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Quantitative equidistribution
of Galois orbits of small points

in the N-dimensional torus
Carlos D’Andrea, Marta Narváez-Clauss and Martín Sombra

We present a quantitative version of Bilu’s theorem on the limit distribution
of Galois orbits of sequences of points of small height in the N-dimensional
algebraic torus. Our result gives, for a given point, an explicit bound for the
discrepancy between its Galois orbit and the uniform distribution on the compact
subtorus, in terms of the height and the generalized degree of the point.

1. Introduction

One of the first results concerning the distribution of Galois orbits of points of small
height in algebraic varieties is due to Bilu [1997]. It establishes that the Galois
orbits of strict sequences of points of small Weil height in an algebraic torus tend
to the uniform distribution around the unit polycircle.

Let us introduce some notation before giving the precise formulation of this
result. Fix an algebraic closure Q of Q together with an embedding Q ,!C. By C�

and Q� we denote the multiplicative groups of C and Q, respectively. Let N � 1;
the Galois orbit of a point in .Q�/N is its orbit under the action of the absolute
Galois group, Gal.Q=Q/.

For a finite set T � .C�/N, the discrete probability measure on .C�/N associated
to it is given by

�T D
1

#T

X
˛2T

ı˛;

where #T denotes the cardinality of T and ı˛ the Dirac delta measure on .C�/N

supported on ˛. The unit polycircle .S1/N is the set of points .z1; : : : ; zn/ 2 CN

such that jz1j D � � � D jzN j D 1. It is a compact subgroup of .C�/N. We denote by
�.S1/N the Haar probability measure of .S1/N, considered as a measure on .C�/N.
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A sequence .�k/k�1 of probability measures on .C�/N converges weakly to
a probability measure � on .C�/N if, for every compactly supported continuous
function F W .C�/N! R,

lim
k!1

Z
.C�/N

F d�k D

Z
.C�/N

F d�:

Let � 2Q� and f� 2 ZŒx� be the minimal polynomial of � over the integers. The
Weil height of � is defined as

h.�/D
m.f�/

deg.�/
;

where m.f�/ is the (logarithmic) Mahler measure of f� , given by

m.f�/D
1

2�

Z 2�

0

logjf�.e
i� /j d�;

and deg.�/D ŒQ.�/ WQ� is the degree of the point �.
This notion of height extends to .Q�/N as follows:

h.�/D h.�1/C � � �C h.�N /; for every � D .�1; : : : ; �N / 2 .Q�/N. (1-1)

A sequence .�k/k�1 in .Q�/N is strict if, for every proper algebraic subgroup
Y � .Q�/N, the cardinality of the set fk W �k 2 Y g is finite.

Theorem 1.1 [Bilu 1997, Theorem 1.1]. Let .�k/k�1 be a strict sequence in .Q�/N

such that limk!1 h.�k/D 0. Then

lim
k!1

�Sk D �.S1/N ;

where �Sk is the discrete probability measure associated to the Galois orbit Sk
of �k .

This result was inspired by a previous work of Szpiro, Ullmo and Zhang [Szpiro
et al. 1997] on the equidistribution of points of small Néron–Tate height in abelian
varieties. It was originally motivated by Bogomolov’s conjecture, solved in [Ullmo
1998; Zhang 1998]. The results of Szpiro, Ullmo and Zhang and of Bilu were
largely generalized to other heights and places [Rumely 1999; Baker and Hsia 2005;
Favre and Rivera-Letelier 2006; Baker and Rumely 2006; Chambert-Loir 2006;
Yuan 2008; Gubler 2008; Berman and Boucksom 2010; Chen 2011; Burgos Gil
et al. 2015]. In particular, these results established the equidistribution of Galois
orbits of sequences of small points for all places of Q and heights associated to
algebraic dynamical systems. Moreover, this equidistribution phenomenon holds
for the bigger set of test functions with logarithmic singularities along divisors with
minimal height; see [Chambert-Loir and Thuillier 2009].
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As a general fact, these equidistribution theorems are formulated in a qualitative
way, in the sense that no information is provided on the rate of convergence towards
the equidistribution. An exception is [Favre and Rivera-Letelier 2006], where a
bound for this rate of convergence is given for a large class of heights of points
in the projective line and all places of Q. Independently, Petsche [2005] gave a
quantitative version of Bilu’s result for the case of dimension one.

In this paper, we present a quantitative version of Theorem 1.1 for the general
N-dimensional case. In particular, we provide a bound for the integral of a suitable
test function with respect to the signed measure defined by the difference of the
discrete probability measure associated to the Galois orbit of a point in .Q�/N

and the measure �.S1/N . This bound is given in terms of the height of the point,
a higher dimensional generalization of the notion of the degree of an algebraic
number, and a constant depending only on the test function.

To state our main result properly, let us introduce further definitions and notations.
For every nD .n1; : : : ; nN / 2 ZN, consider the monomial map

�n W .Q�/N!Q�

zD .z1; : : : ; zN/ 7! �n.z/D z
n1
1 � � � z

nN
N :

We define the generalized degree of a point � 2 .Q�/N by

D.�/D min
n¤0

˚
knk1 deg.�n.�//

	
; (1-2)

where deg.�n.�// is the degree of the point �n.�/ 2Q� and k�k1 is the 1-norm on
CN. For a particular choice of �, the generalized degree can be computed with a
finite number of operations; see Remark 2.7.

Let us write T WDR=Z and identify TN�RN with .C�/N via the logarithmic-polar
coordinate change of variables

.�;u/D ..�1; : : : ; �N /; .u1; : : : ; uN // 7! .e2�i�1Cu1 ; : : : ; e2�i�NCuN /:

On TN�RN ' .C�/N, consider the translation invariant distance, defined as

d..�;u/; .� 0;u0//D
� NX
lD1

dang.�l ; �
0
l/
2
Cjul �u

0
l j
2

�1
2

;

where dang.�l ; �
0
l
/ is the Euclidean distance in S1 between e2�i�l and e2�i�

0
l ,

divided by 2� .
A function F W .C�/N! R belongs to the set of test functions F if it satisfies:

(i) F is a Lipschitz function with respect to the distance d;

(ii) the restriction F0 D F j.S1/N is in CNC1..S1/N;R/.
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The set F contains all compactly supported functions in CNC1..C�/N;R/.
The following is the main result of this paper.

Theorem 1.2. There is a constant C � 64 such that, for every � 2 .Q�/N with
h.�/� 1 and every F 2 F,ˇ̌̌̌Z

.C�/N
F d�S �

Z
.C�/N

F d�.S1/N

ˇ̌̌̌
� c.F /

�
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2

;

where S is the Galois orbit of �, �S the discrete probability measure associated to
it and c.F / a positive constant depending only on F .

For every test function F 2 F, the function F0, its Fourier transform yF0, all the
first order partial derivatives of F0, and their corresponding Fourier transforms are
integrable with respect to a Haar measure (Theorem A.1). In logarithmic-polar
coordinates F0.�/ D F.�; 0/. Then, as shown in the proof of Theorem 1.2, the
constant c.F / can be bounded by

c.F /� 2Lip.F /C 16
NX
lD1

b@F0
@�l


L1
;

where Lip.F / is the Lipschitz constant of F with respect to the distance d of .C�/N

and where k � kL1 stands for the L1-norm of a function on the locally compact abelian
group ZN with respect to the standard Haar measure.

