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The equations defining blowup algebras of
height three Gorenstein ideals
Andrew R. Kustin, Claudia Polini and Bernd Ulrich

We find the defining equations of Rees rings of linearly presented height three
Gorenstein ideals. To prove our main theorem we use local cohomology tech-
niques to bound the maximum generator degree of the torsion submodule of
symmetric powers in order to conclude that the defining equations of the Rees
algebra and of the special fiber ring generate the same ideal in the symmetric
algebra. We show that the ideal defining the special fiber ring is the unmixed part
of the ideal generated by the maximal minors of a matrix of linear forms which is
annihilated by a vector of indeterminates, and otherwise has maximal possible
height. An important step in the proof is the calculation of the degree of the
variety parametrized by the forms generating the height three Gorenstein ideal.

1. Introduction

This paper deals with the algebraic study of rings that arise in the process of blowing
up a variety along a subvariety. These rings are the Rees ring and the special fiber
ring of an ideal. Rees rings are also the bihomogeneous coordinate rings of graphs
of rational maps between projective spaces, whereas the special fiber rings are the
homogeneous coordinate rings of the images of such maps. More precisely, let R
be a standard graded polynomial ring over a field and I be an ideal of R minimally
generated by forms g1, . . . , gn of the same degree. These forms define a rational map
9 whose image is a variety X . The bihomogeneous coordinate ring of the graph of9
is the Rees algebra of the ideal I , which is defined as the graded subalgebra R(I )=
R[I t] of the polynomial ring R[t]. This algebra contains, as direct summands, the
ideal I as well as the homogeneous coordinate ring of the variety X .

It is a fundamental problem to find the implicit defining equations of the Rees
ring and thereby of the variety X . This problem has been studied extensively
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by commutative algebraists, algebraic geometers, and, most recently, by applied
mathematicians in geometric modeling. A complete solution requires that one
begins with a knowledge of the structure of the ideal I . There is a large body of
work dealing with perfect ideals of height two, which are known to be ideals of
maximal minors of an almost square matrix; see for instance [Herzog et al. 1983;
Morey 1996; Morey and Ulrich 1996; Cox et al. 2008; Hong et al. 2008; Busé
2009; Kustin et al. 2011; Cortadellas Benítez and D’Andrea 2013; 2014; Nguyen
2014; Madsen 2015; Boswell and Mukundan 2016; Kustin et al. 2017a]. Much
less is known for the “next cases”, determinantal ideals of arbitrary size [Bruns
et al. 2013; 2015] and Gorenstein ideals of height three [Morey 1996; Johnson
1997], the class of ideals that satisfy the Buchsbaum–Eisenbud structure theorem
[Buchsbaum and Eisenbud 1977]. In the present paper we treat the case where I
is a height three Gorenstein ideal and the entries of a homogeneous presentation
matrix of I are linear forms or, more generally, generate a complete intersection
ideal; see Theorem 9.1 and Remark 9.2. Height three Gorenstein ideals have been
studied extensively, and there is a vast literature dealing with the various aspects of
the subject; see for instance [Watanabe 1973; Buchsbaum and Eisenbud 1977; Elias
and Iarrobino 1987; Boffi and Sánchez 1992; Kustin and Ulrich 1992; Iarrobino
1994; Aberbach et al. 1995; De Negri and Valla 1995; Diesel 1996; Geramita and
Migliore 1997; Migliore and Peterson 1997; Kleppe and Miró-Roig 1998; Iarrobino
and Kanev 1999; Polini and Ulrich 1999; Conca and Valla 2000; Hartshorne 2004;
Boij et al. 2014; Kimura and Terai 2015].

Though it may be impossible to determine the implicit equations of Rees rings for
general classes of ideals, one can still hope to bound the degrees of these equations,
which is in turn an important step towards finding them. In the present paper we
address this broader issue as well.

Traditionally one views the Rees algebra as a natural epimorphic image of the
symmetric algebra Sym(I ) of I and one studies the kernel of this map,

0→A→ Sym(I )→R(I )→ 0.

The kernel A is the R-torsion submodule of Sym(I ). The defining equations of the
symmetric algebra can be easily read from the presentation matrix of the ideal I .
Hence the simplest situation is when the symmetric algebra and the Rees algebra
are isomorphic, in which case the ideal I is said to be of linear type.

When the ideal I is perfect of height two, or is Gorenstein of height three or,
more generally, is in the linkage class of a complete intersection, then I is of linear
type if and only if the minimal number of generators of the ideal Ip, µ(Ip), is
at most dim Rp for every prime ideal p ∈ V (I ); see [Huneke 1982; Herzog et al.
1983]. If the condition µ(Ip) ≤ dim Rp is only required for every nonmaximal
prime ideal p ∈ V (I ), then we say that I satisfies Gd , where d is the dimension of
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the ring R. The condition Gd can be interpreted in terms of the height of Fitting
ideals, i < ht Fitti (I ), whenever i < d . The property Gd is always satisfied if R/I is
0-dimensional or if I is a generic perfect ideal of height two or a generic Gorenstein
ideal of height three. For ideals in the linkage class of a complete intersection the
assumption Gd means that A is annihilated by a power of the maximal homogeneous
ideal m of R, in other words A is the zeroth local cohomology H0

m(Sym(I )). One
often requires the condition Gd when studying Rees rings of ideals that are not
necessarily of linear type.

To identify further implicit equations of the Rees ring, in addition to the equations
defining the symmetric algebra, one uses the technique of Jacobian dual; see for
instance [Vasconcelos 1991]. Let x1, . . . , xd be the variables of the polynomial
ring R and T1, . . . , Tn be new variables. Let ϕ be a minimal homogeneous presen-
tation matrix of the forms g1, . . . , gn generating I . There exits a matrix B with d
rows and entries in the polynomial ring S = R[T1, . . . , Tn] such that the equality
of row vectors

[T1, . . . , Tn] ·ϕ = [x1, . . . , xd ] · B

holds. Choose B so that its entries are linear in T1, . . . , Tn . The matrix B is called
a Jacobian dual of ϕ. If ϕ is a matrix of linear forms, then the entries of B can
be taken from the ring T = k[T1, . . . , Tn]; this B is uniquely determined by ϕ
and is called the Jacobian dual of ϕ. The choice of generators of I gives rise to
homogeneous epimorphisms of graded R-algebras

S � Sym(I )� R(I ).

We denote by L and J the ideals of S defining Sym(I ) and R(I ), respectively. The
ideal L is generated by the entries of the row vector [T1, . . . , Tn]·ϕ=[x1, . . . , xd ]·B.
Cramer’s rule shows that

L+ Id(B)⊂ J,

and if equality holds, then J or R(I ) is said to have the expected form. The expected
form is the next best possibility for the defining ideal of the Rees ring if I is not
of linear type. Linearly presented ideals whose Rees ring has the expected form
are special cases of ideals of fiber type. An ideal I is of fiber type if the defining
ideal J of R(I ) can be reconstructed from the defining ideal I (X) of the image
variety X or, more precisely,

J= L+ I (X)S.

It has been shown in [Morey and Ulrich 1996] that the Rees ring has the expected
form if I is a linearly presented height two perfect ideal satisfying Gd . In this
situation the Rees algebra is Cohen–Macaulay. There has been a great deal of work
investigating the defining ideal of Rees rings when I is a height two perfect ideal
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that either fails to satisfy Gd or is not linearly presented. In this case R(I ) usually
does not have the expected form and is not Cohen–Macaulay; see for instance [Cox
et al. 2008; Hong et al. 2008; Busé 2009; Kustin et al. 2011; Cortadellas Benítez
and D’Andrea 2013; 2014; Nguyen 2014; Boswell and Mukundan 2016; Madsen
2015; Kustin et al. 2017a].

Much less is known for height three Gorenstein ideals. In this case n is odd and the
presentation matrix ϕ can be chosen to be alternating, according to the Buchsbaum–
Eisenbud structure theorem [Buchsbaum and Eisenbud 1977]. The defining ideal J

of the Rees ring has been determined, provided that I satisfies Gd , n = d + 1, and
moreover ϕ has linear entries [Morey 1996] or, more generally, I1(ϕ) is generated
by the entries of a single row of ϕ [Johnson 1997]. It turns out that R(I ) does not
have the expected form, but is Cohen–Macaulay under these hypotheses. On the
other hand, this is the only case when the Rees ring is Cohen–Macaulay. In fact, the
Rees ring of a height three Gorenstein ideal satisfying Gd is Cohen–Macaulay if
and only if either n ≤ d or else n = d+ 1 and I1(ϕ) is generated by the entries of a
single generalized row of ϕ [Polini and Ulrich 1999]. Observe that if n= d+1 then
d is necessarily even. The “approximate resolutions” of the symmetric powers of I
worked out in [Kustin and Ulrich 1992] show that if n ≥ d + 1 and d is even, then
Sym(I ) has R-torsion in too low a degree for J to have the expected form; see also
[Morey 1996]. As it turns out, the alternating structure of the presentation matrix
ϕ is responsible for “unexpected” elements in J. Let ϕ be an alternating matrix of
linear forms presenting a height three Gorenstein ideal, and let B be its Jacobian
dual. As in [Kustin and Ulrich 1992] one builds an alternating matrix from ϕ and B,

B=

[
ϕ −B t

B 0

]
.

The submaximal Pfaffians of this matrix are easily seen to belong to J. We regard
the last of these Pfaffians as a polynomial in T [x1, . . . , xd ] and consider its content
ideal C(ϕ) in T . The main theorem of the present paper says that C(ϕ), together
with the expected equations, generates the ideal J.

Theorem 9.1. Let I be a linearly presented height three Gorenstein ideal that
satisfies Gd . Then the defining ideal of the Rees ring of I is

J= L+ Id(B)S+C(ϕ)S,

and the defining ideal of the variety X is

I (X)= Id(B)+C(ϕ),

where ϕ is a minimal homogeneous alternating presentation matrix for I . In
particular, I is of fiber type and, if d is odd, then C(ϕ) = 0 and R(I ) has the
expected form.
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We now outline the method of proof of our main theorem. The proof has
essentially four ingredients, each of which is of independent interest and applies
in much greater generality than needed here. Some of these tools are developed
in other articles [Kustin and Ulrich 1992; Kustin et al. 2015; 2016b; 2017b]. We
describe the content of these articles to the extent necessary for the present paper.

The first step is to prove that any ideal I satisfying the assumptions of Theorem 9.1
is of fiber type (Corollary 6.4). Once this is done, it suffices to determine I (X).
A crucial tool in this context is the standard bigrading of the symmetric algebra.
If δ is the degree of the generators of I , then the R-module I (δ) is generated in
degree zero and its symmetric algebra Sym(I (δ)) is naturally standard bigraded.
As it turns out, the ideal I is of fiber type if and only if the bihomogeneous ideal
A = H0

m(Sym(I (δ))) of the symmetric algebra is generated in degrees (0, ?) or,
equivalently, the R-modules H0

m(Symq(I (δ))) are generated in degree zero for all
nonnegative integers q. This suggests the following general question: If M is a
finitely generated graded R-module, what are bounds for the generator degrees
of the local cohomology modules Hi

m(M)? This question is addressed in [Kustin
et al. 2015]. There we consider approximate resolutions, which are homogeneous
complexes of finitely generated graded R-modules C j of sufficiently high depth,

C• : · · · → C1→ C0→ 0,

such that H0(C•) ∼= M and Hj (C•) have sufficiently small dimension for all pos-
itive integers j . We prove, for instance, that H0

m(M) is concentrated in degrees
≤ b0(Cd)−d and is generated in degrees ≤ b0(Cd−1)−d+1, where b0(C j ) denotes
the largest generator degree of C j . These theorems from [Kustin et al. 2015] are
reproduced in the present paper as Corollary 5.4 and Theorem 5.6. Whereas
similar results for the concentration degree of local cohomology modules have been
established before to study Castelnuovo–Mumford regularity (see, e.g., [Gruson et al.
1983]), it appears that the sharper bound on the generation degree is new and more
relevant for our purpose. Under the hypotheses of Theorem 9.1 the complexes Dq

•

from [Kustin and Ulrich 1992] are approximate resolutions of the symmetric pow-
ers Symq(I (δ)), and we deduce that indeed the R-modules H0

m(Symq(I (δ))) are
generated in degree zero. This is done in Theorem 6.1 and Corollary 6.4.

In fact, Theorem 6.1 is considerably more general; it deals with height two perfect
ideals and height three Gorenstein ideals that are not necessarily linearly presented.
We record an explicit exponent N so that mN

·A= 0 and we provide an explicit
bound for the largest x-degree p so that A(p,∗) contains a minimal bihomogeneous
generator of A. Theorem 6.1 is a significant generalization of part of [Kustin et al.
2017a], where the same results are established under fairly restrictive hypotheses.

With the hypotheses of Theorem 9.1 we know that Id(B)+C(ϕ)⊂ I (X); see
[Kustin et al. 2017b] or Corollary 8.8. To show that this inclusion is an equality,
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we first prove that the two ideals have the same height, which is n− d if d ≤ n. In
fact, we show much more under weaker hypotheses: Assume I is any ideal of R
generated by forms of degree δ, I is of linear type on the punctured spectrum, and a
sufficiently high symmetric power Symq(I (δ)) has an approximate free resolution
that is linear for the first d steps, then up to radical, J has the expected form, in
symbols,

J=
√
(L, Id(B))

and, as a consequence,

I (X)=
√

Id(B ′),

where B ′ is the Jacobian dual of the largest submatrix of ϕ that has linear entries; this
is Theorem 7.2. We point out that even though our primary interest is the defining
ideal I (X) of the variety X , we need to consider the entire bigraded symmetric
algebra of I since our main assumption uses the first component of the bigrading,
which is invisible to the homogeneous coordinate ring of X .

The third step in the proof of Theorem 9.1 is to show that the ideal Id(B)+C(ϕ)
is unmixed, in the relevant case when d < n. In [Kustin et al. 2017b] we construct,
more generally, complexes associated to any d by n matrix B with linear entries
in T that is annihilated by a vector of indeterminates, B · T t

= 0. The ideal of d
by d minors of such a matrix cannot have generic height n− d + 1. However, if
the height is n− d , our complexes give resolutions of Id(B) and of Id(B)+C(ϕ),
although these ideals fail to be perfect in general. Thus, we obtain resolutions in
the context of Theorem 9.1 because we have seen in the previous step that Id(B)
has height n− d. Using these resolutions we prove that the ideal Id(B)+C(ϕ) is
unmixed and hence is the unmixed part of Id(B). In [Kustin et al. 2017b] we also
compute the multiplicity of the rings defined by these ideals.

We have seen that the two ideals Id(B) + C(ϕ) and I (X) are unmixed and
have the same height. Thus, to conclude that the inclusion Id(B)+C(ϕ)⊂ I (X)
is an equality it suffices to prove that the rings defined by these ideals have the
same multiplicity. Since the multiplicity of the first ring has been computed in
[Kustin et al. 2017b], it remains to determine the multiplicity of the coordinate ring
A= T/I (X) or, equivalently, the degree of the variety X . To do so we observe that
the rational map 9 is birational onto its image because the presentation matrix ϕ is
linear (Proposition 4.1). Therefore the degree of X can be expressed in terms of the
multiplicity of a ring defined by a certain residual intersection of I (Proposition 4.2).
Finally, the multiplicity of such residual intersections can be obtained from the
resolutions in [Kustin and Ulrich 1992]; see [Kustin et al. 2016b] and Theorem 4.4.
Once we prove in Theorem 9.1 that I (X)= Id(B)+C(ϕ), then in Corollary 9.3 we
are able to harvest much information from the results of [Kustin et al. 2017b]. In
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particular, we learn the depth of the homogeneous coordinate ring A of X , the entire
Hilbert series of A, and the fact that I (X) has a linear resolution when d is odd.

2. Conventions and notation

2.1. If ψ is a matrix, then ψ t is the transpose of ψ . If ψ is a matrix (or a homo-
morphism of finitely generated free R-modules), then Ir (ψ) is the ideal generated
by the r × r minors of ψ (or any matrix representation of ψ).

2.2. We collect names for some of the invariants associated to a graded module.
Let R be a graded Noetherian ring and M be a graded R-module. Define

topdeg M = sup{ j | Mj 6= 0},

indeg M = inf{ j | Mj 6= 0}, and

b0(M)= inf
{

p | R
(⊕

j≤p

Mj

)
= M

}
.

If R is nonnegatively graded, R0 is local, m is the maximal homogeneous ideal
of R, M is finitely generated, and i is a nonnegative integer, then also define

ai (M)= topdeg Hi
m(M) and bi (M)= topdeg TorR

i (M, R/m).

Observe that both definitions of the maximal generator degree b0(M) give the
same value. The expressions “topdeg”, “indeg”, and “bi ” are read “top degree”,
“initial degree”, and “maximal i-th shift in a minimal homogeneous resolution”,
respectively. If M is the zero module, then

topdeg(M)= b0(M)=−∞ and indeg M =∞.

In general one has
ai (M) <∞ and bi (M) <∞.

2.3. Recall the numerical functions of 2.2. Let R be a nonnegatively graded
Noetherian ring with R0 local and m be the maximal homogeneous ideal of R. The
a-invariant of R is defined to be

a(R)= adim R(R).

Furthermore, if ωR is the graded canonical module of R, then

a(R)=− indegωR.

2.4. Let R be a standard graded polynomial ring over a field k, m be the maximal
homogeneous ideal of R, and M be a finitely generated graded R-module. Recall
the numerical functions of 2.2. The Castelnuovo–Mumford regularity of M is

reg M = sup{ai (M)+ i} = sup{bi (M)− i}.
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2.5. Let I be an ideal in a Noetherian ring. The unmixed part I unm of I is the
intersection of the primary components of I that have height equal to the height of I .

2.6. Let R be a Noetherian ring, I be a proper ideal of R, and M be a finitely gen-
erated nonzero R-module. We denote the projective dimension of the R-module M
by pdR M . The grade of I is the length of a maximal regular sequence on R which
is contained in I . (If R is Cohen–Macaulay, then the grade of I is equal to the
height of I .) The R-module M is called perfect if the grade of the annihilator of
M (denoted ann M) is equal to the projective dimension of M . (The inequality
grade ann M ≤ pdR M holds automatically.) The ideal I in R is called a perfect
ideal if R/I is a perfect R-module. A perfect ideal I of grade g is a Gorenstein
ideal if Extg

R(R/I, R) is a cyclic R-module.

2.7. Denote by µ(M) the minimal number of generators of a finitely generated
module M over a local ring R. Recall from [Artin and Nagata 1972] that an ideal I
in a Noetherian ring R satisfies the condition Gs if µ(Ip)≤ dim Rp for each prime
ideal p ∈ V (I ) with dim Rp ≤ s− 1. The condition Gs can be interpreted in terms
of the height of Fitting ideals. An ideal I of positive height satisfies Gs if and only
if i < ht Fitti (I ) for 0< i < s.

The property Gd , for d=dim R, is always satisfied if R/I is 0-dimensional or if I
is a generic perfect ideal of grade two or a generic Gorenstein ideal of grade three.

2.8. Let R be a Noetherian ring, I be an ideal of height g, K be a proper ideal,
and s be an integer with g ≤ s.

(a) The ideal K is called an s-residual intersection of I if there exists an s-
generated ideal a⊂ I such that K = a : I and s ≤ ht K .

(b) The ideal K is called a geometric s-residual intersection of I if K is an
s-residual intersection of I and if, in addition, s+ 1≤ ht(I + K ).

(c) The ideal I is said to be weakly s-residually S2 if for every i with g ≤ i ≤ s
and every geometric i-residual intersection K of I , R/K is S2.

2.9. If I is an ideal of a ring R, then the Rees ring of I , denoted R(I ), is the subring
R[I t] of the polynomial ring R[t]. There is a natural epimorphism of R-algebras
from the symmetric algebra of I , denoted Sym(I ), onto R(I ). If this map is an
isomorphism, we say that the ideal I is of linear type.

3. Defining equations of graphs and images of rational maps

Data 3.1. Let k be a field and let R = k[x1, . . . , xd ], T = k[T1, . . . , Tn], and
S = R[T1, . . . , Tn] be polynomial rings. Let m = (x1, . . . , xd) be the maximal
homogeneous ideal of R, and I a homogeneous ideal of R minimally generated by
forms g1, . . . , gn of the same positive degree δ.
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Such forms define a rational map

9 = [g1 : · · · : gn] : P
d−1
k → Pn−1

k

with base locus V (I ). We write X for the closed image of9, the variety parametrized
by 9, and A = T/I (X) for the homogeneous coordinate ring of this variety.

In this section we collect some general facts about rational maps and Rees rings.
Data 3.1 is in effect throughout.

3.2. Recall the definition of the Rees ring R(I ) = R[I t] ⊂ R[t] from 2.9. We
consider the epimorphism of R-algebras

π : S � R(I )

that sends Ti to gi t . Let J be the kernel of this map, which is the ideal defining the
Rees ring.

We set deg xi = (1, 0), deg Ti = (0, 1), and deg t = (−δ, 1). Thus S and the
subring R(I ) of R[t] become standard bigraded k-algebras, π is a bihomogeneous
epimorphism, and J is a bihomogeneous ideal of S. If M is a bigraded S-module
and p a fixed integer, we write

M(p,?) =
⊕

j

M(p, j) and M(>p,?) =
⊕
i>p

M(i,?).

3.3. The Rees algebra R(I ) is the bihomogeneous coordinate ring of the graph
of 9. In fact, the natural morphisms of projective varieties

Pd−1
k ×Pn−1

k

����

graph9

����

? _oo

Pn−1
k X = im9? _oo

correspond to bihomogeneous homomorphisms of k-algebras,

S
π
// // R(I )

T
π|T

// //
?�

OO

A.
?�

OO

Since T = S(0,?), we see that

A =R(I )(0,?) = k[g1t, . . . , gnt]

and
I (X)= J(0,?) = J∩ T . (3.3.1)
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We also observe that there is a not necessarily homogeneous isomorphism of
k-algebras

k[g1t, . . . , gnt] ∼= k[g1, . . . , gn] ⊂ R.

Moreover, the identification R(I )(0,?) ∼= R(I )/R(I )(>0,?) gives a homogeneous
isomorphism

A ∼=R(I )/mR(I ).

The latter ring is called the special fiber ring of I and its dimension is the analytic
spread of I , written `(I ). The analytic spread plays an important role in the study
of reductions of ideals and satisfies the inequality

`(I )≤min{d, n}. (3.3.2)

Notice that `(I )= dim A = dim X + 1.

3.4. The graded R-module I (δ) is generated in degree zero and hence its sym-
metric algebra Sym(I (δ)) is a standard bigraded k-algebra. There is a natural
bihomogeneous epimorphism of k-algebras

Sym(I (δ))� R(I ),

whose kernel we denote by A. The epimorphism π from 3.2 factors through this
map and gives a bihomogeneous epimorphism of k-algebras

S � Sym(I (δ)).

We write L for the kernel of this epimorphism. The advantage of L over J is that L

can be easily described in terms of a presentation matrix of I ; see 3.6. Notice that

A= J/L.

The ideal I is of linear type if any of the following equivalent conditions hold:

• A= 0.

• J= L.

• J is generated in bidegrees (?, 1).

Notice that if I is of linear type then necessarily I (X)= 0.
The ideal I is of fiber type if any of the following equivalent conditions hold:

• A= I (X) ·Sym(I (δ)).

• A is generated in bidegrees (0, ?).

• J= L+ I (X) · S.

• J is generated in bidegrees (?, 1) and (0, ?).

See (3.3.1) for the equivalence of these conditions.
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3.5. The ideal A in the exact sequence

0→A→ Sym(I (δ))→R(I )→ 0

is the R-torsion of Sym(I (δ)). Hence A contains the zeroth local cohomology of
Sym(I (δ)) as an R-module, which in turn contains the socle of Sym(I (δ)) as an
R-module,

A⊃ H0
m(Sym(I (δ)))= 0 :Sym(I (δ)) m

∞
⊃ 0 :Sym(I (δ)) m. (3.5.1)

3.6. Consider the row vectors x = [x1, . . . , xd ], T = [T1, . . . , Tn], g= [g1, . . . , gn],
and let ϕ be a minimal homogeneous presentation matrix of g. There exists a
matrix B with d rows and entries in the polynomial ring S such that the equality of
row vectors

T ·ϕ = x · B (3.6.1)

holds. If B is chosen so that its entries are linear in T1, . . . , Tn , then B is called a
Jacobian dual of ϕ. We say that a Jacobian dual is homogeneous if the entries of any
fixed column of B are homogeneous of the same bidegree. Whenever ϕ is a matrix
of linear forms, then the entries of B can be taken from the ring k[T1, . . . , Tn];
this B is uniquely determined by ϕ and is called the Jacobian dual of ϕ; notice
that the entries of B are linear forms and that B is indeed a Jacobian matrix of the
T -algebra Sym(I (δ)).

The ideal L defining the symmetric algebra is equal to I1(T ·ϕ), which coincides
with I1(x · B). For the Rees algebra, the inclusions

L+ Id(B)⊂ L :S m⊂ J (3.6.2)

obtain; see also [Vasconcelos 1991]. If the equality L+ Id(B)= J holds, then J

or R(I ) is said to have the expected form. Notice that in this case the inclusions of
(3.5.1) are equalities, in other words, A is the socle of Sym(I (δ)) as an R-module.

3.7. It is easier to determine when the first inclusion of (3.5.1) is an equality. Namely,

A= H0
m(Sym(I (δ))) ⇐⇒ I is of linear type on the punctured spectrum of R.

(3.7.1)
The right hand side means that Ap = 0 for all p in Spec(R) \ {m}.

This leads to the question of when an ideal is of linear type. Thus let J be an
ideal of a local Cohen–Macaulay ring of dimension d. If J is perfect of height
two or Gorenstein of height three, then J is in the linkage class of a complete
intersection [Gaeta 1953; Watanabe 1973]. If J is in the linkage class of a complete
intersection, then J is strongly Cohen–Macaulay [Huneke 1982, 1.11] and hence
satisfies the sliding depth condition of [Herzog et al. 1985]. If J satisfies the sliding
depth condition and is Gd−2, then J is weakly (d−2)-residually S2 in the sense of
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2.8.(c) [Herzog et al. 1985, 3.3]. In the presence of the weak (d−2)-residually S2

condition it follows from [Chardin et al. 2001, 3.6(b)] that

J is of linear type ⇐⇒ J satisfies Gd+1;

in particular, since the residually S2 condition localizes,

J is of linear type on the punctured spectrum ⇐⇒ J satisfies Gd .

(Alternatively, one uses [Herzog et al. 1983].)
Combining these facts we see that if the ideal I of Data 3.1 is perfect of height

two or Gorenstein of height three then

I is of linear type ⇐⇒ I satisfies Gd and n ≤ d (3.7.2)

and
A= H0

m(Sym(I (δ))) ⇐⇒ I satisfies Gd . (3.7.3)

4. The degree of the image of a rational map

This section deals with the dimension and the degree of the image of rational maps
as in Data 3.1. Applied to the special case of linearly presented Gorenstein ideals
of height three, this information will be an important ingredient in the proof of
Theorem 9.1.

We first treat the question of when the rational map 9 is birational onto its
image X (Proposition 4.1). We then express the degree of X in terms of the
multiplicity of a ring defined by a residual intersection of the ideal I defining the
base locus of 9 (Proposition 4.2). The multiplicity of rings defined by residual
intersections of linearly presented height three Gorenstein ideals was computed
in [Kustin et al. 2016b], using the resolutions worked out in [Kustin and Ulrich
1992]. For completeness we state this result in Theorem 4.3. Finally, we combine
Propositions 4.1, 4.2, and Theorem 4.3 in Theorem 4.4 to compute the degree of X
under the hypotheses of Theorem 9.1.

Proposition 4.1. Adopt Data 3.1 and assume further that the ideal I is linearly
presented.

(a) If the ring R/I has dimension zero, then the map 9 is biregular onto its image.
In particular, A has multiplicity δd−1.

(b) If A has dimension d, then the rational map 9 is birational onto its image.

Proof. We may assume that the field k is algebraically closed. Let ϕ be a minimal
presentation matrix of g = g1, . . . , gn with homogeneous linear entries in R and
let P ∈ Pn−1

k be a point in X . According to [Eisenbud and Ulrich 2008] the
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ideal I1(P · ϕ) : I∞ defines the fiber 9−1(P) scheme theoretically. This ideal
cannot be the unit ideal because the fiber is not empty. On the other hand, the
ideal I1(P · ϕ) is generated by linear forms, hence it is a prime ideal of R. Thus
I1(P ·ϕ) : I∞ = I1(P ·ϕ) is generated by linear forms.

(a) We consider the embedding A ∼= k[g] ⊂ R which corresponds to the rational
map 9 onto its image. If the ring R/I = R/(g) has dimension zero, then R is
finitely generated as an A-module. It follows that the fiber 9−1(P) consists of
finitely many points. Since this fiber is defined by a linear ideal, it consists of a
single reduced point. This shows that 9 is biregular onto its image.

The claim about the multiplicity follows because, in particular, 9 is birational
onto its image; see, for instance, [Kustin et al. 2016a, 5.8].

(b) Let Q be a general point in Pd−1
k and P be its image 9(Q) in X . Since

A ∼= k[g] and R have the same dimension, the fiber 9−1(P) consists of finitely
many points. Therefore, again, 9−1(P) consists of a single reduced point, which
means that 9 is birational onto its image. �

Proposition 4.2. Adopt Data 3.1. Further assume that the field k is infinite, that
d ≤ n, and that the ideal I is weakly (d−2)-residually S2 and satisfies Gd . Let
f1, . . . , fd−1 be general k-linear combinations of the generators g1, . . . , gn of I .

Then the following statements hold:

(a) The ring R/(( f1, . . . , fd−1) : I ) is Cohen–Macaulay of dimension one.

(b) The ring A has dimension d.

(c) The ring A has multiplicity

e(A)= 1
r
· e
(

R
( f1, . . . , fd−1) : I

)
,

where r is the degree of the rational map 9.

Proof. Let f1, . . . , fd be general k-linear combinations of the generators g1, . . . , gn

of I . The Gd property of the ideal I implies that

d − 1≤ ht(( f1, . . . , fd−1) : I ) and d ≤ ht(( f1, . . . , fd−1) : I, fd), (4.2.1)

according to [Artin and Nagata 1972, 2.3] or [Ulrich 1994, 1.6(a)]. Furthermore the
ideal ( f1, . . . , fd−1) : I is proper because I requires at least d generators. Now 3.1
and 3.3(a) of [Chardin et al. 2001] imply that ( f1, . . . , fd−1) : I is unmixed of
height d − 1, which proves (a).

To show (b) we suppose that dim A < d . In this case the ring k[g1, . . . , gn] ∼= A
is integral over the subring k[ f1, . . . , fd−1], and therefore the ideal I is integral
over the ideal ( f1, . . . , fd−1). In 3.7 we have seen that, locally on the punctured
spectrum, I is of linear type and hence cannot be integral over a proper subideal.
Thus d ≤ ht(( f1, . . . , fd−1) : I ), which contradicts (a).
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We now prove (c). Item (b) allows us to apply [Kustin et al. 2016a, 3.7], which
gives

e(A)= 1
r
· e
(

R
( f1, . . . , fd−1) : I∞

)
.

On the other hand, item (a) and the inequality d ≤ ht(( f1, . . . , fd−1) : I, fd) imply
that the element fd of I is regular on R/(( f1, . . . , fd−1) : I ). It follows that
( f1, . . . , fd−1) : I∞ = ( f1, . . . , fd−1) : I . �

The following statement, which is used in the proof of Theorem 4.4, is part of
[Kustin et al. 2016b, 1.2]. We do not need the entire h-vector of R in the present
paper; but the entire h-vector is recorded in [Kustin et al. 2016b, 1.2].

Theorem 4.3. Adopt Data 3.1. Further assume that the ideal I is a linearly
presented Gorenstein ideal of height three. Let a be a subideal of I , minimally
generated by s homogeneous elements for some s with 3≤ s, let α be the minimal
number of generators of I/a, J be the ideal a : I , and R = R/J . Assume that

(1) the homogeneous minimal generators of a live in two degrees: indeg(I ) and
indeg(I )+ 1,

(2) the ideal J is an s-residual intersection of I (that is, J 6= R and s ≤ ht J ).

Then the ring R has multiplicity

e(R)=
b
α−1

2 c∑
i=0

(s+α−2−2i
s−1

)
.

The latter is also equal to the number of monomials m of degree at most α− 1 in s
variables with (deg m)+α odd.

Theorem 4.4, the main result of this section, is where the dimension and the
degree of the variety X are computed.

Theorem 4.4. Adopt Data 3.1. Further assume that d ≤ n, that I is a linearly
presented Gorenstein ideal of height three, and that I satisfies Gd . Then A has
dimension d and multiplicity

e(A)=
b

n−d
2 c∑

i=0

(n−2−2i
d−2

)
,

which is equal to

• the number of monomials of even degree at most n−d in d−1 variables, if d is odd,
• the number of monomials of odd degree at most n−d in d−1 variables, if d is even.
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Proof. We may assume that the field k is infinite. We first observe that the
ideal I satisfies the hypotheses of Proposition 4.2; see 3.7. According to Proposi-
tions 4.2.(b), 4.1.(b), and 4.2.(c), the dimension of A is d and the multiplicity of A is

e(A)= e
(

R
( f1, . . . , fd−1) : I

)
,

where f1, . . . , fd−1 are general k-linear combinations of homogeneous minimal
generators of I .

Write J = ( f1, . . . , fd−1) : I . This ideal is a (d−1)-residual intersection of I by
(4.2.1). Apply Theorem 4.3 with s replaced by d − 1 and α replaced by n− d + 1
in order to obtain

e(A)= e(R/J )=
b

n−d
2 c∑

i=0

(n−2−2i
d−2

)
. �

5. Degree bounds for local cohomology

An important step in the proof of Theorem 9.1 is to show that an ideal is of fiber
type (see 3.4 for a definition) and to identify a power of the maximal ideal that
annihilates the torsion of the symmetric algebra. In (3.7.3) and 3.4 we have seen
that this amounts to finding degree bounds for local cohomology modules. Such
degree bounds are given in [Kustin et al. 2015], we recall them here. These results
are applied to the study of blowup algebras in Sections 6 and 7.

Data 5.1. Let R be a nonnegatively graded Noetherian algebra over a local ring R0

with dim R = d , let m be the maximal homogeneous ideal of R, let M be a graded
R-module, and let

C• : · · · → C1→ C0→ 0

be a homogeneous complex of finitely generated graded R-modules with H0(C•)∼=M.

In [Kustin et al. 2015] we find bounds on the degrees of interesting elements of
the local cohomology modules Hi

m(M) in terms of information about the ring R
and information that can be read from the complex C•. The ring R need not be a
polynomial ring, the complex C• need not be finite, need not be acyclic, and need
not consist of free modules, and the parameter i need not be zero. Instead, we
impose hypotheses on the Krull dimension of Hj (C•) and the depth of C j in order
to make various local cohomology modules H`

m(Hj (C•)) and H`
m(C j ) vanish.

Recall that if M and N are modules over a ring, then N is a subquotient of M if
N is isomorphic to a submodule of a homomorphic image of M or, equivalently, if
N is isomorphic to a homomorphic image of a submodule of M . Also recall the
numerical functions of 2.2.

The next proposition is [Kustin et al. 2015, 3.6].
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Proposition 5.2. Adopt Data 5.1. Fix an integer i with 0≤ i ≤ d. Assume that

(1) j + i + 1≤ depth C j for all j with 0≤ j ≤ d − i − 1, and

(2) dim Hj (C•)≤ j + i for all j with 1≤ j .

Then

(a) Hi
m(M) is a graded subquotient of Hd

m(Cd−i ), and

(b) ai (M)≤ b0(Cd−i )+ a(R).

Remark 5.3. Typically, one applies Proposition 5.2 when the modules C j are
maximal Cohen–Macaulay modules (for example, free modules over a Cohen–
Macaulay ring) because, in this case, hypothesis (1) about depth C j is automatically
satisfied. Similarly, if

H j (C•p)= 0 for all j and p with 1≤ j ≤ d−i−1,

p ∈ Spec(R), and i+2≤ dim R/p, (5.3.1)

then hypothesis (2) is satisfied.

We record an immediate consequence of Proposition 5.2; this is [Kustin et al.
2015, 3.8].

Corollary 5.4. Adopt the hypotheses of Proposition 5.2, with i = 0. Then the
following statements hold:

(a) If Cd = 0, then H0
m(M)= 0.

(b) If Cd 6= 0, then [H0
m(M)]p = 0 for all p with b0(Cd)+ a(R) < p.

The next result, an obvious consequence of Corollary 5.4, is [Kustin et al. 2015,
3.9].

Corollary 5.5. Adopt the hypotheses of Proposition 5.2, with i = 0. Assume further
that R = k[x1, . . . , xd ] is a standard graded polynomial ring over a field and that
the subcomplex

Cd → · · · → C1→ C0→ 0

of C• is a q-linear complex of free R-modules, for some integer q (that is, C j ∼=

R(− j − q)βj for 0 ≤ j ≤ d). Then H0
m(M) is concentrated in degree q; that is,

[H0
m(M)]p = 0 for all p with p 6= q.

The next theorem is [Kustin et al. 2015, 4.8] and the main result of this section. It
provides an upper bound for the generation degree of the zeroth local cohomology.

Theorem 5.6. Let R = k[x1, . . . , xd ] be a standard graded polynomial ring over a
field, with maximal homogeneous ideal m, let

C• : · · · → C2→ C1→ C0→ 0
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be a homogeneous complex of finitely generated graded R-modules, and M=H0(C•).
Assume that

• dim Hj (C•)≤ j whenever 1≤ j ≤ d − 1, and

• min{d, j + 2} ≤ depth C j whenever 0≤ j ≤ d − 1.

Then b0(H0
m(M))≤ b0(Cd−1)− d + 1.

Remark 5.7. The hypotheses of Theorem 5.6 about depth and dimension are
satisfied if the modules C j are free and condition (5.3.1) holds.

6. Bounding the degrees of defining equations of Rees rings

In this section we apply the local cohomology techniques of [Kustin et al. 2015] to
bound the degrees of the defining equations of Rees rings. This style of argument
was inspired by work of Eisenbud, Huneke, and Ulrich; see [Eisenbud et al. 2006].

To apply the results of [Kustin et al. 2015], most notably Corollary 5.4 and
Theorem 5.6 of the present paper, we need “approximate resolutions” C• of the
symmetric powers of I (δ), for an ideal I as in Data 3.1 that satisfies Gd . If I
is perfect of height two, we take C• to be a homogeneous strand of a Koszul
complex. The fact that this choice of C• satisfies the hypotheses of Corollary 5.4
and Theorem 5.6 is shown in the proof of Theorem 6.1.(a). If I is Gorenstein of
height three, we take C• to be one of the complexes Dq

•
(ϕ) from [Kustin and Ulrich

1992]. In this paper these complexes are introduced in (6.1.4); they are shown to
satisfy the hypotheses of Corollary 5.4 and Theorem 5.6 in Lemma 6.3.

In Theorem 6.1 we carefully record the degrees of the entries in a minimal
homogeneous presentation matrix for I ; but we do not insist that these entries
be linear. For the ideal A of the symmetric algebra defined in 3.4, we give an
explicit exponent N so that mN

·A = 0 and we obtain an explicit bound for the
largest x-degree p so that A(p,∗) =

⊕
q A(p,q) contains a minimal bihomogeneous

generator of A.
Assertions (ai) and (aii) of Theorem 6.1, about perfect height two ideals, are

significant generalizations of Corollaries 2.5(2) and 2.16(1), respectively, in [Kustin
et al. 2017a], where the same results are obtained for d = 2 and n = 3. The starting
point for [Kustin et al. 2017a] is the perfect pairing of Jouanolou [1996; 1997],
which exists because the symmetric algebra of a three generated height two perfect
ideal is a complete intersection. With the present hypotheses, the symmetric algebra
is only a complete intersection on the punctured spectrum of R and there is no
perfect pairing analogous to the pairing of Jouanolou.

Theorem 6.1 is particularly interesting when the ideal I is linearly presented.
Indeed, assertions (aii) and (bii) say that I is of fiber type. For height two per-
fect ideals this was already observed in [Morey and Ulrich 1996]. For height
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three Gorenstein ideals, this is a new result and a main ingredient in the proof of
Theorem 9.1. The application of Theorem 6.1 to the situation where I is a linearly
presented height three Gorenstein ideal is recorded as Corollary 6.4.

Theorem 6.1. Adopt Data 3.1 and recall the bihomogeneous ideal A of the sym-
metric algebra defined in 3.4. Assume further that I satisfies the condition Gd .

(a) Assume that the ideal I is perfect of height two and the column degrees of
a homogeneous Hilbert–Burch matrix minimally presenting I are ε1 ≥ ε2 ≥

· · · ≥ εn−1. Then the following statements hold when d ≤ n− 1:

(i) If
∑d

i=1(εi − 1) < p, then A(p,∗) = 0. In particular,

m1+
∑d

i=1(εi−1)A= 0.

(ii) If A(p,∗) contains a minimal bihomogeneous generator of A, then

p ≤
d−1∑
i=1

(εi − 1).

(b) Assume that the ideal I is Gorenstein of height three and every entry of a
homogeneous alternating matrix minimally presenting I has degree D. Then
the following statements hold:

(i) If{
d(D− 1) < p when d is odd,
(d − 1)(D− 1)+ 1

2(n− d + 1)D− 1< p when d is even,

then A(p,∗) = 0. In particular,{
md(D−1)+1A= 0 if d is odd,
m(d−1)(D−1)+(n−d+1)D/2A= 0 if d is even.

(ii) If A(p,∗) contains a minimal bihomogeneous generator of A, then

p ≤ (d − 1)(D− 1).

Remarks. (a) We may safely assume that d ≤ n − 1 in Theorem 6.1 because
otherwise A= 0; see (3.7.2).

(b) The assumptions on the degrees of the entries in a presentation matrix do
not impose any restriction: In (a), the inequalities ε1 ≥ ε2 ≥ · · · ≥ εn−1 can
be achieved by a permutation of the columns. In (b), all entries necessarily
have the same degree, as can be seen from the symmetry of the minimal
homogeneous R-resolution of R/I .

(c) Results similar to, but more complicated than, Theorem 6.1 can be obtained
without the assumption that the ideal I is generated by forms of the same degree.
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(d) The degree δ of the forms g1, . . . , gn in Data 3.1 is
∑n−1

i=1 εi in the setting of
Theorem 6.1.(a) and is 1

2 D(n− 1) in Theorem 6.1.(b); see [Burch 1968] and
[Buchsbaum and Eisenbud 1977], respectively.

Proof. We have seen in (3.7.3) that the ideal A of Sym(I (δ)) is equal to the local
cohomology module H0

m(Sym(I (δ))). We apply Corollary 5.4 and Theorem 5.6 to
learn about the R-modules

H0
m(Symq(I (δ)))=

⊕
p

A(p,q) =A(∗,q). (6.1.1)

(a) Let ϕ be a minimal homogeneous Hilbert–Burch matrix for I . In other words,
ϕ is an n× (n− 1) matrix with homogeneous entries from R such that

0→ F1
ϕ
−→ F0

g
−→ I (δ)→ 0

is a homogeneous exact sequence of R-modules, where g = [g1, . . . , gn] is the row
vector of 3.6,

F0 = Rn and F1 =

n−1⊕
i=1

R(−εi ).

It induces a bihomogeneous presentation of the symmetric algebra

(Sym(F0)⊗R F1)(0,−1) `
−→ Sym(F0)→ Sym(I (δ))→ 0,

where Sym(F0) is the standard bigraded polynomial ring S of 3.2 and ` is the row
vector [T1, . . . , Tn] ·ϕ of 3.6. We consider the Koszul complex of `,

K• =

•∧
S

((S⊗R F1)(0,−1))= S⊗R

•∧
R

(F1(0,−1)).

It is a bihomogeneous complex of free S-modules with H0(K•) equal to Sym(I (δ)).
The ideal I is perfect of height two and satisfies Gd (see 2.7). It follows that the

sequence `= `1, . . . , `n−1 is a regular sequence locally on the punctured spectrum
of R (see Observation 6.2); and therefore the Koszul complex K• is acyclic on
the punctured spectrum of R. In particular, for each nonnegative integer q, the
component of degree (?, q) of K• is a homogeneous complex of graded free R-
modules, has zeroth homology equal to Symq(I (δ)), and is exact on the punctured
spectrum of R. This component looks like

Cq
•
: 0→ Cq

n−1→ Cq
n−2→ · · · → Cq

1 → Cq
0 → 0,

with

Cq
r = Symq−r (F0)⊗R

r∧
F1 ∼=

⊕
1≤i1<···<ir≤n−1

Rbr

(
−

r∑
j=1

εi j

)
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for

br = rank(Symq−r (F0))=
(q−r+n−1

n−1

)
.

The assumption ε1 ≥ ε2 ≥ · · · ≥ εn−1 yields that if Cq
r 6= 0 then

b0(Cq
r )=

r∑
i=1

εi . (6.1.2)

Notice that if Cq
r = 0 then b0(C

q
r )=−∞.

Apply Corollary 5.4 (see also Remark 5.3) to the complex Cq
•

to conclude that

[H0
m(Symq(I (δ)))]p = 0 for all p with b0(C

q
d )+ a(R) < p. (6.1.3)

Recall that the index q in (6.1.3) is arbitrary. Apply (6.1.1), (6.1.3), and (6.1.2) to
conclude that

A(p,∗) = 0 for all p with
d∑

i=1

εi − d < p.

Assertion (ai) has been established.
Apply Theorem 5.6 (see also Remark 5.7) to the complex Cq

•
to conclude that

every minimal homogeneous generator α of H0
m(Symq(I (δ))) satisfies

degα ≤ b0(C
q
d−1)− d + 1.

Once again, (6.1.1) and (6.1.2) yield that

b0(A(∗,q))≤

d−1∑
i=1

εi − d + 1.

The parameter q remains arbitrary. Every minimal bihomogeneous generator of A is
a minimal homogeneous generator of A(∗,q), for some q . We conclude that if A(p,q)

contains a minimal bihomogeneous generator of A, then p ≤
∑d−1

i=1 εi − d+ 1, and
this establishes assertion (aii).

(b) Let ϕ be an n× n homogeneous alternating matrix which minimally presents I ,
and, for each nonnegative integer q , let

Dq
•
(ϕ) : 0→ D

q
n−1→ D

q
n−2→ · · · → D

q
1→ D

q
0→ 0

be the complex from [Kustin and Ulrich 1992, Definition 2.15 and Figure 4.7]
that is associated to the alternating matrix ϕ. The zeroth homology of Dq

•
(ϕ) is

Symq(I (δ)); see [Kustin and Ulrich 1992, 4.13.b]. The hypothesis that every entry
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of ϕ has degree D yields that

Dq
r =


Kq−r,r = R(−r D)β

q
r if r ≤min{q, n−1},

Qq = R
(
−(r−1)D− 1

2(n−r+1)D
)

if r = q+1≤ n−1, q odd,
0 if r = q+1, q even,
0 if min{q+2, n} ≤ r,

(6.1.4)

for some nonzero Betti numbers βq
r . Indeed, the graded R-module Symq(I (δ)) is

generated in degree zero; moreover, each map Ka,b → Ka+1,b−1 is linear in the
entries of ϕ (see [Kustin and Ulrich 1992, 2.15.d]) and the map Qq → K0,q may
be represented by a column vector whose entries consist of the Pfaffians of the
principal (n− r + 1)× (n− r + 1) alternating submatrices of ϕ (see [Kustin and
Ulrich 1992, 2.15.c and 2.15.f]).

Notice from (6.1.4) that

if Dq
r = Qq , then D

q
r+1 = 0. (6.1.5)

Notice also that

max
{q|Dq

d 6=0}
b0(D

q
d)≤

{
d D if d is odd,
(d − 1)D+ 1

2(n− d + 1)D if d is even,
(6.1.6)

max
{q|Dq

d 6=0}
b0(D

q
d−1)≤ (d − 1)D; (6.1.7)

one uses (6.1.5) in order to see (6.1.7) because the condition D
q
d 6= 0 forces

D
q
d−1 = Kq−d+1,d−1.
By hypothesis the ideal I satisfies the condition Gd ; so I satisfies the hypothesis

(6.3.1) of Lemma 6.3 for s = d− 1; and therefore, the complex (Dq
•
(ϕ))p is acyclic

for every p ∈ Spec(R) with dim Rp ≤ d − 1 and every nonnegative integer q. The
hypotheses of Corollary 5.4 and Theorem 5.6 are satisfied by the complexes Dq

•
(ϕ).

We deduce that either D
q
d and H0

m(Symq(I (δ))) are both zero, or else D
q
d 6= 0,

[H0
m(Symq(I (δ)))]p = 0 for all p with b0(D

q
d)+ a(R) < p, and every minimal

homogeneous generator α of H0
m(Symq(I (δ))) satisfies

degα ≤ b0(D
q
d−1)− d + 1.

In the case D
q
d 6= 0 we apply (6.1.1), (6.1.6), and (6.1.7) to conclude that

A(p,q) = 0 for
{

d D− d < p if d is odd,
(d − 1)D+ 1

2(n− d + 1)D− d < p if d is even,

and every minimal homogeneous generator α of A(∗,q) satisfies

degα ≤ (d − 1)D− d + 1.
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Keep in mind that if α ∈A(p,q) is a minimal bihomogeneous generator of A, then α
is also a minimal homogeneous generator of A(∗,q). Assertions (bi) and (bii) have
been established. �

Two small facts were used in the proof of Theorem 6.1 to guarantee that the
complexes Cq

•
and Dq

•
(ϕ) satisfy the hypotheses of Corollary 5.4 and Theorem 5.6.

We prove these facts now.

Observation 6.2. Let R be a Cohen–Macaulay local ring and I be an ideal of
positive height. Assume that µ(Ip)≤ dim Rp+ 1 for each prime ideal p ∈ V (I ). If
Sym(I ) ∼= P/J is any homogeneous presentation, where P is a standard graded
polynomial ring over R in n variables and J is a homogeneous ideal of P , then J
has height n− 1.

Proof. One has

ht J = dim P − dim P/J = dim R+ n− dim Sym(I )= n− 1,

where the first equality holds because R is Cohen–Macaulay local and J is homo-
geneous and the last equality follows from the dimension formula for symmetric
algebras; see [Huneke and Rossi 1986, 2.6]. �

Lemma 6.3. Let R be a Cohen–Macaulay ring and I be a perfect Gorenstein ideal
of height three. Let ϕ be an alternating presentation matrix for I , {Dq

•
(ϕ)} be the

family of complexes in [Kustin and Ulrich 1992] which is associated to ϕ, and s be
an integer. If

µ(Ip)≤ dim Rp+ 1 for each prime ideal p ∈ V (I ) with dim Rp ≤ s, (6.3.1)

then the complex (Dq
•
(ϕ))p is acyclic for every p ∈ Spec(R) with dim Rp ≤ s and

every nonnegative integer q.

Proof. Let p ∈ Spec(R) with dim Rp ≤ s. Notice that (Dq
•
(ϕ))p = Dq

•
(ϕp). This

complex has length at most n− 1, where n is the size of the matrix ϕp according to
[Kustin and Ulrich 1992, 4.3.d]; see also (6.1.4). Moreover, by assumption (6.3.1),
the matrix ϕp satisfies condition WMC1, and therefore WPC1, see [Kustin and
Ulrich 1992, 5.8, 5.9, 5.11.a]. Now [Kustin and Ulrich 1992, 6.2] shows that the
complex Dq

•
(ϕp) is acyclic. �

Theorem 6.1 is particularly interesting when I is a linearly presented height
three Gorenstein ideal. One quickly deduces that such ideals are of fiber type;
see 3.4 for the definition. This is a new result and a main ingredient in the proof of
Theorem 9.1.

Corollary 6.4. Adopt the setting of Theorem 6.1.(b) with D= 1. Then the ideal I is
of fiber type. Furthermore, A is annihilated by m when d is odd and by m(n−d+1)/2

when d is even.



The equations defining blowup algebras of height three Gorenstein ideals 1511

Proof. Theorem 6.1.(bii) shows that the ideal A of Sym(I (δ)) is generated by
A(0,?), which means that I is of fiber type; see 3.4. The assertion about which
power of m annihilates A is explicitly stated in Theorem 6.1.(bi). �

7. The defining ideal of Rees rings up to radical

In this section we mainly work under the assumption that the ideal I of Data 3.1 is
of linear type on the punctured spectrum of R and that a sufficiently high symmetric
power Symt(I (δ)) has an approximate free resolution that is linear for the first
d steps. With these hypotheses alone we prove, somewhat surprisingly, that the
defining ideal J of the Rees ring has the expected form up to radical; see 3.6
for the definition of expected form. We also describe the defining ideal I (X)
of the variety X up to radical and we deduce that Id(B ′) has maximal possible
height, where B ′ is the Jacobian dual of the linear part of a minimal homogeneous
presentation matrix of I ; see 3.6 for the definition of Jacobian dual. This is done
in Theorem 7.2. The computation of the height of Id(B ′) is relevant for the proof
of Theorem 9.1 because it ensures that the complexes constructed in [Kustin et al.
2017b] are free resolutions of Id(B) and of Id(B)+C(ϕ), where B = B ′ is the full
Jacobian dual in this case and C(ϕ) is the content ideal of Definition 8.1. A step
towards the proof of Theorem 7.2 is Lemma 7.1, where we show that, up to radical, A

is the socle of the symmetric algebra as an R-module and I is of fiber type; see 3.4 for
the definition of fiber type. We deduce this statement from the other parts of the same
lemma, which say that even locally on the punctured spectrum of the polynomial ring
S, the ideal A belongs to the socle and I is of fiber type. These facts are proved using
the methods of [Kustin et al. 2015], most notably Corollary 5.5 of the present paper.

The assumption that I is of linear type on the punctured spectrum of R is rather
natural; see 3.7. It is satisfied for instance if I is perfect of height two or Gorenstein
of height three and I satisfies Gd . If such an ideal is, in addition, linearly presented,
then the hypothesis about an approximate resolution C• of Symt(I (δ)) holds as
well; see Remark 7.4.

The index t of the symmetric power Symt(I (δ)) in Lemma 7.1 and Theorem 7.2
can be any integer greater than or equal to the relation type of I . The relation
type of an ideal I as in Data 3.1 is the largest integer q such that A(∗,q) contains
a minimal bihomogeneous generator of A. We recall the bihomogeneous ideal
A = J/L of Sym(I (δ)) as well as the bihomogeneous ideals L and J of S that
define the symmetric algebra and the Rees ring, respectively; see 3.2 and 3.4.

Lemma 7.1. Adopt Data 3.1. Suppose further that I is of linear type on the
punctured spectrum of R and that for some index t greater than or equal to the
relation type of I there exists a homogeneous complex

C• : · · · → C1→ C0→ 0
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of finitely generated graded free R-modules such that

(1) H0(C•)= Symt(I (δ)),

(2) the subcomplex Cd→· · ·→C0→ 0 of C• is linear (that is C j = R(− j)β j for
0≤ j ≤ d), and

(3) dim Hj (C•)≤ j for 1≤ j ≤ d − 1.

Let M be the ideal (x1, . . . , xd , T1, . . . , Tn) of S. Then the following statements hold:

(a) On Spec(S) \ {M}, the ideal A of Sym(I (δ)) is annihilated by m; that is,

(mA)P = 0 for every P ∈ Spec(S) \ {M}.

(b) On Spec(S) \ {M}, I is of fiber type; that is,

AP = I (X) ·Sym(I (δ))P for every P ∈ Spec(S) \ {M}.

(c) The ideal J of S satisfies

J=
√

L :S m=
√
(L, I (X)).

Proof. Recall that A= H0
m(Sym(I (δ))) since I is of linear type on the punctured

spectrum of R; see (3.7.1). In particular,

A(?,t) = H0
m(Symt(I (δ))).

Apply Corollary 5.5 to the R-module Symt(I (δ)) to conclude that

A(?,t) =A(0,t).

Therefore
A(?,≥t) =A(0,≥t)

because, by the definition of relation type, A(?,t) generates A(?,≥t) as a module over
Sym(I (δ)), hence over Sym(I (δ))(0,?). It follows that (T1, . . . , Tn)

tA ⊂ A(0,≥t),
which gives

(T1, . . . , Tn)
tA(>0,?) = 0.

Since, moreover, A(>0,?) vanishes locally on Spec(R) \ {m}, we deduce that

A(>0,?) = 0 locally on Spec(S) \ {M}.

This completes the proof of (a) because mA ⊂ A(>0,?), and of (b) because
A= I (X)+A(>0,?). As for (c), we recall the obvious inclusion L :S m⊂ J. Part
(a) shows that if P ∈ Spec(S) \ {M} contains L :S m then P contains J. Since M

contains J anyway, we deduce that J⊂
√

L :S m. The same argument, with part
(a) replaced by (b), shows that J=

√
(L, I (X)). �
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Theorem 7.2. Retain all of the notation and hypotheses of Lemma 7.1. Let ϕ be
a minimal homogeneous presentation matrix of g1, . . . , gn , ϕ′ be the submatrix
of ϕ that consists of the linear columns of ϕ, B be a homogeneous Jacobian dual
of ϕ, and B ′ be the Jacobian dual of ϕ′ in the sense of 3.6. Then the following
statements hold:

(a) The ideal I (X) of T which defines the variety X satisfies

I (X)=
√

Id(B ′).

(b) ht(Id(B ′))= n− dim A.

(c) The ideal J of S which defines the Rees ring R(I ) satisfies

J=
√
(L, Id(B ′))=

√
(L, Id(B)).

Proof. Part (b) is an immediate consequence of (a). We prove items (a) and (c)
simultaneously. We first notice that B ′ is a submatrix of B, the ideal Id(B) of S is
bihomogeneous, the two ideals (m, Id(B)) and (m, Id(B ′)) of S are equal, and the
two ideals Id(B)∩ T and Id(B ′) of T are equal.

From Lemma 7.1.(c) we know that

J=
√

L :S m.

