x ∈ PrePer( f ) if and only if ĥ f (x)= 0.

Here, h( f ) is the height of the polynomial f , see for example [Bombieri and Gubler
2006, §1.6] for the definition of h( f ).

Proof. See, for example, [Hindry and Silverman 2000, §B.2, §B.4] or [Silverman
2007, §3.4]. �

We use the following lemma (see also [Call and Silverman 1993; Ingram 2013]
for more general techniques along these lines).

Lemma 6. Let K be a global field. Let (λn)
∞

n=1 be a sequence in K satisfying
f ◦n(λn)= c(λn) for all n, where f, c ∈ K [x] and deg f > 1. Then

lim
n→∞

ĥ f (λn)= 0.

Proof. By Proposition 5 (b), the canonical height ĥ f (·) associated to f is a height
function on the projective line P1. It follows that

ĥ f (c(λ))= (deg c) ĥ f (λ)+ O(1), for all λ ∈ K . (6.1)

Since by assumption the sequence (λn)
∞

n=1 satisfies f ◦n(λn)= c(λn) for all n, we
have that (deg f )n ĥ f (λn)= ĥ f ( f ◦n(λn))= ĥ f (c(λn)) and thus

(deg f )n ĥ f (λn)= (deg c) ĥ f (λn)+ O(1), for all n ∈ N, (6.2)

where the implied constant is independent of n.
Therefore, ((deg f )n − deg c) ĥ f (λn) is bounded by a constant independent of n.

Since by assumption deg f > 1, it’s clear that ĥ f (λn) must go to zero as n goes to
infinity. �

We now state a result about equalities of canonical heights.
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Proposition 7. Let K be a global field of characteristic zero and let f, g ∈ K [x] be
polynomials of degree greater than one. If there is an infinite nonrepeating sequence
(λi )

∞

i=1, where λi ∈ K , such that

lim
i→∞

ĥ f (λi )= lim
i→∞

ĥg(λi )= 0,

then ĥ f = ĥg.

Proof. In the case where K is a number field, this is proved in [Petsche et al. 2012,
Theorem 3] and [Mimar 2013, Theorem 1.8]. The proof given in [Petsche et al.
2012] goes through for function fields without any changes. Proofs of similar
equalities over function fields appear in [Baker and DeMarco 2011; 2013; Ghioca
et al. 2011; 2015; Yuan and Zhang 2017], Thus, we only give a sketch here. The
idea is to apply equidistribution results such as those in [Favre and Rivera-Letelier
2004; Baker and Rumely 2006; Chambert-Loir 2006], all of which hold over both
number fields and function fields of characteristic 0. For each place v of K , the λi

equidistribute with respect to the measures of maximal entropy µ f,v and µg,v for f
and g respectively at v. This implies that the local canonical heights ĥ f,v and ĥg,v

for f and g are equal to each other. By (4.1), the global canonical heights ĥ f and
ĥg are the sum of the corresponding local canonical heights. Therefore, ĥ f = ĥg,
as desired. �

2. Proof of Theorem 1

In this section we prove Theorem 1 by first treating the case where f and g both
have degree greater than one.

Proposition 8. Let f (x) and g(x) be two compositionally independent polynomials
with complex coefficients of degree greater than one. Then there are at most finitely
many λ ∈ C such that there are positive integers m and n with the following
properties:

(i) f ◦m(x) 6= c(x).

(ii) g◦n(x) 6= c(x).

(iii) (x − λ) | gcd( f ◦m(x)− c(x), g◦n(x)− c(x)).

Proof. Let K be the field generated by all the coefficients of f , g, and c over Q.
Then either K is a number field or a function field of finite transcendence degree
over Q. In the latter case, we let k = K ∩Q be its field of constants.

We prove the proposition by contradiction. Suppose that there is an infinite
nonrepeating sequence (λi )

∞

i=1 such for every i , there is an mi and ni such that
f ◦mi 6= c and g◦ni 6= c, and (x−λi ) divides both f ◦mi (x)−c(x) and g◦ni (x)−c(x).

We will show that the two polynomials f and g must be compositionally dependent.



1444 Liang-Chung Hsia and Thomas J. Tucker

Observe that for such mi and ni , the polynomials f ◦mi (x)−c(x) and g◦ni (x)−c(x)
have only finitely many roots, so mi and ni must both go to infinity as i goes to
infinity. Then, by Lemma 6, we have

lim
i→∞

ĥ f (λi )= lim
i→∞

ĥg(λi )= 0.

It follows from Proposition 7 that ĥ f = ĥg.
Let 30 := {λ ∈ K | ĥ f (λ)= 0} = {λ ∈ K | ĥg(λ)= 0}. If K is a number field,

then by Proposition 5 (d), we immediately conclude that f and g share the same
set of preperiodic point. Likewise, if K is a function field and neither f nor g is
isotrivial over k, then by [Benedetto 2005; Baker 2009], Proposition 5 (d) also
holds and hence f and g also share the same set of preperiodic points.