Our main theorem is a quantitative version of Bilu’s result. Indeed, if we consider
a strict sequence .�k/k�1 in .Q�/N such that h.�k/! 0 as k!1, we necessarily
have that D.�k/!1 as k!1 (Lemma 2.8). Hence, for every function F 2 F,
Theorem 1.2 implies that

lim
k!1

Z
.C�/N

F d�Sk D

Z
.C�/N

F d�.S1/N ;

where �Sk is the discrete probability measure associated to the Galois orbit Sk
of �k . Since F contains a dense subset of the set of compactly supported continuous
functions on .C�/N, we deduce Theorem 1.1.

The rate of convergence in Theorem 1.2 has the expected exponent 1
2

, as in [Favre
and Rivera-Letelier 2006], see also Theorem 3.1. On the other hand, one could ask
if, for the general N-dimensional case, the constant c.F / might be bounded by the
Lipschitz constant of the test function, as in their paper.

The idea of the proof of our result is to reduce the problem, via monomial maps,
to the one-dimensional situation as it was done in [Bilu 1997; D’Andrea et al. 2014].
In this setting, we apply Favre and Rivera-Letelier’s result (Theorem 3.1). Then,
we lift the obtained quantitative control to the N-dimensional torus by applying
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the Fourier inversion formula and a study of the Fourier–Stieltjes transform of the
discrete probability measure associated to the orbit of the point.

This paper is structured as follows. Section 2 contains preliminary theory and
general results on Fourier analysis, measures on the Riemann sphere, Galois invari-
ant sets, and the generalized degree. In Section 3, we give the proof of Theorem 1.2,
which is divided in several propositions and lemmas. At the end of the paper there
are two appendices, the first one studies the set of test functions F , and the second
the Lipschitz constant of an auxiliary function used in Section 3.

2. Preliminaries

2.1. Fourier analysis. In this section we review basic concepts of Fourier analysis
on TN. We refer the reader to [Rudin 1962] for the proof of the stated results.

Let p � 1. Given a function H W TN! C, its Lp-norm is defined by

kHkLp D

�Z
TN
jH.�/jpd�

�1
p

2 R�0[fC1g:

We say that H 2 Lp.TN / if this norm is finite. In particular, the function H is
Haar-integrable if it lies in L1.TN /. Similarly, for a function G W ZN! C, its
Lp-norm is defined by

kGkLp D

� X
n2ZN

jG.n/jp
�1
p

2 R�0[fC1g;

and we say that G 2 Lp.ZN / if this norm is finite. Also, G is Haar-integrable if it
lies in L1.ZN /.

Let H W TN ! C be Haar-integrable. Its Fourier transform is the function
yH W ZN! C, defined as

yH.n/D

Z
TN
H.�/e�2�in��d�;

where
n �� D .n1; : : : ; nN / � .�1; : : : ; �N /D n1�1C � � �CnN �N :

If yH is also Haar-integrable, the Fourier inversion formula states that

H.�/D
X
n2ZN

yH.n/e2�in��:

For H2 .L1\L2/.TN /, Plancherel’s theorem states that yH2 L2.ZN / and

k yHkL2 D kHkL2 :



1632 Carlos D’Andrea, Marta Narváez-Clauss and Martín Sombra

For every finite and regular positive measure � on TN, its Fourier–Stieltjes
transform is the function y� W ZN! C given by

y�.n/D

Z
TN
e�2�in��d�.�/:

We now establish some auxiliary results that will be useful for the proof of
Theorem 1.2.

Lemma 2.1. Let H W TN! C be a Haar-integrable function such that its Fourier
transform yH is also Haar-integrable. For any finite regular measure � on TN we
have that H is integrable with respect to � and yHy� is Haar-integrable. Moreover,Z

TN
H d�D

X
n2ZN

yH.n/y�.n/:

Proof. Let � be a finite regular measure on TN. Its Fourier–Stieltjes transform is
the function y� W ZN! C given by

y�.n/D

Z
TN
e�2�in��d�.�/:

Since both H and yH are Haar-integrable, we apply the Fourier inversion formula
that, together with Fubini’s theorem, leads toZ

TN
Hd�D

Z
TN

� X
n2ZN

yH.n/e2�in��
�
d�.�/

D

X
n2ZN

yH.n/

�Z
TN
e2�in��d�.�/

�
D

X
n2ZN

yH.n/y�.n/;

this equality containing the fact that H is integrable with respect to � and that yHy�
is Haar-integrable. �

Lemma 2.2. Let H W TN! C be a Haar-integrable function such that yH is also
Haar-integrable, and let � be a finite regular measure on TN. ThenZ

TN
H d��

Z
TN
H d�.S1/N D yH.0/

�
y�.0/� 1

�
C

X
n¤0

yH.n/y�.n/:

Proof. Since �.S1/N is the Haar probability measure of TN, for any n 2 ZN,

y�.S1/N .n/D

Z
TN
e�2�in��d� D

�
1 if nD 0;
0 otherwise:
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Hence, by Lemma 2.1 we obtainZ
.C�/N

H d�.S1/N D
X
n2ZN

yH.n/y�.S1/N .n/D yH.0/:

Then we haveZ
TN
Hd��

Z
TN
Hd�.S1/N

D

� X
n2ZN

yH.n/y�.n/

�
� yH.0/D yH.0/

�
y�.0/� 1

�
C

X
n¤0

yH.n/y�.n/: �

2.2. Galois invariant sets. In this section we work with Galois invariant sets and
study their height. For further details on basic Galois theory we refer to [Lang
2002], and on heights of points to [Bombieri and Gubler 2006].

Let � 2 Q� and f� 2 ZŒx� be the minimal polynomial of � over the integers.
Recall that the Weil height of � is defined as

h.�/D
m.f�/

deg.�/
;

where m.f�/ is the Mahler measure of f� , given by

m.f�/D
1

2�

Z 2�

0

logjf�.e
i� /j d�;

and deg.�/ D ŒQ.�/ W Q� is the degree of the point �. This notion of height
coincides with that in [Bombieri and Gubler 2006, §1.5], which is defined using
local decompositions.

Let T � .Q�/N be a finite Galois-invariant set, its height is defined as

h.T /D
X
˛2T

h.˛/;

where h.˛/ is the height of ˛ 2 .Q�/N as in (1-1). In particular, since the height of
two Galois conjugate points coincide, if T � .Q�/N is a Galois orbit of cardinalityD,
then

h.T /DDh.˛/;

for any ˛ 2 T.

