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Suppose that R is a 2-dimensional excellent local domain with quotient field K ,
K ∗ is a finite separable extension of K and S is a 2-dimensional local domain
with quotient field K ∗ such that S dominates R. Suppose that ν∗ is a valuation of
K ∗ such that ν∗ dominates S. Let ν be the restriction of ν∗ to K . The associated
graded ring grν(R) was introduced by Bernard Teissier. It plays an important
role in local uniformization. We show that the extension (K , ν)→ (K ∗, ν∗) of
valued fields is without defect if and only if there exist regular local rings R1 and
S1 such that R1 is a local ring of a blowup of R, S1 is a local ring of a blowup of
S, ν∗ dominates S1, S1 dominates R1 and the associated graded ring grν∗(S1) is a
finitely generated grν(R1)-algebra.

We also investigate the role of splitting of the valuation ν in K ∗ in finite
generation of the extensions of associated graded rings along the valuation. We
say that ν does not split in S if ν∗ is the unique extension of ν to K ∗ which
dominates S. We show that if R and S are regular local rings, ν∗ has rational rank 1
and is not discrete and grν∗(S) is a finitely generated grν(R)-algebra, then S is a
localization of the integral closure of R in K ∗, the extension (K , ν)→ (K ∗, ν∗)
is without defect and ν does not split in S. We give examples showing that such
a strong statement is not true when ν does not satisfy these assumptions. As a
consequence, we deduce that if ν has rational rank 1 and is not discrete and if
R→ R′ is a nontrivial sequence of quadratic transforms along ν, then grν(R

′) is
not a finitely generated grν(R)-algebra.

Suppose that K is a field. Associated to a valuation ν of K is a value group
8ν and a valuation ring Vν with maximal ideal mν . Let R be a local domain with
quotient field K . We say that ν dominates R if R⊂ Vν and mν∩R=mR , where mR

is the maximal ideal of R. We have an associated semigroup SR(ν)={ν( f ) | f ∈ R},
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as well as the associated graded ring along the valuation

grν(R)=
⊕
γ∈8ν

Pγ (R)/P+γ (R)=
⊕

γ∈SR(ν)

Pγ (R)/P+γ (R), (1)

which is defined in [Teissier 2003]. Here

Pγ (R)= { f ∈ R | ν( f )≥ γ } and P+γ (R)= { f ∈ R | ν( f ) > γ }.

This ring plays an important role in local uniformization of singularities [Teissier
2003; 2014]. The ring grν(R) is a domain, but it is often not Noetherian, even when
R is.

Suppose that K → K ∗ is a finite extension of fields and ν∗ is a valuation which
is an extension of ν to K ∗. We have the classical indices

e(ν∗/ν)= [8ν∗ :8ν] and f (ν∗/ν)= [Vν∗/mν∗ : Vν/mν]

as well as the defect δ(ν∗/ν) of the extension. Ramification of valuations and
the defect are discussed in [Zariski and Samuel 1960, Chapter VI; Endler 1972;
Kuhlmann 2000; 2010]; a survey is given in [Cutkosky and Piltant 2004, Section 7.1].
By Ostrowski’s lemma, if ν∗ is the unique extension of ν to K ∗, we have that

[K ∗ : K ] = e(ν∗/ν) f (ν∗/ν)pδ(ν
∗/ν), (2)

where p is the characteristic of the residue field Vν/mν . From this formula, the
defect can be computed using Galois theory in an arbitrary finite extension. If
Vν/mν has characteristic 0, then δ(ν∗/ν)= 0 and pδ(ν

∗/ν)
= 1, so there is no defect.

Further, if 8ν = Z and K ∗ is separable over K then there is no defect.
If K is an algebraic function field over a field k, then an algebraic local ring R of

K is a local domain which is essentially of finite type over k and has K as its field
of fractions. In [Cutkosky 1999], it is shown that if K → K ∗ is a finite extension
of algebraic function fields over a field k of characteristic 0, ν∗ is a valuation of
K ∗ (which is trivial on k) with restriction ν to K and if R→ S is an inclusion of
algebraic regular local rings of K and K ∗ such that ν∗ dominates S and S dominates
R, then there exists a commutative diagram

R1 // S1

R

OO

// S

OO

(3)

where the vertical arrows are products of blowups of nonsingular subschemes along
the valuation ν∗ (monoidal transforms) and R1→ S1 is dominated by ν∗ and is a
monomial mapping; that is, there exist regular parameters x1, . . . , xn in R1, regular
parameters y1, . . . , yn in S1, units δi ∈ S1, and a matrix A= (ai j ) of natural numbers
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with Det(A) 6= 0 such that

xi = δi

n∏
j=1

yai j
j for 1≤ i ≤ n. (4)

In [Cutkosky and Piltant 2004], it is shown that this theorem is true, giving a mono-
mial form of the mapping (4) after appropriate blowing up (3) along the valuation,
if K → K ∗ is a separable extension of two dimension algebraic function fields over
an algebraically closed field, which has no defect. This result is generalized to the
situation of this paper, namely when R is a 2-dimensional excellent local ring, in
[Cutkosky 2016b]. However, it may be that such monomial forms do not exist, even
after blowing up, if the extension has defect, as is shown by examples in [Cutkosky
2015].

In the case when k has characteristic 0 and for separable defectless extensions of
2-dimensional algebraic function fields in positive characteristic, it is further shown
in [Cutkosky and Piltant 2004] that the expressions (3) and (4) are stable under
further simple sequences of blowups along ν∗ and the form of the matrix A stably
reflects invariants of the valuation.

We always have an inclusion of graded domains grν(R)→ grν∗(S) and the index
of their quotient fields is

[QF(grν∗(S)) : QF(grν(R))] = e(ν∗/ν) f (ν∗/ν), (5)

as shown in [Cutkosky 2016a, Proposition 3.3]. Comparing with Ostrowski’s
lemma (2), we see that the defect has disappeared in (5).

Even though QF(grν∗(S)) is finite over QF(grν(R)), it is possible for grν∗(S) to
not be a finitely generated grν(R)-algebra. Examples showing this for extensions
R→ S of 2-dimensional algebraic local rings over arbitrary algebraically closed
fields are given in Example 9.4 of [Cutkosky and Vinh 2014].

It was shown by Ghezzi, Hà and Kashcheyeva [Ghezzi et al. 2006] for extensions
of 2-dimensional algebraic function fields over an algebraically closed field k of
characteristic 0, and later by Ghezzi and Kashcheyeva [2007] for defectless separable
extensions of 2-dimensional algebraic functions fields over an algebraically closed
field k of positive characteristic, that there exists a commutative diagram (3) such
that grν∗(S1) is a finitely generated grν(R1)-algebra. Further, this property is stable
under further suitable sequences of blowups.

In [Cutkosky 2016a, Theorem 1.6], it is shown that for algebraic regular local
rings of arbitrary dimension, if the ground field k is algebraically closed of character-
istic 0 and the valuation has rank 1 and is 0-dimensional (Vν/mν = k), then we can
also construct a commutative diagram (3) such that grν∗(S1) is a finitely generated
grν(R1)-algebra, and this property is stable under further suitable sequences of
blowups.
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An example is given in [Cutkosky and Piltant 2004] of an inclusion R→ S in
a separable defect extension of 2-dimensional algebraic function fields such that
grν∗(S1) is stably not a finitely generated grν(R1)-algebra in diagram (3) under
sequences of blowups. This raises the question of whether the existence of a finitely
generated extension of associated graded rings along the valuation implies that K ∗

is a defectless extension of K .
We find that we must impose the condition that K ∗ is a separable extension

of K to obtain a positive answer to this question, as there are simple examples
of inseparable defect extensions such that grν∗(S) is a finitely generated grν(R)-
algebra, such as in the following example, which is Example 8.6 of [Kuhlmann
2000]. Let k be a field of characteristic p > 0 and k((x)) the field of formal power
series over k with the x-adic valuation νx . Let y ∈ k((x)) be transcendental over k(x)
with νx(y) > 0. Let ỹ = y p, and K = k(x, ỹ)⊂ K ∗ = k(x, y). Let ν∗ = νx |K ∗ and
ν = νx |K . Then we have equality of value groups 8ν =8ν∗ = ν(x)Z and equality
of residue fields of valuation rings Vν/mν = Vν∗/mν∗ = k, so e(ν∗/ν) = 1 and
f (ν∗/ν)= 1. We have that ν∗ is the unique extension of ν to K ∗ since K ∗ is purely
inseparable over K . By Ostrowski’s lemma (2), the extension (K , ν)→ (K ∗, ν∗) is
a defect extension with defect δ(ν∗/ν)= 1. Let R= k[x, ỹ](x,ỹ)→ S= k[x, y](x,y).
Then we have equality

grν(R)= k[t] = grν∗(S),

where t is the class of x .
In this paper we show that the question does have a positive answer for separable

extensions in the following theorem.

