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On Iwasawa theory, zeta elements for Gm,
and the equivariant Tamagawa

number conjecture
David Burns, Masato Kurihara and Takamichi Sano

We develop an explicit “higher-rank” Iwasawa theory for zeta elements associated
to the multiplicative group over abelian extensions of number fields. We show this
theory leads to a concrete new strategy for proving special cases of the equivariant
Tamagawa number conjecture and, as a first application of this approach, we prove
new cases of the conjecture over natural families of abelian CM-extensions of
totally real fields for which the relevant p-adic L-functions possess trivial zeroes.

1. Introduction

The “Tamagawa number conjecture” of Bloch and Kato [1990] concerns the special
values of motivic L-functions and has had a pivotal influence on the development
of arithmetic geometry.

Nevertheless, in any situation in which a semisimple algebra acts on a motive
it is natural to search for an “equivariant” refinement of this conjecture that takes
account, in some way, of the additional symmetries that arise in such cases.

The first such refinement was formulated by Kato [1993a; 1993b] (in the setting of
abelian extensions of number fields, and modulo certain delicate sign ambiguities) by
using determinant functors, and a definitive statement of the “equivariant Tamagawa
number conjecture” (or eTNC for short in the remainder of this introduction) was
subsequently given in [Burns and Flach 2001] by using virtual objects and relative
algebraic K -theory.

It has since been shown that the eTNC specializes to give refined versions of
most, if not all, of the important conjectures related to special values of motivic
L-values that are studied in the literature and it is by now widely accepted that it
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provides a “universal” approach to the formulation of the strongest possible versions
of such conjectures.

In this direction, we used the framework of the eTNC in our earlier article [Burns
et al. 2016a] — hereafter abbreviated [BKS] — to develop a very general approach
to the theory of abelian Stark conjectures that was principally concerned with the
properties of canonical “zeta elements” and “Selmer groups” that one can naturally
associate to the multiplicative group Gm over finite abelian extensions of number
fields.

In this way we derived, amongst other things, several new and concrete results
on the relevant case of the eTNC, the formulation, and in some interesting cases
proof of precise conjectural families of fine integral congruence relations between
Rubin–Stark elements of different ranks and detailed information on the Galois
module structures of both ideal class groups and Selmer groups.

The purpose of the current article is now to develop an explicit Iwasawa theory for
the zeta elements introduced in [BKS], to use this theory to derive a new approach
to proving special cases of the eTNC, and finally to demonstrate the usefulness of
this approach by using it to prove the conjecture in important new cases.

In the next two subsections we discuss briefly the main results that we obtain.

1A. Iwasawa main conjectures for general number fields. The first key aspect
of our approach is the formulation of an explicit main conjecture of Iwasawa theory
for abelian extensions of general number fields (we refer to this conjecture as a
“higher-rank main conjecture” since the rank of any associated Euler system would
in most cases be greater than one).

To give a little more detail, we fix a finite abelian extension K/k of general
number fields and a Zp-extension k∞ of k and set K∞ = K k∞. In this introduction,
we suppose that k∞/k is the cyclotomic Zp-extension, but this is only for simplicity.

Then our higher-rank main conjecture asserts the existence of an Iwasawa-
theoretic zeta element that plays the role of p-adic L-functions for general number
fields and has precisely prescribed interpolation properties in terms of the values at
zero of the higher derivatives of abelian L-series. (For details, see Conjecture 3.1).

Modulo a natural hypothesis on µ-invariants, this conjecture can be reformulated
in a more classical style as an equality between the characteristic ideals of a canonical
Selmer module and of the quotient of a natural Rubin lattice of unit groups modulo
the subgroup generated by the Rubin–Stark elements (see Conjecture 3.14 and
Proposition 3.15). In this way it becomes clear that the higher-rank main conjecture
extends classical main conjectures.

1B. Rubin–Stark congruences and the eTNC. It is also clear that the higher-rank
main conjecture does not itself imply the validity of the p-part of the eTNC (as
stated in Conjecture 2.3 below) and is much weaker than the type of main conjecture
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formulated by Fukaya and Kato [2006]. For example, if any p-adic place of k splits
completely in K , then our conjectural Rubin–Stark element encodes no information
at all concerning the L-values of characters of Gal(K/k).

To overcome this deficiency, we make a detailed Iwasawa-theoretic study of
the fine congruence relations between Rubin–Stark elements of differing ranks
that were independently formulated for finite abelian extensions in [Mazur and
Rubin 2016] (where the congruences are referred to as a “refined class number
formula for Gm”) and in [Sano 2014]. In this way we are led to conjecture a precise
family of “Iwasawa-theoretic Rubin–Stark congruences” for K∞/k which, roughly
speaking, describes the link between the natural Rubin–Stark elements for K∞/k
and for K/k. (For full details see Conjectures 4.1 and 4.2).

To better understand the context of this conjectural family of congruences we
prove in Theorem 4.9 that it constitutes a natural extension to general number
fields of the “Gross–Stark conjecture” that was formulated in [Gross 1982] for CM
extensions of totally real fields and has since been much studied in the literature.

We can now state one of the main results of the present article (for a more detailed
statement see Theorem 5.2).

Theorem 1.1. If each of the following conjectures is valid for K∞/k, then the
p-component of the eTNC (see Conjecture 2.3) is valid for every finite subextension
of K∞/k:
• The higher-rank Iwasawa main conjecture (Conjecture 3.1).

• The Iwawasa-theoretic Rubin–Stark congruences (Conjecture 4.2).

• Gross’s finiteness conjecture (see Remark 5.4).

An early indication of the usefulness of this result is that it quickly leads to a
much simpler proof of the main results of [Burns and Greither 2003] and [Flach
2011], and also those of [Bley 2006], in which the eTNC is proved for abelian
extensions over Q and certain abelian extensions over imaginary quadratic fields
respectively (see Corollary 5.6 and Remark 5.10).

To describe an application giving new results we assume k is totally real and
K is CM and consider the “minus component” eTNC(K/k)−p of the p-part of the
eTNC for K/k (as formulated explicitly in Remark 2.4).

We write K+ for the maximal totally real subfield of K and recall that if no
p-adic place splits in K/K+ and the Iwasawa-theoretic µ-invariant of K∞/K
vanishes, then eTNC(K/k)−p is already known to be valid (as far as we are aware,
such a result was first implicitly discussed in the survey article by Flach [2004]).

However, by combining Theorems 1.1 and 4.9 with results on the Gross–Stark
conjecture by Darmon, Dasgupta and Pollack [Dasgupta et al. 2011] and by Ventullo
[2015], we can now prove the following concrete result (for a precise statement of
which see Corollary 5.8).
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Corollary 1.2. Let K/k be a finite abelian extension of number fields such that K
is CM and k is totally real. If p is any odd prime for which the Iwasawa-theoretic
µ-invariant of K∞/K vanishes and at most one p-adic place of k splits in K/K+,
then eTNC(K/k)−p (see Remark 2.4) is (unconditionally) valid.

This result gives the first verifications of eTNC(K/k)−p in any case for which
both k 6=Q and the relevant p-adic L-series possess trivial zeroes. For example,
all of the hypotheses of Corollary 1.2 are satisfied by the concrete families of
extensions described in Examples 5.9.

By combining Corollary 1.2 with [BKS, Corollary 1.14] we can also immediately
deduce the following result concerning a refined version of the classical Brumer–
Stark Conjecture. In this result we write Sram(K/k) for the set of places of k that
ramify in K and for any finite set of nonarchimedean places T of k we write ClT (K )
for the ray class group of the ring of integers of K modulo the product of all places
of K above T . We also use the equivariant L-series θK/k,Sram(K/k),T (s) defined in
equation (1) of Section 2B below, and write x 7→ x# for the Zp-linear involution on
Zp[Gal(K/k)] that inverts elements of Gal(K/k).

Corollary 1.3. Let K/k and p be as in Corollary 1.2 and set G := Gal(K/k).
Then for any finite nonempty set of places T of k that is disjoint from Sram(K/k)
one has

θK/k,Sram(K/k),T (0)# ∈ Zp⊗Z FittZ[G]
(
HomZ(ClT (K ),Q/Z)

)
,

and hence also

θK/k,Sram(K/k),T (0) ∈ Zp⊗Z AnnZ[G](ClT (K )).

We note that the final assertion of this result gives the first verifications of
the Brumer–Stark conjecture in a case for which the base field is not Q and the
relevant p-adic L-series possess trivial zeroes. Thus the conclusion of this corollary
unconditionally holds for the extensions in Examples 5.9.

Our methods also prove a natural equivariant “main conjecture” (see Theorem 3.16
and Corollary 3.17) involving the Selmer modules for Gm introduced in [BKS]
and give a more straightforward proof of one of the main results of [Greither and
Popescu 2015] (see Section 3E, especially Corollaries 3.18 and 3.20).

1C. Further developments. The ideas presented in this article extend naturally in
at least two different directions.

Firstly, one can formulate a natural generalization of the theory discussed here
in the context of arbitrary Tate motives. In this setting our theory is related to
natural generalizations of both the notion of Rubin–Stark element and of the Rubin–
Stark conjecture for special values of L-functions at any integer points. We can
also formulate precise conjectural congruences between Rubin–Stark elements of
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differing “weights”, and in this way obtain p-adic families of Rubin–Stark elements.
For details see our recent paper [Burns et al. 2016b].

Secondly, using an approach developed in [Burns and Sano 2016], many of
the constructions, conjectures and results discussed here extend naturally to the
setting of noncommutative Iwasawa theory and can then be used to prove the same
case of the eTNC that we consider here over natural families of nonabelian Galois
extensions.

Note. After this article was submitted for publication we learned of the preprint
[Dasgupta et al. 2016] by Dasgupta, Kakde and Ventullo, which gives a full proof of
the Gross–Stark conjecture (as stated in Conjecture 4.7 below). Taking their result
into account, one can now remove the hypothesis of the validity of (the relevant
cases of) Conjecture 4.7 from the statement of Corollary 5.7 and, via Theorem 4.9,
one obtains further strong evidence in support of the Iwasawa-theoretic Rubin–Stark
Congruences that are formulated in Conjecture 4.2. This does not yet, however,
allow one to extend the results of either Corollary 1.2 or Corollary 1.3 since, aside
from certain special classes of fields discussed in Remark 5.4, Gross’s finiteness
conjecture is still (in the relevant cases) not known to be valid unless one assumes
that all associated p-adic L-functions have at most one trivial zero.

1D. Notation. For the reader’s convenience we collect here some basic notation.
For any (profinite) group G we write Ĝ for the group of homomorphisms G→C×

of finite order.
Let k be a number field. For a place v of k, the residue field of v is denoted by

κ(v) and we set Nv := #κ(v). We denote the set of places of k which lie above the
infinite place∞ of Q (resp. a prime number p) by S∞(k) (resp. Sp(k)). For a Galois
extension L/k, the set of places of k that ramify in L is denoted by Sram(L/k). For
any set 6 of places of k, we denote by 6L the set of places of L which lie above
places in 6.

Let L/k be an abelian extension with Galois group G. For a place v of k, the
decomposition group at v in G is denoted by Gv. If v is unramified in L , the
Frobenius automorphism at v is denoted by Frv.

Let E be either a field of characteristic 0 or Zp. For an abelian group A, we
denote E ⊗Z A by E A or AE . For a Zp-module A and an extension field E of Qp,
we also write E A or AE for E ⊗Zp A. (This abuse of notation would not make any
confusion.) We use similar notation for complexes. For example, if C is a complex
of abelian groups, then we denote E ⊗L

Z C by EC or CE .
Let R be a commutative ring and M an R-module. The linear dual HomR(M, R)

is denoted by M∗. If r and s are nonnegative integers with r ≤ s, then there is a
canonical paring ∧s

R M ×
∧r

R HomR(M, R)→
∧s−r

R M
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defined by

(a1∧· · ·∧as, ϕ1∧· · ·∧ϕr ) 7→
∑
σ∈Ss,r

sgn(σ ) det(ϕi (aσ( j)))1≤i, j≤r aσ(r+1)∧· · ·∧aσ(s),

with Ss,r := {σ ∈Ss | σ(1) < · · ·< σ(r) and σ(r + 1) < · · ·< σ(s)}. (See [BKS,
Proposition 4.1].) We denote the image of (a,8) under the above pairing by 8(a).

The total quotient ring of R is denoted by Q(R).

2. Zeta elements for Gm

In this section, we review the zeta elements for Gm that were introduced in [BKS].

2A. The Rubin–Stark conjecture. We review the formulation of the Rubin–Stark
conjecture [Rubin 1996, Conjecture B′].

Let L/k be a finite abelian extension of number fields with Galois group G.
Let S be a finite set of places of k which contains S∞(k)∪ Sram(L/k). We fix a
labeling S = {v0, . . . , vn}. Take r ∈ Z so that v1, . . . , vr split completely in L . We
put V := {v1, . . . , vr }. For each place v of k, we fix a place w of L lying above v.
In particular, for each i with 0≤ i ≤ n, we fix a place wi of L lying above vi . Such
conventions are frequently used in this paper.

For χ ∈ Ĝ, let Lk,S(χ, s) denote the usual S-truncated L-function for χ . We put

rχ,S := ords=0 Lk,S(χ, s).

Let OL ,S be the ring of SL integers of L . For any set 6 of places of k, put
YL ,6 :=

⊕
w∈6L

Zw, the free abelian group on 6L . We define

X L ,6 :=

{∑
w∈6L

aww ∈ YL ,6

∣∣∣ ∑
w∈6L

aw = 0
}
.