Lemma 2.3. Let � D .�1; : : : ; �N / in .Q�/N, S its Galois orbit, and set D D #S .
Then

(1) D D ŒQ.�1; : : : ; �N / WQ�,

(2) deg.�n.�// divides D for every n 2 ZN.
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Proof. If a group G acts on a finite set S transitively, then for any x 2 S the index
of the stabilizer Gx is equal to #S , because the cosets G=Gx stay in a natural
one-to-one correspondence with the element of S . Applying this to GDGal.Q=Q/,
xD �, and S the Galois orbit of �, we find ŒGal.Q=Q/ WGal.Q=Q.�//�DD, which
by Galois theory implies that ŒQ.�/ W Q� D D, proving the first statement. The
second statement is immediate because �n.�/ 2Q.�/. �

Lemma 2.4. Let � 2Q�, d D deg.�/, and S its Galois orbit. Then

1

d

X
˛2S

ˇ̌
logj˛j

ˇ̌
� 2 h.�/:

Proof. We have

1

d

X
˛2S

ˇ̌
logj˛j

ˇ̌
D
1

d

X
˛2S

maxf� logj˛j; logj˛jg

D
1

d

X
˛2S

log max
n
1

j˛j
; j˛j

o
D
1

d

X
˛2S

�
log maxf1; j˛j2g� logj˛j

�
:

Let P�.x/D adxd C� � �Ca0 2 ZŒx� be the minimal polynomial of � over Z. Since
S is the Galois orbit of �,

P�.x/D ad
Y
˛2S

.x�˛/ and a0 D .�1/
dad

Y
˛2S

˛:

Since ja0j is a nonzero positive integer, we obtain

1

d

X
˛2S

.log maxf1; j˛j2g� logj˛j/D 1

d

X
˛2S

log maxf1; j˛j2gC log
jad j

ja0j

�
1

d

X
˛2S

log maxf1; j˛j2gC logjad j

� 2
�
1

d

X
˛2S

log maxf1; j˛jgC logjad j
�

D 2 h.�/;

where the last equality is given by Jensen’s formula for the Mahler measure
[Bombieri and Gubler 2006, Proposition 1.6.5]. �
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Lemma 2.5. Let �1 2 .Q�/N and consider its Galois orbit f�1; : : : ; �Dg, where
�j D .�j;1; : : : ; �j;N / for every j D 1; : : : ;D. Then

1

D

NX
lD1

DX
jD1

ˇ̌
logj�j;l j

ˇ̌
� 2 h.�1/:

Proof. For every l D 1; : : : ; N, the elements �j;l and �k;l are conjugates. Denote by
Sl the Galois orbit of �1;l . By Lemma 2.3, we have that #Sl D deg.�1;l/ divides D.
That is, there is a positive integer kl such that DD deg.�1;l/kl , where kl is exactly
the number of times each element of the orbit is repeated in f�1;l ; : : : ; �D;lg. Thus

1

D

NX
lD1

DX
jD1

ˇ̌
logj�j;l j

ˇ̌
D

NX
lD1

1

kl deg.�1;l/

DX
jD1

ˇ̌
logj�j;l j

ˇ̌
D

NX
lD1

1

deg.�1;l/

X
˛2Sl

ˇ̌
logj˛j

ˇ̌
�

NX
lD1

2 h.�1;l/D 2 h.�1/;

where the inequality follows from Lemma 2.4. �

Lemma 2.6. Let S � Q� be a Galois-invariant set of cardinality D. For every
0 < ı < 1,

#Sı < 2
�

log 1
ı

��1
h.S/;

where Sı D
n
˛ 2 S W

ˇ̌
logj˛j

ˇ̌
> log 1

ı

o
.

Proof. Write S as a finite disjoint union of Galois orbits

S D S1 t � � � tSm:

By definition, for any ˛ 2 Sı ,

1 <
�

log 1
ı

��1ˇ̌
logj˛j

ˇ̌
:

Hence,

#Sı <
X
˛2Sı

�
log 1

ı

��1ˇ̌
logj˛j

ˇ̌
�

�
log 1

ı

��1X
˛2S

ˇ̌
logj˛j

ˇ̌
D

�
log 1

ı

��1 mX
lD1

X
˛2Sl

ˇ̌
logj˛j

ˇ̌
�

�
log 1

ı

��1 mX
lD1

2 h.Sl/

D 2
�

log 1
ı

��1
h.S/;
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where the last inequality holds by Lemma 2.4. �

2.3. The generalized degree. We now study the notion of the generalized degree
of a point in the algebraic torus defined in (1-2). First of all, let us see that in
dimension one, it coincides with the notion of the degree of the algebraic number.
Let � 2Q�; then

D.�/Dmin
n¤0
fjnj deg.�n/g:

For every nonzero integer n, let Qn.x/ be the minimal polynomial of � jnj over Z,
which is of degree deg.� jnj/D deg.�n/. By setting Rn.x/DQn.xjnj/ 2 ZŒx� we
obtain that Rn.�/D 0 and this implies that

deg.�/� deg.Rn.x//D jnj deg.�n/:

Hence, D.�/D deg.�/.

Remark 2.7. For N � 1 and every � D .�1; : : : ; �N / in .Q�/N,

D.�/�minfdeg.�1/; : : : ; deg.�N /g:

This holds since

fdeg.�1/; : : : ; deg.�N /g � fdeg.�n.�// W n¤ 0g:

Thus, for a particular choice of �, the generalized degree can be computed after a
finite number of steps by considering all n¤ 0 such that

knk1 �minfdeg.�1/; : : : ; deg.�N /g:

For N D 1, a strict sequence .�k/k�1 in Q� such that limk!1 h.�k/D 0 shows
that limk!1 deg.�k/D1. Indeed, to the contrary suppose there is some c > 0
such that deg.�k/ � c for every k � 0. By Northcott’s theorem [Bombieri and
Gubler 2006, Theorem 1.6.8], there are only finitely many elements with bounded
degree and height. Hence, there is some ˛ 2Q� such that �kD˛ for infinitely many
values of k. Since h.�k/ tends to 0 as k goes to infinity, by Kronecker’s theorem
[op. cit., Theorem 1.5.9] we necessarily have h.˛/D 0, which implies that ˛ is a
root of unity. In particular, there is an infinite subsequence of .�k/k�1 contained in
a proper algebraic subgroup of Q� which is not possible by the assumption that the
sequence is strict.

The following lemma is a generalization of this fact to higher dimensions.

Lemma 2.8. Let .�k/k�1 be a strict sequence in .Q�/N such that

lim
k!1

h.�k/D 0:

Then
lim
k!1

D.�k/D1:
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Proof. Since the sequence .�k/k�0 is strict, the sequence .�n.�k//k�0 is a strict
sequence in Q� for every n¤ 0.

Write �k D .�k;1; : : : ; �k;N / and let nD .n1; : : : ; nN /¤ 0. Then

h.�n.�k//D h.�n1
k;1
� � � �

nN
k;N

/

� h.�n1
k;1
/C : : :C h.�nN

k;N
/

D jn1j h.�k;1/C � � �C jnN j h.�k;N /

� knk1 h.�k/
k!1
����! 0;

where the first inequality follows from [Bombieri and Gubler 2006, §1.5.14].
Thus, as we just saw, for every n¤ 0

lim
k!1

deg.�n.�k//D1:

Finally, by Remark 2.7, for every k � 0 there is nk ¤ 0 with bounded 1-norm such
that D.�k/D knkk1 deg.�nk .�k//. Hence

lim
k!1

D.�k/D1;

completing the proof. �

3. Proof of the main result

In this section we give the proof of Theorem 1.2. As we mentioned in the introduc-
tion, we do so by using Fourier analysis techniques and reducing the problem, via
projections, to the one-dimensional case, where the result follows from [Favre and
Rivera-Letelier 2006, Corollary 1.4].

