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A. Venkatesh raised the following question, in the context of torsion automorphic
forms: can the mod p analogue of Grothendieck’s standard conjecture of Künneth
type be true (especially for compact Shimura varieties)? In the first theorem of
this article, by using a topological obstruction involving Bockstein, we show
that the answer is in the negative and exhibit various counterexamples, including
compact Shimura varieties.

It remains an open geometric question whether the conjecture can fail for
varieties with torsion-free integral cohomology. Turning to the case of abelian
varieties, we give upper bounds (in p) for possible failures, using endomorphisms,
the Hodge–Lefschetz operators, and invariant theory.

The Schottky problem enters into consideration, and we find that, for the
Jacobians of curves, the question of Venkatesh has an affirmative answer for every
prime number p.

1. Introduction

Let X be a complex smooth projective variety of dimension n. Denote by CH j (X)
the Chow group of codimension- j cycles on X , and by

cl j
X,Q : CH j (X)→ H 2 j (X,Z)→ H 2 j (X,Q)

the cycle class map into the Betti cohomology of X with Q-coefficients.
Poincaré duality lets H 2n(X × X,Q) act linearly on H∗(X,Q) via correspon-

dences: namely, z ∈ H 2n(X × X,Q) acts as

H∗(X,Q)
pr∗1
−→ H∗(X × X,Q)

∪z
−→ H∗+2n(X × X,Q)

pr2,∗
−−→ H∗(X,Q),

where the duality is used in the definition of the Gysin map pr2,∗.
For each integer i , we have the (rational) Künneth projector

π i
X,Q ∈ H 2n(X × X,Q),

which acts as 1 on H i (X,Q) and as 0 on H j (X,Q) for all j 6= i .
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Conjecture 1.1 (Grothendieck [Kleiman 1968]). The Künneth projectors π i
X,Q are

algebraic:
π i

X,Q ∈ Im(clnX×X,Q)⊗Q for all i .

The conjecture has long been known for flag varieties, for abelian varieties, and
in dimension ≤ 2.1 For more recent progress on the conjecture, we also refer the
reader to [Arapura 2006; Charles and Markman 2013; Tankeev 2011; 2015].

A. Venkatesh asked the present author whether the analogous statement could
hold with Fp-coefficients: we still have Poincaré duality for Fp-coefficients, hence
the action of H 2n(X × X, Fp) on H∗(X, Fp), as well as the (mod p) Künneth
projectors π i

X,Fp
∈ H 2n(X × X, Fp). We also have the mod p cycle class map

cl j
X,Fp
: CH j (X)/p→ H 2 j (X, Fp).

Question 1.2 (Venkatesh). Are the mod p Künneth projectors algebraic? That is,

π i
X,Fp
∈ Im(clnX×X,Fp

) for all i?

Two aspects of the question got us interested. First, of course, the torsion
invariants have long been of interest not only in algebraic topology, but also in
algebraic geometry. For the latter, we mention just two of the most classic examples.

(A) Atiyah and Hirzebruch [1962] showed that the integral version of the Hodge
conjecture is false in codimension ≥ 2, by creating torsion cohomology classes
that are not annihilated by certain Steenrod operations. (Totaro [1997] later
clarified this phenomenon in terms of complex cobordisms.)

(B) In response to Lüroth’s question (in birational classification of varieties) Artin
and Mumford [1972] constructed unirational but irrational threefolds, by ex-
ploiting nontrivial 2-torsion in the cohomology.

Secondly, with the recent progress in the theory of automorphic forms (including
Arthur’s conjectures), one has seen various results towards proving the Hodge, Tate,
and standard conjectures for Shimura varieties; see among others [Bergeron et al.
2016; Morel and Suh 2016]. In particular, while the standard conjecture of Künneth
type remains open, the standard sign conjecture of Jannsen, which (only) asks
whether the even and odd idempotents

π+X,Q =
∑
2|i

π i
X,Q and π−X,Q =

∑
2-i

π i
X,Q

are algebraic, has been proved for many Shimura varieties, which has Tannakian
consequences for homological motives.

1The conjecture is also known for the `-adic and crystalline cohomology theories over finite fields,
thanks to Katz and Messing [1974], whose proof relies on Deligne’s proof of the Weil conjectures.
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Parallel to this development, there have also been striking progress of late in the
theory of torsion automorphic forms (see among others [Scholze 2015; Treumann
and Venkatesh 2016]) and some speculations on the extent to which one may have
an analogue of Arthur’s conjectures [Emerton and Gee 2015]. One wonders how
far one could push the theory and obtain geometric results for Shimura varieties.

The first main goal of this article is to give a topological criterion for the question.

Theorem 1.3. (1) If the integral cohomology H∗(X,Z) has nontrivial p-torsion,
then Venkatesh’s question has a negative answer for X.

(2) For any integers i > 0 and n ≥ i+1, there exists a projective smooth variety X
of dimension n such that π i

X,Fp
is not in the image of the mod p cycle class map.

This class of examples includes Godeaux–Serre varieties and Shimura varieties,
as well as Enriques surfaces and the Artin–Mumford threefolds mentioned above.
In the case of Shimura surfaces, we show that even (the analogue of) the sign
conjecture with mod p coefficients can fail.

The next natural question, which is somewhat orthogonal in motivation to the
original question, is if such failure can happen to varieties with torsion-free integral
cohomology, such as hypersurfaces (in the direction of Griffiths–Harris conjectures
[1985]) or abelian varieties. That is, whether the integral analogue of the standard
conjecture of Künneth type can fail to hold. We define a natural measure of possible
failure — Künneth defect — and note some first properties, but at the moment do
not know the answer to the question.

In the final section, we look into the question in the case of abelian varieties and
obtain upper bounds for the Künneth defects. Among the results we obtain is:

Theorem 1.4. Venkatesh’s question has an affirmative answer for all primes p,
if X is the Jacobian of a curve.

This leads us to put forth:

Conjecture 1.5. The standard conjecture of Künneth type fails to hold integrally,
for a very general principally polarized abelian variety X of dimension ≥ 4.