By Dirichlet’s unit theorem, we know that the homomorphism of R[G]-modules

λL ,S : RO×L ,S −→∼ RX L ,S, a 7→ −
∑
w∈SL

log |a|ww,

is an isomorphism.
By [Tate 1984, Chapter I, Proposition 3.4] we know that

rχ,S = dimC(eχCO×L ,S)= dimC(eχCX L ,S)=

{
#{v ∈ S | χ(Gv)= 1} if χ 6= 1,
n (= #S− 1) if χ = 1,

where eχ := 1/#G
∑

σ∈G χ(σ)σ
−1. From this fact, we see that r ≤ rχ,S .
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Let T be a finite set of places of k which is disjoint from S. The S-truncated
T -modified L-function is defined by

Lk,S,T (χ, s) :=
(∏
v∈T

(1−χ(Frv)Nv1−s)

)
Lk,S(χ, s).

The (S, T )-unit group of L is defined to be the kernel of O×L ,S→
⊕

w∈TL
κ(w)×.

Note that O×L ,S,T is a subgroup of O×L ,S of finite index. We have

r ≤ rχ,S = ords=0 Lk,S,T (χ, s)= dimC(eχCO×L ,S,T ).
We put

L(r)k,S,T (χ, 0) := lim
s→0

s−r Lk,S,T (χ, s).

We define the r -th order Stickelberger element by

θ
(r)
L/k,S,T :=

∑
χ∈Ĝ

L(r)k,S,T (χ
−1, 0)eχ ∈ R[G].

The (r -th order) Rubin–Stark element

εV
L/k,S,T ∈ R

∧r
Z[G]O

×

L ,S,T

is defined to be the element which corresponds to

θ
(r)
L/k,S,T · (w1−w0)∧ · · · ∧ (wr −w0) ∈ R

∧r
Z[G]X L ,S

under the isomorphism

R
∧r

Z[G]O
×

L ,S,T −→
∼ R

∧r
Z[G]X L ,S

induced by λL ,S . We note that εV
L/k,S,T is independent of the choice of w0 and v0

(see [Sano 2015, Proposition 3.3]).
Now assume that O×L ,S,T is Z-free. Then, the Rubin–Stark conjecture (as for-

mulated in [Rubin 1996, Conjecture B′]) predicts that the Rubin–Stark element
εV

L/k,S,T lies in the Z[G]-lattice obtained by setting

r⋂
Z[G]

O×L ,S,T :=
{
a ∈Q

∧r
Z[G]O

×

L ,S,T

∣∣
8(a)∈Z[G] for all 8∈

∧r
Z[G]HomZ[G](O×L ,S,T ,Z[G])

}
.

We stress, in particular, that in this context (and as used systematically in [BKS])
the notation

⋂r
Z[G] does not refer to an intersection.

In this paper, we consider the “p-part” of the Rubin–Stark conjecture for a fixed
prime number p. We put

UL ,S,T := ZpO×L ,S,T .
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We also fix an isomorphism C' Cp. From this, we regard

εV
L/k,S,T ∈ Cp

∧r
Zp[G]UL ,S,T .

We define

r⋂
Zp[G]

UL ,S,T :=
{
a ∈Qp

∧r
Zp[G]UL ,S,T

∣∣
8(a) ∈ Zp[G] for all 8 ∈

∧r
Zp[G]HomZp[G](UL ,S,T ,Zp[G])

}
.

We easily see that there is a natural isomorphism Zp
⋂r

Z[G]O
×

L ,S,T '
⋂r

Zp[G]UL ,S,T .
We often denote

∧r
Zp[G] and

⋂r
Zp[G] simply by

∧r and
⋂r respectively.

We propose the “p-component version” of the Rubin–Stark conjecture as follows.

Conjecture 2.1 (RS(L/k, S, T, V )p). One has εV
L/k,S,T ∈

⋂r
Zp[G]UL ,S,T .

Remark 2.2. Concerning known results on the Rubin–Stark conjecture, see [BKS,
Remark 5.3], for example. Note that the Rubin–Stark conjecture is a consequence
of the eTNC; this was first proved in [Burns 2007, Corollary 4.1], and then, in a
much simpler way, in [BKS, Theorem 5.14].

2B. The eTNC for the untwisted Tate motive. We now review the formulation of
the eTNC for the untwisted Tate motive.

Let L/k,G, S, T be as in the previous subsection. Fix a prime number p. We
assume that Sp(k)⊂ S. Consider the complex

CL ,S := R HomZp(R0c(OL ,S,Zp),Zp)[−2].

It is known that CL ,S is a perfect complex of Zp[G]-modules, acyclic outside
degrees zero and one. We have a canonical isomorphism

H 0(CL ,S)'UL ,S (:= ZpO×L ,S),

and a canonical exact sequence

0→ AS(L)→ H 1(CL ,S)→ XL ,S→ 0,

where AS(L) := Zp Pic(OL ,S) and XL ,S := Zp X L ,S . The complex CL ,S is iden-
tified with the p-completion of the complex obtained from the classical “Tate
sequence” (if S is large enough), and also identified with Zp R0((OL ,S)W ,Gm),
where R0((OL ,S)W ,Gm) is the “Weil-étale cohomology complex” constructed in
[BKS, §2.2] (see [Burns and Flach 1998, Proposition 3.3; Burns 2008, Proposition
3.5(e)]).
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By a similar construction to [BKS, Proposition 2.4], we construct a canonical
complex CL ,S,T which lies in the distinguished triangle

CL ,S,T → CL ,S→
⊕
w∈TL

Zpκ(w)
×
[0].

(We can simply define CL ,S,T by Zp R0T ((OL ,S)W ,Gm) in the terminology of
[BKS].) We have

H 0(CL ,S,T )=UL ,S,T

and the exact sequence

0→ AT
S (L)→ H 1(CL ,S,T )→ XL ,S→ 0,

where AT
S (L) is the p-part of the ray class group of OL ,S with modulus

∏
w∈TL

w.
We define the leading term of Lk,S,T (χ, s) at s = 0 by

L∗k,S,T (χ, 0) := lim
s→0

s−rχ,S Lk,S,T (χ, s).

The leading term at s = 0 of the equivariant L-function

θL/k,S,T (s) :=
∑
χ∈Ĝ

Lk,S,T (χ
−1, s)eχ (1)

is defined by

θ∗L/k,S,T (0) :=
∑
χ∈Ĝ

L∗k,S,T (χ
−1, 0)eχ ∈ R[G]×.

As in the previous subsection, we fix an isomorphism C ' Cp. We regard
θ∗L/k,S,T (0) ∈ Cp[G]×. The zeta element for Gm

zL/k,S,T ∈ CpdetZp[G](CL ,S,T )

is defined to be the element which corresponds to θ∗L/k,S,T (0) under the isomorphism

CpdetZp[G](CL ,S,T )' detCp[G](CpUL ,S,T )⊗Cp[G] det−1
Cp[G](CpXL ,S)

−→∼ detCp[G](CpXL ,S)⊗Cp[G] det−1
Cp[G](CpXL ,S)

−→∼ Cp[G],

where the second isomorphism is induced by λL ,S , and the last isomorphism is
the evaluation map. Note that determinant modules must be regarded as graded
invertible modules, but we omit the grading of any graded invertible modules as in
[BKS].

The eTNC for the pair (h0(Spec L),Zp[G]) is formulated as follows.
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Conjecture 2.3 (eTNC (h0(Spec L),Zp[G])). One has

Zp[G] · zL/k,S,T = detZp[G](CL ,S,T ).

Remark 2.4. When p is odd, k is totally real, and L is CM, we say that the minus
part of the eTNC (which we denote by eTNC(h0(Spec L),Zp[G]−)) is valid if we
have the equality

e−Zp[G] · zL/k,S,T = e−detZp[G](CL ,S,T ),

where e− := (1− c)/2 and c ∈ G is the complex conjugation.

2C. The eTNC and Rubin–Stark elements. In this subsection, we interpret the
eTNC using Rubin–Stark elements. The result in this subsection will be used in
Section 5.

We continue to use the notation in the previous subsection. Take χ ∈ Ĝ, and
suppose that rχ,S < #S. Put Lχ := Lkerχ and Gχ :=Gal(Lχ/k). Take Vχ,S ⊂ S so
that all v ∈ Vχ,S split completely in Lχ (i.e., χ(Gv)= 1) and #Vχ,S = rχ,S . Note
that if χ 6= 1, we have

Vχ,S = {v ∈ S | χ(Gv)= 1}.

Consider the Rubin–Stark element

ε
Vχ,S
Lχ/k,S,T ∈ Cp

∧rχ,S ULχ ,S,T .

Note that a Rubin–Stark element depends on a fixed labeling of S, so in this case a
labeling of S such that S = {v0, . . . , vn} and Vχ,S = {v1, . . . , vrχ,S } is understood
to be chosen.

For a set 6 of places of k and a finite extension F/k, put YF,6 := ZpYF,6 =⊕
w∈6F

Zpw and XF,6 := Zp X F,6 = ker(YF,6→ Zp).
Then the natural surjection XLχ ,S→ YLχ ,Vχ,S induces an injection

Y∗Lχ ,Vχ,S → X ∗Lχ ,S,

where (·)∗ := HomZp[Gχ ](·,Zp[Gχ ]). Since

YLχ ,Vχ,S ' Zp[Gχ ]
⊕rχ,S

and dimCp(eχCpXL ,S)= rχ,S , the above map induces an isomorphism

eχCpY∗Lχ ,Vχ,S
∼
→ eχCpX ∗L ,S.

From this, we have a canonical identification

eχCp
(∧rχ,S ULχ ,S,T ⊗

∧rχ,SY∗Lχ ,Vχ,S
)

= eχ
(
detCp[G](CpUL ,S,T )⊗Cp[G] det−1

Cp[G](CpXL ,S)
)
.
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Since {w1, . . . , wrχ,S } is a basis of YLχ ,Vχ,S , we have the (noncanonical) isomor-
phism∧rχ,S ULχ ,S,T −→

∼
∧rχ,S ULχ ,S,T ⊗

∧rχ,SY∗Lχ ,Vχ,S , a 7→ a⊗w∗1 ∧ · · · ∧w
∗

rχ,S ,

where w∗i is the dual of wi . Hence, we have the (noncanonical) isomorphism

eχCp
∧rχ,S ULχ ,S,T ' eχ

(
detCp[G](CpUL ,S,T )⊗Cp[G] det−1

Cp[G](CpXL ,S)
)
.

Proposition 2.5. Suppose rχ,S < #S for every χ ∈ Ĝ. A necessary and sufficient
condition for eTNC(h0(Spec L),Zp[G]) to hold is the existence of a Zp[G]-basis
LL/k,S,T of detZp[G](CL ,S,T ) such that for every χ ∈ Ĝ the image of eχLL/k,S,T

under the isomorphism

eχCpdetZp[G](CL ,S,T )

' eχ
(
detCp[G](CpUL ,S,T )⊗Cp[G] det−1

Cp[G](CpXL ,S)
)
' eχCp

∧rχ,S ULχ ,S,T

coincides with eχε
Vχ,S
Lχ/k,S,T .

Proof. By the definition of Rubin–Stark elements, the image of eχε
Vχ,S
Lχ/k,S,T under

the isomorphism

eχCp
∧rχ,S ULχ ,S,T ' eχ

(
detCp[G](CpUL ,S,T )⊗Cp[G] det−1

Cp[G](CpXL ,S)
)

' eχ
(
detCp[G](CpXL ,S)⊗Cp[G] det−1

Cp[G](CpXL ,S)
)

' eχCp[G]

is equal to eχ L∗k,S,T (χ
−1, 0). Necessity follows by putting LL/k,S,T := zL/k,S,T .

Sufficiency follows by noting that LL/k,S,T must be equal to zL/k,S,T . �

2D. The canonical projection maps. Let L/k,G, S, T, V, r be as in Section 2A.
We put

er :=
∑

χ∈Ĝ, rχ,S=r

eχ ∈Q[G].

As in Proposition 2.5, we construct the (noncanonical) isomorphism

er CpdetZp[G](CL ,S,T )' er Cp
∧rUL ,S,T .

In this subsection, we give an explicit description of the map

πV
L/k,S,T : detZp[G](CL ,S,T )

er Cp⊗
−−−→ er CpdetZp[G](CL ,S,T )

' er Cp
∧rUL ,S,T ⊂ Cp

∧rUL ,S,T .

This map is important since the image of the zeta element zL/k,S,T under this map
is the Rubin–Stark element εV

L/k,S,T .
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Firstly, we choose a representative 5
ψ
→ 5 of CL ,S,T , where the first term is

placed in degree zero, such that 5 is a free Zp[G]-module with basis {b1, . . . , bd}

(d is sufficiently large), and that the natural surjection

5→ H 1(CL ,S,T )→ XL ,S

sends bi to wi −w0 for each i with 1≤ i ≤ r . For the details of this construction,
see [BKS, §5.4]. Note that the representative of R0T ((OK ,S)W ,Gm) chosen there
is of the form

P→ F,

where P is projective and F is free. By Swan’s theorem [Curtis and Reiner 1981,
(32.1)], we have an isomorphism Zp P ' Zp F . This shows that we can take the
representative of CL ,S,T as above.

We define ψi ∈ HomZp[G](5,Zp[G]) by

ψi := b∗i ◦ψ,

where b∗i is the dual of bi . Note that
∧

r<i≤dψi ∈
∧d−r HomZp[G](5,Zp[G])

defines the homomorphism ∧
r<i≤dψi :

∧d
5→

∧r
5

given as follows (see Notation):(∧
r<i≤dψi

)
(b1∧ · · ·∧bd)=

∑
σ∈Sd,r

sgn(σ ) det(ψi (bσ( j)))r<i, j≤dbσ(1)∧ · · ·∧bσ(r)

Proposition 2.6. (i) We have
r⋂

UL ,S,T =
(

Qp
∧rUL ,S,T

)
∩
∧r
5,

where we regard UL ,S,T ⊂5 via the natural inclusion

UL ,S,T = H 0(CL ,S,T )= kerψ ↪→5.