Now assume that at least one of f and g is isotrivial. Without loss of generality,
we assume that f is isotrivial. Since ĥ f = ĥg, it follows from the weak Northcott
property of [Baker 2009] that g is also isotrivial. Here, we provide an elementary
proof of this fact as follows. Since f is isotrivial, there exists a linear polynomial
σ ∈ K [x] such that f σ = σ ◦ f ◦ σ−1

∈ k̄[x]. Then, the canonical height ĥ f σ (x)
associated to f σ is equal to the Weil height h(x) of x ∈ K . On the other hand,

ĥ f σ (σ (x))= lim
n→∞

h(( f σ )◦n(σ x))
dn = lim

n→∞

h(σ ◦ f ◦n(x))
dn

= lim
n→∞

h( f ◦n(x))
dn = ĥ f (x).

Thus, ĥ f (x) = 0 if and only if h(σ x) = ĥ f σ (σ x) = 0. In other words, we have
σ(30)= k̄ =Q. Note that gσ : σ(30)→ σ(30) (since g :30→30). We see that
gσ (α) ∈Q for α ∈Q. It follows that gσ ∈Q[x] as well. Then after conjugating by
σ , we assume that both f and g are defined over Q. Note that since each λi is a
solution to f mi (λi )= gni (λi ), each λi must be in Q. Since c(λi ) is thus in Q for
each λi , and there are infinitely many λi , it follows that c ∈Q[x] as well.

We have reduced to the case where K is a number field, and we conclude that the
set of preperiodic points of f and g are the same. This means that the Julia set J f

and Jg are equal. By [Baker and Erëmenko 1987; Schmidt and Steinmetz 1995],
it follows that unless f and g are both conjugate to a multiple of a Chebychev
polynomial or a multiple of powering map, then there is a polynomial q and a finite
(compositional) order linear map τ such that any word in f and g is equal to τ ◦i q◦ j

for some i, j . This means that f and g must be compositionally dependent.
Now, we are left with the case where f and g are both conjugate to either a

multiple of a Chebychev polynomial or a multiple of a powering map. If f and g
are conjugate to ±Td1 and ±Td2 , respectively, where Tdi is the monic Chebychev
polynomial of degree di , then f and g are compositionally dependent (easy to
check). If f and g are both conjugate to powering maps, then after conjugation
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we may write f (x) = xd1 and g(x) = γ xd2 for some γ ∈ Q. Note that both f
and g have the same set of preperiodic points which are all the roots of unity in
this case. In particular, γ = g(1) is a root of unity. Therefore f and g must be
compositionally dependent as well. �

Next, we treat the case where exactly one of f and g is linear.

Proposition 9. Let f (x) and g(x) be two polynomials of C[x] such that deg f > 1
and deg g = 1. Then there are at most finitely many λ ∈ C such that there are
positive integers m and n with the following properties:

(i) f ◦m 6= c(x).

(ii) g◦n 6= c(x).

(iii) (x − λ) | gcd( f ◦m(x)− c(x), g◦n(x)− c(x)).

Proof. Let K be the field generated by the coefficients of f , g, and c. Since
g◦n(x)− c(x) is a polynomial of degree at most deg c + 1, we see that every λ
such that g◦n(λ)− c(λ)= 0 has degree at most deg c+ 1 over K . Note that for any
nonrepeating infinite sequences (λi )

∞

i=1 and (ni )
∞

i=1 such that f ◦ni (λi )= c(λi ) for
all i , we have limi→∞ ĥ f (λi )= 0 by Lemma 6. If K is a number field, then by the
Northcott property we conclude that there are at most finitely many λ that satisfy
properties (i) to (iii) given above. Hence, the proposition holds in this case.

Now, let’s assume that K is a function field and that there is a nonrepeating
infinite sequences (λi )

∞

i=1 and (ni )
∞

i=1 such that f ◦ni (λi )= c(λi ) for all i ∈ N. We
note that as in the proof of Proposition 8, both mi and ni must go to infinity since
c(x) is not a compositional power of f or g.

By [Baker 2009], if there is an infinite sequence of (λi )
∞

i=1 of bounded degree
with ĥ f (λi )= 0 then f must be isotrivial. Thus, after changing variables, we may
assume that f ∈ k[x] for some number field k. As a consequence, ĥ f (x)= h(x)
the Weil height of x for all x ∈ K . On the other hand, it follows from the definition
of the Weil height that for x ∈ K with h(x) > 0 we must have h(x) ≥ 1/(deg x).
Now the sequence (λi )

∞

i=1 has the property that all λi have degree bounded above
by deg c+1 over K and that limi→∞ h(λi )= 0. Therefore we must have h(λi )= 0
for all but finitely many i . Also note that for x ∈ K we have h(x)= 0 if and only if
x ∈ k̄ =Q. So, all but finitely many λi in the sequence (λi )

∞

i=1 must be in Q.
We are left to treat the case where there are infinitely many λ in Q such that

f ◦m(λ) = c(λ) = g◦n(λ). We see in this case that c must have coefficients in Q

since there are infinitely many λ∈Q such that c(λ)∈Q. Let k be the field generated
by the coefficients of f and c over Q, and let g(x)= αx +β. Then all λ such that
f ◦m(λ) = c(λ) = g◦n(λ) lie in extensions of Q ∩ k(α, β) having degree at most
deg c+ 1. Since Q∩ k(α, β) is a finitely generated extension of k, all such λ have
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bounded degree over Q. Since the λ also have bounded height, again we have a
contradiction by Northcott’s theorem. �

Proof of Theorem 1. If deg f, deg g > 1, then Theorem 1 follows immediately from
Proposition 8. If max(deg f, deg g) > 1 and min(deg f, deg g) = 1, then we may
assume without loss of generality that deg f > 1 and deg g = 1. Theorem 1 then
follows from Proposition 9. �

3. Proof of Theorem 2

When f and g are both linear, there may be infinitely many λ such that (x − λ)
divides gcd( f ◦m(x)− c(x), g◦n(x)− c(x)) for some m and n. Take for example,
c(x)= x2, with f (x)= 2x and g(x)= x + 1. Then

f ◦n(x)− c(x)= 2nx − x2
=−x(x − 2n)

while if m = 2n(2n
− 1), then

g◦m(x)− c(x)= x + 2n(2n
− 1)− x2

=−(x + 2n
− 1)(x − 2n),

so clearly there are infinitely many λ such that

(x − λ) | gcd( f ◦m(x)− c(x), g◦n(x)− c(x)),

for some positive integers m and n. On the other hand, if we restrict to the case
where m = n, then we may obtain a suitable finiteness result.

The techniques in this section are mostly from diophantine geometry. We use
these to prove Proposition 15 which treats the case where the coefficients of f , g,
and c are algebraic. We then derive Theorem 2 using some simple specialization
arguments. Theorem 3 then follows from Theorem 2 and Propositions 8 and 9.

3.1. Results from diophantine geometry. We will use the following version of
Roth’s Theorem (see [Lang 1983, Chapter 7, Theorem 1.1 and Remark (v)]).

Theorem 10. Let k be a number field, let α1, . . . , αn be distinct points in k, and let
S be a finite set of places of k. Then for any ε > 0, there are at most finitely many
β ∈ k such that

1
[k :Q]

(∑
v∈S

n∑
i=1

−min(log‖αi −β‖v, 0)+
∑
v∈S

max(log‖β‖v, 0)
)

≥ (2+ ε)h(β) (10.1)

The following is Siegel’s well-known theorem on the set of integral points of
curves of genus zero, which can be derived from Theorem 10 without difficulty.
We refer the reader to [Lang 1983, Chapter 8, Theorem 5.1] for a proof.
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Theorem 11. Let k be a number field. Let C be a complete nonsingular curve
of genus 0, defined over k, let S be a finite set of places of k containing all the
archimedean places, and let φ be a nonconstant function in k(C) with at least three
distinct poles. Then there are at most finitely many Q ∈ C(k) such that φ(Q) is an
S-integer.

As a corollary to Theorem 11, we have the following, which we will use to treat
the case where the coefficients of the linear terms of f and g are multiplicatively
dependent.

Proposition 12. Let W be a one-dimensional subtorus in G2
m defined over a number

field k and let S be a finite set of places of k containing all the archimedean places.
Let 8(X, Y )= P(X, Y )/Q(X, Y ) where P, Q ∈ k[X, Y ] are two relatively prime
polynomials neither of which is divisible by X or Y . Assume that 8 restricts to
a nonconstant rational function φ on W with at least a pole in W (k). Let 0 be a
finitely generated subgroup of W (k). Then, there are at most finitely many points
Q ∈ 0 such that φ(Q) is an S-integer.

Proof. Here, as usual, we consider G2
m to be the open subset of P2 with coordinates

[x : y : z] defined by x 6= 0, y 6= 0, z 6= 0. The functions X and Y are equal to x/z
and y/z with respect to these coordinates. By making a finite extension of k, we
assume that the poles of φ are all k-rational points of W . Moreover, because 0 is
finitely generated, we may assume, possibly after extending S to a larger finite set
of places, that the coordinates of all of the elements of 0 and all of poles of φ are
S-units. Let 0∗ be the union of 0 and the set of poles of φ.

Now, we fix a positive integer m> 3 and let µm :G
2
m→G2

m be the m-th powering
map. Namely, µm(X, Y ) = (Xm, Y m) for all (X, Y ) ∈ G2

m . By Kummer theory,
there exists a finite extension L over k such that the inverse image µ−1

m (0∗) of 0∗ is
contained in W (L). Let S′ denote the set of places of L that extend the places in S.

As µm : W → W is an unramified map of degree m we see that the function
φm :=φ◦µm is a rational function with at least m distinct poles on W . The subtorus
W is viewed as an affine curve in the projective plane P2

k and we denote its Zariski
closure in P2 by W . Note that φm extends to a rational function on W which we
still denote by φm . Let π : W̃ →W denote the normalization of W . Then, W̃ is a
projective smooth curve of genus 0. Furthermore, the function ψm := φm ◦π is a
rational function on W̃ with at least m distinct poles. On the other hand, the set of
L-rational points W (L) lift to the set W̃ (L).