Before stating this result, we give the definition of the spherical distance on the
Riemann sphere. Let us identify the projective complex line with the unit sphere S2

of R3. Let S2 n f.0; 0; 1/g ! C be the stereographic projection, where we identify
the equator of S2 with the set fz 2 C W jzj D 1g. Composing it with the standard
inclusion C ,!P1.C/ gives a map S2nf.0; 0; 1/g!P1.C/nf.0 W1/g, that we extend
to a homeomorphism � W S2! P1.C/ by setting �.0; 0; 1/D .0 W 1/. The spherical
distance dsph on P1.C/ is given by the length of the arc on S2 under this identification
and extended to P1.C/N for p D .p1; : : : ; pN/ and p0 D .p01; : : : ; p

0
N/ as

dsph.p;p
0/D

� NX
lD1

dsph.pl ; p
0
l/
2

�1
2

:

A function f W P1.C/N! C is a Lipschitz function with respect to the distance
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dsph if there is a constant K � 0 such that

jf .p/�f .p0/j �K dsph.p;p
0/ for every p;p0 2 P1.C/N. (3-1)

If f is a Lipschitz function with respect to the spherical distance, then its Lipschitz
constant Lipsph.f / is the smallest K � 0 such that (3-1) holds.

We now state the result of Favre and Rivera-Letelier together with the explicit
constants computed in the Ph.D. thesis of Narváez-Clauss [2016, Theorem II].

Theorem 3.1. There is a positive constant C0 � 15 such that for every C 1-function
f W P1.C/! R and every � 2Q�ˇ̌̌̌Z

P1.C/

f d�S �

Z
P1.C/

f d�S1

ˇ̌̌̌
� Lipsph.f /

�
�

deg.�/
C

�
4 h.�/CC0

log.deg.�/C 1/
deg.�/

�1
2
�
;

where S is the Galois orbit of � , �S is the discrete probability measure associated
to it, and Lipsph stands for the Lipschitz constant with respect to the spherical
distance on the Riemann sphere.

In particular, if h.�/� 1, thenˇ̌̌̌Z
P1.C/

f d�S �

Z
P1.C/

f d�S1

ˇ̌̌̌
� Lipsph.f /

�
4 h.�/CC

log.deg.�/C 1/
deg.�/

�1
2

;

for C � 64.

The proof of this result relies on the interpretation of the height of a point in
terms of the potential theory over the complex projective line. Given � 2Q�, it can
be shown that the mutual energy of the signed measure �S ��S1 is bounded above
by twice the height of the point. Since this signed measure is not regular enough,
Favre and Rivera-Letelier consider a regularization such that it has vanishing total
mass and its trace measure has continuous potential. This allows them to apply a
Cauchy–Schwartz type inequality to the integral of the function with respect to the
regularized measure. Together with the study of the integral of the function with
respect to the difference of the measure and its regularization, this leads to their
result. The constant in [Narváez-Clauss 2016] is made explicit by considering a
specific regularization of the measure, which is done by convolution with a specific
mollifier.

Consider the projection

� W TN�RN! TN ;

.�;u/ 7! �:
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Under the natural identifications

.C�/N ! TN�RN ;

.z1; : : : ; zN / 7!

��
arg.z1/
2�

; : : : ;
arg.zN /
2�

�
; .logjz1j; : : : ; logjzN j/

�
and

.S1/N! TN ;

.z1; : : : ; zN / 7!

�
arg.z1/
2�

; : : : ;
arg.zN /
2�

�
;

the map � can be rewritten as

.C�/N! .S1/N ;

.z1; : : : ; zN / 7!

�
z1

jz1j
; : : : ;

zN

jzN j

�
:

Let � 2 .Q�/N, S its Galois orbit, and �S the discrete probability measure
associated to it. If F W TN� RN! C is integrable with respect to the measure
�.S1/N , thenˇ̌̌̌Z

TN�RN
F d�S �

Z
TN�RN

F d�.S1/N

ˇ̌̌̌
�

ˇ̌̌̌Z
TN�RN

F d�S �

Z
TN
F0 d�S

ˇ̌̌̌
C

ˇ̌̌̌Z
TN
F0 d�S �

Z
TN�RN

F d�.S1/N

ˇ̌̌̌
; (3-2)

where F0 W TN! R is defined by F0.�/ D F.�; 0/, and the measure �S is the
pushforward of the measure �S , which is given by

�S D ���S D
1

#S

X
˛2S

ı˛=j˛j: (3-3)

Using (3-2), we are able to divide the proof of the main result into two parts.
The following proposition corresponds to the first one.

Proposition 3.2. Let � 2 .Q�/N and S its Galois orbit. Let F W .C�/N! R be a
Lipschitz function with respect to the distance d and such that it is integrable with
respect to �.S1/N . Thenˇ̌̌̌Z

TN�RN
F d�S �

Z
TN
F0 d�S

ˇ̌̌̌
� 2Lip.F / h.�/;

where F0.�/D F.�; 0/ and Lip.F / is the Lipschitz constant of F .
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Proof. With the above notation, we haveˇ̌̌̌Z
TN�RN

F d�S �

Z
TN
F0 d�S

ˇ̌̌̌
D

ˇ̌̌̌Z
TN�RN

F d�S �

Z
TN�RN

.F ı�/ d�S

ˇ̌̌̌
D

ˇ̌̌̌Z
.C�/N

�
F.z1; : : : ; zN /�F

�
z1

jz1j
; : : : ;

zN

jzN j

��
d�S .z1; : : : ; zN /

ˇ̌̌̌

�
1

#S

X
.˛1;:::;˛N /2S

ˇ̌̌̌
F.˛1; : : : ; ˛N /�F

�
˛1

j˛1j
; : : : ;

˛N

j˛N j

�ˇ̌̌̌

�
1

#S
Lip.F /

X
.˛1;:::;˛N /2S

d
�
.˛1; : : : ; ˛N /;

�
˛1

j˛1j
; : : : ;

˛N

j˛N j

��
;

where the last inequality is given by the fact that F is a Lipschitz function with
respect to the distance d of .C�/N. By the definition of this distance,

d
�
.˛1; : : : ; ˛N /;

�
˛1

j˛1j
; : : : ;

˛N

j˛N j

��
D

� NX
lD1

ˇ̌
logj˛l j

ˇ̌2�12
�

NX
lD1

ˇ̌
logj˛l j

ˇ̌
:

Hence, by Lemma 2.5, we concludeˇ̌̌̌Z
TN�RN

F d�S �

Z
TN
F0 d�S

ˇ̌̌̌
�

1

#S
Lip.F /

X
.˛1;:::;˛N /2S

NX
lD1

ˇ̌
logj˛l j

ˇ̌
� 2Lip.F / h.�/: �

Let us study now the second summand in (3-2). First of all we observe that,
since the measure �.S1/N is supported on TN� f0g, we can reduce the problem to
the compact torus .S1/N. Indeed, with the notation as in (3-2), we haveˇ̌̌̌Z

TN
F0 d�S �

Z
TN�RN

F d�.S1/N

ˇ̌̌̌
D

ˇ̌̌̌Z
TN
F0 d�S �

Z
TN
F0 d�.S1/N

ˇ̌̌̌
;

where �S is given by (3-3).
If F0 W TN! R is Haar-integrable and such that its Fourier transform yF0 is also

Haar-integrable, by Lemma 2.2,Z
TN
F0 d�S �

Z
TN
F0 d�.S1/N D yF0.0/

�
y�S .0/� 1

�
C

X
n¤0

yF0.n/y�S .n/;
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where the Fourier–Stieltjes transform of �S is

y�S .n/D

Z
TN
e�2�in��d�S .�/D

1

#S

X
.˛1;:::;˛N/2S

e�in�.arg.˛1/;:::;arg.˛N//; (3-4)

for every n 2 ZN. In particular, y�S .0/D 1.
We obtain the following lemma.

Lemma 3.3. Let F0 W TN! R be Haar-integrable and such that its Fourier trans-
form is also Haar-integrable. With the notation as above,Z

TN
F0 d�S �

Z
TN
F0 d�.S1/N D

X
n¤0

yF0.n/y�S .n/:

We now study the Fourier–Stieltjes transform of the measure �S D ���S .

Proposition 3.4. There is a constant C � 64 such that, for every n¤ 0 and every
0 < ı < 1, if h.�/� 1,

jy�S .n/j �
�2

log ı
knk1 h.�/C 4

p
2.ı2C9/

ı3
knk1

�
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2

:

Proof. Let n ¤ 0 and let Sn be the Galois orbit of �n.�/. By Lemma 2.3, there
is an integer ln such that #S D ln#Sn and we know that every element ˛ 2 Sn is
repeated ln times in f�n.˛/ W ˛ 2 Sg. Hence, by (3-4), we obtain

y�S .n/D
1

#S

X
.˛1;:::;˛N/2S

ein�.arg.˛1/;:::;arg.˛N// D
1

#S

X
˛2S

�n.˛/

j�n.˛/j
D

1

#Sn

X
˛2Sn

˛

j˛j
:

For 0 < ı < 1, consider the function fı W P1.C/! C given by

fı.0 W 1/D 0 and fı.1 W z/D �ı.jzj/
z

jzj
for any z 2 C,

where the function �ı W R! Œ0; 1� is given by

�ı.r/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0 if r < ı=2;
.5ı� 4r/.ı� 2r/2=ı3 if ı=2� r � ı;

1 if ı < r < 1=ı;
.�2C ır/2.�1C 2ır/ if 1=ı � r � 2=ı;

0 if r > 2=ı:

In Lemma B.1, we prove that fı is a C 1-function such that, if we write fıDuıCivı ,

Lipsph.uı/;Lipsph.vı/�
2
p
2.ı2C 9/

ı3
;
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where Lipsph stands for the Lipschitz constant with respect to the spherical distance
on the Riemann sphere.

For every n¤ 0,ˇ̌̌̌
y�S .n/�

1

#S

DX
˛2S

fı.1 W �
n.˛//

ˇ̌̌̌

D

ˇ̌̌̌
1

#S

X
˛2S

�n.˛/

j�n.˛/j
�
1

#S

X
˛2S

�ı.j�
n.˛/j/

�n.˛/

j�n.˛/j

ˇ̌̌̌

D

ˇ̌̌̌
1

#S

X
˛2S

�n.˛/

j�n.˛/j

�
1� �ı.j�

n.˛/j/
�ˇ̌̌̌

�
1

#S

X
˛2S

ˇ̌
1� �ı.j�

n.˛/j/
ˇ̌
: (3-5)

Let us define, for every n¤ 0 and 0 < ı < 1, the set

Jn;ı D
n
˛ 2 S W ı � j�n.˛/j �

1

ı

o
:

If ˛ 2 Jn;ı , then �ı.j�n.˛/j/D 1, and otherwise 0� �ı.j�n.˛/j/ < 1. Hence,

1

#S

X
˛2S

ˇ̌
1� �ı.j�

n.˛/j/
ˇ̌
D

1

#S

X
˛…Jn;ı

1� �ı.j�
n.˛/j/�

1

#S

X
˛…Jn;ı

1: (3-6)

Set
Sn;ı D

n
˛ 2 Sn W

ˇ̌
logj˛j

ˇ̌
> log 1

ı

o
;

then we obtain

1

#S

X
˛…Jn;ı

1D
1

#Sn

X
˛2Sn;ı

1� 2
�

log 1
ı

��1
h.�n.�//; (3-7)

where the last inequality is given by Lemma 2.6.
As we saw in the proof of Lemma 2.8, for n¤ 0 we have

h.�n.�//� knk1 h.�/:

Thus, putting this together with (3-5), (3-6) and (3-7) we deduce thatˇ̌̌̌
y�S .n/�

1

#S

X
˛2S

fı.1 W �
n.˛//

ˇ̌̌̌
� 2

�
log 1

ı

��1
knk1 h.�/: (3-8)

On the other hand,

1

#S

X
˛2S

fı.1 W �
n.˛//D

1

ln#Sn

X
˛2Sn

lnfı.1 W ˛/D

Z
P1.C/

fı d�Sn
; (3-9)
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where �Sn
is the discrete probability measure on P1.C/ associated to the Galois

orbit Sn of �n.�/.
Since �S1 is the measure on P1.C/ supported on the unit circle, where it coincides

with the Haar probability measure and, by definition, fı.1 W z/D z if jzj D 1,Z
P1.C/

fı d�S1 D

Z
C�
z d�S1.z/D 0:

By Theorem 3.1, we obtainˇ̌̌̌Z
P1.C/

fı d�Sn

ˇ̌̌̌
D

ˇ̌̌̌Z
P1.C/

fı d�Sn
�

Z
P1.C/

fı d�S1

ˇ̌̌̌

�

ˇ̌̌̌Z
P1.C/

uı d�Sn
�

Z
P1.C/

uı d�S1

ˇ̌̌̌

C

ˇ̌̌̌Z
P1.C/

vı d�Sn
�

Z
P1.C/

vı d�S1

ˇ̌̌̌
� .Lipsph.uı/CLipsph.vı//

�

�
�

deg.�n.�//
C

�
4 h.�n.�//CC0

log.deg.�n.�//C 1/
deg.�n.�//

�1
2
�

�
4
p
2.ı2C 9/

ı3

�

�
�

deg.�n.�//
C

�
4 h.�n.�//CC0

log.deg.�n.�//C 1/
deg.�n.�//

�1
2
�
; (3-10)