The ideal L :S m is the annihilator of the S-module M =mS/L. The ideal mS is
generated by the entries of x and the ideal L is generated by the entries of x · B. It
follows that M is presented by [5 | B], where 5 is a presentation matrix of x with
entries in m. Therefore

L :S m= annS M ⊂
√

Fitt0(M)⊂
√
(m, Id(B)).

It follows that
J⊂

√
(m, Id(B))=

√
(m, Id(B ′)).

Intersecting with T we obtain

I (X)= J∩ T ⊂
√
(m, Id(B ′))∩ T =

√
(m, Id(B ′))∩ T =

√
Id(B ′),

where the last two radicals are taken in the ring T . This proves part (a).
From Lemma 7.1.(c) we also know that

J=
√
(L, I (X)),

and then by part (a)
J=

√
(L, Id(B ′)).

Finally, recall the inclusions Id(B ′) ⊂ Id(B) ⊂ J, and the proof of part (c) is
complete. �
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Remark 7.3. Retain the notation and the hypotheses of Theorem 7.2, and recall
the definition of analytic spread from 3.3. If d < n then `(I ) < n; and if `(I ) < n
then ϕ′ has at least n− 1 columns.

Proof. Write s for the number of columns of ϕ′, which is also the number of
columns of B ′. One has

n− d ≤ n− `(I )= n− dim A = ht Id(B ′)≤max{s− d + 1, 0},

where the first inequality holds by (3.3.2), the first equality follows from 3.3, the
second equality is Theorem 7.2.(b), and the last inequality holds by the Eagon–
Northcott bound on the height of determinantal ideals. These inequalities show that
if 0< n− d then 0< n− `(I ) and if 0< n− `(I ) then n− d ≤ s− d + 1. �

Remark 7.4. Adopt Data 3.1. Further assume that I is perfect of height two or
Gorenstein of height three, I is linearly presented, and I satisfies Gd . Then the
hypotheses of Lemma 7.1 and Theorem 7.2 are satisfied.

Proof. We know from (3.7.1) and (3.7.3) that the ideal I is of linear type on the
punctured spectrum.

We now establish the existence of a complex C•. In the first case, when I is perfect
of height two, we can take C• to be the complex C t

•
=K•(?,t) defined in the proof

of Theorem 6.1.(a). This is a linear complex of finitely generated graded free
R-modules which is acyclic on the punctured spectrum and has Symt(I (δ)) as
zeroth homology. These facts are shown in the proof of Theorem 6.1.(a), most
notably in (6.1.2).

In the second case, when I is Gorenstein of height three, we take C• to be the
complex Dt

•
(ϕ) used in the proof of Theorem 6.1.(b), with the additional restriction

that d ≤ t . This is a complex of finitely generated graded free R-modules which has
Symt(I (δ)) as zeroth homology. Moreover, this complex is acyclic on the punctured
spectrum, see Lemma 6.3, and it is linear for the first d steps, see (6.1.4). �

We end this section by recording a fact contained in the proof of Theorem 6.1.(b),
that may well be of independent interest. Recall the functions ai and reg from 2.2
and 2.4.

Proposition 7.5. Adopt Data 3.1. Further assume that I is a linearly presented
Gorenstein ideal of height three. Let q be a nonnegative integer. Ifµ(Ip)≤dim Rp+1
for each prime ideal p ∈ V (I ) with dim Rp ≤ d − 2, then

ai (Symq(I ))≤
{

qδ− i if q is even or q 6= d − i − 1,
qδ+ 1

2(n− q)− 1− i if q is odd and q = d − i − 1.

In particular,

reg Symq(I )= qδ if q is even or d ≤ q ,

reg Symq(I )≤ qδ+ 1
2(n− q)− 1 if q is odd and q ≤ d − 1.
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Proof. Apply Proposition 5.2 with M = Symq(I (δ)) and C• the complex Dq
•
(ϕ)

of (6.1.4). Lemma 6.3 guarantees that dim Hj (D
q
•
(ϕ))≤ 1 for every j with 1≤ j .

Thus Proposition 5.2.(a) (see also Remark 5.3) gives that Hi
m(Symq(I (δ))) is a

graded subquotient of Hd
m(D

q
d−i ) for 0 ≤ i ≤ d. From (6.1.4) we see that either

D
q
d−i = 0 or else

D
q
d−i
∼=

{
R(−d + i)β

q
d−i if q is even or q 6= d − i − 1,

R
(
−d + i + 1− 1

2(n− q)
)

if q is odd and q = d − i − 1.

Therefore the top degree of Hd
m(D

q
d−i ) is at most

d − i − d =−i if q is even or q 6= d − i − 1,

d − i − 1+ 1
2(n− q)− d =−i − 1+ 1

2(n− q) if q is odd and q = d − i − 1.

Notice the second case cannot occur if q is even or d ≤ q .
On the other hand, the fact that the R-module Symq(I (δ)) is generated in degree

0 implies that the regularity of Symq(I (δ)) is nonnegative. Now the assertions
follow. �

8. The candidate ideal C(ϕ)

In the present section we exhibit the candidate for the defining ideal of the variety X .
Most of this material is taken from [Kustin et al. 2017b].

Definition 8.1. Let k be a field and n and d be positive integers. For each n× n
alternating matrix ϕ with linear entries from the polynomial ring R= k[x1, . . . , xd ],
define an ideal C(ϕ) in the polynomial ring T = k[T1, . . . , Tn] as follows: Let B
be the d × n matrix with linear entries from T such that the matrix equation

[T1, . . . , Tn] ·ϕ = [x1, . . . , xd ] · B (8.1.1)

holds. Consider the (n+ d)× (n+ d) alternating matrix

B=

[
ϕ −B t

B 0

]
,

with entries in the polynomial ring S = k[x1, . . . , xd , T1, . . . , Tn]. Let Fi be
(−1)n+d−i times the Pfaffian of B with row and column i removed. View each Fi

as a polynomial in T [x1, . . . , xd ] and let

C(ϕ)= cT (Fn+d)

be the content ideal of Fn+d in T .

A description of C(ϕ) which is almost coordinate-free is given in [Kustin et al.
2017b]. The description depends on the choice of a direct sum decomposition of
the degree one component of the ring T into V1⊕ V2 where V1 has dimension one.
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(The almost coordinate-free description of C(ϕ) depends on the choice of direct
sum decomposition; however every decomposition gives rise to the same ideal
C(ϕ); see also Proposition 8.4.(b) below).

For the convenience of the reader, we provide direct proofs of the more immediate
properties of the ideal C(ϕ); most notably we describe a generating set of this ideal
in Proposition 8.5. The more difficult results about depth, unmixedness, Hilbert
series, and resolutions, however, are merely restated from [Kustin et al. 2017b]; see
Theorem 8.7.

Lemma 8.2. Retain the setting of Definition 8.1. There exists a polynomial h in S
so that the equality of row vectors

[F1, . . . , Fn+d ] = h · [T1, . . . , Tn,−x1, . . . ,−xd ]

obtains.

Proof. We may assume that the row vector F = [F1, . . . , Fn+d ] is not zero. Then B

has rank at least n+d−1. The alternating property of ϕ and equality (8.1.1) imply

0= T ·ϕ · T t
= x · B · T t.

Since the matrix B has only entries in the polynomial ring T , we conclude that

B · T t
= 0 and T · B t

= 0.

Hence
[T1, . . . , Tn,−x1, . . . ,−xd ] ·B= 0.

Since
[F1, . . . , Fn+d ] ·B= 0

and B has almost maximal rank, there exists an element h in the quotient field of S
such that

[F1, . . . , Fn+d ] = h · [T1, . . . , Tn,−x1, . . . ,−xd ].

The element h is necessarily in S because the ideal (T1, . . . , Tn, x1, . . . , xd) of S
has grade at least two. �

Lemma 8.2 shows that either h and the submaximal Pfaffians of B all vanish, or
else these elements are all nonzero. In the latter case, n+d has to be odd. Moreover,
regarding S as standard bigraded with deg x j = (1, 0) and deg Ti = (0, 1), we see
that B is the matrix of a bihomogeneous linear map. Thus the Pfaffians of this
matrix are bihomogeneous, hence h is bihomogeneous, and computing bidegrees
one sees that

deg h =
(

n−d−1
2

, d − 1
)
.



The equations defining blowup algebras of height three Gorenstein ideals 1517

In particular, if h 6= 0 then d < n. The next remark is now immediate.

Remark 8.3. Retain the setting of Definition 8.1.

(a) The ideal C(ϕ) of T is generated by homogeneous forms of degree d − 1.

(b) If n ≤ d or n+ d is even, then C(ϕ)= 0.

Proposition 8.4 shows that the ideal C(ϕ) can be defined using any submaximal
Pfaffian of B; it also relates C(ϕ) to the socle modulo the ideal Id(B) of T .

Proposition 8.4. Retain the setting of Definition 8.1.

(a) cT (Fi )= Ti · cT (Fn+ j )= Ti ·C(ϕ) for every 1≤ i ≤ n and 1≤ j ≤ d.

(b) cT (Fn+ j )= C(ϕ) for every 1≤ j ≤ d.

(c) C(ϕ)⊂ Id(B) :T (T1, . . . , Tn); in other words, the image of C(ϕ) is contained
in the socle of the standard graded k-algebra T/Id(B).

Proof. Lemma 8.2 shows that

cT (Fi )= cT (h · Ti )= Ti · cT (h) for 1≤ i ≤ n,

cT (Fn+ j )= cT (h · x j )= cT (h) for 1≤ j ≤ d.

This proves (a). Part (b) is an immediate consequence of (a).
Finally, the definition of Fi shows that in the range 1≤ i ≤ n,

Fi ∈ Id(B) · S, and therefore cT (Fi )⊂ Id(B).

Now apply (a) to deduce (c). �

In light of Remark 8.3.(b) we now assume that d < n and n + d is odd. Fix
an integer i with 1 ≤ i ≤ n. Let J = { j1, . . . , jd} be a subset of {1, . . . , n} \ {i}
with j1 < · · · < js < i < js+1 < · · · < jd . Write |J | = j1+ · · · + jd − d + s. Let
PfJ (ϕi ) be the Pfaffian of the matrix obtained from ϕ by deleting rows and columns
i, j1, . . . , jd and denote by 1J (B) the determinant of the d × d matrix consisting
of columns j1, . . . , jd of B.

Let k[y1, . . . , yd ] be another polynomial ring in d variables that acts on the
polynomial ring T [x1, . . . , xd ] by contraction and let ◦ denote the contraction
operation.

For M a monomial in k[y1, . . . , yd ] of degree 1
2(n− d − 1) we define

fM =
1
Ti

∑
J

(−1)|J |(M ◦PfJ (ϕi )) ·1J (B), (8.4.1)

where J ranges over all subsets of {1, . . . , n} \ {i} of cardinality d. Notice that,
since PfJ (ϕi )∈ k[x1, . . . , xd ] is a homogeneous polynomial of degree 1

2(n−d−1),
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the element M ◦ PfJ (ϕi ) ∈ k is simply the coefficient in this polynomial of the
monomial in k[x1, . . . , xd ] corresponding to M .

Similarly, fix an integer j with 1 ≤ j ≤ d. Let J = { j1, . . . , jd−1} be a subset
of {1, . . . , n} and set ‖J‖ = j1+ · · · + jd−1. Write PfJ (ϕ) for the Pfaffian of the
matrix obtained from ϕ by deleting rows and columns j1, . . . , jd−1 and denote by
1J (Bj ) the determinant of the matrix consisting of columns j1, . . . , jd−1 of B with
row j removed. Let M ∈ k[y1, . . . , yd ] be a monomial of degree 1

2(n− d + 1) that
is divisible by yj . We define

hM =
∑

J

(−1)‖J‖(M ◦PfJ (ϕ)) ·1J (Bj ), (8.4.2)

where J ranges over all subsets of {1, . . . , n} of cardinality d − 1. Notice that
M ◦PfJ (ϕ) ∈ k is the coefficient in PfJ (ϕ) of the monomial corresponding to M .

Proposition 8.5. Adopt the setting of Definition 8.1 with d < n and n+ d odd. The
ideal C(ϕ) of T is generated by the elements fM of (8.4.1) for a fixed i , where
M ranges over all monomials in k[y1, . . . , yd ] of degree 1

2(n − d − 1); it is also
generated by the elements hM of (8.4.2) for a fixed j , where M ranges over all
monomials of degree 1

2(n− d + 1) that are divisible by yj .

Proof. We prove the first claim. From Proposition 8.4.(a) we know that C(ϕ) =
1/Ti · cT (Fi ), for 1 ≤ i ≤ n. Expanding the Pfaffian Fi by maximal minors of B,
one obtains

Fi =±
∑

J

(−1)|J | PfJ (ϕi ) ·1J (B),

where, again, J ranges over all subsets of {1, . . . , n} \ {i} of cardinality d; see for
instance [Iarrobino and Kanev 1999, Lemma B.1]. Regarded as polynomials in
T [x1, . . . , xd ], the elements 1J (B) are constants and Fi is homogeneous of degree
1
2(n− d − 1). Therefore, the content ideal cT (Fi ) is generated by the elements

M ◦ Fi =±
∑

J

(−1)|J |(M ◦PfJ (ϕi )) ·1J (B),

where M ranges over all monomials in k[y1, . . . , yd ] of degree 1
2(n− d − 1).

To prove the second claim we recall that C(ϕ) = cT (Fn+ j ), for 1 ≤ j ≤ d;
see Proposition 8.4.(b). Now expand the Pfaffian Fn+ j along the last d − 1 rows
and use the fact that the monomials in the support of Fn+ j ∈ T [x1, . . . , xd ] have
degree 1

2(n − d + 1) and are divisible by x j ; see Lemma 8.2 and the discussion
following it. �

We illustrate the propositions above with an application to the ideal Id(B)+C(ϕ)
in the case n = d + 1; see [Johnson 1997, 2.10] for a similar result.
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Example 8.6. Adopt the setting of Definition 8.1 with n = d+ 1. Write 1i for the
maximal minor of B obtained by deleting column i . The first part of Proposition 8.5
(or Proposition 8.4.(a) and the fact that Fi =±1i ) show that C(ϕ) is the principal
ideal generated by 1i/Ti , for any i with 1≤ i ≤ n. Therefore Id(B)+C(ϕ) is the
principal ideal generated by 1i/Ti .

The next theorem is [Kustin et al. 2017b, 8.3].

Theorem 8.7. Adopt the setting of Definition 8.1 with 3 ≤ d < n and n odd. If
n− d ≤ ht Id(B), then the following statements hold:

(a) The ring T/(Id(B)+C(ϕ)) is Cohen–Macaulay on the punctured spectrum and

depth(T/(Id(B)+C(ϕ)))=


1 if d is odd,
2 if d is even and d + 3≤ n,
n− 1 if d + 1= n.

(b) The unmixed part of Id(B) is equal to Id(B)unm
= Id(B)+C(ϕ).

(c) If d is odd, then the ideal Id(B) is unmixed; furthermore, Id(B) has a linear
free resolution and reg(T/Id(B))= d − 1.

(d) The Hilbert series of T/(Id(B)+C(ϕ)) is

1
(1− z)d

( d−2∑
`=0

(
`+n−d−1

n−d−1

)
z` +

n−d−2∑
`=0

(−1)`+d+1
(
`+d−1

d−1

)
z`+2d−n

)
+ (−1)d

∑
j≤d n−d−3

2 e

( j+d−1
d−1

)
z2 j+2d−n.

(e) The multiplicity of T/(Id(B)+C(ϕ)) is

b
n−d

2 c∑
i=0

(
n− 2− 2i

d − 2

)
.

Remark. The conclusions of assertion (c) do not hold when d is even: the ideal
Id(B) can be mixed and the minimal homogeneous resolution of Id(B)unm may not
be linear; see, for example, [Kustin et al. 2017b, (4.4.5)].

Corollary 8.8. Adopt Data 3.1. Further assume that I is a linearly presented
Gorenstein ideal of height three. Let ϕ be a minimal homogeneous alternating
presentation matrix for g1, . . . , gn , B be the Jacobian dual of ϕ in the sense of 3.6,
and C(ϕ) be the content ideal of Definition 8.1. Then

Id(B)+C(ϕ)⊂ Id(B) :T (T1, . . . , Tn)⊂ I (X).

In particular, Id(B)+C(ϕ) is contained in the defining ideal J of the Rees ring
of I .
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Proof. The first containment follows from Proposition 8.4.(c). Since I is linearly
presented, Id(B) is an ideal of T and therefore Id(B)⊂ I (X) according to (3.6.2)
and (3.3.1). The second containment follows because I (X) is a prime ideal con-
taining Id(B) but not (T1, . . . , Tn). �

9. Defining equations of blowup algebras of linearly presented height three
Gorenstein ideals

In this section we assemble the proof of the main result of the paper, Theorem 9.1.
We also provide a more detailed version of the theorem than the one stated in the
Introduction; in particular, we express the relevant defining ideals as socles and
iterated socles.

Theorem 9.1. Let R = k[x1, . . . , xd ] be a polynomial ring over a field k, I be a
linearly presented Gorenstein ideal of height three which is minimally generated
by homogeneous forms g1, . . . , gn , ϕ be a minimal homogeneous alternating pre-
sentation matrix for g1, . . . , gn , B be the Jacobian dual of ϕ in the sense of 3.6,
C(ϕ) be the ideal of T = k[T1, . . . , Tn] given in Definition 8.1, and L be the ideal
of S = R[T1, . . . , Tn] which defines Sym(I ) as described in 3.6. If I satisfies Gd ,
then the following statements hold:

(a) The ideal of S defining the Rees ring of I is

J= L+ Id(B)S+C(ϕ)S.

If d is odd, then C(ϕ) is zero and J has the expected form.

(b) The ideal of T defining the variety X parametrized by g1, . . . , gn is

I (X)= Id(B)+C(ϕ).

(c) The two ideals J and L :S (x1, . . . , xd)(T1, . . . , Tn) of S are equal.

(d) The three ideals I (X), Id(B) :T (T1, . . . , Tn), and Id(B)unm of T are equal.

Proof. From Corollary 8.8 we have the containment

Id(B)+C(ϕ)⊂ I (X). (9.1.1)

If n ≤ d, then J= L by (3.7.2) and hence I (X)= 0 by (3.3.1), which also gives
Id(B)+C(ϕ)= 0. Therefore we may assume that d < n.

Corollary 6.4 guarantees that the ideal I is of fiber type, which means that
J= L+ I (X)S; see 3.4. Thus (a) follows from part (b) (and Remark 8.3.b).

According to Theorem 4.4 the homogeneous coordinate ring A = T/I (X) of X
has dimension d . Now Remark 7.4 and Theorem 7.2.(a) show that

ht Id(B)= ht I (X)= n− d. (9.1.2)
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The hypothesis of Theorem 8.7 is satisfied; thus assertions (b) and (e) of Theorem
8.7 yield

Id(B)unm
= Id(B)+C(ϕ), (9.1.3)

and the multiplicity of T/(Id(B)+C(ϕ)) is

b
n−d

2 c∑
i=0

(
n− 2− 2i

d − 2

)
.

By Theorem 4.4, the coordinate ring A = T/I (X) has the same multiplicity, by
(9.1.1) and (9.1.2), the rings T/(Id(B)+C(ϕ)) and T/I (X) have the same dimen-
sion, and by (9.1.3) both rings are unmixed. Hence the containment Id(B)+C(ϕ)⊂
I (X) of (9.1.1) is an equality, and (b) is also established.

Part (d) follows from Corollary 8.8, part (b), and (9.1.3). For the proof of (c)
notice that parts (a), (b), and (d) give

J= L+ (Id(B) :T (T1, . . . , Tn))S.

Therefore,
J⊂ (L+ Id(B)S) :S (T1, . . . , Tn).

Since L+ Id(B)S ⊂ L :S (x1, . . . , xd) according to (3.6.2), we obtain

J⊂ (L :S (x1, . . . , xd)) :S (T1, . . . , Tn)= L :S (x1, . . . , xd)(T1, . . . , Tn)⊂ J. �

Remark 9.2. Adopt Data 3.1. The assumption in Theorem 9.1 that I is linearly pre-
sented can be weakened to the condition that the entries of a minimal homogeneous
presentation matrix ϕ of I generate a complete intersection ideal.

Indeed, let ϕ be a minimal homogeneous alternating presentation matrix of
g1, . . . , gn . By the symmetry of the minimal homogeneous R-resolution of R/I
all entries of ϕ have the same degree D. Let y1, . . . , ys be a regular sequence
of homogeneous forms of degree D that generate I1(ϕ). These forms are alge-
braically independent over k, and R= k[x1, . . . , xd ] is flat over the polynomial ring
k[y1, . . . , ys]. The entries of ϕ are forms of degree D and are R-linear combinations
of y1, . . . , ys ; hence these entries are linear forms in the ring k[y1, . . . , ys]. Since
g1, . . . , gn are signed submaximal Pfaffians of ϕ according to [Buchsbaum and
Eisenbud 1977], these elements also belong to the ring k[y1, . . . , ys], and by flat
descent they satisfy the assumptions of Theorem 9.1 as elements of this ring. Now
apply Theorem 9.1. Flat base change then gives the statements about the Rees ring
over R, with y1, . . . , ys in place of x1, . . . , xd ; the statements about the ideal I (X)
are independent of the ambient ring.

The paper [Kustin et al. 2017b] was written with the intention of understanding
the ideals Id(B)unm in order to determine the equations defining the Rees algebra
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and the special fiber ring of height three Gorenstein ideals, the ultimate goal of the
present paper. In particular, in [Kustin et al. 2017b] the ideals Id(B)unm have been
resolved. Now that we have proven that Id(B)unm defines the special fiber ring, we
are able to harvest much information from the results of [Kustin et al. 2017b].

Corollary 9.3. Adopt the notation and hypotheses of Theorem 9.1. The following
statements hold:

(a) The variety X is Cohen–Macaulay.

(b) If n≤ d+1, then the homogeneous coordinate ring A of X is Cohen–Macaulay.
Otherwise

depth A =
{

1 if d is odd,
2 if d is even.

(c) If d is odd and d< n, then I (X) has a linear free resolution and reg(A)= d−1.

(d) If d < n, then the Hilbert series of A is

1
(1− z)d

( d−2∑
`=0

(
`+n−d−1

n−d−1

)
z` +

n−d−2∑
`=0

(−1)`+d+1
(
`+d−1

d−1

)
z`+2d−n

)
+ (−1)d

∑
j≤d n−d−3

2 e

( j+d−1
d−1

)
z2 j+2d−n.

Proof. We may assume that d < n since otherwise I (X)= 0; see (3.7.2) and (3.3.1).
From Theorem 9.1.(b) we know that I (X)= Id(B)+C(ϕ), where C(ϕ)= 0 if d is
odd. Thus the assertions are items (a), (c), and (d) of Theorem 8.7, which applies
due to (9.1.2). �

Remark. The minimal homogeneous resolution of the ideal I (X)may not be linear
when d is even; see [Kustin et al. 2017b, (4.4.5)].

References

[Aberbach et al. 1995] I. M. Aberbach, S. Huckaba, and C. Huneke, “Reduction numbers, Rees
algebras and Pfaffian ideals”, J. Pure Appl. Algebra 102:1 (1995), 1–15. MR Zbl

[Artin and Nagata 1972] M. Artin and M. Nagata, “Residual intersections in Cohen–Macaulay rings”,
J. Math. Kyoto Univ. 12 (1972), 307–323. MR Zbl

[Boffi and Sánchez 1992] G. Boffi and R. Sánchez, “On the resolutions of the powers of the Pfaffian
ideal”, J. Algebra 152:2 (1992), 463–491. MR Zbl

[Boij et al. 2014] M. Boij, J. Migliore, R. M. Miró-Roig, U. Nagel, and F. Zanello, “On the weak
Lefschetz property for Artinian Gorenstein algebras of codimension three”, J. Algebra 403 (2014),
48–68. MR Zbl

[Boswell and Mukundan 2016] J. A. Boswell and V. Mukundan, “Rees algebras and almost linearly
presented ideals”, J. Algebra 460 (2016), 102–127. MR Zbl

http://dx.doi.org/10.1016/0022-4049(94)00069-U
http://dx.doi.org/10.1016/0022-4049(94)00069-U
http://msp.org/idx/mr/1350205
http://msp.org/idx/zbl/0838.13003
http://dx.doi.org/10.1215/kjm/1250523522
http://msp.org/idx/mr/0301006
http://msp.org/idx/zbl/0263.14019
http://dx.doi.org/10.1016/0021-8693(92)90044-M
http://dx.doi.org/10.1016/0021-8693(92)90044-M
http://msp.org/idx/mr/1194315
http://msp.org/idx/zbl/0787.13009
http://dx.doi.org/10.1016/j.jalgebra.2014.01.003
http://dx.doi.org/10.1016/j.jalgebra.2014.01.003
http://msp.org/idx/mr/3166064
http://msp.org/idx/zbl/1327.13061
http://dx.doi.org/10.1016/j.jalgebra.2016.03.035
http://dx.doi.org/10.1016/j.jalgebra.2016.03.035
http://msp.org/idx/mr/3510395
http://msp.org/idx/zbl/1343.13005


The equations defining blowup algebras of height three Gorenstein ideals 1523

[Bruns et al. 2013] W. Bruns, A. Conca, and M. Varbaro, “Relations between the minors of a generic
matrix”, Adv. Math. 244 (2013), 171–206. MR Zbl

[Bruns et al. 2015] W. Bruns, A. Conca, and M. Varbaro, “Maximal minors and linear powers”, J.
Reine Angew. Math. 702 (2015), 41–53. MR Zbl

[Buchsbaum and Eisenbud 1977] D. A. Buchsbaum and D. Eisenbud, “Algebra structures for finite
free resolutions, and some structure theorems for ideals of codimension 3”, Amer. J. Math. 99:3
(1977), 447–485. MR Zbl

[Burch 1968] L. Burch, “On ideals of finite homological dimension in local rings”, Proc. Cambridge
Philos. Soc. 64 (1968), 941–948. MR Zbl

[Busé 2009] L. Busé, “On the equations of the moving curve ideal of a rational algebraic plane curve”,
J. Algebra 321:8 (2009), 2317–2344. MR Zbl

[Chardin et al. 2001] M. Chardin, D. Eisenbud, and B. Ulrich, “Hilbert functions, residual intersec-
tions, and residually S2 ideals”, Compositio Math. 125:2 (2001), 193–219. MR Zbl

[Conca and Valla 2000] A. Conca and G. Valla, “Betti numbers and lifting of Gorenstein codimension
three ideals”, Comm. Algebra 28:3 (2000), 1371–1386. MR Zbl

[Cortadellas Benítez and D’Andrea 2013] T. Cortadellas Benítez and C. D’Andrea, “Rational plane
curves parameterizable by conics”, J. Algebra 373 (2013), 453–480. MR Zbl

[Cortadellas Benítez and D’Andrea 2014] T. Cortadellas Benítez and C. D’Andrea, “Minimal genera-
tors of the defining ideal of the Rees algebra associated with a rational plane parametrization with
µ= 2”, Canad. J. Math. 66:6 (2014), 1225–1249. MR Zbl

[Cox et al. 2008] D. Cox, J. W. Hoffman, and H. Wang, “Syzygies and the Rees algebra”, J. Pure
Appl. Algebra 212:7 (2008), 1787–1796. MR Zbl

[De Negri and Valla 1995] E. De Negri and G. Valla, “The h-vector of a Gorenstein codimension
three domain”, Nagoya Math. J. 138 (1995), 113–140. MR Zbl

[Diesel 1996] S. J. Diesel, “Irreducibility and dimension theorems for families of height 3 Gorenstein
algebras”, Pacific J. Math. 172:2 (1996), 365–397. MR Zbl

[Eisenbud and Ulrich 2008] D. Eisenbud and B. Ulrich, “Row ideals and fibers of morphisms”,
Michigan Math. J. 57 (2008), 261–268. MR Zbl

[Eisenbud et al. 2006] D. Eisenbud, C. Huneke, and B. Ulrich, “The regularity of Tor and graded
Betti numbers”, Amer. J. Math. 128:3 (2006), 573–605. MR Zbl

[Elias and Iarrobino 1987] J. Elias and A. A. Iarrobino, “The Hilbert function of a Cohen–Macaulay
local algebra: extremal Gorenstein algebras”, J. Algebra 110:2 (1987), 344–356. MR Zbl

[Gaeta 1953] F. Gaeta, “Ricerche intorno alle varietà matriciali ed ai loro ideali”, pp. 326–328 in Atti
del Quarto Congresso dell’Unione Matematica Italiana (Taormina, 1951), vol. II, Casa Editrice
Perrella, Roma, 1953. MR Zbl

[Geramita and Migliore 1997] A. V. Geramita and J. C. Migliore, “Reduced Gorenstein codimension
three subschemes of projective space”, Proc. Amer. Math. Soc. 125:4 (1997), 943–950. MR Zbl

[Gruson et al. 1983] L. Gruson, R. Lazarsfeld, and C. Peskine, “On a theorem of Castelnuovo, and
the equations defining space curves”, Invent. Math. 72:3 (1983), 491–506. MR Zbl

[Hartshorne 2004] R. Hartshorne, “Geometry of arithmetically Gorenstein curves in P4”, Collect.
Math. 55:1 (2004), 97–111. MR Zbl

[Herzog et al. 1983] J. Herzog, A. Simis, and W. V. Vasconcelos, “Koszul homology and blowing-up
rings”, pp. 79–169 in Commutative algebra (Trento, 1981), edited by S. Greco and G. Valla, Lecture
Notes in Pure and Appl. Math. 84, Dekker, New York, 1983. MR Zbl

http://dx.doi.org/10.1016/j.aim.2013.05.004
http://dx.doi.org/10.1016/j.aim.2013.05.004
http://msp.org/idx/mr/3077870
http://msp.org/idx/zbl/1295.13010
http://dx.doi.org/10.1515/crelle-2013-0026
http://msp.org/idx/mr/3341465
http://msp.org/idx/zbl/1314.13025
http://dx.doi.org/10.2307/2373926
http://dx.doi.org/10.2307/2373926
http://msp.org/idx/mr/0453723
http://msp.org/idx/zbl/0373.13006
http://dx.doi.org/10.1017/S0305004100043620
http://msp.org/idx/mr/0229634
http://msp.org/idx/zbl/0172.32302
http://dx.doi.org/10.1016/j.jalgebra.2009.01.030
http://msp.org/idx/mr/2501523
http://msp.org/idx/zbl/1168.14027
http://dx.doi.org/10.1023/A:1002442111114
http://dx.doi.org/10.1023/A:1002442111114
http://msp.org/idx/mr/1815393
http://msp.org/idx/zbl/0983.13005
http://dx.doi.org/10.1080/00927870008826900
http://dx.doi.org/10.1080/00927870008826900
http://msp.org/idx/mr/1742661
http://msp.org/idx/zbl/1007.13007
http://dx.doi.org/10.1016/j.jalgebra.2012.09.034
http://dx.doi.org/10.1016/j.jalgebra.2012.09.034
http://msp.org/idx/mr/2995038
http://msp.org/idx/zbl/06182898
http://dx.doi.org/10.4153/CJM-2013-035-1
http://dx.doi.org/10.4153/CJM-2013-035-1
http://dx.doi.org/10.4153/CJM-2013-035-1
http://msp.org/idx/mr/3270782
http://msp.org/idx/zbl/1310.13007
http://dx.doi.org/10.1016/j.jpaa.2007.11.006
http://msp.org/idx/mr/2400743
http://msp.org/idx/zbl/1151.13012
http://dx.doi.org/10.1017/S0027763000005201
http://dx.doi.org/10.1017/S0027763000005201
http://msp.org/idx/mr/1339945
http://msp.org/idx/zbl/0838.13010
http://dx.doi.org/10.2140/pjm.1996.172.365
http://dx.doi.org/10.2140/pjm.1996.172.365
http://msp.org/idx/mr/1386623
http://msp.org/idx/zbl/0882.13021
http://dx.doi.org/10.1307/mmj/1220879408
http://msp.org/idx/mr/2492452
http://msp.org/idx/zbl/1193.13007
http://dx.doi.org/10.1353/ajm.2006.0022
http://dx.doi.org/10.1353/ajm.2006.0022
http://msp.org/idx/mr/2230917
http://msp.org/idx/zbl/1105.13017
http://dx.doi.org/10.1016/0021-8693(87)90050-0
http://dx.doi.org/10.1016/0021-8693(87)90050-0
http://msp.org/idx/mr/910388
http://msp.org/idx/zbl/0628.13016
http://msp.org/idx/mr/0056331
http://msp.org/idx/zbl/0050.37402
http://dx.doi.org/10.1090/S0002-9939-97-03956-7
http://dx.doi.org/10.1090/S0002-9939-97-03956-7
http://msp.org/idx/mr/1403128
http://msp.org/idx/zbl/0861.14040
http://dx.doi.org/10.1007/BF01398398
http://dx.doi.org/10.1007/BF01398398
http://msp.org/idx/mr/704401
http://msp.org/idx/zbl/0565.14014
http://msp.org/idx/mr/2028982
http://msp.org/idx/zbl/1052.14032
http://msp.org/idx/mr/686942
http://msp.org/idx/zbl/0499.13002


1524 Andrew R. Kustin, Claudia Polini and Bernd Ulrich

[Herzog et al. 1985] J. Herzog, W. V. Vasconcelos, and R. Villarreal, “Ideals with sliding depth”,
Nagoya Math. J. 99 (1985), 159–172. MR Zbl

[Hong et al. 2008] J. Hong, A. Simis, and W. V. Vasconcelos, “On the homology of two-dimensional
elimination”, J. Symbolic Comput. 43:4 (2008), 275–292. MR Zbl

[Huneke 1982] C. Huneke, “Linkage and the Koszul homology of ideals”, Amer. J. Math. 104:5
(1982), 1043–1062. MR Zbl

[Huneke and Rossi 1986] C. Huneke and M. Rossi, “The dimension and components of symmetric
algebras”, J. Algebra 98:1 (1986), 200–210. MR Zbl

[Iarrobino 1994] A. A. Iarrobino, “Associated graded algebra of a Gorenstein Artin algebra”, pp.
viii+115 Mem. Amer. Math. Soc. 514, 1994. MR Zbl

[Iarrobino and Kanev 1999] A. Iarrobino and V. Kanev, Power sums, Gorenstein algebras, and
determinantal loci, Lecture Notes in Mathematics 1721, Springer, 1999. MR Zbl

[Johnson 1997] M. R. Johnson, “Second analytic deviation one ideals and their Rees algebras”, J.
Pure Appl. Algebra 119:2 (1997), 171–183. MR Zbl

[Jouanolou 1996] J.-P. Jouanolou, “Résultant anisotrope, compléments et applications”, Electron. J.
Combin. 3:2 (1996), art. id. #2. MR Zbl

[Jouanolou 1997] J. P. Jouanolou, “Formes d’inertie et résultant: un formulaire”, Adv. Math. 126:2
(1997), 119–250. MR Zbl

[Kimura and Terai 2015] K. Kimura and N. Terai, “Arithmetical rank of Gorenstein squarefree
monomial ideals of height three”, J. Algebra 422 (2015), 11–32. MR Zbl

[Kleppe and Miró-Roig 1998] J. O. Kleppe and R. M. Miró-Roig, “The dimension of the Hilbert
scheme of Gorenstein codimension 3 subschemes”, J. Pure Appl. Algebra 127:1 (1998), 73–82. MR
Zbl

[Kustin and Ulrich 1992] A. R. Kustin and B. Ulrich, A family of complexes associated to an almost
alternating map, with applications to residual intersections, vol. 95, Mem. Amer. Math. Soc. 461,
1992. MR Zbl

[Kustin et al. 2011] A. R. Kustin, C. Polini, and B. Ulrich, “Rational normal scrolls and the defining
equations of Rees algebras”, J. Reine Angew. Math. 650 (2011), 23–65. MR Zbl

[Kustin et al. 2015] A. R. Kustin, C. Polini, and B. Ulrich, “Degree bounds for local cohomology”,
preprint, 2015. arXiv

[Kustin et al. 2016a] A. R. Kustin, C. Polini, and B. Ulrich, “Blowups and fibers of morphisms”,
Nagoya Math. J. 224:1 (2016), 168–201. MR

[Kustin et al. 2016b] A. R. Kustin, C. Polini, and B. Ulrich, “The Hilbert series of the ring associated
to an almost alternating matrix”, Comm. Algebra 44:7 (2016), 3053–3068. MR Zbl

[Kustin et al. 2017a] A. R. Kustin, C. Polini, and B. Ulrich, “The bi-graded structure of symmetric
algebras with applications to Rees rings”, J. Algebra 469 (2017), 188–250. MR Zbl

[Kustin et al. 2017b] A. R. Kustin, C. Polini, and B. Ulrich, “A matrix of linear forms which is
annihilated by a vector of indeterminates”, J. Algebra 469 (2017), 120–187. MR Zbl

[Madsen 2015] J. Madsen, “Equations of Rees algebras of ideals in two variables”, preprint, 2015.
arXiv

[Migliore and Peterson 1997] J. C. Migliore and C. Peterson, “A construction of codimension three
arithmetically Gorenstein subschemes of projective space”, Trans. Amer. Math. Soc. 349:9 (1997),
3803–3821. MR Zbl

[Morey 1996] S. Morey, “Equations of blowups of ideals of codimension two and three”, J. Pure
Appl. Algebra 109:2 (1996), 197–211. MR Zbl

http://dx.doi.org/10.1017/S0027763000021553
http://msp.org/idx/mr/805087
http://msp.org/idx/zbl/0561.13014
http://dx.doi.org/10.1016/j.jsc.2007.10.010
http://dx.doi.org/10.1016/j.jsc.2007.10.010
http://msp.org/idx/mr/2402032
http://msp.org/idx/zbl/1139.13013
http://dx.doi.org/10.2307/2374083
http://msp.org/idx/mr/675309
http://msp.org/idx/zbl/0505.13003
http://dx.doi.org/10.1016/0021-8693(86)90023-2
http://dx.doi.org/10.1016/0021-8693(86)90023-2
http://msp.org/idx/mr/825143
http://msp.org/idx/zbl/0584.13010
http://dx.doi.org/10.1090/memo/0514
http://msp.org/idx/mr/1184062
http://msp.org/idx/zbl/0793.13010
http://dx.doi.org/10.1007/BFb0093426
http://dx.doi.org/10.1007/BFb0093426
http://msp.org/idx/mr/1735271
http://msp.org/idx/zbl/0942.14026
http://dx.doi.org/10.1016/S0022-4049(96)00021-7
http://msp.org/idx/mr/1453218
http://msp.org/idx/zbl/0904.13002
http://www.combinatorics.org/Volume_3/Abstracts/v3i2r2.html
http://msp.org/idx/mr/1392487
http://msp.org/idx/zbl/0863.13002
http://dx.doi.org/10.1006/aima.1996.1609
http://msp.org/idx/mr/1442307
http://msp.org/idx/zbl/0882.13008
http://dx.doi.org/10.1016/j.jalgebra.2014.09.005
http://dx.doi.org/10.1016/j.jalgebra.2014.09.005
http://msp.org/idx/mr/3272066
http://msp.org/idx/zbl/1305.13008
http://dx.doi.org/10.1016/S0022-4049(96)00180-6
http://dx.doi.org/10.1016/S0022-4049(96)00180-6
http://msp.org/idx/mr/1609504
http://msp.org/idx/zbl/0949.14003
http://dx.doi.org/10.1090/memo/0461
http://dx.doi.org/10.1090/memo/0461
http://msp.org/idx/mr/1091668
http://msp.org/idx/zbl/0753.13005
http://dx.doi.org/10.1515/CRELLE.2011.002
http://dx.doi.org/10.1515/CRELLE.2011.002
http://msp.org/idx/mr/2770555
http://msp.org/idx/zbl/1211.13005
http://msp.org/idx/arx/1505.05209
http://dx.doi.org/10.1017/nmj.2016.34
http://msp.org/idx/mr/3572752
http://dx.doi.org/10.1080/00927872.2015.1065870
http://dx.doi.org/10.1080/00927872.2015.1065870
http://msp.org/idx/mr/3507169
http://msp.org/idx/zbl/06606863
http://dx.doi.org/10.1016/j.jalgebra.2016.08.014
http://dx.doi.org/10.1016/j.jalgebra.2016.08.014
http://msp.org/idx/mr/3563012
http://msp.org/idx/zbl/06642838
http://dx.doi.org/10.1016/j.jalgebra.2016.08.018
http://dx.doi.org/10.1016/j.jalgebra.2016.08.018
http://msp.org/idx/mr/3563011
http://msp.org/idx/zbl/06642837
http://msp.org/idx/arx/1511.04073
http://dx.doi.org/10.1090/S0002-9947-97-01978-8
http://dx.doi.org/10.1090/S0002-9947-97-01978-8
http://msp.org/idx/mr/1432204
http://msp.org/idx/zbl/0885.14022
http://dx.doi.org/10.1016/0022-4049(95)00087-9
http://msp.org/idx/mr/1387739
http://msp.org/idx/zbl/0864.14001


The equations defining blowup algebras of height three Gorenstein ideals 1525

[Morey and Ulrich 1996] S. Morey and B. Ulrich, “Rees algebras of ideals with low codimension”,
Proc. Amer. Math. Soc. 124:12 (1996), 3653–3661. MR Zbl

[Nguyen 2014] L. P. H. Nguyen, “On Rees algebras of linearly presented ideals”, J. Algebra 420
(2014), 186–200. MR Zbl

[Polini and Ulrich 1999] C. Polini and B. Ulrich, “Necessary and sufficient conditions for the
Cohen–Macaulayness of blowup algebras”, Compositio Math. 119:2 (1999), 185–207. MR Zbl

[Ulrich 1994] B. Ulrich, “Artin–Nagata properties and reductions of ideals”, pp. 373–400 in Commu-
tative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), edited by
W. J. Heinzer et al., Contemp. Math. 159, Amer. Math. Soc., Providence, RI, 1994. MR Zbl

[Vasconcelos 1991] W. V. Vasconcelos, “On the equations of Rees algebras”, J. Reine Angew. Math.
418 (1991), 189–218. MR Zbl

[Watanabe 1973] J. Watanabe, “A note on Gorenstein rings of embedding codimension three”, Nagoya
Math. J. 50 (1973), 227–232. MR Zbl

Communicated by David Eisenbud
Received 2015-06-19 Revised 2016-10-17 Accepted 2016-12-19

kustin@math.sc.edu Department of Mathematics, University of South Carolina,
1523 Greene Street, Columbia, SC 29208, United States

cpolini@nd.edu Department of Mathematics, University of Notre Dame,
255 Hurley Hall, Notre Dame, IN 46556-4618, United States

ulrich@math.purdue.edu Department of Mathematics, Purdue University, 150 N Uni-
versity Street, West Lafayette, IN 47907-2067, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1090/S0002-9939-96-03470-3
http://msp.org/idx/mr/1343713
http://msp.org/idx/zbl/0882.13003
http://dx.doi.org/10.1016/j.jalgebra.2014.08.019
http://msp.org/idx/mr/3261458
http://msp.org/idx/zbl/1298.13007
http://dx.doi.org/10.1023/A:1001704003619
http://dx.doi.org/10.1023/A:1001704003619
http://msp.org/idx/mr/1723128
http://msp.org/idx/zbl/0963.13006
http://dx.doi.org/10.1090/conm/159/01519
http://msp.org/idx/mr/1266194
http://msp.org/idx/zbl/0821.13008
http://dx.doi.org/10.1515/crll.1991.418.189
http://msp.org/idx/mr/1111206
http://msp.org/idx/zbl/0727.13002
http://dx.doi.org/10.1017/S002776300001566X
http://msp.org/idx/mr/0319985
http://msp.org/idx/zbl/0242.13019
mailto:kustin@math.sc.edu
mailto:cpolini@nd.edu
mailto:ulrich@math.purdue.edu
http://msp.org




msp
ALGEBRA AND NUMBER THEORY 11:7 (2017)

dx.doi.org/10.2140/ant.2017.11.1527

On Iwasawa theory, zeta elements for Gm,
and the equivariant Tamagawa

number conjecture
David Burns, Masato Kurihara and Takamichi Sano

We develop an explicit “higher-rank” Iwasawa theory for zeta elements associated
to the multiplicative group over abelian extensions of number fields. We show this
theory leads to a concrete new strategy for proving special cases of the equivariant
Tamagawa number conjecture and, as a first application of this approach, we prove
new cases of the conjecture over natural families of abelian CM-extensions of
totally real fields for which the relevant p-adic L-functions possess trivial zeroes.

1. Introduction

The “Tamagawa number conjecture” of Bloch and Kato [1990] concerns the special
values of motivic L-functions and has had a pivotal influence on the development
of arithmetic geometry.

Nevertheless, in any situation in which a semisimple algebra acts on a motive
it is natural to search for an “equivariant” refinement of this conjecture that takes
account, in some way, of the additional symmetries that arise in such cases.

The first such refinement was formulated by Kato [1993a; 1993b] (in the setting of
abelian extensions of number fields, and modulo certain delicate sign ambiguities) by
using determinant functors, and a definitive statement of the “equivariant Tamagawa
number conjecture” (or eTNC for short in the remainder of this introduction) was
subsequently given in [Burns and Flach 2001] by using virtual objects and relative
algebraic K -theory.

It has since been shown that the eTNC specializes to give refined versions of
most, if not all, of the important conjectures related to special values of motivic
L-values that are studied in the literature and it is by now widely accepted that it
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provides a “universal” approach to the formulation of the strongest possible versions
of such conjectures.

In this direction, we used the framework of the eTNC in our earlier article [Burns
et al. 2016a] — hereafter abbreviated [BKS] — to develop a very general approach
to the theory of abelian Stark conjectures that was principally concerned with the
properties of canonical “zeta elements” and “Selmer groups” that one can naturally
associate to the multiplicative group Gm over finite abelian extensions of number
fields.

In this way we derived, amongst other things, several new and concrete results
on the relevant case of the eTNC, the formulation, and in some interesting cases
proof of precise conjectural families of fine integral congruence relations between
Rubin–Stark elements of different ranks and detailed information on the Galois
module structures of both ideal class groups and Selmer groups.

The purpose of the current article is now to develop an explicit Iwasawa theory for
the zeta elements introduced in [BKS], to use this theory to derive a new approach
to proving special cases of the eTNC, and finally to demonstrate the usefulness of
this approach by using it to prove the conjecture in important new cases.

In the next two subsections we discuss briefly the main results that we obtain.

1A. Iwasawa main conjectures for general number fields. The first key aspect
of our approach is the formulation of an explicit main conjecture of Iwasawa theory
for abelian extensions of general number fields (we refer to this conjecture as a
“higher-rank main conjecture” since the rank of any associated Euler system would
in most cases be greater than one).

To give a little more detail, we fix a finite abelian extension K/k of general
number fields and a Zp-extension k∞ of k and set K∞ = K k∞. In this introduction,
we suppose that k∞/k is the cyclotomic Zp-extension, but this is only for simplicity.

Then our higher-rank main conjecture asserts the existence of an Iwasawa-
theoretic zeta element that plays the role of p-adic L-functions for general number
fields and has precisely prescribed interpolation properties in terms of the values at
zero of the higher derivatives of abelian L-series. (For details, see Conjecture 3.1).

Modulo a natural hypothesis on µ-invariants, this conjecture can be reformulated
in a more classical style as an equality between the characteristic ideals of a canonical
Selmer module and of the quotient of a natural Rubin lattice of unit groups modulo
the subgroup generated by the Rubin–Stark elements (see Conjecture 3.14 and
Proposition 3.15). In this way it becomes clear that the higher-rank main conjecture
extends classical main conjectures.

1B. Rubin–Stark congruences and the eTNC. It is also clear that the higher-rank
main conjecture does not itself imply the validity of the p-part of the eTNC (as
stated in Conjecture 2.3 below) and is much weaker than the type of main conjecture
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formulated by Fukaya and Kato [2006]. For example, if any p-adic place of k splits
completely in K , then our conjectural Rubin–Stark element encodes no information
at all concerning the L-values of characters of Gal(K/k).

To overcome this deficiency, we make a detailed Iwasawa-theoretic study of
the fine congruence relations between Rubin–Stark elements of differing ranks
that were independently formulated for finite abelian extensions in [Mazur and
Rubin 2016] (where the congruences are referred to as a “refined class number
formula for Gm”) and in [Sano 2014]. In this way we are led to conjecture a precise
family of “Iwasawa-theoretic Rubin–Stark congruences” for K∞/k which, roughly
speaking, describes the link between the natural Rubin–Stark elements for K∞/k
and for K/k. (For full details see Conjectures 4.1 and 4.2).

To better understand the context of this conjectural family of congruences we
prove in Theorem 4.9 that it constitutes a natural extension to general number
fields of the “Gross–Stark conjecture” that was formulated in [Gross 1982] for CM
extensions of totally real fields and has since been much studied in the literature.

We can now state one of the main results of the present article (for a more detailed
statement see Theorem 5.2).

Theorem 1.1. If each of the following conjectures is valid for K∞/k, then the
p-component of the eTNC (see Conjecture 2.3) is valid for every finite subextension
of K∞/k:
• The higher-rank Iwasawa main conjecture (Conjecture 3.1).

• The Iwawasa-theoretic Rubin–Stark congruences (Conjecture 4.2).

• Gross’s finiteness conjecture (see Remark 5.4).

An early indication of the usefulness of this result is that it quickly leads to a
much simpler proof of the main results of [Burns and Greither 2003] and [Flach
2011], and also those of [Bley 2006], in which the eTNC is proved for abelian
extensions over Q and certain abelian extensions over imaginary quadratic fields
respectively (see Corollary 5.6 and Remark 5.10).

To describe an application giving new results we assume k is totally real and
K is CM and consider the “minus component” eTNC(K/k)−p of the p-part of the
eTNC for K/k (as formulated explicitly in Remark 2.4).

We write K+ for the maximal totally real subfield of K and recall that if no
p-adic place splits in K/K+ and the Iwasawa-theoretic µ-invariant of K∞/K
vanishes, then eTNC(K/k)−p is already known to be valid (as far as we are aware,
such a result was first implicitly discussed in the survey article by Flach [2004]).

However, by combining Theorems 1.1 and 4.9 with results on the Gross–Stark
conjecture by Darmon, Dasgupta and Pollack [Dasgupta et al. 2011] and by Ventullo
[2015], we can now prove the following concrete result (for a precise statement of
which see Corollary 5.8).
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Corollary 1.2. Let K/k be a finite abelian extension of number fields such that K
is CM and k is totally real. If p is any odd prime for which the Iwasawa-theoretic
µ-invariant of K∞/K vanishes and at most one p-adic place of k splits in K/K+,
then eTNC(K/k)−p (see Remark 2.4) is (unconditionally) valid.

This result gives the first verifications of eTNC(K/k)−p in any case for which
both k 6=Q and the relevant p-adic L-series possess trivial zeroes. For example,
all of the hypotheses of Corollary 1.2 are satisfied by the concrete families of
extensions described in Examples 5.9.

By combining Corollary 1.2 with [BKS, Corollary 1.14] we can also immediately
deduce the following result concerning a refined version of the classical Brumer–
Stark Conjecture. In this result we write Sram(K/k) for the set of places of k that
ramify in K and for any finite set of nonarchimedean places T of k we write ClT (K )
for the ray class group of the ring of integers of K modulo the product of all places
of K above T . We also use the equivariant L-series θK/k,Sram(K/k),T (s) defined in
equation (1) of Section 2B below, and write x 7→ x# for the Zp-linear involution on
Zp[Gal(K/k)] that inverts elements of Gal(K/k).

Corollary 1.3. Let K/k and p be as in Corollary 1.2 and set G := Gal(K/k).
Then for any finite nonempty set of places T of k that is disjoint from Sram(K/k)
one has

θK/k,Sram(K/k),T (0)# ∈ Zp⊗Z FittZ[G]
(
HomZ(ClT (K ),Q/Z)

)
,

and hence also

θK/k,Sram(K/k),T (0) ∈ Zp⊗Z AnnZ[G](ClT (K )).

We note that the final assertion of this result gives the first verifications of
the Brumer–Stark conjecture in a case for which the base field is not Q and the
relevant p-adic L-series possess trivial zeroes. Thus the conclusion of this corollary
unconditionally holds for the extensions in Examples 5.9.

Our methods also prove a natural equivariant “main conjecture” (see Theorem 3.16
and Corollary 3.17) involving the Selmer modules for Gm introduced in [BKS]
and give a more straightforward proof of one of the main results of [Greither and
Popescu 2015] (see Section 3E, especially Corollaries 3.18 and 3.20).

1C. Further developments. The ideas presented in this article extend naturally in
at least two different directions.

Firstly, one can formulate a natural generalization of the theory discussed here
in the context of arbitrary Tate motives. In this setting our theory is related to
natural generalizations of both the notion of Rubin–Stark element and of the Rubin–
Stark conjecture for special values of L-functions at any integer points. We can
also formulate precise conjectural congruences between Rubin–Stark elements of
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differing “weights”, and in this way obtain p-adic families of Rubin–Stark elements.
For details see our recent paper [Burns et al. 2016b].

Secondly, using an approach developed in [Burns and Sano 2016], many of
the constructions, conjectures and results discussed here extend naturally to the
setting of noncommutative Iwasawa theory and can then be used to prove the same
case of the eTNC that we consider here over natural families of nonabelian Galois
extensions.

Note. After this article was submitted for publication we learned of the preprint
[Dasgupta et al. 2016] by Dasgupta, Kakde and Ventullo, which gives a full proof of
the Gross–Stark conjecture (as stated in Conjecture 4.7 below). Taking their result
into account, one can now remove the hypothesis of the validity of (the relevant
cases of) Conjecture 4.7 from the statement of Corollary 5.7 and, via Theorem 4.9,
one obtains further strong evidence in support of the Iwasawa-theoretic Rubin–Stark
Congruences that are formulated in Conjecture 4.2. This does not yet, however,
allow one to extend the results of either Corollary 1.2 or Corollary 1.3 since, aside
from certain special classes of fields discussed in Remark 5.4, Gross’s finiteness
conjecture is still (in the relevant cases) not known to be valid unless one assumes
that all associated p-adic L-functions have at most one trivial zero.

1D. Notation. For the reader’s convenience we collect here some basic notation.
For any (profinite) group G we write Ĝ for the group of homomorphisms G→C×

of finite order.
Let k be a number field. For a place v of k, the residue field of v is denoted by

κ(v) and we set Nv := #κ(v). We denote the set of places of k which lie above the
infinite place∞ of Q (resp. a prime number p) by S∞(k) (resp. Sp(k)). For a Galois
extension L/k, the set of places of k that ramify in L is denoted by Sram(L/k). For
any set 6 of places of k, we denote by 6L the set of places of L which lie above
places in 6.

Let L/k be an abelian extension with Galois group G. For a place v of k, the
decomposition group at v in G is denoted by Gv. If v is unramified in L , the
Frobenius automorphism at v is denoted by Frv.

Let E be either a field of characteristic 0 or Zp. For an abelian group A, we
denote E ⊗Z A by E A or AE . For a Zp-module A and an extension field E of Qp,
we also write E A or AE for E ⊗Zp A. (This abuse of notation would not make any
confusion.) We use similar notation for complexes. For example, if C is a complex
of abelian groups, then we denote E ⊗L

Z C by EC or CE .
Let R be a commutative ring and M an R-module. The linear dual HomR(M, R)

is denoted by M∗. If r and s are nonnegative integers with r ≤ s, then there is a
canonical paring ∧s

R M ×
∧r

R HomR(M, R)→
∧s−r

R M
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defined by

(a1∧· · ·∧as, ϕ1∧· · ·∧ϕr ) 7→
∑
σ∈Ss,r

sgn(σ ) det(ϕi (aσ( j)))1≤i, j≤r aσ(r+1)∧· · ·∧aσ(s),

with Ss,r := {σ ∈Ss | σ(1) < · · ·< σ(r) and σ(r + 1) < · · ·< σ(s)}. (See [BKS,
Proposition 4.1].) We denote the image of (a,8) under the above pairing by 8(a).

The total quotient ring of R is denoted by Q(R).

2. Zeta elements for Gm

In this section, we review the zeta elements for Gm that were introduced in [BKS].

2A. The Rubin–Stark conjecture. We review the formulation of the Rubin–Stark
conjecture [Rubin 1996, Conjecture B′].

Let L/k be a finite abelian extension of number fields with Galois group G.
Let S be a finite set of places of k which contains S∞(k)∪ Sram(L/k). We fix a
labeling S = {v0, . . . , vn}. Take r ∈ Z so that v1, . . . , vr split completely in L . We
put V := {v1, . . . , vr }. For each place v of k, we fix a place w of L lying above v.
In particular, for each i with 0≤ i ≤ n, we fix a place wi of L lying above vi . Such
conventions are frequently used in this paper.

For χ ∈ Ĝ, let Lk,S(χ, s) denote the usual S-truncated L-function for χ . We put

rχ,S := ords=0 Lk,S(χ, s).

Let OL ,S be the ring of SL integers of L . For any set 6 of places of k, put
YL ,6 :=

⊕
w∈6L

Zw, the free abelian group on 6L . We define

X L ,6 :=

{∑
w∈6L

aww ∈ YL ,6

∣∣∣ ∑
w∈6L

aw = 0
}
.

By Dirichlet’s unit theorem, we know that the homomorphism of R[G]-modules

λL ,S : RO×L ,S −→∼ RX L ,S, a 7→ −
∑
w∈SL

log |a|ww,

is an isomorphism.
By [Tate 1984, Chapter I, Proposition 3.4] we know that

rχ,S = dimC(eχCO×L ,S)= dimC(eχCX L ,S)=

{
#{v ∈ S | χ(Gv)= 1} if χ 6= 1,
n (= #S− 1) if χ = 1,

where eχ := 1/#G
∑

σ∈G χ(σ)σ
−1. From this fact, we see that r ≤ rχ,S .



On Iwasawa theory, zeta elements, and the Tamagawa number conjecture 1533

Let T be a finite set of places of k which is disjoint from S. The S-truncated
T -modified L-function is defined by

Lk,S,T (χ, s) :=
(∏
v∈T

(1−χ(Frv)Nv1−s)

)
Lk,S(χ, s).