Observe that for any point Q ∈ 0 such that φ(Q) is an S-integer, then ψm(Q′)
is an S′-integer where Q′ ∈ W̃ (L) is any point such that (µm ◦ π)(Q′) = Q. On
the other hand, since m ≥ 3, there are at most finitely many Q′ ∈ W̃ (L) such that
ψm(Q′) is an S′-integer by Theorem 11. Thus, there are at most finitely many Q
such that φ(Q) is an S-integer. �
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We will use the following lemma, due originally to Siegel [2014]. We provide a
proof in modern language for the sake of completeness.

Lemma 13. Let w be an element of a number field k, let y be a nonzero element
of k, and let S be a finite set of places of k including all the archimedean places.
Let ε > 0. Then

1
[k :Q]

∑
v /∈S

−min(log‖wn
− y‖v, 0)≥ (1− ε)nh(w), (13.1)

for all sufficiently large n.

Proof. We may assume that S contains all the places v of k such that ‖w‖v 6= 1.
Then applying Theorem 10, to the points 0 and y, we see that for any ε > 0, we have

1
[k :Q]

∑
v∈S

(−min(log‖wn
− y‖v, 0)−min(log‖wn

‖v, 0)+max(log‖wn
‖v, 0))

≤ (2+ ε)nh(w)+ O(1).

Since S contains all places such that ‖w‖ 6= 1, we have

1
[k :Q]

∑
v∈S

(−min(log‖wn
‖v, 0)+max(log‖wn

‖v, 0))= 2nh(w).

Thus,
1
[k :Q]

∑
v∈S

−min(log‖wn
− y‖v, 0)≤ εnh(w)+ O(1). (13.2)

Since
nh(w)≤ 1

[k :Q]

∑
v∈�k

−min(log‖wn
− y‖v, 0)+ O(1),

we see that (13.1) must hold. �

The following lemma will be used to treat the case where the coefficients of the
linear terms of f and g are multiplicatively independent.

Lemma 14. Let w1 and w2 be two multiplicatively independent elements of a
number field k, neither of which is a root of unity, and let y be a nonzero element
of k. Let S be a finite set of places of k including all the archimedean places. Then
for all sufficiently large n, there is a v /∈ S such that |wn

1 − y|v < |wn
2 − y|v ≤ 1.

Proof. We begin by showing that if w1 and w2 are multiplicatively independent,
then wn

1/y and wn
2/y are multiplicatively independent for all but at most finitely

many n. Note that if y is not in the multiplicative group generated by w1 and w2,
then wn

1/y and wn
2/y are multiplicatively independent for all n. Otherwise, we have

y`1 =w
`2
1 w

`3
2 for some integer `1 > 0 and some integers `2 and `3. Since it suffices

to prove our lemma for `1-th roots of w1 and w2 we may assume that we have
y = wi

1w
j
2 for some integers i and j . Now, if wn

1/(w
i
1w

j
2) and wn

2/(w
i
1w

j
2) are
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multiplicatively dependent, then we must have (n− i)(n− j)= (−i)(− j), since
w1 and w2 are multiplicatively independent. For all sufficiently large n, we clearly
have (n− i)(n− j) > (−i)(− j), so we are done.

By Theorem 1 and equation (1.2) of [Corvaja and Zannier 2005], we see that for
any ε > 0, there is a constant Cε such that

1
[k :Q]

∑
v∈�k

− log−max(‖wn
1 − y‖v, ‖wn

2 − y‖v) < εnh(w1)+Cε, (14.1)

where log−( · )=min(0, log( · )). We may enlarge S to include the place v where
|w1|v > 1 or |y|v > 1. Suppose that for a positive integer n, inequalities |wn

1− y|v ≥
|wn

2 − y|v hold for all v 6∈ S. Then, from (14.1) we have that

εnh(w1)+Cε ≥
1
[k :Q]

∑
v∈�k

(−min(0,max{log‖wn
1 − y‖v, log‖wn

2 − y‖v})

≥
1
[k :Q]

∑
v 6∈S

−min(0, log‖wn
1 − y‖v)

≥ (1− ε)nh(w1),

where the last inequality follows from (13.1). Taking ε= 1
3 , we see that there are only

finitely many positive integers n such that the above inequality holds. Hence, for all
sufficiently large n there is a v 6∈ S such that |wn

1−y|v< |wn
2−y|v≤1, as desired. �

3.2. Proofs of Theorems 2 and 3. We are now ready to treat the case where f
and g are linear polynomials, and f , g, and c all have algebraic coefficients. The
proof breaks into several cases. The first case is when c is constant; this case is
already treated in [Ghioca et al. 2008]. The idea in all of the other cases is the same:
to force certain quantities coming from any solutions to f ◦n(x)= c(x)= g◦n(x) to
have poles outside a finite set and then derive contradictions from the existence of
these poles to show that there are no solutions to f ◦n(x)= c(x)= g◦n(x) when n
is sufficiently large.

