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We establish the dimension and irreducibility of the moduli space of rational
curves (of fixed degree) on arbitrary smooth hypersurfaces of sufficiently low
degree. A spreading out argument reduces the problem to hypersurfaces defined
over finite fields of large cardinality, which can then be tackled using a function
field version of the Hardy-Littlewood circle method, in which particular care is
taken to ensure uniformity in the size of the underlying finite field.
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1. Introduction

The geometry of a variety is intimately linked to the geometry of the space of
rational curves on it. Given a projective variety X defined over C, a natural object
to study is the moduli space of rational curves on X . There are many results in the
literature establishing the irreducibility of such mapping spaces, but most statements
are only proved for generic X . Following a strategy of Ellenberg and Venkatesh,
we shall use tools from analytic number theory to prove such a result for all smooth
hypersurfaces of sufficiently low degree.

Let X ⊂ Pn be a smooth Fano hypersurface of degree d defined over C, with
n > 3. For each positive integer e, the Kontsevich moduli space M0,0(X, e) is a
compactification of the space M0,0(X, e) of morphisms of degree e from P1 to X ,
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up to isomorphism. According to Kollár [1996, Theorem II.1.2/3], any irreducible
component of M0,0(X, e) has dimension at least

µ= (n+ 1− d)e+ n− 4. (1-1)

Work of Harris, Roth and Starr [Harris et al. 2004] shows that M0,0(X, e) is an
irreducible, local complete intersection scheme of dimension µ, provided that X
is general and d < 1

2(n + 1). The restriction on d has since been weakened to
d < 2

3(n+ 1) by Beheshti and Kumar [2013] (assuming that n > 23), and then to
d 6 n− 2 by Riedl and Yang [2016].

In the setting d = 3 of cubic hypersurfaces it is possible to obtain results for all
smooth hypersurfaces in the family. Thus Coskun and Starr [2009] have shown that
M0,0(X, e) is irreducible and of dimension µ for any smooth cubic hypersurface
X ⊂ Pn over C, provided that n > 4. (If n = 4 then M0,0(X, e) has two irreducible
components of the expected dimension µ= 2e.)

At the expense of a much stronger condition on the degree, our main result
establishes the irreducibility and dimension of the space M0,0(X, e), for an arbitrary
smooth hypersurface X ⊂ Pn over C. Let

n0(d)= 2d−1(5d − 4). (1-2)

We shall prove the following statement.

Theorem 1.1. Let X ⊂Pn be a smooth hypersurface of degree d> 3 defined over C,
with n > n0(d). Then for each e > 1 the space M0,0(X, e) is irreducible and of the
expected dimension.

The example of Fermat hypersurfaces, discussed in [op. cit., §1], shows that the
analogous result for M0,0(X, e) is false when d > 3 and e is large enough. When
e= 1 we have M0,0(X, 1)=M0,0(X, 1)= F1(X), where F1(X) is the Fano scheme
of lines on X . It has been conjectured, independently by Debarre and de Jong, that
dim F1(X) = 2n− d − 3 for any smooth Fano hypersurface X ⊂ Pn of degree d.
Beheshti [2014] has confirmed this for d 6 8. Taking e = 1 in Theorem 1.1, we
conclude that dim F1(X)= 2n− d − 3 for any d > 3, provided that n > n0(d).

Our proof of Theorem 1.1 ultimately relies on techniques from analytic number
theory. The first step is “spreading out”, in the sense of Grothendieck [EGA IV3

1966, §10.4.11] (compare [Serre 2009]), which will take us to the analogous
problem for smooth hypersurfaces defined over the algebraic closure of a finite field.
Passing to a finite field Fq of sufficiently large cardinality, for a smooth degree d
hypersurface X ⊂ P

n
Fq defined over Fq , the cardinality of Fq-points on M0,0(X, e)

can be related to the number of Fq(t)-points on X of degree e. We shall access
the latter quantity through a function field version of the Hardy–Littlewood circle
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method. A comparison with the estimate of Lang and Weil [1954] then allows us
to make deductions about the irreducibility and dimension of M0,0(X, e).

The idea of using the circle method to study the moduli space of rational curves
on varieties is due to Ellenberg and Venkatesh. The traditional setting for the circle
method is a fixed finite field Fq , with the goal being to understand the Fq(t)-points
on X of degree e, as e→∞. This is the point of view taken in [Lee 2013; 2011] on
a Fq(t)-version of Birch’s work on systems of forms in many variables. In contrast
to this, we will be required to handle any fixed e> 1, as q→∞. Pugin developed an
“algebraic circle method” in his Ph.D. thesis [2011] to study the spaces M0,0(X, e),
when X ⊂ P

n
Fq is the diagonal cubic hypersurface

a0x3
0 + · · ·+ anx3

n = 0, for a0, . . . , an ∈ F∗q .

Assuming that n > 12 and char(Fq) > 3, he succeeds in showing that the space
M0,0(X, e) is irreducible and of the expected dimension. Our work, on the other
hand, applies to arbitrary smooth hypersurfaces of sufficiently low degree, which
are defined over the complex numbers. Finally, our investigation bears comparison
with work of Bourqui [2012; 2013]. He has also investigated the moduli space
of curves on varieties using counting arguments. In place of the circle method,
however, Bourqui draws on the theory of universal torsors.