(ii) If we regard
⋂r UL ,S,T as a subset of

∧r
5 by (i), then

im
(∧

r<i≤dψi :
∧d
5→

∧r
5
)
⊂

r⋂
UL ,S,T .

(iii) The map

detZp[G](CL ,S,T )=
∧d
5⊗

∧d
5∗→

r⋂
UL ,S,T

given by

b1 ∧ · · · ∧ bd ⊗ b∗1 ∧ · · · ∧ b∗d 7→
(∧

r<i≤dψi
)
(b1 ∧ · · · ∧ bd)
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coincides with (−1)r(d−r)πV
L/k,S,T . In particular, we have

πV
L/k,S,T (b1 ∧ · · · ∧ bd ⊗ b∗1 ∧ · · · ∧ b∗d)

= (−1)r(d−r)
∑
σ∈Sd,r

sgn(σ ) det(ψi (bσ( j)))r<i, j≤dbσ(1) ∧ · · · ∧ bσ(r)

and
imπV

L/k,S,T ⊂

{
a ∈

r⋂
UL ,S,T

∣∣∣ er a = a
}
.

Proof. For (i), see [BKS, Lemma 4.7(ii)]. For (ii) and (iii), see [BKS, Lemma
4.3]. �

3. Higher rank Iwasawa theory

3A. Notation. We fix a prime number p. Let k be a number field, and K∞/k a
Galois extension such that G := Gal(K∞/k)'1×0, where 1 is a finite abelian
group and 0 ' Zp. Set 3 := Zp[[G]]. Fix an isomorphism C ' Cp, and identify
1̂ with HomZ(1,Qp

×). For χ ∈ 1̂, put 3χ := Zp[imχ ][[0]]. Note that the total
quotient ring Q(3) has the decomposition

Q(3)'
⊕

χ∈1̂/∼Qp

Q(3χ ),

where χ ∼Qp χ
′ if and only if there exists σ ∈ GQp such that χ = σ ◦χ ′.

We use the following notation:

• K := K0
∞

(so Gal(K/k)=1);

• k∞ := K1
∞

(so k∞/k is a Zp-extension with Galois group 0);

• kn: the n-th layer of k∞/k;

• Kn: the n-th layer of K∞/K ;

• Gn := Gal(Kn/k).

For each character χ ∈ Ĝ we also set

• Lχ := K kerχ
∞ ;

• Lχ,∞ := Lχ · k∞;

• Lχ,n: the n-th layer of Lχ,∞/Lχ ;

• Gχ := Gal(Lχ,∞/k);

• Gχ,n := Gal(Lχ,n/k);

• Gχ := Gal(Lχ/k);

• 0χ := Gal(Lχ,∞/Lχ );

• 0χ,n := Gal(Lχ,n/Lχ );
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• S: a finite set of places of k which contains S∞(k)∪ Sram(K∞/k)∪ Sp(k);

• T : a finite set of places of k which is disjoint from S;

• Vχ := {v ∈ S | v splits completely in Lχ,∞} (this is a proper subset of S);

• rχ := #Vχ .

For any intermediate field L of K∞/k, we denote lim
←−−F UF,S,T by UL ,S,T , where

F runs over all intermediate fields of L/k that are finite over k and the inverse limit
is taken with respect to the norm maps. Similarly, CL ,S,T is the complex defined by
the inverse limit of the complexes CF,S,T with respect to the natural transition maps,
and AT

S (L) the inverse limit of the p-primary parts AT
S (F) of the T ray class groups

of OF,S with respect to the norm maps. We denote lim
←−−F YF,S by YL ,S , where the

inverse limit is taken with respect to the maps

YF ′,S→ YF,S, wF ′ 7→ wF ,

where F ⊂ F ′, wF ′ ∈ SF ′ , and wF ∈ SF is the place lying under wF ′ . We use
similar notation for XL ,S etc.

3B. Iwasawa main conjecture I. In this section we formulate the main conjecture
of Iwasawa theory for general number fields, which is a key to our study.

3B1. For any character χ in Ĝ there is a natural composite homomorphism

λχ : det3(CK∞,S,T )→ detZp[Gχ ](CLχ ,S,T )

↪→ detCp[Gχ ](CpCLχ ,S,T )

−→∼ detCp[Gχ ](CpULχ ,S,T )⊗Cp[Gχ ] det−1
Cp[Gχ ]

(CpXLχ ,S)

−→∼ detCp[Gχ ](CpXLχ ,S)⊗Cp[Gχ ] det−1
Cp[Gχ ]

(CpXLχ ,S)

' Cp[Gχ ]

χ
−→ Cp,

where the fourth map is induced by λLχ ,S , the fifth map is the evaluation, and the
last map is induced by χ .

We can now state our higher-rank main conjecture of Iwasawa theory in its first
form.

Conjecture 3.1 (IMC(K∞/k, S, T )). There exists a3-basis LK∞/k,S,T of the mod-
ule det3(CK∞,S,T ) for which, at every χ ∈ 1̂ and every ψ ∈ Ĝχ for which rψ,S = rχ
one has λψ(LK∞/k,S,T )= L(rχ )k,S,T (ψ

−1, 0).

Remark 3.2. This conjecture is equivariant with respect to1. But it is important to
note that this conjecture is much weaker than the (relevant case of the) equivariant
Tamagawa number conjecture. For example, if k∞/k is the cyclotomic Zp-extension,
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then for any ψ that is trivial on the decomposition group in Gχ of any p-adic place
of k one has rψ,S > rχ and so there is no interpolation condition at ψ specified
above. When rχ = 0, (the χ-component of) the element LK∞/k,S,T is the p-adic
L-function, and in the general case rχ > 0, it plays a role of p-adic L-functions.
We will see in Section 3B2 that the interpolation condition characterizes LK∞/k,S,T

uniquely.

Remark 3.3. The explicit definition of the elements εVχ
Lχ,n/k,S,T implies directly that

the assertion of Conjecture 3.1 is valid if and only if there is a 3-basis LK∞/k,S,T

of det3(CK∞,S,T ) for which, for every character χ ∈ 1̂ and every positive integer n,
the image of LK∞/k,S,T under the map

det3(CK∞,S,T )→ detZp[Gχ,n](CLχ,n,S,T )
π

Vχ
Lχ,n/k,S,T
−−−−−−→erχCp

∧rχULχ,n,S,T

is equal to εVχ
Lχ,n/k,S,T .

It is not difficult to see that the validity of Conjecture 3.1 is independent of T . We
assume in the sequel that T contains two places of unequal residue characteristics
and hence that each group UL ,S,T is Zp-free.

3B2. For each character χ ∈ 1̂, there is a natural ring homomorphism

Zp[[Gχ ]] = Zp[[Gχ ×0]]
χ
−→ Zp[imχ ][[0]] =3χ ⊂ Q(3χ ).

In the sequel we use this homomorphism to regard Q(3χ ) as a Zp[[Gχ ]]-algebra.
In the next result we describe an important connection between the element

LK∞/k,S,T that is predicted to exist by Conjecture 3.1 and the inverse limit (over n)
of the Rubin–Stark elements εVχ

Lχ,n/k,S,T . This result shows, in particular, that the
element LK∞/k,S,T in Conjecture 3.1 is unique (if it exists).

In the sequel we set
rχ⋂

ULχ,∞,S,T := lim
←−−

n

rχ⋂
ULχ,n,S,T ,

where the inverse limit is taken with respect to the map
rχ⋂

ULχ,m ,S,T →

rχ⋂
ULχ,n,S,T

induced by the norm map ULχ,m ,S,T →ULχ,n,S,T , where n ≤ m. Note that Rubin–
Stark elements are norm compatible (see [Rubin 1996, Proposition 6.1; Sano 2014,
Proposition 3.5]), so if we know that Conjecture RS(Lχ,n/k, S, T, Vχ )p is valid
for all sufficiently large n, then we can define the element

ε
Vχ
Lχ,∞/k,S,T := lim

←−−
n
ε

Vχ
Lχ,n/k,S,T ∈

rχ⋂
ULχ,∞,S,T .
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Theorem 3.4. (i) For each χ ∈ 1̂, the homomorphism

det3(CK∞,S,T )→ detZp[Gχ,n](CLχ,n,S,T )
π

Vχ
Lχ,n/k,S,T
−−−−−−→

rχ⋂
ULχ,n,S,T

(see Proposition 2.6(iii)) induces an isomorphism of Q(3χ )-modules

π
Vχ
Lχ,∞/k,S,T : det3(CK∞,S,T )⊗3 Q(3χ )'

( rχ⋂
ULχ,∞,S,T

)
⊗Zp[[Gχ ]] Q(3χ ).

(ii) If Conjecture 3.1 is valid, then we have

π
Vχ
Lχ,∞/k,S,T (LK∞/k,S,T )= ε

Vχ
Lχ,∞/k,S,T .

(Note that in this case Conjecture RS(Lχ,n/k, S, T, Vχ )p is valid for all n by
Remark 3.3 and Proposition 2.6(iii).)

Proof. Since the module AT
S (K∞)⊗3 Q(3χ ) vanishes, there are canonical isomor-

phisms

det3(CK∞,S,T )⊗3 Q(3χ )

' detQ(3χ )(CK∞,S,T ⊗3 Q(3χ ))

' detQ(3χ )(UK∞,S,T ⊗3 Q(3χ ))⊗Q(3χ ) det−1
Q(3χ )(XK∞,S ⊗3 Q(3χ )). (2)

It is also easy to check that there are natural isomorphisms

UK∞,S,T ⊗3 Q(3χ )'ULχ,∞,S,T ⊗Zp[[Gχ ]] Q(3χ )
and

XK∞,S ⊗3 Q(3χ )' XLχ,∞,S ⊗Zp[[Gχ ]] Q(3χ )' YLχ,∞,Vχ ⊗Zp[[Gχ ]] Q(3χ ),

and that these are Q(3χ )-vector spaces of dimension r := rχ (= #Vχ ). The isomor-
phism (2) is therefore a canonical isomorphism of the form

det3(CK∞,S,T )⊗3 Q(3χ )'
(∧rULχ,∞,S,T ⊗

∧rY∗Lχ,∞,Vχ
)
⊗Zp[[Gχ ]] Q(3χ ).

Composing this isomorphism with the map induced by the noncanonical isomor-
phism ∧rY∗Lχ,∞,Vχ −→

∼ Zp[[Gχ ]], w∗1 ∧ · · · ∧w
∗

r 7→ 1,
we have

det3(CK∞,S,T )⊗3 Q(3χ )'
(∧rULχ,∞,S,T

)
⊗Zp[[Gχ ]] Q(3χ ).

As in the proofs of Proposition 2.6(iii) and [BKS, Lemma 4.3], this isomorphism
is induced by lim

←−−n π
Vχ
Lχ,n/k,S,T . Now the isomorphism in claim (i) is thus obtained

directly from Lemma 3.5 below.
Claim (ii) follows by noting that the image of LK∞/k,S,T under the map

det3(CK∞,S,T )→ detZp[Gχ,n](CLχ,n,S,T )
π

Vχ
Lχ,n/k,S,T
−−−−−−→

rχ⋂
ULχ,n,S,T
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is equal to εVχ
Lχ,n/k,S,T . �

Lemma 3.5. With notation as above, there is a canonical identification( r⋂
ULχ,∞,S,T

)
⊗Zp[[Gχ ]] Q(3χ )=

(∧rULχ,∞,S,T

)
⊗Zp[[Gχ ]] Q(3χ ).

Proof. Take a representative 5∞→5∞ of CLχ,∞,S,T as in Section 2D. Put 5n :=

5∞⊗Zp[[Gχ ]] Zp[Gχ,n]. We have (see Proposition 2.6(i))

r⋂
ULχ,n,S,T =

(
Qp

∧rULχ,n,S,T

)
∩
∧r
5n,

and thus lim
←−−n

⋂r
Zp[Gχ,n]ULχ,n,S,T can be regarded as a submodule of the free Zp[[Gχ ]]-

module lim
←−−n

∧r
5n =

∧r
5∞. For simplicity, we set Gn := Gχ,n , G := Gχ , Un :=

ULχ,n,S,T , U∞ :=ULχ,∞,S,T , and Q := Q(3χ ). We will show the equality((
lim
←−−

n
Qp

∧rUn
)
∩
∧r
5∞

)
⊗Zp[[G]] Q =

(∧rU∞
)
⊗Zp[[G]] Q

of the submodules of (
∧r
5∞)⊗Zp[[G]] Q.

It is easy to see that(∧rU∞
)
⊗Zp[[G]] Q ⊂

((
lim
←−−

n
Qp

∧rUn
)
∩
∧r
5∞

)
⊗Zp[[G]] Q.

Conversely, take a ∈ (lim
←−−n Qp

∧rUn) ∩
∧r
5∞ and set Mn := coker(Un → 5n).

Then we have
lim
←−−

n
Mn ' coker(U∞→5∞)=: M∞.

Since 5∞⊗Zp[[G]] Q ' (U∞⊗Zp[[G]] Q)⊕ (M∞⊗Zp[[G]] Q), we have the decompo-
sition (∧r

5∞
)
⊗Zp[[G]] Q '

r⊕
i=0

(∧r−iU∞⊗
∧i M∞

)
⊗Zp[[G]] Q.

Write

a = (ai )i ∈

r⊕
i=0

(∧r−iU∞⊗
∧i M∞

)
⊗Zp[[G]] Q.