The (S, T )-unit group of L is defined to be the kernel of O×L ,S→
⊕

w∈TL
κ(w)×.

Note that O×L ,S,T is a subgroup of O×L ,S of finite index. We have

r ≤ rχ,S = ords=0 Lk,S,T (χ, s)= dimC(eχCO×L ,S,T ).
We put

L(r)k,S,T (χ, 0) := lim
s→0

s−r Lk,S,T (χ, s).

We define the r -th order Stickelberger element by

θ
(r)
L/k,S,T :=

∑
χ∈Ĝ

L(r)k,S,T (χ
−1, 0)eχ ∈ R[G].

The (r -th order) Rubin–Stark element

εV
L/k,S,T ∈ R

∧r
Z[G]O

×

L ,S,T

is defined to be the element which corresponds to

θ
(r)
L/k,S,T · (w1−w0)∧ · · · ∧ (wr −w0) ∈ R

∧r
Z[G]X L ,S

under the isomorphism

R
∧r

Z[G]O
×

L ,S,T −→
∼ R

∧r
Z[G]X L ,S

induced by λL ,S . We note that εV
L/k,S,T is independent of the choice of w0 and v0

(see [Sano 2015, Proposition 3.3]).
Now assume that O×L ,S,T is Z-free. Then, the Rubin–Stark conjecture (as for-

mulated in [Rubin 1996, Conjecture B′]) predicts that the Rubin–Stark element
εV

L/k,S,T lies in the Z[G]-lattice obtained by setting

r⋂
Z[G]

O×L ,S,T :=
{
a ∈Q

∧r
Z[G]O

×

L ,S,T

∣∣
8(a)∈Z[G] for all 8∈

∧r
Z[G]HomZ[G](O×L ,S,T ,Z[G])

}
.

We stress, in particular, that in this context (and as used systematically in [BKS])
the notation

⋂r
Z[G] does not refer to an intersection.

In this paper, we consider the “p-part” of the Rubin–Stark conjecture for a fixed
prime number p. We put

UL ,S,T := ZpO×L ,S,T .
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We also fix an isomorphism C' Cp. From this, we regard

εV
L/k,S,T ∈ Cp

∧r
Zp[G]UL ,S,T .

We define

r⋂
Zp[G]

UL ,S,T :=
{
a ∈Qp

∧r
Zp[G]UL ,S,T

∣∣
8(a) ∈ Zp[G] for all 8 ∈

∧r
Zp[G]HomZp[G](UL ,S,T ,Zp[G])

}
.

We easily see that there is a natural isomorphism Zp
⋂r

Z[G]O
×

L ,S,T '
⋂r

Zp[G]UL ,S,T .
We often denote

∧r
Zp[G] and

⋂r
Zp[G] simply by

∧r and
⋂r respectively.

We propose the “p-component version” of the Rubin–Stark conjecture as follows.

Conjecture 2.1 (RS(L/k, S, T, V )p). One has εV
L/k,S,T ∈

⋂r
Zp[G]UL ,S,T .

Remark 2.2. Concerning known results on the Rubin–Stark conjecture, see [BKS,
Remark 5.3], for example. Note that the Rubin–Stark conjecture is a consequence
of the eTNC; this was first proved in [Burns 2007, Corollary 4.1], and then, in a
much simpler way, in [BKS, Theorem 5.14].

2B. The eTNC for the untwisted Tate motive. We now review the formulation of
the eTNC for the untwisted Tate motive.

Let L/k,G, S, T be as in the previous subsection. Fix a prime number p. We
assume that Sp(k)⊂ S. Consider the complex

CL ,S := R HomZp(R0c(OL ,S,Zp),Zp)[−2].

It is known that CL ,S is a perfect complex of Zp[G]-modules, acyclic outside
degrees zero and one. We have a canonical isomorphism

H 0(CL ,S)'UL ,S (:= ZpO×L ,S),

and a canonical exact sequence

0→ AS(L)→ H 1(CL ,S)→ XL ,S→ 0,

where AS(L) := Zp Pic(OL ,S) and XL ,S := Zp X L ,S . The complex CL ,S is iden-
tified with the p-completion of the complex obtained from the classical “Tate
sequence” (if S is large enough), and also identified with Zp R0((OL ,S)W ,Gm),
where R0((OL ,S)W ,Gm) is the “Weil-étale cohomology complex” constructed in
[BKS, §2.2] (see [Burns and Flach 1998, Proposition 3.3; Burns 2008, Proposition
3.5(e)]).
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By a similar construction to [BKS, Proposition 2.4], we construct a canonical
complex CL ,S,T which lies in the distinguished triangle

CL ,S,T → CL ,S→
⊕
w∈TL

Zpκ(w)
×
[0].

(We can simply define CL ,S,T by Zp R0T ((OL ,S)W ,Gm) in the terminology of
[BKS].) We have

H 0(CL ,S,T )=UL ,S,T

and the exact sequence

0→ AT
S (L)→ H 1(CL ,S,T )→ XL ,S→ 0,

where AT
S (L) is the p-part of the ray class group of OL ,S with modulus

∏
w∈TL

w.
We define the leading term of Lk,S,T (χ, s) at s = 0 by

L∗k,S,T (χ, 0) := lim
s→0

s−rχ,S Lk,S,T (χ, s).

The leading term at s = 0 of the equivariant L-function

θL/k,S,T (s) :=
∑
χ∈Ĝ

Lk,S,T (χ
−1, s)eχ (1)

is defined by

θ∗L/k,S,T (0) :=
∑
χ∈Ĝ

L∗k,S,T (χ
−1, 0)eχ ∈ R[G]×.

As in the previous subsection, we fix an isomorphism C ' Cp. We regard
θ∗L/k,S,T (0) ∈ Cp[G]×. The zeta element for Gm

zL/k,S,T ∈ CpdetZp[G](CL ,S,T )

is defined to be the element which corresponds to θ∗L/k,S,T (0) under the isomorphism

CpdetZp[G](CL ,S,T )' detCp[G](CpUL ,S,T )⊗Cp[G] det−1
Cp[G](CpXL ,S)

−→∼ detCp[G](CpXL ,S)⊗Cp[G] det−1
Cp[G](CpXL ,S)

−→∼ Cp[G],

where the second isomorphism is induced by λL ,S , and the last isomorphism is
the evaluation map. Note that determinant modules must be regarded as graded
invertible modules, but we omit the grading of any graded invertible modules as in
[BKS].

The eTNC for the pair (h0(Spec L),Zp[G]) is formulated as follows.
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Conjecture 2.3 (eTNC (h0(Spec L),Zp[G])). One has

Zp[G] · zL/k,S,T = detZp[G](CL ,S,T ).

Remark 2.4. When p is odd, k is totally real, and L is CM, we say that the minus
part of the eTNC (which we denote by eTNC(h0(Spec L),Zp[G]−)) is valid if we
have the equality

e−Zp[G] · zL/k,S,T = e−detZp[G](CL ,S,T ),

where e− := (1− c)/2 and c ∈ G is the complex conjugation.

2C. The eTNC and Rubin–Stark elements. In this subsection, we interpret the
eTNC using Rubin–Stark elements. The result in this subsection will be used in
Section 5.

We continue to use the notation in the previous subsection. Take χ ∈ Ĝ, and
suppose that rχ,S < #S. Put Lχ := Lkerχ and Gχ :=Gal(Lχ/k). Take Vχ,S ⊂ S so
that all v ∈ Vχ,S split completely in Lχ (i.e., χ(Gv)= 1) and #Vχ,S = rχ,S . Note
that if χ 6= 1, we have

Vχ,S = {v ∈ S | χ(Gv)= 1}.

Consider the Rubin–Stark element

ε
Vχ,S
Lχ/k,S,T ∈ Cp

∧rχ,S ULχ ,S,T .

Note that a Rubin–Stark element depends on a fixed labeling of S, so in this case a
labeling of S such that S = {v0, . . . , vn} and Vχ,S = {v1, . . . , vrχ,S } is understood
to be chosen.

For a set 6 of places of k and a finite extension F/k, put YF,6 := ZpYF,6 =⊕
w∈6F

Zpw and XF,6 := Zp X F,6 = ker(YF,6→ Zp).
Then the natural surjection XLχ ,S→ YLχ ,Vχ,S induces an injection

Y∗Lχ ,Vχ,S → X ∗Lχ ,S,

where (·)∗ := HomZp[Gχ ](·,Zp[Gχ ]). Since

YLχ ,Vχ,S ' Zp[Gχ ]
⊕rχ,S

and dimCp(eχCpXL ,S)= rχ,S , the above map induces an isomorphism

eχCpY∗Lχ ,Vχ,S
∼
→ eχCpX ∗L ,S.

From this, we have a canonical identification

eχCp
(∧rχ,S ULχ ,S,T ⊗

∧rχ,SY∗Lχ ,Vχ,S
)

= eχ
(
detCp[G](CpUL ,S,T )⊗Cp[G] det−1

Cp[G](CpXL ,S)
)
.
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Since {w1, . . . , wrχ,S } is a basis of YLχ ,Vχ,S , we have the (noncanonical) isomor-
phism∧rχ,S ULχ ,S,T −→

∼
∧rχ,S ULχ ,S,T ⊗

∧rχ,SY∗Lχ ,Vχ,S , a 7→ a⊗w∗1 ∧ · · · ∧w
∗

rχ,S ,

where w∗i is the dual of wi . Hence, we have the (noncanonical) isomorphism

eχCp
∧rχ,S ULχ ,S,T ' eχ

(
detCp[G](CpUL ,S,T )⊗Cp[G] det−1

Cp[G](CpXL ,S)
)
.

Proposition 2.5. Suppose rχ,S < #S for every χ ∈ Ĝ. A necessary and sufficient
condition for eTNC(h0(Spec L),Zp[G]) to hold is the existence of a Zp[G]-basis
LL/k,S,T of detZp[G](CL ,S,T ) such that for every χ ∈ Ĝ the image of eχLL/k,S,T

under the isomorphism

eχCpdetZp[G](CL ,S,T )

' eχ
(
detCp[G](CpUL ,S,T )⊗Cp[G] det−1

Cp[G](CpXL ,S)
)
' eχCp

∧rχ,S ULχ ,S,T

coincides with eχε
Vχ,S
Lχ/k,S,T .

Proof. By the definition of Rubin–Stark elements, the image of eχε
Vχ,S
Lχ/k,S,T under

the isomorphism

eχCp
∧rχ,S ULχ ,S,T ' eχ

(
detCp[G](CpUL ,S,T )⊗Cp[G] det−1

Cp[G](CpXL ,S)
)

' eχ
(
detCp[G](CpXL ,S)⊗Cp[G] det−1

Cp[G](CpXL ,S)
)

' eχCp[G]

is equal to eχ L∗k,S,T (χ
−1, 0). Necessity follows by putting LL/k,S,T := zL/k,S,T .

Sufficiency follows by noting that LL/k,S,T must be equal to zL/k,S,T . �

2D. The canonical projection maps. Let L/k,G, S, T, V, r be as in Section 2A.
We put

er :=
∑

χ∈Ĝ, rχ,S=r

eχ ∈Q[G].

As in Proposition 2.5, we construct the (noncanonical) isomorphism

er CpdetZp[G](CL ,S,T )' er Cp
∧rUL ,S,T .

In this subsection, we give an explicit description of the map

πV
L/k,S,T : detZp[G](CL ,S,T )

er Cp⊗
−−−→ er CpdetZp[G](CL ,S,T )

' er Cp
∧rUL ,S,T ⊂ Cp

∧rUL ,S,T .

This map is important since the image of the zeta element zL/k,S,T under this map
is the Rubin–Stark element εV

L/k,S,T .
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Firstly, we choose a representative 5
ψ
→ 5 of CL ,S,T , where the first term is

placed in degree zero, such that 5 is a free Zp[G]-module with basis {b1, . . . , bd}

(d is sufficiently large), and that the natural surjection

5→ H 1(CL ,S,T )→ XL ,S

sends bi to wi −w0 for each i with 1≤ i ≤ r . For the details of this construction,
see [BKS, §5.4]. Note that the representative of R0T ((OK ,S)W ,Gm) chosen there
is of the form

P→ F,

where P is projective and F is free. By Swan’s theorem [Curtis and Reiner 1981,
(32.1)], we have an isomorphism Zp P ' Zp F . This shows that we can take the
representative of CL ,S,T as above.

We define ψi ∈ HomZp[G](5,Zp[G]) by

ψi := b∗i ◦ψ,

where b∗i is the dual of bi . Note that
∧

r<i≤dψi ∈
∧d−r HomZp[G](5,Zp[G])

defines the homomorphism ∧
r<i≤dψi :

∧d
5→

∧r
5

given as follows (see Notation):(∧
r<i≤dψi

)
(b1∧ · · ·∧bd)=

∑
σ∈Sd,r

sgn(σ ) det(ψi (bσ( j)))r<i, j≤dbσ(1)∧ · · ·∧bσ(r)

Proposition 2.6. (i) We have
r⋂

UL ,S,T =
(

Qp
∧rUL ,S,T

)
∩
∧r
5,

where we regard UL ,S,T ⊂5 via the natural inclusion

UL ,S,T = H 0(CL ,S,T )= kerψ ↪→5.

(ii) If we regard
⋂r UL ,S,T as a subset of

∧r
5 by (i), then

im
(∧

r<i≤dψi :
∧d
5→

∧r
5
)
⊂

r⋂
UL ,S,T .

(iii) The map

detZp[G](CL ,S,T )=
∧d
5⊗

∧d
5∗→

r⋂
UL ,S,T

given by

b1 ∧ · · · ∧ bd ⊗ b∗1 ∧ · · · ∧ b∗d 7→
(∧

r<i≤dψi
)
(b1 ∧ · · · ∧ bd)
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coincides with (−1)r(d−r)πV
L/k,S,T . In particular, we have

πV
L/k,S,T (b1 ∧ · · · ∧ bd ⊗ b∗1 ∧ · · · ∧ b∗d)

= (−1)r(d−r)
∑
σ∈Sd,r

sgn(σ ) det(ψi (bσ( j)))r<i, j≤dbσ(1) ∧ · · · ∧ bσ(r)

and
imπV

L/k,S,T ⊂

{
a ∈

r⋂
UL ,S,T

∣∣∣ er a = a
}
.

Proof. For (i), see [BKS, Lemma 4.7(ii)]. For (ii) and (iii), see [BKS, Lemma
4.3]. �

3. Higher rank Iwasawa theory

3A. Notation. We fix a prime number p. Let k be a number field, and K∞/k a
Galois extension such that G := Gal(K∞/k)'1×0, where 1 is a finite abelian
group and 0 ' Zp. Set 3 := Zp[[G]]. Fix an isomorphism C ' Cp, and identify
1̂ with HomZ(1,Qp

×). For χ ∈ 1̂, put 3χ := Zp[imχ ][[0]]. Note that the total
quotient ring Q(3) has the decomposition

Q(3)'
⊕

χ∈1̂/∼Qp

Q(3χ ),

where χ ∼Qp χ
′ if and only if there exists σ ∈ GQp such that χ = σ ◦χ ′.

We use the following notation:

• K := K0
∞

(so Gal(K/k)=1);

• k∞ := K1
∞

(so k∞/k is a Zp-extension with Galois group 0);

• kn: the n-th layer of k∞/k;

• Kn: the n-th layer of K∞/K ;

• Gn := Gal(Kn/k).

For each character χ ∈ Ĝ we also set

• Lχ := K kerχ
∞ ;

• Lχ,∞ := Lχ · k∞;

• Lχ,n: the n-th layer of Lχ,∞/Lχ ;

• Gχ := Gal(Lχ,∞/k);

• Gχ,n := Gal(Lχ,n/k);

• Gχ := Gal(Lχ/k);

• 0χ := Gal(Lχ,∞/Lχ );

• 0χ,n := Gal(Lχ,n/Lχ );
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• S: a finite set of places of k which contains S∞(k)∪ Sram(K∞/k)∪ Sp(k);

• T : a finite set of places of k which is disjoint from S;

• Vχ := {v ∈ S | v splits completely in Lχ,∞} (this is a proper subset of S);

• rχ := #Vχ .

For any intermediate field L of K∞/k, we denote lim
←−−F UF,S,T by UL ,S,T , where

F runs over all intermediate fields of L/k that are finite over k and the inverse limit
is taken with respect to the norm maps. Similarly, CL ,S,T is the complex defined by
the inverse limit of the complexes CF,S,T with respect to the natural transition maps,
and AT

S (L) the inverse limit of the p-primary parts AT
S (F) of the T ray class groups

of OF,S with respect to the norm maps. We denote lim
←−−F YF,S by YL ,S , where the

inverse limit is taken with respect to the maps

YF ′,S→ YF,S, wF ′ 7→ wF ,

where F ⊂ F ′, wF ′ ∈ SF ′ , and wF ∈ SF is the place lying under wF ′ . We use
similar notation for XL ,S etc.

3B. Iwasawa main conjecture I. In this section we formulate the main conjecture
of Iwasawa theory for general number fields, which is a key to our study.

3B1. For any character χ in Ĝ there is a natural composite homomorphism

λχ : det3(CK∞,S,T )→ detZp[Gχ ](CLχ ,S,T )

↪→ detCp[Gχ ](CpCLχ ,S,T )

−→∼ detCp[Gχ ](CpULχ ,S,T )⊗Cp[Gχ ] det−1
Cp[Gχ ]

(CpXLχ ,S)

−→∼ detCp[Gχ ](CpXLχ ,S)⊗Cp[Gχ ] det−1
Cp[Gχ ]

(CpXLχ ,S)

' Cp[Gχ ]

χ
−→ Cp,

where the fourth map is induced by λLχ ,S , the fifth map is the evaluation, and the
last map is induced by χ .

We can now state our higher-rank main conjecture of Iwasawa theory in its first
form.

Conjecture 3.1 (IMC(K∞/k, S, T )). There exists a3-basis LK∞/k,S,T of the mod-
ule det3(CK∞,S,T ) for which, at every χ ∈ 1̂ and every ψ ∈ Ĝχ for which rψ,S = rχ
one has λψ(LK∞/k,S,T )= L(rχ )k,S,T (ψ

−1, 0).

Remark 3.2. This conjecture is equivariant with respect to1. But it is important to
note that this conjecture is much weaker than the (relevant case of the) equivariant
Tamagawa number conjecture. For example, if k∞/k is the cyclotomic Zp-extension,
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then for any ψ that is trivial on the decomposition group in Gχ of any p-adic place
of k one has rψ,S > rχ and so there is no interpolation condition at ψ specified
above. When rχ = 0, (the χ-component of) the element LK∞/k,S,T is the p-adic
L-function, and in the general case rχ > 0, it plays a role of p-adic L-functions.
We will see in Section 3B2 that the interpolation condition characterizes LK∞/k,S,T

uniquely.

Remark 3.3. The explicit definition of the elements εVχ
Lχ,n/k,S,T implies directly that

the assertion of Conjecture 3.1 is valid if and only if there is a 3-basis LK∞/k,S,T

of det3(CK∞,S,T ) for which, for every character χ ∈ 1̂ and every positive integer n,
the image of LK∞/k,S,T under the map

det3(CK∞,S,T )→ detZp[Gχ,n](CLχ,n,S,T )
π

Vχ
Lχ,n/k,S,T
−−−−−−→erχCp

∧rχULχ,n,S,T

is equal to εVχ
Lχ,n/k,S,T .

It is not difficult to see that the validity of Conjecture 3.1 is independent of T . We
assume in the sequel that T contains two places of unequal residue characteristics
and hence that each group UL ,S,T is Zp-free.

3B2. For each character χ ∈ 1̂, there is a natural ring homomorphism

Zp[[Gχ ]] = Zp[[Gχ ×0]]
χ
−→ Zp[imχ ][[0]] =3χ ⊂ Q(3χ ).

In the sequel we use this homomorphism to regard Q(3χ ) as a Zp[[Gχ ]]-algebra.
In the next result we describe an important connection between the element

LK∞/k,S,T that is predicted to exist by Conjecture 3.1 and the inverse limit (over n)
of the Rubin–Stark elements εVχ

Lχ,n/k,S,T . This result shows, in particular, that the
element LK∞/k,S,T in Conjecture 3.1 is unique (if it exists).

In the sequel we set
rχ⋂

ULχ,∞,S,T := lim
←−−

n

rχ⋂
ULχ,n,S,T ,

where the inverse limit is taken with respect to the map
rχ⋂

ULχ,m ,S,T →

rχ⋂
ULχ,n,S,T

induced by the norm map ULχ,m ,S,T →ULχ,n,S,T , where n ≤ m. Note that Rubin–
Stark elements are norm compatible (see [Rubin 1996, Proposition 6.1; Sano 2014,
Proposition 3.5]), so if we know that Conjecture RS(Lχ,n/k, S, T, Vχ )p is valid
for all sufficiently large n, then we can define the element

ε
Vχ
Lχ,∞/k,S,T := lim

←−−
n
ε

Vχ
Lχ,n/k,S,T ∈

rχ⋂
ULχ,∞,S,T .
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Theorem 3.4. (i) For each χ ∈ 1̂, the homomorphism

det3(CK∞,S,T )→ detZp[Gχ,n](CLχ,n,S,T )
π

Vχ
Lχ,n/k,S,T
−−−−−−→

rχ⋂
ULχ,n,S,T

(see Proposition 2.6(iii)) induces an isomorphism of Q(3χ )-modules

π
Vχ
Lχ,∞/k,S,T : det3(CK∞,S,T )⊗3 Q(3χ )'

( rχ⋂
ULχ,∞,S,T

)
⊗Zp[[Gχ ]] Q(3χ ).

(ii) If Conjecture 3.1 is valid, then we have

π
Vχ
Lχ,∞/k,S,T (LK∞/k,S,T )= ε

Vχ
Lχ,∞/k,S,T .

(Note that in this case Conjecture RS(Lχ,n/k, S, T, Vχ )p is valid for all n by
Remark 3.3 and Proposition 2.6(iii).)

Proof. Since the module AT
S (K∞)⊗3 Q(3χ ) vanishes, there are canonical isomor-

phisms

det3(CK∞,S,T )⊗3 Q(3χ )

' detQ(3χ )(CK∞,S,T ⊗3 Q(3χ ))

' detQ(3χ )(UK∞,S,T ⊗3 Q(3χ ))⊗Q(3χ ) det−1
Q(3χ )(XK∞,S ⊗3 Q(3χ )). (2)

It is also easy to check that there are natural isomorphisms

UK∞,S,T ⊗3 Q(3χ )'ULχ,∞,S,T ⊗Zp[[Gχ ]] Q(3χ )
and

XK∞,S ⊗3 Q(3χ )' XLχ,∞,S ⊗Zp[[Gχ ]] Q(3χ )' YLχ,∞,Vχ ⊗Zp[[Gχ ]] Q(3χ ),

and that these are Q(3χ )-vector spaces of dimension r := rχ (= #Vχ ). The isomor-
phism (2) is therefore a canonical isomorphism of the form

det3(CK∞,S,T )⊗3 Q(3χ )'
(∧rULχ,∞,S,T ⊗

∧rY∗Lχ,∞,Vχ
)
⊗Zp[[Gχ ]] Q(3χ ).

Composing this isomorphism with the map induced by the noncanonical isomor-
phism ∧rY∗Lχ,∞,Vχ −→

∼ Zp[[Gχ ]], w∗1 ∧ · · · ∧w
∗

r 7→ 1,
we have

det3(CK∞,S,T )⊗3 Q(3χ )'
(∧rULχ,∞,S,T

)
⊗Zp[[Gχ ]] Q(3χ ).

As in the proofs of Proposition 2.6(iii) and [BKS, Lemma 4.3], this isomorphism
is induced by lim

←−−n π
Vχ
Lχ,n/k,S,T . Now the isomorphism in claim (i) is thus obtained

directly from Lemma 3.5 below.
Claim (ii) follows by noting that the image of LK∞/k,S,T under the map

det3(CK∞,S,T )→ detZp[Gχ,n](CLχ,n,S,T )
π

Vχ
Lχ,n/k,S,T
−−−−−−→

rχ⋂
ULχ,n,S,T
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is equal to εVχ
Lχ,n/k,S,T . �

Lemma 3.5. With notation as above, there is a canonical identification( r⋂
ULχ,∞,S,T

)
⊗Zp[[Gχ ]] Q(3χ )=

(∧rULχ,∞,S,T

)
⊗Zp[[Gχ ]] Q(3χ ).

Proof. Take a representative 5∞→5∞ of CLχ,∞,S,T as in Section 2D. Put 5n :=

5∞⊗Zp[[Gχ ]] Zp[Gχ,n]. We have (see Proposition 2.6(i))

r⋂
ULχ,n,S,T =

(
Qp

∧rULχ,n,S,T

)
∩
∧r
5n,

and thus lim
←−−n

⋂r
Zp[Gχ,n]ULχ,n,S,T can be regarded as a submodule of the free Zp[[Gχ ]]-

module lim
←−−n

∧r
5n =

∧r
5∞. For simplicity, we set Gn := Gχ,n , G := Gχ , Un :=

ULχ,n,S,T , U∞ :=ULχ,∞,S,T , and Q := Q(3χ ). We will show the equality((
lim
←−−

n
Qp

∧rUn
)
∩
∧r
5∞

)
⊗Zp[[G]] Q =

(∧rU∞
)
⊗Zp[[G]] Q

of the submodules of (
∧r
5∞)⊗Zp[[G]] Q.

It is easy to see that(∧rU∞
)
⊗Zp[[G]] Q ⊂

((
lim
←−−

n
Qp

∧rUn
)
∩
∧r
5∞

)
⊗Zp[[G]] Q.

Conversely, take a ∈ (lim
←−−n Qp

∧rUn) ∩
∧r
5∞ and set Mn := coker(Un → 5n).

Then we have
lim
←−−

n
Mn ' coker(U∞→5∞)=: M∞.

Since 5∞⊗Zp[[G]] Q ' (U∞⊗Zp[[G]] Q)⊕ (M∞⊗Zp[[G]] Q), we have the decompo-
sition (∧r

5∞
)
⊗Zp[[G]] Q '

r⊕
i=0

(∧r−iU∞⊗
∧i M∞

)
⊗Zp[[G]] Q.

Write

a = (ai )i ∈

r⊕
i=0

(∧r−iU∞⊗
∧i M∞

)
⊗Zp[[G]] Q.

It is sufficient to show that ai = 0 for all i > 0. We may assume that

ai ∈ im
(∧r−iU∞⊗

∧i M∞→
(∧r−iU∞⊗

∧i M∞
)
⊗Zp[[G]] Q

)
for every i . Since a ∈

∧r
5∞, we can also write a = (a(n))n ∈ lim

←−−n

∧r
5n . For

each n, we have a decomposition

Qp
∧r
5n '

r⊕
i=0

(
Qp

∧r−iUn ⊗Qp[Gn]Qp
∧i Mn

)
,
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and we write

a(n) = (a(n),i )i ∈
r⊕

i=0

(
Qp

∧r−iUn ⊗Qp[Gn]Qp
∧i Mn

)
.

Since a ∈ lim
←−−n Qp

∧rUn , we must have a(n),i = 0 for all i > 0. To prove ai = 0 for
all i > 0, it is sufficient to show that the natural map

im
(∧r−iU∞⊗

∧i M∞→
(∧r−iU∞⊗

∧i M∞
)
⊗Zp[[G]] Q

)
→ lim
←−−

n

(
Qp

∧r−iUn ⊗Qp[Gn]Qp
∧i Mn

)
(3)

is injective. Note that M∞ is isomorphic to a submodule of 5∞, since M∞ '
ker(5∞→ H 1(CLχ,∞,S,T )). Hence both U∞ and M∞ are embedded in 5∞, and
we have

ker
(∧r−iU∞⊗

∧i M∞→
(∧r−iU∞⊗

∧i M∞
)
⊗Zp[[G]] Q

)
= ker

(∧r−iU∞⊗
∧i M∞

α
→
(∧r

(5∞⊕5∞)
)
⊗Zp[[G]]3χ

)
.

Set 3χ,n := Zp[imχ ][0χ,n]. The commutative diagram∧r−iU∞⊗
∧i M∞

α
//

β

��

(
∧r
(5∞⊕5∞))⊗Zp[[G]]3χ

f

��

lim
←−−n Qp((

∧r−iUn⊗
∧i Mn)⊗Zp[Gn ]3χ,n) g

// lim
←−−n Qp

(
(
∧r
(5n⊕5n))⊗Zp[Gn ]3χ,n

)
and the injectivity of f and g implies kerα = kerβ. Hence we have

ker
(∧r−iU∞⊗

∧i M∞→
(∧r−iU∞⊗

∧i M∞
)
⊗Zp[[G]] Q

)
= kerα = kerβ.

This shows the injectivity of (3). �

Remark 3.6. Assume that Conjecture RS(Lχ,n/k, S, T, Vχ )p is valid for all χ ∈ 1̂
and n. Using Theorem 3.4, we can define

LK∞/k,S,T ∈ det3(CK∞,S,T )⊗3 Q(3)=
⊕

χ∈1̂/∼Qp

(det3(CK∞,S,T )⊗3 Q(3χ ))

by LK∞/k,S,T := (π
Vχ ,−1
Lχ,∞/k,S,T (ε

Vχ
Lχ,∞/k,S,T ))χ . Then Conjecture 3.1 is equivalent to

3 ·LK∞/k,S,T = det3(CK∞,S,T ).

3C. Iwasawa main conjecture II. In this subsection, we work under the following
simplifying assumptions:

(∗) p is odd, and Vχ contains no finite places for every χ ∈ 1̂.

We note that the second assumption here is satisfied whenever k∞/k is the cyclo-
tomic Zp-extension.
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3C1. We start by quickly reviewing some basic facts concerning the height-one
prime ideals of 3.

We say that a height-one prime ideal p of 3 is regular if p /∈ p, and singular if
p ∈ p.

If p is regular, then 3p is identified with the localization of 3[1/p] at p3[1/p].
Since we have the decomposition

3
[ 1

p

]
=

⊕
χ∈1̂/∼Qp

3χ

[ 1
p

]
,

we have Q(3p) = Q(3χp) for some χp ∈ 1̂/∼Qp . Since 3χp[1/p] is a regular
local ring, 3p is a discrete valuation ring.

Next, suppose that p is a singular prime. We have the decomposition

3=
⊕

χ∈1̂′/∼Qp

Zp[imχ ][1p][[0]],

where1p is the Sylow p-subgroup of1, and1′ is the unique subgroup of1 which
is isomorphic to 1/1p. From this, we see that 3p is identified with the localization
of some Zp[imχ ][1p][[0]] at pZp[imχ ][1p][[0]]. By [Burns and Greither 2003,
Lemma 6.2(i)], we have

pZp[imχ ][1p][[0]] = (
√

pZp[imχ ][1p]),

where we denote the radical of an ideal I by
√

I . This shows that there is a one-to-
one correspondence between the set of all singular primes of 3 and the set 1̂′/∼Qp .
We denote by χp ∈ 1̂′/∼Qp the character corresponding to p. The next lemma
shows that

Q(3p)=
⊕

χ∈1̂/∼Qp
χ |1′=χp

Q(3χ ).

Lemma 3.7. Let E/Qp be a finite unramified extension, and O its ring of integers.
Let P be a finite abelian group whose order is a power of p. Put 3 := O[P][[0]]
and p :=

√
pO[P]3 (p is the unique singular prime of 3). Then we have

Q(3p)= Q(3)=
⊕

χ∈P̂/∼E

Q(O[imχ ][[0]]).

Proof. Since Q(3p)= Q(3p[1/p]) and 3p[1/p] =
⊕

χ∈P̂/∼E
eχ3p[1/p], where

eχ :=
∑

χ ′∼Eχ
eχ ′ , we have

Q(3p)=
⊕

χ∈P̂/∼E

Q
(

eχ3p

[ 1
p

])
.
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For χ ∈ P̂/∼E , put qχ :=ker(3
χ
→O[imχ ][[0]]). We can easily see that

√
pO[P]=

(p, IO(P)), where IO(P) is the kernel of the augmentation map O[P]→O. From
this, we also see that√

pO[P] = ker(O[P]
χ
−→O[imχ ] →O[imχ ]/πχO[imχ ] 'O/pO)

holds for any χ ∈ P̂/∼E , where πχ ∈ O[imχ ] is a uniformizer. This shows that
qχ ⊂ p. Hence, we know that 3qχ is the localization of 3p[1/p] at qχ3p[1/p].
One can check that 3qχ = Q(eχ3p[1/p]). Since we have 3qχ = Q(O[imχ ][[0]]),
the lemma follows. �

For a height-one prime ideal p of 3, define a subset ϒp ⊂ 1̂/∼Qp by

ϒp :=

{
{χp} if p is regular,
{χ ∈ 1̂/∼Qp | χ |1′ = χp} if p is singular.

The above argument shows that Q(3p)=
⊕

χ∈ϒp
Q(3χ ).

To end this subsection we recall a useful result concerning µ-invariants, whose
proof is in [Flach 2004, Lemma 5.6].

Lemma 3.8. Let M be a finitely generated torsion 3-module. Let p be a singular
prime of 3. Then the following are equivalent:

(i) The µ-invariant of the Zp[[0]]-module eχp M vanishes.

(ii) For any χ ∈ ϒp, the µ-invariant of the Zp[imχ ][[0]]-module M ⊗Zp[1′]

Zp[imχ ] vanishes.

(iii) Mp = 0.

3C2. In the rest of this section we assume the condition (∗) from the beginning of
Section 3C.

Lemma 3.9. Let p be a singular prime of 3. Then Vχ is independent of χ ∈ϒp. In
particular, for any χ ∈ϒp, the Q(3p)-module UK∞,S,T⊗3Q(3p) is free of rank rχ .

Proof. It is sufficient to show that Vχ = Vχp for any χ ∈ϒp. Note that the extension
degree [Lχ,∞ : Lχp,∞] = [Lχ : Lχp] is a power of p. Since p is odd by the
assumption (∗), we see that an infinite place of k which splits completely in Lχp,∞
also splits completely in Lχ,∞. By the assumption (∗), we know every place in Vχp
is infinite. Hence we have Vχ = Vχp . �

The above result motivates us, for any height-one prime ideal p of 3, to define
Vp := Vχ and rp := rχ by choosing some χ ∈ ϒp.

Assume that Conjecture RS(Lχ,n/k, S, T, Vχ )p holds for all χ ∈ 1̂ and n. We
then define the “p-part” of the Rubin–Stark element

ε
p
K∞/k,S,T ∈

(∧rpUK∞,S,T
)
⊗3 Q(3p)
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as the image of

(ε
Vχ
Lχ,∞/k,S,T )χ∈ϒp ∈

⊕
χ∈ϒp

rp⋂
ULχ,∞,S,T

under the natural map

⊕
χ∈ϒp

rp⋂
ULχ,∞,S,T →⊕

χ∈ϒp

( rp⋂
ULχ,∞,S,T

)
⊗Zp[[Gχ ]] Q(3χ )=

(∧rpUK∞,S,T
)
⊗3 Q(3p).

(See Lemma 3.5.)

Lemma 3.10. Let p be a height-one prime ideal of 3. When p is singular, assume
that the µ-invariant of eχp AT

S (K∞) (as Zp[[0]]-module) vanishes.

(i) The 3p-module (UK∞,S,T )p is free of rank rp.

(ii) If Conjecture RS(Lχ,n/k, S, T, Vχ )p is valid for every χ in 1̂ and every
natural number n, then there is an inclusion

3p · ε
p
K∞/k,S,T ⊂

(∧rp
3UK∞,S,T

)
p
.

Proof. As in the proof of Lemma 3.5, we choose a representative ψ∞ :5∞→5∞

of CK∞,S,T . We have the exact sequence

0→UK∞,S,T →5∞
ψ∞
−−→5∞→ H 1(CK∞,S,T )→ 0. (4)

If p is regular, then3p is a discrete valuation ring and the exact sequence (4) implies
that the 3p-modules (UK∞,S,T )p and im(ψ∞)p are free. Since UK∞,S,T ⊗3 Q(3p)

is isomorphic to YK∞,Vp⊗3 Q(3p), we also know that the rank of (UK∞,S,T )p is rp.
Suppose next that p is singular. Since the µ-invariant of eχpXK∞,S\Vp vanishes,

we apply Lemma 3.8 to deduce that (XK∞,S)p = (YK∞,Vp)p. In a similar way, the
assumption that the µ-invariant of eχp AT

S (K∞) vanishes implies that AT
S (K∞)p= 0.

Hence we have H 1(CK∞,S,T )p = (YK∞,Vp)p. By assumption (∗), we know that
YK∞,Vp is projective as a 3-module. This implies that H 1(CK∞,S,T )p = (YK∞,Vp)p

is a free 3p-module of rank rp. By choosing splittings of the sequence (4), we then
easily deduce that the 3p-modules (UK∞,S,T )p and im(ψ∞)p are free and that the
rank of (UK∞,S,T )p is equal to rp.

At this stage we have proved that, for any height-one prime ideal p of 3, the
3p-module (UK∞,S,T )p is both free of rank rp (as required to prove claim (i)) and
also a direct summand of (5∞)p, and hence that(∧rp

3UK∞,S,T
)
p
=
(∧rp

3UK∞,S,T ⊗3 Q(3p)
)
∩
(∧rp

35∞
)
p
. (5)
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Now we make the stated assumption concerning the validity of the p-part of the
Rubin–Stark conjecture. This implies, by the proof of Theorem 3.4(i), that for each
p the element εpK∞/k,S,T lies in both (

∧rp
35∞)p and⊕

χ∈ϒp

(∧rχ
3UK∞,S,T

)
⊗3 Q(3χ )=

(∧rp
3UK∞,S,T

)
⊗3 Q(3p),

and hence, by (5) that it belongs to (
∧rp
3UK∞,S,T )p, as required to prove claim (ii). �

We can now decompose Conjecture 3.1 into the statements for p components.

Proposition 3.11. Assume that Conjecture RS(Lχ,n/k, S, T, Vχ )p holds for all
characters χ in 1̂ and all sufficiently large n and that for each character χ
in 1̂′/∼Qp the µ-invariant of the Zp[[0]]-module eχ AT

S (K∞) vanishes. Then
Conjecture 3.1 holds if and only if

3p · ε
p
K∞/k,S,T = Fittrp3 (H

1(CK∞,S,T ))p ·
(∧rp

3UK∞,S,T
)
p

(6)

for every height-one prime ideal p of 3.

Remark 3.12. At every height-one prime ideal p there is an equality

Fittrp3 (H
1(CK∞,S,T ))p = Fitt03(A

T
S (K∞))pFitt03(XK∞,S\Vp)p .

If p is regular, then 3p is a discrete valuation ring and this equality follows directly
from the exact sequence

0→ AT
S (K∞)→ H 1(CK∞,S,T )→ XK∞,S→ 0.

If p is singular, then the equality is valid since the result of Lemma 3.8 im-
plies (XK∞,S\Vp)p vanishes and so H 1(CK∞,S,T )p is isomorphic to the direct sum
AT

S (K∞)p⊕ (YK∞,Vp)p.

Remark 3.13. If the prime p is singular, then (XK∞,S\Vp)p vanishes and

Fitt03(A
T
S (K∞))p =3p

if the µ-invariant of the Zp[[0]]-module eχp AT
S (K∞) vanishes (see Lemma 3.8).

Thus, in this case, for any such p the equality (6) is equivalent to

3p · ε
p
K∞/k,S,T =

(∧rp
3UK∞,S,T

)
p
.

Thus, we know that by Lemma 3.10(ii) the validity of the p-part of the Rubin–Stark
conjecture already gives strong evidence of the above equality.

Proof. Since det3(CK∞,S,T ) is an invertible 3-module the equality 3 ·LK∞/k,S,T =

det3(CK∞,S,T ) in Conjecture 3.1 is valid if and only if at every height-one prime
ideal p of 3 one has

3p ·LK∞/k,S,T = det3(CK∞,S,T )p (7)
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(see [Burns and Greither 2003, Lemma 6.1]).
If p is regular, then one easily sees that this equality is valid if and only if the

equality
3p · ε

p
K∞/k,S,T = Fittrp3 (H

1(CK∞,S,T )) ·
(∧rp

3UK∞,S,T
)
p

is valid, by using Theorem 3.4(ii).
If p is singular, then the assumed vanishing of the µ-invariants and the argument

in the proof of Lemma 3.10(i) together show that the 3p-modules (UK∞,S,T )p and
H 1(CK∞,S,T )p are both free of rank rp. Noting this, we see that (7) holds if and
only if

3p · ε
p
K∞/k,S,T =

(∧rp
3UK∞,S,T

)
p
,

and so in this case the claimed result follows from Remark 3.13. �

3C3. In [BKS] we defined canonical Selmer modules SS,T (Gm/F ) and S tr
S,T (Gm/F )

for Gm over number fields F that are of finite degree over Q. For any intermediate
field L of K∞/k, we now set

Sp,S,T (Gm/L) := lim
←−−

F
SS,T (Gm/F )⊗Zp, S tr

p,S,T (Gm/L) := lim
←−−

F
S tr

S,T (Gm/F )⊗Zp,

where in both limits F runs over all finite extensions of k in L and the transition
morphisms are the natural corestriction maps.

We note in particular that, by its very definition, S tr
p,S,T (Gm/L) coincides with

H 1(CL ,S,T ). In addition, this definition implies that for any subset V of S compris-
ing places that split completely in L the kernel of the natural (composite) projection
map

S tr
p,S,T (Gm/L)V := ker(S tr

p,S,T (Gm/L)→ XL ,S→ YL ,V )

lies in a canonical exact sequence of the form

0→ AT
S (L)→ S tr

p,S,T (Gm/L)V → XL ,S\V → 0. (8)

We now interpret our Iwasawa main conjecture in terms of classical characteristic
ideals.

Conjecture 3.14 (IMC(K∞/k, S, T ) II). Assume Conjecture RS(Lχ,n/k, S, T,
Vχ )p holds for all χ ∈ 1̂ and all nonnegative integers n where Lχ,n , 1, etc. are
defined in Section 3. Then for any χ ∈ 1̂ there are equalities

char3χ
(( rχ⋂

ULχ,∞,S,T /〈ε
Vχ
Lχ,∞/k,S,T 〉

)χ)
= char3χ (S

tr
p,S,T (Gm/Lχ,∞)

χ

Vχ )

= char3χ (A
T
S (Lχ,∞)

χ )char3χ ((XLχ,∞,S\Vχ )
χ ).

(9)
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Here, for any Zp[[Gχ ]]-module M we write Mχ for the 3χ -module M ⊗Zp[Gχ ]

Zp[imχ ] and char3χ (M
χ ) for its characteristic ideal in 3χ . In addition, the

second displayed equality is a direct consequence of the appropriate case of the
exact sequence (8).

Proposition 3.15. Assume that Conjecture RS(Lχ,n/k, S, T, Vχ )p is valid for all
characters χ in 1̂ and all n and that for each character χ ∈ 1̂′/∼Qp the µ-invariant
of the Zp[[0]]-module eχ AT

S (K∞) vanishes. Then Conjecture 3.1 is equivalent to
Conjecture 3.14.

Proof. Note that by our assumptionµ=0 we have (
⋂rp UK∞,S,T )p= (

∧rpUK∞,S,T )p

for any height-one prime p, using (5). Thus, the equality (6) implies the equality
(9) for any χ .

On the other hand, for a height-one regular prime p, we can regard p to be a
prime of 3χ for some χ , so the equality (9) implies the equality (6). For a singular
prime p, by Lemma 3.8, (9) for any χ implies (

∧rpUK∞,S,T )p/〈ε
p
K∞/k,S,T 〉= 0, thus

the equality (6) by Remark 3.13.
The proposition therefore follows from Proposition 3.11. �

3D. The case of CM-fields. Concerning the minus components for CM-extensions,
we can prove our equivariant main conjecture using the usual main conjecture proved
by Wiles.

Theorem 3.16. Suppose that p is odd, k is totally real, k∞/k is the cyclotomic Zp-
extension, and K is CM. If the µ-invariant of the cyclotomic Zp-extension K∞/K
vanishes, then the minus part of Conjecture 3.1 is valid for (K∞/k, S, T ).

Proof. In fact, for an odd character χ , one has rχ = 0 and the Rubin–Stark elements
are Stickelberger elements. Therefore, εVχ

Lχ,∞/k,S,T is the p-adic L-function of
Deligne–Ribet.

We shall prove the equality (9) in Conjecture 3.14 for each odd χ ∈ 1̂. We fix
such a character χ , and may take K = Lχ and S = S∞(k)∪ Sram(K∞/k)∪ Sp(k).
Let S′p be the set of p-adic primes which split completely in K . If v∈ S\Vχ is prime
to p, it is ramified in Lχ = K , so we have char3χ (X

χ

Lχ,∞,S\Vχ )= char3χ (Y
χ

Lχ,∞,S′p
).

Let AT (Lχ,∞) be the inverse limit of the p-component of the T -ray class group
of the full integer ring of Lχ,n . By sending the prime w above v in S′p to the class
of w, we obtain a homomorphism YχLχ,∞,S′p → AT (Lχ,∞)χ , which is known to be
injective. Since the sequence

YχLχ,∞,S→ AT (Lχ,∞)χ → AT
S (Lχ,∞)

χ
→ 0

is exact and the kernel of YχLχ,∞,S→ YχLχ,∞,S′p is finite, we have

char3χ (A
T
S (Lχ,∞)

χ )char3χ ((YLχ,∞,S)
χ )= char3χ (A

T (Lχ,∞)χ ).
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Therefore, by noting χ 6= 1, the equality (9) in Conjecture 3.14 becomes

char3χ (A
T (Lχ,∞)χ )= θ

χ

Lχ,∞/k,S,T (0)3χ ,

where θχLχ,∞/k,S,T (0) is the χ -component of ε∅Lχ,∞/k,S,T , which is the Stickelberger
element in this case. This equality is nothing but the usual main conjecture proved
in [Wiles 1990], so we have proved this theorem. �

3E. Consequences for number fields of finite degree. Let p, k, k∞, and K be
as in Theorem 3.16. We shall describe unconditional equivariant results on the
Galois module structure of Selmer modules for K , which follow from the validity
of Theorem 3.16.

To do this we set 3 := Zp[[Gal(K∞/k)]] and for any 3-module M we denote
by M− the minus part consisting of elements on which the complex conjugation
acts as −1 (namely, M− = e−M). We note, in particular, that θK∞/k,S,T (0) belongs
to 3−.

We also write x 7→ x# for the Zp-linear involutions of both 3 and the group
rings Zp[G] for finite quotients G of Gal(K∞/k) which is induced by inverting
elements of Gal(K∞/k).

Corollary 3.17. If the p-adic µ-invariant of K∞/K vanishes, then

Fitt3−(S tr
p,S,T (Gm/K∞)

−)=3 · θK∞/k,S,T (0)

and

Fitt3−(Sp,S,T (Gm/K∞)
−)=3 · θK∞/k,S,T (0)#.

Proof. Since rχ = 0 for any odd character χ , the first displayed equality is equiv-
alent to Conjecture 3.1 in this case and is therefore valid as a consequence of
Theorem 3.16.

The second displayed equality is then obtained directly by applying the general
result of [BKS, Lemma 2.8] to the first equality. �

Corollary 3.18. Let L be an intermediate CM-field of K∞/k which is finite over k,
and set G := Gal(L/k). If the p-adic µ-invariant of K∞/K vanishes, then there
are equalities

FittZp[G]−(S
tr
p,S,T (Gm/L)

−)= Zp[G] · θL/k,S,T (0)

and

FittZp[G]−(Sp,S,T (Gm/L)
−)= Zp[G] · θL/k,S,T (0)#.

Proof. This follows by combining Corollary 3.17 with the general result of
Lemma 3.19 below and standard properties of Fitting ideals. �



1552 David Burns, Masato Kurihara and Takamichi Sano

Lemma 3.19. Suppose that L/k is a Galois extension of finite number fields with
Galois group G. Then there are natural isomorphisms

S tr
S,T (Gm/L)G −→

∼ S tr
S,T (Gm/k) and SS,T (Gm/L)G −→

∼ SS,T (Gm/k).

Proof. The “Weil-étale cohomology complex” R0T ((OL ,S)W ,Gm) is perfect and
so there exist projective Z[G]-modules P1 and P2, and a homomorphism of Z[G]-
modules P1→ P2 whose cokernel identifies with S tr

S,T (Gm/L) and is such that the
cokernel of the induced map PG

1 → PG
2 identifies with S tr

S,T (Gm/k) (see [BKS,
§5.4]).

The first isomorphism is then obtained by noting that the norm map induces an
isomorphism of modules (P2)G −→

∼ PG
2 .

The second claimed isomorphism can also be obtained in a similar way, noting
that SS,T (Gm/L) is obtained as the cohomology in the highest (nonzero) degree of
a perfect complex (see [BKS, Proposition 2.4]). �

We write OL for the ring of integers of L and ClT (L) for the ray class group
of OL with modulus

∏
w∈TL

w. We denote the Sylow p-subgroup of ClT (L) by
AT (L) and write (AT (L)−)∨ for the Pontrjagin dual of the minus part of AT (L).

The next corollary of Theorem 3.16 that we record coincides with one of the
main results of [Greither and Popescu 2015].

Corollary 3.20. Let L be an intermediate CM-field of K∞/k which is finite over k,
and set G := Gal(L/k). If the p-adic µ-invariant for K∞/K vanishes, then

θL/k,S,T (0)# ∈ FittZp[G]−((A
T (L)−)∨).

Proof. The canonical exact sequence

0→ ClT (L)∨→ SS∞(k),T (Gm/L)→ Hom(O×L ,Z)→ 0

from [BKS, Proposition 2.2] implies that the natural map Sp,S∞(k),T (Gm/L)
−
'

(AT (L)−)∨ is bijective.
In addition, from [BKS, Proposition 2.4(ii)], we know that the canonical homo-

morphism SS,T (Gm/L)→ SS∞(k),T (Gm/L) is surjective.
The claim therefore follows directly from the second equality in Corollary 3.18.

�

Remark 3.21. (i) Our derivation of the equality in Corollary 3.20 differs from
that given in [Greither and Popescu 2015] in that we avoid any use of Galois
modules related to 1-motives. Instead, we used the theory of Selmer modules
SS,T (Gm/L) introduced in [BKS].

(ii) The Brumer–Stark conjecture predicts θL/k,Sram(L/k),T (0) belongs to the an-
nihilator AnnZp[G]−(A

T (L)) and if no p-adic place of L+ splits in L , then
Corollary 3.20 implies a stronger version of this conjecture.
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(iii) We have assumed throughout Section 3 that S contains all p-adic places of
k and so the Stickelberger element θL/k,S,T (0) that occurs in Corollary 3.20 is,
in general, imprimitive. In particular, if any p-adic place of k splits completely
in L , then θL/k,S,T (0) vanishes and the assertion of Corollary 3.20 is trivially
valid. However, by applying Corollary 1.2 and [BKS, Corollary 1.14] in this
context, one can now also obtain results such as Corollary 1.3.

4. Iwasawa-theoretic Rubin–Stark congruences

In this section, we formulate an Iwasawa-theoretic version of the conjecture proposed
in [Mazur and Rubin 2016] and [Sano 2014] (see also [BKS, Conjecture 5.4]). This
conjecture is a natural generalization of the Gross–Stark conjecture [Gross 1982],
and plays a key role in the descent argument that we present in the next section.

We maintain the notation of the previous section.

4A. Statement of the congruences. We first recall the formulation of the conjec-
ture of Mazur, Rubin and of the third author.

Take a character χ ∈ Ĝ. Take a proper subset V ′ ⊂ S so that all v ∈ V ′ splits
completely in Lχ (i.e., χ(Gv) = 1) and that Vχ ⊂ V ′. Put r ′ := #V ′. We recall
the formulation of the conjecture of Mazur and Rubin and of the third author for
(Lχ,n/Lχ/k, S, T, Vχ , V ′). For simplicity, put

• Ln := Lχ,n;

• L := Lχ ;

• Gn := Gχ,n = Gal(Lχ,n/k);

• G := Gχ = Gal(Lχ/k);

• 0n := 0χ,n = Gal(Lχ,n/Lχ );

• V := Vχ = {v ∈ S | v splits completely in Lχ,∞};

• r := rχ = #Vχ .

Put e := r ′− r . Let I (0n) denote the augmentation ideal of Zp[0n]. It is shown in
[Sano 2014, Lemma 2.11] that there exists a canonical injection

r⋂
UL ,S,T ↪→

r⋂
ULn,S,T ,

which induces the injection

νn :

( r⋂
UL ,S,T

)
⊗Zp I (0n)

e/I (0n)
e+1 ↪→

( r⋂
ULn,S,T

)
⊗Zp Zp[0n]/I (0n)

e+1.

Note that this injection does not coincide with the map induced by the inclusion
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UL ,S,T ↪→ULn,S,T , and we have

νn(Nr
Ln/L(a))= NLn/L a

for all a ∈
⋂r ULn,S,T (see [Sano 2014, Remark 2.12]). For an explicit description

of the map νn , see [Mazur and Rubin 2016, Lemma 4.9; Sano 2015, Remark 4.2].
Let In be the kernel of the natural map Zp[Gn] → Zp[G]. For v ∈ V ′ \ V , let

recw : L×→ 0n denote the local reciprocity map at w (recall that w is the fixed
place lying above v). Define

Recw :=
∑
σ∈G

(recw(σ (·))− 1)σ−1
∈ HomZ[G](L×, In/I 2

n ).

It is shown in [Sano 2014, Proposition 2.7] that
∧
v∈V ′\V Recw induces a homomor-

phism

Recn :

r ′⋂
UL ,S,T →

r⋂
UL ,S,T ⊗Zp I (0n)

e/I (0n)
e+1.

Finally, define

Nn :

r⋂
ULn,S,T →

r⋂
ULn,S,T ⊗Zp Zp[0n]/I (0n)

e+1

by
Nn(a) :=

∑
σ∈0n

σa⊗ σ−1.

We now state the formulation of [Sano 2014, Conjecture 3] (or [Mazur and Rubin
2016, Conjecture 5.2]).

Conjecture 4.1 (MRS(Ln/L/k, S, T, V, V ′)p). Assume Conjectures RS(Ln/k, S,
T, V )p and RS(L/k, S, T, V ′)p. Then

Nn(ε
V
Ln/k,S,T )= (−1)reνn(Recn(ε

V ′
L/k,S,T )) in

r⋂
ULn,S,T ⊗Zp Zp[0n]/I (0n)

e+1.

(Note that the sign in the right-hand side depends on the labeling of S. We follow
the convention in [BKS, §5.3].)

Note that [BKS, Conjecture MRS(K/L/k, S, T, V, V ′)] is slightly stronger than
the above conjecture (see [BKS, Remark 5.7]).

We shall next give an Iwasawa theoretic version of the above conjecture. Note
that, since the inverse limit lim

←−−n I (0n)
e/I (0n)

e+1 is isomorphic to Zp, the map

lim
←−−

n
Recn :

r ′⋂
UL ,S,T →

r⋂
UL ,S,T ⊗Zp lim

←−−
n

I (0n)
e/I (0n)

e+1

uniquely extends to give a Cp-linear map

Cp
∧r ′UL ,S,T → Cp

(∧rUL ,S,T ⊗Zp lim
←−−

n
I (0n)

e/I (0n)
e+1),
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which we denote by Rec∞.

Conjecture 4.2 (MRS(K∞/k, S, T, χ, V ′)). Assume that Conjecture RS(Ln/k, S,
T, V )p is valid for all n. Then, there exists a (unique)

κ = (κn)n ∈

r⋂
UL ,S,T ⊗Zp lim

←−−
n

I (0n)
e/I (0n)

e+1

such that νn(κn)=Nn(ε
V
Ln/k,S,T ) for all n and that

eχκ = (−1)reeχRec∞(εV ′
L/k,S,T ) in Cp

(∧rUL ,S,T ⊗Zp lim
←−−

n
I (0n)

e/I (0n)
e+1).

Remark 4.3. Clearly the validity of Conjecture MRS(Ln/L/k, S, T, V, V ′)p for
all n implies the validity of MRS(K∞/k, S, T, χ, V ′). A significant advantage of
the above formulation of Conjecture MRS(K∞/k, S, T, χ, V ′) is that we do not
need to assume that Conjecture RS(L/k, S, T, V ′)p is valid.

Proposition 4.4. (i) MRS(K∞/k, S, T, χ, V ′) is valid if V = V ′.

(ii) MRS(K∞/k, S, T, χ, V ′) implies MRS(K∞/k, S, T, χ, V ′′) if V ⊂ V ′′⊂ V ′.

(iii) Suppose that χ(Gv) = 1 for all v ∈ S and #V ′ = #S − 1. Then, for any
V ′′ ⊂ S with V ⊂ V ′′ and #V ′′ = #S − 1, MRS(K∞/k, S, T, χ, V ′) and
MRS(K∞/k, S, T, χ, V ′′) are equivalent.

(iv) MRS(K∞/k, S \ {v}, T, χ, V ′ \ {v}) implies MRS(K∞/k, S, T, χ, V ′) if v ∈
V ′ \ V is a finite place which is unramified in L∞.

(v) If #V ′ 6= #S − 1 and v ∈ S \ V ′ is a finite place which is unramified in L∞,
then MRS(K∞/k, S \ {v}, T, χ, V ′) implies MRS(K∞/k, S, T, χ, V ′).

Proof. Claim (i) follows from the “norm relation” of Rubin–Stark elements; see
[Sano 2014, Remark 3.9; Mazur and Rubin 2016, Proposition 5.7]. Claim (ii)
follows from [Sano 2014, Proposition 3.12]. Claim (iii) follows from [Sano 2015,
Lemma 5.1]. Claim (iv) follows from the proof of [Sano 2014, Proposition 3.13].
Claim (v) follows by noting εV

Ln/k,S,T = (1 − Fr−1
v )ε

V
Ln/k,S\{v},T and εV ′

L/k,S,T =

(1−Fr−1
v )ε

V ′
L/k,S\{v},T . �

Corollary 4.5. If every place v in V ′ \ V is both nonarchimedean and unramified
in L∞, then MRS(K∞/k, S, T, χ, V ′) is valid.