2. Spreading out

Let X ⊂ Pn be a smooth hypersurface of degree d, defined by a homogeneous
polynomial

F(x0, . . . , xn)=
∑

i∈Zn+1
>0

i0+···+in=d

ci x
i0
0 . . . x

in
n ,

with coefficients ci ∈C. Rather than working with M0,0(X, e), it will suffice to study
the naive space More(P

1, X) of actual maps P1
→ X of degree e. The expected

dimension of More(P
1, X) isµ=µ+3, whereµ is given by (1-1), since P1 has auto-

morphism group of dimension 3. We now recall the construction of More(P
1, X).

Let Ge be the set of all homogeneous polynomials in u, v of degree e > 1, with
coefficients in C. A rational curve of degree e on X is a nonconstant morphism
f : P1

C→ X of degree e. It is given by

f = ( f0(u, v), . . . , fn(u, v)),

with f0, . . . , fn ∈ Ge, with no nonconstant common factor in C[u, v], such that
F( f0(u, v), . . . , fn(u, v)) vanishes identically. We may regard f as a point in
the space P

(n+1)(e+1)−1
C . The morphisms of degree e on X are parametrised by

More(P
1
C, X), which is an open subvariety of P

(n+1)(e+1)−1
C cut out by a system of
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de+ 1 equations of degree d . In this way we obtain the expected dimension

(n+ 1)(e+ 1)− 1− (de+ 1)= (n+ 1− d)e+ n− 1= µ,

of More(P
1
C, X). It follows from [Kollár 1996, Theorem II.1.2] that all irreducible

components of More(P
1
C, X) have dimension at least µ. In order to establish

Theorem 1.1 it will therefore suffice to show that More(P
1
C, X) is irreducible, with

dim More(P
1
C, X)6 µ, provided that n > n0(d).

The complement to More(P
1
C, X) in its closure is the set of ( f0, . . . , fn) with a

common zero. We can obtain explicit equations for More(P
1
C, X) by noting that

f0, . . . , fn have a common zero if and only if the resultant Res(
∑

i λi fi ,
∑

j µj f j )

is identically zero as a polynomial in λi , µj . It is clear that both X and More(P
1
C, X)

are defined by equations with coefficients belonging to the finitely generated
Z-algebra 3= Z[ci ], obtained by adjoining the coefficients of F to Z. In this way
we may view X and More(P

1
C, X) as schemes over 3, with structure morphisms

X→ Spec3 and

More(P
1
C, X)→ Spec3.

By Chevalley’s upper semicontinuity theorem [EGA IV3 1966, Theorem 13.1.3],
there exists a nonempty open set U of Spec3 such that

dim More(P
1
C, X)6 dim More(P

1
C, X)m

for any closed point m ∈U. Here More(P
1
C, X)m denotes the fibre above m, which

is obtained via the base change Spec3/m→ Spec3. Likewise, since integrality is
an open condition, the space More(P

1
C, X) will be irreducible if More(P

1
C, X)m is.

Choose a maximal ideal m in U. The quotient 3/m is a finite field by arithmetic
weak Nullstellensatz. By enlarging 3, we may assume that it contains 1/d!. In
particular, it follows that char(3/m)= p, say, with p> d , since any prime less than
or equal to d is invertible in3. The quasiprojective varieties Xm and More(P

1
C, X)m

are defined over Fp, being given explicitly by reducing modulo m the coefficients
of the original system of defining equations. By further enlarging 3, if necessary,
we may assume that Xm is smooth. There exists a finite field Fq0 such that Xm

and More(P
1
C, XC)m are both defined over Fq0 . In view of the Lang–Weil estimate,

Theorem 1.1 is a direct consequence of the following result, together with the fact
that More(P

1
C, XC)m is nonempty in the cases under consideration.

Theorem 2.1. Let n > n0(d) and let X ⊂ P
n
Fq be a smooth hypersurface of degree

d > 3 defined over a finite field Fq , with char(Fq) > d. Then for each e > 1,

lim
`→∞

q−`µ# More(P
1
Fq , X)(Fq`)6 1.
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3. The Hardy–Littlewood circle method

We now initiate the proof of Theorem 2.1. We henceforth redefine q` to be q and
we replace n by n− 1 in the statement of the theorem. In particular the expected
dimension is now µ= (n− d)e+ n− 2. Our proof of Theorem 2.1 is based on a
version of the Hardy–Littlewood circle method for the function field K = Fq(t),
always under the assumption that char(Fq) > d . The main input for this comes from
[Lee 2013; 2011], combined with our own recent contribution to the subject, in the
setting of cubic forms [Browning and Vishe 2015].

We begin by laying down some basic notation and terminology. To begin with,
for any real number R we set R̂ = q R . Let O= Fq [t] be the ring of integers of K
and let � be the set of places of K . These correspond to either monic irreducible
polynomials $ in O, which we call the finite primes, or the prime at infinity t−1

which we usually denote by∞. The associated absolute value |·|v is either |·|$
for some prime $ ∈ O or |·|, according to whether v is a finite or infinite place,
respectively. These are given by

|a/b|$ = q−(deg$) ord$ (a/b) and |a/b| = qdeg a−deg b,

for any a/b ∈ K ∗. We extend these definitions to K by taking |0|$ = |0| = 0.
For v ∈ � we let Kv denote the completion of K at v with respect to |·|v. We

may identify K∞ with the set

Fq((1/t))=
{∑

i6N

ai t i
: ai ∈ Fq and N ∈ Z

}
.