Theorem 0.1. Suppose that R is a 2-dimensional excellent local domain with
quotient field K . Further suppose that K ∗ is a finite separable extension of K and
S is a 2-dimensional local domain with quotient field K ∗ such that S dominates R.
Suppose that ν∗ is a valuation of K ∗ such that ν∗ dominates S. Let ν be the
restriction of ν∗ to K . Then the extension (K , ν)→ (K ∗, ν∗) is without defect if
and only if there exist regular local rings R1 and S1 such that R1 is a local ring of a
blowup of R, S1 is a local ring of a blowup of S, ν∗ dominates S1, S1 dominates R1

and grν∗(S1) is a finitely generated grν(R1)-algebra.

We immediately obtain the following corollary for 2-dimensional algebraic
function fields.

Corollary 0.2. Suppose K → K ∗ is a finite separable extension of 2-dimensional
algebraic function fields over a field k and ν∗ is a valuation of K ∗ with restriction ν
to K . Then the extension (K , ν)→ (K ∗, ν∗) is without defect if and only if there
exist algebraic regular local rings R of K and S of K ∗ such that ν∗ dominates S, S
dominates R and grν∗(S) is a finitely generated grν(R)-algebra.
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We see from Theorem 0.1 that the defect, which is completely lost in the extension
of quotient fields of the associated graded rings along the valuation (5), can be
recovered from knowledge of all extensions of associated graded rings along the
valuation of regular local rings R1→ S1 within the field extensions which dominate
R→ S and are dominated by the valuation.

The fact that there exists R1→ S1 as in the conclusions of the theorem if the
assumptions of the theorem hold and the extension is without defect is proven
within 2-dimensional algebraic function fields over an algebraically closed field
in [Ghezzi et al. 2006; Ghezzi and Kashcheyeva 2007], and in the generality of
the assumptions of Theorem 0.1 in Theorems 4.3 and 4.4 of [Cutkosky 2016b].
Further, if the assumptions of the theorem hold and δ(ν∗/ν) 6= 0, then the value
group 8ν∗ is not finitely generated by [Cutkosky and Piltant 2004, Theorem 7.3] in
the case of algebraic function fields over an algebraically closed field. With the full
generality of the hypothesis of Theorem 0.1, the defect is zero by [Endler 1972,
Corollary 18.7] in the case of discrete rank 1 valuations and the defect is zero by
[Cutkosky 2016b, Theorem 3.7] in the case of rational rank 2 valuations, so by
Abhyankar’s inequality [Abhyankar 1956, Proposition 2] or [Zariski and Samuel
1960, Appendix 2], if δ(ν∗/ν) 6= 0, then the value group 8ν∗ has rational rank 1 and
is not discrete and Vν∗/mν∗ is algebraic over S/mS . Thus, to prove Theorem 0.1,
we have reduced to the following proposition, which we establish in this paper.

Proposition 0.3. Suppose that R is a 2-dimensional excellent local domain with
quotient field K . Further suppose that K ∗ is a finite separable extension of K and
S is a 2-dimensional local domain with quotient field K ∗ such that S dominates R.
Suppose that ν∗ is a valuation of K ∗ such that ν∗ dominates S. Let ν be the
restriction of ν∗ to K .

Suppose that ν∗ has rational rank 1 and ν∗ is not discrete. Further suppose that
there exist regular local rings R1 and S1 such that R1 is a local ring of a blowup
of R, S1 is a local ring of a blowup of S, ν∗ dominates S1, S1 dominates R1 and
grν∗(S1) is a finitely generated grν(R1)-algebra. Then δ(ν∗/ν)= 0.

Another factor in the question of finite generation of extensions of associated
graded rings along a valuation is the splitting of ν in K ∗. We say that ν does not
split in S if ν∗ is the unique extension of ν to K ∗ such that ν∗ dominates S. After a
little blowing up, we can always obtain nonsplitting, as the following lemma shows.

Lemma 0.4. Given an extension R→ S as in the hypotheses of Theorem 0.1, there
exists a normal local ring R′ which is a local ring of a blowup of R such that ν
dominates R′, and if

R1 // S1

R

OO

// S

OO
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is a commutative diagram of normal local rings, where R1 is a local ring of a
blowup of R and S1 is a local ring of a blowup of S, ν∗ dominates S1 and R1

dominates R′, then ν does not split in S1.

Lemma 0.4 will be proven in Section 1. We have the following theorem.

Theorem 0.5. Suppose that R is a 2-dimensional excellent regular local ring with
quotient field K . Further suppose that K ∗ is a finite separable extension of K
and S is a 2-dimensional regular local ring with quotient field K ∗ such that S
dominates R. Suppose that ν∗ is a valuation of K ∗ such that ν∗ dominates S. Let ν
be the restriction of ν∗ to K . Further suppose that ν∗ has rational rank 1 and ν∗ is
not discrete. Suppose that grν∗(S) is a finitely generated grν(R)-algebra. Then S is
a localization of the integral closure of R in K ∗, δ(ν∗/ν)= 0 and ν∗ does not split
in S.

We give examples showing that the condition that ν∗ has rational rank 1 and
is not discrete in Theorem 0.5 are necessary. As an immediate consequence of
Theorem 0.5, we obtain the following corollary.

Corollary 0.6. Suppose that R is a 2-dimensional excellent regular local ring with
quotient field K . Suppose that ν is a valuation of K such that ν dominates R.
Further suppose that ν has rational rank 1 and ν is not discrete. Suppose that
R→ R′ is a nontrivial sequence of quadratic transforms along ν. Then grν(R

′) is
not a finitely generated grν(R)-algebra.

Michel Vaquié [2007] extended Mac Lane’s theory of key polynomials [Mac Lane
1936] to show that if (K , ν)→ (K ∗, ν∗) is a finite extension of valued fields with
δ(ν∗/ν)= 0 and ν∗ is the unique extension of ν to K ∗, then ν∗ can be constructed
from ν by a finite sequence of augmented valuations. This suggests that a converse
of Theorem 0.5 may be true.

1. Local degree and defect

We will use the following criterion to measure defect. This result is implicit in
[Cutkosky and Piltant 2004] with the assumptions of Proposition 0.3.

Proposition 1.1 [Cutkosky 2016b, Proposition 3.4]. Suppose R is a 2-dimensional
excellent local domain with quotient field K . Further suppose that K ∗ is a finite
separable extension of K and S is a 2-dimensional local domain with quotient field
K ∗ such that S dominates R. Suppose that ν∗ is a valuation of K ∗ such that ν∗

dominates S, the residue field Vν∗/mν∗ of Vν∗ is algebraic over S/mS and the value
group8ν∗ of ν∗ has rational rank 1. Let ν be the restriction of ν∗ to K . There exists
a local ring R′ of K which is essentially of finite type over R, is dominated by ν and
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dominates R such that if we have a commutative diagram

Vν // Vν∗

R1 //

OO

S1

OO

R′

OO

R

OO

// S

OO

(6)

where

• R1 is a regular local ring of K which is essentially of finite type over R and
dominates R,

• S1 is a regular local ring of K ∗ which is essentially of finite type over S and
dominates S, and

• R1 has a regular system of parameters u, v and S1 has a regular system of
parameters x, y such that there is an expression

u = γ xa, v = xb f,

where a > 0, b ≥ 0, γ is a unit in S, x - f in S1 and f is not a unit in S1,

then
ad[S1/mS1 : R1/m R1] = e(ν∗/ν) f (ν∗/ν)pδ(ν

∗/ν), (7)

where d = ν̄( f mod x) with ν̄ being the natural valuation of the DVR S/x S.