A more ambitious conjecture would be: the integral version fails once X is outside
the closure of the Schottky locus. More quantitatively, we relate this conjecture to
the Prym–Tyurin theory; see Section 4.2 and Question 4.2.7 below.

Notation. For an abelian group M and an integer n, we use the notation

M[n] = {m ∈ M : n ·m = 0} and M/n = M/nM = M ⊗Z/n.

If p is a prime number, we denote by Z(p) the localization of Z at (p), and write

M[p∞] =
⋃
n≥1

M[pn
].
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2. Standard conjecture of Künneth type with torsion coefficients

2.1. Topological obstruction: Bockstein. The first obstruction to Question 1.2 that
we will use in this section relies on the simple fact that the mod p cycle class map
factors through the integral cohomology mod p:

CH j (X) cl
//

��

H 2 j (X,Z)

��

CH j (X)/p
clFp
// H 2 j (X, Fp)

As such, we look at the obstruction to lifting π i
X,Fp

to an element in H 2n(X× X,Z).
This naturally leads us to look at the version of the Bockstein homomorphism β

0→ H j (X,Z)/p→ H j (X, Fp)
β
−→ H j+1(X,Z)[p] → 0, (2.1.1)

which is the connecting homomorphism for the short exact sequence of sheaves

0→ Z
×p
−→ Z→ Fp→ 0.

Definition 2.1.1. Let X be a complex projective smooth variety and p a prime
number. We define the initial incidence of nontrivial p-torsion, and denote it i p(X),
as the smallest integer i such that the natural reduction map

H i (X,Z)→ H i (X, Fp)

is not surjective, in other words, the Bockstein homomorphism

H i (X, Fp)→ H i+1(X,Z)[p]

is nonzero. If no such i exists, we set i p(X)=∞.

Equivalently, in view of the exact sequence (2.1.1), we have i p(X) = j − 1,
where j is the smallest integer such that H j (X,Z) has nontrivial p-torsion. We
will show in Section 2.3 that, for any prime p and any integer i ≥ 1, there exists a
projective smooth variety X with i p(X)= i .

Proposition 2.1.2. If i p(X) <∞, then i p(X)≤ dim X − 1.

Proof. Let n = dim X . By definition, we have

dimQ H i p(X)(X,Q) < dimFp H i p(X)(X, Fp),

so by Poincaré duality with field coefficients, we get i p(X) ≤ n. If i p(X) were
equal to n, then we would have

dimFp H j (X, Fp)= dimQ H j (X,Q)
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for all j < n, and hence also for all j > n, again by Poincaré duality. Then the jump

dimFp H n(X, Fp) > dimQ H n(X,Q)

in the middle degree would contradict the equality of the Euler characteristics of X
with Fp- and Q-coefficients. �

Theorem 2.1.3. Let X be a complex smooth projective variety of dimension n and
p a prime number. Suppose that i := i p(X) <∞. Then the Bockstein of the three
idempotents

π i
X,Fp

, π2n−i
X,Fp

, and π i
X,Fp
+π2n−i

X,Fp

are all nonzero, and as such cannot be the cohomology class of an algebraic cycle.

Proof. First we show that βX×X (π
i
X,Fp

) 6= 0, where βX×X is the Bockstein for X×X .

Lemma 2.1.4. With the notation as above, the natural map

H 2n−i (X,Z)→ H 2n−i (X, Fp)

is surjective.

Proof. Equivalently, we show that H 2n−i+1(X,Z) is free of p-torsion. By Poincaré
duality, we have

H 2n−i+1(X,Z)' Hi−1(X,Z)

and the universal coefficient theorem provides us with an exact sequence

0→ Ext1(Hi−1(X,Z),Z)→ H i (X,Z)→ Hom(Hi (X,Z),Z)→ 0.

Now if Hi−1(X,Z) had nontrivial p-torsion, then so would H i (X,Z), which would
contradict the alternate characterization of i p(X) given just after the definition. �

Step 1 (the p-primary torsion parts, Poincaré dual bases, and Pontryagin dual
generators). Denote the p-primary torsion part by

T := Hi (X,Z)[p∞] ' H 2n−i (X,Z)[p∞]

(isomorphism via Poincaré duality with integral coefficients), hence giving us a
natural exact sequence (thanks to Lemma 2.1.4)

0→ T/p→ H 2n−i (X, Fp)→ H 2n−i (X,Z(p))
fr/p→ 0 (a)

(where ( · )fr denotes the maximal Z(p)-free quotient). Then choose generators

T =
r⊕

k=1

(Z/pmk )tk .

By the universal coefficient theorem

0→Ext1(H2n−i−1(X,Z),Z(p))→H 2n−i (X,Z(p))→Hom(H2n−i (X,Z),Z(p))→0
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we get a natural isomorphism

T ' Ext1(H2n−i−1(X,Z),Z(p))' Hom(H i+1(X,Z)[p∞],Q/Z),

in other words,
H i+1(X,Z)[p∞] ' T∨,

the Pontryagin dual of T . Let t∨k ∈ T∨ denote the Pontryagin dual generators:

t∨k (t j )= 0 if j 6= k while t∨k (tk)= 1/pmk +Z.

It follows that the uk := pmk−1t∨k form a basis of T∨[p],

T∨[p] =
r⊕

k=1

Fpuk,

and the Bockstein short exact sequence reads

0→ H i (X,Z)/p→ H i (X, Fp)
β
−→ T∨[p] → 0. (b)

The exact sequences (a) and (b) are Poincaré dual to each other, via the universal
coefficient theorem.

Denote the mod p Poincaré pairing by

〈 · , · 〉 : H 2n−i (X, Fp)× H i (X, Fp)→ Fp.

We can then choose

(1) a preimage {ũk ∈ H i (X, Fp)}k of {uk}k=1,...,r under β,

(2) a lift { f`∈H 2n−i(X,Z(p))}` of a Z(p)-basis of the free quotient H 2n−i(X,Z(p))fr,
and

(3) a Z(p)-basis { f ′`} of H i (X,Z(p)) (note that this last group is free over Z(p)),

such that the Z(p)-bases { f`} and { f ′`} are Poincaré dual, so that

〈tk, ũ j 〉 = δ jk, 〈tk, f ′`〉 = 0, and 〈 f`, f ′m〉 = δ`m

(the second vanishing equation follows from the duality of the sequences (a)
and (b)). Here by the notation ξ we mean the image of ξ in the cohomology
with Fp-coefficients.