We can extend the absolute value at the infinite place to K∞ to get a nonarchimedean
absolute value | · | : K∞→ R>0 given by |α| = qordα, where ordα is the largest
i ∈ Z such that ai 6= 0 in the representation α =

∑
i6N ai t i . In this context we

adopt the convention ord 0=−∞ and |0| = 0. We extend this to vectors by setting
|x| =max16i6n|xi |, for any x ∈ K n

∞
.

Next, we put

T = {α ∈ K∞ : |α|< 1} =
{∑

i6−1

ai t i
: for ai ∈ Fq

}
.

Since T is a locally compact additive subgroup of K∞ it possesses a unique Haar
measure dα, which is normalised so that

∫
T

dα= 1. We can extend dα to a (unique)
translation-invariant measure on K∞, in such a way that∫

{α∈K∞:|α|<N̂ }
dα = N̂,

for any N ∈Z>0. These measures also extend to Tn and K n
∞

, for any n ∈Z>0. There
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is a nontrivial additive character eq : Fq → C∗ defined for each a ∈ Fq by taking
eq(a)= exp(2π i TrFq/Fp(a)/p). This character yields a nontrivial (unitary) additive
character ψ : K∞→C∗ by defining ψ(α)= eq(a−1) for any α=

∑
i6N ai t i in K∞.

Let F∈ Fq [x] be a nonsingular form of degree d > 3, with x = (x1, . . . , xn). We
may express this polynomial as

F(x)=
n∑

i1,...,id=1

ci1,...,id xi1 · · · xid ,

with coefficients ci1,...,id ∈ Fq . In particular F and the discriminant 1F are nonzero,
or equivalently, maxi |ci | = 1 and |1F | = 1. We will make frequent use of these
facts in what follows. Associated to F are the multilinear forms

9i (x(1), . . . , x(d−1))=

n∑
i1,...,id−1=1

ci1,...,id−1,i x (1)i1 · · · x
(d−1)
id−1 , (3-1)

for 16 i 6 n.
To establish Theorem 2.1 we work with the naive space

Me =
{

x = (x1, . . . , xn) ∈ Ge(Fq)
n
\ {0} : F(x)= 0

}
,

where Ge(Fq) is the set of binary forms of degree e with coefficients in Fq . Thus Me

corresponds to the Fq-points on the affine cone of More(P
1
Fq , X), where we drop

the condition that x1, . . . , xn share no common factor. Let us set

µ̂= µ+ 1= (n− d)e+ n− 1= (e+ 1)n− de− 1. (3-2)

It will clearly suffice to show that

lim
q→∞

q−µ̂#Me 6 1, (3-3)

for n > n0(d), where n0(d) is given by (1-2). We proceed by relating #Me to the
counting function that lies at the heart of our earlier investigation [Browning and
Vishe 2015].

Let w : K n
∞
→ {0, 1} be given by w(x)=

∏
16i6n w∞(xi ), where

w∞(x)=
{

1, if |x |< 1,
0, otherwise.

Putting P = te+1, we then have #Me 6 N (P), where

N (P)=
∑
x∈On

F(x)=0

w(x/P).



Rational curves on smooth hypersurfaces of low degree 1663

It follows from [Browning and Vishe 2015, Equation (4.1)] that for any Q > 1,

N (P)=
∑
r∈O
|r |6Q̂

r monic

∑∗

|a|<|r |

∫
|θ |<|r |−1 Q̂−1

S
(a

r
+ θ

)
dθ, (3-4)

where
∑
∗ means that the sum is taken over residue classes |a| < |r | for which

gcd(a, r)= 1, and where

S(α)=
∑
x∈On

ψ(αF(x))w(x/P), (3-5)

for any α ∈ T. We will work with the choice Q = d(e+ 1)/2, so that Q̂ = |P|d/2.
The major arcs for our problem are given by r = 1 and |θ | < |P|−dqd−1. We

let the minor arcs be everything else: i.e., those α = a/r + θ appearing in (3-4)
for which either |r | > q, or else r = 1 and |θ | > |P|−dqd−1. The contribution
Nmajor(P) from the major arcs is easy to deal with. Indeed, for |θ | < |P|−dqd−1

and |x| < |P| we have |θF(x)| < |P|−dqd−1qde
= q−1, whence ψ(θF(x)) = 1.

Thus S(α)= |P|n , for α = θ belonging to the major arcs, whence

Nmajor(P)= |P|n
∫
|θ |<|P|−d qd−1

dθ = |P|n−dqd−1
= qµ̂.

In order to prove (3-3), it therefore remains to show that

lim
q→∞

q−µ̂Nminor(P)= 0, (3-6)

for n > n0(d), where Nminor(P) is the overall contribution to (3-4) from the minor
arcs. This will complete the proof of Theorem 2.1.

4. Geometry of numbers in function fields

The purpose of this section is to record a technical result about lattice point counting
over K∞. A lattice in K N

∞
is a set of points of the form x = 3u, where 3 is an

N × N matrix over K∞ and u runs over elements of ON. By an abuse of notation
we will also denote the set of such points by 3. Given a lattice M , the adjoint
lattice 3 is defined to satisfy 3T M = IN , where IN is the N × N identity matrix.

Let γ = (γi j ) be a symmetric n×n matrix with entries in K∞. Given any positive
integer m, we define the special lattice

Mm =

(
t−m In 0

tmγ tm In

)
,
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with corresponding adjoint lattice

3m =

(
tm In −tmγ

0 t−m In

)
.