Proof of Lemma 0.4. Let ν1 = ν
∗, ν2, . . . , νr be the extensions of ν to K ∗. Let T

be the integral closure of Vν in K ∗. Then T = Vν1 ∩ · · ·∩Vνr is the integral closure
of Vν∗ in K ∗ by [Abhyankar 1959, Propositions 2.36 and 2.38]. Let mi = mνi ∩ T
be the maximal ideals of T . By the Chinese remainder theorem, there exists u ∈ T
such that u ∈ m1 and u 6∈ mi for 2≤ i ≤ r . Let

un
+ a1un−1

+ · · ·+ an = 0

be an equation of integral dependence of u over Vν . Let A be the integral closure of
R[a1, . . . , an] in K and let R′ = AA∩mν

. Let T ′ be the integral closure of R′ in K ∗.
We have that u ∈ T ′ ∩mi if and only if i = 1. Let S′ = T ′T ′∩m1

. Then ν does not
split in S′ and R′ has the property of the conclusions of the lemma. �

2. Generating sequences

Given an additive group G with λ0, . . . , λr ∈G, let G(λ0, . . . , λr ) and S(λ0, . . . , λr )

denote the subgroup and the semigroup, respectively, generated by λ0, . . . , λr .
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In this section, we suppose that R is a regular local ring of dimension 2, with
maximal ideal mR and residue field R/mR . For f ∈ R, let f̄ or [ f ] denote the
residue of f in R/mR .

The following theorem is Theorem 4.2 of [Cutkosky and Vinh 2014], as inter-
preted by [Cutkosky and Vinh 2014, Remark 4.3].

Theorem 2.1. Suppose that ν is a valuation of the quotient field of R dominating R.
Let L = Vν/mν be the residue field of the valuation ring Vν of ν. For f ∈ Vν , let
[ f ] denote the class of f in L. Suppose that x, y are regular parameters in R. Then
there exist � ∈ Z+ ∪ {∞} and Pi (ν, R) ∈ mR for i ∈ Z+ with i < min{�+ 1,∞}
such that P0(ν, R)= x , P1(ν, R)= y and for 1≤ i <�, there is an expression

Pi+1(ν, R)= Pi (ν, R)ni (ν,R)

+

λi∑
k=1

ck P0(ν, R)σi,0(k)P1(ν, R)σi,1(k) · · · Pi (ν, R)σi,i (k), (8)

where ni (ν, R)≥ 1, λi ≥ 1, the ck are nonzero units in R for 1≤ k ≤ λi , σi,s(k) ∈N

for all s, k, and 0≤ σi,s(k) < ns(ν, R) for s ≥ 1. Further,

ni (ν, R)ν(Pi (ν, R))= ν
(
P0(ν, R)σi,0(k)P1(ν, R)σi,1(k) · · · Pi (ν, R)σi,i (k)

)
(9)

for all k.
For all i ∈ Z+ with i <�, the following are true:

(1) ν(Pi+1(ν, R)) > ni (ν, R)ν(Pi (ν, R)).

(2) Suppose that r ∈N, m ∈ Z+, jk(l) ∈N for 1≤ l ≤m and 0≤ jk(l) < nk(ν, R)
for 1≤ k ≤ r are such that ( j0(l), j1(l), . . . , jr (l)) are distinct for 1≤ l ≤ m,
and

ν
(
P0(ν, R) j0(l)P1(ν, R) j1(l) · · · Pr (ν, R) jr (l)

)
= ν

(
P0(ν, R) j0(1) · · · Pr (ν, R) jr (1)

)
for 1≤ l ≤ m. Then

1,
[

P0(ν, R) j0(2)P1(ν, R) j1(2) · · · Pr (ν, R) jr (2)

P0(ν, R) j0(1)P1(ν, R) j1(1) · · · Pr (ν, R) jr (1)

]
,

. . . ,

[
P0(ν, R) j0(m)P1(ν, R) j1(m) · · · Pr (ν, R) jr (m)

P0(ν, R) j0(1)P1(ν, R) j1(1) · · · Pr (ν, R) jr (1)

]
are linearly independent over R/mR .

(3) Let

n̄i (ν, R)
=
[
G
(
ν(P0(ν, R)), . . . , ν(Pi (ν, R))

)
: G
(
ν(P0(ν, R)), . . . , ν(Pi−1(ν, R))

)]
.

Then n̄i (ν, R) |σi,i (k) for all k in (8). In particular, ni (ν, R)= n̄i (ν, R)di (ν, R)
with di (ν, R) ∈ Z+.
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(4) There exists Ui (ν,R)= P0(ν,R)w0(i)P1(ν,R)w1(i) · · · Pi−1(ν,R)wi−1(i) for i ≥ 1
with w0(i), . . . , wi−1(i) ∈N and 0≤w j (i) < n j (ν,R) for 1≤ j ≤ i − 1 such
that ν(Pi (ν,R)n̄i )= ν(Ui (ν,R)). Setting

αi (ν, R)=
[

Pi (ν, R)n̄i (ν,R)

Ui (ν, R)

]
,

we have

bi,t =

[ ∑
σi,i (k)=t n̄i (ν,R)

ck
P0(ν, R)σi,0(k)P1(ν, R)σi,1(k) · · · Pi−1(ν, R)σi,i−1(k)

Ui (ν, R)(di (ν,R)−t)

]
∈ R/mR(α1(ν, R), . . . , αi−1(ν, R))

for 0≤ t ≤ di (ν, R)− 1, and

fi (u)= udi (ν,R)+ bi,di (ν,R)−1udi (ν,R)−1
+ · · ·+ bi,0

is the minimal polynomial of αi (ν, R) over R/mR(α1(ν, R), . . . , αi−1(ν, R)).

The algorithm terminates with �<∞ if and only if either

n̄�(ν,R)=
[
G
(
ν(P0(ν,R)), . . . ,ν(P�(ν,R))

)
:G
(
ν(P0(ν,R)), . . . ,ν(P�−1(ν,R))

)]
=∞ (10)

or
n̄�(ν, R) <∞ (so that α�(ν, R) is defined as in (4)) and

d�(ν, R)=
[
R/mR(α1(ν, R), . . . , α�(ν, R)) : R/mR(α1(ν, R), . . . , α�−1(ν, R))

]
=∞. (11)

If n̄�(ν, R)=∞, set α�(ν, R)= 1.

Let notation be as in Theorem 2.1. The following formula is statement B(i) on
page 360 of [Cutkosky and Vinh 2014].

Suppose M is a Laurent monomial in P0(ν, R), P1(ν, R), . . . , Pi (ν, R)
and ν(M)= 0. Then there exist si ∈ Z such that

M =
i∏

j=1

[
Pj (ν, R)n̄ j

U j (ν, R)

]s j

,

so that
[M] ∈ R/mR[α1(ν, R), . . . , αi (ν, R)].

(12)

Define βi (ν, R)= ν(Pi (ν, R)) for 0≤ i .
Since ν is a valuation of the quotient field of R, we have that

8ν =

∞⋃
i=1

G(β0(ν, R), β1(ν, R), . . . , βi (ν, R)) (13)
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and

Vν/mν =

∞⋃
i=1

R/mR[α1(ν, R), . . . , αi (ν, R)]. (14)

The following is [Cutkosky and Vinh 2014, Theorem 4.10].

Theorem 2.2. Suppose that ν is a valuation dominating R. Let

P0(ν, R)= x, P1(ν, R)= y, P2(ν, R), . . .

be the sequence of elements of R constructed by Theorem 2.1. Suppose that f ∈ R
and there exists n ∈ Z+ such that ν( f ) < nν(mR). Then there exists an expansion

f =
∑

I

aI P0(ν, R)i0 P1(ν, R)i1 · · · Pr (ν, R)ir+

∑
J

ϕJ P0(ν, R) j0 · · · Pr (ν, R) jr+h,

where r ∈ N and

• I = (i0, . . . , ir )∈Nr+1 with 0≤ ik < nk(ν, R) for 1≤ k≤ r , the aI are units in
R and ν(P0(ν, R)i0 P1(ν, R)i1 · · · Pr (ν, R)ir )= ν( f ) for all I in the first sum;

• J = ( j0, . . . , jr ) ∈Nr+1, ϕJ ∈ R and ν(P0(ν, R) j0 · · · Pr (ν, R) jr ) > ν( f ) for
all J in the second sum; and

• h ∈ mn
R .

The terms in the first sum are uniquely determined, up to the choice of units aI ,
whose residues in R/mR are uniquely determined.

Let σ0(ν, R)= 0 and inductively define

σi+1(ν, R)=min{ j > σi (ν, R) | n j (ν, R) > 1}. (15)

In Theorem 2.2, we see that all of the monomials in the expansion of f are in terms
of the Pσi .