By modifying the f` by linear combinations of the tk , which changes neither the
fact that the f` lift a Z(p)-basis of the free quotient in condition (2) nor the mod p
intersection numbers 〈 f`, f ′m〉, we may then assume in addition that

〈 f`, ũk〉 = 0,
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that is, the bases

{t1, . . . , tr ; f1, . . . , fb} and {ũ1, . . . , ũr ; f ′1, . . . , f ′b}

of H 2n−i (X, Fp) and of H i (X, Fp), respectively, are Poincaré dual to each other
(b stands for Betti).

It then follows, from the way the action of H 2n(X × X, Fp) on H∗(X, Fp) via
correspondence is constructed, that

π i
X,Fp
=

r∑
k=1

tk ⊗ ũk +

b∑
`=1

f`⊗ f ′`. (?)

Step 2 (integral Künneth theorem). Recall that the general Künneth theorem for
integral coefficients says that we have a natural short exact sequence

0→
⊕

a+b=m

Ha(X,Z)⊗ H b(Y,Z)→ H m(X × Y,Z)→

→

⊕
a+b=m+1

Tor1(Ha(X,Z), H b(Y,Z))→ 0

[Cartan and Eilenberg 1956, Chapter VI, Theorem 3.1]. Applied to our situation,
X = Y , it gives us a natural injection

(H 2n−i (X,Z)⊗ H i+1(X,Z))[p] ↪→ H 2n+1(X × X,Z)[p].

Thanks to (?), the Bockstein of π i
X,Fp

belongs to this smaller subspace

βX×X (π
i
X,Fp

)= (−1)2n−i
r∑

k=1

tk ⊗ uk = (−1)2n−i
r∑

k=1

pmk−1tk ⊗ t∨k ;

here we are using the fact that the Bockstein homomorphism is a graded derivation
on cohomology, that it annihilates elements obtained by reduction mod p, and that
by construction β(ũk)= uk .

In fact, this belongs to a smaller subspace

(H 2n−i (X,Z)⊗ H i+1(X,Z))[p] ⊇ (T ⊗ T∨)[p],

which has basis

{pmin(m j ,mk)−1ti ⊗ t∨k }, where 1≤ j, k ≤ r ,

because (Z/pa)⊗ (Z/pb) ' Z/pa if a ≤ b. That is, up to sign, βX×X (π
i
X,Fp

) is
the sum of the “diagonal” (that is, j = k) basis elements in (T ⊗ T∨)[p], and is
nonzero because by assumption T 6= 0 and r ≥ 1.
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Step 3 (the other projectors). The proof for π2n−i
X,Fp

is essentially the same, with the
two factors of X × X exchanging the roles. For the last idempotent, note that the
Bocksteins of the two summands reside in distinct Künneth factors:

βX×X (π
i
X,Fp

) ∈ (H 2n−i (X,Z)⊗ H i+1(X,Z))[p], while

βX×X (π
2n−i
X,Fp

) ∈ (H i+1(X,Z)⊗ H 2n−i (X,Z))[p]

(i + 1 and 2n− i have different parity). �

2.2. Shimura varieties with i p(X) = 1. This section is a generalization of [Suh
2008, §3]. For the purpose of this article, it is enough to consider connected Shimura
data (G,X ), where G is a simple algebraic group over Q.

Proposition 2.2.1. Assume that G is Q-anisotropic so that the resulting Shimura
varieties

X0 = 0 \X

are compact, and that the congruence subgroups 0 ⊂ G(Q) used in the definition
satisfy the condition

0ab
= 0/[0,0]<∞. (2.2.1)

Then for any prime number p, there exist torsion-free levels 0 such that i p(X0)= 1.

Remark 2.2.2. The condition (2.2.1) is satisfied whenever G has real rank at least 2
(see, e.g., [Margulis 1991, Theorem IV.4.9]) and also in the case of certain special
unitary groups of real rank 1 [Rogawski 1990, Theorem 15.3.1]. (But it clearly
rules out modular and Shimura curves as it must, as well as certain special unitary
groups of real rank 1 [Kazhdan 1977].)

Proof. The condition (2.2.1) implies that

H 1(X0,Z)= 0.

On the other hand, for any fixed prime number p, one can always find lattices
0 ⊂ G(Q) such that

H 1(X0, Fp) 6= 0;

the point is as follows. Let S be a finite set of prime numbers such that G has a
good model over Z[S−1

], and let F be a number field over which G splits. Then
by the Chebotarev density theorem, there are infinitely many prime numbers ` such
that (i) ` /∈ S, (ii) ` splits completely in F , and (iii) ` ≡ 1 (mod p). Then, since
G ⊗ F` contains a split torus of positive dimension, G(F`) contains a nontrivial
abelian p-subgroup, say H ⊆ G(F`).

Now starting with a torsion-free level subgroup 0, we can find a prime ` which
is prime to 0 and satisfying the three conditions above. By first raising the level by
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a full mod ` level, and then lowering it by the abelian p-subgroup H , we arrive at
a new level 0′ with

π1(X0′)ab/p 6= 0, hence H 1(X0′, Fp) 6= 0.

Therefore, we get examples with i p(X0′)= 1. �

Remark 2.2.3. The groups H used in the proof are those p-subgroups that play a
central role in the detection and the computation of the group cohomology of finite
Lie groups, initiated by Quillen [1972]; see also [Adem and Milgram 2004] and
references therein.

Remark 2.2.4. This way we also get Shimura surfaces with i p(X) = 1, and
Theorem 2.1.3 in this case shows that even the analogue of the sign conjecture for
Fp-coefficients is false.

Remark 2.2.5. For PEL-type or quaternionic Shimura varieties, when p is a “good”
prime (with respect to the Shimura data) not dividing the level 0, then the Shimura
varieties have good reduction at p, thanks to Kottwitz and Reimann. This way
we also get nontrivial p-torsion in the coherent and de Rham cohomology of the
integral model at p of the Shimura varieties. For details, see [Suh 2008, §3].