where C0 � 15.
Since h.�n.�//� knk1 h.�/,�
4 h.�n.�//CC0

log.deg.�n.�//C 1/
deg.�n.�//

�1
2

�

�
4knk1 h.�/CC0

knk1 log.deg.�n.�//C 1/
knk1 deg.�n.�//

�1
2

�
p
knk1

�
4 h.�/CC0

log.knk1 deg.�n.�//C 1/
knk1 deg.�n.�//

�1
2

� knk1

�
4 h.�/CC0

log.knk1 deg.�n.�//C 1/
knk1 deg.�n.�//

�1
2

:
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Hence, this together with (3-9) and (3-10) givesˇ̌̌̌Z
P1.C/

fı d�Sn

ˇ̌̌̌
�
4
p
2.ı2C 9/

ı3
knk1

�
�

knk1 deg.�n.�//

C

�
4 h.�/CC0

log.knk1 deg.�n.�//C 1/
knk1 deg.�n.�//

�1
2
�

�
4
p
2.ı2C 9/

ı3
knk1

�
4 h.�/CC

log.knk1 deg.�n.�//C 1/
knk1 deg.�n.�//

�1
2

; (3-11)

with C � 64.
The function log.xC 1/=x is monotonically decreasing for x � 1. We deduce

that, for every n¤ 0,

log.knk1 deg.�n.�//C 1/
knk1 deg.�n.�//

�
log.D.�/C 1/

D.�/
:

Together with (3-11), this implies that, for every n¤ 0,ˇ̌̌̌Z
P1.C/

fı d�Sn

ˇ̌̌̌
�

�
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2

:

By using this inequality and (3-5) we deduce thatˇ̌
y�S .n/

ˇ̌
�

ˇ̌̌̌
y�S .n/�

1

#S

X
˛2S

fı.1 W �
n.˛//

ˇ̌̌̌
C

ˇ̌̌̌
1

#S

X
˛2S

fı.1 W �
n.˛//

ˇ̌̌̌

�
�2

log ı
knk1 h.�/C

4
p
2.ı2C 9/

ı3
knk1

�
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2

;

proving the proposition. �

The following proposition bounds the second summand in the inequality (3-2).

Proposition 3.5. There is a constant C � 64 such that, for every � 2 .Q�/N with
h.�/� 1, every 0 < ı < 1 and every F 2 F,ˇ̌̌̌Z

TN
F0 d�S �

Z
TN�RN

F d�.S1/N

ˇ̌̌̌

�
1

2�

�
�2

log ı
C
4
p
2.ı2C 9/

ı3

��
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2
NX
lD1

b@F0
@�l


L1
;

where S is the Galois orbit of �, �S the discrete probability measure associated
to it, D.�/ the generalized degree of �, and F0.�/D F.�; 0/.
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Proof. In Appendix A we prove that, given F 2F, the function F0 is Haar-integrable
as well as its Fourier transform yF0. Thus, by Lemma 3.3 and Proposition 3.4,ˇ̌̌̌Z

TN
F0d�S �

Z
TN�RN

F d�.S1/N

ˇ̌̌̌
D

ˇ̌̌̌Z
TN
F0d�S �

Z
TN
F0d�.S1/N

ˇ̌̌̌
D

ˇ̌̌̌X
n¤0

yF0.n/y�S .n/

ˇ̌̌̌
�

X
n¤0

j yF0.n/jjy�S .n/j

�

X
n¤0

j yF0.n/j

�
�2

log ı
knk1 h.�/

C
4
p
2.ı2C 9/

ı3
knk1

�
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2
�

�

�
�2

log ı
C
4
p
2.ı2C 9/

ı3

��
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2 X
n¤0

j yF0.n/jknk1;

where the last inequality is given by the fact that h.�/� 1.
By Lemma A.2, for every l D 1; : : : ; N ,

b@F0
@�l

.n/D 2�inl yF0.n/:

Hence, we obtain

X
n¤0

j yF0.n/jknk1 D
1

2�

NX
lD1

X
n¤0

j yF0.n/j � j2�nl j

D
1

2�

NX
lD1

X
n2ZN

ˇ̌̌b@F0
@�l

.n/
ˇ̌̌

D
1

2�

NX
lD1

b@F0
@�l


L1
:

Finally, we conclude:ˇ̌̌̌Z
TN
F0d���S �

Z
TN�RN

F d�.S1/N

ˇ̌̌̌

�

�
�2

log ı
C
4
p
2.ı2C 9/

ı3

��
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2 1

2�

NX
lD1

b@F0
@�l


L1

�
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Proof of Theorem 1.2. Let F 2 F and set F0.�/D F.�; 0/. By Theorem A.1, the
function F0 and its Fourier transform yF0 are Haar-integrable and thus, as shown in
(3-2),ˇ̌̌̌Z

TN�RN
F d�S �

Z
TN�RN

F d�.S1/N

ˇ̌̌̌
�

ˇ̌̌̌Z
TN�RN

F d�S �

Z
TN
F0 d�S

ˇ̌̌̌
C

ˇ̌̌̌Z
TN
F0 d�S �

Z
TN�RN

F d�.S1/N

ˇ̌̌̌
:

Since the function F is Lipschitz with respect to the distance d, by Propositions
3.2 and 3.5, there is a constant C � 64 such thatˇ̌̌̌Z

TN�RN
F d�S �

Z
TN�RN

F d�.S1/N

ˇ̌̌̌
� 2Lip.F / h.�/

C
1

2�

�
�2

log ı
C
4
p
2.ı2C 9/

ı3

��
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2
NX
lD1

b@F0
@�l


L1
:

By Theorem A.1, the Fourier transforms of the first order partial derivatives of F0
are Haar-integrable and so this bound is finite.

We search numerically for the minimum of the function

�2

log ı
C
4
p
2.ı2C 9/

ı3
;

for 0 < ı < 1, and we obtain the value 94:9591, attained at ı � 0:9071. Hence,
since h.�/� 1 and 94:9591=2� < 16,ˇ̌̌̌Z

TN�RN
F d�S �

Z
TN�RN

F d�.S1/N

ˇ̌̌̌

� 2Lip.F / h.�/C 16
�
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2
NX
lD1

b@F0
@�l


L1

�

�
2Lip.F /C 16

NX
lD1

b@F0
@�l


L1

��
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2

:

�

Remark 3.6. The functions in F are functions with logarithmic singularities along
toric divisors in a toric compactification of .Q�/N. The qualitative equidistribution
with respect to this set of test functions is given by [Chambert-Loir and Thuillier
2009, Théorème 1.2].
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Appendix A: The set of test functions

In this appendix, we show that the test functions in F, when restricted to the unit
polycircle .S1/N, are Haar-integrable as well as their Fourier transforms. We
also prove the Haar-integrability of all their first order partial derivatives and their
corresponding Fourier transforms.

Recall the definition of the test functions. The set F is given by all real-valued
functions F satisfying

(i) F is Lipschitz with respect to the distance d on .C�/N,

(ii) F0.�/D F.�; 0/ is in CNC1.TN;R/.

The main theorem of this section is this:

Theorem A.1. For any F 2 F, the function F0.�/D F.�; 0/ has these properties:

(i) F0 is Haar-integrable.