We have that

S(β0(ν, R), β1(ν, R), . . . , βσ j (ν,R)(ν, R))

= S(βσ0(ν, R), βσ1(ν,R)(ν, R), . . . , βσ j (ν,R)(ν, R))

for all j ≥ 0 and

R/mR[α1(ν, R), α2(ν, R), . . . , ασ j (ν,R)(ν, R)]

= R/mR[ασ1(ν,R)(ν, R), ασ2(ν,R)(ν, R), . . . , ασ j (ν,R)(ν, R)]

for all j ≥ 1.
Suppose that R is a regular local ring of dimension 2 which is dominated by a

valuation ν. The quadratic transform T1 of R along ν is defined as follows. Let
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u, v be a system of regular parameters in R. Then R[v/u] ⊂ Vν if ν(u)≤ ν(v) and
R[u/v] ⊂ Vν if ν(u)≥ ν(v). Let

T1 = R
[
v

u

]
R[v/u]∩mν

or T1 = R
[u
v

]
R[u/v]∩mν

,

depending on whether ν(u)≤ ν(v) or ν(u) > ν(v). T1 is a 2-dimensional regular
local ring which is dominated by ν. Let

R→ T1→ T2→ · · · (16)

be the infinite sequence of quadratic transforms along ν, so that Vν =
⋃

i≥1 Ti

[Abhyankar 1959, Lemma 4.5] and L = Vν/mν =
⋃

i≥1 Ti/mTi .
For f ∈ R and R→ R∗ a sequence of quadratic transforms along ν, we define

a strict transform of f in R∗ to be f1 if f1 ∈ R∗ is a local equation of the strict
transform in R∗ of the subscheme f = 0 of R. In this way, a strict transform is only
defined up to multiplication by a unit in R∗. This ambiguity will not be a difficulty
in our proof. We will denote a strict transform of f in R∗ by stR∗( f ).

We use the notation of Theorem 2.1 and its proof for R and the Pi (ν, R). Recall
that U1 =Uw0(1). Let w =w0(1). Since n̄1(ν, R) and w are relatively prime, there
exist a, b ∈ N such that

ε := n̄1(ν, R)b−wa =±1.

Define elements of the quotient field of R by

x1 = (xb y−a)ε, y1 = (x−wyn̄1(ν,R))ε. (17)
We have that

x = x n̄1(ν,R)
1 ya

1 , y = xw1 yb
1 . (18)

Since n̄1(ν, R)ν(y)= wν(x), it follows that

n̄1(ν, R)ν(x1)= ν(x) > 0 and ν(y1)= 0.

We further have that
α1(ν, R)= [y1]

ε
∈ Vν/mν . (19)

Let A = R[x1, y1] ⊂ Vν and m A = mν ∩ A.
Let R1= Am A . We have that R1 is a regular local ring and the divisor of xy in R1

has only one component (x1 = 0). In particular, R→ R1 is “free” [Cutkosky and
Piltant 2004, Definition 7.5]. R→ R1 factors (uniquely) as a product of quadratic
transforms and the divisor of xy in R1 has two distinct irreducible factors in all
intermediate rings.

Theorem 2.3 [Cutkosky and Vinh 2014, Theorem 7.1]. Let R be a 2-dimensional
regular local ring with regular parameters x, y. Suppose that R is dominated by
a valuation ν. Let P0(ν, R) = x , P1(ν, R) = y and {Pi (ν, R)} be the sequence
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of elements of R constructed in Theorem 2.1. Suppose that � ≥ 2. Then there
exists some smallest value i in the sequence (16) such that the divisor of xy in
Spec(Ti ) has only one component. Let R1 = Ti . Then R1/m R1

∼= R/mR(α1(ν, R)),
and there exists x1 ∈ R1 and w ∈ Z+ such that x1 = 0 is a local equation of the
exceptional divisor of Spec(R1)→ Spec(R), and Q0 = x1, Q1 = P2/xwn1

1 are
regular parameters in R1. We have that

Pi (ν, R1)=
Pi+1(ν, R)

P0(ν, R1)wn1(ν,R)···ni (ν,R)

for 1≤ i <max{�,∞} satisfy the conclusions of Theorem 2.1 for the ring R1.

We have that

G(β0(ν, R1), . . . , βi (ν, R1))= G(β0(ν, R), . . . , βi+1(ν, R))

for i ≥ 1, so that
n̄i (ν, R1)= n̄i+1(ν, R) for i ≥ 1

and

R1/m R1[α1(ν, R1), . . . , αi (ν, R1)]= R/mR[α1(ν, R), . . . , αi+1(ν, R)] for i≥1,

giving

di (ν, R1)= di+1(ν, R) and ni (ν, R1)= ni+1(ν, R) for i ≥ 1.

Let σ0(ν, R1)= 0 and inductively define

σi+1(ν, R1)=min{ j > σi (1) | n j (ν, R1) > 1}.

We then have that σ0(ν, R1) = 0 and for i ≥ 1, σi (ν, R1) = σi+1(ν, R) − 1 if
n1(ν, R) > 1, and σi (ν, R1)= σi (ν, R)− 1 if n1(ν, R)= 1. For all j ≥ 0,

S(β0(ν, R1), β1(ν, R1), . . . , βσ j+1(ν,R1)(ν, R1))

= S(βσ0(1)(ν, R1), βσ1(ν,R1), . . . , βσ j (ν,R1)(ν, R1)).

Iterating this construction, we produce a sequence of sequences of quadratic
transforms along ν,

R→ R1→ · · · → Rσ1(ν,R).

Now x, ȳ = Pσ1(ν,R) are regular parameters in R. By (17) (with y replaced
with ȳ) we have that Rσ1(ν,R) has regular parameters

x1 = (xb ȳ−a)ε, y1 = (x−ω ȳn̄σ1(ν,R)(ν,R))ε, (20)

where ω, a, b ∈ N satisfy ε = n̄σ1(ν,R)(ν, R)b−ωa =±1. Furthermore, Rσ1(ν,R1)
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has regular parameters xσ1(ν,R), yσ1(ν,R), where

x = δx
n̄σ1(ν,R)(ν,R1)

σ1(ν,R1)
and yσ1(ν,R1) = stRσ1 (ν,R1)Pσ1(ν,R)(ν, R)

with δ ∈ Rσ1(ν,R) a unit.
For the remainder of this section, we suppose that R is a 2-dimensional regular

local ring and ν is a nondiscrete rational rank 1 valuation of the quotient field of R
with valuation ring Vν , so that Vν/mν is algebraic over R/mR . Suppose that f ∈ R
and ν( f )= γ . We denote the class of f in Pγ (R)/P+γ (R)⊂ grν(R) by inν( f ). By
Theorem 2.2, we have that grν(R) is generated by the initial forms of the Pi (ν, R)
as an R/mR-algebra. That is,

grν(R)= R/mR
[
inν(P0(ν, R)), inν(P1(ν, R)), . . .

]
= R/mR

[
inν(Pσ0(ν,R)(ν, R)), inν(Pσ1(ν,R)(ν, R)), . . .

]
.

Thus the semigroup SR(ν)= {ν( f ) | f ∈ R} is equal to

SR(ν)= S(β0(ν, R), β1(ν, R), . . .)= S(βσ0(ν,R)(ν, R), βσ1(ν,R)(ν, R), . . .),

the value group 8ν is equal to

G(β0(ν, R), β1(ν, R), . . .)

and the residue field of the valuation ring Vν/mν is

R/mR[α1(ν, R), α2(ν, R), . . .] = R/mR[ασ1(ν, R), ασ2(ν, R), . . .].

By (1) of Theorem 2.1, every element β ∈ SR(ν) has a unique expression

β =

r∑
i=0

aiβi (ν, R)

for some r with ai ∈ N for all i and 0 ≤ ai < ni (ν, R) for 1 ≤ i . In particular, if
ai 6= 0 in the expansion then βi (ν, R)= βσ j (ν,R)(ν, R) for some j .

Lemma 2.4. Let
σi = σi (ν, R), σi (1)= σi (ν, Rσ1),

βi = βi (ν, R), βi (1)= βi (ν, Rσ1),

Pi = Pi (ν, R), Pi (1)= Pi (ν, Rσ1),

ni = ni (ν, R), ni (1)= ni (ν, Rσ1),

n̄i = n̄i (ν, R), n̄i (1)= n̄i (ν, Rσ1).

Suppose that i ∈N, r ∈N and a j ∈N for j = 0, . . . , r , with 0≤ a j < nσ j for j ≥ 1,
are such that

ν(Pa0
σ0
· · · Par

σr
) > ν(Pσi )
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or r < i and
ν(Pa0

σ0
· · · Par

σr
)= ν(Pσi ).