It is sufficient to show that ai = 0 for all i > 0. We may assume that

ai ∈ im
(∧r−iU∞⊗

∧i M∞→
(∧r−iU∞⊗

∧i M∞
)
⊗Zp[[G]] Q

)
for every i . Since a ∈

∧r
5∞, we can also write a = (a(n))n ∈ lim

←−−n

∧r
5n . For

each n, we have a decomposition

Qp
∧r
5n '

r⊕
i=0

(
Qp

∧r−iUn ⊗Qp[Gn]Qp
∧i Mn

)
,
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and we write

a(n) = (a(n),i )i ∈
r⊕

i=0

(
Qp

∧r−iUn ⊗Qp[Gn]Qp
∧i Mn

)
.

Since a ∈ lim
←−−n Qp

∧rUn , we must have a(n),i = 0 for all i > 0. To prove ai = 0 for
all i > 0, it is sufficient to show that the natural map

im
(∧r−iU∞⊗

∧i M∞→
(∧r−iU∞⊗

∧i M∞
)
⊗Zp[[G]] Q

)
→ lim
←−−

n

(
Qp

∧r−iUn ⊗Qp[Gn]Qp
∧i Mn

)
(3)

is injective. Note that M∞ is isomorphic to a submodule of 5∞, since M∞ '
ker(5∞→ H 1(CLχ,∞,S,T )). Hence both U∞ and M∞ are embedded in 5∞, and
we have

ker
(∧r−iU∞⊗

∧i M∞→
(∧r−iU∞⊗

∧i M∞
)
⊗Zp[[G]] Q

)
= ker

(∧r−iU∞⊗
∧i M∞

α
→
(∧r

(5∞⊕5∞)
)
⊗Zp[[G]]3χ

)
.

Set 3χ,n := Zp[imχ ][0χ,n]. The commutative diagram∧r−iU∞⊗
∧i M∞

α
//

β

��

(
∧r
(5∞⊕5∞))⊗Zp[[G]]3χ

f

��

lim
←−−n Qp((

∧r−iUn⊗
∧i Mn)⊗Zp[Gn ]3χ,n) g

// lim
←−−n Qp

(
(
∧r
(5n⊕5n))⊗Zp[Gn ]3χ,n

)
and the injectivity of f and g implies kerα = kerβ. Hence we have

ker
(∧r−iU∞⊗

∧i M∞→
(∧r−iU∞⊗

∧i M∞
)
⊗Zp[[G]] Q

)
= kerα = kerβ.

This shows the injectivity of (3). �

Remark 3.6. Assume that Conjecture RS(Lχ,n/k, S, T, Vχ )p is valid for all χ ∈ 1̂
and n. Using Theorem 3.4, we can define

LK∞/k,S,T ∈ det3(CK∞,S,T )⊗3 Q(3)=
⊕

χ∈1̂/∼Qp

(det3(CK∞,S,T )⊗3 Q(3χ ))

by LK∞/k,S,T := (π
Vχ ,−1
Lχ,∞/k,S,T (ε

Vχ
Lχ,∞/k,S,T ))χ . Then Conjecture 3.1 is equivalent to

3 ·LK∞/k,S,T = det3(CK∞,S,T ).

3C. Iwasawa main conjecture II. In this subsection, we work under the following
simplifying assumptions:

(∗) p is odd, and Vχ contains no finite places for every χ ∈ 1̂.

We note that the second assumption here is satisfied whenever k∞/k is the cyclo-
tomic Zp-extension.
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3C1. We start by quickly reviewing some basic facts concerning the height-one
prime ideals of 3.

We say that a height-one prime ideal p of 3 is regular if p /∈ p, and singular if
p ∈ p.

If p is regular, then 3p is identified with the localization of 3[1/p] at p3[1/p].
Since we have the decomposition

3
[ 1

p

]
=

⊕
χ∈1̂/∼Qp

3χ

[ 1
p

]
,

we have Q(3p) = Q(3χp) for some χp ∈ 1̂/∼Qp . Since 3χp[1/p] is a regular
local ring, 3p is a discrete valuation ring.

Next, suppose that p is a singular prime. We have the decomposition

3=
⊕

χ∈1̂′/∼Qp

Zp[imχ ][1p][[0]],

where1p is the Sylow p-subgroup of1, and1′ is the unique subgroup of1 which
is isomorphic to 1/1p. From this, we see that 3p is identified with the localization
of some Zp[imχ ][1p][[0]] at pZp[imχ ][1p][[0]]. By [Burns and Greither 2003,
Lemma 6.2(i)], we have

pZp[imχ ][1p][[0]] = (
√

pZp[imχ ][1p]),

where we denote the radical of an ideal I by
√

I . This shows that there is a one-to-
one correspondence between the set of all singular primes of 3 and the set 1̂′/∼Qp .
We denote by χp ∈ 1̂′/∼Qp the character corresponding to p. The next lemma
shows that

Q(3p)=
⊕

χ∈1̂/∼Qp
χ |1′=χp

Q(3χ ).

Lemma 3.7. Let E/Qp be a finite unramified extension, and O its ring of integers.
Let P be a finite abelian group whose order is a power of p. Put 3 := O[P][[0]]
and p :=

√
pO[P]3 (p is the unique singular prime of 3). Then we have

Q(3p)= Q(3)=
⊕

χ∈P̂/∼E

Q(O[imχ ][[0]]).

Proof. Since Q(3p)= Q(3p[1/p]) and 3p[1/p] =
⊕

χ∈P̂/∼E
eχ3p[1/p], where

eχ :=
∑

χ ′∼Eχ
eχ ′ , we have

Q(3p)=
⊕

χ∈P̂/∼E

Q
(

eχ3p

[ 1
p

])
.
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For χ ∈ P̂/∼E , put qχ :=ker(3
χ
→O[imχ ][[0]]). We can easily see that

√
pO[P]=

(p, IO(P)), where IO(P) is the kernel of the augmentation map O[P]→O. From
this, we also see that√

pO[P] = ker(O[P]
χ
−→O[imχ ] →O[imχ ]/πχO[imχ ] 'O/pO)

holds for any χ ∈ P̂/∼E , where πχ ∈ O[imχ ] is a uniformizer. This shows that
qχ ⊂ p. Hence, we know that 3qχ is the localization of 3p[1/p] at qχ3p[1/p].
One can check that 3qχ = Q(eχ3p[1/p]). Since we have 3qχ = Q(O[imχ ][[0]]),
the lemma follows. �

For a height-one prime ideal p of 3, define a subset ϒp ⊂ 1̂/∼Qp by

ϒp :=

{
{χp} if p is regular,
{χ ∈ 1̂/∼Qp | χ |1′ = χp} if p is singular.

The above argument shows that Q(3p)=
⊕

χ∈ϒp
Q(3χ ).

To end this subsection we recall a useful result concerning µ-invariants, whose
proof is in [Flach 2004, Lemma 5.6].

Lemma 3.8. Let M be a finitely generated torsion 3-module. Let p be a singular
prime of 3. Then the following are equivalent:

(i) The µ-invariant of the Zp[[0]]-module eχp M vanishes.

(ii) For any χ ∈ ϒp, the µ-invariant of the Zp[imχ ][[0]]-module M ⊗Zp[1′]

Zp[imχ ] vanishes.

(iii) Mp = 0.

3C2. In the rest of this section we assume the condition (∗) from the beginning of
Section 3C.

Lemma 3.9. Let p be a singular prime of 3. Then Vχ is independent of χ ∈ϒp. In
particular, for any χ ∈ϒp, the Q(3p)-module UK∞,S,T⊗3Q(3p) is free of rank rχ .

Proof. It is sufficient to show that Vχ = Vχp for any χ ∈ϒp. Note that the extension
degree [Lχ,∞ : Lχp,∞] = [Lχ : Lχp] is a power of p. Since p is odd by the
assumption (∗), we see that an infinite place of k which splits completely in Lχp,∞
also splits completely in Lχ,∞. By the assumption (∗), we know every place in Vχp
is infinite. Hence we have Vχ = Vχp . �

The above result motivates us, for any height-one prime ideal p of 3, to define
Vp := Vχ and rp := rχ by choosing some χ ∈ ϒp.

Assume that Conjecture RS(Lχ,n/k, S, T, Vχ )p holds for all χ ∈ 1̂ and n. We
then define the “p-part” of the Rubin–Stark element

ε
p
K∞/k,S,T ∈

(∧rpUK∞,S,T
)
⊗3 Q(3p)
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as the image of

(ε
Vχ
Lχ,∞/k,S,T )χ∈ϒp ∈

⊕
χ∈ϒp

rp⋂
ULχ,∞,S,T

under the natural map

⊕
χ∈ϒp

rp⋂
ULχ,∞,S,T →⊕

χ∈ϒp

( rp⋂
ULχ,∞,S,T

)
⊗Zp[[Gχ ]] Q(3χ )=

(∧rpUK∞,S,T
)
⊗3 Q(3p).

(See Lemma 3.5.)

Lemma 3.10. Let p be a height-one prime ideal of 3. When p is singular, assume
that the µ-invariant of eχp AT

S (K∞) (as Zp[[0]]-module) vanishes.

(i) The 3p-module (UK∞,S,T )p is free of rank rp.

(ii) If Conjecture RS(Lχ,n/k, S, T, Vχ )p is valid for every χ in 1̂ and every
natural number n, then there is an inclusion

3p · ε
p
K∞/k,S,T ⊂

(∧rp
3UK∞,S,T

)
p
.

Proof. As in the proof of Lemma 3.5, we choose a representative ψ∞ :5∞→5∞

of CK∞,S,T . We have the exact sequence

0→UK∞,S,T →5∞
ψ∞
−−→5∞→ H 1(CK∞,S,T )→ 0. (4)

If p is regular, then3p is a discrete valuation ring and the exact sequence (4) implies
that the 3p-modules (UK∞,S,T )p and im(ψ∞)p are free. Since UK∞,S,T ⊗3 Q(3p)

is isomorphic to YK∞,Vp⊗3 Q(3p), we also know that the rank of (UK∞,S,T )p is rp.
Suppose next that p is singular. Since the µ-invariant of eχpXK∞,S\Vp vanishes,

we apply Lemma 3.8 to deduce that (XK∞,S)p = (YK∞,Vp)p. In a similar way, the
assumption that the µ-invariant of eχp AT

S (K∞) vanishes implies that AT
S (K∞)p= 0.

Hence we have H 1(CK∞,S,T )p = (YK∞,Vp)p. By assumption (∗), we know that
YK∞,Vp is projective as a 3-module. This implies that H 1(CK∞,S,T )p = (YK∞,Vp)p

is a free 3p-module of rank rp. By choosing splittings of the sequence (4), we then
easily deduce that the 3p-modules (UK∞,S,T )p and im(ψ∞)p are free and that the
rank of (UK∞,S,T )p is equal to rp.

At this stage we have proved that, for any height-one prime ideal p of 3, the
3p-module (UK∞,S,T )p is both free of rank rp (as required to prove claim (i)) and
also a direct summand of (5∞)p, and hence that(∧rp

3UK∞,S,T
)
p
=
(∧rp

3UK∞,S,T ⊗3 Q(3p)
)
∩
(∧rp

35∞
)
p
. (5)
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Now we make the stated assumption concerning the validity of the p-part of the
Rubin–Stark conjecture. This implies, by the proof of Theorem 3.4(i), that for each
p the element εpK∞/k,S,T lies in both (

∧rp
35∞)p and⊕

χ∈ϒp

(∧rχ
3UK∞,S,T

)
⊗3 Q(3χ )=

(∧rp
3UK∞,S,T

)
⊗3 Q(3p),

and hence, by (5) that it belongs to (
∧rp
3UK∞,S,T )p, as required to prove claim (ii). �

We can now decompose Conjecture 3.1 into the statements for p components.

Proposition 3.11. Assume that Conjecture RS(Lχ,n/k, S, T, Vχ )p holds for all
characters χ in 1̂ and all sufficiently large n and that for each character χ
in 1̂′/∼Qp the µ-invariant of the Zp[[0]]-module eχ AT

S (K∞) vanishes. Then
Conjecture 3.1 holds if and only if

3p · ε
p
K∞/k,S,T = Fittrp3 (H

1(CK∞,S,T ))p ·
(∧rp

3UK∞,S,T
)
p

(6)

for every height-one prime ideal p of 3.

Remark 3.12. At every height-one prime ideal p there is an equality

Fittrp3 (H
1(CK∞,S,T ))p = Fitt03(A

T
S (K∞))pFitt03(XK∞,S\Vp)p .

If p is regular, then 3p is a discrete valuation ring and this equality follows directly
from the exact sequence

0→ AT
S (K∞)→ H 1(CK∞,S,T )→ XK∞,S→ 0.

If p is singular, then the equality is valid since the result of Lemma 3.8 im-
plies (XK∞,S\Vp)p vanishes and so H 1(CK∞,S,T )p is isomorphic to the direct sum
AT

S (K∞)p⊕ (YK∞,Vp)p.

Remark 3.13. If the prime p is singular, then (XK∞,S\Vp)p vanishes and

Fitt03(A
T
S (K∞))p =3p

if the µ-invariant of the Zp[[0]]-module eχp AT
S (K∞) vanishes (see Lemma 3.8).

Thus, in this case, for any such p the equality (6) is equivalent to

3p · ε
p
K∞/k,S,T =

(∧rp
3UK∞,S,T

)
p
.

Thus, we know that by Lemma 3.10(ii) the validity of the p-part of the Rubin–Stark
conjecture already gives strong evidence of the above equality.