Proof. By Proposition 4.4(iv), we may assume V = V ′. By Proposition 4.4(i), we
know that MRS(K∞/k, S, T, χ, V ′) is valid in this case. �

Consider the following condition:

NTZ(K∞/k, χ) χ(Gp) 6= 1 for all p ∈ Sp(k) which ramify in Lχ,∞.

This condition is usually called “no trivial zeros”.
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Corollary 4.6. If χ satisfies NTZ(K∞/k, χ), then MRS(K∞/k, S, T, χ, V ′) is
valid.

Proof. In this case we see that every v ∈ V ′ \ V is finite and unramified in L∞. �

4B. Connection to the Gross–Stark conjecture. In this subsection we help set the
context for Conjecture MRS(K∞/k, S, T, χ, V ′) by showing that it specializes to
recover the Gross–Stark conjecture (as stated in Conjecture 4.7 below).

To do this we assume throughout that k is totally real, k∞/k is the cyclotomic
Zp-extension, and χ is totally odd. We also set V ′ := {v ∈ S | χ(Gv)= 1} (and note
that this is a proper subset of S since χ is totally odd) and we assume that every
v ∈ V ′ lies above p (noting that this assumption is not restrictive as a consequence
of Proposition 4.4(iv)).

We shall now show that this case of MRS(K∞/k, S, T, χ, V ′) is equivalent to
the Gross–Stark conjecture.

First, we note that in this case V is empty (that is, r = 0) and so one knows that
Conjecture RS(Ln/k, S, T, V )p is valid for all n (by [Rubin 1996, Theorem 3.3]).
In fact, one has εV

Ln/k,S,T = θLn/k,S,T (0) ∈ Zp[Gn] and, by [Mazur and Rubin 2016,
Proposition 5.4], the assertion of Conjecture MRS(K∞/k, S, T, χ, V ′) is equivalent
to the following claims:

θLn/k,S,T (0) ∈ I r ′
n (10)

for all n and

eχθL∞/k,S,T (0)= eχRec∞(εV ′
L/k,S,T ) in Cp[G]⊗Zp lim

←−−
n

I (0n)
r ′/I (0n)

r ′+1, (11)

where we set

θL∞/k,S,T (0) := lim
←−−

n
θLn/k,S,T (0)∈ lim

←−−
n

I r ′
n /I r ′+1

n 'Zp[G]⊗Zplim←−−
n

I (0n)
r ′/I (0n)

r ′+1.

We also note that the validity of (10) follows as a consequence of our Iwasawa main
conjecture (Conjecture 3.1) by using Proposition 2.6(iii) and the result of [BKS,
Lemma 5.20] (see the argument in Section 5C).

To study (11) we set χ1 := χ |1 ∈ 1̂ and regard (as we may) the product χ2 :=

χχ−1
1 as a character of 0 = Gal(k∞/k).
Note that Gal(L∞/k) = Gχ1 ×0χ1 . Fix a topological generator γ ∈ 0χ1 , and

identify Zp[im(χ1)][[0χ1]] with the ring of power series Zp[im(χ1)][[t]] via the
correspondence γ = 1+ t .

We then define gχ1
L∞/k,S,T (t) to be the image of θL∞/k,S,T (0) under the map

Zp[[Gal(L∞/k)]] = Zp[Gχ1][[0χ1]] → Zp[im(χ1)][[0χ1]] = Zp[im(χ1)][[t]]

induced by χ1. We recall that the p-adic L-function of Deligne–Ribet is defined by

Lk,S,T,p(χ
−1ω, s) := gχ1

L∞/k,S,T (χ2(γ )χcyc(γ )
s
− 1),
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where χcyc is the cyclotomic character; one can show this to be independent of the
choice of γ .

The validity of (10) implies an inequality

ords=0 Lk,S,T,p(χ
−1ω, s)≥ r ′. (12)

It is known that (12) is a consequence of the Iwasawa main conjecture (in the sense
of [Wiles 1990]), which is itself known to be valid when p is odd. In addition,
Spiess [2014] proved that (12) is valid, including the case p = 2, by using Shintani
cocycles. In all cases, therefore, we can define

L(r
′)

k,S,T,p(χ
−1ω, 0) := lim

s→0
s−r ′Lk,S,T,p(χ

−1ω, s) ∈ Cp.

For v ∈ V ′, define
Logw : L

×
→ Zp[G]

by Logw(a) := −
∑

σ∈G logp(NLw/Qp(σa))σ−1, where logp : Q×p → Zp is Iwa-
sawa’s logarithm (in the sense that logp(p)= 0). We set

LogV ′ :=
∧
v∈V ′Logw : Cp

∧r ′UL ,S,T → Cp[G].

We shall denote the map Cp[G] → Cp induced by χ also by χ .
For v ∈ V ′, we define

Ordw : L×→ Z[G]

by Ordw(a) :=
∑

σ∈G ordw(σa)σ−1, and set

OrdV ′ :=
∧
v∈V ′Ordw : Cp

∧r ′UL ,S,T → Cp[G].

On the χ -component, OrdV ′ induces an isomorphism

χ ◦OrdV ′ : eχCp
∧r ′UL ,S,T

∼
→ Cp.

Taking a nonzero element x ∈ eχCp
∧r ′UL ,S,T , we define the L-invariant by

L(χ) :=
χ(LogV ′(x))
χ(OrdV ′(x))

∈ Cp.

Since eχCp
∧r ′UL ,S,T is a one-dimensional Cp-vector space, we see that L(χ)

does not depend on the choice of x .
Then the Gross–Stark conjecture is stated as follows.

Conjecture 4.7 (GS(L/k, S, T, χ)). One has

L(r
′)

k,S,T,p(χ
−1ω, 0)= L(χ)Lk,S\V ′,T (χ

−1, 0).
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Remark 4.8. This formulation constitutes a natural higher-rank generalization of
the form of the Gross–Stark conjecture stated in [Dasgupta et al. 2011, Conjecture 1].

Letting x = eχεV ′
L/k,S,T , we obtain

χ(LogV ′(ε
V ′
L/k,S,T ))= L(χ)Lk,S\V ′,T (χ

−1, 0).

Thus we see that Conjecture GS(L/k, S, T, χ) is equivalent to the equality

L(r
′)

k,S,T,p(χ
−1ω, 0)= χ(LogV ′(ε

V ′
L/k,S,T )).

Concerning the relation between Rec∞ and LogV ′ , we note the fact

χcyc(recw(a))= NLw/Qp(a)
−1,

where v ∈ V ′ and a ∈ L×.
Given this fact, it is straightforward to check (under the validity of (10)) that

Conjecture GS(L/k, S, T, χ) is equivalent to (11).
At this stage we have therefore proved the following result.

Theorem 4.9. Suppose that k is totally real, k∞/k is the cyclotomic Zp-extension,
and χ is totally odd. Set V ′ := {v ∈ S | χ(Gv)= 1} and assume that every v ∈ V ′

lies above p. Assume also that (10) is valid. Then Conjecture GS(L/k, S, T, χ) is
equivalent to Conjecture MRS(K∞/k, S, T, χ, V ′).

4C. A proof in the case k = Q. In [BKS, Corollary 1.2] the known validity of
the eTNC for Tate motives over abelian fields is used to prove that Conjecture
MRS(K/L/k, S, T, V, V ′) is valid in the case k =Q.

In this subsection, we shall give a much simpler proof of the latter result which
uses only Theorem 4.9, the known validity of the Gross–Stark conjecture over
abelian fields and a classical result from [Solomon 1992].

We note that for any χ and n the Rubin–Stark conjecture is known to be true for
(Lχ,n/Q, S, T, Vχ ). In fact, in this setting the Rubin–Stark element is given by a
cyclotomic unit when rχ = 1 and by the Stickelberger element when rχ = 0 (see
[Popescu 2011, §4.2 and Example 3.2.10], for example).

Theorem 4.10. Suppose that k =Q. Then, MRS(K∞/k, S, T, χ, V ′) is valid.

Proof. By Proposition 4.4(ii), we may assume that V ′ is maximal, namely,

r ′ =min{#{v ∈ S | χ(Gv)= 1}, #S− 1}.

By Corollary 4.6, we may assume that χ(p)= 1.
Suppose first that χ is odd. Since Conjecture GS(L/Q, S, T, χ) is valid (see

[Gross 1982, §4]), Conjecture MRS(K∞/Q, S, T, χ, V ′) follows from Theorem 4.9.
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Suppose next that χ = 1. In this case we have r ′ = #S − 1. We may assume
p /∈ V ′ by Proposition 4.4(iii). In this case every v ∈ V ′ \ V is unramified in L∞.
Hence, the theorem follows from Corollary 4.5.

Finally, suppose that χ 6= 1 is even. By Proposition 4.4(iv) and (v), we may
assume S = {∞, p} ∪ Sram(L/Q) and V ′ = {∞, p}. We label S = {v0, v1, . . .} so
that v1 =∞ and v2 = p.

Fix a topological generator γ of 0 = Gal(L∞/L). Then we construct an ele-
ment κ(L , γ ) ∈ lim

←−−n L×/(L×)pn
as follows. Note that NLn/L(ε

V
Ln/Q,S,T ) vanishes

since χ(p) = 1. So we can take βn ∈ L×n such that βγ−1
n = εV

Ln/Q,S,T (Hilbert’s
Theorem 90). Define

κn := NLn/L(βn) ∈ L×/(L×)pn
.

This element is independent of the choice of βn , and for any m > n the natural map

L×/(L×)pm
→ L×/(L×)pn

sends κm to κn . We define

κ(L , γ ) := (κn)n ∈ lim
←−−

n
L×/(L×)pn

.

Then, by [Solomon 1992, Proposition 2.3(i)], we know that

κ(L , γ ) ∈ Zp⊗Z OL

[ 1
p

]×
↪→ lim
←−−

n
L×/(L×)pn

.

Fix a prime p of L lying above p. Define

Ordp : L×→ Zp[G]

by Ordp(a) :=
∑

σ∈G ordp(σa)σ−1. Similarly, define

Logp : L
×
→ Zp[G]

by Logp(a) := −
∑

σ∈G logp(ιp(σa))σ−1, where ιp : L ↪→ Lp =Qp is the natural
embedding.

Then by [Solomon 1992, Theorem 2.1 and Remark 2.4], one deduces

Ordp(κ(L , γ ))=−
1

logp(χcyc(γ ))
Logp(ε

V
L/Q,S\{p},T ).

From this, we have

Ordp(κ(L , γ ))⊗(γ −1)=−Recp(εV
L/Q,S\{p},T ) in Zp[G]⊗Zp I (0)/I (0)2, (13)

where I (0) is the augmentation ideal of Zp[[0]].
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We know that eχCpUL ,S is a two-dimensional Cp-vector space. Lemma 4.11
below shows that {eχεV

L/Q,S\{p},T , eχκ(L , γ )} is a Cp-basis of this space. For
simplicity, set εV

L := ε
V
L/Q,S\{p},T . Note that the isomorphism

Ordp : eχCp
∧2UL ,S −→

∼ eχCpUL

sends eχεV
L ∧ κ(L , γ ) to −χ(Ordp(κ(L , γ )))eχεV

L . Since we have

Ordp(eχεV ′
L/Q,S,T )=−eχεV

L

(see [Rubin 1996, Proposition 5.2; Sano 2014, Proposition 3.6]), we have

eχεV ′
L/Q,S,T =−χ(Ordp(κ(L , γ )))−1eχεV

L ∧ κ(L , γ ).

Hence we have

Recp(eχεV ′
L/Q,S,T )= χ(Ordp(κ(L , γ )))−1eχκ(L , γ ) ·Recp(εV

L )

=−eχκ(L , γ )⊗ (γ − 1),

where the first equality follows by noting that Recp(κ(L , γ ))= 0 (since κ(L , γ )
lies in the universal norm by definition), and the second by (13).

Now, noting that

νn :UL ,S,T ⊗Zp I (0n)/I (0n)
2 ↪→ULn,S,T ⊗Zp Zp[0n]/I (0n)

2

is induced by the inclusion map L ↪→ Ln , and that

Nn(ε
V
Ln/Q,S,T )= κn ⊗ (γ − 1),

it is easy to see that the element κ := κ(L , γ )⊗ (γ − 1) has the properties in the
statement of Conjecture MRS(K∞/Q, S, T, χ, V ′). This completes the proof. �

Lemma 4.11. Assume that k =Q and χ 6= 1 is even such that χ(p)= 1. Assume
also that S={∞, p}∪Sram(L/Q). Then, {eχεV

L/Q,S\{p},T , eχκ(L , γ )} is a Cp-basis
of eχCpUL ,S .

Proof. This result follows from [Solomon 1994, Remark 4.4]. But we sketch another
proof, essentially given in [Flach 2004].

In the next section, we define the “Bockstein map”

β : eχCpUL ,S→ eχCp(XL ,S ⊗Zp I (0)/I (0)2).

We see that β is injective on eχCpUL , and that kerβ 'UL∞,S⊗3Cp where we put
3 := Zp[[G]] and Cp is regarded as a 3-algebra via χ . Hence we have

eχCpUL ,S = eχCpUL ⊕ (UL∞,S ⊗3 Cp).

Since eχεV
L/Q,S\{p},T is nonzero, this is a basis of eχCpUL ,S\{p} = eχCpUL . We

prove that eχκ(L , γ ) is a basis of UL∞,S ⊗3 Cp.
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By using the exact sequence 0→UL∞,S
γ−1
−−→UL∞,S→UL ,S , we see that there

exists a unique element α∈UL∞,S such that (γ−1)α=εV
L∞/Q,S,T . By the cyclotomic

Iwasawa main conjecture over Q, we see that α is a basis of UL∞,S⊗33pχ , where
pχ := ker(χ :3→ Cp). The image of α under the map

UL∞,S ⊗33pχ

χ
−→UL∞,S ⊗3 Cp ↪→ eχCpUL ,S

is equal to eχκ(L , γ ). �

5. A strategy for proving the eTNC

5A. Statement of the main result and applications. In the sequel we fix an inter-
mediate field L of K∞/k which is finite over k and set G := Gal(L/k). In this
section we always assume the following conditions to be satisfied:

(R) For every χ ∈ Ĝ, one has rχ,S < #S.

(S) No finite place of k splits completely in k∞.

Remark 5.1. Before proceeding we note that the condition (R) is very mild since it
is automatically satisfied when the class number of k is equal to one and, for any k,
is satisfied when S is large enough. We also note that the condition (S) is satisfied
when, for example, k∞/k is the cyclotomic Zp-extension.

The following result is one of the main results of this article and, as we will see,
it provides an effective strategy for proving the special case of the eTNC that we
are considering here.

Theorem 5.2. Assume the following conditions:

(hIMC) The main conjecture IMC(K∞/k, S, T ) (Conjecture 3.1) is valid.

(F) For every χ in Ĝ, the module of 0χ -coinvariants of AT
S (Lχ,∞) is finite.

(MRS) For every χ in Ĝ, Conjecture MRS(K∞/k, S, T, χ, V ′χ ) (Conjecture 4.2)
is valid for a maximal set V ′χ , so that

#V ′χ =min{#{v ∈ S | χ(Gv)= 1}, #S− 1}.

Then, the conjecture eTNC(h0(Spec L),Zp[G]) (Conjecture 2.3) is valid.

Remark 5.3. We note that the set V ′χ in condition (MRS) is not uniquely de-
termined when every place v in S satisfies χ(Gv) = 1, but that the validity
of Conjecture MRS(K∞/k, S, T, χ, V ′χ ) is independent of the choice of V ′χ (by
Proposition 4.4(iii)).

Remark 5.4. One checks easily that the condition (F) is equivalent to the finiteness
of the module of 0χ -coinvariants of AS(Lχ,∞). Hence, taking account of [1991,
Theorem 1.14], the condition (F) can be regarded as a natural generalization of



1562 David Burns, Masato Kurihara and Takamichi Sano

Conjecture 1.15 of [Gross 1982]. We also note here that this conjecture of Gross
was asserted in a special setting as Conjecture 2.2 in [Coates and Lichtenbaum
1973]. In particular, we recall that the condition (F) is satisfied in each of the
following cases:

• L is abelian over Q (this is due to Greenberg [1973]).

• k∞/k is the cyclotomic Zp-extension and L has unique p-adic place (in this
case “δL = 0” holds obviously; see [Kolster 1991]).

• L is totally real and the Leopoldt conjecture is valid for L at p (see [Kolster
1991, Corollary 1.3]).

Remark 5.5. The condition (MRS) is satisfied for χ in Ĝ when the condition
NTZ(K∞/k, χ) is satisfied (see Corollary 4.6).

As an immediate corollary of Theorem 5.2, we obtain a new proof of a theorem
that was first proved in [Burns and Greither 2003] for p odd and in [Flach 2011]
for p = 2.

Corollary 5.6. If k =Q, then the conjecture eTNC(h0(Spec L),Zp[G]) is valid.

Proof. As we mentioned above, the conditions (R), (S) and (F) are all satisfied in
this case. In addition, the condition (hIMC) is a direct consequence of the classical
Iwasawa main conjecture solved by Mazur and Wiles (see [Burns and Greither
2003; Flach 2011]) and the condition (MRS) is satisfied by Theorem 4.10. �

We also obtain a result over totally real fields.

Corollary 5.7. Suppose that p is odd, k is totally real, k∞/k is the cyclotomic Zp-
extension, and K is CM. Assume that (F) is satisfied, that the µ-invariant of K∞/K
vanishes, and that for every odd character χ ∈ Ĝ, Conjecture GS(Lχ/k, S, T, χ)
is valid. Then, Conjecture eTNC(h0(Spec L),Zp[G]−) is valid.

Proof. Fix S so that the condition (R) is satisfied. Then the minus-part of condition
(hIMC) is satisfied by Theorem 3.16 and the minus part of condition (MRS) by
Theorem 4.9. �

When at most one p-adic place p of k satisfies χ(Gp)= 1, the validity of Conjec-
ture GS(Lχ/k, S, T, χ) was proved by Dasgupta, Darmon and Pollack [Dasgupta
et al. 2011] under certain assumptions, including Leopoldt’s conjecture. Those
assumptions were removed in [Ventullo 2015], so Conjecture GS(Lχ/k, S, T, χ)
is unconditionally valid in this case (see also the note on p. 1531). Condition (F) is
then valid too, by the argument of [Gross 1982, Proposition 2.13]. Hence we get:

Corollary 5.8. Suppose that p is odd, k is totally real, k∞/k is the cyclotomic
Zp-extension, and K is CM. Assume that the µ-invariant of K∞/K vanishes, and
that for each odd character χ ∈ Ĝ there is at most one p-adic place p of k which
satisfies χ(Gp)= 1. Then, Conjecture eTNC(h0(Spec L),Zp[G]−) is valid.
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Examples 5.9. It is not difficult to find many concrete families of examples satisfy-
ing the hypotheses of Corollary 5.8 and hence to deduce the unconditional validity
of eTNC(h0(Spec L),Zp[G]−) in some new and interesting cases. In particular, we
shall now describe several families of examples in which the extension k/Q is not
abelian (noting that if L/Q is abelian and k ⊂ L , then eTNC(h0(Spec L),Zp[G])
is already known to be valid).

(i) The case p = 3. As a simple example, we consider the case that k/Q is a
S3-extension. To do this we fix an irreducible cubic polynomial f (x) in Z[x] with
discriminant 27d where d is strictly positive and congruent to 2 modulo 3. (For
example, one can take f (x) to be x3

− 6x − 3, x3
− 15x − 3, etc.) The minimal

splitting field k of f (x) over Q is then totally real (since 27d > 0) and an S3-
extension of Q (since 27d is not a square). Also, since the discriminant of f (x) is
divisible by 27 but not 81, the prime 3 is totally ramified in k. Now set p := 3 and
K := k(µp)= k(

√
−p)= k(

√
−d). Then the prime above p splits in K/k because

−d ≡ 1 (mod 3). In addition, as K/Q(
√

d,
√
−p) is a cyclic cubic extension, the

µ-invariant of K∞/K vanishes and so the extension K/k satisfies all the conditions
of Corollary 5.8 (with p = 3).

(ii) The case p> 3. In this case one can construct a suitable field K in the following
way. Fix a primitive p-th root of unity ζ , an integer i such that 1≤ i ≤ (p− 3)/2,
and an integer b which is prime to p, and then set

a :=
1+ b(ζ − 1)2i+1

1+ b(ζ−1− 1)2i+1 .

Write ordπ for the normalized additive valuation of Q(µp) associated to the prime
element π = ζ − 1. Then, since ordπ (a− 1)= 2i + 1< p, (π) is totally ramified
in Q(µp,

p
√

a)/Q(µp). Also, since c(a)= a−1 where c is the complex conjugation,
Q(µp,

p
√

a) is the composite of a cyclic extension of Q(µp)
+ of degree p and

Q(µp). This shows that Q(µp,
p
√

a) is a CM-field and, since 1< 2i + 1< p, the
extension Q(µp,

p
√

a)+/Q is nonabelian. We now take a negative integer−d which
is a quadratic residue modulo p, let K denote the CM-field Q(µp,

p
√

a,
√
−d) and

set k := K+. Then p is totally ramified in k/Q and the p-adic prime of k splits
in K . In addition, k/Q is not abelian and the µ-invariant of K∞/K vanishes since
K/Q(µp,

√
−d) is cyclic of degree p. This shows that the extension K/k satisfies

all of the hypotheses of Corollary 5.8.

(iii) In cases (i) and (ii) above, p is totally ramified in the extension k∞/Q and so
Corollary 5.8 implies that eTNC(h0(Spec Kn),Zp[G]−) is valid for any nonnegative
integer n. In addition, if F is any real abelian field of degree prime to [k : Q] in
which p is totally ramified, the minus component of the p-part of eTNC for F Kn/k
holds for any nonnegative integer n.
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Remark 5.10. By using similar methods to the proofs of the above corollaries
it is also possible to deduce the main result of [Bley 2006] as a consequence of
Theorem 5.2. In this case k is imaginary quadratic, the validity of (hIMC) can be
derived from [Rubin 1991] (as explained in [Bley 2006]), and the conjecture (MRS)
from the result in [Bley 2004], which is itself an analogue of Solomon’s theorem
[1992] for elliptic units, by using the same argument as Theorem 4.10.

5B. A computation of Bockstein maps. Fix a character χ ∈ Ĝ and set

Ln := Lχ,n,
L := Lχ ,
V := Vχ = {v ∈ S | v splits completely in Lχ,∞},
r := rχ = #Vχ ,

V ′ := V ′χ (as in (MRS) in Theorem 5.2),
r ′ := rχ,S = #V ′,
e := r ′− r.

As in Section 4A, we label S = {v0, v1, . . .} so that V = {v1, . . . , vr } and V ′ =
{v1, . . . , vr ′}, and fix a place w lying above each v ∈ S. Also, as in Section 2D, it
will be useful to fix a representative 5K∞→5K∞ of CK∞,S,T where the first term
is placed in degree zero, and 5K∞ is a free 3-module with basis {b1, . . . , bd}. This
representative is chosen so that the natural surjection

5K∞→ H 1(CK∞,S,T )→ XK∞,S

sends bi to wi −w0 for every i with 1≤ i ≤ r ′.
We define a height-one regular prime ideal of 3 by setting

p := ker(3
χ
−→Qp(χ) :=Qp(imχ)).

Then the localization R :=3p is a discrete valuation ring and we write P for its
maximal ideal. We see that χ induces an isomorphism

E := R/P −→∼ Qp(χ).

We set C := CK∞,S,T ⊗3 R and 5 :=5K∞ ⊗3 R.

Lemma 5.11. Let γ be a topological generator of 0 = Gal(K∞/K ). Let n be an
integer which satisfies γ pn

∈ Gal(K∞/L). Then γ pn
− 1 is a uniformizer of R.

Proof. Regard χ ∈ Ĝ, and put χ1 := χ |1 ∈ 1̂. We identify R with the localization
of 3χ1[1/p] = Zp[imχ1][[0]][1/p] at q := ker(3χ1[1/p]

χ |0
→ Qp(χ)).

Then the lemma follows by noting the localization of 3χ1[1/p]/(γ pn
− 1) =

Zp[imχ1][0n][1/p] at q is identified with Qp(χ). �
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Lemma 5.12. Assume that the condition (F) is satisfied.

(i) H 0(C) is isomorphic to UK∞,S,T ⊗3 R, and R-free of rank r .

(ii) H 1(C) is isomorphic to XK∞,S ⊗3 R.

(iii) The maximal R-torsion submodule H 1(C)tors of H 1(C) is isomorphic to
XK∞,S\V ⊗3 R, and annihilated by P. (So H 1(C)tors is an E-vector space.)

(iv) H 1(C)tf := H 1(C)/H 1(C)tors is isomorphic to YK∞,V ⊗3 R and is therefore
R-free of rank r .

(v) dimE(H 1(C)tors)= e.

Proof. Since UK∞,S,T ⊗3 R = H 0(C) is regarded as a submodule of 5, we see that
UK∞,S,T ⊗3 R is R-free. Put χ1 := χ |1 ∈ 1̂. Note that L∞ := Lχ,∞ = Lχ1,∞, and
that the quotient field of R is Q(3χ1). As in the proof of Theorem 3.4, we have

UK∞,S,T ⊗3 Q(3χ1)' YL∞,V ⊗Zp[[Gχ ]] Q(3χ1).

These are r -dimensional Q(3χ1)-vector spaces. This proves (i).
To prove (ii), it is sufficient to show that AT

S (K∞)⊗3 R = 0. Fix a topological
generator γ of 0, and regard Zp[[0]] as the ring of power series Zp[[t]] via the
identification γ = 1 + t . Let f be the characteristic polynomial of the Zp[[t]]-
module AT

S (L∞). By Lemma 5.11, for sufficiently large n, γ pn
−1 is a uniformizer

of R. On the other hand, by the assumption (F), we see that f is prime to γ pn
− 1.

This implies (ii).
We prove (iii). Proving that H 1(C)tors is isomorphic to XK∞,S\V ⊗3 R, it is

sufficient to show that

XK∞,S ⊗3 Q(3χ1)' YK∞,V ⊗3 Q(3χ1),

by (ii). This was shown in the proof of Theorem 3.4. We prove that XK∞,S\V ⊗3 R
is annihilated by P . Note that XK∞,S\V ⊗3 R = XK∞,S\(V∪S∞) ⊗3 R, since the
complex conjugation c at v ∈ S∞ \ (V ∩ S∞) is nontrivial in Gχ1 , and hence
c− 1 ∈ R×. Hence, it is sufficient to show that, for every v ∈ S \ (V ∪ S∞), there
exists σ ∈ Gv ∩ 0 such that σ − 1 is a uniformizer of R, where Gv ⊂ G is the
decomposition group at a place of K∞ lying above v. Thanks to the assumption
(S), we find such σ by Lemma 5.11.

The assertion (iv) is immediate from the above argument.
The assertion (v) follows from (iii), (iv), and the fact that

XK∞,S ⊗3 E ' XL ,S ⊗Zp[Gχ ]Qp(χ)' eχQp(χ)XL ,S ' eχQp(χ)YL ,V ′

is an r ′-dimensional E-vector space. �

In the following for any R-module M we often denote M ⊗R E by ME . Also,
we assume that (F) is satisfied.
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Definition 5.13. The “Bockstein map” is the homomorphism

β : H 0(CE)→ H 1(C ⊗R P)= H 1(C)⊗R P→ H 1(CE)⊗E P/P2

induced by the natural exact triangle C ⊗R P→ C→ CE .

Note that there are canonical isomorphisms

H 0(CE)'UL ,S,T ⊗Zp[Gχ ]Qp(χ)' eχQp(χ)UL ,S,T ,

H 1(CE)' XL ,S ⊗Zp[Gχ ]Qp(χ)' eχQp(χ)XL ,S ' eχQp(χ)YL ,V ′,

where Qp(χ) is regarded as a Zp[Gχ ]-algebra via χ . Note also that P is generated
by γ pn

− 1 with sufficiently large n, where γ is a fixed topological generator of 0
(see Lemma 5.11). There is a canonical isomorphism

I (0χ )/I (0χ )2⊗Zp Qp(χ)' P/P2,

where I (0χ ) denotes the augmentation ideal of Zp[[0χ ]] (note that 0=Gal(K∞/K )
and 0χ = Gal(L∞/L)). Thus, the Bockstein map is regarded as the map

β : eχQp(χ)UL ,S,T → eχQp(χ)(XL ,S ⊗Zp I (0χ )/I (0χ )2)

' eχQp(χ)(YL ,V ′ ⊗Zp I (0χ )/I (0χ )2).

Proposition 5.14. The Bockstein map β is induced by the map

UL ,S,T → XL ,S ⊗Zp I (0χ )/I (0χ )2

given by a 7→
∑

w∈SL
w⊗ (recw(a)− 1).

Proof. The proof is the same as for [Flach 2004, Lemma 5.8] and we sketch the
proof therein.

Take n so that the image of γ pn
∈Gal(K∞/L) in Gal(L∞/L)=0χ is a generator.

We regard γ pn
∈ 0χ . Define θ ∈ H 1(L ,Zp)= Hom(GL ,Zp) by γ pn

7→ 1. Define

β ′ : eχQp(χ)UL ,S,T → eχQp(χ)(XL ,S ⊗Zp I (0χ )/I (0χ )2)
∼
→ eχQp(χ)XL ,S

by β(a)= β ′(a)⊗ (γ pn
− 1). Then, β ′ is induced by the cup product

· ∪ θ :QpUL ,S ' H 1(OL ,S,Qp(1))→ H 2(OL ,S,Qp(1))'QpXL ,S\S∞ .

By class field theory we see that β is induced by the map

a 7→
∑

w∈SL\S∞(L)

w⊗ (recw(a)− 1).

Since recw(a)= 1 ∈ 0χ for all w ∈ S∞(L), the proposition follows. �

Proposition 5.15. We have canonical isomorphisms

kerβ ' H 0(C)E and cokerβ ' H 1(C)tf⊗R P/P2.
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Proof. Let δ be the boundary map H 0(CE)→ H 1(C ⊗R P)= H 1(C)⊗R P . We
have

ker δ ' coker(H 0(C ⊗R P)→ H 0(C))= H 0(C)E

and
im δ = ker(H 1(C)⊗R P→ H 1(C))= H 1(C)[P]⊗R P,

where H 1(C)[P] is the submodule of H 1(C) which is annihilated by P . By
Lemma 5.12(iii), we know H 1(C)[P] = H 1(C)tors. Hence, the natural map

H 1(C)⊗R P→ H 1(C)⊗R P/P2
' H 1(C)E ⊗E P/P2

' H 1(CE)⊗E P/P2

is injective on H 1(C)tors⊗R P . From this we see that kerβ ' H 0(C)E . We also
have

cokerβ ' coker(H 1(C)tors⊗R P→ H 1(C)⊗R P/P2)' H 1(C)tf⊗R P/P2.

Hence we have completed the proof. �

By Lemma 5.12, we see that there are canonical isomorphisms

H 0(C)E 'UK∞,S,T ⊗3 Qp(χ),

H 1(C)E ' XK∞,S ⊗3 Qp(χ),

H 1(C)tf,E ' YK∞,V ⊗3 Qp(χ).

Hence, by Proposition 5.15, we have the exact sequence

0→UK∞,S,T ⊗3 Qp(χ)→ eχQp(χ)UL ,S,T

β
−→ eχQp(χ)(YL ,V ′ ⊗Zp I (0χ )/I (0χ )2)→ YK∞,V ⊗3 P/P2

→ 0.

This induces an isomorphism

β̃ : eχQp(χ)
(∧r ′UL ,S,T ⊗

∧r ′Y∗L ,V ′
)

−→∼
∧r
(UK∞,S,T ⊗3 Qp(χ))⊗

∧r
(Y∗K∞,V ⊗3 Qp(χ))⊗ Pe/Pe+1.

We have isomorphisms ∧r ′Y∗L ,V ′ −→∼ Zp[Gχ ], w∗1 ∧ · · · ∧w
∗

r ′ 7→ 1,∧r
(Y∗K∞,V ⊗3 Qp(χ))−→

∼ Qp(χ), w∗1 ∧ · · · ∧w
∗

r 7→ 1.

By these isomorphisms, we see that β̃ induces an isomorphism

eχQp(χ)
∧r ′UL ,S,T −→

∼
∧r
(UK∞,S,T ⊗3 Qp(χ))⊗ Pe/Pe+1,

which we denote also by β̃. Note that we have a natural injection∧r
(UK∞,S,T⊗3Qp(χ))⊗Pe/Pe+1 ↪→eχQp(χ)

(∧rUL ,S,T⊗Zp I (0χ )e/I (0χ )e+1).
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Composing this with β̃, we have an injection

β̃ : eχQp(χ)
∧r ′UL ,S,T ↪→ eχQp(χ)

(∧rUL ,S,T ⊗Zp I (0χ )e/I (0χ )e+1).
By Proposition 5.14, we obtain the following.

Proposition 5.16. Let

Rec∞ : Cp
∧r ′UL ,S,T → Cp

(∧rUL ,S,T ⊗Zp I (0χ )e/I (0χ )e+1)
be the map defined in Section 4A. Then we have

(−1)reeχRec∞ = β̃.

In particular, eχRec∞ is injective.

5C. The proof of the main result. In this section we prove Theorem 5.2.
We start with an important technical observation. Let5n denote the free Zp[Gχ,n]-

module 5K∞⊗3Zp[Gχ,n], and I (0χ,n) denote the augmentation ideal of Zp[0χ,n].
We recall from [BKS, Lemma 5.20] that the image of

πV
Ln/k,S,T : detZp[Gχ,n](CLn,S,T )→

∧r
5n

is contained in I (0χ,n)e ·
∧r
5n (see Proposition 2.6(iii)) and also from [BKS,

Proposition 4.17] that ν−1
n ◦Nn induces the map

I (0χ,n)e ·
∧r
5n→

∧r
50⊗Zp I (0χ,n)e/I (0χ,n)e+1.

Lemma 5.17. There exists a commutative diagram

detZp[Gχ,n](CLn,S,T )
//

πV
Ln/k,S,T

��

detZp[Gχ ](CL ,S,T )

πV ′
L/k,S,T
��

I (0χ,n)e ·
∧r
5n

ν−1
n ◦Nn

��

⋂r ′ UL ,S,T

(−1)reRecn

��∧r
50⊗Zp I (0χ,n)e/I (0χ,n)e+1 ⋂r UL ,S,T ⊗Z I (0χ,n)e/I (0χ,n)e+1.

⊃
oo

Proof. This follows from Proposition 2.6(iii) and [BKS, Lemma 5.22]. �

For any intermediate field F of K∞/k, we denote by LF/k,S,T the image of the
(conjectured) element LK∞/k,S,T of det3(CK∞,S,T ) under the isomorphism

Zp[[Gal(F/k)]]⊗3 det3(CK∞,S,T )' detZp[[Gal(F/k)]](CF,S,T ).

Note that we have
πV

Ln/k,S,T (LLn/k,S,T )= ε
V
Ln/k,S,T .
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Hence, Lemma 5.17 implies that

(−1)reRecn(π
V ′
L/k,S,T (LL/k,S,T ))= ν

−1
n ◦Nn(ε

V
Ln/k,S,T )=: κn.

We set

κ := (κn)n ∈

r⋂
UL ,S,T ⊗Zp lim

←−−
n

I (0χ,n)e/I (0χ,n)e+1.

Then the validity of Conjecture MRS(K∞/k, S, T, χ, V ′) implies that

eχκ = (−1)reeχRec∞(εV ′
L/k,S,T ).

In addition, by Proposition 5.16, we know that eχRec∞ is injective, and so

πV ′
L/k,S,T (eχLL/k,S,T )= eχεV ′

L/k,S,T .

Hence, by Proposition 2.5, we see that eTNC(h0(Spec L),Zp[G]) is valid, as
claimed.
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Standard conjecture of Künneth type
with torsion coefficients

Junecue Suh

A. Venkatesh raised the following question, in the context of torsion automorphic
forms: can the mod p analogue of Grothendieck’s standard conjecture of Künneth
type be true (especially for compact Shimura varieties)? In the first theorem of
this article, by using a topological obstruction involving Bockstein, we show
that the answer is in the negative and exhibit various counterexamples, including
compact Shimura varieties.

It remains an open geometric question whether the conjecture can fail for
varieties with torsion-free integral cohomology. Turning to the case of abelian
varieties, we give upper bounds (in p) for possible failures, using endomorphisms,
the Hodge–Lefschetz operators, and invariant theory.

The Schottky problem enters into consideration, and we find that, for the
Jacobians of curves, the question of Venkatesh has an affirmative answer for every
prime number p.

1. Introduction

Let X be a complex smooth projective variety of dimension n. Denote by CH j (X)
the Chow group of codimension- j cycles on X , and by

cl j
X,Q : CH j (X)→ H 2 j (X,Z)→ H 2 j (X,Q)

the cycle class map into the Betti cohomology of X with Q-coefficients.
Poincaré duality lets H 2n(X × X,Q) act linearly on H∗(X,Q) via correspon-

dences: namely, z ∈ H 2n(X × X,Q) acts as

H∗(X,Q)
pr∗1
−→ H∗(X × X,Q)

∪z
−→ H∗+2n(X × X,Q)

pr2,∗
−−→ H∗(X,Q),

where the duality is used in the definition of the Gysin map pr2,∗.
For each integer i , we have the (rational) Künneth projector

π i
X,Q ∈ H 2n(X × X,Q),

which acts as 1 on H i (X,Q) and as 0 on H j (X,Q) for all j 6= i .

MSC2010: primary 14C25; secondary 14H40, 55S05.
Keywords: standard conjectures, Künneth decomposition, algebraic cycles.
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Conjecture 1.1 (Grothendieck [Kleiman 1968]). The Künneth projectors π i
X,Q are

algebraic:
π i

X,Q ∈ Im(clnX×X,Q)⊗Q for all i .

The conjecture has long been known for flag varieties, for abelian varieties, and
in dimension ≤ 2.1 For more recent progress on the conjecture, we also refer the
reader to [Arapura 2006; Charles and Markman 2013; Tankeev 2011; 2015].

A. Venkatesh asked the present author whether the analogous statement could
hold with Fp-coefficients: we still have Poincaré duality for Fp-coefficients, hence
the action of H 2n(X × X, Fp) on H∗(X, Fp), as well as the (mod p) Künneth
projectors π i

X,Fp
∈ H 2n(X × X, Fp). We also have the mod p cycle class map

cl j
X,Fp
: CH j (X)/p→ H 2 j (X, Fp).

Question 1.2 (Venkatesh). Are the mod p Künneth projectors algebraic? That is,

π i
X,Fp
∈ Im(clnX×X,Fp

) for all i?

Two aspects of the question got us interested. First, of course, the torsion
invariants have long been of interest not only in algebraic topology, but also in
algebraic geometry. For the latter, we mention just two of the most classic examples.

(A) Atiyah and Hirzebruch [1962] showed that the integral version of the Hodge
conjecture is false in codimension ≥ 2, by creating torsion cohomology classes
that are not annihilated by certain Steenrod operations. (Totaro [1997] later
clarified this phenomenon in terms of complex cobordisms.)

(B) In response to Lüroth’s question (in birational classification of varieties) Artin
and Mumford [1972] constructed unirational but irrational threefolds, by ex-
ploiting nontrivial 2-torsion in the cohomology.

Secondly, with the recent progress in the theory of automorphic forms (including
Arthur’s conjectures), one has seen various results towards proving the Hodge, Tate,
and standard conjectures for Shimura varieties; see among others [Bergeron et al.
2016; Morel and Suh 2016]. In particular, while the standard conjecture of Künneth
type remains open, the standard sign conjecture of Jannsen, which (only) asks
whether the even and odd idempotents

π+X,Q =
∑
2|i

π i
X,Q and π−X,Q =

∑
2-i

π i
X,Q

are algebraic, has been proved for many Shimura varieties, which has Tannakian
consequences for homological motives.

1The conjecture is also known for the `-adic and crystalline cohomology theories over finite fields,
thanks to Katz and Messing [1974], whose proof relies on Deligne’s proof of the Weil conjectures.
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Parallel to this development, there have also been striking progress of late in the
theory of torsion automorphic forms (see among others [Scholze 2015; Treumann
and Venkatesh 2016]) and some speculations on the extent to which one may have
an analogue of Arthur’s conjectures [Emerton and Gee 2015]. One wonders how
far one could push the theory and obtain geometric results for Shimura varieties.

The first main goal of this article is to give a topological criterion for the question.

Theorem 1.3. (1) If the integral cohomology H∗(X,Z) has nontrivial p-torsion,
then Venkatesh’s question has a negative answer for X.

(2) For any integers i > 0 and n ≥ i+1, there exists a projective smooth variety X
of dimension n such that π i

X,Fp
is not in the image of the mod p cycle class map.

This class of examples includes Godeaux–Serre varieties and Shimura varieties,
as well as Enriques surfaces and the Artin–Mumford threefolds mentioned above.
In the case of Shimura surfaces, we show that even (the analogue of) the sign
conjecture with mod p coefficients can fail.

The next natural question, which is somewhat orthogonal in motivation to the
original question, is if such failure can happen to varieties with torsion-free integral
cohomology, such as hypersurfaces (in the direction of Griffiths–Harris conjectures
[1985]) or abelian varieties. That is, whether the integral analogue of the standard
conjecture of Künneth type can fail to hold. We define a natural measure of possible
failure — Künneth defect — and note some first properties, but at the moment do
not know the answer to the question.

In the final section, we look into the question in the case of abelian varieties and
obtain upper bounds for the Künneth defects. Among the results we obtain is:

Theorem 1.4. Venkatesh’s question has an affirmative answer for all primes p,
if X is the Jacobian of a curve.

This leads us to put forth:

Conjecture 1.5. The standard conjecture of Künneth type fails to hold integrally,
for a very general principally polarized abelian variety X of dimension ≥ 4.

A more ambitious conjecture would be: the integral version fails once X is outside
the closure of the Schottky locus. More quantitatively, we relate this conjecture to
the Prym–Tyurin theory; see Section 4.2 and Question 4.2.7 below.

Notation. For an abelian group M and an integer n, we use the notation

M[n] = {m ∈ M : n ·m = 0} and M/n = M/nM = M ⊗Z/n.

If p is a prime number, we denote by Z(p) the localization of Z at (p), and write

M[p∞] =
⋃
n≥1

M[pn
].
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2. Standard conjecture of Künneth type with torsion coefficients

2.1. Topological obstruction: Bockstein. The first obstruction to Question 1.2 that
we will use in this section relies on the simple fact that the mod p cycle class map
factors through the integral cohomology mod p:

CH j (X) cl
//

��

H 2 j (X,Z)

��

CH j (X)/p
clFp
// H 2 j (X, Fp)

As such, we look at the obstruction to lifting π i
X,Fp

to an element in H 2n(X× X,Z).
This naturally leads us to look at the version of the Bockstein homomorphism β

0→ H j (X,Z)/p→ H j (X, Fp)
β
−→ H j+1(X,Z)[p] → 0, (2.1.1)

which is the connecting homomorphism for the short exact sequence of sheaves

0→ Z
×p
−→ Z→ Fp→ 0.

Definition 2.1.1. Let X be a complex projective smooth variety and p a prime
number. We define the initial incidence of nontrivial p-torsion, and denote it i p(X),
as the smallest integer i such that the natural reduction map

H i (X,Z)→ H i (X, Fp)

is not surjective, in other words, the Bockstein homomorphism

H i (X, Fp)→ H i+1(X,Z)[p]

is nonzero. If no such i exists, we set i p(X)=∞.

Equivalently, in view of the exact sequence (2.1.1), we have i p(X) = j − 1,
where j is the smallest integer such that H j (X,Z) has nontrivial p-torsion. We
will show in Section 2.3 that, for any prime p and any integer i ≥ 1, there exists a
projective smooth variety X with i p(X)= i .

Proposition 2.1.2. If i p(X) <∞, then i p(X)≤ dim X − 1.

Proof. Let n = dim X . By definition, we have

dimQ H i p(X)(X,Q) < dimFp H i p(X)(X, Fp),

so by Poincaré duality with field coefficients, we get i p(X) ≤ n. If i p(X) were
equal to n, then we would have

dimFp H j (X, Fp)= dimQ H j (X,Q)
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for all j < n, and hence also for all j > n, again by Poincaré duality. Then the jump

dimFp H n(X, Fp) > dimQ H n(X,Q)

in the middle degree would contradict the equality of the Euler characteristics of X
with Fp- and Q-coefficients. �

Theorem 2.1.3. Let X be a complex smooth projective variety of dimension n and
p a prime number. Suppose that i := i p(X) <∞. Then the Bockstein of the three
idempotents

π i
X,Fp

, π2n−i
X,Fp

, and π i
X,Fp
+π2n−i

X,Fp

are all nonzero, and as such cannot be the cohomology class of an algebraic cycle.

Proof. First we show that βX×X (π
i
X,Fp

) 6= 0, where βX×X is the Bockstein for X×X .

Lemma 2.1.4. With the notation as above, the natural map

H 2n−i (X,Z)→ H 2n−i (X, Fp)

is surjective.

Proof. Equivalently, we show that H 2n−i+1(X,Z) is free of p-torsion. By Poincaré
duality, we have

H 2n−i+1(X,Z)' Hi−1(X,Z)

and the universal coefficient theorem provides us with an exact sequence

0→ Ext1(Hi−1(X,Z),Z)→ H i (X,Z)→ Hom(Hi (X,Z),Z)→ 0.

Now if Hi−1(X,Z) had nontrivial p-torsion, then so would H i (X,Z), which would
contradict the alternate characterization of i p(X) given just after the definition. �

Step 1 (the p-primary torsion parts, Poincaré dual bases, and Pontryagin dual
generators). Denote the p-primary torsion part by

T := Hi (X,Z)[p∞] ' H 2n−i (X,Z)[p∞]

(isomorphism via Poincaré duality with integral coefficients), hence giving us a
natural exact sequence (thanks to Lemma 2.1.4)

0→ T/p→ H 2n−i (X, Fp)→ H 2n−i (X,Z(p))
fr/p→ 0 (a)

(where ( · )fr denotes the maximal Z(p)-free quotient). Then choose generators

T =
r⊕

k=1

(Z/pmk )tk .

By the universal coefficient theorem

0→Ext1(H2n−i−1(X,Z),Z(p))→H 2n−i (X,Z(p))→Hom(H2n−i (X,Z),Z(p))→0
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we get a natural isomorphism

T ' Ext1(H2n−i−1(X,Z),Z(p))' Hom(H i+1(X,Z)[p∞],Q/Z),

in other words,
H i+1(X,Z)[p∞] ' T∨,

the Pontryagin dual of T . Let t∨k ∈ T∨ denote the Pontryagin dual generators:

t∨k (t j )= 0 if j 6= k while t∨k (tk)= 1/pmk +Z.

It follows that the uk := pmk−1t∨k form a basis of T∨[p],

T∨[p] =
r⊕

k=1

Fpuk,

and the Bockstein short exact sequence reads

0→ H i (X,Z)/p→ H i (X, Fp)
β
−→ T∨[p] → 0. (b)

The exact sequences (a) and (b) are Poincaré dual to each other, via the universal
coefficient theorem.

Denote the mod p Poincaré pairing by

〈 · , · 〉 : H 2n−i (X, Fp)× H i (X, Fp)→ Fp.

We can then choose

(1) a preimage {ũk ∈ H i (X, Fp)}k of {uk}k=1,...,r under β,

(2) a lift { f`∈H 2n−i(X,Z(p))}` of a Z(p)-basis of the free quotient H 2n−i(X,Z(p))fr,
and

(3) a Z(p)-basis { f ′`} of H i (X,Z(p)) (note that this last group is free over Z(p)),

such that the Z(p)-bases { f`} and { f ′`} are Poincaré dual, so that

〈tk, ũ j 〉 = δ jk, 〈tk, f ′`〉 = 0, and 〈 f`, f ′m〉 = δ`m

(the second vanishing equation follows from the duality of the sequences (a)
and (b)). Here by the notation ξ we mean the image of ξ in the cohomology
with Fp-coefficients.

By modifying the f` by linear combinations of the tk , which changes neither the
fact that the f` lift a Z(p)-basis of the free quotient in condition (2) nor the mod p
intersection numbers 〈 f`, f ′m〉, we may then assume in addition that

〈 f`, ũk〉 = 0,
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that is, the bases

{t1, . . . , tr ; f1, . . . , fb} and {ũ1, . . . , ũr ; f ′1, . . . , f ′b}

of H 2n−i (X, Fp) and of H i (X, Fp), respectively, are Poincaré dual to each other
(b stands for Betti).

It then follows, from the way the action of H 2n(X × X, Fp) on H∗(X, Fp) via
correspondence is constructed, that

π i
X,Fp
=

r∑
k=1

tk ⊗ ũk +

b∑
`=1

f`⊗ f ′`. (?)

Step 2 (integral Künneth theorem). Recall that the general Künneth theorem for
integral coefficients says that we have a natural short exact sequence

0→
⊕

a+b=m

Ha(X,Z)⊗ H b(Y,Z)→ H m(X × Y,Z)→

→

⊕
a+b=m+1

Tor1(Ha(X,Z), H b(Y,Z))→ 0

[Cartan and Eilenberg 1956, Chapter VI, Theorem 3.1]. Applied to our situation,
X = Y , it gives us a natural injection

(H 2n−i (X,Z)⊗ H i+1(X,Z))[p] ↪→ H 2n+1(X × X,Z)[p].

Thanks to (?), the Bockstein of π i
X,Fp

belongs to this smaller subspace

βX×X (π
i
X,Fp

)= (−1)2n−i
r∑

k=1

tk ⊗ uk = (−1)2n−i
r∑

k=1

pmk−1tk ⊗ t∨k ;

here we are using the fact that the Bockstein homomorphism is a graded derivation
on cohomology, that it annihilates elements obtained by reduction mod p, and that
by construction β(ũk)= uk .

In fact, this belongs to a smaller subspace

(H 2n−i (X,Z)⊗ H i+1(X,Z))[p] ⊇ (T ⊗ T∨)[p],

which has basis

{pmin(m j ,mk)−1ti ⊗ t∨k }, where 1≤ j, k ≤ r ,

because (Z/pa)⊗ (Z/pb) ' Z/pa if a ≤ b. That is, up to sign, βX×X (π
i
X,Fp

) is
the sum of the “diagonal” (that is, j = k) basis elements in (T ⊗ T∨)[p], and is
nonzero because by assumption T 6= 0 and r ≥ 1.
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Step 3 (the other projectors). The proof for π2n−i
X,Fp

is essentially the same, with the
two factors of X × X exchanging the roles. For the last idempotent, note that the
Bocksteins of the two summands reside in distinct Künneth factors:

βX×X (π
i
X,Fp

) ∈ (H 2n−i (X,Z)⊗ H i+1(X,Z))[p], while

βX×X (π
2n−i
X,Fp

) ∈ (H i+1(X,Z)⊗ H 2n−i (X,Z))[p]

(i + 1 and 2n− i have different parity). �

2.2. Shimura varieties with i p(X) = 1. This section is a generalization of [Suh
2008, §3]. For the purpose of this article, it is enough to consider connected Shimura
data (G,X ), where G is a simple algebraic group over Q.

Proposition 2.2.1. Assume that G is Q-anisotropic so that the resulting Shimura
varieties

X0 = 0 \X

are compact, and that the congruence subgroups 0 ⊂ G(Q) used in the definition
satisfy the condition

0ab
= 0/[0,0]<∞. (2.2.1)

Then for any prime number p, there exist torsion-free levels 0 such that i p(X0)= 1.

Remark 2.2.2. The condition (2.2.1) is satisfied whenever G has real rank at least 2
(see, e.g., [Margulis 1991, Theorem IV.4.9]) and also in the case of certain special
unitary groups of real rank 1 [Rogawski 1990, Theorem 15.3.1]. (But it clearly
rules out modular and Shimura curves as it must, as well as certain special unitary
groups of real rank 1 [Kazhdan 1977].)

Proof. The condition (2.2.1) implies that

H 1(X0,Z)= 0.

On the other hand, for any fixed prime number p, one can always find lattices
0 ⊂ G(Q) such that

H 1(X0, Fp) 6= 0;

the point is as follows. Let S be a finite set of prime numbers such that G has a
good model over Z[S−1

], and let F be a number field over which G splits. Then
by the Chebotarev density theorem, there are infinitely many prime numbers ` such
that (i) ` /∈ S, (ii) ` splits completely in F , and (iii) ` ≡ 1 (mod p). Then, since
G ⊗ F` contains a split torus of positive dimension, G(F`) contains a nontrivial
abelian p-subgroup, say H ⊆ G(F`).

Now starting with a torsion-free level subgroup 0, we can find a prime ` which
is prime to 0 and satisfying the three conditions above. By first raising the level by
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a full mod ` level, and then lowering it by the abelian p-subgroup H , we arrive at
a new level 0′ with

π1(X0′)ab/p 6= 0, hence H 1(X0′, Fp) 6= 0.

Therefore, we get examples with i p(X0′)= 1. �

Remark 2.2.3. The groups H used in the proof are those p-subgroups that play a
central role in the detection and the computation of the group cohomology of finite
Lie groups, initiated by Quillen [1972]; see also [Adem and Milgram 2004] and
references therein.

Remark 2.2.4. This way we also get Shimura surfaces with i p(X) = 1, and
Theorem 2.1.3 in this case shows that even the analogue of the sign conjecture for
Fp-coefficients is false.

Remark 2.2.5. For PEL-type or quaternionic Shimura varieties, when p is a “good”
prime (with respect to the Shimura data) not dividing the level 0, then the Shimura
varieties have good reduction at p, thanks to Kottwitz and Reimann. This way
we also get nontrivial p-torsion in the coherent and de Rham cohomology of the
integral model at p of the Shimura varieties. For details, see [Suh 2008, §3].

Remark 2.2.6 (Emerton). The resulting unliftable cohomology classes in H 1(X,Fp),
and hence the nontrivial p-torsion classes in H 2(X,Z)[p] via Bockstein homomor-
phism, are Eisenstein (in the sense that the associated Galois representations are
completely reducible) [Emerton and Gee 2015, Remark 3.4.6]. The point is that,
for any prime that is coprime to the level

ker(φ : 0′→ Fp),

the corresponding Hecke operator annihilates the classes. Indeed, already the
pullback of the class is zero, and hence, the ensuing pushforward (under a different
finite covering) is necessarily zero.

2.3. Varieties with any prescribed i p(X)≥ 1.

Theorem 2.3.1. Let p be any prime number, and 1 ≤ i < n be two integers.
Then there exists a complex projective smooth variety X of dimension n such that
i p(X)= i .

Moreover, we may assume one of the following two conditions on X.

(1) For any n > i , we can find X with ample canonical bundle.

(2) If i ≥ 3 and n ≥ 2i − 1, then we can find X that is rational.

Our proof consists of two parts: group cohomology (the tools we use can be
found, e.g., in [Adem and Milgram 2004]) and projective geometry.
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Lemma 2.3.2. For any prime number p, there exists a finite group G such that

H 1(G, Fp)= 0 and dimFp H 2(G, Fp)≥ 2.

It follows that

p - |H 2(G,Z)| and dimFp H 3(G,Z)[p] ≥ 2.

Proof. Consider the 2-dimensional vector space V = F⊕2
p . For odd p, let D := F×p

be the units in Fp, and let α ∈ D act on V as the diagonal matrix(
α 0
0 α−1

)
,

while for p = 2, let a chosen generator α of D := Z/3 act on V as the matrix(
0 1
1 1

)
.

(One can regard V as F4 and D as F×4 .) Let V ′ = V be another copy of the same
representation of D, and take the corresponding semidirect product

G := (V ⊕ V ′)o D.

For p odd, the cohomology algebra of V (regarded as a finite group) with coefficients
in Fp is the tensor product of a polynomial algebra and an exterior algebra [Adem
and Milgram 2004, Corollary II.4.3]:

H∗(V, Fp)' Fp[x2, y2]⊗
∧
(e1, f1),

where the subscripts mark the degree. Then D acts as the identity character on the
eigenspaces Fpx2 and Fpe1 and as the inverse character on Fp y2 and Fp f1. By the
Künneth formula in group cohomology, we also have

H∗(V ⊕ V ′, Fp)' Fp[x2, y2, x ′2, y′2]⊗
∧
(e1, f1, e′1, f ′1),

with a similar description of the action of D.
For p = 2, the cohomology algebra is a polynomial algebra [Adem and Milgram

2004, Theorem II.4.4]:
H∗(V, F2)' F2[x1, y1],

on which the chosen generator α of D acts as the matrix above, on the basis x1, y1.
Similarly

H∗(V ⊕ V ′, F2)' F2[x1, y1, x ′1, y′1].

Since D has order prime to p, the Lyndon–Hochschild–Serre spectral sequence

Eab
2 = Ha(D, H b(V ⊕ V ′, Fp))⇒ Ha+b(G, Fp)
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degenerates in E2 and gives

H∗(G, Fp)' H∗(V ⊕ V ′, Fp)
D.

One can then show that there are no nonzero D-invariants of degree 1.
For p odd, all the D-invariants in H 2(V ⊕ V ′, Fp) are in the second wedge

product, on which the action of D is through the two characters, with multiplicity 2
each. It follows that the invariants have dimension 4 or 6, according to whether
p ≥ 5 or p = 3.

For p = 2, to compute the dimension of the D-invariants, first extend scalars
to F4 so as to diagonalize the action of D. Then one can see that the invariants of
degree 2 have dimension 4.