Proposition 15. Let f (x)= αx and g(x)= βx+γ where α, β, and γ are nonzero
algebraic numbers such that α is not a root of unity, αβ is not a root of unity, β
is not a root of unity other than 1, and γ 6= 0. Let c(x) be any polynomial with
coefficients in Q. Then for all but at most finitely many n, we have

gcd( f ◦n(x)− c(x), g◦n(x)− c(x))= 1. (15.1)

Proof. Suppose that there are infinitely many n such that (15.1) does not hold. Let
n be an integer such that gcd( f ◦n(x)− c(x), g◦n(x)− c(x)) 6= 1. Then there exists
a λn ∈Q such that

(x − λn) | gcd( f ◦n(x)− c(x), g◦n(x)− c(x))
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and thus, f ◦n(λn)= c(λn)= g◦n(λn).
In the following, we break the proof into four cases and show a contradiction in

each case.

Case I. Suppose that c is a constant. Let θ be the compositional inverse of f and
let τ be the compositional inverse of g. We observe that if f ◦n(λ) = g◦n(λ) = c
then θ◦n(c) = τ ◦n(c). By [Ghioca et al. 2008, Proposition 5.4], this implies that
either θ and τ have a common iterate or that c is periodic under both θ and τ . Since
θ = α−1x , we see that zero is the only periodic point of θ . Since τ = x/β − γ /β,
we see that the constant term of τ ◦n is always nonzero, so 0 cannot be a periodic
point of τ . Thus, there is an n such that θ◦n = τ ◦n , which means that f and g have
a common iterate. Since the constant term of g◦n is nonzero for all n, we see that
f and g cannot have a common iterate, which gives a contradiction.

In the following, we assume that deg c ≥ 1.

Case II. Assume that β = 1. Then

λn =
nγ

αn − 1
.

Let S be the set of places v that are archimedean or where α, γ , or a coefficient of c
has v-adic absolute value not equal to 1. Assume that λn is an S-integer. Then,

h(λn)=
1

[K :Q]

∑
v∈S

max
(

0, log
∥∥∥∥ nγ
αn − 1

∥∥∥∥
v

)
≤

1
[K :Q]

∑
v∈S

{
max

(
0, log

∥∥∥∥ 1
αn − 1

∥∥∥∥
v

)
+max(0, log‖nγ ‖v)

}
=

1
[K :Q]

∑
v∈S

max
(

0, log
∥∥∥∥ 1
αn − 1

∥∥∥∥
v

)
+ h(nγ )

≤
1

[K :Q]

∑
v∈S

max
(

0, log
∥∥∥∥ 1
αn − 1

∥∥∥∥
v

)
+ log n+ O(1). (15.2)

Let ε > 0 be given. By (13.2), there exists a constant Cε such that

1
[K :Q]

∑
v∈S

max
(

0, log
∥∥∥∥ 1
αn − 1

∥∥∥∥
v

)
≤ εnh(α)+Cε . (15.3)

On the other hand, there is a constant D = D(γ ) such that

h(λn)= h
(

nγ
αn − 1

)
≥ nh(α)− h(n)− D = nh(α)− log n− D.

Fixing a positive ε < 1 and combing (15.2) with (15.3), we see that λn cannot
be an S-integer if n is large enough. Therefore, for n large there exists a place
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v outside of S such that |λn|v > 1. If deg c > 1, then |c(λ)|v = |λv|deg c but
| f ◦n(λn)| = |α

nλn|v = |λn|v. This gives a contradiction.
If deg c= 1, then we write c(x)= t x+u and note that since f ◦n(λn)= g◦n(λn)=

c(λn), we must have
λn =

u− nγ
1− t

=
u

αn − t
.

If u 6= 0 and n is large, then by enlarging S to contain the places v where |1−t |v 6= 1,
then (u − nγ )/(1 − t) is an S-integer for all n. On the other hand, by taking
8(X, Y ) = u/(X − t) in Proposition 12, we see that u/(αn

− t) cannot be an
S-integer for n sufficiently large. This gives a contradiction. If u = 0, then we have
λn = α

nλn = tλn = g◦n(λn), which has no solutions when αn
6= t , and thus has a

solution for at most one n, since α is not a root of unity. Thus the proof of this case
is complete.

We assume in the following that β 6= 1. Note that when αn
= βn , there is

no solution to f ◦n(x) = g◦n(x) and that when αn
6= βn , the unique solution to

f ◦n(x)= c(x)= g◦n(x) is given by

λn =
(βn
− 1)γ

(β − 1)(αn −βn)
. (15.4)

Case III. Suppose that α and β are multiplicatively dependent. Then, the point
P = (α, β) is in a one-dimensional subtorus W of G2

m . Let S be the set of places v
that are archimedean or where α, γ , β− 1, or a coefficient of c has v-adic absolute
value not equal to 1. Then, by taking 8(X, Y )= (Y − 1)/(X − Y ) and 0 to be the
group generated by P in Proposition 12, we see that for all sufficient large n there
exists a place v outside of S such that∣∣∣∣ βn

− 1
αn −βn

∣∣∣∣
v

> 1.

It follows that for such v we have |λn|v > 1. Observe that on the one hand,
| f ◦n(λn)|v = |α

nλn|v = |λn|v while on the other hand, we have | f ◦n(λn)|v =

|c(λn)|v = |λn|
deg c
v . This gives a contradiction if deg c > 1.