By (18) and Theorem 2.3, we have expressions in

Rσ1 = R[x1, y1]mν∩R[x1,y1]

where x1, y1 are defined by (20),

Pa0
σ0
· · · Par

σr
= yaa0+ba1

1 Pσ1(1)(1)
a2 · · · Pσr−1(1)(1)

ar Pσ0(1)(1)
t

where t = n̄σ1a0+ωa1+ωnσ1a2+ · · ·+ωnσ1 · · · nσr−1ar and

Pσi =


ya

1 Pσ0(1)(1)
n̄σ1 if i = 0,

yb
1 Pσ0(1)(1)

ω if i = 1,
Pσi−1(1)(1)Pσ0(1)(1)

ωnσ1···nσi−1 if i ≥ 2.
Let

λ=


n̄σ1 if i = 0,
ω if i = 1,
ωnσ1 · · · nσi−1 if i ≥ 2.

Then t > λ, except in the case where i = 1, Pa0
σ0
· · · Par

σr
= Pσ0 and n̄σ1 = ω = 1. In

this case we have λ= t .

Proof. First suppose that i ≥ 2 and r ≥ i . Then

t − λ= (n̄σ1a0+ωa1+ωnσ1a2+ · · ·+ωnσ1 · · · nσr−1ar )−ωnσ1 · · · nσi−1 > 0.

Now suppose that i ≥ 2 and r < i . We have that

(n̄σ1a0+ωa1+· · ·+ωnσ1 · · · nσr−1ar −ωnσ1 · · · nσi−1)βσ0(1)(1)

≥ βσi−1(1)(1)− a2βσ1(1)(1)− · · ·− arβσr−1(1)(1) > 0,

since nσ j (1)(1)= nσ j+1 for all j , and so nσ j+1βσ j (1)(1) < βσ j+1(1)(1) for all j .
Now suppose that i = 1. As in the proof for the case i ≥ 2, we have that t−λ> 0

if r ≥ 1, so suppose that i = 1 and r = 0. Then n̄σ1βσ1 =ωβσ0 . From our assumption
a0ν(P0) ≥ ν(P1), we obtain t − λ = n̄σ1a0 − ω ≥ 0 with equality if and only if
a0 = ω = n̄σ1 = 1 since gcd(ω, n̄σ1)= 1.

Now suppose i = 0. As in the previous cases, we have t − λ > 0 if r > 1
and t − λ > 0 if r = 1 except possibly if Pa0

0 · · · P
ar
r = Pa1

1 . We then have that
ν(Pa1

σ1
) > ν(Pσ0), and so

a1
βσ1

βσ0

> 1.

Since
βσ1

βσ0

=
ω

n̄σ1

,

we have that t − λ= ωa1− n̄σ1 > 0. �
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Lemma 2.5. Let notation be the same as in Lemma 2.4. Suppose that f ∈ R,
with ν( f ) = ν(Pσi ) for some i ≥ 0, and that f has an expression of the form of
Theorem 2.2,

f = cPσi +

s∑
j=1

ci Pa0( j)
σ0

Pa1( j)
σ1
· · · Par ( j)

σr
+ h,

where

• s, r ∈ N;

• c, c j are units in R;

• 0≤ ak( j) < nk for 1≤ k ≤ r and 1≤ j ≤ s;

• ν( f )= ν(Pσi )≤ ν
(
Pa0( j)
σ0 Pa1( j)

σ1 · · · Par ( j)
σr

)
for 1≤ j ≤ s;

• ak( j)= 0 for k ≥ i if ν( f )= ν
(
Pap( j)
σ0 · · · Par ( j)

σr

)
; and

• h ∈ mn
R with n > ν( f ).

Then stRσ1
( f ) is a unit in Rσ1 if i = 0 or 1, and if i > 1, there exists a unit c̄ in Rσ1

and � ∈ Rσ1 such that
stRσ1

( f )= c̄Pσi−1(1)(1)+ x1�

with ν(stRσ1
( f ))= ν(Pσi−1(1)(1)) and ν(Pσi−1(1)(1))≤ ν(x1�).

Proof. Let

λ=


n̄1 if i = 0,
ω if i = 1,
ωnσ1 · · · nσr−1 if i ≥ 2.

Then

f = cHi +

s∑
j=1

c j (y1)
aa0( j)+ba1( j)Pσ0(1)(1)

t j Pσ1(1)
a2( j)
· · · Pσr−1(1)(1)

ar ( j)

+ Pσ0(1)(1)
t h′

with

Hi =


(y1)

a Pσ0(1)(1)
n̄1 if i = 0,

(y1)
b Pσ0(1)(1)

ω if i = 1,
Pσ0(1)(1)

ωn1···ni−1 Pσi−1(1)(1) if i ≥ 2,
h′ ∈ Rσ1 and

t j = n̄1a0( j)+ωa1( j)+ωnσ1a2( j)+ · · ·+ωnσ1 · · · nσr−1ar ( j)

for 1≤ j ≤ s and t > λ. By Lemma 2.4, if i ≥ 2 or i = 0, we have that t j > λ for
all j . Thus f = Pσ0(1)(1)

λ f̄ , where

f̄ = cGi +

s∑
j=1

c j Pσ0(1)(1)
t j−λPσ1(1)(1)

a2( j)
· · · Pσr−1(1)(1)

ar ( j)
+ Pσ0(1)(1)

t−λh′

is a strict transform f̄ = stR1( f ) of f in R1, with
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Gi =


(y1)

a if i = 0,
(y1)

b if i = 1,
Pσi−1(1)(1) if i ≥ 2.

If i = 1, then by Lemma 2.4, t j > λ for all j , except possibly for a single term
(which we can assume is t1) which is Pσ0 , and we have that ω = n̄σ1 = 1. In this
case t1 = λ. Then [

Pσ1

Pσ0

]
= ασ1(ν, R) ∈ Vν/mν,

which has degree dσ1(ν, R)= nσ1 > 1 over R/mR . By (18), x = x1, y = x1 y1 and

f = x1[c+ c1 y1+ x1�]

with � ∈ Rσ1 . We have that c+ c1 y1 is a unit in Rσ1 since

[y1] =

[
Pσ0

Pσ1

]
6∈ R/mR. �

3. Finite generation implies no defect

Suppose that R is a 2-dimensional excellent regular local ring and S is a 2-
dimensional regular local ring such that S dominates R. Let K be the quotient field
of R and K ∗ the quotient field of S. Suppose that K → K ∗ is a finite separable
field extension. Suppose that ν∗ is a nondiscrete rational rank 1 valuation of K ∗

such that Vν∗/mν∗ is algebraic over S/mS and that ν∗ dominates S. Then we have
a natural graded inclusion grν(R) → grν∗(S), so that for f ∈ R, we have that
inν( f ) = inν∗( f ). Let ν = ν∗|K . Let L = Vν∗/mν∗ . Suppose that grν∗(S) is a
finitely generated grν(R)-algebra.

Let x, y be regular parameters in R, with associated generating sequence to ν,
P0 = P0(ν, R) = x, P1 = P1(ν, R) = y, P2 = P2(ν, R), . . . in R as constructed
in Theorem 2.1, with Ui = Ui (ν, R), βi = βi (ν, R) = ν(Pi ), γi = αi (ν, R),
mi = mi (ν, R), mi = mi (ν, R), di = di (ν, R) and σi = σi (ν, R) defined as in
Section 2.

Similarly, let u, v be regular parameters in S, with associated generating se-
quence to ν∗, Q0 = P0(ν

∗, S) = u, Q1 = P1(ν
∗, S) = v, Q2 = P2(ν

∗, S), . . . in
S as constructed in Theorem 2.1, with Vi = Ui (ν

∗, S), γi = βi (ν
∗, S) = ν∗(Qi ),

δi = αi (ν
∗, S), ni = ni (ν

∗, S), n̄i = n̄i (ν
∗, S), ei = αi (ν

∗, S) and τi = σi (ν
∗, S)

defined as in Section 2.
With our assumption that grν∗(S) is a finitely generated grν(R)-algebra, we have

that for all sufficiently large l,

grν∗(S)= grν(R)[inν∗Qτ0, . . . , inν∗Qτl ]. (21)
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Proposition 3.1. With our assumption that grν∗(S) is a finitely generated grν(R)-
algebra, there exist integers s > 1 and r > 1 such that for all j ≥ 0,

βσr+ j = γτs+ j , mσr+ j = n̄τs+ j , dσr+ j = eτs+ j , mσr+ j = nτs+ j ,

G(βσ0, . . . , βσr+ j )⊂ G(γτ0, . . . , γτs+ j ),

[G(γτ0, . . . , γτs+ j ) : G(βσ0, . . . , βσr+ j )] = e(ν∗/ν),

R/mR[δσ1, . . . , δσr+ j ] ⊂ S/mS[ετ1, . . . , ετs+ j ]

and
[S/mS[ετ1, . . . , ετs+ j ] : R/mR[δσ1, . . . , δσr+ j ]] = f (ν∗/ν).