Proof. Since det3(CK∞,S,T ) is an invertible 3-module the equality 3 ·LK∞/k,S,T =

det3(CK∞,S,T ) in Conjecture 3.1 is valid if and only if at every height-one prime
ideal p of 3 one has

3p ·LK∞/k,S,T = det3(CK∞,S,T )p (7)
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(see [Burns and Greither 2003, Lemma 6.1]).
If p is regular, then one easily sees that this equality is valid if and only if the

equality
3p · ε

p
K∞/k,S,T = Fittrp3 (H

1(CK∞,S,T )) ·
(∧rp

3UK∞,S,T
)
p

is valid, by using Theorem 3.4(ii).
If p is singular, then the assumed vanishing of the µ-invariants and the argument

in the proof of Lemma 3.10(i) together show that the 3p-modules (UK∞,S,T )p and
H 1(CK∞,S,T )p are both free of rank rp. Noting this, we see that (7) holds if and
only if

3p · ε
p
K∞/k,S,T =

(∧rp
3UK∞,S,T

)
p
,

and so in this case the claimed result follows from Remark 3.13. �

3C3. In [BKS] we defined canonical Selmer modules SS,T (Gm/F ) and S tr
S,T (Gm/F )

for Gm over number fields F that are of finite degree over Q. For any intermediate
field L of K∞/k, we now set

Sp,S,T (Gm/L) := lim
←−−

F
SS,T (Gm/F )⊗Zp, S tr

p,S,T (Gm/L) := lim
←−−

F
S tr

S,T (Gm/F )⊗Zp,

where in both limits F runs over all finite extensions of k in L and the transition
morphisms are the natural corestriction maps.

We note in particular that, by its very definition, S tr
p,S,T (Gm/L) coincides with

H 1(CL ,S,T ). In addition, this definition implies that for any subset V of S compris-
ing places that split completely in L the kernel of the natural (composite) projection
map

S tr
p,S,T (Gm/L)V := ker(S tr

p,S,T (Gm/L)→ XL ,S→ YL ,V )

lies in a canonical exact sequence of the form

0→ AT
S (L)→ S tr

p,S,T (Gm/L)V → XL ,S\V → 0. (8)

We now interpret our Iwasawa main conjecture in terms of classical characteristic
ideals.

Conjecture 3.14 (IMC(K∞/k, S, T ) II). Assume Conjecture RS(Lχ,n/k, S, T,
Vχ )p holds for all χ ∈ 1̂ and all nonnegative integers n where Lχ,n , 1, etc. are
defined in Section 3. Then for any χ ∈ 1̂ there are equalities

char3χ
(( rχ⋂

ULχ,∞,S,T /〈ε
Vχ
Lχ,∞/k,S,T 〉

)χ)
= char3χ (S

tr
p,S,T (Gm/Lχ,∞)

χ

Vχ )

= char3χ (A
T
S (Lχ,∞)

χ )char3χ ((XLχ,∞,S\Vχ )
χ ).

(9)
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Here, for any Zp[[Gχ ]]-module M we write Mχ for the 3χ -module M ⊗Zp[Gχ ]

Zp[imχ ] and char3χ (M
χ ) for its characteristic ideal in 3χ . In addition, the

second displayed equality is a direct consequence of the appropriate case of the
exact sequence (8).

Proposition 3.15. Assume that Conjecture RS(Lχ,n/k, S, T, Vχ )p is valid for all
characters χ in 1̂ and all n and that for each character χ ∈ 1̂′/∼Qp the µ-invariant
of the Zp[[0]]-module eχ AT

S (K∞) vanishes. Then Conjecture 3.1 is equivalent to
Conjecture 3.14.

Proof. Note that by our assumptionµ=0 we have (
⋂rp UK∞,S,T )p= (

∧rpUK∞,S,T )p

for any height-one prime p, using (5). Thus, the equality (6) implies the equality
(9) for any χ .

On the other hand, for a height-one regular prime p, we can regard p to be a
prime of 3χ for some χ , so the equality (9) implies the equality (6). For a singular
prime p, by Lemma 3.8, (9) for any χ implies (

∧rpUK∞,S,T )p/〈ε
p
K∞/k,S,T 〉= 0, thus

the equality (6) by Remark 3.13.
The proposition therefore follows from Proposition 3.11. �

3D. The case of CM-fields. Concerning the minus components for CM-extensions,
we can prove our equivariant main conjecture using the usual main conjecture proved
by Wiles.

Theorem 3.16. Suppose that p is odd, k is totally real, k∞/k is the cyclotomic Zp-
extension, and K is CM. If the µ-invariant of the cyclotomic Zp-extension K∞/K
vanishes, then the minus part of Conjecture 3.1 is valid for (K∞/k, S, T ).

Proof. In fact, for an odd character χ , one has rχ = 0 and the Rubin–Stark elements
are Stickelberger elements. Therefore, εVχ

Lχ,∞/k,S,T is the p-adic L-function of
Deligne–Ribet.

We shall prove the equality (9) in Conjecture 3.14 for each odd χ ∈ 1̂. We fix
such a character χ , and may take K = Lχ and S = S∞(k)∪ Sram(K∞/k)∪ Sp(k).
Let S′p be the set of p-adic primes which split completely in K . If v∈ S\Vχ is prime
to p, it is ramified in Lχ = K , so we have char3χ (X

χ

Lχ,∞,S\Vχ )= char3χ (Y
χ

Lχ,∞,S′p
).

Let AT (Lχ,∞) be the inverse limit of the p-component of the T -ray class group
of the full integer ring of Lχ,n . By sending the prime w above v in S′p to the class
of w, we obtain a homomorphism YχLχ,∞,S′p → AT (Lχ,∞)χ , which is known to be
injective. Since the sequence

YχLχ,∞,S→ AT (Lχ,∞)χ → AT
S (Lχ,∞)

χ
→ 0

is exact and the kernel of YχLχ,∞,S→ YχLχ,∞,S′p is finite, we have

char3χ (A
T
S (Lχ,∞)

χ )char3χ ((YLχ,∞,S)
χ )= char3χ (A

T (Lχ,∞)χ ).
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Therefore, by noting χ 6= 1, the equality (9) in Conjecture 3.14 becomes

char3χ (A
T (Lχ,∞)χ )= θ

χ

Lχ,∞/k,S,T (0)3χ ,

where θχLχ,∞/k,S,T (0) is the χ -component of ε∅Lχ,∞/k,S,T , which is the Stickelberger
element in this case. This equality is nothing but the usual main conjecture proved
in [Wiles 1990], so we have proved this theorem. �

3E. Consequences for number fields of finite degree. Let p, k, k∞, and K be
as in Theorem 3.16. We shall describe unconditional equivariant results on the
Galois module structure of Selmer modules for K , which follow from the validity
of Theorem 3.16.

To do this we set 3 := Zp[[Gal(K∞/k)]] and for any 3-module M we denote
by M− the minus part consisting of elements on which the complex conjugation
acts as −1 (namely, M− = e−M). We note, in particular, that θK∞/k,S,T (0) belongs
to 3−.

We also write x 7→ x# for the Zp-linear involutions of both 3 and the group
rings Zp[G] for finite quotients G of Gal(K∞/k) which is induced by inverting
elements of Gal(K∞/k).

Corollary 3.17. If the p-adic µ-invariant of K∞/K vanishes, then

Fitt3−(S tr
p,S,T (Gm/K∞)

−)=3 · θK∞/k,S,T (0)

and

Fitt3−(Sp,S,T (Gm/K∞)
−)=3 · θK∞/k,S,T (0)#.

Proof. Since rχ = 0 for any odd character χ , the first displayed equality is equiv-
alent to Conjecture 3.1 in this case and is therefore valid as a consequence of
Theorem 3.16.

The second displayed equality is then obtained directly by applying the general
result of [BKS, Lemma 2.8] to the first equality. �

Corollary 3.18. Let L be an intermediate CM-field of K∞/k which is finite over k,
and set G := Gal(L/k). If the p-adic µ-invariant of K∞/K vanishes, then there
are equalities

FittZp[G]−(S
tr
p,S,T (Gm/L)

−)= Zp[G] · θL/k,S,T (0)

and

FittZp[G]−(Sp,S,T (Gm/L)
−)= Zp[G] · θL/k,S,T (0)#.

Proof. This follows by combining Corollary 3.17 with the general result of
Lemma 3.19 below and standard properties of Fitting ideals. �
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Lemma 3.19. Suppose that L/k is a Galois extension of finite number fields with
Galois group G. Then there are natural isomorphisms

S tr
S,T (Gm/L)G −→

∼ S tr
S,T (Gm/k) and SS,T (Gm/L)G −→

∼ SS,T (Gm/k).

Proof. The “Weil-étale cohomology complex” R0T ((OL ,S)W ,Gm) is perfect and
so there exist projective Z[G]-modules P1 and P2, and a homomorphism of Z[G]-
modules P1→ P2 whose cokernel identifies with S tr

S,T (Gm/L) and is such that the
cokernel of the induced map PG

1 → PG
2 identifies with S tr

S,T (Gm/k) (see [BKS,
§5.4]).

The first isomorphism is then obtained by noting that the norm map induces an
isomorphism of modules (P2)G −→

∼ PG
2 .

The second claimed isomorphism can also be obtained in a similar way, noting
that SS,T (Gm/L) is obtained as the cohomology in the highest (nonzero) degree of
a perfect complex (see [BKS, Proposition 2.4]). �

We write OL for the ring of integers of L and ClT (L) for the ray class group
of OL with modulus

∏
w∈TL

w. We denote the Sylow p-subgroup of ClT (L) by
AT (L) and write (AT (L)−)∨ for the Pontrjagin dual of the minus part of AT (L).

The next corollary of Theorem 3.16 that we record coincides with one of the
main results of [Greither and Popescu 2015].

Corollary 3.20. Let L be an intermediate CM-field of K∞/k which is finite over k,
and set G := Gal(L/k). If the p-adic µ-invariant for K∞/K vanishes, then

θL/k,S,T (0)# ∈ FittZp[G]−((A
T (L)−)∨).

Proof. The canonical exact sequence

0→ ClT (L)∨→ SS∞(k),T (Gm/L)→ Hom(O×L ,Z)→ 0

from [BKS, Proposition 2.2] implies that the natural map Sp,S∞(k),T (Gm/L)
−
'

(AT (L)−)∨ is bijective.
In addition, from [BKS, Proposition 2.4(ii)], we know that the canonical homo-

morphism SS,T (Gm/L)→ SS∞(k),T (Gm/L) is surjective.
The claim therefore follows directly from the second equality in Corollary 3.18.

�

Remark 3.21. (i) Our derivation of the equality in Corollary 3.20 differs from
that given in [Greither and Popescu 2015] in that we avoid any use of Galois
modules related to 1-motives. Instead, we used the theory of Selmer modules
SS,T (Gm/L) introduced in [BKS].

(ii) The Brumer–Stark conjecture predicts θL/k,Sram(L/k),T (0) belongs to the an-
nihilator AnnZp[G]−(A

T (L)) and if no p-adic place of L+ splits in L , then
Corollary 3.20 implies a stronger version of this conjecture.
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(iii) We have assumed throughout Section 3 that S contains all p-adic places of
k and so the Stickelberger element θL/k,S,T (0) that occurs in Corollary 3.20 is,
in general, imprimitive. In particular, if any p-adic place of k splits completely
in L , then θL/k,S,T (0) vanishes and the assertion of Corollary 3.20 is trivially
valid. However, by applying Corollary 1.2 and [BKS, Corollary 1.14] in this
context, one can now also obtain results such as Corollary 1.3.

4. Iwasawa-theoretic Rubin–Stark congruences

In this section, we formulate an Iwasawa-theoretic version of the conjecture proposed
in [Mazur and Rubin 2016] and [Sano 2014] (see also [BKS, Conjecture 5.4]). This
conjecture is a natural generalization of the Gross–Stark conjecture [Gross 1982],
and plays a key role in the descent argument that we present in the next section.

We maintain the notation of the previous section.

4A. Statement of the congruences. We first recall the formulation of the conjec-
ture of Mazur, Rubin and of the third author.

Take a character χ ∈ Ĝ. Take a proper subset V ′ ⊂ S so that all v ∈ V ′ splits
completely in Lχ (i.e., χ(Gv) = 1) and that Vχ ⊂ V ′. Put r ′ := #V ′. We recall
the formulation of the conjecture of Mazur and Rubin and of the third author for
(Lχ,n/Lχ/k, S, T, Vχ , V ′). For simplicity, put

• Ln := Lχ,n;

• L := Lχ ;

• Gn := Gχ,n = Gal(Lχ,n/k);

• G := Gχ = Gal(Lχ/k);

• 0n := 0χ,n = Gal(Lχ,n/Lχ );

• V := Vχ = {v ∈ S | v splits completely in Lχ,∞};

• r := rχ = #Vχ .

Put e := r ′− r . Let I (0n) denote the augmentation ideal of Zp[0n]. It is shown in
[Sano 2014, Lemma 2.11] that there exists a canonical injection

r⋂
UL ,S,T ↪→

r⋂
ULn,S,T ,

which induces the injection

νn :

( r⋂
UL ,S,T

)
⊗Zp I (0n)

e/I (0n)
e+1 ↪→

( r⋂
ULn,S,T

)
⊗Zp Zp[0n]/I (0n)

e+1.

Note that this injection does not coincide with the map induced by the inclusion
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UL ,S,T ↪→ULn,S,T , and we have

νn(Nr
Ln/L(a))= NLn/L a

for all a ∈
⋂r ULn,S,T (see [Sano 2014, Remark 2.12]). For an explicit description

of the map νn , see [Mazur and Rubin 2016, Lemma 4.9; Sano 2015, Remark 4.2].
Let In be the kernel of the natural map Zp[Gn] → Zp[G]. For v ∈ V ′ \ V , let

recw : L×→ 0n denote the local reciprocity map at w (recall that w is the fixed
place lying above v). Define

Recw :=
∑
σ∈G

(recw(σ (·))− 1)σ−1
∈ HomZ[G](L×, In/I 2

n ).