If deg c = 1, we write c(x)= t x + u, t 6= 0. If f ◦n(λn)= c(λn)= g◦n(λn) then
we have

λn =
u− γ β

n
−1

β−1

βn − t
=

u
αn − t

. (15.5)

From this we deduce that

u
(
βn
− t

αn − t

)
= u−

(
γ

β − 1

)
(βn
− 1). (15.6)

Note that the right-hand side of (15.6) is an S-integer. However, by taking8(X, Y )=
(Y − t)/(X− t) in Proposition 12 we conclude that for n large enough the left-hand
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side of (15.6) is not an S-integer. This leads to a contradiction and completes the
proof in this case.

Case IV. Suppose that α and β are multiplicatively independent. Let S be the set
of places v that are archimedean or where α, γ , or a coefficient of c has v-adic
absolute value not equal to 1.

Suppose that deg c > 1. Then, applying Lemma 14 to βn
− 1 and (α/β)n − 1,

we see that there is a place v outside of S such that |λn|v > 1. Again, if deg c > 1,
this gives a contradiction since |c(λ)|v = |λv|deg c but | f ◦n(λn)| = |α

nλn|v = |λn|v .
Now suppose that deg c= 1. Again, we write c(x)= t x+u. Then we also have

λn =
u− γ β

n
−1

β−1

βn − t
=

u
αn − t

. (15.7)

This is equivalent to

1−
γ (βn

− 1)
u(β − 1)

=
βn
− t

αn − t
. (15.8)

We enlarge S to include all the places such that u or β−1 are S-unit. Then applying
Lemma 14, we see that for all sufficiently large n, there is a place v 6∈ S such that
|αn
− t |v < |βn

− t |v ≤ 1. For this v, we see that the left-hand side of (15.8) is a
v-adic integer while the right-hand side is not. Therefore, (15.7) cannot hold for
n sufficiently large. �

Remark. To see that Proposition 15 does not hold in general if αβ is a root of
unity, consider the case where f (x) = x/2, g(x) = 2x + 1 and c(x) = −(x + 1).
Then for any n, the common root of f ◦n and g◦n is

2n
− 1

2−n − 2n =−2n 2n
− 1

22n − 1
=
−2n

2n + 1
.

while the common root of f ◦n and c(x) is

−1( 1
2

)n
+ 1
=
−2n

2n + 1
.

Thus, for every positive integer n, there is a λn such that

f ◦n(λn)− c(λn)= g◦n(λn)− c(λn)= 0.

We can now prove Theorem 2 by specializing from C to a number field.

Proof of Theorem 2. First we note that any nonconstant affine map x 7→ ax + b has
a fixed point unless a = 1. Any two monic linear polynomial must commute with
each other. Thus, we may assume that at least one of f and g has a fixed point.
Without loss of generality, we may assume that f has a fixed point. After a possible
change of coordinates, we may then write f (x)= αx and g(x)= βx + γ .
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If α is a root of unity, then f and g are not compositionally independent since f
itself has finite order, so α must not be a root of unity. Similarly, if β is a root of
unity other than one, then g has finite order so that f and g are not compositionally
independent either. We may therefore assume that β is not a root of unity other than
one. Finally, we see that if there are integers i and j such that αiβ j

= 1, then the
linear terms in f ◦i g◦ j and g◦ j f ◦i are both 1, which means that f ◦i g◦ j and g◦ j f ◦i

commute. This would imply f and g are not compositionally dependent, so we
may assume that there are no positive integer i and j such that αiβ j

= 1.
As in the proof of Proposition 15, we assume that there are infinitely many n

such that (15.1) does not hold. Let K be the field generated by α, β, and γ over
Q, and let R be the ring generated over Z by α, β, γ , and the coefficients of c.
Observe that any solution λn to f ◦n(λn)= g◦n(λn)= c(λn) must lie in K . By our
assumption, there are infinitely many such n, so c takes infinitely many values in
K to other values in K so c ∈ K [x]. Hence, we may assume that c ∈ K [x].

If α, β, and γ are in Q, then we are done by Proposition 15. If K has positive
transcendence degree over Q, then there exists a specialization map t from R to
Q such that γt 6= 0 and αt , βt , αtβt , and αt/βt are not roots of unity. We may
prove this, for example, by induction on the transcendence degree of Q(α, β, γ ). If
the transcendence degree is 0, there is nothing to prove. If it is n, take a subfield
L of transcendence degree of n − 1 in K . Then, by [Call and Silverman 1993,
Theorem 4.1], for all specializations s from R to L̄ of sufficiently large height, we
have that γs 6= 0 and that αs , βs , αsβs , and αs/βs are not roots of unity. We then
apply the inductive hypothesis on the transcendence degree to Q(αs, βs, γs).