Proof. Let l be as in (21). For s ≥ l, define the subalgebra Aτs of grν∗(S) by

Aτs = S/mS[inν∗Qτ0, . . . , inν∗Qτs ].

For s ≥ l, let

rs =max{ j | inν∗Pσ j ∈ Aτs },

λs = [G(γτ0, . . . , γτs ) : G(βσ0, . . . , βσrs
)],

and
χs = [S/mS[ετ0, . . . , ετs ] : R/mR[δσ0, . . . , δσrs

]].

To simplify notation, we write r = rs .
We now show that βσr+1 = γτs+1 . Suppose that βσr+1 > γτs+1 . We have that

inν∗Qτs+1 ∈ grν(R)[inν∗Qτ0, . . . , inν∗Qτs ].

Since
βσr+1 < βσr+2 < · · · ,

we then have that inν∗Qτs+1 ∈ Aτs , which is impossible. Thus βσr+1 ≤ γτs+1 . If
βσr+1 < γτs+1 , then since

γτs+1 < γτs+2 < · · · and inν∗Pσr+1 ∈ grν∗(S),

we have that inν∗Pσr+1 ∈ Aτs , which is impossible. Thus βσr+1 = γτs+1 .
We now establish that either we have a reduction λs+1 < λs or

λs+1 = λs, βσr+1 = γτs+1 and mσr+1 = n̄τs+1 . (22)

Let ω be a generator of the group G(γτ1, . . . , γτs ), so that G(γτ1, . . . , γτs ) = Zω.
We have that

G(γτ0, . . . , γτs+1)=
1

n̄τs+1

Zω

and

G(βσ0, . . . , βσr+1)=
1

mσr+1

Z(λsω).
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There exists a positive integer f with gcd( f, n̄τs+1)= 1 such that

γτs+1 =
f

n̄τs+1

ω,

and a positive integer g with gcd(g,mσr+1)= 1 such that

βσr+1 =
g

mσr+1

λsω.

Since βσr+1 = γτs+1 , we have

gλs n̄τs+1 = f mσr+1 .

Thus n̄τs+1 divides mσr+1 and mσr+1 divides λs n̄τs+1 , so that

a =
mσr+1

n̄τs+1

is a positive integer, and defining

λ̄=
λs

a
,

λ̄ is a positive integer with
λs

mσr+1

=
λ̄

n̄τs+1

and

λ̄= [G(γτ0, . . . , γτs+1) : G(βσ0, . . . , βσr+1)].

Since λs+1 ≤ λ̄, either λs+1 < λs or λs+1 = λs and mσr+1 = n̄τs+1 .
We now suppose that s is sufficiently large that (22) holds. Since

inν∗Qτs+1 ∈ grν∗(S)= grν(R)[inν∗Qτ0, . . . , inν∗Qτs ],

if n̄τs+1 > 1 we have an expression

inν∗Pσr+1 = inν∗(α)inν∗Qτs+1 (23)

in Pγτs+1
(S)/P+γτs+1

(S) with α a unit in S, and if n̄τs+1 = 1, since inν∗Pσr+1 6∈ Aτs we
have an expression

inν∗Pσr+1 = inν∗(α)inν∗Qτs+1 +

∑
inν∗(αJ )(inν∗Qτ0)

j0 · · · (inν∗Qτs )
js (24)

in Pγτs+1
(S)/P+γτs+1

(S) with α a unit in S, where the sum is taken over certain
J = ( j0, . . . , js) ∈ Ns+1 such that the αJ are units in S, and the terms inν∗Qτs+1

and (inν∗Qτ0)
j0 · · · (inν∗Qτs )

js are all linearly independent over S/mS .
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The monomial Uσr+1 in Pσ0, . . . , Pσr and the monomial Vτs+1 in Qτ0, . . . , Qτs

both have the value n̄τs+1γτs+1 = mσr+1βσr+1 , and satisfy

ετs+1 =

[
Q

n̄τs+1
τs+1

Vτs+1

]
and

δσr+1 =

[
P

n̄τs+1
σr+1

Uσr+1

]
.

Since Uσr+1, Vτs+1 ∈ Aτs and by (12) and Theorem 2.1(2), we have that[
Vτs+1

Uσr+1

]
∈ S/mS[ετ1, . . . , ετs ].

If n̄τs+1 > 1, then by (23), we have[
P

n̄τs+1
σr+1

Uσr+1

]
=

[
Vτs+1

Uσr+1

](
[α]n̄τs+1

[
Q

n̄τs+1
τs+1

Vτs+1

])
in L = Vν∗/mν∗ , and if n̄τs+1 = 1, then by (24) we have[

Pσr+1

Uσr+1

]
=

[
Vτs+1

Uσr+1

](
[α]

[
Qτs+1

Vτs+1

]
+

∑
[αJ ]

[
Q j0
τ0 · · · Q

js
τs

Vτs+1

])
.

Thus by (12),

S/mS[ετ1, . . . , ετs ][ετs+1] = S/mS[ετ1, . . . , ετs ][δσr+1]. (25)

We have a commutative diagram

S/mS[ετ1, . . . , ετs ]
// S/mS[ετ1, . . . , ετs , ετs+1]= S/mS[ετ1, . . . , ετs ][δσr+1]

R/mR[δσ1, . . . , δσr ]

OO

// R/mR[δσ1, . . . , δσr ][δσr+1]

OO

Let
χ̄ = [S/mS[ετ1, . . . , ετs , ετs+1] : R/mR[δσ1, . . . , δσr , δσr+1]].

Since
S/mS[ετ1, . . . , ετs , ετs+1] = S/mS[ετ1, . . . , ετs ][δσr+1],

we have that eτs+1 | dσr+1 . Further,

dσr+1

eτs+1

χ̄ = χs,

whence χ̄ ≤χs . Thus χs+1≤χs and if χs+1=χs , then dσr+1= eτs+1 and rs+1=rs+1,
since Pσr+2 ∈ Aτs+1 implies λs+1 < λs or χs+1 < χs .
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We may thus choose s sufficiently large that there exists an integer r > 1 such
that for all j ≥ 0,

βσr+ j = γτs+ j , mσr+ j = n̄τs+ j , dσr+ j = eτs+ j , mσr+ j = nτs+ j ,

G(βσ0, . . . , βσr+ j )⊂ G(γτ0, . . . , γτs+ j ),

there is a constant λ (which does not depend on j) such that

[G(γτ0, . . . , γτs+ j ) : G(βσ0, . . . , βσr+ j )] = λ,

R/mR[δσ1, . . . , δσr+ j ] ⊂ S/mS[ετ1, . . . , ετs+ j ],

and there is a constant χ (which does not depend on j) such that

[S/mS[ετ1, . . . , ετs+ j ] : R/mR[δσ1, . . . , δσr+ j ]] = χ.

Then
8ν∗ =

⋃
j≥1

1
n̄τs+1 · · · n̄τs+ j

Zω,

where G(γτ0, . . . , γτs )= Zω, and

8ν =
⋃
j≥1

1
mσr+1 · · ·mσr+ j

λZω =
⋃
j≥1

1
n̄τs+1 · · · n̄τs+ j

λZω,

so that
λ= [8ν∗ :8ν] = e(ν∗/ν).

For i ≥ 0, let Ki = R/mR[δσ1, . . . , δσr+i ] and Mi = S/mS[ετ1, . . . , ετs+i ]. We have
that Mi+1 = Mi [δσr+i+1] for i ≥ 0 and χ = [Mi : Ki ] for all i . Further,

∞⋃
i=0

Mi = Vν∗/mν∗ and
∞⋃

i=0

Ki = Vν/mν .