Let R̂1, . . . , R̂2n denote the successive minima of the lattice corresponding to Mm .
For any vector x ∈ K 2n

∞
let x1 = (x1, . . . , xn) and x2 = (xn+1, . . . , x2n). We claim

that Mm and 3m can be identified with one another. Now Mm is the set of points
x = Mm u where u = (u1, u2) runs over elements of O2n. Likewise, 3m is the set
of points y =3mv where v = (v1, v2) runs over elements of O2n. We can therefore
identify Mm with 3m through the process of changing the sign of v2, then the sign
of y2, then switching v1 with v2, and finally interchanging y1 and y2. It now follows
from [Lee 2013, Lemma 3.3.6] (see also [Lee 2011, Lemma B.6]) that

Rν + R2n−ν+1 = 0, (4-1)

for 1 6 ν 6 n. An important step in the proof of [Lee 2013, Lemma 3.3.6] (see
also [Lee 2011, Lemma B.6]) is a nonarchimedean version of Gram–Schmidt
orthogonalisation, which is used without reference in the proof of [Lee 2013,
Lemma 3.3.3] (see also [Lee 2011, Lemma B.3]). This deficit is remedied by
appealing to recent work of Usher and Zhang [2016, Theorem 2.16].

For any Z ∈ R and any lattice 0 we define the counting function

0(Z)= #{x ∈ 0 : |x|< Ẑ}.

Note that 0(Z) = 0(dZe) for any Z ∈ R. We proceed to establish the following
inequality.

Lemma 4.1. Let m, Z1, Z2 ∈ Z such that Z1 6 Z2 6 0. Then

Mm(Z1)

Mm(Z2)
>

(
Ẑ1

Ẑ2

)n

.

Proof. Let 1 6 µ, ν 6 2n be such that Rµ < Z1 6 Rµ+1 and Rν < Z2 6 Rν+1.
Since Rj is a nondecreasing sequence which satisfies Rj + R2n− j+1 = 0, by (4-1),
we must have 0 6 Rn+1, whence in fact µ 6 ν 6 n. It follows from [Lee 2013,
Lemma 3.3.5] (see also [Lee 2011, Lemma B.5]) that

Mm(Z1)

Mm(Z2)
=


1 if Z1, Z2 < R1,(∏ν

j=1 R̂j/Ẑ1
)
(Ẑ1/Ẑ2)

ν if Z1 < R1 6 Z2,(∏ν
j=µ+1 R̂j/Ẑ1

)
(Ẑ1/Ẑ2)

ν if R1 6 Z1 6 Z2,

The statement of the lemma is now obvious. �
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As above, let γ = (γi j ) be a symmetric n× n matrix with entries in K∞. For
16 i 6 n we introduce the linear forms

L i (u1, . . . , un)=

n∑
j=1

γi j u j .

Next, for given real numbers a, Z , we let N (a, Z) denote the number of vectors
(u1, . . . , u2n) ∈ O2n such that

|u j |< â Ẑ and |L j (u1, . . . , un)+ u j+n|<
Ẑ
â

for 16 j 6 n.

If we put m = bac, then it is clear that

Mm(Z −{a})6 N (a, Z)6 Mm(Z +{a}),

where {a} = a−bac denotes the fractional part of a. The following result is a direct
consequence of Lemma 4.1.

Lemma 4.2. Let a, Z1, Z2 ∈ R with Z1 6 Z2 6 0. Then

N (a, Z1)

N (a, Z2)
> K̂ n,

where K = dZ1−{a}e− dZ2+{a}e.

5. Weyl differencing

In everything that follows we shall assume that char(Fq) > d and we will allow all
our implied constants to depend at most on d and n. This section is concerned with
a careful analysis of the exponential sum (3-5), using the function field version of
Weyl differencing that was worked out by Lee [2013; 2011]. Our task is to make
the dependence on q completely explicit and it turns out that gaining satisfactory
control requires considerable care. Since we are concerned with hypersurfaces one
needs to take R = 1 in Lee’s results.

For any β=
∑

i6N bi t i
∈K∞, we let ‖β‖=

∣∣∑
i6−1 bi t i

∣∣. Recalling the definition
(3-1) of the multilinear forms associated to F, we let

N(α)= #
{

u ∈ O(d−1)n
:
|u1|, . . . , |ud−1|< |P|
‖α9i (u)‖< |P|−1 (∀i 6 n)

}
, (5-1)

where u = (u1, . . . , ud−1). We begin with an application of [Lee 2013, Corol-
lary 4.3.2] (see also [Lee 2011, Corollary 3.3]), which leads to the inequality

|S(α)|2
d−1
6 |P|(2

d−1
−d+1)n N (α), (5-2)

for any α ∈ T.
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The next stage in the analysis of S(α) is a multiple application of the function field
analogue of Davenport’s “shrinking lemma”, as proved in [Lee 2013, Lemma 4.3.3]
(see also [Lee 2011, Lemma 3.4]), ultimately leading to [Lee 2013, Lemma 4.3.4]
(see also [Lee 2011, Lemma 3.5]). Unfortunately the implied constant in these
estimates is allowed to depend on q and so we must work harder to control it. Let

Nη(α)= #
{

u ∈ O(d−1)n
:

|u1|, . . . , |ud−1|< |P|η

‖α9i (u)‖< |P|−d+(d−1)η (∀i 6 n)

}
,

for any parameter η ∈ [0, 1]. Recalling that P = te+1, we shall prove the following
uniform version of [Lee 2013, Lemma 4.3.4] (see also [Lee 2011, Lemma 3.5]).