The last part of the lemma follows from the long exact sequence

· · · → H i (G,Z)
×p
−→ H i (G,Z)→ H i (G, Fp)→ · · ·

and the fact that H i (G,Z) is finite for all i > 0. �

Proof of Theorem 2.3.1. Step 1 (the cases i = 1, 2). By applying the Godeaux–Serre
construction [Serre 1958, §20] to the group Z/p, we get a complete intersection Y
of dimension n ≥ 2 with a free action of Z/p. Let X be the quotient of Y by Z/p.
Since Y is simply connected, X has fundamental group Z/p, and we have

H 1(X,Z)= 0 and H 1(X, Fp)' Fp,

and we have i p(X)= 1.
For i =2, we apply the Godeaux–Serre construction to any group G satisfying the

conditions of Lemma 2.3.2, to obtain a complete intersection Y of dimension n ≥ 3
with a free G-action. Let X = Y/G. Because Y has dimension ≥ 3, the Lefschetz
hyperplane theorem gives us

H 1(Y,Z)= 0 and H 2(Y,Z)' Z,

on which G acts trivially. Then the Serre–Hochschild spectral sequence

Eab
2 = Ha(G, H b(Y,Z))⇒ Ha+b(X,Z)

gives us H 1(X,Z)= 0 and then an exact sequence

0→ H 2(G,Z)→ H 2(X,Z)→ Z→ H 3(G,Z).

It follows that there is a noncanonical isomorphism

H 2(X,Z)' Z⊕ H 2(G,Z),

hence
dimFp H 2(X,Z)⊗ Fp = 1.



1584 Junecue Suh

In parallel, the spectral sequence applied to the mod p cohomology gives us
H 1(X, Fp)= 0 and

0→ H 2(G, Fp)→ H 2(X, Fp)→ Fp→ H 3(G, Fp),

which gives the dimension count

dimFp H 2(X, Fp)≥ 2.

Therefore, i p(X)= 2.
For analysis of the cohomology of Godeaux–Serre varieties, see also [Atiyah

and Hirzebruch 1962, p. 42].

Step 2 (the case i ≥ 3). Here we use the trick of blowing up to increase i p. The
main point is:

Lemma 2.3.3. Let X be a closed smooth subvariety of a complex projective smooth
variety Y of codimension c ≥ 2, and let p be a prime number. Then the blow-up Y ′

of Y along X satisfies

i p(Y ′)=min{i p(X)+ 2, i p(Y )}.

In particular, if H∗(Y,Z) is free of p-torsion (e.g., if Y is a projective space), then
i p(Y ′)= i p(X)+ 2.

Proof. This follows from the isomorphism

H j (Y ′,Z)' H j (Y,Z)⊕

c−1⊕
k=1

H j−2k(X,Z).

(Use the Leray spectral sequence and the computation of the cohomology of a
projective bundle [Katz 1973, Théorème 2.2].) �

Now we are ready to prove Theorem 2.3.1. Start with a variety X = X0 from
Step 1, and repeat di/2− 1e times the procedure of embedding Xk in a projective
space (whose dimension can be chosen to be ≤ 2 dim(Xk)+ 1), then taking the
blow-up Xk+1 of the projective space along Xk .

The resulting variety will in general have a large dimension. However, we can
cut down the dimension without changing i p(X), by using the Lefschetz hyperplane
theorem, as long as the desired dimension n is at least i p(X)+ 1.

To get a rational example, apply the previous procedure to get X of dimension i−1
and i p(X)= i − 2. Embed it in the projective space of dimension n ≥ 2(i − 1)+ 1
and blow up the projective space along it. �

Remark 2.3.4. The numerical condition in (2) for rational examples is sharp in
the sense that, for i = 2 and n = 2i − 1= 3, there is no rational projective smooth
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threefold with i p(X) = 2. This is the crucial observation of Artin and Mumford
[1972] mentioned in the introduction.

3. Integral Künneth defect

Let X be a complex projective smooth variety of dimension n with torsion-free
H∗(X,Z). The Künneth theorem for integral coefficients says in this case

H i (X × X,Z)'
⊕

j+k=i

H i (X,Z)⊗ H j (X,Z).

We begin by noting that the Künneth idempotent π i
X ∈ H 2n(X × X,Q) in fact

belongs to H 2n(X × X,Z), that in the integral cohomology group, it (if nonzero) is
not divisible by any prime number, and that its reduction mod p gives the mod p
Künneth idempotents π i

X,Fp
.

Definition 3.1. The (integral) Künneth defect is defined as the index

κi = κi,X := [Zπ
i
X : Zπ

i
X ∩ Im(clnX×X (CHn(X × X)))].

Thus, for X with torsion-free cohomology, Grothendieck’s standard conjecture
of Künneth type becomes the assertion κi <∞ for all i , while the integral analogue
amounts to κi = 1, and the mod p analogue amounts to p - κi .

Proposition 3.2. Let X and Y be nonempty complex projective smooth varieties
with torsion-free integral cohomology, and let n = dim X.

(1) κ0,X = κ2n,X = 1.

(2) κi,X = κ2n−i,X for all i .

(3) Suppose that for some i and some integer m, we have κ j,X | m for all j 6=
i, 2n− i . Then κi,X and κ2n−i,X also divide m.

(4) Suppose that f : Y → X is a generically finite covering of degree d. Then
κi,X | dκi,Y .

(5a) For the product, we have the “convolution” formula

κ`,X×Y divides lcmi+ j=`(κi,X · κ j,Y ).

(5b) Conversely, both κi,X and κi,Y divide κi,X×Y .

(6) Let X be a complex projective smooth family of varieties with torsion-free
cohomology over a (base) connected complex variety S. If κi,Xs | m for a very
general fiber Xs , then κi,Xt | m for any fiber Xt .

Proof. The fibers {∗}×X and X×{∗} represent π0
X and π2n

X , respectively, hence (1).
The Z/2 symmetry on X × X gives (2). The diagonal 1X represents the sum of
all π i

X , from which we get (3).
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The projection formula tells us that ( f × f )∗(π i
Y )= dπ i

X : for any x ∈ H∗(X,Q),

prX,2,∗(pr∗X,1(x)∪ ( f × f )∗(π i
Y ))= prX,2,∗( f × f )∗(( f × f )∗ pr∗X,1(x)∪π

i
Y )

= f∗ prY,2,∗(pr∗Y,1( f ∗(x))∪π i
Y )

= f∗ f ∗(xi )= deg( f )(xi ),

where xi is the degree i component of x , hence (4).
Part (5a) follows from the Künneth formula and the fact that

π`X×Y =
∑

i+ j=`

π i
X ⊗π

j
Y

in H∗(X×Y×X×Y,Q)' H∗(X×X,Q)⊗H∗(Y×Y,Q) (up to sign à la Koszul).
For part (5b), note that, for any point ∗ on Y , we have

pr1,3,∗(π
i
X×Y ∪ [X ×{∗}× X × Y ])= π i

X

as elements of H 2 dim X (X × X,Q), where pr1,3 : X × Y × X × Y → X × X is the
projection onto the product of the first and third factors.

For (6), use the fact that the Hilbert scheme of X ×S X /S is the countable union
of proper irreducible schemes {Hn}n=1,2,... over S. Subtract from S all the images
of those Hn which map onto proper subvarieties of S, and call the complement U .
If κi,Xs | m for one s ∈ U , then by construction the algebraic cycle representing
m ·π i

X specializes to any t ∈ S in a flat family. �

It follows that the integral analogue of the standard conjecture of Künneth type
is true for surfaces with H 1(X,Z)= 0= H 3(X,Z), e.g., K3 surfaces and complete
intersection surfaces.

Proposition 3.3. Let X be a smooth complete intersection of hypersurfaces of
degrees d1, . . . , dc in Pn+c. Then κi = 1 for all i odd, and κi | d1 · · · dc for all i .

Proof. By Proposition 3.2(2)–(3), we may prove the statements just for i < n. For
such i , by the Lefschetz hyperplane theorem, H i (X,Z) is zero if i is odd, and is
generated by the cup-power D∪i/2 if i is even, where D is a hyperplane section
of X . Since D∪n

= d1 · · · dc, the cycle

pr∗1(D
∪n−i/2)∪ pr∗2(D

∪i/2)

represents d1 · · · dcπ
i
X for i < n even. �

Question 3.4. Does there exist a projective smooth variety X with torsion-free
cohomology such that κi,X > 1 for some i?

In this regard, we mention:2

2The theorem cited is stated only for n = 2, but the argument carries over to general n without
much difficulty.



Standard conjecture of Künneth type with torsion coefficients 1587

Theorem 3.5 [Soulé and Voisin 2005, Theorem 3]. Let X be a projective smooth
variety of dimension n, and let m be an integer prime to 6. Then for a very general
degree-m3 hypersurface Y in P4 and any irreducible subvariety Z of X × Y of
codimension 3, the Künneth (2, 4) component

[Z ](2,4) ∈ H 2(X,Z)⊗ H 4(Y,Z)

is divisible by m in the group.

While this theorem is relevant to our discussion, it does not quite answer our
question, since one is not allowed to take X = Y . The nature of the proof requires
that X must precede Y : the “very general” condition on Y is formulated in terms
of the Hilbert scheme of X × Y .

4. Abelian varieties

We now turn to investigating Question 3.4 in the case of abelian varieties.
Perhaps a few words are in order to put our results in relation to what is known

in the literature. The standard conjecture of Künneth type with Q-coefficients has
long been known in the case of abelian varieties, treated as early as in [Kleiman
1968]. Part of what follows can be seen as an improvement of it with Z-coefficients.
(However, the use of higher Abel–Jacobi maps to produce requisite integral algebraic
cycles seems to be new in this context.)

A remarkable, arithmetic development in a rather different direction has been
seen in the consideration of the rational equivalence of algebraic cycles on abelian
varieties (but still with Q-coefficients), a refinement of the homological equivalence.
(The standard conjecture, as stated, only concerns the homological equivalence.)
Here a great deal of striking results have been obtained by use of the Fourier
transformation. See among others [Beauville 1986; 2010; Künnemann 1993].3

4.1. Endomorphisms and Lieberman’s trick. First we note that Poincaré duality
is valid for compact complex tori, with or without polarization. As the cohomology
is also torsion-free, we can still speak of the Künneth defects (Section 3).

Definition 4.1.1. Let g ≥ 1, 0< i < 2g, and a 6= −1, 0, 1 be integers. Define the
polynomial

Pi,g,a(T ) :=
∏

0< j<2g and j 6=i

T − a j

ai − a j ∈Q[T ],

3 An explicit formula is given in [Künnemann 1993] for the projectors up to rational equivalence
with Q-coefficients. However, the denominators required there are no better than the ones given
in Section 4.1 below, and not as sharp as the ones in Section 4.2 (where a principal polarization is
assumed in addition).



1588 Junecue Suh

and let di,g,a be the denominator (up to sign) of Pi,g,a:

di,g,a =
∏

0< j<2g and j 6=i

(ai
− a j ).

Proposition 4.1.2. Let X be a compact complex torus of dimension g ≥ 1. For any
integers a 6= −1, 0, 1 and 0< i < 2g, we have

κi,X | di,g,a.

In particular, no prime p ≥ 2g divides any κi,X .

Proof. The pullback by the multiplication map [a] : X→ X acts as a j on H j (X,Z).
The polynomial Pi,g,a was constructed so that

Pi,g,a([a]∗)= a0,iπ
0
X +π

i
X + a2g,iπ

2g
X on H∗(X,Q),

where a0,i and a2g,i are rational numbers whose denominators divide di,g,a . Because
π0

X and π2g
X are integrally algebraic (Proposition 3.2(1)), we get the first estimate

by multiplying the equation through by di,g,a .
For the second statement, choose a 6= 0,±1 to be a primitive root mod p, so that

a, . . . , a2g−1 are distinct mod p and p - di,g,a . �

4.2. Invariant theory and Jacobians. From now on, we consider a principally
polarized4 abelian variety (X, L) of dimension g ≥ 1.

Recall the following fact from the classical invariant theory. Let V be a 2g-
dimensional vector space over a field k of characteristic zero endowed with a
nondegenerate alternating pairing 〈 · , · 〉, and let V1 and V2 be two copies of V .
Then the Sp2g-invariants in the exterior algebra of the dual (V1⊕ V2)

∨ (on which
Sp2g acts diagonally and then dually) are generated by those in degree 2:(∧

(V1⊕ V2)
∨

)Sp2g
= k〈E1, E2,M〉,

where E1 and E2 are the pairings 〈 · , · 〉 through V1 and V2, respectively, and M is
the pairing

M(u, w) := E(u1, w2)+ E(u2, w2)= E(m(u),m(w))− E1(u, w)− E2(u, w),

where u = u1+ u2 and w = w1+w2 with ui , wi ∈ Vi and m : V1⊕ V2→ V is the
sum map.

4The calculation of bounds that follows, when implemented for a general polarization L , would
always involve the degree of L in the denominator. In view of Proposition 3.2(4), we do not lose
much by first passing to an isogenous abelian variety with a principal polarization.
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This has the following geometric consequence [Milne 1999]. The Chern class
E ∈ H 2(X,Z) of the principal polarization L can be regarded as a perfect alternating
form on H1(X,Z). Then we have

H∗(X × X,Q)Sp2g =Q〈E1, E2,M〉,

where Ei = pr∗i (E) and

M = µ∗E − E1− E2, (4.2.1)

where µ : X × X → X is the group law. Since E1, E2, and M have Künneth
types (2, 0), (0, 2), and (1, 1), respectively, it follows that there exist constants
γi,g(a, b, c) ∈Q such that the Künneth projectors can be expressed as

π i
X =

∑
(a,b,c):2a+b=2g−i and b+2c=i

γi,g(a, b, c)Ea
1 Mb Ec

2.

Theorem 4.2.1 [Scholl 1994, §5.9]. For all 0≤ i ≤ 2g, we have

γi,g(a, b, c)=
(−1)i

a! b! c!
.

(We note in passing that in [loc. cit.] Scholl proves Künneth-type decomposition
even for rational equivalence (with Q-coefficients).)

For each index 1≤ i < g, the sum ranges over the following triples (a, b, c):

(g−i, i, 0), (g−i+1, i−2, 1), (g−i+2, i−4, 2), . . . , (g−i+bi/2c, 0 or 1, bi/2c).

Since E1, E2, and M are integral algebraic cycles, we have:

Corollary 4.2.2. Let 1≤ i < g. If a prime p divides κi,X , p>max(i, g−i+bi/2c).
In particular, the mod p analogue of the standard conjecture of Künneth type is
true for all p ≥ g.

With a fixed g, as i ranges from 1 to g, the corollary gives the best bound around
i ≈ 2g/3, when i surpasses g− i/2.

For Jacobians we can do much better. Let C be a projective smooth curve,
J = Jac(C) its Jacobian, c ∈ C any base point,

αn : C (n)
= Symn C→ J

the (higher) Abel–Jacobi map for n = 0, . . . , g, and

w[n] := αg−n,∗[C (g−n)
] ∈ H 2n(J,Z)

the cohomology class (which is independent of c).
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Theorem 4.2.3. Let C , J = Jac(C), µ, and w be as above. Then we have

π i
J = (−1)i

∑
(a, b, c):2a+b=2g−i and b+2c=i

pr∗1(w
[a]) pr∗2(w

[c])

×

∑
d+e+ f=b

(−1)d+ f pr∗1(w
[d])µ∗(w[e]) pr∗2(w

[ f ])

for all i , and for both Q- and Fp-coefficients.
In particular, the mod p and integral analogues of the standard conjecture of

Künneth type are true for J .

Proof. The key point is the celebrated formula of Poincaré [Birkenhake and Lange
2004, §11.2.1]

n!w[n] = [c1(L)]n in H 2n(J,Z)

(hence the divided power notation). This allows us to write

Ea
1

a!
= pr∗1(w

[a]) and
Ec

2

c!
= pr∗2(w

[c]).

As for the second term, apply the trinomial theorem (in the divided power form)5

to the defining equation (4.2.1):

M [b] = Mb/b! = (− pr∗1(E)+µ
∗(E)− pr∗2(E))

[b]

=

∑
d+e+ f=b

(− pr∗1(E))
[d](µ∗(E))[e](− pr∗2(E))

[ f ]

=

∑
d+e+ f=b

(−1)d+ f pr∗1(w
[d])µ∗(w[e]) pr∗2(w

[ f ]). �

Corollary 4.2.4. The torsion and integral versions of the standard conjecture of
Künneth type is true for all principally polarized abelian varieties of dimension ≤ 3.

Proof. Via the Torelli map, a general PPAV of dimension g ≤ 3 is the Jacobian of a
curve of genus g. �

This is the motivation for Conjecture 1.5 in the introduction.

Prym–Tyurin theory and curves on abelian varieties. Recall [Birkenhake and Lange
2004, §12.3] that, to a double covering f :C ′→C of curves that is either unramified
or ramified at exactly 2 points, one attaches a principally polarized abelian vari-
ety P( f ) (the Prym variety of f ), in such a way that P( f )× Jac(C) is isogenous
to the Jacobian Jac(C ′) via an isogeny of exponent 2.

Corollary 4.2.5. For all primes p ≥ 3, the mod p analogue of the standard conjec-
ture of Künneth type is true for the Prym variety P( f ).

5Namely, (α+β + γ )n/n! =
∑

i+ j+k=n(α
i/ i !)(β j/j !)(γ k/k!).
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Proof. By Theorem 4.2.3, the analogue is true for Jac(C ′), hence for P( f )× Jac(C)
by Proposition 3.2(4). Then the analogue, for odd p, follows for P( f ) by Proposition
3.2(5b). �

Corollary 4.2.6. For every principally polarized abelian variety X of dimension
g ≤ 5, the mod p analogue of the standard conjecture of Künneth type is true for all
primes p ≥ 3.

Proof. A general PPAV of genus g ≤ 5 is the Prym variety of a suitable double
cover. �

More generally, following Prym and Tyurin [loc. cit.], one studies a general
principally polarized abelian variety by embedding it into the Jacobian of some curve,
usually of high genus, with some exponent, usually ≥ 2. In this way, the validity of
the integral analogue of the standard conjecture of Künneth type (or its failure) is
related to the existence of low-genus curves on abelian varieties (or lack thereof).

We thus quantify Conjecture 1.5 into:

Question 4.2.7. For any integer g ≥ 1, let κ(g) denote the least common multiple
of κi,X as i ranges over the interval [0, 2g], where X is a very general principally
polarized abelian variety of dimension g.

How does κ(g) vary with g? In particular, is κ(g) > 1 and is κ(g) > 2 when
g > 3 and g > 5, respectively?

4.3. Hodge and Lefschetz operators. In this section, we consider operators closely
related to the Künneth projectors, and find the denominators required in their
definition. As in the previous section, we focus on principal polarizations. We recall
a set of operators in the Hodge–Lefschetz theory (see, e.g., [Wells 2008, §V.3] or
[Kleiman 1968]). First, cup product with [L] gives

L : H∗(X,Q)→ H∗+2(X,Q),

which is defined by an integral algebraic correspondence and preserves the integral
cohomology. One then defines (see the references above) the operator, with Q-
coefficients,

3 : H∗(X,Q)→ H∗−2(X,Q).

Finally, the Pontryagin product is also defined by an integral algebraic corre-
spondence

H i (X,Z)⊗ H j (X,Z)→ H i+ j−2g(X,Z),

x ⊗ y 7→ x ? y := µ∗(pr∗1(x)⊗ pr∗2(y)),
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where µ : X × X→ X is the group law.6 This allows us to recover the Lefschetz
3-operator:7

Proposition 4.3.1. For any x ∈ H∗(X,Q), we have

3(x)=
1
g!
([L]g−1) ? x .

In particular, 3 is defined by an algebraic correspondence with coefficients in
Z[1/g!] and preserves H∗(X,Z[1/g!]).

Moreover, if X is the Jacobian of a curve or the Prym variety associated with a
double covering, then 3 is defined by a correspondence with coefficients in Z[1/g]
or Z[1/2g], respectively.

Proof. For the proof of the first formula, see [Birkenhake and Lange 2004, Proposi-
tion 4.11.3]. The latter statement follows from the fact that, in case X is a Jacobian or
Prym, [L]g−1/(g−1)! or 2[L]g−1/(g−1)!, respectively, is represented by an integral
algebraic cycle [Birkenhake and Lange 2004, §11.2.1 and Criterion 12.2.2]. �

Now that we have L and 3, we can apply the representation theory of sl2 on
cohomology (Jacobson–Morozov); see, e.g., [Wells 2008, §V.3]. With the usual
notation

B := [3, L] =3L − L3=
2g∑

i=0

(g− i)π i ,

the operators correspond to the following matrices in sl2:

3↔

(
0 1
0 0

)
, L↔

(
0 0
1 0

)
, and B↔

(
1 0
0 −1

)
.

Definition 4.3.2 (integral Lefschetz algebra). We denote by L the Z-subalgebra of
linear operators on H∗(X,Q) generated by the five operators

L , 3, w = [−1]∗, π0
= [{0}× X ], and π2g

= [X ×{0}].

(Recall that [−1]∗ acts as 1 on H even and as −1 on H odd.)

It follows from Proposition 4.3.1 that any element of the localization L[1/g!] is
defined by an algebraic correspondence with coefficients in Z[1/g!].

Recall that x ∈ H i (X,Q) is called primitive if 3(x)= 0. For any x ∈ H i (X,Q),
we have the primitive decomposition

x =
∑
k≥i0

Lk xk, xk ∈ H i−2k(X,Q) primitive, (4.3.1)

6A natural way to index is to use homology, via Poincaré duality H i (X,Z) ' H2g−i (X,Z). If
x ∈ Hi (X,Z) and y ∈ H j (X,Z), then x ? y ∈ Hi+ j (X,Z).

7This operator is named 3c in [Kleiman 1968], in which 3 is reserved for something else.
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where i0=max(i−g, 0). In terms of (4.3.1), the Lefschetz operator on H∗(X,Q) is

3(x)=
∑
k≥i1

k(g− i + k+ 1)Lk−1xk for x ∈ H i (X,Q),

where i1 = max(i − g, 1); see the formula for “3c” in [Kleiman 1968]. We can
then define8

3′(x)=
∑
k≥i1

Lk−1xk for x ∈ H i (X,Q).

The Hodge ∗-operator on H∗(X,Q) in Kleiman’s convention9 is given by

∗K (x)=
∑
k≥i0

(−1)(i−2k)(i−2k+1)/2Lg−i+k xk for x ∈ H i (X,Q).

Proposition 4.3.3. Let j and k be two integers in [0, g]. Then L[1/2(g!)] contains
the following 4 operators on H∗(X,Q): the Künneth projectors π j and π2g− j and
the primitive part extractors

p j,k(x) :=
{

xk if x ∈ H j (X,Q),

0 if x ∈ H i (X,Q) and i 6= j

and p2g− j,k defined similarly (xk on H 2g− j and 0 in other degrees).

Proof. We use a nested induction, ascending in j outside and descending in k inside.
We first note that π j and π2g− j are generated by p j,k and L and by p2g− j,k and L ,
respectively, with integer coefficients, so for any fixed j , it is enough to prove the
statement for p j,k and p2g− j,k .

The structure constants that appear below, and need to be inverted, are given by:

Lemma 4.3.4. Let 0 6= x ∈ H i (X,Q) be primitive. Then

3g−i Lg−i (x)= ((g− i)!)2x .

The point is that the irreducible subrepresentation of sl2(Q) generated by x has
weight g− i . See, e.g., [Wells 2008, §V.3].

In the induction base j = 0, the elements π0
= p0,0 and π2g are already in L

by definition. From the fact that Lg
: H 0(X,Z[1/g!])→ H 2g(X,Z[1/g!]) is an

isomorphism, we see from Lemma 4.3.4 that

p2g,g
=

1
(g!)

3g
◦π2g.

8In the next line is Kleiman’s definition of “3”.
9This again differs from the notation of Wells [2008]; among other things, the latter acts on

H∗(X,C) but not necessarily on H∗(X,Q).
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Now suppose that, for some j0, we have proven the statement for all j < j0
and for all k. Let x ∈ H∗(X,Q), and let x (i) denote its component in H i (X,Q).
Applying to x the composite

3g−b j0/2c ◦ Lg−b j0−2c
◦

(
1−

j0−1∑
j=0

π j
)
,

and then
1± [−1]∗

2
according to whether j0 is even or odd, we are left with the homogeneous component

3g−b j0/2cLg−b j0/2cx ( j0).

From the primitive decomposition,

x ( j0) =
∑

k

Lk x ( j0)
k , x ( j0)

k ∈ H j0−2k primitive,

what we have is

3g−b j0/2cLg−b j0/2cx ( j0) =
∑

k

3g−b j0/2cLg−b j0/2c+k x ( j0)
k .

Now we use the descending induction in k, with the case k = g+ 1 being trivially
true. Suppose that we have shown that p j0,k is in L[1/2g!] for all k > k0. It follows
then that the previous operator curtailed in degrees k ≤ k0

x 7→
∑
k≤k0

3g−b j0/2cLg−b j0/2c+k x ( j0)
k

on H∗ is in L[1/2g!]. Applying 3k0 will then annihilate all the terms with k < k0

(again, the point is that x ( j0)
k , when nonzero, generates a subrepresentation of weight

g− (i − 2k)), and we obtain

x 7→3g−b j0/2c+k0 Lg−b j0/2c+k0 x ( j0)
k = ((g−b j0/2c+ k0)!)

2x ( j0)
k0
,

by Lemma 4.3.4, and we have shown that

((g−b j0/2c+ k0)!)
2
· p j0,k0

is in L[1/2g!], hence also p j0,k0 . Go down in k inside, then up in j outside.
The proof for p2g− j,k is similar, and we omit the details. �

We summarize the calculations.

Theorem 4.3.5. Let (X, L) be a principally polarized abelian variety of dimension
g. The Lefschetz operator 3 is defined by an algebraic correspondence with
coefficients in Z[1/g!], even with coefficients in Z[1/g] or Z[1/2g] in case X is
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a Jacobian or a Prym, respectively. The Künneth projectors π i
X , the Hodge star

operator (à la Kleiman) ∗K , and the primitive part extractors p j,k are all defined
by algebraic correspondences with coefficients in Z[1/2(g!)].
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New cubic fourfolds with odd-degree
unirational parametrizations
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We prove that the moduli space of cubic fourfolds C contains a divisor C42 whose
general member has a unirational parametrization of degree 13. This result
follows from a thorough study of the Hilbert scheme of rational scrolls and an
explicit construction of examples. We also show that C42 is uniruled.
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Introduction

Let X be a smooth projective variety of dimension n over C. We say that X
has a degree-% unirational parametrization if there is a dominant rational map
ρ : Pn 99K X with deg ρ = %. Such a parametrization implies that the smallest
positive integer N which allows the rational equivalence

N1X ≡ N {x × X}+ Z in CHn(X × X) (0-1)

would divide %, where x ∈ X and Z is a cycle supported on X ×Y for some divisor
Y ⊂ X . The relation (0-1) for arbitrary integer N is called a decomposition of the
diagonal of X , and it is called an integral decomposition of the diagonal if N = 1.
(See [Bloch and Srinivas 1983] and also [Voisin 2014, Chapter 3].)

This paper studies the unirationality of cubic fourfolds, i.e., smooth cubic hy-
persurfaces in P5 over C. Let Hdg4(X,Z) := H 4(X,Z)∩ H 2(�2

X ) be the group of

MSC2010: primary 14E08; secondary 14J26, 14J35, 14J70, 14M20.
Keywords: cubic fourfold, K3 surface, rational surface, unirational parametrization.
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integral Hodge classes of degree 4 for a cubic fourfold X . In the coarse moduli
space of cubic fourfolds C, the Noether–Lefschetz locus

{X ∈ C : rk(Hdg4(X,Z))≥ 2}

is a countably infinite union of irreducible divisors Cd indexed by d ≥ 8 and
d ≡ 0, 2 (mod 6). Here Cd consists of the special cubic fourfolds which admit a
rank-2 saturated sublattice of discriminant d in Hdg4(X,Z) [Hassett 2000]. Because
the integral Hodge conjecture is valid for cubic fourfolds [Voisin 2013, Theorem 1.4],
X ∈ C is special if and only if there is an algebraic surface S ⊂ X not homologous
to a complete intersection.

Voisin [2017, Theorem 5.6] proves that a special cubic fourfold of discriminant
d ≡ 2 (mod 4) admits an integral decomposition of the diagonal. Because every
cubic fourfold has a unirational parametrization of degree 2 [Harris 1992, Example
18.19], it is natural to ask whether they have odd-degree unirational parametrizations.

For a general X ∈ Cd with d = 14, 18, 26, 30, 38, the examples constructed by
Nuer [2016] combined with an algorithm by Hassett [2016, Proposition 38] support
the expectation. In this paper, we improve the list by solving the case d = 42.

Theorem 0.1. A generic X ∈ C42 has a degree-13 unirational parametrization.

Recall that a variety Y is uniruled if there is a variety Z and a dominant rational
map Z×P1 99K Y which doesn’t factor through the projection to Z . As a byproduct
of the proof of Theorem 0.1, we also prove:

Theorem 0.2. C42 is uniruled.

Strategy of proof. When d = 2(n2
+ n+ 1) with n ≥ 2 and X ∈ Cd is general, the

Fano variety of lines F1(X) is isomorphic to the Hilbert scheme of two points 6[2],
where 6 is a K3 surface polarized by a primitive ample line bundle of degree d
[Hassett 2000, Theorem 6.1.4].

The isomorphism F1(X)∼=6[2] implies X contains a family of two-dimensional
rational scrolls parametrized by 6. Indeed, the divisor 1⊂6[2] parametrizing the
nonreduced subschemes can be naturally identified as the projectivization of the
tangent bundle of 6. Each fiber of this P1-bundle induces a smooth rational curve
in F1(X) through the isomorphism and hence corresponds to a rational scroll in X .

Let S ⊂ X be one such scroll. Since S is rational, its symmetric square W =
Sym2 S is also rational. A generic element s1+ s2 ∈ W spans a line l(s1, s2) not
contained in X , so there is a rational map

ρ :W 99K X,

s1+ s2 7→ x
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where l(s1, s2) ∩ X = {s1, s2, x}. By [Hassett 2016, Proposition 38], this map
becomes a unirational parametrization if S has isolated singularities. Moreover, its
degree is odd as long as 4 - d .

Discriminant d = 42 corresponds to the case n = 4 above. Note that 4 - d = 42.
Thus, a generic X ∈ C42 admits an odd-degree unirational parametrization once we
prove:

Theorem 0.3. A generic X ∈ C42 contains a degree-9 rational scroll S which has 8
double points and is smooth otherwise.

Here a double point means a nonnormal ordinary double point. It’s a point where
the surface has two branches that meet transversally.

The idea in proving Theorem 0.3 is as follows.
Degree-9 scrolls in P5 form a component H9 in the associated Hilbert scheme.

Let H8
9 ⊂H9 parametrize scrolls with 8 isolated singularities. By definition (see

Section 4) an element S ∈ H8
9 is nonreduced. We use S to denote its underlying

variety.
Let U42 ⊂ |OP5(3)| be the locus of special cubic fourfolds with discriminant 42.

Consider the incidence variety

Z = {(S, X) ∈H8
9×U42 : S ⊂ X}.

Then there is a diagram

Z
p1

}}

p2

!!

H8
9 U42 // C42

Theorem 0.3 is proved by showing that p2 is dominant. Two main ingredients in
the proof are

• constructing an explicit example and

• estimating the dimension of the Hilbert scheme parametrizing singular scrolls.

Section 1 provides an introduction of rational scrolls and the basic properties
required in the proof. We construct an example in Section 2 and then prove the main
results in Section 3. The general description about the Hilbert schemes H8

9 ⊂H9

and the estimate of the dimensions are left to Section 4.
Throughout the paper we will frequently deal with the rational map

3Q : P
D+1 99K PN

defined as the projection from some (D− N )-plane Q. Here D and N are positive
integers such that D+1≥ N ≥ 3. We will assume D≥ N ≥ 5 when we are studying
singular scrolls.
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1. Preliminary: rational scrolls

We provide a brief review of rational scrolls and introduce necessary terminologies
and lemmas in this section.

1A. Hirzebruch surfaces. Let m be a nonnegative integer, and let E be a rank-2
locally free sheaf on P1 isomorphic to OP1 ⊕OP1(m). The Hirzebruch surface Fm

is defined to be the associated projective space bundle P(E ).
Let f be the divisor class of a fiber, and let g be the divisor class of a section,

i.e., the divisor class associated with Serre’s twisting sheaf OP(E )(1). The Picard
group of Fm is freely generated by f and g, and the intersection pairing is given by

f g
f 0 1
g 1 m

The canonical divisor is KFm =−2g+ (m− 2) f .
Let a and b be two integers, and let h = ag + b f be a divisor on Fm . The

ampleness and the very ampleness for h are equivalent on Fm , and it happens if and
only if a > 0 and b > 0 [Hartshorne 1977, Chapter V, §2.18].

Lemma 1.1. Suppose the divisor ag+ b f is ample. We have

h0(Fm, ag+ b f )= (a+ 1)( 1
2am+ b+ 1),

hi (Fm, ag+ b f )= 0 for all i > 0.

These formulas appear in several places in the literature with slightly different
details depending on the contexts, for example [Laface 2002, Proposition 2.3;
Ballico et al. 2004, p. 543; Coskun 2006, Lemma 2.6]. It can be proved by
induction on the integers a and b or by applying the projection formula to the
bundle map π : Fm→ P1.

1B. Deformations of Hirzebruch surfaces. Fm admits a deformation to Fm−2k for
all m > 2k ≥ 0. More precisely, there exists a holomorphic family τ : F→ C such
that F0 ∼= Fm and Ft ∼= Fm−2k for t 6= 0. The family can be written down explicitly
by the equation

F = {xm
0 y1− xm

1 y2+ t xm−k
0 xk

1 y0 = 0} ⊂ P1
×P2

×C, (1-1)

where ([x0, x1], [y0, y1, y2], t) is the coordinate of P1
×P2

×C [Barth et al. 1984,
p. 205].

Generally, Fm admits an analytic versal deformation with a base manifold of
dimension h1(Fm, TFm ) by the following lemma.

Lemma 1.2 [Seiler 1992, Lemma 1 and Theorem 4]. There is a natural isomor-
phism H 1(Fm, TFm )

∼= H 1(P1,OP1(−m)). We also have H 2(Fm, TFm )= 0.
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Let E =OP1 ⊕OP1(m) be the underlying locally free sheaf of Fm . It is straight-
forward to compute that Ext1

P1(E, E) ∼= H 1(P1,OP1(−m)), so there is a natural
isomorphism

H 1(Fm, TFm )
∼= Ext1

P1(E, E), (1-2)

by Lemma 1.2. The elements of the group Ext1
P1(E, E) are in one-to-one correspon-

dence with the deformations of E over the dual numbers Dt ∼=C[t]/(t2) [Hartshorne
2010, Theorem 2.7]. Thus, (1-2) says that the infinitesimal deformation of Fm can
be identified with the infinitesimal deformation of its underlying locally free sheaf.

Every element in Ext1
P1(E, E)∼= Ext1

P1(OP1(m),OP1) is represented by a short
exact sequence

0→OP1 →OP1(k)⊕OP1(m− k)→OP1(m)→ 0

for some k satisfying m>2k≥0. By tracking the construction of the correspondence
in [Hartshorne 2010, Theorem 2.7], the above sequence corresponds to a coherent
sheaf E on P1

× Dt , flat over Dt , such that E0 ∼= E and Et ∼=OP1(k)⊕OP1(m− k)
for t 6= 0. So it induces a flat family F of Hirzebruch surfaces over Dt such that
F0 ∼= Fm and Ft ∼= Fm−2k for t 6= 0.

1C. Rational normal scrolls. Let u and v be positive integers with u ≤ v, and let
N = u+ v+ 1. Let P1 and P2 be complementary linear subspaces of dimensions
u and v in PN . Choose rational normal curves C1 ⊂ P1 and C2 ⊂ P2 and an
isomorphism ϕ : C1 → C2. Then the union of the lines

⋃
p∈C1

pϕ(p) forms a
smooth surface Su,v called a rational normal scroll of type (u, v). The line pϕ(p)
is called a ruling. When u < v, we call the curve C1 ⊂ Su,v the directrix of Su,v.

A rational normal scroll of type (u, v) is uniquely determined up to projective
isomorphism. In particular, each Su,v is projectively equivalent to the one given by
the parametric equation

C2
→ PN ,

(s, t) 7→ (1, s, . . . , su, t, st, . . . , svt).
(1-3)

One can check by this expression that a hyperplane section of Su,v which doesn’t
contain a ruling is a rational normal curve of degree u+ v. It easily follows that
Su,v has degree D = u+ v.

The rulings of Su,v form a rational curve in G(1, N ) the Grassmannian of lines
in PN . By using (1-3), we can parametrize this curve as

C→ G(1, N ),

s 7→
(

1 s · · · su 0 0 · · · 0
0 0 · · · 0 1 s · · · sv

)
,

(1-4)

where the matrix on the right represents the line spanned by the row vectors.



1602 Kuan-Wen Lai

The embedding Su,v ⊂PN can be seen as the Hirzebruch surface Fv−u embedded
in PN through the complete linear system |g+u f |. Conversely, every nondegenerate,
irreducible, and smooth surface of degree D in PD+1 isomorphic to Fv−u must
be Su,v [Griffiths and Harris 1978, p. 522–525].

It’s not hard to compute that H 1(TPN |Fu−v ) = 0 under the above embedding.
Combining this with the rigidity result, it implies that every abstract deformation
of Fv−u can be lifted to an embedded deformation as a family of rational normal
scrolls in PN [Hartshorne 2010, Remark 20.2.1]. We conclude this as the following
lemma.

Lemma 1.3. For m > 2k ≥ 0, let F be an abstract deformation of Hirzebruch
surfaces such that F0 ∼= Fm and Ft ∼= Fm−2k for t 6= 0. Then F can be realized as
an embedded deformation S in PD+1 with S0 ∼= Su,v and St ∼= Su+k,v−k for t 6= 0,
where D = u+ v, and u ≤ v are any positive integers satisfying v− u = m.

1D. Rational scrolls.

Definition 1.4. We call a surface S ⊂ PN a rational scroll (or a scroll) of type
(u,m + u) if it is the image of a Hirzebruch surface Fm through a birational
morphism defined by an N -dimensional subsystem d⊂ |g+ u f | for some u > 0.

Equivalently, S ⊂ PN is a rational scroll of type (u, v) either if it is a rational
normal scroll Su,v or if it is the projection image of Su,v ⊂ PD+1 from a (D− N )-
plane disjoint from Su,v . Here D = u+v is the degree of Su,v as well as the degree
of S. In the latter case, we also call a line on S a ruling if its preimage is a ruling
on Su,v.

The following lemma computes the cohomology groups of the normal bundle
for an arbitrary embedding of a Hirzebruch surface into a projective space.

Lemma 1.5. Let ι : Fm ↪→ PN be an embedding with image S and ι∗OPN (1) ∼=
OS(h), where h = ag+ b f with a > 0 and b > 0. Let NS/PN be the normal bundle
of S in PN ; then

h0(S, NS/PN )= (N + 1)(a+ 1)( 1
2am+ b+ 1)− 7

and hi (S, NS/PN )= 0 for all i > 0. Especially, if S is a smooth scroll of degree D,
then the formula for h0 reduces to

h0(S, NS/PN )= (N + 1)(D+ 2)− 7.

Proof. The short exact sequence

0→ TS→ TPN |S→ NS/PN → 0 (1-5)
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has the long exact sequence

0→ H 0(S, TS)→ H 0(S, TPN |S)→ H 0(S, NS/PN )

→ H 1(S, TS)→ H 1(S, TPN |S)→ H 1(S, NS/PN )

→ H 2(S, TS)→ H 2(S, TPN |S)→ H 2(S, NS/PN )→ 0.

In order to calculate the dimensions in the right, we need the dimensions in the first
two columns.

For the middle column, we can restrict the Euler exact sequence

0→OPN →OPN (1)⊕(N+1)
→ TPN → 0

to S and obtain

0→OS→OS(h)⊕(N+1)
→ TPN |S→ 0.1

Lemma 1.1 confirms that hi (S,OS(h))= 0 for i > 0, so we have

0→ H 0(S,OS)→ H 0(S,OS(h))⊕(N+1)
→ H 0(S, TPN |S)→ 0

from the associated long exact sequence while the other terms are all vanishing. It
follows that

h0(S, TPN |S)= (N + 1)h0(S,OS(h))− h0(S,OS)

1.1
= (N + 1)(a+ 1)( 1

2am+ b+ 1)− 1.

For the first column, one can use the Hirzebruch–Riemann–Roch formula to
compute that χ(TS) = 6. We also have h2(S, TS) = 0 by Lemma 1.2. Thus,
h0(S, TS)− h1(S, TS)= χ(TS)= 6.

Collecting the above results, the long exact sequence for (1-5) now becomes

0→ H 0(S, TS)→ H 0(S, TPN |S)→ H 0(S, NS/PN )

→ H 1(S, TS)→ 0 → H 1(S, NS/PN )

→ 0 → 0 → H 2(S, NS/PN )→ 0.

Therefore, we have hi (S, NS/PN )= 0 for all i > 0, and

h0(S, NS/PN )= h0(S, TPN |S)−χ(TS)

= (N + 1)(a+ 1)( 1
2am+ b+ 1)− 7.

When S is a rational scroll, we have h = g+ b f . Then the formula is obtained
by inserting a = 0 and D = h2

= m+ 2b into the equation. �

1TorOPN
i (OS,F )= 0 for all i > 0 and locally free sheaf F , so the Euler exact sequence keeps

exact after the restriction.
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1E. Isolated singularities on rational scrolls. The singularities on a rational scroll
are all caused from projection by definition, so we assume D ≥ N . We also assume
N ≥ 5.

Let S ⊂ PN be a rational scroll under Su,v ⊂ PD+1, and let q : Su,v→ S be the
projection. A point p ∈ S is singular if and only if one of the following situations
occurs:

• There are two distinct rulings l, l ′ ⊂ Su,v such that p ∈ q(l)∩ q(l ′).

• There is a ruling l ⊂ Su,v such that p ∈ q(l) and the map q is ramified at l.

Suppose that S has isolated singularities, i.e., the singular locus of S has dimen-
sion 0. Then each singular point is set-theoretically the intersection of two or more
rulings. Let m be the number of the ruling which passes through any of the singular
points. Then the number of singularities on S is counted as

(m
2

)
.

Note that Su,v is cut out by quadrics, so every secant line intersects Su,v in
exactly two points transversally. Let T (Su,v) ⊂ S(Su,v) be the tangent and the
secant varieties of Su,v , respectively. Then every x ∈ S(Su,v)− T (Su,v) belongs to
one of the two conditions:

(1) The point x lies on one and only one secant line.

(2) The point x lies on two secant lines. Let Z2 ⊂ S(Su,v) denote the union of
such points.

Lemma 1.6. The subset Z2 6=∅ if and only if u = 2. In this situation, Z2 ∼=P2 and
each x ∈ Z2 lies on infinitely many secant lines.

Proof. We retain the notation used in constructing Su,v throughout the proof.
Let x ∈ Z2 be any point. First we claim that the intersection points of Su,v with

the union of the two secants described in (2) lie on four distinct rulings.
The intersection points don’t lie on two rulings because any two distinct rulings

are linearly independent [Harris 1992, Exercise 8.21]. If they lie on three rulings,
then the projection to P2 would be a trisecant line of C2. But this is impossible
because C2 has degree v ≥ dD/2e ≥ 2. Hence, the claim holds.

The claim admits a rational normal curve C ⊂ Su,v (either sectional or residual) of
degree≥ u passing through the four intersection points [Harris 1992, Example 8.17].
This imposes a nontrivial linear relation on four distinct points on C , which forces
C to be either a line or a conic. If C is a line, then C coincides with the two secant
lines, which is impossible. Hence, C must be a conic.

It follows that u ≤ deg C ≤ 2. If u = 1, then the conic C would dominate C2

through the projection from P1. However, this cannot happen since C2 has degree
v = D− u ≥ 4. Hence, u = 2. In this condition, C can only be the directrix since
u < v. It follows that the Z2 coincides with the 2-plane spanned by C and each
point of Z2 lies on infinitely many secants.
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Conversely, u = 2 implies that Z2 contains the 2-plane spanned by C2. By
the same argument above, they coincide and every x ∈ Z2 lies on infinitely many
secants. �

Assume that S is the projection of Su,v from a (D− N )-plane Q ⊂ PD+1.

Corollary 1.7. The scroll S is singular along r points if and only if Q intersects
S(Su,v) in r points away from T (Su,v)∪ Z2.

Proof. Assume that S has isolated singularities. Recall that the number r counts the
number of the pair (l, l ′) of distinct rulings on Su,v such that q(l) intersects q(l ′) in
one point. (Different pairs might intersect in the same point.) It then counts the
number of the unique line joining l, l ′, and Q. By Lemma 1.6, each x ∈ S(Su,v)

away from T (Su,v)∪ Z2 lies on a unique secant. Thus, it is the same as the number
of the intersection between Q and S(Su,v) away from T (Su,v)∪ Z2. �

In the end we provide a criterion for S to have isolated singularities when u = 1.
This is going to be used in proving Proposition 2.1.

Proposition 1.8. Assume u = 1. If Q ∩ T (S1,v)=∅, S has isolated singularities.

Proof. If Q intersects S(S1,v) in points, then the proposition follows by Corollary 1.7.
Assume Q ∩ S(S1,v) contains a curve 0. We are going to show that 0 intersects

T (S1,v) nontrivially, which then contradicts our hypothesis.
Let f be the fiber class of S1,v. Then the linear system | f | parametrizes the

rulings of S1,v. For distinct l, l ′ ∈ | f |, the linear span of l and l ′ is a 3-space
Pl,l ′ ⊂ S(S1,v). Consider the incidence correspondence

S= {(x, l + l ′) ∈ PD+1
× |2 f | : x ∈ Pl,l ′}.

Observe that S is a P3-bundle over |2 f | ∼= P2 via the second projection

p2 : S→ |2 f |.

On the other hand, the image of S under the first projection

p1 : S→ PD+1

is the secant variety S(S1,v). Consider the diagonal

1 := {2l : l ∈ | f |} ⊂ |2 f |.

It’s easy to see that the tangent variety T (S1,v)⊂ S(S1,v) is the image of p−1
2 (1)

via the first projection.
If 0 6⊂ Pl,l ′ for all l + l ′, then the curve p−1

1 (0) is mapped to a curve in |2 f |
which intersects 1 nontrivially. It follows that 0 ∩ T (Su,v) 6=∅.
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Suppose 0⊂ Pl,l ′ for some l+ l ′. The directrix C1 is a line in Pl,l ′ by hypothesis,
so we have

T (Su,v)∩ Pl,l ′ = P ∪ P ′

where P and P ′ are the 2-planes spanned by C1, and l and l ′, respectively. So 0
and T (Su,v) have a nontrivial intersection in Pl,l ′ . �

2. Construction of singular scrolls in P5

This section provides a construction of singular scrolls in P5 of type (1, v) with
isolated singularities. The construction actually relates the existence of the singular
scrolls to the solvability of a four-square equation as follows.

Proposition 2.1. Assume v ≥ 4. There exists a rational scroll in P5 of type (1, v)
with isolated singularities which has at least r singularities if there are four odd
integers a ≥ b ≥ c ≥ d > 0 satisfying

(1) 8r + 4= a2
+ b2
+ c2
+ d2 and

(2) a+ b+ c ≤ 2v− 3.

We use the construction to produce an explicit example which can be manipulated
by a computer algebra system. With the help of a computer, we prove:

Proposition 2.2. There is a degree-9 rational scroll S⊂P5 which has eight isolated
singularities and is smooth otherwise such that

(1) h0(P5, IS(3))= 6, where IS is the ideal sheaf of S in P5,

(2) S is contained in a smooth cubic fourfold X ,

(3) S deforms in X to the first order as a two-dimensional family, and

(4) S is also contained in a singular cubic fourfold Y .

We introduce the construction first and prove Proposition 2.2 in the end. Recall
that, with a fixed rational normal scroll S1,v ⊂PD+1, every degree-D scroll S ⊂P5

of type (1, v) is the projection of S1,v from P⊥ for some P ∈ G(5, D+ 1).

2A. Plane k-chains. Let k be a positive integer. It can be proved by induction that
k distinct lines in a projective space intersect in at most

(k
2

)
points counted with

multiplicity, and the maximal number is attained exactly when the k lines span a
2-plane.

Definition 2.3. Let k ≥ 1 be an integer. We call the union of k distinct lines which
span a 2-plane a plane k-chain. Let W ⊂ PN be the union of a finite number of
lines. A plane k-chain in W is called maximal if it is not a subset of a plane k ′-chain
in W for some k ′ > k.
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Let S⊂P5 be a singular scroll with isolated singularities. There’s a subset W ⊂ S
consisting of a finite number of rulings defined by

W =
⋃

l : l is a ruling passing through a singular point on S. (2-1)

By Zorn’s lemma, W can be expressed as

W =
n⋃

i=1

Ki : Ki is a maximal plane ki -chain with ki ≥ 2.

If two plane k-chains share more than one line, then they must lie on the same
2-plane. In particular, both of them cannot be maximal. Therefore, for distinct
maximal plane k-chains Ki and K j in W , we have either Ki∩K j =∅ or Ki∩K j = l
a single ruling. It follows that the number of singularities on S equals

∑n
i=1

(ki
2

)
since a plane k-chain contributes

(k
2

)
singularities.

Let l1, . . . , lk ⊂ S1,v be k distinct rulings which span a subspace Pl1,...,lk ⊂PD+1.
The images of the rulings form a plane k-chain on S through projection if and only
if Pl1,...,lk is projected onto a 2-plane in P5. Parametrize the rulings as in (1-4)
with l j = l j (s j ), j = 1, . . . , k. Then Pl1,...,lk is spanned by the row vectors of the
(k+ 2)× (D+ 2) matrix

P(s1, . . . , sk)=


1 s1 0 0 · · · 0
1 s2 0 0 · · · 0
0 0 1 s1 · · · sv1

...

0 0 1 sk · · · svk

 . (2-2)

The projection S1,v→ S is restricted from a linear map

3 : PD+1 99K P5.

Suppose 3 is represented by a (D+ 2)× 6 matrix

3=
(
v1 v2 v3 v4 v5 v6

)
,

where v1, . . . , v6 are vectors in PD+1. Then Pl1,...,lk is projected onto a 2-plane if
and only if the (k+ 2)× 6 matrix

P(s1, . . . , sk) ·3

has rank 3.

2B. Control the number of singularities. Let r be a nonnegative integer. We
introduce a method to find a projection3 which maps S1,v to a singular scroll S with
isolated singularities. The method allows us to control the number of singularities
such that it is bounded below by r . For simplicity, we consider only the cases when
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the configuration W ⊂ S defined in (2-1) consists of four disjoint maximal plane
k-chains.

We start by picking distinct rulings on Su,v and produce four matrices P1, P2, P3,
and P4 as in (2-2). Suppose Pi consists of ki rulings. Note that Pi contribute

(ki
2

)
singularities if its rulings are mapped to a plane ki -chain. Thus, we also assume that

r =
(k1

2

)
+

(k2
2

)
+

(k3
2

)
+

(k4
2

)
. (2-3)

Here we allow ki = 1, which means that Pi consists of a single ruling and thus
contributes no singularity.

Consider 3 =
(
v1 v2 v3 v4 v5 v6

)
as an unknown. Let P be the 5-plane

spanned by v1, . . . , v6. We are going to construct 3 satisfying

(1) rk(Pi ·3)= 3, i = 1, 2, 3, 4, and

(2) P⊥ ∩ T (S1,v)=∅.

Note that (1) makes the number of isolated singularities ≥ r , while (2) confirms
that no curve singularity occurs. We divide the construction into two steps.

Step 1 (find v1, v2, v3, and v4 to satisfy (1)). Consider each Pi as a linear map by
multiplication from the left. We are trying to find independent vectors v1, v2, v3,
and v4 such that for each Pi three of them are in the kernel while the remaining
one isn’t. The four vectors arranged in this way contribute exactly one rank to
each Pi ·3. In the next step, v5 and v6 will be general vectors in PD+1 satisfying
some open conditions. This contributes two additional ranks to each Pi ·3, which
makes (1) true.

Under the standard parametrization for S1,v ⊂PD+1, the underlying vector space
of PD+1 can be decomposed as A⊕ B with A representing the first two coordinates
and B representing the last v+1 coordinates. With this decomposition, the matrix P
in (2-2) can be decomposed into two Vandermonde matrices

P A
=

(
1 s1

1 s2

)
and P B

=

1 s1 · · · sv1
...

1 sk · · · svk

 .
Note that ker P = ker P B . So we can search for the vectors from ker P B .

In our situation, we have four matrices P B
1 , P B

2 , P B
3 , and P B

4 which have four
kernels ker P B

1 , ker P B
2 , ker P B

3 , and ker P B
4 , respectively. By the assumption ki ≤ v

and the fact that a Vandermonde matrix has full rank, each ker P B
i is a codimension-

ki subspace of B.
Now we want to pick v1, . . . , v4 from B such that each ker P B

i contains exactly
three of the four vectors; i.e., we want

|ker P B
i ∩ {v1, v2, v3, v4}| = 3 for i = 1, 2, 3, 4. (2-4)
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One way to satisfy (2-4) is to pick vi from(⋂
j 6=i

ker P B
j

)
− ker P B

i for i = 1, 2, 3, 4. (2-5)

The sets in (2-5) are nonempty if and only if

dim(ker P B
α ∩ ker P B

β ∩ ker P B
γ )≥ 1

for all distinct α, β, γ ∈ {1, 2, 3, 4}. This is equivalent to

kα + kβ + kγ ≤ v for distinct α, β, γ ∈ {1, 2, 3, 4}. (2-6)

So we have to include (2-6) as one of our assumptions.

Step 2 (adjust v1, . . . , v4 and then pick v5 and v6 to satisfy (2)).

Lemma 2.4. Let v⊥i be the hyperplane in PD+1 orthogonal to vi . The four vectors
v1, . . . , v4 can be chosen generally such that

⋂4
i=1 v

⊥

i intersects T (S1,v) only in the
directrix of S1,v.

Proof. Parametrize the rational normal curve C = S1,v ∩P(B) by

θ(s)= (0, 0, 1, s, . . . , sv).

Then the standard parametrization (1-3) can be written as

(1, s, 0, . . . , 0)+ tθ(s).

Let a and b be the parameters for the tangent plane over each point. Then the
tangent variety T (S1,v) has the parametric equation

(1, s, 0, . . . , 0)+ tθ(s)+ a
[
(0, 1, 0, . . . , 0)+ t

dθ
ds
(s)
]
+ bθ(s)

= (1, s+ a, 0, . . . , 0)+ (t + b)θ(s)+ ta
dθ
ds
(s).

Each point on T (S1,v) lying in
⋂4

i=1 v
⊥

i is a common zero of the equations

(t + b)(θ(s) · vi )+ ta
(

dθ
ds
(s) · vi

)
= 0 for i = 1, 2, 3, 4. (2-7)

By considering (t + b) and ta as variables, (2-7) becomes a system of linear
equations given by the matrix(

θ(s) · v1 θ(s) · v2 θ(s) · v3 θ(s) · v4

θ ′(s) · v1 θ
′(s) · v2 θ

′(s) · v3 θ
′(s) · v4

)
.
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The matrix fails to be of full rank exactly when s admits the existence of α, β ∈ C,
αβ 6= 0, such that

(αθ(s)+βθ ′(s)) · vi = 0 for i = 1, 2, 3, 4. (2-8)

Note that (2-8) has a solution if and only if
⋂4

i=1 v
⊥

i and the tangent variety T (C)
of C intersect each other.

One can choose v2, v3, and v4 in general from (2-5) so that
⋂4

i=2 v
⊥

i is disjoint
from C . This forces

⋂4
i=2 v

⊥

i to intersect T (C) in either the empty set or points.
By the properties of a rational normal curve, the hyperplane orthogonal to a point
on C contains no invariant subspace when one perturbs the point. Hence, after
necessary perturbation of the chosen rulings, one can choose v1 from (2-5) such that(⋂4

i=1 v
⊥

i

)
∩T (C)=∅. As a result, the equations in (2-7) become independent, so

the solutions are t = b = 0, or a = 0 and t =−b. Both solutions form the directrix
of S1,v. �

With the above adjustment, we can pick v5 and v6 in general in PD+1 so that the
(D− 5)-plane Q = v⊥1 ∩ · · · ∩ v

⊥

6 has no intersection with T (S1,v). Note that the
projection defined by 3 is the same as the projection from Q. By Proposition 1.8,
this projection produces a rational scroll with isolated singularities.

Proposition 2.5. There exists a rational scroll in P5 of type (1, v) with isolated
singularities which has at least r singularities if there are four positive integers
k1 ≥ k2 ≥ k3 ≥ k4 satisfying (2-3) and (2-6):

r =
(k1

2

)
+

(k2
2

)
+

(k2
2

)
+

(k2
2

)
and k1+ k2+ k3 ≤ v.

Proposition 2.1 is obtained by expanding the binomial coefficients followed by a
change of variables.

2C. Proof of Proposition 2.2. In the following we exhibit an explicit example
which can be manipulated by a computer algebra system over characteristic 0. The
main program used in our work is Singular [Decker et al. 2015].

Consider P10 with homogeneous coordinate x = (x0, . . . , x10). We define the
rational normal scroll S1,8 by the 2× 2 minors of the matrix(

x0 x2 x3 x4 x5 x6 x7 x8 x9

x1 x3 x4 x5 x6 x7 x8 x9 x10

)
.

In order to project S1,8 onto a rational scroll whose singular locus is zero-
dimensional and consists of at least eight singular points, we use the method
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introduced previously to construct a projection

3=



v1

v2

v3

v4

v5

v6



T

=



0 0 0 120 −34 −203 91 70 −56 13 −1
0 0 2880 5184 −2372 −2196 633 261 −63 −9 2
0 0 0 480 304 −510 −339 30 36 0 −1
0 0 0 144 36 −196 −49 56 14 −4 −1
1 0 1 1 1 1 1 1 1 1 1
0 1 1 0 0 0 0 0 0 0 0



T

.

Let z = (z0, . . . , z5) be the coordinate for P5. Then the projection P10 99K P5

defined by 3 can be explicitly written as

z = x ·3.