Thus if g1, . . . , gλ ∈ M0 form a basis of M0 as a K0-vector space, then g1, . . . , gλ
form a basis of Mi as a Ki -vector space for all i ≥ 0. Thus

χ = [Vν∗/mν∗ : Vν/mν] = f (ν∗/ν). �

Let r and s be as in the conclusions of Proposition 3.1. There exists τt with t ≥ s
such that we have a commutative diagram of inclusions of regular local rings

Rσr
// Sτt

R //

OO

S

OO

(with the notation introduced in Section 2). After possibly increasing s and r ,
we may assume that R′ ⊂ Rσr , where R′ is the local ring of the conclusions of
Proposition 1.1. Recall that R has regular parameters x = P0, y = P1 and S has
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regular parameters u = Q0, v = Q1; and that Rσr has regular parameters xσr , yσr

such that
x = δx

mσ1 ···mσr
σr , yσr = stRσr

Pσr+1,

where δ is a unit in Rσr and Sτt has regular parameters uτt , vτt such that

u = εu
n̄τ1 ···n̄τt
τt , vτt = stSτt Qτt+1,

where ε is a unit in Sτt . We may choose t � 0 so that we have an expression

xσr = ϕuλτt
(26)

for some positive integer λ, where ϕ is a unit in Sτt , since
⋃
∞

t=0 Sτt = Vν∗ .
We have expressions Pi =ψi xci

σr
in Rσr , where the ψi are units in Rσr for i ≤ σr ,

so that Pi = ψ
∗

i uciλ
τt

in Sτt , where the ψ∗i are units in Sτt for i ≤ σr , by (26).

Lemma 3.2. For j ≥ 1 we have

stRσr
(Pσr+ j )= uλ j

τt stSτt(Pσr+ j )

for some λ j ∈ N, where we regard Pσr+ j as an element of R on the left-hand side of
the equation and regard Pσr+ j as an element of S on the right-hand side.

Proof. Using (26), we have

Pσr+ j = stRσr
(Pσr+ j )x

f j
σr = stRσr

(Pσr+ j )u
λ f j
τt ϕ

f j ,

where f j ∈ N. Viewing Pσr+ j as an element of S, we have that

Pσr+ j = stSτt (Pσr+ j )u
g j
τt

for some g j ∈ N. Since uτt - stSτt(Pσr+ j ), we have that f jλ ≤ g j and therefore
λ j = g j − f jλ≥ 0. �

By induction on the sequence of quadratic transforms above R and S from
Lemma 2.5, and since ν∗(Pσr+ j ) = βσr+ j = γτs+ j by Proposition 3.1, we have by
(23) and (24) an expression

stSτt (Pσr+ j )= c stSτt (Qτs+ j )+ uτt� (27)

with c ∈ Sτt a unit, � ∈ Sτt and ν∗(uτt�)≥ ν
∗(stSτt (Qτs+ j )) if s+ j > t ; and

Sτt (Pσr+ j ) is a unit in Sτt (28)

if s+ j ≤ t . Thus Pσr+ j = ud j
τt ϕ̄ j in Sτt , where d j is a positive integer and ϕ̄ j is a

unit in Sτt if s+ j ≤ t .
Suppose s < t . Then

yσr = stRσr
(Pσr+1)= ϕ̃uh

τt
,
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where ϕ̃ is a unit in Sτt and h is a positive integer. As shown in (20) of Section 2,

Rσr+1 = Rσr [x̄1, ȳ1]mν∩Rσr [x̄1,ȳ1],

where
x̄1 = (xb

σr
y−a
σr
)ε, ȳ1 = (x−ωσr

ymσr
σr )ε,

with ε = mσr b−ωa =±1, ν(x̄1) > 0 and ν(ȳ1)= 0. Substituting

xσr = ϕuλτt
and yσ1 = ϕ̃uh

τt
,

we see that Rσr+1 is dominated by Sτt . We thus have a factorization

Rσr → Rσr+1 → Sτt

with xσr+1 = x̄1 = ϕ̂uλ
′

τt
, where ϕ̂ is a unit in Sτt and λ′ is a positive integer. We may

thus replace s with s+ 1, r with r + 1 and Rσr with Rσr+1 .
Iterating this argument, we may assume that s = t (with r = rs), so that by

Lemma 3.2, (28) and (27),

yσr = stRσr
(Pσr+1)= uµτs

stSτs(Pσr+1),

where
stSτs(Pσr+1)= c stSτs(Qτs+1)+ uτs�

with c a unit in Sτs and � ∈ Sτs . Thus by (26), we have an expression

xσr = ϕuλτs
, yσr = ε̄u

α
τs
(vτs + uτs�),

where λ is a positive integer, α ∈ N, ϕ and ε̄ are units in Sτs and � ∈ Sτs .
We have that

ν∗(xσr )= λν
∗(uτs ),

ν(xσr )Z= G(ν(xσr ))= G(βσ0, . . . , βσr ),

ν∗(uτs )Z= G(ν∗(uτs ))= G(γτ0, . . . , γτs ).

Thus
λ= [G(γτ0, . . . , γτs ) : G(βσ0, . . . , βσr )] = e(ν∗/ν)

by Proposition 3.1.
By Theorem 2.3, we have that

Rσr /m Rσr
= R/mR[δσ1, . . . , δσr ] and Sτs/mSτs = S/mS[ετ1, . . . , ετs ].

Thus
[Sτs/mSτs : Rσr /m Rσr

] = f (ν∗/ν)
by Proposition 3.1.

Since the ring R′ of Proposition 1.1 is contained in Rσr by our construction, we
have by Proposition 1.1 that (K , ν)→ (K ∗, ν∗) is without defect, completing the
proofs of Proposition 0.3 and Theorem 0.1.
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4. Nonsplitting and finite generation

In this section, we maintain the following assumptions. Suppose that R is a 2-
dimensional excellent local domain with quotient field K . Further suppose that K ∗

is a finite separable extension of K and S is a 2-dimensional local domain with
quotient field K ∗ such that S dominates R. Suppose that ν∗ is a valuation of K ∗

such that ν∗ dominates S. Let ν be the restriction of ν∗ to K .
Suppose that ν∗ has rational rank 1 and ν∗ is not discrete. Then Vν∗/mν∗ is

algebraic over S/mS , by Abhyankar’s inequality [1956, Proposition 2].

Lemma 4.1. Let assumptions be as above. Then the associated graded ring grν∗(S)
is an integral extension of grν(R).

Proof. It suffices to show that inν∗( f ) is integral over grν(R) whenever f ∈ S.
Suppose that f ∈ S. There exists n1 > 0 such that n1ν

∗( f ) ∈8ν . Let x ∈ mR and
ω = ν(x). Then there exists a positive integer b and natural number a such that
bn1ν

∗( f )= aω, so

ν∗
(

f bn1

xa

)
= 0.

Let

ξ =

[
f bn1

xa

]
∈ Vν∗/mν∗,

and let g(t)= tr
+ ār−1tr−1

+· · ·+ ā0 with āi ∈ R/mR be the minimal polynomial
of ξ over R/mR . Let ai be lifts of the āi to R. Then

ν∗( f b1n1r
+ ar−1xa f bn1(r−1)

+ · · ·+ a0xar )

> ν∗( f bn1r )= ν∗(ar−1xa f bn1(r−1))= · · · = ν∗(a0xar ).

Thus,

inν∗( f )b1n1r
+ inν(ar−1xa)inν∗( f )bn1(r−1)

+ · · ·+ inν(a0xar )= 0

in grν∗(S), so inν∗( f ) is integral over grν∗(R). �

We now establish Theorem 0.5. Recall (as defined after Proposition 0.3) that ν∗

does not split in S if ν∗ is the unique extension of ν to K ∗ which dominates S.

Theorem 0.5. Let assumptions be as above and suppose that R and S are regular
local rings. Suppose that grν∗(S) is a finitely generated grν(R)-algebra. Then S is
a localization of the integral closure of R in K ∗, δ(ν∗/ν)= 0 and ν∗ does not split
in S.

Proof. Let s and r be as in the conclusions of Proposition 3.1. We first show that
Pσr+ j is irreducible in Ŝ for all j > 0. There exists a unique extension of ν∗ to
the quotient field of Ŝ which dominates Ŝ [Spivakovsky 1990; Cutkosky and Vinh
2014; Herrera Govantes et al. 2014]. The extension is immediate since ν∗ is not



1484 Steven Dale Cutkosky

discrete; that is, there is no increase in value group or residue field for the extended
valuation. It has the property that if f ∈ Ŝ and { fi } is a Cauchy sequence in Ŝ
which converges to f , then ν∗( f )= ν∗( fi ) for all i � 0.