Remark 2.2.6 (Emerton). The resulting unliftable cohomology classes in H 1(X,Fp),
and hence the nontrivial p-torsion classes in H 2(X,Z)[p] via Bockstein homomor-
phism, are Eisenstein (in the sense that the associated Galois representations are
completely reducible) [Emerton and Gee 2015, Remark 3.4.6]. The point is that,
for any prime that is coprime to the level

ker(φ : 0′→ Fp),

the corresponding Hecke operator annihilates the classes. Indeed, already the
pullback of the class is zero, and hence, the ensuing pushforward (under a different
finite covering) is necessarily zero.

2.3. Varieties with any prescribed i p(X)≥ 1.

Theorem 2.3.1. Let p be any prime number, and 1 ≤ i < n be two integers.
Then there exists a complex projective smooth variety X of dimension n such that
i p(X)= i .

Moreover, we may assume one of the following two conditions on X.

(1) For any n > i , we can find X with ample canonical bundle.

(2) If i ≥ 3 and n ≥ 2i − 1, then we can find X that is rational.

Our proof consists of two parts: group cohomology (the tools we use can be
found, e.g., in [Adem and Milgram 2004]) and projective geometry.
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Lemma 2.3.2. For any prime number p, there exists a finite group G such that

H 1(G, Fp)= 0 and dimFp H 2(G, Fp)≥ 2.

It follows that

p - |H 2(G,Z)| and dimFp H 3(G,Z)[p] ≥ 2.

Proof. Consider the 2-dimensional vector space V = F⊕2
p . For odd p, let D := F×p

be the units in Fp, and let α ∈ D act on V as the diagonal matrix(
α 0
0 α−1

)
,

while for p = 2, let a chosen generator α of D := Z/3 act on V as the matrix(
0 1
1 1

)
.

(One can regard V as F4 and D as F×4 .) Let V ′ = V be another copy of the same
representation of D, and take the corresponding semidirect product

G := (V ⊕ V ′)o D.

For p odd, the cohomology algebra of V (regarded as a finite group) with coefficients
in Fp is the tensor product of a polynomial algebra and an exterior algebra [Adem
and Milgram 2004, Corollary II.4.3]:

H∗(V, Fp)' Fp[x2, y2]⊗
∧
(e1, f1),

where the subscripts mark the degree. Then D acts as the identity character on the
eigenspaces Fpx2 and Fpe1 and as the inverse character on Fp y2 and Fp f1. By the
Künneth formula in group cohomology, we also have

H∗(V ⊕ V ′, Fp)' Fp[x2, y2, x ′2, y′2]⊗
∧
(e1, f1, e′1, f ′1),

with a similar description of the action of D.
For p = 2, the cohomology algebra is a polynomial algebra [Adem and Milgram

2004, Theorem II.4.4]:
H∗(V, F2)' F2[x1, y1],

on which the chosen generator α of D acts as the matrix above, on the basis x1, y1.
Similarly

H∗(V ⊕ V ′, F2)' F2[x1, y1, x ′1, y′1].

Since D has order prime to p, the Lyndon–Hochschild–Serre spectral sequence

Eab
2 = Ha(D, H b(V ⊕ V ′, Fp))⇒ Ha+b(G, Fp)
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degenerates in E2 and gives

H∗(G, Fp)' H∗(V ⊕ V ′, Fp)
D.

One can then show that there are no nonzero D-invariants of degree 1.
For p odd, all the D-invariants in H 2(V ⊕ V ′, Fp) are in the second wedge

product, on which the action of D is through the two characters, with multiplicity 2
each. It follows that the invariants have dimension 4 or 6, according to whether
p ≥ 5 or p = 3.

For p = 2, to compute the dimension of the D-invariants, first extend scalars
to F4 so as to diagonalize the action of D. Then one can see that the invariants of
degree 2 have dimension 4.

The last part of the lemma follows from the long exact sequence

· · · → H i (G,Z)
×p
−→ H i (G,Z)→ H i (G, Fp)→ · · ·

and the fact that H i (G,Z) is finite for all i > 0. �

Proof of Theorem 2.3.1. Step 1 (the cases i = 1, 2). By applying the Godeaux–Serre
construction [Serre 1958, §20] to the group Z/p, we get a complete intersection Y
of dimension n ≥ 2 with a free action of Z/p. Let X be the quotient of Y by Z/p.
Since Y is simply connected, X has fundamental group Z/p, and we have

H 1(X,Z)= 0 and H 1(X, Fp)' Fp,

and we have i p(X)= 1.
For i =2, we apply the Godeaux–Serre construction to any group G satisfying the

conditions of Lemma 2.3.2, to obtain a complete intersection Y of dimension n ≥ 3
with a free G-action. Let X = Y/G. Because Y has dimension ≥ 3, the Lefschetz
hyperplane theorem gives us

H 1(Y,Z)= 0 and H 2(Y,Z)' Z,

on which G acts trivially. Then the Serre–Hochschild spectral sequence

Eab
2 = Ha(G, H b(Y,Z))⇒ Ha+b(X,Z)

gives us H 1(X,Z)= 0 and then an exact sequence

0→ H 2(G,Z)→ H 2(X,Z)→ Z→ H 3(G,Z).

It follows that there is a noncanonical isomorphism

H 2(X,Z)' Z⊕ H 2(G,Z),

hence
dimFp H 2(X,Z)⊗ Fp = 1.
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In parallel, the spectral sequence applied to the mod p cohomology gives us
H 1(X, Fp)= 0 and

0→ H 2(G, Fp)→ H 2(X, Fp)→ Fp→ H 3(G, Fp),

which gives the dimension count

dimFp H 2(X, Fp)≥ 2.

Therefore, i p(X)= 2.
For analysis of the cohomology of Godeaux–Serre varieties, see also [Atiyah

and Hirzebruch 1962, p. 42].

Step 2 (the case i ≥ 3). Here we use the trick of blowing up to increase i p. The
main point is:

Lemma 2.3.3. Let X be a closed smooth subvariety of a complex projective smooth
variety Y of codimension c ≥ 2, and let p be a prime number. Then the blow-up Y ′

of Y along X satisfies

i p(Y ′)=min{i p(X)+ 2, i p(Y )}.