Let S be the image of S1,8 under the projection. Due to the limit of the author’s
computer, we check that S has eight singularities and is smooth otherwise over the
finite field of order 31. On the other hand, the double point formula implies that S
has eight double points if the singular locus is isolated. Hence, the singularity of S
consists of eight double points over characteristic 0 as required.

The generators of the ideal of S contain six cubics, so property (1) is confirmed.
Properties (2) and (4) can be easily checked by examining the linear combinations
of those cubics.

The final step is to verify property (3). Let X⊂P5 be a smooth cubic containing S.
Let F1(S) and F1(X) denote the Fano variety of lines on S and X , respectively.
Then it is equivalent to show that F1(S) deforms in F1(X) to the first order with
dimension 2.

Let G(1, 5) be the grassmannian of lines in P5. Every element b ∈ G(1, 5) is
parametrized by a 2× 6 matrix(

b1

b2

)
=

(
b10 b11 b12 b13 b14 b15

b20 b21 b22 b23 b24 b25

)
(2-9)

where b1 and b2 are two vectors which span the line b.
Let PX = PX (z) be the homogeneous polynomial defining X . Let V be the

six-dimensional linear space underlying P5. Consider PX as a symmetric function
defined on V ⊕ V ⊕ V . Then F1(X)⊂ G(1, 5) is cut out by the four equations

PX (b1, b1, b1), PX (b1, b1, b2), PX (b1, b2, b2), PX (b2, b2, b2). (2-10)

Consider the Fano variety of lines on S1,8 as a rational curve P1
⊂ G(1, 10)

parametrized by

Q =
(

r s 0 0 0 0 0 0 0 0 0
0 0 r8 r7s r6s2 r5s3 r4s4 r3s5 r2s6 rs7 s8

)
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where (r, s) is the homogeneous coordinate for P1. Then F1(S)⊂G(1, 5) is defined
by the parametric equation

R = Q ·3.

Now consider a 2× 6 matrix d R whose first row consists of arbitrary linear
forms on P1 while the second row consists of arbitrary 8-forms. The coefficients
of those forms introduce 2 · 6+ 9 · 6= 66 variables c1, . . . , c66. Then an abstract
first-order deformation of F1(S) in G(1, 5) is given by

R+ d R.

Inserting R+d R into (2-10) gives us four polynomials in r and s with coefficients
in c1, . . . , c66. The linear parts of the coefficients form a system of linear equations
in c1, . . . , c66 whose associated matrix has rank 53. Then the first-order deformation
of F1(S) in F1(X) appears as solutions of the system.

In addition to the 53 constraints contributed by the above linear equations, we
also have

• four constraints from the GL(2) action on the coordinates (2-9),

• three constraints from the automorphism group of P1, and

• four constraints from rescaling the four equations (2-10).

So F1(S) deforms in F1(X) to the first order with dimension 66−53−4−3−4= 2.

3. Special cubic fourfolds of discriminant 42

This section proves that a generic special cubic fourfold X ∈ C42 has a unirational
parametrization of odd degree and also that C42 is uniruled. We also provide a
discussion in the end talking about the difficulty of generalizing our method to
higher discriminants.

3A. The space of singular scrolls. The Zariski closure of the locus for degree-9
scrolls forms a component H9 in the associated Hilbert scheme. Let H8

9 ⊂H9 be
the closure of the locus parametrizing scrolls with eight isolated singularities. By
Proposition 2.1 and Theorem 4.2 we have the estimate:

Corollary 3.1. H8
9 has codimension at most 8 in H9.

Note that H8
9 parametrizes nonreduced schemes by definition. In the following,

we use an overline to specify an element S ∈H8
9 and denote by S its underlying

reduced subscheme.
Let U ⊂ |OP5(3)| be the locus parametrizing smooth cubic fourfolds. Define

Z = {(S, X) ∈H8
9×U : S ⊂ X}.
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By Proposition 2.2 there exists (S, X) ∈ Z such that S has isolated singularities
and X is smooth.

The right projection p2 : Z→U factors through U42, the preimage of C42 in U .
Indeed, by definition S is the image of a rational normal scroll F ⊂ P10 through a
projection. Let ε : F → X be the composition of the projection followed by the
inclusion into X . Let [S]2X be the self-intersection of S in X . Then the number
of singularities DS⊂X = 8 on S satisfies the double point formula [Fulton 1998,
Theorem 9.3]:

DS⊂X =
1
2

(
[S]2X − ε

∗c2(TX )+ c1(TF ) · ε
∗c1(TX )− c1(TF )

2
+ c2(TF )

)
.

By using this formula one can get [S]2X = 41. Let h X be the hyperplane class of X .
Then the intersection table for X is

h2
X S

h2
X 3 9

S 9 41

So X has discriminant 3 · 41− 92
= 42.

3B. Odd-degree unirational parametrizations.

Theorem 3.2. Consider the diagram

Z
p1

}}

p2

!!

H8
9 U42 // C42

(1) Z dominates U42. Therefore, a general X ∈ C42 contains a degree-9 rational
scroll with eight isolated singularities and that is smooth otherwise.

(2) C42 is uniruled.

Proof. Let (S, X) ∈ Z be a pair satisfying Proposition 2.2. Then

h0(P5, IS(3))= 6.

On the other hand, the short exact sequence

0→ IS(3)→OP5(3)→OS(3)→ 0

implies that

h0(P5, IS(3))≥ h0(P5,OP5(3))− h0(S,OS(3)). (3-1)

Let F⊂P10 be the preimage scroll of S. Then H 0(S,OS(3)) consists of the sections
in H 0(F,OF (3)) which cannot distinguish the preimage of a singular point. We
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have h0(F,OF (3)) = 58 by Lemma 1.1, so h0(S,OS(3)) = 58− 8 = 50. So the
right-hand side of (3-1) equals 56−50= 6. Thus, h0(P5, IS(3)) attains a minimum.

The left projection p1 : Z → H8
9 has fiber PH 0(P5, IS(3)) over all S ∈ H8

9.
Because the fiber dimension is an upper-semicontinuous function, there is an
open subset V ⊂ H8

9 containing S such that Z is a P5-bundle over V . We have
dimH9 = 59 by Proposition 4.1. Hence, dimH8

9 ≥ 59− 8 = 51 by Theorem 4.2.
Thus, Z has dimension at least 51+ 5= 56 in a neighborhood of (S, X).

By Proposition 2.2(3), Z has fiber dimension at most 2 over an open subset
of p2(Z) which contains X . Hence, p2(Z) has dimension at least 56− 2= 54 in
a neighborhood of X . On the other hand, U42 is an irreducible divisor in U . In
particular, U42 has dimension 54. So Z must dominate U42.

Next we prove the uniruledness of C42.
We already know that Z has an open dense subset Z◦ isomorphic to a P5-bundle

over V ⊂ H8
9. If we can prove that the composition Z◦

p2
−→ U42→ C42 does not

factor through this bundle map, then the proof is done.
Let (S, X) ∈ Z◦ be the pair as before. By Proposition 2.2, S is also contained

in a singular cubic Y . Assume that the map Z◦ → C42 does factor through the
bundle map instead. Then all of the cubics in PH 0(P5, IS(3)) would be in the
same PGL(6)-orbit. In particular, the smooth cubic X and the singular cubic Y
would be isomorphic, but this is impossible. �

Proposition 3.3 [Hassett 2016, Proposition 38; Hassett and Tschinkel 2001, Propo-
sition 7.4]. Let X be a cubic fourfold and S ⊂ X be a rational surface. Suppose
S has isolated singularities and smooth normalization, with invariants D = deg S,
section genus gH , and self-intersection 〈S, S〉X . If

% = %(S, X) :=
D(D− 2)

2
+ (2− 2gH )−

〈S, S〉X
2

> 0, (3-2)

then X admits a unirational parametrization ρ : P4 99K X of degree %.

Corollary 3.4. A general X ∈ C42 has a unirational parametrization of degree 13.

Proof. By Theorem 3.2(1), a general cubic fourfold X ∈ C42 contains a degree-9
scroll S having eight isolated singularities, with 〈S, S〉X = 41 and gH = 0. Thus,
% = 1

2(9 · 7)+ 2− 41
2 = 13 by Proposition 3.3. �

3C. Problems in higher discriminants. Let 1 ⊂ 6[2] denote the divisor param-
etrizing nonreduced subschemes. Recall that it is a P1-bundle over 6. Its fibers
correspond to smooth rational curves of degree 2n+ 1 in F1(X), where the polar-
ization on F1(X) is induced from G(1, 5). Each rational scroll S ⊂ X induced by
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these rational curves has the intersection product

h2
X S

h2
X 3 2n+ 1

S 2n+ 1 2n2
+ 2n+ 1

where h X is the hyperplane section class of X . One can compute by the double
point formula that S has n(n− 2) singularities provided that they are all isolated
[Hassett and Tschinkel 2001, Proposition 7.2].

In order to obtain an odd-degree unirational parametrization for a generic member
of Cd by Proposition 3.3, we need the existence of a degree-(2n+ 1) scroll S ⊂ P5

with isolated singularities which has n(n− 2) singularities and is contained in a
cubic fourfold X . We also need an estimate of the dimension of the associated
Hilbert scheme Hn(n−2)

2n+1 which contains S.
Section 2 builds up a method to find such S, but the existence of a cubic fourfold

X containing S requires examination with a computer. This works well with n = 4
because in this case such a generic S is contained in a cubic hypersurface. However,
the same phenomenon may fail when n ≥ 5. Indeed, the Hilbert scheme Hn(n−2)

2n+1 of
degree-(2n+ 1) scrolls with n(n− 2) singularities satisfies dimHn(n−2)

2n+1 ≥−n2
+

14n+ 11 by Theorem 4.2 and Proposition 4.1. When 5≤ n ≤ 8, dimHn(n−2)
2n+1 ≥ 55,

the dimension of cubic hypersurfaces in P5, so a generic S∈Hn(n−2)
2n+1 is not in a

cubic fourfold. We don’t know what happens when n ≥ 9, but working in this range
involves tedious trial and error.

Question. Assume n ≥ 2. Let S ⊂ P5 be a degree-(2n+ 1) rational scroll which
has n(n−2) isolated singularities and is smooth otherwise. When is S contained in
a cubic fourfold?

4. The Hilbert scheme of rational scrolls

Let N ≥ 3 be an integer. The Hilbert polynomial PS for a degree-D smooth surface
S ⊂ PN has the form

PS(x)= 1
2 Dx2

+ (1
2 D+ 1−π)x + 1+ pa,

where π is the genus of a generic hyperplane section and pa is the arithmetic genus
of S [Hartshorne 1977, Chapter V, Exercise 1.2].

We are interested in the case when S is a rational scroll. In this case π = pa = 0,
so

PS(x)= 1
2 Dx2

+ (1
2 D+ 1)x + 1.

Every smooth surface sharing the same Hilbert polynomial has π=0 and pa=0 also
and thus is rational. We denote by HilbPS (P

N ) the Hilbert scheme of subschemes
in PN with Hilbert polynomial PS .
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The closure of the locus parametrizing degree-D scrolls forms a component
HD ⊂ HilbPS (P

N ). We study this space by stratifying it according to the types
of the scrolls. Recall that, by fixing a rational normal scroll Su,v ⊂ PD+1 where
D = u+ v, a rational scroll S ⊂ PN of type (u, v) is either Su,v itself or the image
of Su,v projected from a disjoint (D − N )-plane. We define Hu,v ⊂ HD as the
closure of the subset consisting of smooth rational scrolls of type (u, v). In this
section, we will first show:

Proposition 4.1. Assume D+ 1≥ N ≥ 3.

(1) HD is generically smooth of dimension (N + 1)(D+ 2)− 7.

(2) Hu,v is unirational of dimension (D+ 2)N + 2u− 4− δu,v,

where δu,v is the Kronecker delta. We also have

(3) Hu,v ⊂Hu+k,v−k for 0≤ 2k < v− u, and HbD/2c,dD/2e =HD .

When D+1= N , a generic element of Hu,v is projectively equivalent to a fixed
rational normal scroll Su,v ⊂ PD+1. In this case Hu,v is birational to PGL(D+ 2)
quotient by the stabilizer of Su,v.

When D≥ N , a generic element in Hu,v is the projection of Su,v from a (D−N )-
plane. Note that Hu,v also records the scrolls equipped with embedded points
along their singular loci. Such an element occurs when the (D− N )-plane contacts
the secant variety of Su,v. We denote by Hr

u,v ⊂ Hu,v the closure of the subset
parametrizing the schemes such that the singular locus of each of the underlying
varieties consists of ≥ r isolated singularities. Let Hr

D ⊂ HD denote the union
of Hr

u,v through all possible types.
The main goal of this section is to prove:

Theorem 4.2. Assume D≥ N ≥ 5, and assume the existence of a degree-D rational
scroll with isolated singularities in PN which has at least r singularities. Suppose
r N ≤ (D+ 2)2− 1; then Hr

D has codimension at most r(N − 4) in HD . Especially
when r = 1, H1

D is unirational of codimension exactly N − 4.

4A. The component of rational scrolls. Here we give a general picture of the
component HD and also prove Proposition 4.1. Note that Proposition 4.1(1) follows
immediately from Lemma 1.5.

As mentioned before, Hu,v is birational to PGL(D+ 2) when D+ 1 = N . In
order to study the case of D ≥ N , we introduce the projective Stiefel variety.

Definition 4.3. Let VN+1(C
D+2)=GL(D+2)/GL(D−N+1) be the homogeneous

space of (N +1)-frames in CD+2. The group C∗ acts on VN+1(C
D+2) by rescaling,

which induces a geometric quotient V(N , D+ 1) that we call a projective Stiefel
variety.
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V(N , D+ 1) has a fiber structure over G(N , D+ 1):

PGL(N + 1) �
�

// V(N , D+ 1)

p
��

G(N , D+ 1)

An element 3 ∈ V(N , D + 1) over P ∈ G(N , D + 1) can be expressed as a
(D+ 2)× (N + 1) matrix

3=
(
v1 v2 · · · vN+1

)
(D+2)×(N+1)

up to rescaling, where v1, . . . , vN+1 are column vectors which form a basis of the
underlying vector space of P . In particular, each 3∈V(N , D+1) naturally defines
a projection ·3 : PD+1 99K PN by multiplying the coordinates from the right.

Let Su,v ⊂ PD+1 be the rational normal scroll given by the standard parametriza-
tion (1-3). When D ≥ N , every rational scroll in Hu,v is the image of Su,v under
the projection defined by some 3 ∈ V(N , D+ 1). So there is a dominant rational
map

π = π(Su,v) : V(N , D+ 1) 99KHu,v,

3 7→ Su,v ·3,
(4-1)

where Su,v ·3 is the rational scroll given by the parametric equation

C2
→ PN ,

(s, t) 7→ (1, s, . . . , su, t, st, . . . , svt) ·3.

Proof of Proposition 4.1(2). Both PGL(D + 2) and V(N , D + 1) are rational
quasiprojective varieties, so Hu,v is unirational either when D+ 1= N or D ≥ N
by the above construction. The formula for the dimension of Hu,v holds by [Coskun
2006, Lemma 2.6]. �

Proof of Proposition 4.1(3). By Lemma 1.3, there exists an embedded deformation S
in PD+1 over the dual numbers Dt = C[t]/(t2) with S0 ∼= Su,v and St ∼= Su+k,v−k

for t 6= 0. For every rational scroll S ∈Hu,v , we can find a 3 ∈ V(N , D+ 1) such
that S = Su,v ·3. Then S ·3 defines an infinitesimal deformation of S to a rational
scroll of type (u+ k, v− k), which forces the inclusion Hu,v ⊂Hu+k,v−k to hold.

When (u, v) = (bD/2c, dD/2e), i.e., when u = v or u = v − 1, we have
dimHD = dimHu,v = (N + 1)(D + 2)− 7 by Proposition 4.1(1)–(2). Because
HD =

⋃
u+v=D Hu,v, we must have HbD/2c,dD/2e =HD . �

4B. Projections that produce one singularity. We are ready to study the locus
in HD which parametrizes singular scrolls. Assume D ≥ N ≥ 5. Let us start from
studying the projections that produce one singularity.
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Notations and facts. Let K and L be any linear subspaces of PD+1.

(1) We use the same symbol to denote a projective space and its underlying vector
space. The dimension always means the projective dimension.

(2) Assume K ⊂ L; we write K⊥L for the orthogonal complement of K in L .
When L = PD+1, we write K⊥ instead of K⊥PD+1

.

(3) K+L means the space spanned by K and L . We write it as K⊕L if K∩L={0}
and write it as K ⊕⊥ L if K and L are orthogonal to each other.

The two relations

(K ∩ L)⊥ = K⊥+ L⊥, (4-2)

(K ∩ L)⊥K
= (K ∩ L)⊥ ∩ K (4-3)

can be derived by linear algebra.

Definition 4.4. Let l and l ′ be a pair of distinct rulings on Su,v , and let Pl,l ′ be the
3-plane spanned by them. We define σ(l, l ′) to be a subvariety of G(N , D+ 1) by

σ(l, l ′)= {P ∈ G(N , D+ 1) : dim(P ∩ P⊥l,l ′)≥ N − 3}.

Lemma 4.5. Let p : V(N , D + 1) → G(N , D + 1) be the bundle map. Then
p−1(σ (l, l ′))⊂V(N , D+1) consists of the projections which produce singularities
by making l and l ′ intersect.

Proof. Let P ∈ G(N , D+ 1) and 3 ∈ p−1(P) be arbitrary. The target space of the
projection map ·3 is actually P . Let L ⊂ PD+1 be any linear subspace; then the
image L ·3 is identical to (P⊥+ L)∩ P . On the other hand, (4-2) and (4-3) imply
that (P ∩ L⊥)⊥P

= (P ∩ L⊥)⊥ ∩ P = (P⊥+ L)∩ P. Therefore,

N − 1= dim P − 1= dim(P ∩ L⊥)+ dim(P ∩ L⊥)⊥P

= dim(P ∩ L⊥)+ dim((P⊥+ L)∩ P)= dim(P ∩ L⊥)+ dim(L ·3).

With L = Pl,l ′ , the equation implies that

dim(P ∩ P⊥l,l ′)≥ N − 3 ⇐⇒ dim(Pl,l ′ ·3)≤ 2.

It follows that

p−1(σ (l, l ′))= {3 ∈ V(N , D+ 1) : dim(Pl,l ′ ·3)≤ 2}.

The image Pl,l ′ ·3⊂ PN lies in a plane if and only if l and l ′ intersect each other
after the projection ·3 :PD+1 99KPN . As a consequence, every 3 ∈ p−1(σ (l, l ′))
defines a projection which produces a singularity by making l and l ′ intersect. �
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4C. The geometry of the variety σ(l, l ′). The properties of the singular scroll
locus in which we are interested are the unirationality and the dimension. As a
preliminary, we describe here the geometry of the variety σ(l, l ′), which implies
immediately the rationality of σ(l, l ′) and also allows us to find its dimension easily.

Instead of studying σ(l, l ′) alone, the geometry would be more apparent if we
consider generally the linear subspaces in PD+1 which satisfy a certain intersectional
condition. Fix a (D− 3)-plane L ⊂ PD+1. For every j ≥ 0, we define

σ j (L)= {P ∈ G(N , D+ 1) : dim(P ∩ L)≥ N − 4+ j}. (4-4)

For example, σ0(L) = G(N , D+ 1), and σ1(P⊥l,l ′) = σ(l, l
′). Note that P ⊂ L or

L ⊂ P if j ≥min(4, D− N + 1) in (4-4), so we have

σ j (L)) σ j+1(L) if 0≤ j <min(4, D− N + 1),

σ j (L)= σ j+1(L) if j ≥min(4, D− N + 1).

Define σ ◦j (L)= {P ∈ G(N , D+ 1) : dim(P ∩ L)= N − 4+ j}; then

σ ◦j (L)= σ j (L)− σ j+1(L) if 0≤ j <min(4, D− N + 1),

σ ◦j (L)= σ j (L) if j =min(4, D− N + 1).

Lemma 4.6. Assume that 1 ≤ j < min(4, D − N + 1); then σ j (L) is singular
along σ j+1(L) and is smooth otherwise. The singularity can be resolved by a
G(3− j, D− N + 4− j)-bundle over G(N − 4+ j, D− 3). Especially, σ j (L) is
rational with codimension j (N − 3+ j) in G(N , D+ 1).

Proof. We define G j (L) to be the fiber bundle

G(3− j, D− N + 4− j) �
�

// G j (L)

��

G(N − 4+ j, L)

by taking G(3− j, Q⊥) as the fiber over Q ∈G(N−4+ j, L). Apparently G j (L) is
smooth and rational. We denote an element of G j (L) as (Q, R), where Q belongs
to the base and R belongs to the fiber over Q.

In the following, we will construct a birational morphism from G j (L) to σ j (L),
which determines the rationality and the codimension immediately. Then we
will study the singular locus by analyzing the tangent cone to σ j (L) at a point
on σ j+1(L).

Step 1 (a birational morphism from G j (L) to σ j (L)). Every P ∈ σ ◦j (L) can be
decomposed as P = (P ∩ L)⊕⊥ (P ∩ L)⊥P . Because P ∩ L ∈ G(N − 4+ j, L)
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and (P ∩ L)⊥P is a (3− j)-plane in (P ∩ L)⊥, this induces a morphism

ι : σ ◦j (L)→ G j (L),

P 7→ (P ∩ L , (P ∩ L)⊥P).

On the other hand, Q⊕⊥ R ∈ σ j (L) for every (Q, R)∈ G j (L) since dim(Q∩L)=
N − 4+ j by definition. Thus, there is a morphism

ε : G j (L)→ σ j (L),

(Q, R) 7→ Q⊕⊥ R.
(4-5)

Clearly, the composition ε◦ι is the same as the inclusion σ ◦j (L)⊂ σ j (L). Therefore,
ε is a birational morphism.

The smoothness and rationality of G j (L) implies that σ ◦j (L) is smooth and that
σ j (L) is rational. Moreover,

dim σ j (L)= dim G j (L)

= (4− j)(D− N + 1)+ (N − 3+ j)(D− N + 1− j)

= (N + 1)(D− N + 1)− j (N − 3+ j)

= dim G(N , D+ 1)− j (N − 3+ j).

Hence, σ j (L) has codimension j (N − 3+ j) in G(N , D+ 1).

Step 2 (the tangent cones to σ j (L)). Choose any P ∈ σ j (L), and fix a φ ∈
TP G(N , D+ 1)∼= Hom(P, P⊥). Let TPσ j (L) be the tangent cone to σ j (L) at P .
By definition, φ ∈ TPσ j (L) if and only if the condition dim(P ∩ L)≥ N − 4+ j is
kept when P moves infinitesimally in the direction of φ, which is equivalent to the
condition that P∩ L has a subspace Q of dimension N−4+ j such that φ(Q)⊂ L .

Consider the decomposition

P⊥ = (P⊥ ∩ L)⊕⊥ (P⊥ ∩ L)⊥P⊥ .

Define
0 : Hom(P, P⊥)→ Hom(P ∩ L , (P⊥ ∩ L)⊥P⊥)

to be the composition of the restriction to P ∩ L followed by the right projection of
the above decomposition.

For any subspace Q ⊂ P ∩ L , φ(Q)⊂ L if and only if φ(Q)⊂ P⊥ ∩ L , if and
only if Q ⊂ ker0(φ). So L has a subspace Q of dimension N − 4+ j such that
φ(Q)⊂ L if and only if the (projective) dimension of ker0(φ) is at least N−4+ j .
Therefore,

TPσ j (L)= {φ ∈ Hom(P, P⊥) : dim(ker0(φ))≥ N − 4+ j}. (4-6)
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Note that σ j (L) is the disjoint union of σ ◦j+k(L) for all k satisfying

0≤ k ≤min(4, D− N + 1)− j.

Assume P ∈ σ ◦j+k(L), i.e., dim(P ∩ L)= N −4+ j+k; then (4-6) is equivalent to

TPσ j (L)= {φ ∈ Hom(P, P⊥) : rk0(φ)≤ k}. (4-7)

When k = 0, the constraint becomes rk0(φ)= 0, so TPσ j (L)= ker0 is a vector
space. This reflects the fact that σ j (L) is smooth on σ ◦j (L) for all j . On the other
hand, from the inequality

dim(P ∩ L)+ dim(P⊥ ∩ L)≤ dim(L)− 1,

we get

dim(P⊥ ∩ L)≤ dim(L)− dim(P ∩ L)− 1

= (D− 3)− (N − 4+ j + k)− 1= D− N − j − k.

It follows that

dim((P⊥ ∩ L)⊥P⊥)= dim(P⊥)− dim(P⊥ ∩ L)− 1

≥ (D− N )− (D− N − j − k)− 1= j + k− 1.

So dim((P⊥ ∩ L)⊥P⊥) ≥ j + k − 1 ≥ k once k ≥ 1. Under this condition, the
linear combination of members of rank k in Hom(P ∩ L , (P⊥ ∩ L)⊥P⊥) can have
rank exceeding k. So TPσ j (L) cannot be a vector space; thus, P is a singularity
of σ j (L). �

Recall that σ(l, l ′)= σ1(P⊥l,l ′), so Lemma 4.6 implies:

Corollary 4.7. σ(l, l ′) is rational with codimension N − 2 in G(N , D+ 1).

4D. Families of the projections. The singularities we have studied are those pro-
duced from the intersection of a fixed pair of distinct rulings. Now we are going to
make use of the variety σ(l, l ′) to control multiple singularities.

Let P1[2] be the Hilbert scheme of two points on P1 and U ⊂ P1[2] be the open
subset parametrizing reduced subschemes. On the rational normal scroll Su,v, the
set of r pairs of distinct rulings

{(l1+ l ′1, . . . , lr + l ′r ) : li 6= l ′i for all i}

is parametrized by U×r .
Let 6r be a subset of U×r

×G(N , D+ 1) defined by

6r =

{
(l1+ l ′1, . . . , lr + l ′r , P) ∈U×r

×G(N , D+ 1) : P ∈
r⋂

i=1

σ(li , l ′i )
}
.
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Let p1 be the left projection and p2 the right projection. Then there is a diagram⋂r
i=1 σ(li , l ′i )

��

⊂ 6r

p1
��

p2
// G(N , D+ 1)

(l1+ l ′1, . . . , lr + l ′r ) ∈ U×r

By Lemma 4.5, the image p2(6r ) consists of the N -planes such that the projections
to them produce at least r singularities. By the diagram above and Corollary 4.7,
the codimension of 6r in U×r

×G(N , D+ 1) is at most r(N − 4). When r = 1,
61 is rational with codimension exactly N − 4.

Our goal is to compute the dimension of p2(6r ), so we care about whether p2

is generically finite onto its image or not. It turns out that the following condition
is sufficient (see Lemma 4.9):

There exists a rational scroll with isolated singularities S ⊂ PN of
type (u, v) which has at least r singularities.

(4-8)

By considering S as the projection of Su,v from P⊥ for some N -plane P , we
can apply Corollary 1.7 to translate (4-8) into the equivalent statement:

There exists an N -plane P such that P⊥ intersects S(Su,v) in ≥ r
points away from T (Su,v)∪ Z2.

(4-8′)

Proposition 4.8. Equation (4-8) holds for r ≤ D− N + 1.

Proof. By [Catalano-Johnson 1996, Proposition 2.2; Harris 1992, Example 19.10],
deg(S(Su,v)) =

(D−2
2

)
. Since dim(S(Su,v)) = 5 and T (Su,v)∪ Z2 forms a proper

closed subvariety of S(Su,v), we can use Bertini’s theorem to choose a (D−4)-plane
R which intersects S(Su,v) in

(D−2
2

)
points outside T (Su,v)∪ Z2. It is easy to check

that
(D−2

2

)
≥ D− N +1. Thus, we can choose D− N +1 of the intersection points

to span a (D− N )-plane Q ⊂ R. Then P = Q⊥ satisfies the hypothesis. �

Unfortunately, Proposition 4.8 doesn’t cover the case D= 9, N = 5, and r = 8 in
our proof of the unirationality of discriminant-42 cubic fourfolds. In the following,
we estimate the dimension of p2(6r ) under the assumption (4-8) and leave the
construction of examples to Section 2.

Lemma 4.9. Suppose (4-8) holds. Then p2(6r ) has codimension ≤ r(N − 4)
in G(N , D+ 1). When r = 1, p2(61) is rational of codimension exactly N − 4.

Proof. Let l and l ′ be distinct rulings on Su,v. We write Pl,l ′ for the 3-plane
spanned by them. Note that S(Su,v)=

⋃
l 6=l ′ Pl,l ′ . Let P be an N -plane satisfying

(4-8′). Then there exists r pairs of distinct rulings (l1, l ′1), . . . , (lr , l
′
r ) such that

P⊥ and Pli ,l ′i intersect in exactly one point for each pair (li , l ′i ). This implies that
dim(P⊥+Pli ,l ′i )≤ D−N+3 for all i , which is equivalent to dim(P∩P⊥li ,l ′i

)≥ N−3
for all i by (4-2). Hence, P ∈

⋂r
i=1 σ(li , l ′i ), i.e., P belongs to the image of p2.
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Suppose P⊥ intersects S(Su,v) in m points; then the (l1+ l ′1, . . . , lr + l ′r ) in the
preimage of P is unique up to the choices of r from m pairs, the reordering of the r
pairs, and the transpositions of the rulings in a pair. Hence, p2 is generically finite
with deg p2 =

(m
r

)
· r !. In particular, 6r and p2(6r ) are equidimensional.

From dim(S(Su,v))= 5 and our assumption that N ≥ 5, we are able to choose a
(D−N )-plane which intersects S(Su,v) in any one and exactly one point. Therefore,
we can find P so that P⊥ intersects S(Su,v) in one point outside T (Su,v)∪ Z2. This
provides an example of (4-8) for m = r = 1. It follows that p2 has degree 1, and
the image is rational since σ(l1, l ′1) is rational by Corollary 4.7. �

4E. Proof of Theorem 4.2.

Lemma 4.10. Assume D≥ N ≥ 5, and assume the existence of a degree-D rational
scroll S ⊂ PN with isolated singularities which has at least r singularities. Then
Hr

u,v has codimension at most r(N − 4) in Hu,v. For r = 1, H1
u,v is unirational of

codimension exactly N − 4.

Proof. We have the diagram

V(N , D+ 1)

p
��

π
// Hu,v

6r
p2
// G(N , D+ 1)

By definition, Hr
u,v = π(p

−1(p2(6r ))).
By Lemma 4.9, p2(61) is rational, which implies that H1

u,v is unirational.
It’s clear that p2(6r ) and p−1(p2(6r )) have the same codimension. On the other

hand, p−1(p2(6r )) and π−1(π(p−1(p2(6r )))) have the same dimension since
both contain an open dense subset consisting of the projections which generate r
singularities, so the codimension of p−1(p2(6r )) is the same as its image through π .
Therefore, p2(6r ) and Hr

u,v have the same codimension in their own ambient spaces,
and the results follows from Lemma 4.9. �

Lemma 4.10 is the special case of Theorem 4.2 when restricting to the locus
of a particular type on the Hilbert scheme. The next lemma shows that a general
S ∈ Hr

D deforms equisingularly between different types under the assumption
r N ≤ (D+ 2)2− 1. Hence, the dimension estimate made by Lemma 4.10 can be
extended regardless of the types.

Lemma 4.11. Assume (4-8) and r N ≤ (D+ 2)2− 1; then Hr
u,v =Hu,v ∩Hr

u+k,v−k
for 0≤ 2k < v− u.

Proof. It is trivial that Hr
u,v⊃Hu,v∩Hr

u+k,v−k . To prove that Hr
u,v⊂Hu,v∩Hr

u+k,v−k ,
it is sufficient to show that a generic element in Hr

u,v deforms equisingularly to an
element in Hu+k,v−k .
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If (u, v)= (bD/2c, dD/2e), then there is nothing to prove, so we assume (u, v) 6=
(bD/2c, dD/2e). The elements satisfying (4-8) form an open dense subset of Hr

u,v .
Let S ∈ Hr

u,v be one of them, and assume S is the image of F ∼= Su,v ⊂ PD+1

projected from some (D− N )-plane Q. By hypothesis, F has r secants γ1, . . . , γr

incident to Q. Assume γ j ∩ F = {x j , y j } for j = 1, . . . , r .
H 1(TPD+1 |F ) = 0 by Lemma 1.3, so the short exact sequence 0 → TF →

TPD+1 |F → NF/PD+1 → 0 induces the exact sequence

0→ H 0(TF )→ H 0(TPD+1 |F )→ H 0(NF/PD+1)→ H 1(TF )→ 0.

By Lemma 1.2, h1(F, TF ) = h1(P1,OP1(u − v)) = v − u − 1, the same as the
codimension of Hu,v in HD; thus, a deformation normal to Hu,v is induced from
an element in H 1(TF ). In order to prove that the deformation is equisingular,
it is sufficient to prove that, for all F ∈ H 1(TF ) and its lift S ∈ H 0(NF/PD+1),
there exists α ∈ H 0(TPD+1 |F ) such that the vectors S(x j )+ α(x j ) ∈ TPD+1,x j and
S(y j )+α(y j ) ∈ TPD+1,y j keep γ j contact with Q for j = 1, . . . , r , so that S+α is
a lift of F representing an embedded deformation which preserves the incidence of
the r secants to Q.

Note that, for arbitrary p∈PD+1, the tangent space TPD+1,p
∼=Hom(p, p⊥)∼= p⊥

can be considered as a subspace of PD+1. We identify a point in PD+1 with
its underlying vector. Let γ = γ j for some j , and let {x, y} = γ ∩ Su,v with
x = (x1, . . . , xD+1) and y = (y1, . . . , yD+1). The condition that S(x)+α(x) and
S(y)+ α(y) keep γ contact with Q is equivalent to the condition that the set of
vectors consisting of x +S(x)+α(x), y+S(y)+α(y), and the basis of Q is not
independent.

One can compute that h0(TPD+1 |F ) = (D + 2)2 − 1 by the Euler exact se-
quence 0 → OF → OF (1)⊕(D+2)

→ TPD+1 |F → 0 and Lemma 1.1. Suppose
H 0(TPD+1 |F ) has basis e1, . . . , e(D+2)2−1; we write the evaluation of ei at p as
ei (p) = (ei (p)1, . . . , ei (p)D+1). Let α =

∑
i≥1 αi ei , S(x) =

∑
i≥1 ci ei (x), and

S(y)=
∑

i≥1 di ei (y); also write Q= (qi, j ) as a (D−N+1)×(D+2)matrix. Then
the dependence condition is equivalent to the condition that the (D−N+3)×(D+2)
matrix

Aγ =

α0x +α0S(x)+α(x)
α0 y+α0S(y)+α(y)

Q



=


α0x0+

∑
(α0ci +αi )ei (x)0 · · · α0xD+1+

∑
(α0ci +αi )ei (x)D+1

α0 y0+
∑
(α0di +αi )ei (y)0 · · · α0 yD+1+

∑
(α0di +αi )ei (y)D+1

q0,0 · · · q0,D+1
...

...

qD−N ,0 · · · qD−N ,D+1


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has rank at most D− N + 2. Here we homogenize the first two rows by α0, so that
the matrix defines a morphism

Aγ : P(C⊕ H 0(TPD+1 |F ))∼= P(D+2)2−1
→ P(D−N+3)(D+2)−1,

(α0, . . . , α(D+2)2−1) 7→ Aγ .

Let MD−N+2 ⊂ P(D−N+3)(D+2)−1 be the determinantal variety of matrices of
rank at most D − N + 2. Then A−1

γ (MD−N+2) ⊂ P(C ⊕ H 0(TPD+1 |F )) is an
irreducible and nondegenerate subvariety of codimension N , whose locus outside
α0= 0 parametrizes those α ∈ H 0(TPD+1 |F ) such that S+α preserves the incidence
between γ and Q.

It follows that the intersection
⋂r

j=1 A−1
γ j
(MD−N+2) is nonempty by the hy-

pothesis r N ≤ (D+ 2)2 − 1. Moreover, it is not contained in the hyperplane
α0 = 0 for a generic S ∈ Hr

u,v. Indeed, if this doesn’t hold, then the limit case
γ1= · · ·= γr should also be inside the hyperplane α0= 0. However, the intersection
in that case is a multiple of a nondegenerate variety, a contradiction. As a result,
for a generic S ∈ Hr

u,v we can find α from
⋂r

j=1 A−1
γ j
(MD−N+2) which lies on

{α0 = 1} = H 0(TPD+1 |F ), so that S +α preserves the incidence condition between
γ1, . . . , γr and Q. �

Now we are ready to finish the proof of Theorem 4.2.
Note that Hr

D =
⋃

u+v=D Hr
u,v. By Lemma 4.11⋃

u+v=D

Hr
u,v =

⋃
u+v=D

(Hu,v ∩Hr
bD/2c,dD/2e)=HD ∩Hr

bD/2c,dD/2e =Hr
bD/2c,dD/2e.

Therefore, Hr
D = Hr

bD/2c,dD/2e, and the result follows from Lemma 4.10 with
(u, v)= (bD/2c, dD/2e).
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Quantitative equidistribution
of Galois orbits of small points

in the N-dimensional torus
Carlos D’Andrea, Marta Narváez-Clauss and Martín Sombra

We present a quantitative version of Bilu’s theorem on the limit distribution
of Galois orbits of sequences of points of small height in the N-dimensional
algebraic torus. Our result gives, for a given point, an explicit bound for the
discrepancy between its Galois orbit and the uniform distribution on the compact
subtorus, in terms of the height and the generalized degree of the point.

1. Introduction

One of the first results concerning the distribution of Galois orbits of points of small
height in algebraic varieties is due to Bilu [1997]. It establishes that the Galois
orbits of strict sequences of points of small Weil height in an algebraic torus tend
to the uniform distribution around the unit polycircle.

Let us introduce some notation before giving the precise formulation of this
result. Fix an algebraic closure Q of Q together with an embedding Q ,!C. By C�

and Q� we denote the multiplicative groups of C and Q, respectively. Let N � 1;
the Galois orbit of a point in .Q�/N is its orbit under the action of the absolute
Galois group, Gal.Q=Q/.

For a finite set T � .C�/N, the discrete probability measure on .C�/N associated
to it is given by

�T D
1

#T

X
˛2T

ı˛;

where #T denotes the cardinality of T and ı˛ the Dirac delta measure on .C�/N

supported on ˛. The unit polycircle .S1/N is the set of points .z1; : : : ; zn/ 2 CN

such that jz1j D � � � D jzN j D 1. It is a compact subgroup of .C�/N. We denote by
�.S1/N the Haar probability measure of .S1/N, considered as a measure on .C�/N.
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A sequence .�k/k�1 of probability measures on .C�/N converges weakly to
a probability measure � on .C�/N if, for every compactly supported continuous
function F W .C�/N! R,

lim
k!1

Z
.C�/N

F d�k D

Z
.C�/N

F d�:

Let � 2Q� and f� 2 ZŒx� be the minimal polynomial of � over the integers. The
Weil height of � is defined as

h.�/D
m.f�/

deg.�/
;

where m.f�/ is the (logarithmic) Mahler measure of f� , given by

m.f�/D
1

2�

Z 2�

0

logjf�.e
i� /j d�;

and deg.�/D ŒQ.�/ WQ� is the degree of the point �.
This notion of height extends to .Q�/N as follows:

h.�/D h.�1/C � � �C h.�N /; for every � D .�1; : : : ; �N / 2 .Q�/N. (1-1)

A sequence .�k/k�1 in .Q�/N is strict if, for every proper algebraic subgroup
Y � .Q�/N, the cardinality of the set fk W �k 2 Y g is finite.

Theorem 1.1 [Bilu 1997, Theorem 1.1]. Let .�k/k�1 be a strict sequence in .Q�/N

such that limk!1 h.�k/D 0. Then

lim
k!1

�Sk D �.S1/N ;

where �Sk is the discrete probability measure associated to the Galois orbit Sk
of �k .

This result was inspired by a previous work of Szpiro, Ullmo and Zhang [Szpiro
et al. 1997] on the equidistribution of points of small Néron–Tate height in abelian
varieties. It was originally motivated by Bogomolov’s conjecture, solved in [Ullmo
1998; Zhang 1998]. The results of Szpiro, Ullmo and Zhang and of Bilu were
largely generalized to other heights and places [Rumely 1999; Baker and Hsia 2005;
Favre and Rivera-Letelier 2006; Baker and Rumely 2006; Chambert-Loir 2006;
Yuan 2008; Gubler 2008; Berman and Boucksom 2010; Chen 2011; Burgos Gil
et al. 2015]. In particular, these results established the equidistribution of Galois
orbits of sequences of small points for all places of Q and heights associated to
algebraic dynamical systems. Moreover, this equidistribution phenomenon holds
for the bigger set of test functions with logarithmic singularities along divisors with
minimal height; see [Chambert-Loir and Thuillier 2009].
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As a general fact, these equidistribution theorems are formulated in a qualitative
way, in the sense that no information is provided on the rate of convergence towards
the equidistribution. An exception is [Favre and Rivera-Letelier 2006], where a
bound for this rate of convergence is given for a large class of heights of points
in the projective line and all places of Q. Independently, Petsche [2005] gave a
quantitative version of Bilu’s result for the case of dimension one.

In this paper, we present a quantitative version of Theorem 1.1 for the general
N-dimensional case. In particular, we provide a bound for the integral of a suitable
test function with respect to the signed measure defined by the difference of the
discrete probability measure associated to the Galois orbit of a point in .Q�/N

and the measure �.S1/N . This bound is given in terms of the height of the point,
a higher dimensional generalization of the notion of the degree of an algebraic
number, and a constant depending only on the test function.

To state our main result properly, let us introduce further definitions and notations.
For every nD .n1; : : : ; nN / 2 ZN, consider the monomial map

�n W .Q�/N!Q�

zD .z1; : : : ; zN/ 7! �n.z/D z
n1
1 � � � z

nN
N :

We define the generalized degree of a point � 2 .Q�/N by

D.�/D min
n¤0

˚
knk1 deg.�n.�//

	
; (1-2)

where deg.�n.�// is the degree of the point �n.�/ 2Q� and k�k1 is the 1-norm on
CN. For a particular choice of �, the generalized degree can be computed with a
finite number of operations; see Remark 2.7.

Let us write T WDR=Z and identify TN�RN with .C�/N via the logarithmic-polar
coordinate change of variables

.�;u/D ..�1; : : : ; �N /; .u1; : : : ; uN // 7! .e2�i�1Cu1 ; : : : ; e2�i�NCuN /:

On TN�RN ' .C�/N, consider the translation invariant distance, defined as

d..�;u/; .� 0;u0//D
� NX
lD1

dang.�l ; �
0
l/
2
Cjul �u

0
l j
2

�1
2

;

where dang.�l ; �
0
l
/ is the Euclidean distance in S1 between e2�i�l and e2�i�

0
l ,

divided by 2� .
A function F W .C�/N! R belongs to the set of test functions F if it satisfies:

(i) F is a Lipschitz function with respect to the distance d;

(ii) the restriction F0 D F j.S1/N is in CNC1..S1/N;R/.
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The set F contains all compactly supported functions in CNC1..C�/N;R/.
The following is the main result of this paper.

Theorem 1.2. There is a constant C � 64 such that, for every � 2 .Q�/N with
h.�/� 1 and every F 2 F,ˇ̌̌̌Z

.C�/N
F d�S �

Z
.C�/N

F d�.S1/N

ˇ̌̌̌
� c.F /

�
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2

;

where S is the Galois orbit of �, �S the discrete probability measure associated to
it and c.F / a positive constant depending only on F .

For every test function F 2 F, the function F0, its Fourier transform yF0, all the
first order partial derivatives of F0, and their corresponding Fourier transforms are
integrable with respect to a Haar measure (Theorem A.1). In logarithmic-polar
coordinates F0.�/ D F.�; 0/. Then, as shown in the proof of Theorem 1.2, the
constant c.F / can be bounded by

c.F /� 2Lip.F /C 16
NX
lD1




b@F0
@�l





L1
;

where Lip.F / is the Lipschitz constant of F with respect to the distance d of .C�/N

and where k � kL1 stands for the L1-norm of a function on the locally compact abelian
group ZN with respect to the standard Haar measure.

Our main theorem is a quantitative version of Bilu’s result. Indeed, if we consider
a strict sequence .�k/k�1 in .Q�/N such that h.�k/! 0 as k!1, we necessarily
have that D.�k/!1 as k!1 (Lemma 2.8). Hence, for every function F 2 F,
Theorem 1.2 implies that

lim
k!1

Z
.C�/N

F d�Sk D

Z
.C�/N

F d�.S1/N ;

where �Sk is the discrete probability measure associated to the Galois orbit Sk
of �k . Since F contains a dense subset of the set of compactly supported continuous
functions on .C�/N, we deduce Theorem 1.1.

The rate of convergence in Theorem 1.2 has the expected exponent 1
2

, as in [Favre
and Rivera-Letelier 2006], see also Theorem 3.1. On the other hand, one could ask
if, for the general N-dimensional case, the constant c.F / might be bounded by the
Lipschitz constant of the test function, as in their paper.

The idea of the proof of our result is to reduce the problem, via monomial maps,
to the one-dimensional situation as it was done in [Bilu 1997; D’Andrea et al. 2014].
In this setting, we apply Favre and Rivera-Letelier’s result (Theorem 3.1). Then,
we lift the obtained quantitative control to the N-dimensional torus by applying
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the Fourier inversion formula and a study of the Fourier–Stieltjes transform of the
discrete probability measure associated to the orbit of the point.

This paper is structured as follows. Section 2 contains preliminary theory and
general results on Fourier analysis, measures on the Riemann sphere, Galois invari-
ant sets, and the generalized degree. In Section 3, we give the proof of Theorem 1.2,
which is divided in several propositions and lemmas. At the end of the paper there
are two appendices, the first one studies the set of test functions F , and the second
the Lipschitz constant of an auxiliary function used in Section 3.

2. Preliminaries

2.1. Fourier analysis. In this section we review basic concepts of Fourier analysis
on TN. We refer the reader to [Rudin 1962] for the proof of the stated results.

Let p � 1. Given a function H W TN! C, its Lp-norm is defined by

kHkLp D

�Z
TN
jH.�/jpd�

�1
p

2 R�0[fC1g:

We say that H 2 Lp.TN / if this norm is finite. In particular, the function H is
Haar-integrable if it lies in L1.TN /. Similarly, for a function G W ZN! C, its
Lp-norm is defined by

kGkLp D

� X
n2ZN

jG.n/jp
�1
p

2 R�0[fC1g;

and we say that G 2 Lp.ZN / if this norm is finite. Also, G is Haar-integrable if it
lies in L1.ZN /.

Let H W TN ! C be Haar-integrable. Its Fourier transform is the function
yH W ZN! C, defined as

yH.n/D

Z
TN
H.�/e�2�in��d�;

where
n �� D .n1; : : : ; nN / � .�1; : : : ; �N /D n1�1C � � �CnN �N :

If yH is also Haar-integrable, the Fourier inversion formula states that

H.�/D
X
n2ZN

yH.n/e2�in��:

For H2 .L1\L2/.TN /, Plancherel’s theorem states that yH2 L2.ZN / and

k yHkL2 D kHkL2 :
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For every finite and regular positive measure � on TN, its Fourier–Stieltjes
transform is the function y� W ZN! C given by

y�.n/D

Z
TN
e�2�in��d�.�/:

We now establish some auxiliary results that will be useful for the proof of
Theorem 1.2.

Lemma 2.1. Let H W TN! C be a Haar-integrable function such that its Fourier
transform yH is also Haar-integrable. For any finite regular measure � on TN we
have that H is integrable with respect to � and yHy� is Haar-integrable. Moreover,Z

TN
H d�D

X
n2ZN

yH.n/y�.n/:

Proof. Let � be a finite regular measure on TN. Its Fourier–Stieltjes transform is
the function y� W ZN! C given by

y�.n/D

Z
TN
e�2�in��d�.�/:

Since both H and yH are Haar-integrable, we apply the Fourier inversion formula
that, together with Fubini’s theorem, leads toZ

TN
Hd�D

Z
TN

� X
n2ZN

yH.n/e2�in��
�
d�.�/

D

X
n2ZN

yH.n/

�Z
TN
e2�in��d�.�/

�
D

X
n2ZN

yH.n/y�.n/;

this equality containing the fact that H is integrable with respect to � and that yHy�
is Haar-integrable. �

Lemma 2.2. Let H W TN! C be a Haar-integrable function such that yH is also
Haar-integrable, and let � be a finite regular measure on TN. ThenZ

TN
H d��

Z
TN
H d�.S1/N D yH.0/

�
y�.0/� 1

�
C

X
n¤0

yH.n/y�.n/:

Proof. Since �.S1/N is the Haar probability measure of TN, for any n 2 ZN,

y�.S1/N .n/D

Z
TN
e�2�in��d� D

�
1 if nD 0;
0 otherwise:



Quantitative equidistribution of Galois orbits in the N-torus 1633

Hence, by Lemma 2.1 we obtainZ
.C�/N

H d�.S1/N D
X
n2ZN

yH.n/y�.S1/N .n/D yH.0/:

Then we haveZ
TN
Hd��

Z
TN
Hd�.S1/N

D

� X
n2ZN

yH.n/y�.n/

�
� yH.0/D yH.0/

�
y�.0/� 1

�
C

X
n¤0

yH.n/y�.n/: �

2.2. Galois invariant sets. In this section we work with Galois invariant sets and
study their height. For further details on basic Galois theory we refer to [Lang
2002], and on heights of points to [Bombieri and Gubler 2006].

Let � 2 Q� and f� 2 ZŒx� be the minimal polynomial of � over the integers.
Recall that the Weil height of � is defined as

h.�/D
m.f�/

deg.�/
;

where m.f�/ is the Mahler measure of f� , given by

m.f�/D
1

2�

Z 2�

0

logjf�.e
i� /j d�;

and deg.�/ D ŒQ.�/ W Q� is the degree of the point �. This notion of height
coincides with that in [Bombieri and Gubler 2006, §1.5], which is defined using
local decompositions.

Let T � .Q�/N be a finite Galois-invariant set, its height is defined as

h.T /D
X
˛2T

h.˛/;

where h.˛/ is the height of ˛ 2 .Q�/N as in (1-1). In particular, since the height of
two Galois conjugate points coincide, if T � .Q�/N is a Galois orbit of cardinalityD,
then

h.T /DDh.˛/;

for any ˛ 2 T.

Lemma 2.3. Let � D .�1; : : : ; �N / in .Q�/N, S its Galois orbit, and set D D #S .
Then

(1) D D ŒQ.�1; : : : ; �N / WQ�,

(2) deg.�n.�// divides D for every n 2 ZN.
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Proof. If a group G acts on a finite set S transitively, then for any x 2 S the index
of the stabilizer Gx is equal to #S , because the cosets G=Gx stay in a natural
one-to-one correspondence with the element of S . Applying this to GDGal.Q=Q/,
xD �, and S the Galois orbit of �, we find ŒGal.Q=Q/ WGal.Q=Q.�//�DD, which
by Galois theory implies that ŒQ.�/ W Q� D D, proving the first statement. The
second statement is immediate because �n.�/ 2Q.�/. �

Lemma 2.4. Let � 2Q�, d D deg.�/, and S its Galois orbit. Then

1

d

X
˛2S

ˇ̌
logj˛j

ˇ̌
� 2 h.�/:

Proof. We have

1

d

X
˛2S

ˇ̌
logj˛j

ˇ̌
D
1

d

X
˛2S

maxf� logj˛j; logj˛jg

D
1

d

X
˛2S

log max
n
1

j˛j
; j˛j

o
D
1

d

X
˛2S

�
log maxf1; j˛j2g� logj˛j

�
:

Let P�.x/D adxd C� � �Ca0 2 ZŒx� be the minimal polynomial of � over Z. Since
S is the Galois orbit of �,

P�.x/D ad
Y
˛2S

.x�˛/ and a0 D .�1/
dad

Y
˛2S

˛:

Since ja0j is a nonzero positive integer, we obtain

1

d

X
˛2S

.log maxf1; j˛j2g� logj˛j/D 1

d

X
˛2S

log maxf1; j˛j2gC log
jad j

ja0j

�
1

d

X
˛2S

log maxf1; j˛j2gC logjad j

� 2
�
1

d

X
˛2S

log maxf1; j˛jgC logjad j
�

D 2 h.�/;

where the last equality is given by Jensen’s formula for the Mahler measure
[Bombieri and Gubler 2006, Proposition 1.6.5]. �
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Lemma 2.5. Let �1 2 .Q�/N and consider its Galois orbit f�1; : : : ; �Dg, where
�j D .�j;1; : : : ; �j;N / for every j D 1; : : : ;D. Then

1

D

NX
lD1

DX
jD1

ˇ̌
logj�j;l j

ˇ̌
� 2 h.�1/:

Proof. For every l D 1; : : : ; N, the elements �j;l and �k;l are conjugates. Denote by
Sl the Galois orbit of �1;l . By Lemma 2.3, we have that #Sl D deg.�1;l/ divides D.
That is, there is a positive integer kl such that DD deg.�1;l/kl , where kl is exactly
the number of times each element of the orbit is repeated in f�1;l ; : : : ; �D;lg. Thus

1

D

NX
lD1

DX
jD1

ˇ̌
logj�j;l j

ˇ̌
D

NX
lD1

1

kl deg.�1;l/

DX
jD1

ˇ̌
logj�j;l j

ˇ̌
D

NX
lD1

1

deg.�1;l/

X
˛2Sl

ˇ̌
logj˛j

ˇ̌
�

NX
lD1

2 h.�1;l/D 2 h.�1/;

where the inequality follows from Lemma 2.4. �

Lemma 2.6. Let S � Q� be a Galois-invariant set of cardinality D. For every
0 < ı < 1,

#Sı < 2
�

log 1
ı

��1
h.S/;

where Sı D
n
˛ 2 S W

ˇ̌
logj˛j

ˇ̌
> log 1

ı

o
.

Proof. Write S as a finite disjoint union of Galois orbits

S D S1 t � � � tSm:

By definition, for any ˛ 2 Sı ,

1 <
�

log 1
ı

��1ˇ̌
logj˛j

ˇ̌
:

Hence,

#Sı <
X
˛2Sı

�
log 1

ı

��1ˇ̌
logj˛j

ˇ̌
�

�
log 1

ı

��1X
˛2S

ˇ̌
logj˛j

ˇ̌
D

�
log 1

ı

��1 mX
lD1

X
˛2Sl

ˇ̌
logj˛j

ˇ̌
�

�
log 1

ı

��1 mX
lD1

2 h.Sl/

D 2
�

log 1
ı

��1
h.S/;
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where the last inequality holds by Lemma 2.4. �

2.3. The generalized degree. We now study the notion of the generalized degree
of a point in the algebraic torus defined in (1-2). First of all, let us see that in
dimension one, it coincides with the notion of the degree of the algebraic number.
Let � 2Q�; then

D.�/Dmin
n¤0
fjnj deg.�n/g:

For every nonzero integer n, let Qn.x/ be the minimal polynomial of � jnj over Z,
which is of degree deg.� jnj/D deg.�n/. By setting Rn.x/DQn.xjnj/ 2 ZŒx� we
obtain that Rn.�/D 0 and this implies that

deg.�/� deg.Rn.x//D jnj deg.�n/:

Hence, D.�/D deg.�/.

Remark 2.7. For N � 1 and every � D .�1; : : : ; �N / in .Q�/N,

D.�/�minfdeg.�1/; : : : ; deg.�N /g:

This holds since

fdeg.�1/; : : : ; deg.�N /g � fdeg.�n.�// W n¤ 0g:

Thus, for a particular choice of �, the generalized degree can be computed after a
finite number of steps by considering all n¤ 0 such that

knk1 �minfdeg.�1/; : : : ; deg.�N /g:

For N D 1, a strict sequence .�k/k�1 in Q� such that limk!1 h.�k/D 0 shows
that limk!1 deg.�k/D1. Indeed, to the contrary suppose there is some c > 0
such that deg.�k/ � c for every k � 0. By Northcott’s theorem [Bombieri and
Gubler 2006, Theorem 1.6.8], there are only finitely many elements with bounded
degree and height. Hence, there is some ˛ 2Q� such that �kD˛ for infinitely many
values of k. Since h.�k/ tends to 0 as k goes to infinity, by Kronecker’s theorem
[op. cit., Theorem 1.5.9] we necessarily have h.˛/D 0, which implies that ˛ is a
root of unity. In particular, there is an infinite subsequence of .�k/k�1 contained in
a proper algebraic subgroup of Q� which is not possible by the assumption that the
sequence is strict.

The following lemma is a generalization of this fact to higher dimensions.

Lemma 2.8. Let .�k/k�1 be a strict sequence in .Q�/N such that

lim
k!1

h.�k/D 0:

Then
lim
k!1

D.�k/D1:
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Proof. Since the sequence .�k/k�0 is strict, the sequence .�n.�k//k�0 is a strict
sequence in Q� for every n¤ 0.

Write �k D .�k;1; : : : ; �k;N / and let nD .n1; : : : ; nN /¤ 0. Then

h.�n.�k//D h.�n1
k;1
� � � �

nN
k;N

/

� h.�n1
k;1
/C : : :C h.�nN

k;N
/

D jn1j h.�k;1/C � � �C jnN j h.�k;N /

� knk1 h.�k/
k!1
����! 0;

where the first inequality follows from [Bombieri and Gubler 2006, §1.5.14].
Thus, as we just saw, for every n¤ 0

lim
k!1

deg.�n.�k//D1:

Finally, by Remark 2.7, for every k � 0 there is nk ¤ 0 with bounded 1-norm such
that D.�k/D knkk1 deg.�nk .�k//. Hence

lim
k!1

D.�k/D1;

completing the proof. �

3. Proof of the main result

In this section we give the proof of Theorem 1.2. As we mentioned in the introduc-
tion, we do so by using Fourier analysis techniques and reducing the problem, via
projections, to the one-dimensional case, where the result follows from [Favre and
Rivera-Letelier 2006, Corollary 1.4].