(ii) yF0 is Haar-integrable.

(iii) @F0=@�l is Haar-integrable for every l D 1; : : : ; N.

(iv) 2@F0=@�l is Haar-integrable for every l D 1; : : : ; N.

Before proving this result, let us consider a technical lemma. For every function
H W TN! R and ˛D .˛1; : : : ; ˛N / 2 f0; 1gN, we will use the notation

@j˛jH

@�˛
.�/D

@˛1C���C˛NH

@�
˛1
1 � � � �

˛N
N

.�/;

whenever it makes sense.

Lemma A.2. Let H W TN! R of class CNC1 be such that

@j˛jH

@�˛
2 L1.TN / and @j˛jC1H

@�˛�l
2 L1.TN /;

for ˛ 2 f0; 1gN and l D 1; : : : ; N. Then,

d@j˛jH
@�˛

.n/D

NY
kD1

.2�ink/
˛k yH.n/ and @j˛jC1H

@�˛�l
D .2�inl/

NY
kD1

.2�ink/
˛k yH.n/:

Proof. This lemma is proved by recursively applying the following calculation:
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b@F0
@�1

.n/D

Z
TN

@F0
@�1

.�/e�2�in��d�

D

Z
TN�1

�Z
T

@F0
@�1

.�/e�2�in1�1 d�1

�
e�2�i

P
j¤1 nj �j d�2 � � � d�N

D

Z
TN�1

�
2�in1

Z
T

F0.�/e
�2�in1�1 d�1

�
e�2�i

P
j¤1 nj �j d�2 � � � d�N

D .2�in1/

Z
TN
F0.�/e

�2�in��d�

D .2�in1/ yF0.n/: �

Proof of Theorem A.1. By definition, for every F 2 F, the function F0 is of class
N C 1. This is, all its partial derivatives up to order N C 1 are continuous and,
since they are defined on a compact space, they are bounded. Hence, for every
˛ 2 f0; 1gN and every l D 1; : : : ; N,

@j˛jF0
@�˛

;
@j˛jC1F0
@�˛�l

2 .L1\L2/.TN /:

In particular, we obtain parts (i) and (iii).
Let us prove (ii), we have to see thatX

n2ZN

j yF0.n/j<1:

To do so, we will divide the sum over all n 2 ZN in several subsets. Let ˛ 2 f0; 1g
and set

W.˛/D

�
0 if ˛ D 0;

ZN n f0g if ˛ D 1:

For ˛ 2 f0; 1gN, set also

W .˛/DW.˛1/� � � � �W.˛N /:

Hence, X
n2ZN

j yF0.n/j D
X

˛2f0;1gN

X
n2W .˛/

j yF0.n/j:

For ˛ 2 f0; 1gN,X
n2W .˛/

j yF0.n/j D
X

n2W .˛/

Y
kW˛k¤0

.2�nk/
�1
ˇ̌̌ d@j˛jF0
@�˛

.n/
ˇ̌̌
:

We saw that @j˛jF0=@�˛ 2 .L1\L2/.TN / and so, by Plancherel’s theorem, d@j˛jF0
@�˛


L2.ZN /

D

@j˛jF0
@�˛


L2.TN /

:
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Using the Cauchy–Schwartz inequality, we obtain� X
˛2f0;1gN

X
n2W .˛/

j yF0.n/j

�2

D

� X
˛2f0;1gN

X
n2W .˛/

Y
kW˛k¤0

.2�nk/
�1
ˇ̌̌ d@j˛jF0
@�˛

.n/
ˇ̌̌�2

�

� X
˛2f0;1gN

X
n2W .˛/

Y
kW˛k¤0

1

4�2n2
k

�� X
˛2f0;1gN

X
n2W .˛/

ˇ̌̌ d@j˛jF0
@�˛

.n/
ˇ̌̌2�

<1:

Part (iv) of the theorem is proved by applying the same argument to the function
@F0=@�l for every l D 1; : : : ; N . �

Appendix B: Bounds for the Lipschitz constant of the function fı

In this appendix, we give a bound for the Lipschitz constant with respect to the
spherical distance of the function fı W P1.C/! C defined by

fı.0 W 1/D 0 and fı.1 W z/D �ı.jzj/
z

jzj
for any z 2 C,

where �ı W R! Œ0; 1�, with 0 < ı < 1, is given by

�ı.r/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0 if r < ı=2;
.5ı� 4r/.ı� 2r/2=ı3 if ı=2� r � ı;

1 if ı < r < 1=ı;
.�2C ır/2.�1C 2ır/ if 1=ı � r � 2=ı;

0 if r > 2=ı:

First we prove that fı 2 C 1.P1.C/;C/. Afterwards, we will study the Lipschitz
constant of its real and imaginary parts. Let us define the usual charts in P1.C/,

U0 WD f.z0 W z1/ 2 P1.C/ W z0 ¤ 0g and U1 WD f.z0 W z1/ 2 P1.C/ W z1 ¤ 0g:

It is easy to see that the function fı is compactly supported on U0 \U1. In fact,
we have that

supp.fı/D
n
.1 W z/ W

ı

2
� jzj �

2

ı

o
:

For this reason, to prove that fı is in C 1.P1.C/;C/, it is enough to prove that the
function �ı.jzj/z=jzj is of class C 1 in a neighborhood of the set fz Wı=2�jzj�2=ıg.
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The piecewise-defined function �ı is continuous, as well as its derivative, which
is given by

�0ı.r/D

8<:
�24.ı� 2r/.ı� r/=ı3 if ı=2� r � ı;
6ı.�2C ır/.�1C ır/ if 1=ı � r � 2=ı;

0 otherwise:

Hence, since jzj and z=jzj are smooth on C�, we conclude that �ı.jzj/z=jzj is of
class C 1.

Lemma B.1. Let fı be defined as above, and set fı D uı C ivı . Then,

Lipsph.uı/;Lipsph.vı/� 2
p
2
ı2C9

ı3
:

The spherical distance dsph on P1.C/ can be computed by

dsph.p; p
0/ WD 2 arccos

ˇ̌
z0z
0
0C z1z

0
1

ˇ̌
p

jz0j
2Cjz1j

2
p

jz00j
2Cjz01j

2
;

for p D .z0 W z1/ and p0 D .z00 W z
0
1/ in P1.C/.

To simplify the computations, we will work with an equivalent distance, the
chordal distance dch on P1.C/, which is given by the length of the chord joining
two points of S2. For p D .z0 W z1/ and p0 D .z00 W z

0
1/ in P1.C/, we have

dch.p; p
0/ WD

2jz0z
0
1� z1z

0
0j

p

jz0j
2Cjz1j

2
p

jz00j
2Cjz01j

2
:

These distances can be compared as follows:

Lemma B.2. For every p; p0 2 P1.C/,

2

�
dsph.p; p

0/� dch.p; p
0/� dsph.p; p

0/:

Proof. We work on the sphere using the stereographic projection. Since the chordal
distance dch between two points in the sphere is the length of the chord joining
them and the spherical distance dsph is the angle between the vectors both points
define, we have

dch.p; p
0/D 2 sin

dsph.p; p
0/

2
; for every p; p0 2 P1.C/.