It is shown in [Sano 2014, Proposition 2.7] that
∧
v∈V ′\V Recw induces a homomor-

phism

Recn :

r ′⋂
UL ,S,T →

r⋂
UL ,S,T ⊗Zp I (0n)

e/I (0n)
e+1.

Finally, define

Nn :

r⋂
ULn,S,T →

r⋂
ULn,S,T ⊗Zp Zp[0n]/I (0n)

e+1

by
Nn(a) :=

∑
σ∈0n

σa⊗ σ−1.

We now state the formulation of [Sano 2014, Conjecture 3] (or [Mazur and Rubin
2016, Conjecture 5.2]).

Conjecture 4.1 (MRS(Ln/L/k, S, T, V, V ′)p). Assume Conjectures RS(Ln/k, S,
T, V )p and RS(L/k, S, T, V ′)p. Then

Nn(ε
V
Ln/k,S,T )= (−1)reνn(Recn(ε

V ′
L/k,S,T )) in

r⋂
ULn,S,T ⊗Zp Zp[0n]/I (0n)

e+1.

(Note that the sign in the right-hand side depends on the labeling of S. We follow
the convention in [BKS, §5.3].)

Note that [BKS, Conjecture MRS(K/L/k, S, T, V, V ′)] is slightly stronger than
the above conjecture (see [BKS, Remark 5.7]).

We shall next give an Iwasawa theoretic version of the above conjecture. Note
that, since the inverse limit lim

←−−n I (0n)
e/I (0n)

e+1 is isomorphic to Zp, the map

lim
←−−

n
Recn :

r ′⋂
UL ,S,T →

r⋂
UL ,S,T ⊗Zp lim

←−−
n

I (0n)
e/I (0n)

e+1

uniquely extends to give a Cp-linear map

Cp
∧r ′UL ,S,T → Cp

(∧rUL ,S,T ⊗Zp lim
←−−

n
I (0n)

e/I (0n)
e+1),
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which we denote by Rec∞.

Conjecture 4.2 (MRS(K∞/k, S, T, χ, V ′)). Assume that Conjecture RS(Ln/k, S,
T, V )p is valid for all n. Then, there exists a (unique)

κ = (κn)n ∈

r⋂
UL ,S,T ⊗Zp lim

←−−
n

I (0n)
e/I (0n)

e+1

such that νn(κn)=Nn(ε
V
Ln/k,S,T ) for all n and that

eχκ = (−1)reeχRec∞(εV ′
L/k,S,T ) in Cp

(∧rUL ,S,T ⊗Zp lim
←−−

n
I (0n)

e/I (0n)
e+1).

Remark 4.3. Clearly the validity of Conjecture MRS(Ln/L/k, S, T, V, V ′)p for
all n implies the validity of MRS(K∞/k, S, T, χ, V ′). A significant advantage of
the above formulation of Conjecture MRS(K∞/k, S, T, χ, V ′) is that we do not
need to assume that Conjecture RS(L/k, S, T, V ′)p is valid.

Proposition 4.4. (i) MRS(K∞/k, S, T, χ, V ′) is valid if V = V ′.

(ii) MRS(K∞/k, S, T, χ, V ′) implies MRS(K∞/k, S, T, χ, V ′′) if V ⊂ V ′′⊂ V ′.

(iii) Suppose that χ(Gv) = 1 for all v ∈ S and #V ′ = #S − 1. Then, for any
V ′′ ⊂ S with V ⊂ V ′′ and #V ′′ = #S − 1, MRS(K∞/k, S, T, χ, V ′) and
MRS(K∞/k, S, T, χ, V ′′) are equivalent.

(iv) MRS(K∞/k, S \ {v}, T, χ, V ′ \ {v}) implies MRS(K∞/k, S, T, χ, V ′) if v ∈
V ′ \ V is a finite place which is unramified in L∞.

(v) If #V ′ 6= #S − 1 and v ∈ S \ V ′ is a finite place which is unramified in L∞,
then MRS(K∞/k, S \ {v}, T, χ, V ′) implies MRS(K∞/k, S, T, χ, V ′).

Proof. Claim (i) follows from the “norm relation” of Rubin–Stark elements; see
[Sano 2014, Remark 3.9; Mazur and Rubin 2016, Proposition 5.7]. Claim (ii)
follows from [Sano 2014, Proposition 3.12]. Claim (iii) follows from [Sano 2015,
Lemma 5.1]. Claim (iv) follows from the proof of [Sano 2014, Proposition 3.13].
Claim (v) follows by noting εV

Ln/k,S,T = (1 − Fr−1
v )ε

V
Ln/k,S\{v},T and εV ′

L/k,S,T =

(1−Fr−1
v )ε

V ′
L/k,S\{v},T . �

Corollary 4.5. If every place v in V ′ \ V is both nonarchimedean and unramified
in L∞, then MRS(K∞/k, S, T, χ, V ′) is valid.

Proof. By Proposition 4.4(iv), we may assume V = V ′. By Proposition 4.4(i), we
know that MRS(K∞/k, S, T, χ, V ′) is valid in this case. �

Consider the following condition:

NTZ(K∞/k, χ) χ(Gp) 6= 1 for all p ∈ Sp(k) which ramify in Lχ,∞.

This condition is usually called “no trivial zeros”.
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Corollary 4.6. If χ satisfies NTZ(K∞/k, χ), then MRS(K∞/k, S, T, χ, V ′) is
valid.

Proof. In this case we see that every v ∈ V ′ \ V is finite and unramified in L∞. �

4B. Connection to the Gross–Stark conjecture. In this subsection we help set the
context for Conjecture MRS(K∞/k, S, T, χ, V ′) by showing that it specializes to
recover the Gross–Stark conjecture (as stated in Conjecture 4.7 below).

To do this we assume throughout that k is totally real, k∞/k is the cyclotomic
Zp-extension, and χ is totally odd. We also set V ′ := {v ∈ S | χ(Gv)= 1} (and note
that this is a proper subset of S since χ is totally odd) and we assume that every
v ∈ V ′ lies above p (noting that this assumption is not restrictive as a consequence
of Proposition 4.4(iv)).

We shall now show that this case of MRS(K∞/k, S, T, χ, V ′) is equivalent to
the Gross–Stark conjecture.

First, we note that in this case V is empty (that is, r = 0) and so one knows that
Conjecture RS(Ln/k, S, T, V )p is valid for all n (by [Rubin 1996, Theorem 3.3]).
In fact, one has εV

Ln/k,S,T = θLn/k,S,T (0) ∈ Zp[Gn] and, by [Mazur and Rubin 2016,
Proposition 5.4], the assertion of Conjecture MRS(K∞/k, S, T, χ, V ′) is equivalent
to the following claims:

θLn/k,S,T (0) ∈ I r ′
n (10)

for all n and

eχθL∞/k,S,T (0)= eχRec∞(εV ′
L/k,S,T ) in Cp[G]⊗Zp lim

←−−
n

I (0n)
r ′/I (0n)

r ′+1, (11)

where we set

θL∞/k,S,T (0) := lim
←−−

n
θLn/k,S,T (0)∈ lim

←−−
n

I r ′
n /I r ′+1

n 'Zp[G]⊗Zplim←−−
n

I (0n)
r ′/I (0n)

r ′+1.

We also note that the validity of (10) follows as a consequence of our Iwasawa main
conjecture (Conjecture 3.1) by using Proposition 2.6(iii) and the result of [BKS,
Lemma 5.20] (see the argument in Section 5C).

To study (11) we set χ1 := χ |1 ∈ 1̂ and regard (as we may) the product χ2 :=

χχ−1
1 as a character of 0 = Gal(k∞/k).
Note that Gal(L∞/k) = Gχ1 ×0χ1 . Fix a topological generator γ ∈ 0χ1 , and

identify Zp[im(χ1)][[0χ1]] with the ring of power series Zp[im(χ1)][[t]] via the
correspondence γ = 1+ t .

We then define gχ1
L∞/k,S,T (t) to be the image of θL∞/k,S,T (0) under the map

Zp[[Gal(L∞/k)]] = Zp[Gχ1][[0χ1]] → Zp[im(χ1)][[0χ1]] = Zp[im(χ1)][[t]]

induced by χ1. We recall that the p-adic L-function of Deligne–Ribet is defined by

Lk,S,T,p(χ
−1ω, s) := gχ1

L∞/k,S,T (χ2(γ )χcyc(γ )
s
− 1),
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where χcyc is the cyclotomic character; one can show this to be independent of the
choice of γ .

The validity of (10) implies an inequality

ords=0 Lk,S,T,p(χ
−1ω, s)≥ r ′. (12)

It is known that (12) is a consequence of the Iwasawa main conjecture (in the sense
of [Wiles 1990]), which is itself known to be valid when p is odd. In addition,
Spiess [2014] proved that (12) is valid, including the case p = 2, by using Shintani
cocycles. In all cases, therefore, we can define

L(r
′)

k,S,T,p(χ
−1ω, 0) := lim

s→0
s−r ′Lk,S,T,p(χ

−1ω, s) ∈ Cp.

For v ∈ V ′, define
Logw : L

×
→ Zp[G]

by Logw(a) := −
∑

σ∈G logp(NLw/Qp(σa))σ−1, where logp : Q×p → Zp is Iwa-
sawa’s logarithm (in the sense that logp(p)= 0). We set

LogV ′ :=
∧
v∈V ′Logw : Cp

∧r ′UL ,S,T → Cp[G].

We shall denote the map Cp[G] → Cp induced by χ also by χ .
For v ∈ V ′, we define

Ordw : L×→ Z[G]

by Ordw(a) :=
∑

σ∈G ordw(σa)σ−1, and set

OrdV ′ :=
∧
v∈V ′Ordw : Cp

∧r ′UL ,S,T → Cp[G].

On the χ -component, OrdV ′ induces an isomorphism

χ ◦OrdV ′ : eχCp
∧r ′UL ,S,T

∼
→ Cp.

Taking a nonzero element x ∈ eχCp
∧r ′UL ,S,T , we define the L-invariant by

L(χ) :=
χ(LogV ′(x))
χ(OrdV ′(x))

∈ Cp.

Since eχCp
∧r ′UL ,S,T is a one-dimensional Cp-vector space, we see that L(χ)

does not depend on the choice of x .
Then the Gross–Stark conjecture is stated as follows.

Conjecture 4.7 (GS(L/k, S, T, χ)). One has

L(r
′)

k,S,T,p(χ
−1ω, 0)= L(χ)Lk,S\V ′,T (χ

−1, 0).
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Remark 4.8. This formulation constitutes a natural higher-rank generalization of
the form of the Gross–Stark conjecture stated in [Dasgupta et al. 2011, Conjecture 1].

Letting x = eχεV ′
L/k,S,T , we obtain

χ(LogV ′(ε
V ′
L/k,S,T ))= L(χ)Lk,S\V ′,T (χ

−1, 0).

Thus we see that Conjecture GS(L/k, S, T, χ) is equivalent to the equality

L(r
′)

k,S,T,p(χ
−1ω, 0)= χ(LogV ′(ε

V ′
L/k,S,T )).

Concerning the relation between Rec∞ and LogV ′ , we note the fact

χcyc(recw(a))= NLw/Qp(a)
−1,

where v ∈ V ′ and a ∈ L×.
Given this fact, it is straightforward to check (under the validity of (10)) that

Conjecture GS(L/k, S, T, χ) is equivalent to (11).
At this stage we have therefore proved the following result.

Theorem 4.9. Suppose that k is totally real, k∞/k is the cyclotomic Zp-extension,
and χ is totally odd. Set V ′ := {v ∈ S | χ(Gv)= 1} and assume that every v ∈ V ′

lies above p. Assume also that (10) is valid. Then Conjecture GS(L/k, S, T, χ) is
equivalent to Conjecture MRS(K∞/k, S, T, χ, V ′).

4C. A proof in the case k = Q. In [BKS, Corollary 1.2] the known validity of
the eTNC for Tate motives over abelian fields is used to prove that Conjecture
MRS(K/L/k, S, T, V, V ′) is valid in the case k =Q.

In this subsection, we shall give a much simpler proof of the latter result which
uses only Theorem 4.9, the known validity of the Gross–Stark conjecture over
abelian fields and a classical result from [Solomon 1992].

We note that for any χ and n the Rubin–Stark conjecture is known to be true for
(Lχ,n/Q, S, T, Vχ ). In fact, in this setting the Rubin–Stark element is given by a
cyclotomic unit when rχ = 1 and by the Stickelberger element when rχ = 0 (see
[Popescu 2011, §4.2 and Example 3.2.10], for example).

Theorem 4.10. Suppose that k =Q. Then, MRS(K∞/k, S, T, χ, V ′) is valid.

Proof. By Proposition 4.4(ii), we may assume that V ′ is maximal, namely,

r ′ =min{#{v ∈ S | χ(Gv)= 1}, #S− 1}.

By Corollary 4.6, we may assume that χ(p)= 1.
Suppose first that χ is odd. Since Conjecture GS(L/Q, S, T, χ) is valid (see

[Gross 1982, §4]), Conjecture MRS(K∞/Q, S, T, χ, V ′) follows from Theorem 4.9.
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Suppose next that χ = 1. In this case we have r ′ = #S − 1. We may assume
p /∈ V ′ by Proposition 4.4(iii). In this case every v ∈ V ′ \ V is unramified in L∞.
Hence, the theorem follows from Corollary 4.5.

Finally, suppose that χ 6= 1 is even. By Proposition 4.4(iv) and (v), we may
assume S = {∞, p} ∪ Sram(L/Q) and V ′ = {∞, p}. We label S = {v0, v1, . . .} so
that v1 =∞ and v2 = p.