In particular, if H∗(Y,Z) is free of p-torsion (e.g., if Y is a projective space), then
i p(Y ′)= i p(X)+ 2.

Proof. This follows from the isomorphism

H j (Y ′,Z)' H j (Y,Z)⊕

c−1⊕
k=1

H j−2k(X,Z).

(Use the Leray spectral sequence and the computation of the cohomology of a
projective bundle [Katz 1973, Théorème 2.2].) �

Now we are ready to prove Theorem 2.3.1. Start with a variety X = X0 from
Step 1, and repeat di/2− 1e times the procedure of embedding Xk in a projective
space (whose dimension can be chosen to be ≤ 2 dim(Xk)+ 1), then taking the
blow-up Xk+1 of the projective space along Xk .

The resulting variety will in general have a large dimension. However, we can
cut down the dimension without changing i p(X), by using the Lefschetz hyperplane
theorem, as long as the desired dimension n is at least i p(X)+ 1.

To get a rational example, apply the previous procedure to get X of dimension i−1
and i p(X)= i − 2. Embed it in the projective space of dimension n ≥ 2(i − 1)+ 1
and blow up the projective space along it. �

Remark 2.3.4. The numerical condition in (2) for rational examples is sharp in
the sense that, for i = 2 and n = 2i − 1= 3, there is no rational projective smooth
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threefold with i p(X) = 2. This is the crucial observation of Artin and Mumford
[1972] mentioned in the introduction.

3. Integral Künneth defect

Let X be a complex projective smooth variety of dimension n with torsion-free
H∗(X,Z). The Künneth theorem for integral coefficients says in this case

H i (X × X,Z)'
⊕

j+k=i

H i (X,Z)⊗ H j (X,Z).

We begin by noting that the Künneth idempotent π i
X ∈ H 2n(X × X,Q) in fact

belongs to H 2n(X × X,Z), that in the integral cohomology group, it (if nonzero) is
not divisible by any prime number, and that its reduction mod p gives the mod p
Künneth idempotents π i

X,Fp
.

Definition 3.1. The (integral) Künneth defect is defined as the index

κi = κi,X := [Zπ
i
X : Zπ

i
X ∩ Im(clnX×X (CHn(X × X)))].

Thus, for X with torsion-free cohomology, Grothendieck’s standard conjecture
of Künneth type becomes the assertion κi <∞ for all i , while the integral analogue
amounts to κi = 1, and the mod p analogue amounts to p - κi .

Proposition 3.2. Let X and Y be nonempty complex projective smooth varieties
with torsion-free integral cohomology, and let n = dim X.

(1) κ0,X = κ2n,X = 1.

(2) κi,X = κ2n−i,X for all i .

(3) Suppose that for some i and some integer m, we have κ j,X | m for all j 6=
i, 2n− i . Then κi,X and κ2n−i,X also divide m.

(4) Suppose that f : Y → X is a generically finite covering of degree d. Then
κi,X | dκi,Y .

(5a) For the product, we have the “convolution” formula

κ`,X×Y divides lcmi+ j=`(κi,X · κ j,Y ).

(5b) Conversely, both κi,X and κi,Y divide κi,X×Y .

(6) Let X be a complex projective smooth family of varieties with torsion-free
cohomology over a (base) connected complex variety S. If κi,Xs | m for a very
general fiber Xs , then κi,Xt | m for any fiber Xt .

Proof. The fibers {∗}×X and X×{∗} represent π0
X and π2n

X , respectively, hence (1).
The Z/2 symmetry on X × X gives (2). The diagonal 1X represents the sum of
all π i

X , from which we get (3).
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The projection formula tells us that ( f × f )∗(π i
Y )= dπ i

X : for any x ∈ H∗(X,Q),

prX,2,∗(pr∗X,1(x)∪ ( f × f )∗(π i
Y ))= prX,2,∗( f × f )∗(( f × f )∗ pr∗X,1(x)∪π

i
Y )

= f∗ prY,2,∗(pr∗Y,1( f ∗(x))∪π i
Y )

= f∗ f ∗(xi )= deg( f )(xi ),

where xi is the degree i component of x , hence (4).
Part (5a) follows from the Künneth formula and the fact that

π`X×Y =
∑

i+ j=`

π i
X ⊗π

j
Y

in H∗(X×Y×X×Y,Q)' H∗(X×X,Q)⊗H∗(Y×Y,Q) (up to sign à la Koszul).
For part (5b), note that, for any point ∗ on Y , we have

pr1,3,∗(π
i
X×Y ∪ [X ×{∗}× X × Y ])= π i

X

as elements of H 2 dim X (X × X,Q), where pr1,3 : X × Y × X × Y → X × X is the
projection onto the product of the first and third factors.

For (6), use the fact that the Hilbert scheme of X ×S X /S is the countable union
of proper irreducible schemes {Hn}n=1,2,... over S. Subtract from S all the images
of those Hn which map onto proper subvarieties of S, and call the complement U .
If κi,Xs | m for one s ∈ U , then by construction the algebraic cycle representing
m ·π i

X specializes to any t ∈ S in a flat family. �

It follows that the integral analogue of the standard conjecture of Künneth type
is true for surfaces with H 1(X,Z)= 0= H 3(X,Z), e.g., K3 surfaces and complete
intersection surfaces.

Proposition 3.3. Let X be a smooth complete intersection of hypersurfaces of
degrees d1, . . . , dc in Pn+c. Then κi = 1 for all i odd, and κi | d1 · · · dc for all i .

Proof. By Proposition 3.2(2)–(3), we may prove the statements just for i < n. For
such i , by the Lefschetz hyperplane theorem, H i (X,Z) is zero if i is odd, and is
generated by the cup-power D∪i/2 if i is even, where D is a hyperplane section
of X . Since D∪n

= d1 · · · dc, the cycle

pr∗1(D
∪n−i/2)∪ pr∗2(D

∪i/2)

represents d1 · · · dcπ
i
X for i < n even. �

Question 3.4. Does there exist a projective smooth variety X with torsion-free
cohomology such that κi,X > 1 for some i?