Suppose that Pσr+ j is not irreducible in Ŝ for some j > 0. We derive a contra-
diction. With this assumption, Pσr+ j = f g with f, g ∈ m Ŝ . Let { fi } be a Cauchy
sequence in S which converges to f and let {gi } be a Cauchy sequence in S which
converges to g. For i sufficiently large, f − fi , g− gi ∈ mn

Ŝ
, where n is so large

that nν∗(m Ŝ)= nν∗(mS) > ν(Pσr+ j ). Thus Pσr+ j = fi gi+h with h ∈ mn
Ŝ
∩ S = mn

S ,
and so inν∗(Pσr+ j )= inν∗( fi )inν∗(gi ). Now

ν∗( fi ), ν
∗(gi ) < ν(Pσr+ j )= βσr+ j = γτs+ j = ν

∗(Qτs+ j ),

so that
inν∗( fi ), inν∗(gi ) ∈ S/mS[inν∗(Qτ0), . . . , inν∗(Qτs+ j−1)],

which implies

inν∗(Pσr+ j ) ∈ S/mS[inν∗(Qτ0), . . . , inν∗(Qτs+ j−1)].

But then (24) implies

inν∗(Qτs+ j ) ∈ S/mS[inν∗(Qτ0), . . . , inν∗(Qτs+ j−1)],

which is impossible. Thus Pσr+ j is irreducible in Ŝ for all j > 0.
If S is not a localization of the integral closure of R in K ∗, then by Zariski’s

main theorem (Theorem 1 of Chapter 4 in [Raynaud 1970]), mR S = f N , where
f ∈ mS and N is an mS-primary ideal. Thus f divides Pi in S for all i , which
is impossible since we have shown that Pσr+ j is analytically irreducible in S for
all j > 0; we cannot have Pσr+ j = a j f where a j is a unit in S for j > 0 since
ν(Pσr+ j )= ν

∗(Qτs+ j ) by Proposition 3.1.
Now suppose that ν∗ is not the unique extension of ν to K ∗ which dominates S.

Recall that Vν is the union of all quadratic transforms above R along ν and Vν∗ is the
union of all quadratic transforms above S along ν∗ [Abhyankar 1959, Lemma 4.5].

Then for all i � 0, we have a commutative diagram

Rσi
// Ti

R

OO

// T

OO

where T is the integral closure of R in K ∗, Ti is the integral closure of Rσi in K ∗,
S = Tp for some maximal ideal p in T which lies over mR , and there exist r ≥ 2
prime ideals p1(i), . . . , pr (i) in Ti which lie over m Rσi

and whose intersection with
T is p. We may assume that p1(i) is the center of ν∗.
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There exists an mR-primary ideal Ii in R with blowup γ : Xσi → Spec(R), where
Xσi is regular and Rσi is a local ring of Xσi . Let Zσi be the integral closure of
Xσi in K ∗. Let Yσi = Zσi ×Spec(T ) Spec(S). We have a commutative diagram of
morphisms

Yσi

β
//

δ
��

Xσi

γ

��

Spec(S) α
// Spec(R)

The morphism δ is projective by [EGA II 1961, Proposition II.5.5.5 and Corollary
II.6.1.11] and it is birational, so since Yσi and Spec(S) are integral, it is a blowup
of an ideal Ji in S [EGA III1 1961, Proposition III.2.3.5], which we can take to
be mS-primary since S is a regular local ring and hence factorial. Define curves
C = Spec(R/(Pσi )) and C ′= α−1(C)= Spec(S/(Pσi )). Denote the Zariski closure
of a set W by W . The strict transform C∗ of C ′ in Yσi is the Zariski closure

C∗ = δ−1(C ′ \mS)= δ−1α−1(C \mR)= β−1γ−1(C \mR)

= β−1(γ−1(C \mR)) (since β is quasifinite)

= β−1(C̃), (29)

where C̃ is the strict transform of C in Xσi . We have Zσi×Xσi
Spec(Rσi )

∼=Spec(Ti ),
so

Yσi ×Xσi
Spec(Rσi )

∼= Spec(Ti ⊗T S).

Let xσi be a local equation in Rσi of the exceptional divisor of Spec(Rσi )→Spec(R)
and let yσi = stRσi

(Pσi ). Then xσi , yσi are regular parameters in Rσi . We have that

√
m Rσi

(Ti ⊗T S)=
r⋂

j=1

p j (i)(Ti ⊗T S).

The blowup of Ji (S/(Pσi )) in C ′ is δ̄ : C∗→ C ′, where δ̄ is the restriction of δ to
C∗ [Hartshorne 1977, Corollary II.7.15]. Since yσi is a local equation of C̃ in Rσi ,
we have by (29) that

p1(i), . . . , pr (i) ∈ δ̄−1(mS)⊂ C∗.

Since δ̄ is proper and C ′ is a curve, C∗= Spec(A) for some excellent 1-dimensional
domain A such that the inclusion S/(Pσi )→ A is finite [Milne 1980, Corollary
I.1.10]. Let B = A⊗S/(Pσi )

Ŝ/(Pσi ). Then

C∗×Spec(S/(Pσi ))
Spec(Ŝ/(Pσi ))= Spec(B)→ Spec(Ŝ/(Pσi ))

is the blowup of Ji (Ŝ/(Pσi )) in Ŝ/(Pσi ). The extension Ŝ/(Pσi )→ B is finite since
S/(Pσi )→ A is finite.
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Now assume that S/(Pσi ) is analytically irreducible. Then B has only one
minimal prime since the blowup Spec(B)→ Spec(Ŝ/(Pσi )) is birational.

Since a complete local ring is Henselian, B is a local ring [Milne 1980, Theorem
I.4.2 on page 32], a contradiction to our assumption that r > 1. �

As a consequence of the above theorem, we now obtain Corollary 0.6.

Corollary 0.6. Let assumptions be as above and suppose that R is a regular local
ring. Suppose that R→ R′ is a nontrivial sequence of quadratic transforms along ν.
Then grν(R

′) is not a finitely generated grν(R)-algebra.

Proof. The integral closure of R in its quotient field is R, which is not equal to
R′ since mR R′ is a principal ideal. Thus grν(R

′) is not a finitely generated grν(R)-
algebra by Theorem 0.5. �

The conclusions of Theorem 0.5 do not hold if we remove the assumption that
ν∗ is not discrete, when Vν/mν is finite over R/mR . We give a simple example.
Let k be an algebraically closed field of characteristic not equal to 2 and let p(u)
be a transcendental series in the power series ring k[[u]] such that p(0)= 1. Then
f = v− up(u) is irreducible in the power series ring k[[u, v]] and k[[u, v]]/( f ) is a
discrete valuation ring with regular parameter u. Let ν be the natural valuation of this
ring. Let R = k[u, v](u,v) and S = k[x, y](x,y). Define a k-algebra homomorphism
R→ S by u 7→ x2 and v 7→ y2. The series f (x2, y2) factors as

f =
(
y− x

√
p(x2)

)(
y+ x

√
p(x2)

)
in k[[x, y]]. Let f1 = y− x

√

p(x2) and f2 = y+ x
√

p(x2). The rings k[[x, y]]/( fi )

are discrete valuation rings with regular parameter x . Let ν1 and ν2 be the natural
valuations of these ring.

Let ν be the valuation of the quotient field of R which dominates R and is defined
by the natural inclusion R→ k[[u, v]]/( f ), and let νi for i = 1, 2 be the valuations
of the quotient field of S which dominate S and are defined by the respective natural
inclusions S→ k[[x, y]]/( fi ). Then ν1 and ν2 are distinct extensions of ν to the
quotient field of S which dominate S. However, we have that grν(R)= k[inν(u)] and
grνi

(S)= k[inν∗(x)] with inν∗(x)2 = inν(u). Thus grνi
(S) is a finite grν(R)-algebra.

We now give an example where ν∗ has rational rank 2 and ν splits in S but grν∗(S)
is a finitely generated grν(R)-algebra. Suppose that k is an algebraically closed
field of characteristic not equal to 2. Let R = k[x, y](x,y) and S = k[u, v](u,v).
The substitutions u = x2 and v = y2 make S into a finite separable extension
of R. Define a valuation ν1 of the quotient field K ∗ of S by ν1(x) = 1 and
ν1(y− x)= π + 1, and define a valuation ν2 of the quotient field K ∗ by ν2(x)= 1
and ν2(y + x) = π + 1. Since u = x2 and v− u = (y − x)(y + x), we have that
ν1(u) = ν2(u) = 2 and ν1(v − u) = ν2(v − u) = π + 2. Let ν be the common
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restriction of ν1 and ν2 to the quotient field K of R. Then ν splits in S. However,
grν1

(S) is a finitely generated grν(R)-algebra since grν1
(S)= k[inν1(x), inν1(y− x)]

is a finitely generated k-algebra. Note that grν(R) = k[inν(u), inν(v − u)] with
inν1(x)

2
= inν(u) and inν(v− u)= 2inν1(y− x)inν1(x).
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