Fix a topological generator γ of 0 = Gal(L∞/L). Then we construct an ele-
ment κ(L , γ ) ∈ lim

←−−n L×/(L×)pn
as follows. Note that NLn/L(ε

V
Ln/Q,S,T ) vanishes

since χ(p) = 1. So we can take βn ∈ L×n such that βγ−1
n = εV

Ln/Q,S,T (Hilbert’s
Theorem 90). Define

κn := NLn/L(βn) ∈ L×/(L×)pn
.

This element is independent of the choice of βn , and for any m > n the natural map

L×/(L×)pm
→ L×/(L×)pn

sends κm to κn . We define

κ(L , γ ) := (κn)n ∈ lim
←−−

n
L×/(L×)pn

.

Then, by [Solomon 1992, Proposition 2.3(i)], we know that

κ(L , γ ) ∈ Zp⊗Z OL

[ 1
p

]×
↪→ lim
←−−

n
L×/(L×)pn

.

Fix a prime p of L lying above p. Define

Ordp : L×→ Zp[G]

by Ordp(a) :=
∑

σ∈G ordp(σa)σ−1. Similarly, define

Logp : L
×
→ Zp[G]

by Logp(a) := −
∑

σ∈G logp(ιp(σa))σ−1, where ιp : L ↪→ Lp =Qp is the natural
embedding.

Then by [Solomon 1992, Theorem 2.1 and Remark 2.4], one deduces

Ordp(κ(L , γ ))=−
1

logp(χcyc(γ ))
Logp(ε

V
L/Q,S\{p},T ).

From this, we have

Ordp(κ(L , γ ))⊗(γ −1)=−Recp(εV
L/Q,S\{p},T ) in Zp[G]⊗Zp I (0)/I (0)2, (13)

where I (0) is the augmentation ideal of Zp[[0]].
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We know that eχCpUL ,S is a two-dimensional Cp-vector space. Lemma 4.11
below shows that {eχεV

L/Q,S\{p},T , eχκ(L , γ )} is a Cp-basis of this space. For
simplicity, set εV

L := ε
V
L/Q,S\{p},T . Note that the isomorphism

Ordp : eχCp
∧2UL ,S −→

∼ eχCpUL

sends eχεV
L ∧ κ(L , γ ) to −χ(Ordp(κ(L , γ )))eχεV

L . Since we have

Ordp(eχεV ′
L/Q,S,T )=−eχεV

L

(see [Rubin 1996, Proposition 5.2; Sano 2014, Proposition 3.6]), we have

eχεV ′
L/Q,S,T =−χ(Ordp(κ(L , γ )))−1eχεV

L ∧ κ(L , γ ).

Hence we have

Recp(eχεV ′
L/Q,S,T )= χ(Ordp(κ(L , γ )))−1eχκ(L , γ ) ·Recp(εV

L )

=−eχκ(L , γ )⊗ (γ − 1),

where the first equality follows by noting that Recp(κ(L , γ ))= 0 (since κ(L , γ )
lies in the universal norm by definition), and the second by (13).

Now, noting that

νn :UL ,S,T ⊗Zp I (0n)/I (0n)
2 ↪→ULn,S,T ⊗Zp Zp[0n]/I (0n)

2

is induced by the inclusion map L ↪→ Ln , and that

Nn(ε
V
Ln/Q,S,T )= κn ⊗ (γ − 1),

it is easy to see that the element κ := κ(L , γ )⊗ (γ − 1) has the properties in the
statement of Conjecture MRS(K∞/Q, S, T, χ, V ′). This completes the proof. �

Lemma 4.11. Assume that k =Q and χ 6= 1 is even such that χ(p)= 1. Assume
also that S={∞, p}∪Sram(L/Q). Then, {eχεV

L/Q,S\{p},T , eχκ(L , γ )} is a Cp-basis
of eχCpUL ,S .

Proof. This result follows from [Solomon 1994, Remark 4.4]. But we sketch another
proof, essentially given in [Flach 2004].

In the next section, we define the “Bockstein map”

β : eχCpUL ,S→ eχCp(XL ,S ⊗Zp I (0)/I (0)2).

We see that β is injective on eχCpUL , and that kerβ 'UL∞,S⊗3Cp where we put
3 := Zp[[G]] and Cp is regarded as a 3-algebra via χ . Hence we have

eχCpUL ,S = eχCpUL ⊕ (UL∞,S ⊗3 Cp).

Since eχεV
L/Q,S\{p},T is nonzero, this is a basis of eχCpUL ,S\{p} = eχCpUL . We

prove that eχκ(L , γ ) is a basis of UL∞,S ⊗3 Cp.
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By using the exact sequence 0→UL∞,S
γ−1
−−→UL∞,S→UL ,S , we see that there

exists a unique element α∈UL∞,S such that (γ−1)α=εV
L∞/Q,S,T . By the cyclotomic

Iwasawa main conjecture over Q, we see that α is a basis of UL∞,S⊗33pχ , where
pχ := ker(χ :3→ Cp). The image of α under the map

UL∞,S ⊗33pχ

χ
−→UL∞,S ⊗3 Cp ↪→ eχCpUL ,S

is equal to eχκ(L , γ ). �

5. A strategy for proving the eTNC

5A. Statement of the main result and applications. In the sequel we fix an inter-
mediate field L of K∞/k which is finite over k and set G := Gal(L/k). In this
section we always assume the following conditions to be satisfied:

(R) For every χ ∈ Ĝ, one has rχ,S < #S.

(S) No finite place of k splits completely in k∞.

Remark 5.1. Before proceeding we note that the condition (R) is very mild since it
is automatically satisfied when the class number of k is equal to one and, for any k,
is satisfied when S is large enough. We also note that the condition (S) is satisfied
when, for example, k∞/k is the cyclotomic Zp-extension.

The following result is one of the main results of this article and, as we will see,
it provides an effective strategy for proving the special case of the eTNC that we
are considering here.

Theorem 5.2. Assume the following conditions:

(hIMC) The main conjecture IMC(K∞/k, S, T ) (Conjecture 3.1) is valid.

(F) For every χ in Ĝ, the module of 0χ -coinvariants of AT
S (Lχ,∞) is finite.

(MRS) For every χ in Ĝ, Conjecture MRS(K∞/k, S, T, χ, V ′χ ) (Conjecture 4.2)
is valid for a maximal set V ′χ , so that

#V ′χ =min{#{v ∈ S | χ(Gv)= 1}, #S− 1}.

Then, the conjecture eTNC(h0(Spec L),Zp[G]) (Conjecture 2.3) is valid.

Remark 5.3. We note that the set V ′χ in condition (MRS) is not uniquely de-
termined when every place v in S satisfies χ(Gv) = 1, but that the validity
of Conjecture MRS(K∞/k, S, T, χ, V ′χ ) is independent of the choice of V ′χ (by
Proposition 4.4(iii)).

Remark 5.4. One checks easily that the condition (F) is equivalent to the finiteness
of the module of 0χ -coinvariants of AS(Lχ,∞). Hence, taking account of [1991,
Theorem 1.14], the condition (F) can be regarded as a natural generalization of
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Conjecture 1.15 of [Gross 1982]. We also note here that this conjecture of Gross
was asserted in a special setting as Conjecture 2.2 in [Coates and Lichtenbaum
1973]. In particular, we recall that the condition (F) is satisfied in each of the
following cases:

• L is abelian over Q (this is due to Greenberg [1973]).

• k∞/k is the cyclotomic Zp-extension and L has unique p-adic place (in this
case “δL = 0” holds obviously; see [Kolster 1991]).

• L is totally real and the Leopoldt conjecture is valid for L at p (see [Kolster
1991, Corollary 1.3]).

Remark 5.5. The condition (MRS) is satisfied for χ in Ĝ when the condition
NTZ(K∞/k, χ) is satisfied (see Corollary 4.6).

As an immediate corollary of Theorem 5.2, we obtain a new proof of a theorem
that was first proved in [Burns and Greither 2003] for p odd and in [Flach 2011]
for p = 2.

Corollary 5.6. If k =Q, then the conjecture eTNC(h0(Spec L),Zp[G]) is valid.

Proof. As we mentioned above, the conditions (R), (S) and (F) are all satisfied in
this case. In addition, the condition (hIMC) is a direct consequence of the classical
Iwasawa main conjecture solved by Mazur and Wiles (see [Burns and Greither
2003; Flach 2011]) and the condition (MRS) is satisfied by Theorem 4.10. �

We also obtain a result over totally real fields.

Corollary 5.7. Suppose that p is odd, k is totally real, k∞/k is the cyclotomic Zp-
extension, and K is CM. Assume that (F) is satisfied, that the µ-invariant of K∞/K
vanishes, and that for every odd character χ ∈ Ĝ, Conjecture GS(Lχ/k, S, T, χ)
is valid. Then, Conjecture eTNC(h0(Spec L),Zp[G]−) is valid.

Proof. Fix S so that the condition (R) is satisfied. Then the minus-part of condition
(hIMC) is satisfied by Theorem 3.16 and the minus part of condition (MRS) by
Theorem 4.9. �

When at most one p-adic place p of k satisfies χ(Gp)= 1, the validity of Conjec-
ture GS(Lχ/k, S, T, χ) was proved by Dasgupta, Darmon and Pollack [Dasgupta
et al. 2011] under certain assumptions, including Leopoldt’s conjecture. Those
assumptions were removed in [Ventullo 2015], so Conjecture GS(Lχ/k, S, T, χ)
is unconditionally valid in this case (see also the note on p. 1531). Condition (F) is
then valid too, by the argument of [Gross 1982, Proposition 2.13]. Hence we get:

Corollary 5.8. Suppose that p is odd, k is totally real, k∞/k is the cyclotomic
Zp-extension, and K is CM. Assume that the µ-invariant of K∞/K vanishes, and
that for each odd character χ ∈ Ĝ there is at most one p-adic place p of k which
satisfies χ(Gp)= 1. Then, Conjecture eTNC(h0(Spec L),Zp[G]−) is valid.
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Examples 5.9. It is not difficult to find many concrete families of examples satisfy-
ing the hypotheses of Corollary 5.8 and hence to deduce the unconditional validity
of eTNC(h0(Spec L),Zp[G]−) in some new and interesting cases. In particular, we
shall now describe several families of examples in which the extension k/Q is not
abelian (noting that if L/Q is abelian and k ⊂ L , then eTNC(h0(Spec L),Zp[G])
is already known to be valid).

(i) The case p = 3. As a simple example, we consider the case that k/Q is a
S3-extension. To do this we fix an irreducible cubic polynomial f (x) in Z[x] with
discriminant 27d where d is strictly positive and congruent to 2 modulo 3. (For
example, one can take f (x) to be x3

− 6x − 3, x3
− 15x − 3, etc.) The minimal

splitting field k of f (x) over Q is then totally real (since 27d > 0) and an S3-
extension of Q (since 27d is not a square). Also, since the discriminant of f (x) is
divisible by 27 but not 81, the prime 3 is totally ramified in k. Now set p := 3 and
K := k(µp)= k(

√
−p)= k(

√
−d). Then the prime above p splits in K/k because

−d ≡ 1 (mod 3). In addition, as K/Q(
√

d,
√
−p) is a cyclic cubic extension, the

µ-invariant of K∞/K vanishes and so the extension K/k satisfies all the conditions
of Corollary 5.8 (with p = 3).

(ii) The case p> 3. In this case one can construct a suitable field K in the following
way. Fix a primitive p-th root of unity ζ , an integer i such that 1≤ i ≤ (p− 3)/2,
and an integer b which is prime to p, and then set

a :=
1+ b(ζ − 1)2i+1

1+ b(ζ−1− 1)2i+1 .

Write ordπ for the normalized additive valuation of Q(µp) associated to the prime
element π = ζ − 1. Then, since ordπ (a− 1)= 2i + 1< p, (π) is totally ramified
in Q(µp,

p
√

a)/Q(µp). Also, since c(a)= a−1 where c is the complex conjugation,
Q(µp,

p
√

a) is the composite of a cyclic extension of Q(µp)
+ of degree p and

Q(µp). This shows that Q(µp,
p
√

a) is a CM-field and, since 1< 2i + 1< p, the
extension Q(µp,

p
√

a)+/Q is nonabelian. We now take a negative integer−d which
is a quadratic residue modulo p, let K denote the CM-field Q(µp,

p
√

a,
√
−d) and

set k := K+. Then p is totally ramified in k/Q and the p-adic prime of k splits
in K . In addition, k/Q is not abelian and the µ-invariant of K∞/K vanishes since
K/Q(µp,

√
−d) is cyclic of degree p. This shows that the extension K/k satisfies

all of the hypotheses of Corollary 5.8.

(iii) In cases (i) and (ii) above, p is totally ramified in the extension k∞/Q and so
Corollary 5.8 implies that eTNC(h0(Spec Kn),Zp[G]−) is valid for any nonnegative
integer n. In addition, if F is any real abelian field of degree prime to [k : Q] in
which p is totally ramified, the minus component of the p-part of eTNC for F Kn/k
holds for any nonnegative integer n.
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Remark 5.10. By using similar methods to the proofs of the above corollaries
it is also possible to deduce the main result of [Bley 2006] as a consequence of
Theorem 5.2. In this case k is imaginary quadratic, the validity of (hIMC) can be
derived from [Rubin 1991] (as explained in [Bley 2006]), and the conjecture (MRS)
from the result in [Bley 2004], which is itself an analogue of Solomon’s theorem
[1992] for elliptic units, by using the same argument as Theorem 4.10.

5B. A computation of Bockstein maps. Fix a character χ ∈ Ĝ and set

Ln := Lχ,n,
L := Lχ ,
V := Vχ = {v ∈ S | v splits completely in Lχ,∞},
r := rχ = #Vχ ,

V ′ := V ′χ (as in (MRS) in Theorem 5.2),
r ′ := rχ,S = #V ′,
e := r ′− r.