In this regard, we mention:2

2The theorem cited is stated only for n = 2, but the argument carries over to general n without
much difficulty.
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Theorem 3.5 [Soulé and Voisin 2005, Theorem 3]. Let X be a projective smooth
variety of dimension n, and let m be an integer prime to 6. Then for a very general
degree-m3 hypersurface Y in P4 and any irreducible subvariety Z of X × Y of
codimension 3, the Künneth (2, 4) component

[Z ](2,4) ∈ H 2(X,Z)⊗ H 4(Y,Z)

is divisible by m in the group.

While this theorem is relevant to our discussion, it does not quite answer our
question, since one is not allowed to take X = Y . The nature of the proof requires
that X must precede Y : the “very general” condition on Y is formulated in terms
of the Hilbert scheme of X × Y .

4. Abelian varieties

We now turn to investigating Question 3.4 in the case of abelian varieties.
Perhaps a few words are in order to put our results in relation to what is known

in the literature. The standard conjecture of Künneth type with Q-coefficients has
long been known in the case of abelian varieties, treated as early as in [Kleiman
1968]. Part of what follows can be seen as an improvement of it with Z-coefficients.
(However, the use of higher Abel–Jacobi maps to produce requisite integral algebraic
cycles seems to be new in this context.)

A remarkable, arithmetic development in a rather different direction has been
seen in the consideration of the rational equivalence of algebraic cycles on abelian
varieties (but still with Q-coefficients), a refinement of the homological equivalence.
(The standard conjecture, as stated, only concerns the homological equivalence.)
Here a great deal of striking results have been obtained by use of the Fourier
transformation. See among others [Beauville 1986; 2010; Künnemann 1993].3

4.1. Endomorphisms and Lieberman’s trick. First we note that Poincaré duality
is valid for compact complex tori, with or without polarization. As the cohomology
is also torsion-free, we can still speak of the Künneth defects (Section 3).

Definition 4.1.1. Let g ≥ 1, 0< i < 2g, and a 6= −1, 0, 1 be integers. Define the
polynomial

Pi,g,a(T ) :=
∏

0< j<2g and j 6=i

T − a j

ai − a j ∈Q[T ],

3 An explicit formula is given in [Künnemann 1993] for the projectors up to rational equivalence
with Q-coefficients. However, the denominators required there are no better than the ones given
in Section 4.1 below, and not as sharp as the ones in Section 4.2 (where a principal polarization is
assumed in addition).
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and let di,g,a be the denominator (up to sign) of Pi,g,a:

di,g,a =
∏

0< j<2g and j 6=i

(ai
− a j ).

Proposition 4.1.2. Let X be a compact complex torus of dimension g ≥ 1. For any
integers a 6= −1, 0, 1 and 0< i < 2g, we have

κi,X | di,g,a.

In particular, no prime p ≥ 2g divides any κi,X .

Proof. The pullback by the multiplication map [a] : X→ X acts as a j on H j (X,Z).
The polynomial Pi,g,a was constructed so that

Pi,g,a([a]∗)= a0,iπ
0
X +π

i
X + a2g,iπ

2g
X on H∗(X,Q),

where a0,i and a2g,i are rational numbers whose denominators divide di,g,a . Because
π0

X and π2g
X are integrally algebraic (Proposition 3.2(1)), we get the first estimate

by multiplying the equation through by di,g,a .
For the second statement, choose a 6= 0,±1 to be a primitive root mod p, so that

a, . . . , a2g−1 are distinct mod p and p - di,g,a . �

4.2. Invariant theory and Jacobians. From now on, we consider a principally
polarized4 abelian variety (X, L) of dimension g ≥ 1.

Recall the following fact from the classical invariant theory. Let V be a 2g-
dimensional vector space over a field k of characteristic zero endowed with a
nondegenerate alternating pairing 〈 · , · 〉, and let V1 and V2 be two copies of V .
Then the Sp2g-invariants in the exterior algebra of the dual (V1⊕ V2)

∨ (on which
Sp2g acts diagonally and then dually) are generated by those in degree 2:(∧

(V1⊕ V2)
∨

)Sp2g
= k〈E1, E2,M〉,

where E1 and E2 are the pairings 〈 · , · 〉 through V1 and V2, respectively, and M is
the pairing

M(u, w) := E(u1, w2)+ E(u2, w2)= E(m(u),m(w))− E1(u, w)− E2(u, w),

where u = u1+ u2 and w = w1+w2 with ui , wi ∈ Vi and m : V1⊕ V2→ V is the
sum map.

4The calculation of bounds that follows, when implemented for a general polarization L , would
always involve the degree of L in the denominator. In view of Proposition 3.2(4), we do not lose
much by first passing to an isogenous abelian variety with a principal polarization.



Standard conjecture of Künneth type with torsion coefficients 1589

This has the following geometric consequence [Milne 1999]. The Chern class
E ∈ H 2(X,Z) of the principal polarization L can be regarded as a perfect alternating
form on H1(X,Z). Then we have

H∗(X × X,Q)Sp2g =Q〈E1, E2,M〉,

where Ei = pr∗i (E) and

M = µ∗E − E1− E2, (4.2.1)

where µ : X × X → X is the group law. Since E1, E2, and M have Künneth
types (2, 0), (0, 2), and (1, 1), respectively, it follows that there exist constants
γi,g(a, b, c) ∈Q such that the Künneth projectors can be expressed as

π i
X =

∑
(a,b,c):2a+b=2g−i and b+2c=i

γi,g(a, b, c)Ea
1 Mb Ec

2.

Theorem 4.2.1 [Scholl 1994, §5.9]. For all 0≤ i ≤ 2g, we have

γi,g(a, b, c)=
(−1)i

a! b! c!
.

(We note in passing that in [loc. cit.] Scholl proves Künneth-type decomposition
even for rational equivalence (with Q-coefficients).)

For each index 1≤ i < g, the sum ranges over the following triples (a, b, c):

(g−i, i, 0), (g−i+1, i−2, 1), (g−i+2, i−4, 2), . . . , (g−i+bi/2c, 0 or 1, bi/2c).