Lemma 5.1. Let α ∈ T and suppose that η ∈ [0, 1) is chosen so that

(e+ 1)(η+ 1)
2

∈ Z. (5-3)

Then we have N (α)6 |P|(n−ηn)(d−1) Nη(α). In particular,

|S(α)|2
d−1
6
|P|2

d−1n

|P|η(d−1)n Nη(α).

Proof. In view of (5-1) and (5-2), the final part follows from the first part. For each
v ∈ {0, . . . , d − 1}, define N (v)(α) to be the number of u ∈ O(d−1)n such that

|u1|, . . . , |uv|< |P|η and |uv+1|, . . . , |ud−1|< |P| (5-4)

and ‖α9i (u)‖ < |P|−v−1+vη, for 1 6 i 6 n. Thus we have N (0)(α) = N (α) and
N (d−1)(α)= Nη(α). It will suffice to show that

N (v)(α)> |P|−n+ηn N (v−1)(α), (5-5)

for each v ∈ {1, . . . , d − 1}.
Fix a choice of v, together with u1, . . . , uv−1, uv+1, . . . , ud−1 ∈ On such that

(5-4) holds. For each 16 i 6 n we consider the linear form

L i (u)= α9i (u1, . . . , uv−1, u, uv+1, . . . , ud−1)=

n∑
j=1

γi j u j ,

say, for a suitable symmetric n× n matrix γ = (γi j ), with entries in K∞. Given
real numbers a and Z , define N (a, Z) to be the number of vectors (u1, . . . , u2n) in
O2n satisfying

|u j |< Ẑ + a and |L j (u1, . . . , un)− u j+n|< Ẑ − a for 16 j 6 n.

We are interested in estimating the number of u ∈ On such that |u|< |P|η and
‖L i (u)‖< |P|−v−1+vη, for 16 i 6 n, in terms of the number of u ∈ On such that
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|u|< |P| and ‖L i (u)‖< |P|−v+(v−1)η, for 16 i 6 n. That is, we wish to compare
N (a, Z1) with N (a, Z2), where

â = |P|(v+1−(v−1)η)/2, Ẑ1 = |P|(v+1)(η−1)/2, and Ẑ2 = |P|(v−1)(η−1)/2.

Note that â Ẑ1 = |P|η and â Ẑ2 = |P|. Moreover, our hypothesis (5-3) implies that

a =
(e+ 1)(v+ 1)

2
−
(v− 1)(e+ 1)η

2
= v(e+ 1)−

(v− 1)(e+ 1)(η+ 1)
2

∈ Z.

Similarly, (5-3) implies that Z1, Z2 ∈ Z. It now follows from Lemma 4.2 that

N (a, Z1)

N (a, Z2)
>
(
Ẑ1− Z2

)n
= |P|−n+ηn,

which thereby completes the proof of (5-5). �

Lemma 5.1 doesn’t allow us to handle the case e = 1 of lines. To circumvent
this difficulty we shall invoke a simpler version of the shrinking lemma, as follows.

Lemma 5.2. Let α ∈ T and let v ∈ {1, . . . , d}. Then we have

|S(α)|2
d−1
6 |P|(2

d−1
−d+1)nqe(v−1)n M (v)(α),

where M (v)(α) is the number of u ∈ O(d−1)n such that

|u1|, . . . , |uv−1|< q and |uv|, . . . , |ud−1|< |P|

and ‖α9i (u)‖< |P|−1 for 16 i 6 n.

Proof. Noting that N (α) = M (1)(α), it follows from (5-2) that it will be enough
to prove that M (v−1)(α) 6 qen M (v)(α) for 2 6 v 6 d. The proof follows that of
Lemma 5.1 and so we shall be brief. Let u1, . . . , uv−1, uv+1, . . . , ud−1 ∈ On be
vectors satisfying

|u1|, . . . , |uv−1|< q and |uv+1|, . . . , |ud−1|< |P|.

Let γ and N (a, Z) be as in the proof of Lemma 5.1, corresponding to this choice.
Lemma 4.2 clearly implies that

N (e+ 1,−e)
N (e+ 1, 0)

> q−en.

However, N (e + 1,−e) denotes the number of u ∈ On such that |u| < q and
‖L i (u)‖ < q−2e−1, for 1 6 i 6 n. The lemma follows on noting that q−2e−1 <

q−e−1
= |P|−1. �

The next step is an application of the function field analogue of Heath-Brown’s
Diophantine approximation lemma, as worked out in [Lee 2013, Lemma 4.3.5] (see
also [Lee 2011, Lemma 3.6]). Let α = a/r + θ , where a/r ∈ K and θ ∈ T. Note
that the maximum absolute value of the coefficients of each multilinear form 9j
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is 1. We shall apply those lemmas with M̂ = |P|(d−1)η and Ŷ = |P|d−(d−1)η. We
want a maximal choice of η > 0 such that

|P|(d−1)η <min
{
|P|d−1,

1
|rθ |

,
|P|d

|r |

}
and

|P|(d−1)η 6 |r |max
{
1, |Pdθ |

}
.