As in Section 4A, we label S = {v0, v1, . . .} so that V = {v1, . . . , vr } and V ′ =
{v1, . . . , vr ′}, and fix a place w lying above each v ∈ S. Also, as in Section 2D, it
will be useful to fix a representative 5K∞→5K∞ of CK∞,S,T where the first term
is placed in degree zero, and 5K∞ is a free 3-module with basis {b1, . . . , bd}. This
representative is chosen so that the natural surjection

5K∞→ H 1(CK∞,S,T )→ XK∞,S

sends bi to wi −w0 for every i with 1≤ i ≤ r ′.
We define a height-one regular prime ideal of 3 by setting

p := ker(3
χ
−→Qp(χ) :=Qp(imχ)).

Then the localization R :=3p is a discrete valuation ring and we write P for its
maximal ideal. We see that χ induces an isomorphism

E := R/P −→∼ Qp(χ).

We set C := CK∞,S,T ⊗3 R and 5 :=5K∞ ⊗3 R.

Lemma 5.11. Let γ be a topological generator of 0 = Gal(K∞/K ). Let n be an
integer which satisfies γ pn

∈ Gal(K∞/L). Then γ pn
− 1 is a uniformizer of R.

Proof. Regard χ ∈ Ĝ, and put χ1 := χ |1 ∈ 1̂. We identify R with the localization
of 3χ1[1/p] = Zp[imχ1][[0]][1/p] at q := ker(3χ1[1/p]

χ |0
→ Qp(χ)).

Then the lemma follows by noting the localization of 3χ1[1/p]/(γ pn
− 1) =

Zp[imχ1][0n][1/p] at q is identified with Qp(χ). �
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Lemma 5.12. Assume that the condition (F) is satisfied.

(i) H 0(C) is isomorphic to UK∞,S,T ⊗3 R, and R-free of rank r .

(ii) H 1(C) is isomorphic to XK∞,S ⊗3 R.

(iii) The maximal R-torsion submodule H 1(C)tors of H 1(C) is isomorphic to
XK∞,S\V ⊗3 R, and annihilated by P. (So H 1(C)tors is an E-vector space.)

(iv) H 1(C)tf := H 1(C)/H 1(C)tors is isomorphic to YK∞,V ⊗3 R and is therefore
R-free of rank r .

(v) dimE(H 1(C)tors)= e.

Proof. Since UK∞,S,T ⊗3 R = H 0(C) is regarded as a submodule of 5, we see that
UK∞,S,T ⊗3 R is R-free. Put χ1 := χ |1 ∈ 1̂. Note that L∞ := Lχ,∞ = Lχ1,∞, and
that the quotient field of R is Q(3χ1). As in the proof of Theorem 3.4, we have

UK∞,S,T ⊗3 Q(3χ1)' YL∞,V ⊗Zp[[Gχ ]] Q(3χ1).

These are r -dimensional Q(3χ1)-vector spaces. This proves (i).
To prove (ii), it is sufficient to show that AT

S (K∞)⊗3 R = 0. Fix a topological
generator γ of 0, and regard Zp[[0]] as the ring of power series Zp[[t]] via the
identification γ = 1 + t . Let f be the characteristic polynomial of the Zp[[t]]-
module AT

S (L∞). By Lemma 5.11, for sufficiently large n, γ pn
−1 is a uniformizer

of R. On the other hand, by the assumption (F), we see that f is prime to γ pn
− 1.

This implies (ii).
We prove (iii). Proving that H 1(C)tors is isomorphic to XK∞,S\V ⊗3 R, it is

sufficient to show that

XK∞,S ⊗3 Q(3χ1)' YK∞,V ⊗3 Q(3χ1),

by (ii). This was shown in the proof of Theorem 3.4. We prove that XK∞,S\V ⊗3 R
is annihilated by P . Note that XK∞,S\V ⊗3 R = XK∞,S\(V∪S∞) ⊗3 R, since the
complex conjugation c at v ∈ S∞ \ (V ∩ S∞) is nontrivial in Gχ1 , and hence
c− 1 ∈ R×. Hence, it is sufficient to show that, for every v ∈ S \ (V ∪ S∞), there
exists σ ∈ Gv ∩ 0 such that σ − 1 is a uniformizer of R, where Gv ⊂ G is the
decomposition group at a place of K∞ lying above v. Thanks to the assumption
(S), we find such σ by Lemma 5.11.

The assertion (iv) is immediate from the above argument.
The assertion (v) follows from (iii), (iv), and the fact that

XK∞,S ⊗3 E ' XL ,S ⊗Zp[Gχ ]Qp(χ)' eχQp(χ)XL ,S ' eχQp(χ)YL ,V ′

is an r ′-dimensional E-vector space. �

In the following for any R-module M we often denote M ⊗R E by ME . Also,
we assume that (F) is satisfied.



1566 David Burns, Masato Kurihara and Takamichi Sano

Definition 5.13. The “Bockstein map” is the homomorphism

β : H 0(CE)→ H 1(C ⊗R P)= H 1(C)⊗R P→ H 1(CE)⊗E P/P2

induced by the natural exact triangle C ⊗R P→ C→ CE .

Note that there are canonical isomorphisms

H 0(CE)'UL ,S,T ⊗Zp[Gχ ]Qp(χ)' eχQp(χ)UL ,S,T ,

H 1(CE)' XL ,S ⊗Zp[Gχ ]Qp(χ)' eχQp(χ)XL ,S ' eχQp(χ)YL ,V ′,

where Qp(χ) is regarded as a Zp[Gχ ]-algebra via χ . Note also that P is generated
by γ pn

− 1 with sufficiently large n, where γ is a fixed topological generator of 0
(see Lemma 5.11). There is a canonical isomorphism

I (0χ )/I (0χ )2⊗Zp Qp(χ)' P/P2,

where I (0χ ) denotes the augmentation ideal of Zp[[0χ ]] (note that 0=Gal(K∞/K )
and 0χ = Gal(L∞/L)). Thus, the Bockstein map is regarded as the map

β : eχQp(χ)UL ,S,T → eχQp(χ)(XL ,S ⊗Zp I (0χ )/I (0χ )2)

' eχQp(χ)(YL ,V ′ ⊗Zp I (0χ )/I (0χ )2).

Proposition 5.14. The Bockstein map β is induced by the map

UL ,S,T → XL ,S ⊗Zp I (0χ )/I (0χ )2

given by a 7→
∑

w∈SL
w⊗ (recw(a)− 1).

Proof. The proof is the same as for [Flach 2004, Lemma 5.8] and we sketch the
proof therein.

Take n so that the image of γ pn
∈Gal(K∞/L) in Gal(L∞/L)=0χ is a generator.

We regard γ pn
∈ 0χ . Define θ ∈ H 1(L ,Zp)= Hom(GL ,Zp) by γ pn

7→ 1. Define

β ′ : eχQp(χ)UL ,S,T → eχQp(χ)(XL ,S ⊗Zp I (0χ )/I (0χ )2)
∼
→ eχQp(χ)XL ,S

by β(a)= β ′(a)⊗ (γ pn
− 1). Then, β ′ is induced by the cup product

· ∪ θ :QpUL ,S ' H 1(OL ,S,Qp(1))→ H 2(OL ,S,Qp(1))'QpXL ,S\S∞ .

By class field theory we see that β is induced by the map

a 7→
∑

w∈SL\S∞(L)

w⊗ (recw(a)− 1).

Since recw(a)= 1 ∈ 0χ for all w ∈ S∞(L), the proposition follows. �

Proposition 5.15. We have canonical isomorphisms

kerβ ' H 0(C)E and cokerβ ' H 1(C)tf⊗R P/P2.
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Proof. Let δ be the boundary map H 0(CE)→ H 1(C ⊗R P)= H 1(C)⊗R P . We
have

ker δ ' coker(H 0(C ⊗R P)→ H 0(C))= H 0(C)E

and
im δ = ker(H 1(C)⊗R P→ H 1(C))= H 1(C)[P]⊗R P,

where H 1(C)[P] is the submodule of H 1(C) which is annihilated by P . By
Lemma 5.12(iii), we know H 1(C)[P] = H 1(C)tors. Hence, the natural map

H 1(C)⊗R P→ H 1(C)⊗R P/P2
' H 1(C)E ⊗E P/P2

' H 1(CE)⊗E P/P2

is injective on H 1(C)tors⊗R P . From this we see that kerβ ' H 0(C)E . We also
have

cokerβ ' coker(H 1(C)tors⊗R P→ H 1(C)⊗R P/P2)' H 1(C)tf⊗R P/P2.

Hence we have completed the proof. �

By Lemma 5.12, we see that there are canonical isomorphisms

H 0(C)E 'UK∞,S,T ⊗3 Qp(χ),

H 1(C)E ' XK∞,S ⊗3 Qp(χ),

H 1(C)tf,E ' YK∞,V ⊗3 Qp(χ).

Hence, by Proposition 5.15, we have the exact sequence

0→UK∞,S,T ⊗3 Qp(χ)→ eχQp(χ)UL ,S,T

β
−→ eχQp(χ)(YL ,V ′ ⊗Zp I (0χ )/I (0χ )2)→ YK∞,V ⊗3 P/P2

→ 0.

This induces an isomorphism

β̃ : eχQp(χ)
(∧r ′UL ,S,T ⊗

∧r ′Y∗L ,V ′
)

−→∼
∧r
(UK∞,S,T ⊗3 Qp(χ))⊗

∧r
(Y∗K∞,V ⊗3 Qp(χ))⊗ Pe/Pe+1.

We have isomorphisms ∧r ′Y∗L ,V ′ −→∼ Zp[Gχ ], w∗1 ∧ · · · ∧w
∗

r ′ 7→ 1,∧r
(Y∗K∞,V ⊗3 Qp(χ))−→

∼ Qp(χ), w∗1 ∧ · · · ∧w
∗

r 7→ 1.

By these isomorphisms, we see that β̃ induces an isomorphism

eχQp(χ)
∧r ′UL ,S,T −→

∼
∧r
(UK∞,S,T ⊗3 Qp(χ))⊗ Pe/Pe+1,

which we denote also by β̃. Note that we have a natural injection∧r
(UK∞,S,T⊗3Qp(χ))⊗Pe/Pe+1 ↪→eχQp(χ)

(∧rUL ,S,T⊗Zp I (0χ )e/I (0χ )e+1).
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Composing this with β̃, we have an injection

β̃ : eχQp(χ)
∧r ′UL ,S,T ↪→ eχQp(χ)

(∧rUL ,S,T ⊗Zp I (0χ )e/I (0χ )e+1).
By Proposition 5.14, we obtain the following.

Proposition 5.16. Let

Rec∞ : Cp
∧r ′UL ,S,T → Cp

(∧rUL ,S,T ⊗Zp I (0χ )e/I (0χ )e+1)
be the map defined in Section 4A. Then we have

(−1)reeχRec∞ = β̃.

In particular, eχRec∞ is injective.

5C. The proof of the main result. In this section we prove Theorem 5.2.
We start with an important technical observation. Let5n denote the free Zp[Gχ,n]-

module 5K∞⊗3Zp[Gχ,n], and I (0χ,n) denote the augmentation ideal of Zp[0χ,n].
We recall from [BKS, Lemma 5.20] that the image of

πV
Ln/k,S,T : detZp[Gχ,n](CLn,S,T )→

∧r
5n

is contained in I (0χ,n)e ·
∧r
5n (see Proposition 2.6(iii)) and also from [BKS,

Proposition 4.17] that ν−1
n ◦Nn induces the map

I (0χ,n)e ·
∧r
5n→

∧r
50⊗Zp I (0χ,n)e/I (0χ,n)e+1.

Lemma 5.17. There exists a commutative diagram

detZp[Gχ,n](CLn,S,T )
//

πV
Ln/k,S,T

��

detZp[Gχ ](CL ,S,T )

πV ′
L/k,S,T
��

I (0χ,n)e ·
∧r
5n

ν−1
n ◦Nn

��

⋂r ′ UL ,S,T

(−1)reRecn

��∧r
50⊗Zp I (0χ,n)e/I (0χ,n)e+1 ⋂r UL ,S,T ⊗Z I (0χ,n)e/I (0χ,n)e+1.

⊃
oo

Proof. This follows from Proposition 2.6(iii) and [BKS, Lemma 5.22]. �

For any intermediate field F of K∞/k, we denote by LF/k,S,T the image of the
(conjectured) element LK∞/k,S,T of det3(CK∞,S,T ) under the isomorphism

Zp[[Gal(F/k)]]⊗3 det3(CK∞,S,T )' detZp[[Gal(F/k)]](CF,S,T ).

Note that we have
πV

Ln/k,S,T (LLn/k,S,T )= ε
V
Ln/k,S,T .
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Hence, Lemma 5.17 implies that

(−1)reRecn(π
V ′
L/k,S,T (LL/k,S,T ))= ν

−1
n ◦Nn(ε

V
Ln/k,S,T )=: κn.

We set

κ := (κn)n ∈

r⋂
UL ,S,T ⊗Zp lim

←−−
n

I (0χ,n)e/I (0χ,n)e+1.

Then the validity of Conjecture MRS(K∞/k, S, T, χ, V ′) implies that

eχκ = (−1)reeχRec∞(εV ′
L/k,S,T ).

In addition, by Proposition 5.16, we know that eχRec∞ is injective, and so

πV ′
L/k,S,T (eχLL/k,S,T )= eχεV ′

L/k,S,T .

Hence, by Proposition 2.5, we see that eTNC(h0(Spec L),Zp[G]) is valid, as
claimed.
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