Before stating this result, we give the definition of the spherical distance on the
Riemann sphere. Let us identify the projective complex line with the unit sphere S2

of R3. Let S2 n f.0; 0; 1/g ! C be the stereographic projection, where we identify
the equator of S2 with the set fz 2 C W jzj D 1g. Composing it with the standard
inclusion C ,!P1.C/ gives a map S2nf.0; 0; 1/g!P1.C/nf.0 W1/g, that we extend
to a homeomorphism � W S2! P1.C/ by setting �.0; 0; 1/D .0 W 1/. The spherical
distance dsph on P1.C/ is given by the length of the arc on S2 under this identification
and extended to P1.C/N for p D .p1; : : : ; pN/ and p0 D .p01; : : : ; p

0
N/ as

dsph.p;p
0/D

� NX
lD1

dsph.pl ; p
0
l/
2

�1
2

:

A function f W P1.C/N! C is a Lipschitz function with respect to the distance



1638 Carlos D’Andrea, Marta Narváez-Clauss and Martín Sombra

dsph if there is a constant K � 0 such that

jf .p/�f .p0/j �K dsph.p;p
0/ for every p;p0 2 P1.C/N. (3-1)

If f is a Lipschitz function with respect to the spherical distance, then its Lipschitz
constant Lipsph.f / is the smallest K � 0 such that (3-1) holds.

We now state the result of Favre and Rivera-Letelier together with the explicit
constants computed in the Ph.D. thesis of Narváez-Clauss [2016, Theorem II].

Theorem 3.1. There is a positive constant C0 � 15 such that for every C 1-function
f W P1.C/! R and every � 2Q�ˇ̌̌̌Z

P1.C/

f d�S �

Z
P1.C/

f d�S1

ˇ̌̌̌
� Lipsph.f /

�
�

deg.�/
C

�
4 h.�/CC0

log.deg.�/C 1/
deg.�/

�1
2
�
;

where S is the Galois orbit of � , �S is the discrete probability measure associated
to it, and Lipsph stands for the Lipschitz constant with respect to the spherical
distance on the Riemann sphere.

In particular, if h.�/� 1, thenˇ̌̌̌Z
P1.C/

f d�S �

Z
P1.C/

f d�S1

ˇ̌̌̌
� Lipsph.f /

�
4 h.�/CC

log.deg.�/C 1/
deg.�/

�1
2

;

for C � 64.

The proof of this result relies on the interpretation of the height of a point in
terms of the potential theory over the complex projective line. Given � 2Q�, it can
be shown that the mutual energy of the signed measure �S ��S1 is bounded above
by twice the height of the point. Since this signed measure is not regular enough,
Favre and Rivera-Letelier consider a regularization such that it has vanishing total
mass and its trace measure has continuous potential. This allows them to apply a
Cauchy–Schwartz type inequality to the integral of the function with respect to the
regularized measure. Together with the study of the integral of the function with
respect to the difference of the measure and its regularization, this leads to their
result. The constant in [Narváez-Clauss 2016] is made explicit by considering a
specific regularization of the measure, which is done by convolution with a specific
mollifier.

Consider the projection

� W TN�RN! TN ;

.�;u/ 7! �:
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Under the natural identifications

.C�/N ! TN�RN ;

.z1; : : : ; zN / 7!

��
arg.z1/
2�

; : : : ;
arg.zN /
2�

�
; .logjz1j; : : : ; logjzN j/

�
and

.S1/N! TN ;

.z1; : : : ; zN / 7!

�
arg.z1/
2�

; : : : ;
arg.zN /
2�

�
;

the map � can be rewritten as

.C�/N! .S1/N ;

.z1; : : : ; zN / 7!

�
z1

jz1j
; : : : ;

zN

jzN j

�
:

Let � 2 .Q�/N, S its Galois orbit, and �S the discrete probability measure
associated to it. If F W TN� RN! C is integrable with respect to the measure
�.S1/N , thenˇ̌̌̌Z

TN�RN
F d�S �

Z
TN�RN

F d�.S1/N

ˇ̌̌̌
�

ˇ̌̌̌Z
TN�RN

F d�S �

Z
TN
F0 d�S

ˇ̌̌̌
C

ˇ̌̌̌Z
TN
F0 d�S �

Z
TN�RN

F d�.S1/N

ˇ̌̌̌
; (3-2)

where F0 W TN! R is defined by F0.�/ D F.�; 0/, and the measure �S is the
pushforward of the measure �S , which is given by

�S D ���S D
1

#S

X
˛2S

ı˛=j˛j: (3-3)

Using (3-2), we are able to divide the proof of the main result into two parts.
The following proposition corresponds to the first one.

Proposition 3.2. Let � 2 .Q�/N and S its Galois orbit. Let F W .C�/N! R be a
Lipschitz function with respect to the distance d and such that it is integrable with
respect to �.S1/N . Thenˇ̌̌̌Z

TN�RN
F d�S �

Z
TN
F0 d�S

ˇ̌̌̌
� 2Lip.F / h.�/;

where F0.�/D F.�; 0/ and Lip.F / is the Lipschitz constant of F .



1640 Carlos D’Andrea, Marta Narváez-Clauss and Martín Sombra

Proof. With the above notation, we haveˇ̌̌̌Z
TN�RN

F d�S �

Z
TN
F0 d�S

ˇ̌̌̌
D

ˇ̌̌̌Z
TN�RN

F d�S �

Z
TN�RN

.F ı�/ d�S

ˇ̌̌̌
D

ˇ̌̌̌Z
.C�/N

�
F.z1; : : : ; zN /�F

�
z1

jz1j
; : : : ;

zN

jzN j

��
d�S .z1; : : : ; zN /

ˇ̌̌̌

�
1

#S

X
.˛1;:::;˛N /2S

ˇ̌̌̌
F.˛1; : : : ; ˛N /�F

�
˛1

j˛1j
; : : : ;

˛N

j˛N j

�ˇ̌̌̌

�
1

#S
Lip.F /

X
.˛1;:::;˛N /2S

d
�
.˛1; : : : ; ˛N /;

�
˛1

j˛1j
; : : : ;

˛N

j˛N j

��
;

where the last inequality is given by the fact that F is a Lipschitz function with
respect to the distance d of .C�/N. By the definition of this distance,

d
�
.˛1; : : : ; ˛N /;

�
˛1

j˛1j
; : : : ;

˛N

j˛N j

��
D

� NX
lD1

ˇ̌
logj˛l j

ˇ̌2�12
�

NX
lD1

ˇ̌
logj˛l j

ˇ̌
:

Hence, by Lemma 2.5, we concludeˇ̌̌̌Z
TN�RN

F d�S �

Z
TN
F0 d�S

ˇ̌̌̌
�

1

#S
Lip.F /

X
.˛1;:::;˛N /2S

NX
lD1

ˇ̌
logj˛l j

ˇ̌
� 2Lip.F / h.�/: �

Let us study now the second summand in (3-2). First of all we observe that,
since the measure �.S1/N is supported on TN� f0g, we can reduce the problem to
the compact torus .S1/N. Indeed, with the notation as in (3-2), we haveˇ̌̌̌Z

TN
F0 d�S �

Z
TN�RN

F d�.S1/N

ˇ̌̌̌
D

ˇ̌̌̌Z
TN
F0 d�S �

Z
TN
F0 d�.S1/N

ˇ̌̌̌
;

where �S is given by (3-3).
If F0 W TN! R is Haar-integrable and such that its Fourier transform yF0 is also

Haar-integrable, by Lemma 2.2,Z
TN
F0 d�S �

Z
TN
F0 d�.S1/N D yF0.0/

�
y�S .0/� 1

�
C

X
n¤0

yF0.n/y�S .n/;
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where the Fourier–Stieltjes transform of �S is

y�S .n/D

Z
TN
e�2�in��d�S .�/D

1

#S

X
.˛1;:::;˛N/2S

e�in�.arg.˛1/;:::;arg.˛N//; (3-4)

for every n 2 ZN. In particular, y�S .0/D 1.
We obtain the following lemma.

Lemma 3.3. Let F0 W TN! R be Haar-integrable and such that its Fourier trans-
form is also Haar-integrable. With the notation as above,Z

TN
F0 d�S �

Z
TN
F0 d�.S1/N D

X
n¤0

yF0.n/y�S .n/:

We now study the Fourier–Stieltjes transform of the measure �S D ���S .

Proposition 3.4. There is a constant C � 64 such that, for every n¤ 0 and every
0 < ı < 1, if h.�/� 1,

jy�S .n/j �
�2

log ı
knk1 h.�/C 4

p
2.ı2C9/

ı3
knk1

�
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2

:

Proof. Let n ¤ 0 and let Sn be the Galois orbit of �n.�/. By Lemma 2.3, there
is an integer ln such that #S D ln#Sn and we know that every element ˛ 2 Sn is
repeated ln times in f�n.˛/ W ˛ 2 Sg. Hence, by (3-4), we obtain

y�S .n/D
1

#S

X
.˛1;:::;˛N/2S

ein�.arg.˛1/;:::;arg.˛N// D
1

#S

X
˛2S

�n.˛/

j�n.˛/j
D

1

#Sn

X
˛2Sn

˛

j˛j
:

For 0 < ı < 1, consider the function fı W P1.C/! C given by

fı.0 W 1/D 0 and fı.1 W z/D �ı.jzj/
z

jzj
for any z 2 C,

where the function �ı W R! Œ0; 1� is given by

�ı.r/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0 if r < ı=2;
.5ı� 4r/.ı� 2r/2=ı3 if ı=2� r � ı;

1 if ı < r < 1=ı;
.�2C ır/2.�1C 2ır/ if 1=ı � r � 2=ı;

0 if r > 2=ı:

In Lemma B.1, we prove that fı is a C 1-function such that, if we write fıDuıCivı ,

Lipsph.uı/;Lipsph.vı/�
2
p
2.ı2C 9/

ı3
;
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where Lipsph stands for the Lipschitz constant with respect to the spherical distance
on the Riemann sphere.

For every n¤ 0,ˇ̌̌̌
y�S .n/�

1

#S

DX
˛2S

fı.1 W �
n.˛//

ˇ̌̌̌

D

ˇ̌̌̌
1

#S

X
˛2S

�n.˛/

j�n.˛/j
�
1

#S

X
˛2S

�ı.j�
n.˛/j/

�n.˛/

j�n.˛/j

ˇ̌̌̌

D

ˇ̌̌̌
1

#S

X
˛2S

�n.˛/

j�n.˛/j

�
1� �ı.j�

n.˛/j/
�ˇ̌̌̌

�
1

#S

X
˛2S

ˇ̌
1� �ı.j�

n.˛/j/
ˇ̌
: (3-5)

Let us define, for every n¤ 0 and 0 < ı < 1, the set

Jn;ı D
n
˛ 2 S W ı � j�n.˛/j �

1

ı

o
:

If ˛ 2 Jn;ı , then �ı.j�n.˛/j/D 1, and otherwise 0� �ı.j�n.˛/j/ < 1. Hence,

1

#S

X
˛2S

ˇ̌
1� �ı.j�

n.˛/j/
ˇ̌
D

1

#S

X
˛…Jn;ı

1� �ı.j�
n.˛/j/�

1

#S

X
˛…Jn;ı

1: (3-6)

Set
Sn;ı D

n
˛ 2 Sn W

ˇ̌
logj˛j

ˇ̌
> log 1

ı

o
;

then we obtain

1

#S

X
˛…Jn;ı

1D
1

#Sn

X
˛2Sn;ı

1� 2
�

log 1
ı

��1
h.�n.�//; (3-7)

where the last inequality is given by Lemma 2.6.
As we saw in the proof of Lemma 2.8, for n¤ 0 we have

h.�n.�//� knk1 h.�/:

Thus, putting this together with (3-5), (3-6) and (3-7) we deduce thatˇ̌̌̌
y�S .n/�

1

#S

X
˛2S

fı.1 W �
n.˛//

ˇ̌̌̌
� 2

�
log 1

ı

��1
knk1 h.�/: (3-8)

On the other hand,

1

#S

X
˛2S

fı.1 W �
n.˛//D

1

ln#Sn

X
˛2Sn

lnfı.1 W ˛/D

Z
P1.C/

fı d�Sn
; (3-9)
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where �Sn
is the discrete probability measure on P1.C/ associated to the Galois

orbit Sn of �n.�/.
Since �S1 is the measure on P1.C/ supported on the unit circle, where it coincides

with the Haar probability measure and, by definition, fı.1 W z/D z if jzj D 1,Z
P1.C/

fı d�S1 D

Z
C�
z d�S1.z/D 0:

By Theorem 3.1, we obtainˇ̌̌̌Z
P1.C/

fı d�Sn

ˇ̌̌̌
D

ˇ̌̌̌Z
P1.C/

fı d�Sn
�

Z
P1.C/

fı d�S1

ˇ̌̌̌

�

ˇ̌̌̌Z
P1.C/

uı d�Sn
�

Z
P1.C/

uı d�S1

ˇ̌̌̌

C

ˇ̌̌̌Z
P1.C/

vı d�Sn
�

Z
P1.C/

vı d�S1

ˇ̌̌̌
� .Lipsph.uı/CLipsph.vı//

�

�
�

deg.�n.�//
C

�
4 h.�n.�//CC0

log.deg.�n.�//C 1/
deg.�n.�//

�1
2
�

�
4
p
2.ı2C 9/

ı3

�

�
�

deg.�n.�//
C

�
4 h.�n.�//CC0

log.deg.�n.�//C 1/
deg.�n.�//

�1
2
�
; (3-10)

where C0 � 15.
Since h.�n.�//� knk1 h.�/,�
4 h.�n.�//CC0

log.deg.�n.�//C 1/
deg.�n.�//

�1
2

�

�
4knk1 h.�/CC0

knk1 log.deg.�n.�//C 1/
knk1 deg.�n.�//

�1
2

�
p
knk1

�
4 h.�/CC0

log.knk1 deg.�n.�//C 1/
knk1 deg.�n.�//

�1
2

� knk1

�
4 h.�/CC0

log.knk1 deg.�n.�//C 1/
knk1 deg.�n.�//

�1
2

:
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Hence, this together with (3-9) and (3-10) givesˇ̌̌̌Z
P1.C/

fı d�Sn

ˇ̌̌̌
�
4
p
2.ı2C 9/

ı3
knk1

�
�

knk1 deg.�n.�//

C

�
4 h.�/CC0

log.knk1 deg.�n.�//C 1/
knk1 deg.�n.�//

�1
2
�

�
4
p
2.ı2C 9/

ı3
knk1

�
4 h.�/CC

log.knk1 deg.�n.�//C 1/
knk1 deg.�n.�//

�1
2

; (3-11)

with C � 64.
The function log.xC 1/=x is monotonically decreasing for x � 1. We deduce

that, for every n¤ 0,

log.knk1 deg.�n.�//C 1/
knk1 deg.�n.�//

�
log.D.�/C 1/

D.�/
:

Together with (3-11), this implies that, for every n¤ 0,ˇ̌̌̌Z
P1.C/

fı d�Sn

ˇ̌̌̌
�

�
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2

:

By using this inequality and (3-5) we deduce thatˇ̌
y�S .n/

ˇ̌
�

ˇ̌̌̌
y�S .n/�

1

#S

X
˛2S

fı.1 W �
n.˛//

ˇ̌̌̌
C

ˇ̌̌̌
1

#S

X
˛2S

fı.1 W �
n.˛//

ˇ̌̌̌

�
�2

log ı
knk1 h.�/C

4
p
2.ı2C 9/

ı3
knk1

�
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2

;

proving the proposition. �

The following proposition bounds the second summand in the inequality (3-2).

Proposition 3.5. There is a constant C � 64 such that, for every � 2 .Q�/N with
h.�/� 1, every 0 < ı < 1 and every F 2 F,ˇ̌̌̌Z

TN
F0 d�S �

Z
TN�RN

F d�.S1/N

ˇ̌̌̌

�
1

2�

�
�2

log ı
C
4
p
2.ı2C 9/

ı3

��
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2
NX
lD1




b@F0
@�l





L1
;

where S is the Galois orbit of �, �S the discrete probability measure associated
to it, D.�/ the generalized degree of �, and F0.�/D F.�; 0/.
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Proof. In Appendix A we prove that, given F 2F, the function F0 is Haar-integrable
as well as its Fourier transform yF0. Thus, by Lemma 3.3 and Proposition 3.4,ˇ̌̌̌Z

TN
F0d�S �

Z
TN�RN

F d�.S1/N

ˇ̌̌̌
D

ˇ̌̌̌Z
TN
F0d�S �

Z
TN
F0d�.S1/N

ˇ̌̌̌
D

ˇ̌̌̌X
n¤0

yF0.n/y�S .n/

ˇ̌̌̌
�

X
n¤0

j yF0.n/jjy�S .n/j

�

X
n¤0

j yF0.n/j

�
�2

log ı
knk1 h.�/

C
4
p
2.ı2C 9/

ı3
knk1

�
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2
�

�

�
�2

log ı
C
4
p
2.ı2C 9/

ı3

��
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2 X
n¤0

j yF0.n/jknk1;

where the last inequality is given by the fact that h.�/� 1.
By Lemma A.2, for every l D 1; : : : ; N ,

b@F0
@�l

.n/D 2�inl yF0.n/:

Hence, we obtain

X
n¤0

j yF0.n/jknk1 D
1

2�

NX
lD1

X
n¤0

j yF0.n/j � j2�nl j

D
1

2�

NX
lD1

X
n2ZN

ˇ̌̌b@F0
@�l

.n/
ˇ̌̌

D
1

2�

NX
lD1




b@F0
@�l





L1
:

Finally, we conclude:ˇ̌̌̌Z
TN
F0d���S �

Z
TN�RN

F d�.S1/N

ˇ̌̌̌

�

�
�2

log ı
C
4
p
2.ı2C 9/

ı3

��
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2 1

2�

NX
lD1




b@F0
@�l





L1

�
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Proof of Theorem 1.2. Let F 2 F and set F0.�/D F.�; 0/. By Theorem A.1, the
function F0 and its Fourier transform yF0 are Haar-integrable and thus, as shown in
(3-2),ˇ̌̌̌Z

TN�RN
F d�S �

Z
TN�RN

F d�.S1/N

ˇ̌̌̌
�

ˇ̌̌̌Z
TN�RN

F d�S �

Z
TN
F0 d�S

ˇ̌̌̌
C

ˇ̌̌̌Z
TN
F0 d�S �

Z
TN�RN

F d�.S1/N

ˇ̌̌̌
:

Since the function F is Lipschitz with respect to the distance d, by Propositions
3.2 and 3.5, there is a constant C � 64 such thatˇ̌̌̌Z

TN�RN
F d�S �

Z
TN�RN

F d�.S1/N

ˇ̌̌̌
� 2Lip.F / h.�/

C
1

2�

�
�2

log ı
C
4
p
2.ı2C 9/

ı3

��
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2
NX
lD1




b@F0
@�l





L1
:

By Theorem A.1, the Fourier transforms of the first order partial derivatives of F0
are Haar-integrable and so this bound is finite.

We search numerically for the minimum of the function

�2

log ı
C
4
p
2.ı2C 9/

ı3
;

for 0 < ı < 1, and we obtain the value 94:9591, attained at ı � 0:9071. Hence,
since h.�/� 1 and 94:9591=2� < 16,ˇ̌̌̌Z

TN�RN
F d�S �

Z
TN�RN

F d�.S1/N

ˇ̌̌̌

� 2Lip.F / h.�/C 16
�
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2
NX
lD1




b@F0
@�l





L1

�

�
2Lip.F /C 16

NX
lD1




b@F0
@�l





L1

��
4 h.�/CC

log.D.�/C 1/
D.�/

�1
2

:

�

Remark 3.6. The functions in F are functions with logarithmic singularities along
toric divisors in a toric compactification of .Q�/N. The qualitative equidistribution
with respect to this set of test functions is given by [Chambert-Loir and Thuillier
2009, Théorème 1.2].
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Appendix A: The set of test functions

In this appendix, we show that the test functions in F, when restricted to the unit
polycircle .S1/N, are Haar-integrable as well as their Fourier transforms. We
also prove the Haar-integrability of all their first order partial derivatives and their
corresponding Fourier transforms.

Recall the definition of the test functions. The set F is given by all real-valued
functions F satisfying

(i) F is Lipschitz with respect to the distance d on .C�/N,

(ii) F0.�/D F.�; 0/ is in CNC1.TN;R/.

The main theorem of this section is this:

Theorem A.1. For any F 2 F, the function F0.�/D F.�; 0/ has these properties:

(i) F0 is Haar-integrable.

(ii) yF0 is Haar-integrable.

(iii) @F0=@�l is Haar-integrable for every l D 1; : : : ; N.

(iv) 2@F0=@�l is Haar-integrable for every l D 1; : : : ; N.

Before proving this result, let us consider a technical lemma. For every function
H W TN! R and ˛D .˛1; : : : ; ˛N / 2 f0; 1gN, we will use the notation

@j˛jH

@�˛
.�/D

@˛1C���C˛NH

@�
˛1
1 � � � �

˛N
N

.�/;

whenever it makes sense.

Lemma A.2. Let H W TN! R of class CNC1 be such that

@j˛jH

@�˛
2 L1.TN / and @j˛jC1H

@�˛�l
2 L1.TN /;

for ˛ 2 f0; 1gN and l D 1; : : : ; N. Then,

d@j˛jH
@�˛

.n/D

NY
kD1

.2�ink/
˛k yH.n/ and @j˛jC1H

@�˛�l
D .2�inl/

NY
kD1

.2�ink/
˛k yH.n/:

Proof. This lemma is proved by recursively applying the following calculation:
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b@F0
@�1

.n/D

Z
TN

@F0
@�1

.�/e�2�in��d�

D

Z
TN�1

�Z
T

@F0
@�1

.�/e�2�in1�1 d�1

�
e�2�i

P
j¤1 nj �j d�2 � � � d�N

D

Z
TN�1

�
2�in1

Z
T

F0.�/e
�2�in1�1 d�1

�
e�2�i

P
j¤1 nj �j d�2 � � � d�N

D .2�in1/

Z
TN
F0.�/e

�2�in��d�

D .2�in1/ yF0.n/: �

Proof of Theorem A.1. By definition, for every F 2 F, the function F0 is of class
N C 1. This is, all its partial derivatives up to order N C 1 are continuous and,
since they are defined on a compact space, they are bounded. Hence, for every
˛ 2 f0; 1gN and every l D 1; : : : ; N,

@j˛jF0
@�˛

;
@j˛jC1F0
@�˛�l

2 .L1\L2/.TN /:

In particular, we obtain parts (i) and (iii).
Let us prove (ii), we have to see thatX

n2ZN

j yF0.n/j<1:

To do so, we will divide the sum over all n 2 ZN in several subsets. Let ˛ 2 f0; 1g
and set

W.˛/D

�
0 if ˛ D 0;

ZN n f0g if ˛ D 1:

For ˛ 2 f0; 1gN, set also

W .˛/DW.˛1/� � � � �W.˛N /:

Hence, X
n2ZN

j yF0.n/j D
X

˛2f0;1gN

X
n2W .˛/

j yF0.n/j:

For ˛ 2 f0; 1gN,X
n2W .˛/

j yF0.n/j D
X

n2W .˛/

Y
kW˛k¤0

.2�nk/
�1
ˇ̌̌ d@j˛jF0
@�˛

.n/
ˇ̌̌
:

We saw that @j˛jF0=@�˛ 2 .L1\L2/.TN / and so, by Plancherel’s theorem,


 d@j˛jF0
@�˛





L2.ZN /

D




@j˛jF0
@�˛





L2.TN /

:
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Using the Cauchy–Schwartz inequality, we obtain� X
˛2f0;1gN

X
n2W .˛/

j yF0.n/j

�2

D

� X
˛2f0;1gN

X
n2W .˛/

Y
kW˛k¤0

.2�nk/
�1
ˇ̌̌ d@j˛jF0
@�˛

.n/
ˇ̌̌�2

�

� X
˛2f0;1gN

X
n2W .˛/

Y
kW˛k¤0

1

4�2n2
k

�� X
˛2f0;1gN

X
n2W .˛/

ˇ̌̌ d@j˛jF0
@�˛

.n/
ˇ̌̌2�

<1:

Part (iv) of the theorem is proved by applying the same argument to the function
@F0=@�l for every l D 1; : : : ; N . �

Appendix B: Bounds for the Lipschitz constant of the function fı

In this appendix, we give a bound for the Lipschitz constant with respect to the
spherical distance of the function fı W P1.C/! C defined by

fı.0 W 1/D 0 and fı.1 W z/D �ı.jzj/
z

jzj
for any z 2 C,

where �ı W R! Œ0; 1�, with 0 < ı < 1, is given by

�ı.r/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0 if r < ı=2;
.5ı� 4r/.ı� 2r/2=ı3 if ı=2� r � ı;

1 if ı < r < 1=ı;
.�2C ır/2.�1C 2ır/ if 1=ı � r � 2=ı;

0 if r > 2=ı:

First we prove that fı 2 C 1.P1.C/;C/. Afterwards, we will study the Lipschitz
constant of its real and imaginary parts. Let us define the usual charts in P1.C/,

U0 WD f.z0 W z1/ 2 P1.C/ W z0 ¤ 0g and U1 WD f.z0 W z1/ 2 P1.C/ W z1 ¤ 0g:

It is easy to see that the function fı is compactly supported on U0 \U1. In fact,
we have that

supp.fı/D
n
.1 W z/ W

ı

2
� jzj �

2

ı

o
:

For this reason, to prove that fı is in C 1.P1.C/;C/, it is enough to prove that the
function �ı.jzj/z=jzj is of class C 1 in a neighborhood of the set fz Wı=2�jzj�2=ıg.
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The piecewise-defined function �ı is continuous, as well as its derivative, which
is given by

�0ı.r/D

8<:
�24.ı� 2r/.ı� r/=ı3 if ı=2� r � ı;
6ı.�2C ır/.�1C ır/ if 1=ı � r � 2=ı;

0 otherwise:

Hence, since jzj and z=jzj are smooth on C�, we conclude that �ı.jzj/z=jzj is of
class C 1.

Lemma B.1. Let fı be defined as above, and set fı D uı C ivı . Then,

Lipsph.uı/;Lipsph.vı/� 2
p
2
ı2C9

ı3
:

The spherical distance dsph on P1.C/ can be computed by

dsph.p; p
0/ WD 2 arccos

ˇ̌
z0z
0
0C z1z

0
1

ˇ̌
p

jz0j
2Cjz1j

2
p

jz00j
2Cjz01j

2
;

for p D .z0 W z1/ and p0 D .z00 W z
0
1/ in P1.C/.

To simplify the computations, we will work with an equivalent distance, the
chordal distance dch on P1.C/, which is given by the length of the chord joining
two points of S2. For p D .z0 W z1/ and p0 D .z00 W z

0
1/ in P1.C/, we have

dch.p; p
0/ WD

2jz0z
0
1� z1z

0
0j

p

jz0j
2Cjz1j

2
p

jz00j
2Cjz01j

2
:

These distances can be compared as follows:

Lemma B.2. For every p; p0 2 P1.C/,

2

�
dsph.p; p

0/� dch.p; p
0/� dsph.p; p

0/:

Proof. We work on the sphere using the stereographic projection. Since the chordal
distance dch between two points in the sphere is the length of the chord joining
them and the spherical distance dsph is the angle between the vectors both points
define, we have

dch.p; p
0/D 2 sin

dsph.p; p
0/

2
; for every p; p0 2 P1.C/.

For any pair of points, we have dsph.p; p
0/� � so we deduce

dch.p; p
0/� dsph.p; p

0/:

Now, let ˇ >0 be such that ˇ dsph.p; p
0/� dch.p; p

0/ for all p; p0 2P1.C/. This
is equivalent to ˇx � 2 sin x

2
for every 0� x � � . By the convexity of the function

2 sin x
2

, we deduce that the optimal value is ˇ D 2
�

. �
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Proof of Lemma B.1. Let us compute now a bound for the Lipschitz constants, with
respect to the spherical distance, of the uı and vı . To do so, we choose coordinates
.x; y/ in R2 Š C. Let

Quı.x; y/ WD uı.1 W xC iy/D
�ı.
p
x2Cy2 /p
x2Cy2

x;

and

Qvı.x; y/ WD vı.1 W xC iy/D
�ı.
p
x2Cy2 /p
x2Cy2

y:

Since the computations are symmetric for both the real and imaginary parts offı ,
it is enough to study the Lipschitz constant of one of them. To simplify these
computations, we will study the Lipschitz constant with respect to the chordal
distance in the Riemann sphere and conclude by applying the comparison between
the chordal and spherical distances.

First of all, recall that the chordal distance restricted to the open subset U0 �
P1.C/ is given by

dch
�
.1 W x0C iy0/; .1 W x1C iy1/

�
D

2k.x0; y0/� .x1; y1/kp
1Cm.x0; y0/2

p
1Cm.x1; y1/2

;

where k � k denotes the Euclidean metric on R2 and m.x; y/D
p
x2Cy2. Now,

since the function uı is supported on U0,

sup
z0;z12C

juı.1 W z0/�uı.1 W z1/j

dch..1 W z0/; .1 W z1//

D sup
.x0;y0/2R2

.x1;y1/2R2

j Quı.x0; y0/� Quı.x1; y1/j

k.x0; y0/� .x1; y1/k

p
1Cm.x0; y0/2

p
1Cm.x1; y1/2

2
:

We consider different cases.

Case 1. If .x0; y0/; .x1; y1/ …D.0; 2=ı/, we trivially obtain

j Quı.x0; y0/� Quı.x1; y1/j

dch..1 W x0C iy0/; .1 W x1C iy1//
D 0:

Case 2. Suppose .x0; y0/; .x1; y1/2D.0; 2=ı/. For t 2 Œ0; 1�, consider the function

g.t/D Quı..1� t /.x0; y0/C t .x1; y1//:

By the mean value theorem, there is some c 2 .0; 1/ such that g.1/�g.0/D g0.c/.
Applying the chain rule, we obtain

Quı.x1; y1/� Quı.x0; y0/Dr Quı..1� c/.x0; y0/C c.x1; y1// � .x1� x0; y1�y0/:
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Hence, we deduce

j Quı.x0; y0/� Quı.x1; y1/j

k.x0; y0/� .x1; y1/k
� sup
.x;y/2D.0; 2

ı
/

kr Quı.x; y/k: (B-1)

Let us study the gradient of Quı . For every .x; y/ 2 R2,

@ Quı

@x
.x; y/D

�
x

m.x; y/

�2
�0ı.m.x; y//C

�
y

m.x; y/

�2�ı.m.x; y//
m.x; y/

and
@ Quı

@y
.x; y/D

xy

m.x; y/2

�
�0ı.m.x; y//�

�ı.m.x; y//

m.x; y/

�
:

Without loss of generality, we restrict ourselves to the situation where .x; y/ satisfies
ı=2�m.x; y/� 2=ı, since otherwise both partial derivatives would vanish. It can
be easily shown that j�0

ı
.r/j � 3=ı for every r � 0. This, together with the fact that

0� �ı � 1, x �m.x; y/, y �m.x; y/, and m.x; y/� ı=2, leads toˇ̌̌
@ Quı
@x

.x; y/
ˇ̌̌
;
ˇ̌̌
@ Quı
@y

.x; y/
ˇ̌̌
�
4

ı
:

We then conclude that kr Quı.x; y/k � 4
p
2=ı: for any .x; y/ 2 R2.

On the other hand, given .x0; y0/; .x1; y1/ 2D.0; 2=ı/ we have thatp
1Cm.x0; y0/2

p
1Cm.x1; y1/2

2
�
ı2C4

2ı2
:

Therefore, we obtain

j Quı.x0; y0/� Quı.x1; y1/j

dch..1 W x0C iy0/; .1 W x1C iy1//
� 2
p
2
ı2C4

ı3
:

Case 3. Suppose now that .x0;y0/2D.0; 2=ı/ and .x1;y1/2D.0; 3=ı/nD.0; 2=ı/.
As we did in the previous case, we can deduce that

j Quı.x0;y0/�Quı.x1;y1/j

k.x0;y0/�.x1;y1/k
�
4
p
2

ı
and

p
1Cm.x0;y0/2

p
1Cm.x1;y1/2

2
�
ı2C9

2ı2
:

and p
1Cm.x0; y0/2

p
1Cm.x1; y1/2

2
�
ı2C9

2ı2
:

Hence,

j Quı.x0; y0/� Quı.x1; y1/j

dch..1 W x0C iy0/; .1 W x1C iy1//
� 2
p
2
ı2C9

ı3
:
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Case 4. Finally suppose that .x0; y0/ 2 D.0; 2=ı/ and .x1; y1/ … D.0; 3=ı/. In
this situation, we have Quı.x1; y1/D 0 and

j Quı.x1; y1/j D j�ı.m.x0; y0//j
jx0j

m.x0; y0/
� 1:

Since

dch..1 W x0C iy0/; .1 W x1C iy1//� dch

��
1 W
2

ı

�
;
�
1 W
3

ı

��
D

2ıp
.ı2C9/.ı2C4/

;

we conclude

j Quı.x0; y0/� Quı.x1; y1/j

dch..1 W x0C iy0/; .1 W x1C iy1//
�

2ıp
.ı2C 9/.ı2C 4/

2ı:

Having studied all these cases, we deduce that

sup
.x0;y0/2R2

.x1;y1/2R2

j Quı.x0; y0/� Quı.x1; y1/j

dch..1 W x0C iy0/; .1 W x1C iy1//
� 2
p
2
ı2C9

ı3
:

As we mentioned above, we were looking for a bound of the Lipschitz constant of
uı with respect to the spherical distance. By Lemma B.2, we know that dsph.p; p

0/�

dch.p; p
0/ for any pair of points p; p0 2 P1.C/ and we obtain

Lipsph.uı/D sup
p;p02P1.C/

juı.p/�uı.p
0/j

dsph.p; p0/

� sup
.x0;y0/2R2

.x1;y1/2R2

j Quı.x0; y0/� Quı.x1; y1/j

dch..1 W x0C iy0/; .1 W x1C iy1//

� 2
p
2
ı2C9

ı3
:

Analogously, we deduce that Lipsph.vı/� 2
p
2
ı2C9

ı3
. �
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Rational curves on smooth hypersurfaces
of low degree

Tim Browning and Pankaj Vishe

We establish the dimension and irreducibility of the moduli space of rational
curves (of fixed degree) on arbitrary smooth hypersurfaces of sufficiently low
degree. A spreading out argument reduces the problem to hypersurfaces defined
over finite fields of large cardinality, which can then be tackled using a function
field version of the Hardy-Littlewood circle method, in which particular care is
taken to ensure uniformity in the size of the underlying finite field.
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1. Introduction

The geometry of a variety is intimately linked to the geometry of the space of
rational curves on it. Given a projective variety X defined over C, a natural object
to study is the moduli space of rational curves on X . There are many results in the
literature establishing the irreducibility of such mapping spaces, but most statements
are only proved for generic X . Following a strategy of Ellenberg and Venkatesh,
we shall use tools from analytic number theory to prove such a result for all smooth
hypersurfaces of sufficiently low degree.

Let X ⊂ Pn be a smooth Fano hypersurface of degree d defined over C, with
n > 3. For each positive integer e, the Kontsevich moduli space M0,0(X, e) is a
compactification of the space M0,0(X, e) of morphisms of degree e from P1 to X ,
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Keywords: rational curves, circle method, function fields, hypersurfaces.
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up to isomorphism. According to Kollár [1996, Theorem II.1.2/3], any irreducible
component of M0,0(X, e) has dimension at least

µ= (n+ 1− d)e+ n− 4. (1-1)

Work of Harris, Roth and Starr [Harris et al. 2004] shows that M0,0(X, e) is an
irreducible, local complete intersection scheme of dimension µ, provided that X
is general and d < 1

2(n + 1). The restriction on d has since been weakened to
d < 2

3(n+ 1) by Beheshti and Kumar [2013] (assuming that n > 23), and then to
d 6 n− 2 by Riedl and Yang [2016].

In the setting d = 3 of cubic hypersurfaces it is possible to obtain results for all
smooth hypersurfaces in the family. Thus Coskun and Starr [2009] have shown that
M0,0(X, e) is irreducible and of dimension µ for any smooth cubic hypersurface
X ⊂ Pn over C, provided that n > 4. (If n = 4 then M0,0(X, e) has two irreducible
components of the expected dimension µ= 2e.)

At the expense of a much stronger condition on the degree, our main result
establishes the irreducibility and dimension of the space M0,0(X, e), for an arbitrary
smooth hypersurface X ⊂ Pn over C. Let

n0(d)= 2d−1(5d − 4). (1-2)

We shall prove the following statement.

Theorem 1.1. Let X ⊂Pn be a smooth hypersurface of degree d> 3 defined over C,
with n > n0(d). Then for each e > 1 the space M0,0(X, e) is irreducible and of the
expected dimension.

The example of Fermat hypersurfaces, discussed in [op. cit., §1], shows that the
analogous result for M0,0(X, e) is false when d > 3 and e is large enough. When
e= 1 we have M0,0(X, 1)=M0,0(X, 1)= F1(X), where F1(X) is the Fano scheme
of lines on X . It has been conjectured, independently by Debarre and de Jong, that
dim F1(X) = 2n− d − 3 for any smooth Fano hypersurface X ⊂ Pn of degree d.
Beheshti [2014] has confirmed this for d 6 8. Taking e = 1 in Theorem 1.1, we
conclude that dim F1(X)= 2n− d − 3 for any d > 3, provided that n > n0(d).

Our proof of Theorem 1.1 ultimately relies on techniques from analytic number
theory. The first step is “spreading out”, in the sense of Grothendieck [EGA IV3

1966, §10.4.11] (compare [Serre 2009]), which will take us to the analogous
problem for smooth hypersurfaces defined over the algebraic closure of a finite field.
Passing to a finite field Fq of sufficiently large cardinality, for a smooth degree d
hypersurface X ⊂ P

n
Fq defined over Fq , the cardinality of Fq-points on M0,0(X, e)

can be related to the number of Fq(t)-points on X of degree e. We shall access
the latter quantity through a function field version of the Hardy–Littlewood circle
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method. A comparison with the estimate of Lang and Weil [1954] then allows us
to make deductions about the irreducibility and dimension of M0,0(X, e).

The idea of using the circle method to study the moduli space of rational curves
on varieties is due to Ellenberg and Venkatesh. The traditional setting for the circle
method is a fixed finite field Fq , with the goal being to understand the Fq(t)-points
on X of degree e, as e→∞. This is the point of view taken in [Lee 2013; 2011] on
a Fq(t)-version of Birch’s work on systems of forms in many variables. In contrast
to this, we will be required to handle any fixed e> 1, as q→∞. Pugin developed an
“algebraic circle method” in his Ph.D. thesis [2011] to study the spaces M0,0(X, e),
when X ⊂ P

n
Fq is the diagonal cubic hypersurface

a0x3
0 + · · ·+ anx3

n = 0, for a0, . . . , an ∈ F∗q .

Assuming that n > 12 and char(Fq) > 3, he succeeds in showing that the space
M0,0(X, e) is irreducible and of the expected dimension. Our work, on the other
hand, applies to arbitrary smooth hypersurfaces of sufficiently low degree, which
are defined over the complex numbers. Finally, our investigation bears comparison
with work of Bourqui [2012; 2013]. He has also investigated the moduli space
of curves on varieties using counting arguments. In place of the circle method,
however, Bourqui draws on the theory of universal torsors.

2. Spreading out

Let X ⊂ Pn be a smooth hypersurface of degree d, defined by a homogeneous
polynomial

F(x0, . . . , xn)=
∑

i∈Zn+1
>0

i0+···+in=d

ci x
i0
0 . . . x

in
n ,

with coefficients ci ∈C. Rather than working with M0,0(X, e), it will suffice to study
the naive space More(P

1, X) of actual maps P1
→ X of degree e. The expected

dimension of More(P
1, X) isµ=µ+3, whereµ is given by (1-1), since P1 has auto-

morphism group of dimension 3. We now recall the construction of More(P
1, X).

Let Ge be the set of all homogeneous polynomials in u, v of degree e > 1, with
coefficients in C. A rational curve of degree e on X is a nonconstant morphism
f : P1

C→ X of degree e. It is given by

f = ( f0(u, v), . . . , fn(u, v)),

with f0, . . . , fn ∈ Ge, with no nonconstant common factor in C[u, v], such that
F( f0(u, v), . . . , fn(u, v)) vanishes identically. We may regard f as a point in
the space P

(n+1)(e+1)−1
C . The morphisms of degree e on X are parametrised by

More(P
1
C, X), which is an open subvariety of P

(n+1)(e+1)−1
C cut out by a system of
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de+ 1 equations of degree d . In this way we obtain the expected dimension

(n+ 1)(e+ 1)− 1− (de+ 1)= (n+ 1− d)e+ n− 1= µ,

of More(P
1
C, X). It follows from [Kollár 1996, Theorem II.1.2] that all irreducible

components of More(P
1
C, X) have dimension at least µ. In order to establish

Theorem 1.1 it will therefore suffice to show that More(P
1
C, X) is irreducible, with

dim More(P
1
C, X)6 µ, provided that n > n0(d).

The complement to More(P
1
C, X) in its closure is the set of ( f0, . . . , fn) with a

common zero. We can obtain explicit equations for More(P
1
C, X) by noting that

f0, . . . , fn have a common zero if and only if the resultant Res(
∑

i λi fi ,
∑

j µj f j )

is identically zero as a polynomial in λi , µj . It is clear that both X and More(P
1
C, X)

are defined by equations with coefficients belonging to the finitely generated
Z-algebra 3= Z[ci ], obtained by adjoining the coefficients of F to Z. In this way
we may view X and More(P

1
C, X) as schemes over 3, with structure morphisms

X→ Spec3 and

More(P
1
C, X)→ Spec3.

By Chevalley’s upper semicontinuity theorem [EGA IV3 1966, Theorem 13.1.3],
there exists a nonempty open set U of Spec3 such that

dim More(P
1
C, X)6 dim More(P

1
C, X)m

for any closed point m ∈U. Here More(P
1
C, X)m denotes the fibre above m, which

is obtained via the base change Spec3/m→ Spec3. Likewise, since integrality is
an open condition, the space More(P

1
C, X) will be irreducible if More(P

1
C, X)m is.

Choose a maximal ideal m in U. The quotient 3/m is a finite field by arithmetic
weak Nullstellensatz. By enlarging 3, we may assume that it contains 1/d!. In
particular, it follows that char(3/m)= p, say, with p> d , since any prime less than
or equal to d is invertible in3. The quasiprojective varieties Xm and More(P

1
C, X)m

are defined over Fp, being given explicitly by reducing modulo m the coefficients
of the original system of defining equations. By further enlarging 3, if necessary,
we may assume that Xm is smooth. There exists a finite field Fq0 such that Xm

and More(P
1
C, XC)m are both defined over Fq0 . In view of the Lang–Weil estimate,

Theorem 1.1 is a direct consequence of the following result, together with the fact
that More(P

1
C, XC)m is nonempty in the cases under consideration.

Theorem 2.1. Let n > n0(d) and let X ⊂ P
n
Fq be a smooth hypersurface of degree

d > 3 defined over a finite field Fq , with char(Fq) > d. Then for each e > 1,

lim
`→∞

q−`µ# More(P
1
Fq , X)(Fq`)6 1.
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3. The Hardy–Littlewood circle method

We now initiate the proof of Theorem 2.1. We henceforth redefine q` to be q and
we replace n by n− 1 in the statement of the theorem. In particular the expected
dimension is now µ= (n− d)e+ n− 2. Our proof of Theorem 2.1 is based on a
version of the Hardy–Littlewood circle method for the function field K = Fq(t),
always under the assumption that char(Fq) > d . The main input for this comes from
[Lee 2013; 2011], combined with our own recent contribution to the subject, in the
setting of cubic forms [Browning and Vishe 2015].

We begin by laying down some basic notation and terminology. To begin with,
for any real number R we set R̂ = q R . Let O= Fq [t] be the ring of integers of K
and let � be the set of places of K . These correspond to either monic irreducible
polynomials $ in O, which we call the finite primes, or the prime at infinity t−1

which we usually denote by∞. The associated absolute value |·|v is either |·|$
for some prime $ ∈ O or |·|, according to whether v is a finite or infinite place,
respectively. These are given by

|a/b|$ = q−(deg$) ord$ (a/b) and |a/b| = qdeg a−deg b,

for any a/b ∈ K ∗. We extend these definitions to K by taking |0|$ = |0| = 0.
For v ∈ � we let Kv denote the completion of K at v with respect to |·|v. We

may identify K∞ with the set

Fq((1/t))=
{∑

i6N

ai t i
: ai ∈ Fq and N ∈ Z

}
.

We can extend the absolute value at the infinite place to K∞ to get a nonarchimedean
absolute value | · | : K∞→ R>0 given by |α| = qordα, where ordα is the largest
i ∈ Z such that ai 6= 0 in the representation α =

∑
i6N ai t i . In this context we

adopt the convention ord 0=−∞ and |0| = 0. We extend this to vectors by setting
|x| =max16i6n|xi |, for any x ∈ K n

∞
.

Next, we put

T = {α ∈ K∞ : |α|< 1} =
{∑

i6−1

ai t i
: for ai ∈ Fq

}
.

Since T is a locally compact additive subgroup of K∞ it possesses a unique Haar
measure dα, which is normalised so that

∫
T

dα= 1. We can extend dα to a (unique)
translation-invariant measure on K∞, in such a way that∫

{α∈K∞:|α|<N̂ }
dα = N̂,

for any N ∈Z>0. These measures also extend to Tn and K n
∞

, for any n ∈Z>0. There
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is a nontrivial additive character eq : Fq → C∗ defined for each a ∈ Fq by taking
eq(a)= exp(2π i TrFq/Fp(a)/p). This character yields a nontrivial (unitary) additive
character ψ : K∞→C∗ by defining ψ(α)= eq(a−1) for any α=

∑
i6N ai t i in K∞.

Let F∈ Fq [x] be a nonsingular form of degree d > 3, with x = (x1, . . . , xn). We
may express this polynomial as

F(x)=
n∑

i1,...,id=1

ci1,...,id xi1 · · · xid ,

with coefficients ci1,...,id ∈ Fq . In particular F and the discriminant 1F are nonzero,
or equivalently, maxi |ci | = 1 and |1F | = 1. We will make frequent use of these
facts in what follows. Associated to F are the multilinear forms

9i (x(1), . . . , x(d−1))=

n∑
i1,...,id−1=1

ci1,...,id−1,i x (1)i1 · · · x
(d−1)
id−1 , (3-1)

for 16 i 6 n.
To establish Theorem 2.1 we work with the naive space

Me =
{

x = (x1, . . . , xn) ∈ Ge(Fq)
n
\ {0} : F(x)= 0

}
,

where Ge(Fq) is the set of binary forms of degree e with coefficients in Fq . Thus Me

corresponds to the Fq-points on the affine cone of More(P
1
Fq , X), where we drop

the condition that x1, . . . , xn share no common factor. Let us set

µ̂= µ+ 1= (n− d)e+ n− 1= (e+ 1)n− de− 1. (3-2)

It will clearly suffice to show that

lim
q→∞

q−µ̂#Me 6 1, (3-3)

for n > n0(d), where n0(d) is given by (1-2). We proceed by relating #Me to the
counting function that lies at the heart of our earlier investigation [Browning and
Vishe 2015].

Let w : K n
∞
→ {0, 1} be given by w(x)=

∏
16i6n w∞(xi ), where

w∞(x)=
{

1, if |x |< 1,
0, otherwise.

Putting P = te+1, we then have #Me 6 N (P), where

N (P)=
∑
x∈On

F(x)=0

w(x/P).
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It follows from [Browning and Vishe 2015, Equation (4.1)] that for any Q > 1,

N (P)=
∑
r∈O
|r |6Q̂

r monic

∑∗

|a|<|r |

∫
|θ |<|r |−1 Q̂−1

S
(a

r
+ θ

)
dθ, (3-4)

where
∑
∗ means that the sum is taken over residue classes |a| < |r | for which

gcd(a, r)= 1, and where

S(α)=
∑
x∈On

ψ(αF(x))w(x/P), (3-5)

for any α ∈ T. We will work with the choice Q = d(e+ 1)/2, so that Q̂ = |P|d/2.
The major arcs for our problem are given by r = 1 and |θ | < |P|−dqd−1. We

let the minor arcs be everything else: i.e., those α = a/r + θ appearing in (3-4)
for which either |r | > q, or else r = 1 and |θ | > |P|−dqd−1. The contribution
Nmajor(P) from the major arcs is easy to deal with. Indeed, for |θ | < |P|−dqd−1

and |x| < |P| we have |θF(x)| < |P|−dqd−1qde
= q−1, whence ψ(θF(x)) = 1.

Thus S(α)= |P|n , for α = θ belonging to the major arcs, whence

Nmajor(P)= |P|n
∫
|θ |<|P|−d qd−1

dθ = |P|n−dqd−1
= qµ̂.

In order to prove (3-3), it therefore remains to show that

lim
q→∞

q−µ̂Nminor(P)= 0, (3-6)

for n > n0(d), where Nminor(P) is the overall contribution to (3-4) from the minor
arcs. This will complete the proof of Theorem 2.1.

4. Geometry of numbers in function fields

The purpose of this section is to record a technical result about lattice point counting
over K∞. A lattice in K N

∞
is a set of points of the form x = 3u, where 3 is an

N × N matrix over K∞ and u runs over elements of ON. By an abuse of notation
we will also denote the set of such points by 3. Given a lattice M , the adjoint
lattice 3 is defined to satisfy 3T M = IN , where IN is the N × N identity matrix.

Let γ = (γi j ) be a symmetric n×n matrix with entries in K∞. Given any positive
integer m, we define the special lattice

Mm =

(
t−m In 0

tmγ tm In

)
,
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with corresponding adjoint lattice

3m =

(
tm In −tmγ

0 t−m In

)
.

Let R̂1, . . . , R̂2n denote the successive minima of the lattice corresponding to Mm .
For any vector x ∈ K 2n

∞
let x1 = (x1, . . . , xn) and x2 = (xn+1, . . . , x2n). We claim

that Mm and 3m can be identified with one another. Now Mm is the set of points
x = Mm u where u = (u1, u2) runs over elements of O2n. Likewise, 3m is the set
of points y =3mv where v = (v1, v2) runs over elements of O2n. We can therefore
identify Mm with 3m through the process of changing the sign of v2, then the sign
of y2, then switching v1 with v2, and finally interchanging y1 and y2. It now follows
from [Lee 2013, Lemma 3.3.6] (see also [Lee 2011, Lemma B.6]) that

Rν + R2n−ν+1 = 0, (4-1)

for 1 6 ν 6 n. An important step in the proof of [Lee 2013, Lemma 3.3.6] (see
also [Lee 2011, Lemma B.6]) is a nonarchimedean version of Gram–Schmidt
orthogonalisation, which is used without reference in the proof of [Lee 2013,
Lemma 3.3.3] (see also [Lee 2011, Lemma B.3]). This deficit is remedied by
appealing to recent work of Usher and Zhang [2016, Theorem 2.16].

For any Z ∈ R and any lattice 0 we define the counting function

0(Z)= #{x ∈ 0 : |x|< Ẑ}.

Note that 0(Z) = 0(dZe) for any Z ∈ R. We proceed to establish the following
inequality.

Lemma 4.1. Let m, Z1, Z2 ∈ Z such that Z1 6 Z2 6 0. Then

Mm(Z1)

Mm(Z2)
>

(
Ẑ1

Ẑ2

)n

.

Proof. Let 1 6 µ, ν 6 2n be such that Rµ < Z1 6 Rµ+1 and Rν < Z2 6 Rν+1.
Since Rj is a nondecreasing sequence which satisfies Rj + R2n− j+1 = 0, by (4-1),
we must have 0 6 Rn+1, whence in fact µ 6 ν 6 n. It follows from [Lee 2013,
Lemma 3.3.5] (see also [Lee 2011, Lemma B.5]) that

Mm(Z1)

Mm(Z2)
=


1 if Z1, Z2 < R1,(∏ν

j=1 R̂j/Ẑ1
)
(Ẑ1/Ẑ2)

ν if Z1 < R1 6 Z2,(∏ν
j=µ+1 R̂j/Ẑ1

)
(Ẑ1/Ẑ2)

ν if R1 6 Z1 6 Z2,

The statement of the lemma is now obvious. �
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As above, let γ = (γi j ) be a symmetric n× n matrix with entries in K∞. For
16 i 6 n we introduce the linear forms

L i (u1, . . . , un)=

n∑
j=1

γi j u j .

Next, for given real numbers a, Z , we let N (a, Z) denote the number of vectors
(u1, . . . , u2n) ∈ O2n such that

|u j |< â Ẑ and |L j (u1, . . . , un)+ u j+n|<
Ẑ
â

for 16 j 6 n.

If we put m = bac, then it is clear that

Mm(Z −{a})6 N (a, Z)6 Mm(Z +{a}),

where {a} = a−bac denotes the fractional part of a. The following result is a direct
consequence of Lemma 4.1.

Lemma 4.2. Let a, Z1, Z2 ∈ R with Z1 6 Z2 6 0. Then

N (a, Z1)

N (a, Z2)
> K̂ n,

where K = dZ1−{a}e− dZ2+{a}e.

5. Weyl differencing

In everything that follows we shall assume that char(Fq) > d and we will allow all
our implied constants to depend at most on d and n. This section is concerned with
a careful analysis of the exponential sum (3-5), using the function field version of
Weyl differencing that was worked out by Lee [2013; 2011]. Our task is to make
the dependence on q completely explicit and it turns out that gaining satisfactory
control requires considerable care. Since we are concerned with hypersurfaces one
needs to take R = 1 in Lee’s results.

For any β=
∑

i6N bi t i
∈K∞, we let ‖β‖=

∣∣∑
i6−1 bi t i

∣∣. Recalling the definition
(3-1) of the multilinear forms associated to F, we let

N(α)= #
{

u ∈ O(d−1)n
:
|u1|, . . . , |ud−1|< |P|
‖α9i (u)‖< |P|−1 (∀i 6 n)

}
, (5-1)

where u = (u1, . . . , ud−1). We begin with an application of [Lee 2013, Corol-
lary 4.3.2] (see also [Lee 2011, Corollary 3.3]), which leads to the inequality

|S(α)|2
d−1
6 |P|(2

d−1
−d+1)n N (α), (5-2)

for any α ∈ T.
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The next stage in the analysis of S(α) is a multiple application of the function field
analogue of Davenport’s “shrinking lemma”, as proved in [Lee 2013, Lemma 4.3.3]
(see also [Lee 2011, Lemma 3.4]), ultimately leading to [Lee 2013, Lemma 4.3.4]
(see also [Lee 2011, Lemma 3.5]). Unfortunately the implied constant in these
estimates is allowed to depend on q and so we must work harder to control it. Let

Nη(α)= #
{

u ∈ O(d−1)n
:

|u1|, . . . , |ud−1|< |P|η

‖α9i (u)‖< |P|−d+(d−1)η (∀i 6 n)

}
,

for any parameter η ∈ [0, 1]. Recalling that P = te+1, we shall prove the following
uniform version of [Lee 2013, Lemma 4.3.4] (see also [Lee 2011, Lemma 3.5]).

Lemma 5.1. Let α ∈ T and suppose that η ∈ [0, 1) is chosen so that

(e+ 1)(η+ 1)
2

∈ Z. (5-3)

Then we have N (α)6 |P|(n−ηn)(d−1) Nη(α). In particular,

|S(α)|2
d−1
6
|P|2

d−1n

|P|η(d−1)n Nη(α).

Proof. In view of (5-1) and (5-2), the final part follows from the first part. For each
v ∈ {0, . . . , d − 1}, define N (v)(α) to be the number of u ∈ O(d−1)n such that

|u1|, . . . , |uv|< |P|η and |uv+1|, . . . , |ud−1|< |P| (5-4)

and ‖α9i (u)‖ < |P|−v−1+vη, for 1 6 i 6 n. Thus we have N (0)(α) = N (α) and
N (d−1)(α)= Nη(α). It will suffice to show that

N (v)(α)> |P|−n+ηn N (v−1)(α), (5-5)

for each v ∈ {1, . . . , d − 1}.
Fix a choice of v, together with u1, . . . , uv−1, uv+1, . . . , ud−1 ∈ On such that

(5-4) holds. For each 16 i 6 n we consider the linear form

L i (u)= α9i (u1, . . . , uv−1, u, uv+1, . . . , ud−1)=

n∑
j=1

γi j u j ,

say, for a suitable symmetric n× n matrix γ = (γi j ), with entries in K∞. Given
real numbers a and Z , define N (a, Z) to be the number of vectors (u1, . . . , u2n) in
O2n satisfying

|u j |< Ẑ + a and |L j (u1, . . . , un)− u j+n|< Ẑ − a for 16 j 6 n.

We are interested in estimating the number of u ∈ On such that |u|< |P|η and
‖L i (u)‖< |P|−v−1+vη, for 16 i 6 n, in terms of the number of u ∈ On such that
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|u|< |P| and ‖L i (u)‖< |P|−v+(v−1)η, for 16 i 6 n. That is, we wish to compare
N (a, Z1) with N (a, Z2), where

â = |P|(v+1−(v−1)η)/2, Ẑ1 = |P|(v+1)(η−1)/2, and Ẑ2 = |P|(v−1)(η−1)/2.

Note that â Ẑ1 = |P|η and â Ẑ2 = |P|. Moreover, our hypothesis (5-3) implies that

a =
(e+ 1)(v+ 1)

2
−
(v− 1)(e+ 1)η

2
= v(e+ 1)−

(v− 1)(e+ 1)(η+ 1)
2

∈ Z.

Similarly, (5-3) implies that Z1, Z2 ∈ Z. It now follows from Lemma 4.2 that

N (a, Z1)

N (a, Z2)
>
(
Ẑ1− Z2

)n
= |P|−n+ηn,

which thereby completes the proof of (5-5). �

Lemma 5.1 doesn’t allow us to handle the case e = 1 of lines. To circumvent
this difficulty we shall invoke a simpler version of the shrinking lemma, as follows.