This leads to the constraint (e+ 1)η 6 0, where

0 =
1

d − 1
ord

(
min

{
|P|d−1

q
,

1
q|rθ |

,
|P|d

q|r |
, |r |max

{
1, |Pdθ |

}})
, (5-6)

in which we abuse notation and denote by ord the integer exponent of q that appears.
For i ∈ {0, 1}, let [0]i denote the largest nonnegative integer not exceeding 0, which
is congruent to i modulo 2. We then choose η via

(e+ 1)η =
{
[0]0 if 2 - e,
[0]1 if 2 | e.

(5-7)

One notes that (e+ 1)η 6 0 and (5-3) is satisfied.
It now follows from [Lee 2013, Lemma 4.3.5] (see also [Lee 2011, Lemma 3.6])

that Nη(α)6Uη, where Uη denotes the number of u ∈ O(d−1)n such that

|u1|, . . . , |ud−1|< |P|η and 9i (u)= 0 for 16 i 6 n.

A standard calculation, which we recall here for completeness, now shows that the
latter system of equations defines an affine variety V ⊂ A(d−1)n of dimension at
most (d − 2)n. To see this, we note that the intersection of V with the diagonal
1 = {u ∈ A(d−1)n

: u1 = · · · = ud−1} is contained in the singular locus of F and
so has affine dimension 0. The claim follows on noting that 0 = dim(V ∩1) >
dim V + dim1− (d − 1)n = dim V − (d − 2)n.

We now apply [Browning and Vishe 2015, Lemma 2.8]. Since |P|η = q(e+1)η,
with (e + 1)η ∈ Z, this directly yields the existence of a positive constant cd,n ,
independent of q , such that Uη 6 cd,n|P|η(d−2)n . Inserting this into Lemma 5.1, we
therefore arrive at the following conclusion.

Lemma 5.3. Let L = 2−d+1n, let a/r ∈ K and let θ ∈ T. Let η be given by (5-7).
Then there exists a constant cd,n > 0, independent of q, such that

|S(a/r + θ)|6 cd,n|P|n−Lη.

It turns out that this estimate is inefficient when |r | is small. Let

κ =

{
1 if 2 - e,
0 if 2 | e.

(5-8)
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It will also be advantageous to consider the effect of taking (e+1)η= 1+κ , instead
of (5-7). Since

(e+ 1)(η+ 1)
2

= 1+
e+ κ

2
∈ Z,

it follows from Lemma 5.1 that

|S(α)|6
|P|nN2−d+1

q(1+κ)(d−1)L , (5-9)

where

N= #
{

u ∈ O(d−1)n
:

|u1|, . . . , |ud−1|6 qκ

‖α9i (u)‖< qκ(d−1)−de−1 (∀i 6 n)

}
, (5-10)

Supposing that α = a/r + θ for a/r ∈ K and θ ∈ T, our argument now bifurcates
according to the degree of r .

Lemma 5.4 (deg(r)> 1). Let L = 2−d+1n, let a/r ∈ K , and let θ ∈T. Assume that

(i) e > 1, q 6 |r |< qde+1−κ(d−1) and |rθ |< q−κ(d−1); or

(ii) e = 1, q2 6 |r |6 qd , and |rθ |6 q−d .

Then there exists a constant c′d,n > 0, independent of q, such that

|S(a/r + θ)|6 c′d,n|P|
nq−L.

Proof. To deal with case (i) we apply [Lee 2013, Lemma 4.3.5] (see also [Lee 2011,
Lemma 3.6]) with Y = de+ 1− κ(d − 1) and M = κ(d − 1)+ 1

2 . Our hypotheses
ensure that |r |< Ŷ and |rθ |< M̂−1. Thus it follows that 9i (u)≡ 0 mod r in (5-10),
for all i 6 n. In particular we have N= 0 unless κ = 1, which we now assume.

Pick a prime $ | r with |$ |> q . If |$ |6 q2 we may break into residue classes
modulo $ , finding that

N6
∑

v1,...,vd−1

#
{
|u1|, . . . , |ud−1|6 q : ui ≡ vi mod$ (for 16 i 6 d − 1)

}
,

where the sum is over all v = (v1, . . . , vd−1) ∈ F
(d−1)n
$ such that 9i (v) = 0, for

all i 6 n, over F$ . The inner cardinality is O((q2/|$ |)(d−1)n), with an implied
constant that is independent of q. We may use the Lang–Weil estimate to deduce
that the outer sum is O(|$ |(d−2)n), again with an implied constant that depends at
most on d and n. Hence we get the overall contribution

N�
q2(d−1)n

|$ |n
6 q2(d−1)n−n.

Alternatively, if |$ | > q2, we may assume that the system of equations 9i = 0,
for i 6 n, has dimension (d − 2)n over F$ . We now appeal to an argument of
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Browning and Heath-Brown [2009, Lemma 4]. Using induction on the dimension,
as in the proof of [op. cit., Equation (3.7)], we easily conclude that

N� (q2)(d−2)n 6 q2(d−1)n−2n,

for an implied constant that only depends on d and n. Recalling that κ = 1, the first
part of the lemma now follows on substituting these bounds into (5-9).

We now consider case (ii), in which e = 1, q2 6 |r |6 qd , and |rθ |6 q−d . Let
|a/r | = q−α for 16 α 6 d . Let v ∈ {1, . . . , d} be such that d − v−α =−1. Then
an application of Lemma 5.2 yields

|S(α)|2
d−1
6 |P|(2

d−1
−d+1)nq(v−1)n M (v)(α)

= |P|2
d−1nq(−2d+1+v)n M (v)(α).