For any pair of points, we have dsph.p; p
0/� � so we deduce

dch.p; p
0/� dsph.p; p

0/:

Now, let ˇ >0 be such that ˇ dsph.p; p
0/� dch.p; p

0/ for all p; p0 2P1.C/. This
is equivalent to ˇx � 2 sin x

2
for every 0� x � � . By the convexity of the function

2 sin x
2

, we deduce that the optimal value is ˇ D 2
�

. �
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Proof of Lemma B.1. Let us compute now a bound for the Lipschitz constants, with
respect to the spherical distance, of the uı and vı . To do so, we choose coordinates
.x; y/ in R2 Š C. Let

Quı.x; y/ WD uı.1 W xC iy/D
�ı.
p
x2Cy2 /p
x2Cy2

x;

and

Qvı.x; y/ WD vı.1 W xC iy/D
�ı.
p
x2Cy2 /p
x2Cy2

y:

Since the computations are symmetric for both the real and imaginary parts offı ,
it is enough to study the Lipschitz constant of one of them. To simplify these
computations, we will study the Lipschitz constant with respect to the chordal
distance in the Riemann sphere and conclude by applying the comparison between
the chordal and spherical distances.

First of all, recall that the chordal distance restricted to the open subset U0 �
P1.C/ is given by

dch
�
.1 W x0C iy0/; .1 W x1C iy1/

�
D

2k.x0; y0/� .x1; y1/kp
1Cm.x0; y0/2

p
1Cm.x1; y1/2

;

where k � k denotes the Euclidean metric on R2 and m.x; y/D
p
x2Cy2. Now,

since the function uı is supported on U0,

sup
z0;z12C

juı.1 W z0/�uı.1 W z1/j

dch..1 W z0/; .1 W z1//

D sup
.x0;y0/2R2

.x1;y1/2R2

j Quı.x0; y0/� Quı.x1; y1/j

k.x0; y0/� .x1; y1/k

p
1Cm.x0; y0/2

p
1Cm.x1; y1/2

2
:

We consider different cases.

Case 1. If .x0; y0/; .x1; y1/ …D.0; 2=ı/, we trivially obtain

j Quı.x0; y0/� Quı.x1; y1/j

dch..1 W x0C iy0/; .1 W x1C iy1//
D 0:

Case 2. Suppose .x0; y0/; .x1; y1/2D.0; 2=ı/. For t 2 Œ0; 1�, consider the function

g.t/D Quı..1� t /.x0; y0/C t .x1; y1//:

By the mean value theorem, there is some c 2 .0; 1/ such that g.1/�g.0/D g0.c/.
Applying the chain rule, we obtain

Quı.x1; y1/� Quı.x0; y0/Dr Quı..1� c/.x0; y0/C c.x1; y1// � .x1� x0; y1�y0/:
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Hence, we deduce

j Quı.x0; y0/� Quı.x1; y1/j

k.x0; y0/� .x1; y1/k
� sup
.x;y/2D.0; 2

ı
/

kr Quı.x; y/k: (B-1)

Let us study the gradient of Quı . For every .x; y/ 2 R2,

@ Quı

@x
.x; y/D

�
x

m.x; y/

�2
�0ı.m.x; y//C

�
y

m.x; y/

�2�ı.m.x; y//
m.x; y/

and
@ Quı

@y
.x; y/D

xy

m.x; y/2

�
�0ı.m.x; y//�

�ı.m.x; y//

m.x; y/

�
:

Without loss of generality, we restrict ourselves to the situation where .x; y/ satisfies
ı=2�m.x; y/� 2=ı, since otherwise both partial derivatives would vanish. It can
be easily shown that j�0

ı
.r/j � 3=ı for every r � 0. This, together with the fact that

0� �ı � 1, x �m.x; y/, y �m.x; y/, and m.x; y/� ı=2, leads toˇ̌̌
@ Quı
@x

.x; y/
ˇ̌̌
;
ˇ̌̌
@ Quı
@y

.x; y/
ˇ̌̌
�
4

ı
:

We then conclude that kr Quı.x; y/k � 4
p
2=ı: for any .x; y/ 2 R2.

On the other hand, given .x0; y0/; .x1; y1/ 2D.0; 2=ı/ we have thatp
1Cm.x0; y0/2

p
1Cm.x1; y1/2

2
�
ı2C4

2ı2
:

Therefore, we obtain

j Quı.x0; y0/� Quı.x1; y1/j

dch..1 W x0C iy0/; .1 W x1C iy1//
� 2
p
2
ı2C4

ı3
:

Case 3. Suppose now that .x0;y0/2D.0; 2=ı/ and .x1;y1/2D.0; 3=ı/nD.0; 2=ı/.
As we did in the previous case, we can deduce that

j Quı.x0;y0/�Quı.x1;y1/j

k.x0;y0/�.x1;y1/k
�
4
p
2

ı
and

p
1Cm.x0;y0/2

p
1Cm.x1;y1/2

2
�
ı2C9

2ı2
:

and p
1Cm.x0; y0/2

p
1Cm.x1; y1/2

2
�
ı2C9

2ı2
:

Hence,

j Quı.x0; y0/� Quı.x1; y1/j

dch..1 W x0C iy0/; .1 W x1C iy1//
� 2
p
2
ı2C9

ı3
:
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Case 4. Finally suppose that .x0; y0/ 2 D.0; 2=ı/ and .x1; y1/ … D.0; 3=ı/. In
this situation, we have Quı.x1; y1/D 0 and

j Quı.x1; y1/j D j�ı.m.x0; y0//j
jx0j

m.x0; y0/
� 1:

Since

dch..1 W x0C iy0/; .1 W x1C iy1//� dch

��
1 W
2

ı

�
;
�
1 W
3

ı

��
D

2ıp
.ı2C9/.ı2C4/

;

we conclude

j Quı.x0; y0/� Quı.x1; y1/j

dch..1 W x0C iy0/; .1 W x1C iy1//
�

2ıp
.ı2C 9/.ı2C 4/

2ı:

Having studied all these cases, we deduce that

sup
.x0;y0/2R2

.x1;y1/2R2

j Quı.x0; y0/� Quı.x1; y1/j

dch..1 W x0C iy0/; .1 W x1C iy1//
� 2
p
2
ı2C9

ı3
:

As we mentioned above, we were looking for a bound of the Lipschitz constant of
uı with respect to the spherical distance. By Lemma B.2, we know that dsph.p; p

0/�

dch.p; p
0/ for any pair of points p; p0 2 P1.C/ and we obtain

Lipsph.uı/D sup
p;p02P1.C/

juı.p/�uı.p
0/j

dsph.p; p0/

� sup
.x0;y0/2R2

.x1;y1/2R2

j Quı.x0; y0/� Quı.x1; y1/j

dch..1 W x0C iy0/; .1 W x1C iy1//

� 2
p
2
ı2C9

ı3
:

Analogously, we deduce that Lipsph.vı/� 2
p
2
ı2C9

ı3
. �
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