Let ft = αt x , gt = βt x + γt , and ct be the polynomial obtained by specializing
all the coefficient of c at t . Now, if gcd( f ◦n(x)− c(x), g◦n(x)− c(x)) 6= 1, then
gcd( f ◦nt (x)− ct(x), g◦nt (x)− ct(x)) 6= 1. But there are at most finitely many n
such that gcd( f ◦nt (x)− ct(x), g◦nt (x)− ct(x)) 6= 1, by Proposition 15, which gives
a contradiction, and finishes our proof. �

Remark. We note that by Proposition 15, the condition needed for Theorem 2 is
weaker than compositional dependency, since Proposition 15 holds unless the linear
term of f ◦ g is a root of unity. Mike Zieve has shown us that something similar
is true for polynomials of higher degree, namely that the sorts of compositional
dependencies that may arise all take a specific form.

We now prove Theorem 3.

Proof of Theorem 3. The case where f and g are both linear is covered by Theorem 2,
so we may assume that either both f and g are nonlinear or that g is linear and f
is not.

By Propositions 8 and 9, there are at most finitely many λ such that (x−λ) divides
gcd( f ◦n(x)− c(x), g◦n(x)− c(x)) for some n such that f ◦n 6= c and g◦n 6= c. Let
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S denote the set of such λ. Since f and g are compositionally independent, there is
at most one N such that f ◦N = c or g◦N = c exclusively. If such an N exists, let T

denote the set of λ such that (x−λ) divides gcd( f ◦N (x)−c(x), g◦N (x)−c(x)). We
observe that T must be finite since otherwise we would have f ◦N−c= 0= g◦N−c.
However, this cannot happen because f and g are compositionally independent.
Any λ such that (x − λ) divides gcd( f ◦n(x)− c(x), g◦n(x)− c(x)) is in S∪T, so
our proof is complete �

4. Proof of Theorem 4

Theorem 4 is now an easy consequence of the following lemma. To state the lemma,
we introduce a small bit of new notation: for any nonzero polynomial q(x) we
let vλ(q) denote the largest positive integer e such that (x − λ)e divides q when
(x − λ) | q and let vλ(q)= 0 if (x − λ) does not divide q .

Lemma 16. Let q be a polynomial in C[x] of degree greater than one and let
c(x)∈C[x] be a polynomial that is not equal to a constant that is in a ramified cycle
of f . Let λ ∈ C. Then there is a constant Mλ,q such that vλ(q◦n(x)− c(x))≤ Mλ,q

for all n such that q◦n(x) 6= c(x).

Proof. We write c(x) =
∑dc

i=0 ci (x − λ)i as a polynomial in (x − λ). If there are
finitely many n such that vλ(q◦n(x)− c(x)) > 0, then the proof is immediate. Thus,
we assume that there are infinitely many n such that vλ(q◦n(x)−c(x))>0. It follows
that q◦n(λ) = c0 for infinitely many n, so c0 must be periodic under q. Let ` be
the smallest positive integer such that q◦`(λ)= c0 and let r be the smallest positive
integer such that q◦r (c0)= c0. Then we see that vλ(q◦n(x)− c(x)) > 0 if and only
if n can be written as `+ kr for some k. We write q◦r (x)=

∑dr
i=0 ai (x − c0)

i and
q◦`(x)=

∑d`
j=0 b j (x − λ) j . Let e be the smallest positive integer such that be 6= 0.

Suppose now that c(x)= c0 is a constant. By assumption, c0 is not in a ramified
cycle of q , thus a1 6= 0 in this case. Then by induction we find that

q◦(`+rk)(x)= c0+ ak
1be(x − λ)e+ higher order terms in (x − λ),

so vλ(q◦(`+rk)(x)− c)= e for all k.
Suppose now that c(x) is not a constant. We may suppose that there are infinitely

many n such that vλ(q◦n(x)− c(x)) > e since otherwise the lemma clearly holds.
Note that it’s possible that c0 is in a ramified cycle of q. In any case, let u be the
smallest integer such that au 6= 0.

We first assume that u = 1. Equivalently, c0 is not in a ramified cycle of q . Then,
we must have ak

1be = ce for infinitely many k. Since a1be 6= 0, this means that a1

must be a root of unity. Suppose that as
1 = 1. Then we may write

q◦rs(x)= c0+ (x − c0)+αd(x − c0)
d
+ O((x − c0)

d+1),
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for some d > 0 with αd 6= 0. It follows that for any k, we have

q◦rsk(x)= c0+ (x − c0)+ kαd(x − c0)
d
+ O((x − c0)

d+1).

Now, let g(x)=
∑
∞

i=0 βi (x − λ)i be any nonconstant polynomial in (x − λ) such
that β0 = c0. Let t be the smallest positive integer such that βt 6= 0. Then, for
any k, the coefficient of (x − λ)td in q◦rsk

◦ g is kαdβ
d
t + βtd . Since αd 6= 0,

there are in particular at most finitely many k such that the coefficient of (x − λ)td

in q◦rsk
◦ g is equal to ctd . Thus, there are at most finitely many k such that

vλ(q◦rsk
◦g(x)−c(x)) > td , and hence vλ(q◦rsk

◦g(x)−c(x)) is bounded for all k.
Applying this to g = q◦y for y = `, `+ r, . . . , `+ (s − 1)r completes our proof,
since any number of the form `+ kr can be written as y+ krs for some such y.

Assume now that u > 1. Then, by induction

q◦`+rk(x)= c0+ a(u
k
−1)/(u−1)

u buk

e (x − λ)
euk
+ O((x − λ)euk

+1).