Let u∈On(d−1) be counted by M (v)(α). Since |θ |6q−d−2, it follows that |θ9i (u)|6
q−d−2

· qd−v
= q−2−v 6 q−3, for 1 6 i 6 n. Similarly, for 1 6 i 6 n, we have

|(a/r)9i (u)| 6 q−α · qd−v
= q−1. If we write uj = u′j + tu′′j , for v 6 j 6 d,

where u′j , u′′j ∈ Fn
q , then the coefficient of t−1 in the t-expansion of (a/r)9i (u)

is equal to 9i (u1, . . . , uv−1, u′′v, . . . , u′′d−1). The condition ‖α9i (u)‖ < |P|−1 in
M (v)(α) implies that this coefficient must necessarily vanish, whence M (v)(α) is
at most the number of u1, . . . uv−1, u′v, . . . , u′d−1, u′′v, . . . , u′′d−1 ∈ Fn

q for which
9i (u1, . . . , uv−1, u′′v, . . . , u′′d−1)= 0, for 16 i 6 n. Thus

M (v)(α)� q(d−v)n · q(d−2)n
= q(2d−v−2)n,

by the Lang–Weil estimate, which implies the statement of the lemma. �

Lemma 5.5 (deg(r)= 0). Let L = 2−d+1n and let θ ∈ T. Assume that

q−de−1 6 |θ |6 q−1−κ(d−1).

Then there exists a constant c′′d,n > 0, independent of q, such that

|S(θ)|6 c′′d,n|P|
nq−L .

Proof. The upper bound assumed of |θ | implies that |θ9i (u)| 6 q−1 in (5-10),
for 1 6 i 6 n. Hence ‖θ9i (u)‖ = |θ9i (u)| for 1 6 i 6 n. Since α = θ and
|θ |> q−de−1, it follows that the condition ‖α9i (u)‖< qκ(d−1)−de−1 is equivalent
to |9i (u)|< qκ(d−1). If κ = 0 then it follows from (5-10) that

N= #
{
u ∈ F(d−1)n

q :9i (u)= 0 (∀i 6 n)
}
� q(d−2)n,

by the Lang–Weil estimate. If, on the other hand, κ = 1 then we write u= u′+ tu′′

in N, under which transformation |9i (u)|< qd−1 is equivalent to 9i (u′′)= 0, for
i 6 n. Applying the Lang–Weil estimate to this system of equations, we therefore
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deduce that N = O(q(1+κ)(d−1)n−n) for κ ∈ {0, 1}. An application of (5-9) now
completes the proof of the lemma. �

6. The contribution from the minor arcs

We assume that d > 3 throughout this section. Our goal is to prove (3-6) for
all e > 1, provided that n > n0(d), where n0(d) is given by (1-2). The overall
contribution to (3-4) from |θ |< q−3de is easily seen to be negligible. Hence we may
redefine the minor arcs to incorporate the condition |θ | > q−3de. For α, β ∈ Z>0,
let E(α, β) denote the overall contribution to Nminor(P), from values of a, r, θ for
which |r | = qα and |θ | = q−β. The contribution is empty unless

06 α 6
d(e+ 1)

2
and α+

d(e+ 1)
2

6 β 6 3de, (6-1)

with β 6 de+ 1 if α = 0. Since there are only finitely many choices of α, β, in
order to prove (3-6), it will suffice to show that

lim
q→∞

q−µ̂E(α, β)= 0,

for each pair (α, β) under consideration, assuming that n > n0(d). To begin with,
summing trivially over a, we have

E(α, β)6 q2α−β+1 max
a,r,θ

|a|<|r |=qα

|θ |=q−β

|S(a/r + θ)|. (6-2)

We start by dealing with generic values of α and β. Lemma 5.3 implies that

E(α, β)6 cd,n q2α−β+1+(e+1)n−L(e+1)η,

where L = 2−d+1n. Recalling (3-2), the definition of µ̂, the exponent of q is µ̂− ν̂,
with

ν̂ = {(n− d)e+ n− 1}− {2α−β + 1+ (e+ 1)n− L(e+ 1)η}

= L(e+ 1)η+β − de− 2α− 2.
(6-3)

For the choice of η in (5-7), and n > n0(d), we want to determine when ν̂ > 0.
Returning to (5-6), we now see that

0 =
1

d − 1
min

{
(e+ 1)(d − 1)− 1, β −α− 1, (e+ 1)d −α− 1, α+M

}
,

where M =max{0, (e+1)d−β}. The remainder of the argument is a case by case
analysis. When [0]6 1 we shall return to (6-2), and argue differently based instead
on Lemmas 5.4 and 5.5.
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Case 1: α > 2(d− 1) and β > (e+ 1)d+ 1. In this case M = 0. Using (6-1), one
finds that

0 =
1

d − 1
×

{
α if α < d(e+1)

2 ,

α− 1 if α = d(e+1)
2 .