Since E1, E2, and M are integral algebraic cycles, we have:

Corollary 4.2.2. Let 1≤ i < g. If a prime p divides κi,X , p>max(i, g−i+bi/2c).
In particular, the mod p analogue of the standard conjecture of Künneth type is
true for all p ≥ g.

With a fixed g, as i ranges from 1 to g, the corollary gives the best bound around
i ≈ 2g/3, when i surpasses g− i/2.

For Jacobians we can do much better. Let C be a projective smooth curve,
J = Jac(C) its Jacobian, c ∈ C any base point,

αn : C (n)
= Symn C→ J

the (higher) Abel–Jacobi map for n = 0, . . . , g, and

w[n] := αg−n,∗[C (g−n)
] ∈ H 2n(J,Z)

the cohomology class (which is independent of c).
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Theorem 4.2.3. Let C , J = Jac(C), µ, and w be as above. Then we have

π i
J = (−1)i

∑
(a, b, c):2a+b=2g−i and b+2c=i

pr∗1(w
[a]) pr∗2(w

[c])

×

∑
d+e+ f=b

(−1)d+ f pr∗1(w
[d])µ∗(w[e]) pr∗2(w

[ f ])

for all i , and for both Q- and Fp-coefficients.
In particular, the mod p and integral analogues of the standard conjecture of

Künneth type are true for J .

Proof. The key point is the celebrated formula of Poincaré [Birkenhake and Lange
2004, §11.2.1]

n!w[n] = [c1(L)]n in H 2n(J,Z)

(hence the divided power notation). This allows us to write

Ea
1

a!
= pr∗1(w

[a]) and
Ec

2

c!
= pr∗2(w

[c]).

As for the second term, apply the trinomial theorem (in the divided power form)5

to the defining equation (4.2.1):

M [b] = Mb/b! = (− pr∗1(E)+µ
∗(E)− pr∗2(E))

[b]

=

∑
d+e+ f=b

(− pr∗1(E))
[d](µ∗(E))[e](− pr∗2(E))

[ f ]

=

∑
d+e+ f=b

(−1)d+ f pr∗1(w
[d])µ∗(w[e]) pr∗2(w

[ f ]). �

Corollary 4.2.4. The torsion and integral versions of the standard conjecture of
Künneth type is true for all principally polarized abelian varieties of dimension ≤ 3.

Proof. Via the Torelli map, a general PPAV of dimension g ≤ 3 is the Jacobian of a
curve of genus g. �

This is the motivation for Conjecture 1.5 in the introduction.

Prym–Tyurin theory and curves on abelian varieties. Recall [Birkenhake and Lange
2004, §12.3] that, to a double covering f :C ′→C of curves that is either unramified
or ramified at exactly 2 points, one attaches a principally polarized abelian vari-
ety P( f ) (the Prym variety of f ), in such a way that P( f )× Jac(C) is isogenous
to the Jacobian Jac(C ′) via an isogeny of exponent 2.

Corollary 4.2.5. For all primes p ≥ 3, the mod p analogue of the standard conjec-
ture of Künneth type is true for the Prym variety P( f ).

5Namely, (α+β + γ )n/n! =
∑

i+ j+k=n(α
i/ i !)(β j/j !)(γ k/k!).
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Proof. By Theorem 4.2.3, the analogue is true for Jac(C ′), hence for P( f )× Jac(C)
by Proposition 3.2(4). Then the analogue, for odd p, follows for P( f ) by Proposition
3.2(5b). �

Corollary 4.2.6. For every principally polarized abelian variety X of dimension
g ≤ 5, the mod p analogue of the standard conjecture of Künneth type is true for all
primes p ≥ 3.

Proof. A general PPAV of genus g ≤ 5 is the Prym variety of a suitable double
cover. �

More generally, following Prym and Tyurin [loc. cit.], one studies a general
principally polarized abelian variety by embedding it into the Jacobian of some curve,
usually of high genus, with some exponent, usually ≥ 2. In this way, the validity of
the integral analogue of the standard conjecture of Künneth type (or its failure) is
related to the existence of low-genus curves on abelian varieties (or lack thereof).

We thus quantify Conjecture 1.5 into:

Question 4.2.7. For any integer g ≥ 1, let κ(g) denote the least common multiple
of κi,X as i ranges over the interval [0, 2g], where X is a very general principally
polarized abelian variety of dimension g.

How does κ(g) vary with g? In particular, is κ(g) > 1 and is κ(g) > 2 when
g > 3 and g > 5, respectively?

4.3. Hodge and Lefschetz operators. In this section, we consider operators closely
related to the Künneth projectors, and find the denominators required in their
definition. As in the previous section, we focus on principal polarizations. We recall
a set of operators in the Hodge–Lefschetz theory (see, e.g., [Wells 2008, §V.3] or
[Kleiman 1968]). First, cup product with [L] gives

L : H∗(X,Q)→ H∗+2(X,Q),

which is defined by an integral algebraic correspondence and preserves the integral
cohomology. One then defines (see the references above) the operator, with Q-
coefficients,

3 : H∗(X,Q)→ H∗−2(X,Q).

Finally, the Pontryagin product is also defined by an integral algebraic corre-
spondence

H i (X,Z)⊗ H j (X,Z)→ H i+ j−2g(X,Z),

x ⊗ y 7→ x ? y := µ∗(pr∗1(x)⊗ pr∗2(y)),
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where µ : X × X→ X is the group law.6 This allows us to recover the Lefschetz
3-operator:7

Proposition 4.3.1. For any x ∈ H∗(X,Q), we have

3(x)=
1
g!
([L]g−1) ? x .

In particular, 3 is defined by an algebraic correspondence with coefficients in
Z[1/g!] and preserves H∗(X,Z[1/g!]).

Moreover, if X is the Jacobian of a curve or the Prym variety associated with a
double covering, then 3 is defined by a correspondence with coefficients in Z[1/g]
or Z[1/2g], respectively.