So, vλ(q◦n(x)−c(x))≤ deg c for all sufficiently large k. Hence, vλ(q◦n(x)−c(x))
is bounded above by a constant depending on λ and q only. �

Remark. We note that in Lemma 16, if vλ(q◦n(x)− c(x)) > 0 then the integer n
is in a congruence class `+ r N for some positive integer r . In fact, r is the least
period of c0 = c(λ) under the action of q .

Proof of Theorem 4. We may assume without loss of generality that c is not in a
ramified cycle of f . By Theorem 1, there are at most finitely many λ such that
(x−λ) divides gcd( f ◦m(x)−c(x), g◦n(x)−c(x)) for some m and n. Let S be the
set of all such λ. By Lemma 16, there is an Mλ such that vλ(q◦n(x)−c(x))≤ Mλ,q

for all n, since c is not a compositional power of f . Then, if

h(x)=
∏
λ∈S

(x − λ)Mλ,

we see that
gcd( f ◦m(x)− c(x), g◦n(x)− c(x)) | h(x),

for all m and n, as desired. �

5. Further directions

Many of these techniques may work more generally. We close with several questions.
Silverman [2004a] showed that the characteristic p function field analog of the

theorem of Bugeaud, Corvaja, and Zannier theorem is not true; in particular, one can
find multiplicatively independent polynomials a, b ∈ Fq [x] (where Fq is as usual the
finite field with q elements) and an ε > 0 such that deg(gcd(an

− 1, bn
− 1)) > εn

for infinitely many n. Similarly, we suspect that one can find compositionally
independent polynomials f, g ∈ Fq [x], an ε > 0, and a c(x) ∈ Fq [x] that is not a
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compositional power of f or g such that deg(gcd( f ◦n(x)−c(x),g◦n(x)−c(x)))>εn
for infinitely many n. On the other hand, one might ask the following question in
characteristic p. See also [Ghioca et al. 2017a, Corollary 17] for an answer to a
slightly different question.

Question 17. Let F = Fq [T ] be the polynomial ring in one variable over the
finite field with q elements. Let f and g be two compositionally independent
nonisotrivial polynomials in F[x], and let c ∈ F[x]. Is it true that there are
at most finitely many λ ∈ F such that there is an n for which (x − λ) divides
gcd( f ◦n(x)− c(x), g◦n(x)− c(x))? Given an ε > 0 and assuming that c(x) is not
in a ramified cycle of f and g, is it even true that

deg(gcd( f ◦n(x)− c(x), g◦n(x)− c(x))) < εn

for all but finitely many n?

We might also ask for characteristic 0 results in more general settings.

Question 18. Let φ1, φ2 : P
1
C
→ P1

C
be two nonconstant, compositionally indepen-

dent morphisms. Let c : P1
C
→ P1

C
be any morphism. It is true that there must be at

most finitely many λ ∈ C such that φ◦n1 (λ)= φ
◦n
2 (λ)= c(λ)?

We should note that the counterexamples to the dynamical Manin–Mumford
conjecture given in [Ghioca et al. 2011] do not yield counterexamples here in an
obvious way, since the Lattés maps given there commute with each other and hence
they are not compositionally independent.

For more general varieties, we ask the following.

Question 19. Let V be a variety defined over C and let φ1, φ2 : V → V be two
dominant compositionally independent morphisms. Let c : V→ V be any morphism.
Is it true that the set of λ∈V (C) such that φ◦n1 (λ)=φ

◦n
2 (λ)=c(λ)must be contained

in a proper Zariski closed subset of V ?

In the case where V is projective and some iterates of φ1 and φ2 extend to
maps on projective space of degree greater than one (the case where φ1 and φ2 are
“polarizable” in the language of Zhang [2006]), it may be possible, using higher
dimensional results such as those of [Yuan 2008; Gubler 2008; Yuan and Zhang
2017], to show that hφ1 = hφ2 whenever the λ such that φn

1 (λ)= φ
n
2 (λ)= c(λ) are

Zariski dense. On the other hand, that may not imply a compositional dependence
between φ1 and φ2. One natural place to look for counterexamples might be abelian
varieties with quaternion endomorphism rings.

Finally, it is natural to ask for a result along the lines of [Bugeaud et al. 2003]
where one considers iterates of integers under polynomial maps rather than sim-
ply powers of integers. More precisely, one might hope that for a, b ∈ Z, two
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polynomials f, g ∈ Z[x] of degree d > 1, and an ε > 0, the inequality

gcd( f ◦n(a), g◦n(b)) < εdn

should hold for all but at most finitely many n, given reasonable conditions on f , g, a,
and b. Huang [2017] has shown that such an inequality must indeed hold for all suffi-
ciently large n whenever the sequence ( f ◦n(a), g◦n(b))n is Zariski dense in A2 if one
assumes Vojta’s conjecture for heights with respect to canonical divisors on surfaces
(see [Vojta 1987, Conjecture 3.4.3]). The proof uses an idea of Silverman [2005],
which relates the original results of [Bugeaud et al. 2003] to Vojta’s conjecture.
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