Let ι ∈ {0, 1}. We write α− ι= k(d − 1)+ `, for k ∈ Z>0 and ` ∈ {0, . . . , d − 2}.
Then (5-7) implies that (e+ 1)η = k− δ, where

δ =

{
0 if k 6≡ e mod 2,

1 if k ≡ e mod 2.
(6-4)

We claim that the assumption α > 2(d − 1) implies that k > 2, or else k = 1 and
δ = 0. This is obvious when α < d(e+1)

2 . Suppose that k = 1 and α = d(e+1)
2 . Then

ι= 0 and `= d− 2, whence α = 2(d− 1)= d(e+1)
2 . Since d > 3, this equation has

no solutions in odd integers e. Thus δ = 0.
Recalling (6-3) and substituting for α, we find that

ν̂ = L(k− δ)+β − de− 2− 2ι− 2k(d − 1)− 2`

= (L − 2(d − 1))k− δL +β − de− 2− 2ι− 2`

> (L − 2(d − 1))k− δL − d + 3− 2ι,

since β > (e+ 1)d + 1 and `6 d − 2. Taking 3− 2ι> 0, we have therefore shown
that ν̂ > ν̂0, with

ν̂0 = (L − 2(d − 1))k− δL − d.

If k > 2, then we take δ 6 1 to conclude that

ν̂0 > (2− δ)L − 4(d − 1)− d > L − 5d + 4.

Thus ν̂0> 0 if n> n0(d). Alternatively, if k= 1 then we must have δ= 0. It follows
that

ν̂0 = L − 2(d − 1)− d = L − 3d + 2,

whence ν̂0 > 0 if n > n0(d), since n0(d)> 2d−1
· (3d − 2) in (1-2).

Case 2: α+ de− d+ 2> β and β 6 (e+ 1)d. In this case M = (e+ 1)d −β. It
follows from (6-1) that

0 =
1

d − 1
×

{
α+ (e+ 1)d −β if β > 2α,

α+ (e+ 1)d −β − 1 if β 6 2α.

We proceed as before. Thus for ι ∈ {0, 1}, we write

α+ (e+ 1)d −β − ι= k(d − 1)+ `, (6-5)
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with k ∈ Z>0 and ` ∈ {0, . . . , d − 2}. Then (5-7) implies that (e+ 1)η = k − δ,
where δ is given by (6-4). If k > 2 then (6-3) yields

ν̂ = L(k− δ)−β + de− 2− 2ι− 2k(d − 1)− 2`+ 2d

= (L − 2(d − 1))k− δL −β + de− 2− 2ι− 2`+ 2d

> L − 4d + 4−β + de,

since δ, ι6 1 and `6 d−2. But β 6 (e+1)d , and so it follows that ν̂ > L−5d+4,
which is positive if n > n0(d). Suppose that k 6 1. Then, on taking ι 6 1 and
`6 d − 2 in (6-5), we must have that

α+ de− d + 26 β,

which contradicts the hypothesis.

Case 3: α6 2(d−1) and β > (e+1)d+1. In this case we return to (6-2), and we
recall the definition (5-8) of κ . Suppose first that α = 0. It follows from Lemma 5.5
that S(a/r + θ)� |P|nq−L if

1+ κ(d − 1)6 β 6 de+ 1.

The upper bound β 6 de+ 1 follows from the definition of the minor arcs when
α = 0. Moreover, the lower bound holds, since for e > 1 it follows from (6-1) that
β > d > 1+ κ(d − 1). Recalling (3-2), we conclude that

E(α, β)� q−β+1+(e+1)n−L
= qµ̂−ν̂,

with ν̂ = L +β − de− 2> L > 0, which is satisfactory.
Suppose next that α > 1. Then S(a/r+θ)� |P|nq−L, by Lemma 5.4, provided

that

e > 1, 16 α < de+ 1− κ(d − 1), and α−β <−κ(d − 1), (6-6)

or
e = 1, 26 α 6 d, and α−β 6−d. (6-7)

In view of (6-1), it is easily seen that α−β <−(d − 1)6−κ(d − 1). Next, we
claim that 2d − 2 < de+ 1− κ(d − 1) for any e > 2. This is enough to confirm
(6-6), since α 6 2(d − 1). The claim is obvious when κ = 1 and e > 3. On the
other hand, if κ = 0 then e > 2 and it is clear that 2d − 26 2d + 16 de+ 1. Next,
suppose that e = 1, so that κ = 1. If α = 1 then we are plainly in the situation
covered by (6-6). If α > 2, on the other hand, then (6-1) implies that α 6 d and
α−β 6−d , so that we are in the case covered by (6-7). It follows that

E(α, β)� q2α−β+1+(e+1)n−L
= qµ̂−ν̂,
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with
ν̂ = L +β − de− 2− 2α > L + d − 1− 2α

> L − 3d + 3,

since α 6 2(d − 1) and β > (e+ 1)d + 1. This is positive for n > n0(d).

Case 4: α + de − d + 2 6 β and β 6 (e + 1)d. We begin as in the previous
case. If α = 0, the same argument goes through, leading to E(α, β)� qµ̂−ν̂ , with
ν̂ = L + β − de− 2 > L − d. This is certainly positive for n > n0(d). Suppose
next that α > 1. Then S(a/r + θ)� |P|nq−L , by Lemma 5.4, provided that (6-6)
or (6-7) hold. Note that

α 6 β − de+ d − 26 2d − 2< de+ 1− κ(d − 1),

for any e > 2, by the calculation in the previous case. Likewise, the previous
argument shows that we are covered by (6-6) or (6-7) when e = 1. Thus we find
that E(α, β)� qµ̂−ν̂, with

ν̂ = L +β − de− 2− 2α > L − d −α

> L − 3d + 2,

since α 6 2(d − 1). This is also positive for n > n0(d).
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