Proof. For the proof of the first formula, see [Birkenhake and Lange 2004, Proposi-
tion 4.11.3]. The latter statement follows from the fact that, in case X is a Jacobian or
Prym, [L]g−1/(g−1)! or 2[L]g−1/(g−1)!, respectively, is represented by an integral
algebraic cycle [Birkenhake and Lange 2004, §11.2.1 and Criterion 12.2.2]. �

Now that we have L and 3, we can apply the representation theory of sl2 on
cohomology (Jacobson–Morozov); see, e.g., [Wells 2008, §V.3]. With the usual
notation

B := [3, L] =3L − L3=
2g∑

i=0

(g− i)π i ,

the operators correspond to the following matrices in sl2:

3↔

(
0 1
0 0

)
, L↔

(
0 0
1 0

)
, and B↔

(
1 0
0 −1

)
.

Definition 4.3.2 (integral Lefschetz algebra). We denote by L the Z-subalgebra of
linear operators on H∗(X,Q) generated by the five operators

L , 3, w = [−1]∗, π0
= [{0}× X ], and π2g

= [X ×{0}].

(Recall that [−1]∗ acts as 1 on H even and as −1 on H odd.)

It follows from Proposition 4.3.1 that any element of the localization L[1/g!] is
defined by an algebraic correspondence with coefficients in Z[1/g!].

Recall that x ∈ H i (X,Q) is called primitive if 3(x)= 0. For any x ∈ H i (X,Q),
we have the primitive decomposition

x =
∑
k≥i0

Lk xk, xk ∈ H i−2k(X,Q) primitive, (4.3.1)

6A natural way to index is to use homology, via Poincaré duality H i (X,Z) ' H2g−i (X,Z). If
x ∈ Hi (X,Z) and y ∈ H j (X,Z), then x ? y ∈ Hi+ j (X,Z).

7This operator is named 3c in [Kleiman 1968], in which 3 is reserved for something else.
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where i0=max(i−g, 0). In terms of (4.3.1), the Lefschetz operator on H∗(X,Q) is

3(x)=
∑
k≥i1

k(g− i + k+ 1)Lk−1xk for x ∈ H i (X,Q),

where i1 = max(i − g, 1); see the formula for “3c” in [Kleiman 1968]. We can
then define8

3′(x)=
∑
k≥i1

Lk−1xk for x ∈ H i (X,Q).

The Hodge ∗-operator on H∗(X,Q) in Kleiman’s convention9 is given by

∗K (x)=
∑
k≥i0

(−1)(i−2k)(i−2k+1)/2Lg−i+k xk for x ∈ H i (X,Q).

Proposition 4.3.3. Let j and k be two integers in [0, g]. Then L[1/2(g!)] contains
the following 4 operators on H∗(X,Q): the Künneth projectors π j and π2g− j and
the primitive part extractors

p j,k(x) :=
{

xk if x ∈ H j (X,Q),

0 if x ∈ H i (X,Q) and i 6= j

and p2g− j,k defined similarly (xk on H 2g− j and 0 in other degrees).

Proof. We use a nested induction, ascending in j outside and descending in k inside.
We first note that π j and π2g− j are generated by p j,k and L and by p2g− j,k and L ,
respectively, with integer coefficients, so for any fixed j , it is enough to prove the
statement for p j,k and p2g− j,k .

The structure constants that appear below, and need to be inverted, are given by:

Lemma 4.3.4. Let 0 6= x ∈ H i (X,Q) be primitive. Then

3g−i Lg−i (x)= ((g− i)!)2x .

The point is that the irreducible subrepresentation of sl2(Q) generated by x has
weight g− i . See, e.g., [Wells 2008, §V.3].

In the induction base j = 0, the elements π0
= p0,0 and π2g are already in L

by definition. From the fact that Lg
: H 0(X,Z[1/g!])→ H 2g(X,Z[1/g!]) is an

isomorphism, we see from Lemma 4.3.4 that

p2g,g
=

1
(g!)

3g
◦π2g.

8In the next line is Kleiman’s definition of “3”.
9This again differs from the notation of Wells [2008]; among other things, the latter acts on

H∗(X,C) but not necessarily on H∗(X,Q).
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Now suppose that, for some j0, we have proven the statement for all j < j0
and for all k. Let x ∈ H∗(X,Q), and let x (i) denote its component in H i (X,Q).
Applying to x the composite

3g−b j0/2c ◦ Lg−b j0−2c
◦

(
1−

j0−1∑
j=0

π j
)
,

and then
1± [−1]∗

2
according to whether j0 is even or odd, we are left with the homogeneous component

3g−b j0/2cLg−b j0/2cx ( j0).

From the primitive decomposition,

x ( j0) =
∑

k

Lk x ( j0)
k , x ( j0)

k ∈ H j0−2k primitive,

what we have is

3g−b j0/2cLg−b j0/2cx ( j0) =
∑

k

3g−b j0/2cLg−b j0/2c+k x ( j0)
k .

Now we use the descending induction in k, with the case k = g+ 1 being trivially
true. Suppose that we have shown that p j0,k is in L[1/2g!] for all k > k0. It follows
then that the previous operator curtailed in degrees k ≤ k0

x 7→
∑
k≤k0

3g−b j0/2cLg−b j0/2c+k x ( j0)
k

on H∗ is in L[1/2g!]. Applying 3k0 will then annihilate all the terms with k < k0

(again, the point is that x ( j0)
k , when nonzero, generates a subrepresentation of weight

g− (i − 2k)), and we obtain

x 7→3g−b j0/2c+k0 Lg−b j0/2c+k0 x ( j0)
k = ((g−b j0/2c+ k0)!)

2x ( j0)
k0
,

by Lemma 4.3.4, and we have shown that

((g−b j0/2c+ k0)!)
2
· p j0,k0

is in L[1/2g!], hence also p j0,k0 . Go down in k inside, then up in j outside.
The proof for p2g− j,k is similar, and we omit the details. �

We summarize the calculations.

Theorem 4.3.5. Let (X, L) be a principally polarized abelian variety of dimension
g. The Lefschetz operator 3 is defined by an algebraic correspondence with
coefficients in Z[1/g!], even with coefficients in Z[1/g] or Z[1/2g] in case X is
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a Jacobian or a Prym, respectively. The Künneth projectors π i
X , the Hodge star

operator (à la Kleiman) ∗K , and the primitive part extractors p j,k are all defined
by algebraic correspondences with coefficients in Z[1/2(g!)].
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