Lemma 5.2. Let α ∈ T and let v ∈ {1, . . . , d}. Then we have

|S(α)|2
d−1
6 |P|(2

d−1
−d+1)nqe(v−1)n M (v)(α),

where M (v)(α) is the number of u ∈ O(d−1)n such that

|u1|, . . . , |uv−1|< q and |uv|, . . . , |ud−1|< |P|

and ‖α9i (u)‖< |P|−1 for 16 i 6 n.

Proof. Noting that N (α) = M (1)(α), it follows from (5-2) that it will be enough
to prove that M (v−1)(α) 6 qen M (v)(α) for 2 6 v 6 d. The proof follows that of
Lemma 5.1 and so we shall be brief. Let u1, . . . , uv−1, uv+1, . . . , ud−1 ∈ On be
vectors satisfying

|u1|, . . . , |uv−1|< q and |uv+1|, . . . , |ud−1|< |P|.

Let γ and N (a, Z) be as in the proof of Lemma 5.1, corresponding to this choice.
Lemma 4.2 clearly implies that

N (e+ 1,−e)
N (e+ 1, 0)

> q−en.

However, N (e + 1,−e) denotes the number of u ∈ On such that |u| < q and
‖L i (u)‖ < q−2e−1, for 1 6 i 6 n. The lemma follows on noting that q−2e−1 <

q−e−1
= |P|−1. �

The next step is an application of the function field analogue of Heath-Brown’s
Diophantine approximation lemma, as worked out in [Lee 2013, Lemma 4.3.5] (see
also [Lee 2011, Lemma 3.6]). Let α = a/r + θ , where a/r ∈ K and θ ∈ T. Note
that the maximum absolute value of the coefficients of each multilinear form 9j
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is 1. We shall apply those lemmas with M̂ = |P|(d−1)η and Ŷ = |P|d−(d−1)η. We
want a maximal choice of η > 0 such that

|P|(d−1)η <min
{
|P|d−1,

1
|rθ |

,
|P|d

|r |

}
and

|P|(d−1)η 6 |r |max
{
1, |Pdθ |

}
.

This leads to the constraint (e+ 1)η 6 0, where

0 =
1

d − 1
ord

(
min

{
|P|d−1

q
,

1
q|rθ |

,
|P|d

q|r |
, |r |max

{
1, |Pdθ |

}})
, (5-6)

in which we abuse notation and denote by ord the integer exponent of q that appears.
For i ∈ {0, 1}, let [0]i denote the largest nonnegative integer not exceeding 0, which
is congruent to i modulo 2. We then choose η via

(e+ 1)η =
{
[0]0 if 2 - e,
[0]1 if 2 | e.

(5-7)

One notes that (e+ 1)η 6 0 and (5-3) is satisfied.
It now follows from [Lee 2013, Lemma 4.3.5] (see also [Lee 2011, Lemma 3.6])

that Nη(α)6Uη, where Uη denotes the number of u ∈ O(d−1)n such that

|u1|, . . . , |ud−1|< |P|η and 9i (u)= 0 for 16 i 6 n.

A standard calculation, which we recall here for completeness, now shows that the
latter system of equations defines an affine variety V ⊂ A(d−1)n of dimension at
most (d − 2)n. To see this, we note that the intersection of V with the diagonal
1 = {u ∈ A(d−1)n

: u1 = · · · = ud−1} is contained in the singular locus of F and
so has affine dimension 0. The claim follows on noting that 0 = dim(V ∩1) >
dim V + dim1− (d − 1)n = dim V − (d − 2)n.

We now apply [Browning and Vishe 2015, Lemma 2.8]. Since |P|η = q(e+1)η,
with (e + 1)η ∈ Z, this directly yields the existence of a positive constant cd,n ,
independent of q , such that Uη 6 cd,n|P|η(d−2)n . Inserting this into Lemma 5.1, we
therefore arrive at the following conclusion.

Lemma 5.3. Let L = 2−d+1n, let a/r ∈ K and let θ ∈ T. Let η be given by (5-7).
Then there exists a constant cd,n > 0, independent of q, such that

|S(a/r + θ)|6 cd,n|P|n−Lη.

It turns out that this estimate is inefficient when |r | is small. Let

κ =

{
1 if 2 - e,
0 if 2 | e.

(5-8)
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It will also be advantageous to consider the effect of taking (e+1)η= 1+κ , instead
of (5-7). Since

(e+ 1)(η+ 1)
2

= 1+
e+ κ

2
∈ Z,

it follows from Lemma 5.1 that

|S(α)|6
|P|nN2−d+1

q(1+κ)(d−1)L , (5-9)

where

N= #
{

u ∈ O(d−1)n
:

|u1|, . . . , |ud−1|6 qκ

‖α9i (u)‖< qκ(d−1)−de−1 (∀i 6 n)

}
, (5-10)

Supposing that α = a/r + θ for a/r ∈ K and θ ∈ T, our argument now bifurcates
according to the degree of r .

Lemma 5.4 (deg(r)> 1). Let L = 2−d+1n, let a/r ∈ K , and let θ ∈T. Assume that

(i) e > 1, q 6 |r |< qde+1−κ(d−1) and |rθ |< q−κ(d−1); or

(ii) e = 1, q2 6 |r |6 qd , and |rθ |6 q−d .

Then there exists a constant c′d,n > 0, independent of q, such that

|S(a/r + θ)|6 c′d,n|P|
nq−L.

Proof. To deal with case (i) we apply [Lee 2013, Lemma 4.3.5] (see also [Lee 2011,
Lemma 3.6]) with Y = de+ 1− κ(d − 1) and M = κ(d − 1)+ 1

2 . Our hypotheses
ensure that |r |< Ŷ and |rθ |< M̂−1. Thus it follows that 9i (u)≡ 0 mod r in (5-10),
for all i 6 n. In particular we have N= 0 unless κ = 1, which we now assume.

Pick a prime $ | r with |$ |> q . If |$ |6 q2 we may break into residue classes
modulo $ , finding that

N6
∑

v1,...,vd−1

#
{
|u1|, . . . , |ud−1|6 q : ui ≡ vi mod$ (for 16 i 6 d − 1)

}
,

where the sum is over all v = (v1, . . . , vd−1) ∈ F
(d−1)n
$ such that 9i (v) = 0, for

all i 6 n, over F$ . The inner cardinality is O((q2/|$ |)(d−1)n), with an implied
constant that is independent of q. We may use the Lang–Weil estimate to deduce
that the outer sum is O(|$ |(d−2)n), again with an implied constant that depends at
most on d and n. Hence we get the overall contribution

N�
q2(d−1)n

|$ |n
6 q2(d−1)n−n.

Alternatively, if |$ | > q2, we may assume that the system of equations 9i = 0,
for i 6 n, has dimension (d − 2)n over F$ . We now appeal to an argument of
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Browning and Heath-Brown [2009, Lemma 4]. Using induction on the dimension,
as in the proof of [op. cit., Equation (3.7)], we easily conclude that

N� (q2)(d−2)n 6 q2(d−1)n−2n,

for an implied constant that only depends on d and n. Recalling that κ = 1, the first
part of the lemma now follows on substituting these bounds into (5-9).

We now consider case (ii), in which e = 1, q2 6 |r |6 qd , and |rθ |6 q−d . Let
|a/r | = q−α for 16 α 6 d . Let v ∈ {1, . . . , d} be such that d − v−α =−1. Then
an application of Lemma 5.2 yields

|S(α)|2
d−1
6 |P|(2

d−1
−d+1)nq(v−1)n M (v)(α)

= |P|2
d−1nq(−2d+1+v)n M (v)(α).

Let u∈On(d−1) be counted by M (v)(α). Since |θ |6q−d−2, it follows that |θ9i (u)|6
q−d−2

· qd−v
= q−2−v 6 q−3, for 1 6 i 6 n. Similarly, for 1 6 i 6 n, we have

|(a/r)9i (u)| 6 q−α · qd−v
= q−1. If we write uj = u′j + tu′′j , for v 6 j 6 d,

where u′j , u′′j ∈ Fn
q , then the coefficient of t−1 in the t-expansion of (a/r)9i (u)

is equal to 9i (u1, . . . , uv−1, u′′v, . . . , u′′d−1). The condition ‖α9i (u)‖ < |P|−1 in
M (v)(α) implies that this coefficient must necessarily vanish, whence M (v)(α) is
at most the number of u1, . . . uv−1, u′v, . . . , u′d−1, u′′v, . . . , u′′d−1 ∈ Fn

q for which
9i (u1, . . . , uv−1, u′′v, . . . , u′′d−1)= 0, for 16 i 6 n. Thus

M (v)(α)� q(d−v)n · q(d−2)n
= q(2d−v−2)n,

by the Lang–Weil estimate, which implies the statement of the lemma. �

Lemma 5.5 (deg(r)= 0). Let L = 2−d+1n and let θ ∈ T. Assume that

q−de−1 6 |θ |6 q−1−κ(d−1).

Then there exists a constant c′′d,n > 0, independent of q, such that

|S(θ)|6 c′′d,n|P|
nq−L .

Proof. The upper bound assumed of |θ | implies that |θ9i (u)| 6 q−1 in (5-10),
for 1 6 i 6 n. Hence ‖θ9i (u)‖ = |θ9i (u)| for 1 6 i 6 n. Since α = θ and
|θ |> q−de−1, it follows that the condition ‖α9i (u)‖< qκ(d−1)−de−1 is equivalent
to |9i (u)|< qκ(d−1). If κ = 0 then it follows from (5-10) that

N= #
{
u ∈ F(d−1)n

q :9i (u)= 0 (∀i 6 n)
}
� q(d−2)n,

by the Lang–Weil estimate. If, on the other hand, κ = 1 then we write u= u′+ tu′′

in N, under which transformation |9i (u)|< qd−1 is equivalent to 9i (u′′)= 0, for
i 6 n. Applying the Lang–Weil estimate to this system of equations, we therefore
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deduce that N = O(q(1+κ)(d−1)n−n) for κ ∈ {0, 1}. An application of (5-9) now
completes the proof of the lemma. �

6. The contribution from the minor arcs

We assume that d > 3 throughout this section. Our goal is to prove (3-6) for
all e > 1, provided that n > n0(d), where n0(d) is given by (1-2). The overall
contribution to (3-4) from |θ |< q−3de is easily seen to be negligible. Hence we may
redefine the minor arcs to incorporate the condition |θ | > q−3de. For α, β ∈ Z>0,
let E(α, β) denote the overall contribution to Nminor(P), from values of a, r, θ for
which |r | = qα and |θ | = q−β. The contribution is empty unless

06 α 6
d(e+ 1)

2
and α+

d(e+ 1)
2

6 β 6 3de, (6-1)

with β 6 de+ 1 if α = 0. Since there are only finitely many choices of α, β, in
order to prove (3-6), it will suffice to show that

lim
q→∞

q−µ̂E(α, β)= 0,

for each pair (α, β) under consideration, assuming that n > n0(d). To begin with,
summing trivially over a, we have

E(α, β)6 q2α−β+1 max
a,r,θ

|a|<|r |=qα

|θ |=q−β

|S(a/r + θ)|. (6-2)

We start by dealing with generic values of α and β. Lemma 5.3 implies that

E(α, β)6 cd,n q2α−β+1+(e+1)n−L(e+1)η,

where L = 2−d+1n. Recalling (3-2), the definition of µ̂, the exponent of q is µ̂− ν̂,
with

ν̂ = {(n− d)e+ n− 1}− {2α−β + 1+ (e+ 1)n− L(e+ 1)η}

= L(e+ 1)η+β − de− 2α− 2.
(6-3)

For the choice of η in (5-7), and n > n0(d), we want to determine when ν̂ > 0.
Returning to (5-6), we now see that

0 =
1

d − 1
min

{
(e+ 1)(d − 1)− 1, β −α− 1, (e+ 1)d −α− 1, α+M

}
,

where M =max{0, (e+1)d−β}. The remainder of the argument is a case by case
analysis. When [0]6 1 we shall return to (6-2), and argue differently based instead
on Lemmas 5.4 and 5.5.
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Case 1: α > 2(d− 1) and β > (e+ 1)d+ 1. In this case M = 0. Using (6-1), one
finds that

0 =
1

d − 1
×

{
α if α < d(e+1)

2 ,

α− 1 if α = d(e+1)
2 .

Let ι ∈ {0, 1}. We write α− ι= k(d − 1)+ `, for k ∈ Z>0 and ` ∈ {0, . . . , d − 2}.
Then (5-7) implies that (e+ 1)η = k− δ, where

δ =

{
0 if k 6≡ e mod 2,

1 if k ≡ e mod 2.
(6-4)

We claim that the assumption α > 2(d − 1) implies that k > 2, or else k = 1 and
δ = 0. This is obvious when α < d(e+1)

2 . Suppose that k = 1 and α = d(e+1)
2 . Then

ι= 0 and `= d− 2, whence α = 2(d− 1)= d(e+1)
2 . Since d > 3, this equation has

no solutions in odd integers e. Thus δ = 0.
Recalling (6-3) and substituting for α, we find that

ν̂ = L(k− δ)+β − de− 2− 2ι− 2k(d − 1)− 2`

= (L − 2(d − 1))k− δL +β − de− 2− 2ι− 2`

> (L − 2(d − 1))k− δL − d + 3− 2ι,

since β > (e+ 1)d + 1 and `6 d − 2. Taking 3− 2ι> 0, we have therefore shown
that ν̂ > ν̂0, with

ν̂0 = (L − 2(d − 1))k− δL − d.

If k > 2, then we take δ 6 1 to conclude that

ν̂0 > (2− δ)L − 4(d − 1)− d > L − 5d + 4.

Thus ν̂0> 0 if n> n0(d). Alternatively, if k= 1 then we must have δ= 0. It follows
that

ν̂0 = L − 2(d − 1)− d = L − 3d + 2,

whence ν̂0 > 0 if n > n0(d), since n0(d)> 2d−1
· (3d − 2) in (1-2).

Case 2: α+ de− d+ 2> β and β 6 (e+ 1)d. In this case M = (e+ 1)d −β. It
follows from (6-1) that

0 =
1

d − 1
×

{
α+ (e+ 1)d −β if β > 2α,

α+ (e+ 1)d −β − 1 if β 6 2α.

We proceed as before. Thus for ι ∈ {0, 1}, we write

α+ (e+ 1)d −β − ι= k(d − 1)+ `, (6-5)
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with k ∈ Z>0 and ` ∈ {0, . . . , d − 2}. Then (5-7) implies that (e+ 1)η = k − δ,
where δ is given by (6-4). If k > 2 then (6-3) yields

ν̂ = L(k− δ)−β + de− 2− 2ι− 2k(d − 1)− 2`+ 2d

= (L − 2(d − 1))k− δL −β + de− 2− 2ι− 2`+ 2d

> L − 4d + 4−β + de,

since δ, ι6 1 and `6 d−2. But β 6 (e+1)d , and so it follows that ν̂ > L−5d+4,
which is positive if n > n0(d). Suppose that k 6 1. Then, on taking ι 6 1 and
`6 d − 2 in (6-5), we must have that

α+ de− d + 26 β,

which contradicts the hypothesis.

Case 3: α6 2(d−1) and β > (e+1)d+1. In this case we return to (6-2), and we
recall the definition (5-8) of κ . Suppose first that α = 0. It follows from Lemma 5.5
that S(a/r + θ)� |P|nq−L if

1+ κ(d − 1)6 β 6 de+ 1.

The upper bound β 6 de+ 1 follows from the definition of the minor arcs when
α = 0. Moreover, the lower bound holds, since for e > 1 it follows from (6-1) that
β > d > 1+ κ(d − 1). Recalling (3-2), we conclude that

E(α, β)� q−β+1+(e+1)n−L
= qµ̂−ν̂,

with ν̂ = L +β − de− 2> L > 0, which is satisfactory.
Suppose next that α > 1. Then S(a/r+θ)� |P|nq−L, by Lemma 5.4, provided

that

e > 1, 16 α < de+ 1− κ(d − 1), and α−β <−κ(d − 1), (6-6)

or
e = 1, 26 α 6 d, and α−β 6−d. (6-7)

In view of (6-1), it is easily seen that α−β <−(d − 1)6−κ(d − 1). Next, we
claim that 2d − 2 < de+ 1− κ(d − 1) for any e > 2. This is enough to confirm
(6-6), since α 6 2(d − 1). The claim is obvious when κ = 1 and e > 3. On the
other hand, if κ = 0 then e > 2 and it is clear that 2d − 26 2d + 16 de+ 1. Next,
suppose that e = 1, so that κ = 1. If α = 1 then we are plainly in the situation
covered by (6-6). If α > 2, on the other hand, then (6-1) implies that α 6 d and
α−β 6−d , so that we are in the case covered by (6-7). It follows that

E(α, β)� q2α−β+1+(e+1)n−L
= qµ̂−ν̂,
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with
ν̂ = L +β − de− 2− 2α > L + d − 1− 2α

> L − 3d + 3,

since α 6 2(d − 1) and β > (e+ 1)d + 1. This is positive for n > n0(d).

Case 4: α + de − d + 2 6 β and β 6 (e + 1)d. We begin as in the previous
case. If α = 0, the same argument goes through, leading to E(α, β)� qµ̂−ν̂ , with
ν̂ = L + β − de− 2 > L − d. This is certainly positive for n > n0(d). Suppose
next that α > 1. Then S(a/r + θ)� |P|nq−L , by Lemma 5.4, provided that (6-6)
or (6-7) hold. Note that

α 6 β − de+ d − 26 2d − 2< de+ 1− κ(d − 1),

for any e > 2, by the calculation in the previous case. Likewise, the previous
argument shows that we are covered by (6-6) or (6-7) when e = 1. Thus we find
that E(α, β)� qµ̂−ν̂, with

ν̂ = L +β − de− 2− 2α > L − d −α

> L − 3d + 2,

since α 6 2(d − 1). This is also positive for n > n0(d).
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Thick tensor ideals of right bounded
derived categories

Hiroki Matsui and Ryo Takahashi

Let R be a commutative noetherian ring. Denote by D−(R) the derived category
of cochain complexes X of finitely generated R-modules with Hi (X)=0 for i�0.
Then D−(R) has the structure of a tensor triangulated category with tensor product
· ⊗

L
R · and unit object R. In this paper, we study thick tensor ideals of D−(R),

i.e., thick subcategories closed under the tensor action by each object in D−(R),
and investigate the Balmer spectrum SpcD−(R) of D−(R), i.e., the set of prime
thick tensor ideals of D−(R). First, we give a complete classification of the
thick tensor ideals of D−(R) generated by bounded complexes, establishing a
generalized version of the Hopkins–Neeman smash nilpotence theorem. Then, we
define a pair of maps between the Balmer spectrum SpcD−(R) and the Zariski
spectrum Spec R, and study their topological properties. After that, we compare
several classes of thick tensor ideals of D−(R), relating them to specialization-
closed subsets of Spec R and Thomason subsets of SpcD−(R), and construct a
counterexample to a conjecture of Balmer. Finally, we explore thick tensor ideals
of D−(R) in the case where R is a discrete valuation ring.
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Introduction

Tensor triangular geometry is a theory established by Balmer at the beginning of
this century. Let (T,⊗, 1) be an (essentially small) tensor triangulated category,
that is, a triangulated category T equipped with symmetric tensor product ⊗
and unit object 1. One can then define prime thick tensor ideals of T, which
behave similarly to prime ideals of commutative rings. The Balmer spectrum
Spc T of T is defined as the set of prime thick tensor ideals of T. This set has
the structure of a topological space. Tensor triangular geometry studies Balmer
spectra and develops commutative-algebraic and algebrogeometric observations
on them. Tensor triangular geometry is related to a lot of areas of mathematics,
including commutative/noncommutative algebra, commutative/noncommutative
algebraic geometry, stable homotopy theory, modular representation theory, motivic
theory, noncommutative topology, and symplectic geometry. Understandably, tensor
triangular geometry has been attracting a great deal of attention, and Balmer [2010b]
gave an invited lecture at the 2010 International Congress of Mathematicians.

By virtue of a landmark theorem due to Balmer [2005], the radical thick tensor
ideals of T correspond to the Thomason subsets of the Balmer spectrum Spc T

of T. It is thus a main subject in tensor triangular geometry to determine/describe
the Balmer spectrum of a given tensor triangulated category. Such studies have been
done for these thirty years considerably widely; one can find ones at least in stable
homotopy theory [Balmer and Sanders 2017; Devinatz et al. 1988; Hopkins and
Smith 1998], commutative algebra [Hopkins 1987; Neeman 1992; Takahashi 2010],
algebraic geometry [Balmer 2002; Stevenson 2014b; Thomason 1997], modular
representation theory [Balmer 2016; Benson et al. 1997; 2011; Friedlander and
Pevtsova 2007], and motivic theory [Dell’Ambrogio and Tabuada 2012; Peter 2013].

Let R be a commutative noetherian ring. Denote by D−(R) the right bounded
derived category of finitely generated R-modules, namely, the derived category of
(cochain) complexes X of finitely generated R-modules such that Hi (X)= 0 for all
i � 0. Then (D−(R),⊗L

R, R) is a tensor triangulated category. The main purpose
of this paper is to investigate thick tensor ideals of the tensor triangulated category
D−(R), analyzing the structure of the Balmer spectrum SpcD−(R) of D−(R).

Here, we should remark that results in the literature which we can apply for
our purpose are quite limited. For example, many people have been studying the
Balmer spectra of tensor triangulated categories which arise as the compact objects
of compactly generated tensor triangulated categories, but our tensor triangulated
category D−(R) does not arise in this way. Also, there are various results on the
Balmer spectrum of a rigid tensor triangulated category, but again they do not
apply to our case because D−(R) is not rigid (nor even closed); see Remark 1.3.
Furthermore, several properties have been found for tensor triangulated categories
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which are generated by their unit object as a thick subcategory, but D−(R) does not
satisfy this property. Thus, the only existing results that are available and useful for
our goal are basically general fundamental results given in [Balmer 2005], and we
need to start with establishing basic tools by ourselves.

From now on, let us explain the main results of this paper. First of all, recall that
an object X of a triangulated category T is compact if the natural morphism⊕

λ∈3

HomT(M, Nλ)→ HomT

(
M,

⊕
λ∈3

Nλ

)
is an isomorphism for every family {Nλ}λ∈3 of objects of T with

⊕
λ∈3 Nλ ∈ T.

Furthermore, X is cocompact if the natural morphism⊕
λ∈3

HomT(Nλ,M)→ HomT

(∏
λ∈3

Nλ,M
)

is an isomorphism for every family {Nλ}λ∈3 of objects of T with
∏
λ∈3 Nλ ∈T. A

thick tensor ideal of D−(R) is called compactly generated or cocompactly generated
if it is generated by compact or cocompact objects, respectively, of D−(R) as a
thick tensor ideal. For a subcategory X of D−(R) we denote by Supp X the union
of the supports of complexes in X, and for a subset S of Spec R we denote by 〈S〉
the thick tensor ideal of D−(R) generated by R/p with p ∈ S. We shall prove the
following theorem.

Theorem A (Proposition 2.1, Theorem 2.12, and Corollary 2.16). The compact or
cocompact objects of D−(R) are the perfect or bounded complexes, respectively;
hence, all compactly generated thick tensor ideals are cocompactly generated. The
assignments X 7→ Supp X and 〈W 〉 7→W make mutually inverse bijections

{Cocompactly generated thick ⊗-ideals of D−(R)}

� {Specialization-closed subsets of Spec R}.

Consequently, all cocompactly generated thick tensor ideals of D−(R) are compactly
generated.

The core of this theorem is constituted by the classification of the cocompactly
generated thick tensor ideals of D−(R), which is obtained by establishment of a
generalized smash nilpotence theorem, extending the classical smash nilpotence
theorem due to Hopkins [1987] and Neeman [1992] for the homotopy category of
perfect complexes. In view of Theorem A, we may simply call X compact if X

is compactly generated and/or cocompactly generated. We should remark that in
general we have

〈W 〉 6= Supp−1 W,
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where Supp−1 W consists of the complexes whose supports are contained in W .
Thus, we call a thick tensor ideal of D−(R) tame if it has the form Supp−1 W for
some specialization-closed subset W of Spec R.

Next, we relate the Balmer spectrum SpcD−(R) of D−(R) to the Zariski spectrum
Spec R of R, i.e., the set of prime ideals of R. More precisely, we introduce a pair
of order-reversing maps

S : Spec R� SpcD−(R) : s

and investigate their topological properties. These maps are defined as follows. Let
p ∈ Spec R and P ∈ SpcD−(R). Then S(p) consists of the complexes X ∈ D−(R)
with Xp = 0, and s(P) is the unique maximal element of ideals I of R with
R/I /∈ P with respect to the inclusion relation. Our main result in this direction
is the following theorem. Denote by tSpcD−(R) the set of tame prime thick
tensor ideals of D−(R), and by MxD−(R) and MnD−(R) the maximal and minimal
elements, respectively, of SpcD−(R) with respect to the inclusion relation. For
each full subcategory X of D−(R), let Xtame stand for the smallest tame thick tensor
ideal of D−(R) containing X.

Theorem B (Theorems 3.9, 4.5, 4.7, 4.12, and 4.14 and Corollary 3.14). The
following statements hold.

(1) s ·S= 1 and S ·s= Supp−1 Supp= ( · )tame. In particular, dim(SpcD−(R))>
dim R.

(2) The image of S coincides with tSpcD−(R), and it is dense in SpcD−(R).

(3) The map s is continuous, and its restriction s′ : tSpcD−(R)→ Spec R is a
continuous bijection.

(4) The map S′ : Spec R → tSpcD−(R) induced by S is an open and closed
bijection.

(5) The map Min R→ MxD−(R) induced by S is a homeomorphism.

(6) The map Max R → MnD−(R) induced by S is a homeomorphism if R is
semilocal.

(7) S is continuous⇐⇒ S′ is homeomorphic⇐⇒ s′ is homeomorphic⇐⇒ Spec R
is finite.

The celebrated classification theorem due to Balmer [2005] asserts that taking
the Balmer support Spp makes a one-to-one correspondence between the set Rad
of radical thick tensor ideals of D−(R) and the set Thom of Thomason subsets of
SpcD−(R):

Spp : Rad� Thom : Spp−1 .
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Our next goal is to complete this one-to-one correspondence to the following
commutative diagram, giving complete classifications of compact and tame thick
tensor ideals of D−(R). Denote by Cpt and Tame the sets of compact and tame
thick tensor ideals of D−(R), respectively, and by Spcl(Spec) and Spcl(tSpc) the
sets of specialization-closed subsets of Spec R and tSpcD−(R), respectively.

Theorem C (Theorems 5.13 and 5.20). There is a diagram

Rad
Spp

//

( · )cpt

��

Thom
Spp−1

oo

S−1

��

( · )spcl

&&

Cpt

( · )rad

OO

Supp
//

( · )tame

%%

Spcl(Spec)

S

OO

〈 · 〉

oo
S

//

Supp−1

��

Spcl(tSpc)

( · )spcl

ff

s
oo

Sp−1

xx

Tame

( · )cpt

ee

Sp

88

Supp

OO

where the pairs of maps A=(( · )rad,( · )cpt), B=(S,S−1), and C=(( · )spcl,( · )spcl)

are section-retraction pairs (as sets), and all the other pairs consist of mutually
inverse bijections. The diagram with the sections and retractions, respectively, and
bijections is commutative.

We do not give here the definitions of the maps appearing above (we do this in
Section 5); what we want to emphasize now is that those maps are given explicitly.

Moreover, we prove that some/any of the three section-retraction pairs A, B,C
in the above theorem are bijections if and only if R is artinian, which is incorporated
into the following theorem.

Theorem D (Theorem 6.5). The following are equivalent.

(1) R is artinian.

(2) Every thick tensor ideal of D−(R) is compact, tame, and radical.

(3) Every radical thick tensor ideal of D−(R) is tame.

(4) The pair of maps (S, s) consists of mutually inverse homeomorphisms.

(5) Some/all of the maps S, s are bijective.

(6) Some/all of the pairs A, B,C consist of mutually inverse bijections.

This theorem says that in the case of artinian rings everything is clear. An
essential role is played in the proof of this theorem by a certain complex in D−(R)
constructed from shifted Koszul complexes.
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Let (T,⊗, 1) be a tensor triangulated category. Balmer [2010a] constructs a
continuous map

ρ•T : Spc T→ Spech R•T,

where R•T = HomT(1, 6•1) is a graded-commutative ring. Balmer [2010b] con-
jectures that the map ρ•T is (locally) injective when T is an algebraic triangulated
category, that is, a triangulated category arisen as the stable category of a Frobenius
exact category. Our D−(R) is evidently an algebraic triangulated category, but does
not satisfy this conjecture under a quite mild assumption:

Theorem E (Corollary 6.10). Assume that dim R > 0 and that R is either a domain
or a local ring. Then the map ρ•

D−(R) is not locally injective. Hence, Balmer’s
conjecture does not hold for D−(R).

In fact, the assumption of the theorem gives an element x ∈ R with ht(x) > 0.
Then we can find a nontame prime thick tensor ideal P of D−(R) associated with x
at which ρ•

D−(R) is not locally injective.
Finally, we explore thick tensor ideals of D−(R) in the case where R is a discrete

valuation ring, because this should be the simplest unclear case, now that everything
is clarified by Theorem D in the case of artinian rings. We show the following
theorem, which says that even if R is such a good ring, the structure of the Balmer
spectrum of D−(R) is rather complicated. (Here, ``( · ) stands for the Loewy
length.)

Theorem F (Propositions 7.7 and 7.17 and Theorems 7.11 and 7.14). Let (R, x R)
be a discrete valuation ring, and let n > 0 be an integer. Let Pn be the full
subcategory of D−(R) consisting of complexes X with finite length homologies such
that there exists an integer t > 0 with ``(H−i X)6 tin for all i � 0. Then:

(1) Pn coincides with the smallest thick tensor ideal of D−(R) containing the
complex⊕

i>0

(R/x in
R)[i] = (· · · 0

−→ R/x3n
R 0
−→ R/x2n

R 0
−→ R/x1n

R→ 0).

(2) Pn is a prime thick tensor ideal of D−(R) which is not tame. If n > 1, then Pn

is not compact.

(3) One has P0 ( P1 ( P2 ( · · · . Hence, SpcD−(R) has infinite Krull dimension.

The paper is organized as follows. Section 1 is devoted to giving several basic
definitions and studying fundamental properties that are used in later sections.
In Section 2, we study compactly and cocompactly generated thick tensor ideals
of D−(R), and classify them completely. The generalized smash nilpotence the-
orem and Theorem A are proved in this section. In Section 3, we define the
maps S and s between Spec R and SpcD−(R), and prove part of Theorem B. In
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Section 4, we study topological properties of the maps S, s and the Balmer spectrum
SpcD−(R). We complete in this section the proof of Theorem B. In Section 5, we
compare compact, tame, and radical thick tensor ideals of D−(R), relating them
to specialization-closed subsets of Spec R and tSpcD−(R) and Thomason subsets
of SpcD−(R). Theorem C is proved in this section. In Section 6, we consider
when the section-retraction pairs in Theorem C are one-to-one correspondences,
and deal with the conjecture of Balmer for D−(R). We show Theorems D and E in
this section. The final Section 7 concentrates on investigation of the case of discrete
valuation rings. Several properties that are specific to this case are found out, and
Theorem F is proved in this section.

1. Fundamental materials

In this section, we give several basic definitions and study fundamental properties,
which will be used in later sections. We begin with our convention.

Convention 1.1. Throughout the paper, unless otherwise specified, R is a commuta-
tive noetherian ring, and all subcategories are nonempty and full. We put I 0

= R and
x0
= 1 for an ideal I of R and an element x ∈ R. We denote by Spec R, Max R, and

Min R the set of prime, maximal prime, and minimal prime ideals of R, respectively.
For an ideal I of R, we denote by V(I ) the set of prime ideals of R containing I ,
and set D(I )=V(I ){ = Spec R \V(I ). When I is generated by a single element x ,
we simply write V(x) and D(x). For a prime ideal p of R, the residue field of Rp is
denoted by κ(p), i.e., κ(p)= Rp/pRp. For a sequence x = x1, . . . , xn of elements
of R, the Koszul complex of R with respect to x is denoted by K(x, R). For an
additive category C we denote by 0 the zero subcategory of C, that is, the full
subcategory consisting of objects isomorphic to the zero object. For objects X, Y
of C, we mean by X lY (or Y mX ) that X is a direct summand of Y in C. We often
omit subscripts, superscripts, and parentheses, if there is no danger of confusion.

Let T be a triangulated category. A thick subcategory of T is by definition a
triangulated subcategory closed under direct summands; in other words, it is a
subcategory closed under direct summands, shifts, and cones. For a subcategory
X of T we denote by thickX the thick closure of X, that is, the smallest thick
subcategory of T containing X.

Now we recall the definitions of a tensor triangulated category and a thick tensor
ideal.

Definition 1.2. (1) We say that (T,⊗, 1) is a tensor triangulated category if T is
a triangulated category equipped with a symmetric monoidal structure which
is compatible with the triangulated structure of T; see [Hovey et al. 1997, Ap-
pendix A] for the precise definition. In particular, ·⊗· is exact in each variable.
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(2) Let (T,⊗, 1) be a tensor triangulated category. A subcategory X of T is said
to be a thick tensor ideal provided that X is a thick subcategory of T and for
any T ∈T and X ∈X one has T⊗X ∈X. We often abbreviate “tensor ideal” to
“⊗-ideal”. For a subcategory C of T, we define the thick ⊗-ideal closure of C

to be the smallest thick ⊗-ideal of T containing C, and denote it by thick⊗ C.

We denote by D−(R) and Db(R) the derived categories of (cochain) complexes X
of finitely generated R-modules with Hi (X)= 0 for all i � 0 and |i | � 0, respec-
tively. We denote by D−

fl (R) and Db
fl(R) the subcategories of D−(R) and Db(R),

respectively, consisting of complexes X whose homologies have finite length as
R-modules. By K−(R) and Kb(proj R) we denote the homotopy categories of
complexes P of finitely generated projective R-modules with P i

=0 for all i�0 and
|i | � 0, respectively. By K−,b(R) we denote the subcategory of K−(R) consisting
of complexes P with Hi (P)= 0 for all i � 0. Note that there are chains

Db
fl(R)⊆ Db(R) ⊆ D−(R),

Db
fl(R)⊆ D−

fl (R) ⊆ D−(R),

Kb(proj R)⊆ K−,b(R)⊆ K−(R)

of thick subcategories and triangle equivalences

D−(R)∼= K−(R), Db(R)∼= K−,b(R).

We will often identify D−(R),Db(R) with K−(R),K−,b(R), respectively, via these
equivalences. Note that (Kb(proj R),⊗R, R) and (D−(R),⊗L

R, R) are essentially
small tensor triangulated categories. (In general, if C is an essentially small additive
category, then so is the category of complexes of objects in C, and so is the homotopy
category.)

Remark 1.3. The tensor triangulated category D−(R) is never rigid. More strongly,
it is never closed. In fact, assume there is a functor F :D−(R)×D−(R)→D−(R) such
that HomD−(R)(X⊗L

R Y, Z)∼=HomD−(R)(Y, F(X, Z)) for all X, Y, Z ∈D−(R). We
have HomD−(R)(X⊗L

RY, Z)=HomD(R)(X⊗L
RY, Z)∼=HomD(R)(Y, RHomR(X, Z)),

where D(R) is the unbounded derived category of R-modules. Letting Y = R[−i]
for i ∈ Z, we obtain Hi (F(X, Z))∼= ExtiR(X, Z). Since F(X, Z) is in D−(R), we
have Hi (F(X, Z))= 0 for i � 0. Hence, Ext�0

R (X, Z)= 0 for all X, Z ∈ D−(R).
This is a contradiction.

Here we compute some thick closures and thick ⊗-ideal closures.

Proposition 1.4. There are equalities:

(1) thick⊗
D−(R)R = D−(R).

(2) thickD−(R) R= thickDb(R) R= thickKb(proj R) R= thick⊗
Kb(proj R) R=Kb(proj R).
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(3) thickD−(R) k = thickDb(R) k = Db
fl(R), if R is local with residue field k.

Proof. The following hold in general and are easy to check.

(a) Let T be a triangulated category, U be a thick subcategory, and U ∈U. Then
thickU U = thickT U .

(b) Let (T,⊗, 1) be a tensor triangulated category. Then thick⊗ 1= T.

The assertion is shown by these two statements. �

From now on, we deal with the supports of objects and subcategories of D−(R).
Recall that the support of an R-module M is defined as the set of prime ideals p
of R such that the Rp-module Mp is nonzero, which is denoted by SuppR M .

Proposition 1.5. Let X be a complex in D−(R). Then the following three sets are
equal:

(1)
⋃

i∈Z SuppR Hi (X),

(2) {p ∈ Spec R | Xp 6
∼= 0 in D−(Rp)}, and

(3) {p ∈ Spec R | κ(p)⊗L
R X 6∼= 0 in D−(Rp)}.

Proof. It is clear that the first and second sets coincide. For a prime ideal p of R one
has κ(p)⊗L

R X ∼= κ(p)⊗L
Rp

Xp. It is seen by [Christensen 2000, Corollary A.4.16]
that the second and third sets coincide. �

Definition 1.6. The set in Proposition 1.5 is called the support of X and denoted
by SuppR X . For a subcategory C of D−(R), we set Supp C=

⋃
C∈C Supp C , and

call this the support of C. For a subset S of Spec R, we denote by Supp−1 S the
subcategory of D−(R) consisting of complexes whose supports are contained in S.

Remark 1.7. The fact that the second and third sets in Proposition 1.5 coincide
will often play an important role in this paper. Note that these two sets are different
if X is a complex outside D−(R). For example, let (R,m, k) be a local ring of
positive Krull dimension. Take any nonmaximal prime ideal P , and let X be the
injective hull E(R/P) of the R-module R/P . Then k⊗L

R X = 0, while Xm 6= 0.

Remark 1.8. For X ∈ D−(R) one has Supp X =∅ if and only if X = 0. In other
words, it holds that Supp−1 ∅= 0. (If we define the support of X as the third set in
Proposition 1.5, then the assumption that X belongs to D−(R) is essential, as the
example given in Remark 1.7 shows.)

In the following lemma and proposition, we state several basic properties of
Supp and Supp−1 defined above. Both results will often be used later.

Lemma 1.9. The following statements hold.

(1) Supp(X [n])= Supp X for all X ∈ D−(R) and n ∈ Z.

(2) If X is a direct summand of Y in D−(R), then Supp X ⊆ Supp Y .
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(3) If X→Y→ Z→ X [1] is an exact triangle in D−(R), then Supp A⊆Supp B∪
Supp C for all {A, B,C} = {X, Y, Z}.

(4) Supp(X ⊗L
R Y )= Supp X ∩Supp Y for all X, Y ∈ D−(R).

Proof. The assertions (1), (2), and (3) are straightforward by definition. For each
prime ideal p of R there is an isomorphism (X ⊗L

R Y )p ∼= Xp⊗
L
Rp

Yp. Hence,
(X ⊗L

R Y )p = 0 if and only if either Xp = 0 or Yp = 0 by [Christensen 2000,
Corollary A.4.16]. This shows the assertion (4). �

Let X be a topological space. A subset A of X is called specialization-closed
provided that for each point a ∈ A the closure {a} of {a} in X is contained in A.
Hence, a subset S of Spec R is specialization-closed if and only if for each p ∈ S
one has V(p) ⊆ S. Note that A is specialization-closed if and only if A is a
(possibly infinite) union of closed subsets of X . Therefore, a union of specialization-
closed subsets is again specialization-closed, and thus, one can define the largest
specialization-closed subset Aspcl of X contained in A, which will be called the
spcl-closure of A in Section 5.

Proposition 1.10. (1) Let S be a subset of Spec R. Then there are equalities
Supp−1 S = Supp−1(Sspcl) and Supp(Supp−1 S)= Sspcl. Moreover, Supp−1 S
is a thick ⊗-ideal of D−(R).

(2) Let X be any subcategory of D−(R). Then Supp X is a specialization-closed
subset of Spec R, and one has Supp X= Supp(thick⊗ X).

(3) It holds that D−
fl (R)=Supp−1(Max R). In particular, D−

fl (R) is a thick⊗-ideal
of D−(R).

Proof. (1) We put W = Sspcl. Let X be a complex in D−(R). Since Supp X is
specialization-closed, it is contained in S if and only if it is contained in W . Hence,
Supp−1 S = Supp−1 W . Evidently, W contains Supp(Supp−1 W ), while we have
p ∈ Supp R/p = V(p) ⊆ W for p ∈ W . Hence, Supp(Supp−1 W ) = W , and thus,
Supp(Supp−1 S)=W . It is seen from Lemma 1.9 that Supp−1 S is a thick ⊗-ideal
of D−(R).

(2) We have Supp X=
⋃

X∈X Supp X =
⋃

X∈X

⋃
i∈Z SuppHi X by Proposition 1.5.

Since Hi X is a finitely generated R-module, SuppHi X is closed. Hence, Supp X is
specialization-closed. A prime ideal p of R is not in Supp X if and only if X is con-
tained in Supp−1({p}{), if and only if thick⊗ X is contained in Supp−1({p}{), if and
only if p does not belong to Supp(thick⊗ X). It follows from (1) that Supp−1({p}{)

is a thick ⊗-ideal of D−(R), which shows the second equivalence. The other two
equivalences are obvious.

(3) The equality is straightforward, and the last assertion is shown by (1). �
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2. Classification of compact thick tensor ideals

In this section, we prove a generalized version of the smash nilpotence theorem
due to Hopkins [1987] and Neeman [1992], and using this we give a complete
classification of cocompact thick tensor ideals of D−(R).

We begin with recalling the definitions of compact and cocompact objects. Let
T be a triangulated category. We say that an object M ∈T is compact if the natural
morphism ⊕

λ∈3

HomT(M, Nλ)→ HomT

(
M,

⊕
λ∈3

Nλ

)
is an isomorphism for every family {Nλ}λ∈3 of objects of T with

⊕
λ∈3 Nλ ∈ T.

Furthermore, we say that an object M ∈ T is cocompact if the natural morphism⊕
λ∈3

HomT(Nλ,M)→ HomT

(∏
λ∈3

Nλ,M
)

is an isomorphism for every family {Nλ}λ∈3 of objects of T with
∏
λ∈3 Nλ ∈T. We

denote by Tc and Tcc the subcategories of T consisting of compact and cocompact
objects, respectively. For T= D−(R) we have explicit descriptions of the compact
objects and cocompact objects:

Proposition 2.1. One has D−(R)c = Kb(proj R) and D−(R)cc
= Db(R).

Proof. The second statement follows from [Stevenson 2014a, Theorem 18]. The
first one can be shown in the same way as of the fact that the compact objects of
the unbounded derived category of all R-modules coincide with Kb(proj R). For
the convenience of the reader, we give a proof.

First of all, R is compact since each homology functor Hi commutes with direct
sums. Since the compact objects form a thick subcategory, Kb(proj R)⊆ D−(R)c.
Next, let X ∈D−(R) be a compact object. Replacing X with its projective resolution,
we may assume X ∈ K−(R). Consider the chain map

X
fn
��

(· · · // Xn−1 dn−1
//

��

Xn dn
//

f n
n
��

Xn+1 //

��

· · · )

Cn
[−n] (· · · // 0 // Cn // 0 // · · · )

where Cn is the cokernel of dn−1, and f n
n : X

n
→ Cn is a natural surjection. Put

Y =
⊕

n∈Z Cn
[−n]. A chain map f : X→ Y is induced by { fn}n∈Z. As X ∈K−(R)

is compact in D−(R), we have isomorphisms

HomK(X, Y )∼= HomD−(R)(X, Y )

∼=

⊕
n∈Z

HomD−(R)(X,Cn
[−n])∼=

⊕
n∈Z

HomK(X,Cn
[−n]),
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where K is the homotopy category of R-modules. The composition of these iso-
morphisms sends f to ( fn)n∈Z, which implies that there exists t ∈ Z such that
fn = 0 in K for all n 6 t . Hence, there is an R-linear map g : Xn+1

→ Cn such
that g ◦ dn

= f n
n . Let dn : Cn

→ Xn+1 be the map induced by dn . We have
gdn f n

n = gdn
= f n

n , and obtain gdn = 1 as f n
n is a surjection. Thus, Cn is a direct

summand of Xn+1, and thereby projective. Also, Hn X is isomorphic to the kernel of
dn , which vanishes since dn is a split monomorphism. Consequently, the truncated
complex X ′ := (0→C t d t

−→ X t+1 d t+1
−−→ X t+2 d t+2

−−→ · · · ), which is quasi-isomorphic
to X , is in Kb(proj R). We now conclude that X belongs to Kb(proj R). �

Next, we give the definitions of the annihilators of morphisms and objects
in D−(R).

Definition 2.2. (1) Let f : X → Y be a morphism in D−(R). We define the
annihilator of f as the set of elements a ∈ R such that a f = 0 in D−(R), and
denote it by AnnR( f ). This is an ideal of R.

(2) The annihilator of an object X ∈ D−(R) is defined as the annihilator of the
identity morphism idX , and denoted by AnnR(X). This is the set of elements
a ∈ R such that (X a

−→ X)= 0 in D−(R).

Here are some properties of annihilators.

Proposition 2.3. (1) Let f : X→ Y be a morphism in D−(R) and p a prime ideal
of R.

(a) The ideal AnnR( f ) is the kernel of the map η f : R→ HomD−(R)(X, Y )
given by a 7→ a f .

(b) If the natural map τX,Y,p : HomD−(R)(X, Y )p→ HomD−(Rp)(Xp, Yp) is an
isomorphism, then there is an equality AnnR( f )p = AnnRp( fp).

(2) For any X ∈ D−(R) one has V(Ann X)⊇ Supp X. The equality holds if τX,X,p

is an isomorphism for all p ∈ Spec R. In particular, for X ∈ Db(R) one has
V(Ann X)= Supp X.

(3) Let x = x1, . . . , xn be a sequence of elements of R. Then it holds that
Ann K(x, R)= x R. In particular, there is an equality Supp K(x, R)= V(x),
and K(x, R) belongs to Supp−1 V(x).

Proof. (1) The assertion (a) is obvious, while (b) follows from (a) and the commu-
tative diagram

Rp

(η f )p
// HomD−(R)(X, Y )p

∼= τX,Y,p
��

Rp

η fp
// HomD−(Rp)(Xp, Yp)
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(2) The first assertion is easy to show. Suppose that τX,X,p is an isomorphism for all
p ∈ Spec R. By (1) one has (AnnR X)p =AnnRp Xp. We have Xp 6= 0 if and only if
(AnnR X)p 6= Rp, if and only if p∈V(AnnR X). This shows V(AnnR X)=SuppR X .
As for the last assertion, use [Avramov and Foxby 1991, Lemma 5.2(b)].

(3) The second statement follows from the first one and (2). Therefore, it suffices
to show the equality Ann K(x, R)= x R. It follows from [Bruns and Herzog 1998,
Proposition 1.6.5] that Ann K(x, R) contains x R. Conversely, pick a∈Ann K(x, R).
Then the multiplication map a :K(x, R)→K(x, R) is null-homotopic, and there is a
homotopy {si :Ki−1(x, R)→Ki (x, R)} from a to 0. In particular, we have a=d1s1,
where d1 is the first differential of K(x, R). Writing d1 = (x1, . . . , xn) : Rn

→ R
and s1 =

t(a1, . . . , an) : R→ Rn , we get a = (x1, . . . , xn)
t(a1, . . . , an) = a1x1+

· · ·+ anxn ∈ x R. Consequently, we obtain Ann K(x, R)= x R. �

To state our next results, we need to introduce some notation.

Definition 2.4. Let T be a triangulated category.

(1) For two subcategories C1,C2 of T, we denote by C1∗C2 the subcategory of T

consisting of objects M such that there is an exact triangle C1→ M→ C2 
with Ci ∈ Ci for i = 1, 2.

(2) For a subcategory C of T, we denote by add6 C the smallest subcategory
of T that contains C and is closed under finite direct sums, direct summands,
and shifts. Inductively we define thick1

T(C) = add6 C and thickr
T(C) =

add6(thickr−1
T (C) ∗ add6 C) for r > 1. This is sometimes called the r-th

thickening of C. When C consists of a single object X , we simply denote it
by thickr

T(X).

(3) For a morphism f : X → Y in T and an integer n > 1, we denote by
f ⊗n the n-fold tensor product f ⊗ · · ·⊗ f︸ ︷︷ ︸

n

. By f ⊗n we mean the morphism
f ⊗L

R · · · ⊗
L
R f︸ ︷︷ ︸

n

for T= D−(R).

We establish two lemmas, which will be used to show the generalized smash
nilpotence theorem. The first one concerns general tensor triangulated categories,
while the second one is specific to our D−(R).

Lemma 2.5. Let T be a tensor triangulated category.

(1) Let X,Y be subcategories of T. Let f :M→M ′ and g : N→ N ′ be morphisms
in T. If f ⊗X= 0 and g⊗Y= 0, then f ⊗ g⊗ (X ∗Y)= 0.

(2) Let φ : A→ B be a morphism in T, and let C be an object of T. If φ⊗C = 0,
then φ⊗n

⊗ thickn
T(C)= 0 for all integers n > 0.
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Proof. As (2) is shown by induction on n and (1), let us show (1). Let X→ E→Y 
be an exact triangle in T with X ∈ X and Y ∈ Y. Then f ⊗ X = 0 and g⊗ Y = 0
by assumption. There is a diagram

M ⊗ N ⊗ X //

M⊗g⊗X
��

M ⊗ N ⊗ E //

M⊗g⊗E
��

	

M ⊗ N ⊗ Y //

M⊗g⊗Y 0
��

M ⊗ N ′⊗ X //

f⊗N ′⊗X 0
�� 0 **

M ⊗ N ′⊗ E //

f⊗N ′⊗E
��

	 	

M ⊗ N ′⊗ Y //

f⊗N ′⊗Y
��htt

M ′⊗ N ′⊗ X //

	

M ′⊗ N ′⊗ E // M ′⊗ N ′⊗ Y //

in T whose rows are exact triangles, and we obtain a morphism h as in it. It is
observed from this diagram that f ⊗ g⊗ E = ( f ⊗ N ′⊗ E) ◦ (M ⊗ g⊗ E) is a
zero morphism. �

Lemma 2.6. (1) Let f : X → Y be a morphism in D−(R). Let x = x1, . . . , xn

be a sequence of elements of R. If f ⊗L
R R/(x)= 0 in D−(R), then f ⊗2n

⊗
L
R

K(x, R)= 0 in D−(R).

(2) Let x = x1, . . . , xn be a sequence of elements of R, and let e > 0 be an integer.
Then K(xe, R) belongs to thickne

K−(R)(K(x, R)), where xe
= xe

1, . . . , xe
n .

Proof. (1) We use induction on n. Let n = 1 and set x = x1. There are exact
sequences 0 → (0 : x) → R → (x) → 0 and 0 → (x) → R → R/(x) → 0.
Applying the octahedral axiom to (R → (x)→ R) = (R

x
−→ R) gives an exact

triangle (0 : x)[1] → K(x, R)→ R/(x) in D−(R). We have f ⊗L
R R/(x) = 0,

and f ⊗L
R (0 : x)[1] = ( f ⊗L

R R/(x))⊗L
R/(x) (0 : x)[1] = 0. Lemma 2.5(1) yields

f ⊗2
⊗

L
R K(x, R)= 0.

Let n > 2. We have 0 = f ⊗L
R R/(x) = ( f ⊗L

R R/(x1))⊗
L
R/(x1)

R/(x). The
induction hypothesis gives

0= ( f ⊗L
R R/(x1))

⊗2n−1
⊗

L
R/(x1)

K(x2, . . . , xn, R/(x1))

= ( f ⊗2n−1
⊗

L
R K(x2, . . . , xn, R))⊗L

R R/(x1).

The induction basis shows 0 = ( f ⊗2n−1
⊗

L
R K(x2, . . . , xn, R))⊗2

⊗
L
R K(x1, R) =

f ⊗2n
⊗

L
R K(x2, . . . , xn, x, R). Note that K(x, R) is a direct summand of K(x2, . . . ,

xn, x, R) [Bruns and Herzog 1998, Proposition 1.6.21]. We thus obtain the desired
equality f ⊗2n

⊗
L
R K(x, R)= 0.

(2) Again, we use induction on n. Consider the case n = 1. Put x = x1. Ap-
plying the octahedral axiom to (R xe−1

−−→ R x
−→ R) = (R xe

−→ R), we get an exact
triangle K(xe−1, R)→ K(xe, R)→ K(x, R) . Induction on e shows K(xe, R) ∈
thicke K(x, R). Let n>2. By the induction hypothesis, K(xe

1, . . . , xe
n−1, R) belongs

to thick(n−1)e K(x1, . . . , xn−1, R). Applying the exact functor ·⊗K(xe
n, R), we see
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that K(xe, R) belongs to thick(n−1)e K(x1, . . . , xn−1, xe
n, R). Applying the exact

functor K(x1, . . . , xn−1, R)⊗· to the containment K(xe
n, R)∈ thicke K(xn, R) gives

rise to K(x1, . . . , xn−1, xe
n, R) ∈ thicke K(x, R). Therefore, K(xe, R) belongs to

thickne K(x, R). �

We now achieve the goal of generalizing the Hopkins–Neeman smash nilpotence
theorem.

Theorem 2.7 (generalized smash nilpotence). Let f : X → Y be a morphism in
K−(R) with Y ∈ Kb(proj R). Suppose that f ⊗ κ(p) = 0 for all p ∈ Spec R. Then
f ⊗t
= 0 for some t > 0.

Proof. We have an ascending chain AnnR( f )⊆ AnnR( f ⊗2)⊆ AnnR( f ⊗3)⊆ · · ·

of ideals of R. Since R is noetherian, there is an integer c such that AnnR( f ⊗c)=

AnnR( f ⊗i ) for all i > c. Replacing f by f ⊗c, we may assume that AnnR( f ) =
AnnR( f ⊗i ) for all i > 0. Note that AnnR( f )= R if and only if f = 0.

We assume AnnR( f ) 6= R, and shall derive a contradiction. Take a minimal
prime ideal p of AnnR( f ). Then localization at p reduces to the following situation:

(R,m, k) is a local ring, AnnR( f ) is an m-primary ideal, f ⊗R k = 0,
and AnnR( f )= AnnR( f ⊗i ) for all i > 0.

Indeed, since Y is in Kb(proj R), it follows from [Avramov and Foxby 1991,
Lemma 5.2(b)] that the map τX,Y,p is an isomorphism, and Proposition 2.3(1)
yields AnnRp( fp)=AnnR( f )p, which is a pRp-primary ideal of Rp. Also, we have
AnnRp( fp)=AnnR( f )p=AnnR( f ⊗i )p=AnnRp(( f ⊗i )p)=AnnRp(( fp)⊗i ) for all
i > 0. Furthermore, it holds that fp⊗Rp κ(p)= f ⊗R κ(p)= 0 by the assumption
of the theorem.

For each nonnegative integer n, consider the following two statements.

F(n): Let (R,m, k) be a reduced local ring with dim R 6 n. Let f : X → Y
be a morphism in K−(R) with Y ∈ Kb(proj R). If AnnR( f ) is m-primary and
f ⊗R k = 0, then f ⊗t

= 0 for some t > 0.

G(n): Let (R,m, k) be a local ring with dim R6n. Let f : X→Y be a morphism
in K−(R) with Y ∈Kb(proj R). If AnnR( f ) is m-primary and f ⊗R k = 0, then
f ⊗t
= 0 for some t > 0.

If the statement G(n) holds true for all n> 0, we have AnnR( f )=AnnR( f ⊗t)= R,
which gives a desired contradiction. Note that the statement F(0) always holds true
since a 0-dimensional reduced local ring is a field. It is thus enough to show the
implications F(n)=⇒ G(n)=⇒ F(n+ 1).

F(n)=⇒ G(n). We consider the reduced ring Rred = R/ nil R, where nil R stands
for the nilradical of R. The ideal AnnRred( f ⊗R Rred) of Rred is mRred-primary since
it contains (AnnR f )Rred. We have ( f ⊗R Rred)⊗Rred k = f ⊗R k = 0. Thus, Rred
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and f ⊗R Rred satisfy the assumption F(n), and we find an integer t > 0 such that
f ⊗t
⊗R Rred= ( f⊗R Rred)

⊗t
=0. Using Lemma 2.6(1), we get f ⊗tu

⊗RK(x, R)=0,
where x= x1, . . . , xn is a system of generators of nil R and u=2n . Choose an integer
e > 0 such that xe

i = 0 for all 16 i 6 n. Then R is a direct summand of K(xe, R)
by [Bruns and Herzog 1998, Proposition 1.6.21], whence R is in thickne K (x, R)
by Lemma 2.6(2). Finally, Lemma 2.5(2) gives rise to the equality f ⊗netu

= 0.

G(n) =⇒ F(n + 1). We may assume dim R = n + 1 > 0. Since R is reduced
and AnnR( f ) is m-primary, we can choose an R-regular element x ∈ AnnR( f ).
Then the local ring R/(x) has dimension n, the ideal AnnR/(x)( f ⊗R R/(x)) of
R/(x) is m/(x)-primary, and ( f ⊗R R/(x)) ⊗R/(x) k = 0. Hence, R/(x) and
f ⊗R R/(x) satisfy the assumption of G(n), and there is an integer t > 0 such that
( f ⊗R R/(x))⊗t

= 0. The short exact sequence 0→ R x
−→ R→ R/(x)→ 0 induces

an exact triangle R/(x)[−1] → R x
−→ R in D−(R). Tensoring Y with this gives

an exact triangle Y ⊗R R/(x)[−1] g
−→ Y x

−→ Y  in D−(R). As x f = 0, there is a
morphism h : X→ Y ⊗R R/(x)[−1] with f = gh. Now f ⊗t+1 is decomposed as

X⊗t+1 h⊗X⊗t

−−−−→ (Y ⊗R R/(x)[−1])⊗R X⊗t

(Y⊗R/(x)[−1])⊗ f ⊗t

−−−−−−−−−−−−→ (Y ⊗R R/(x)[−1])⊗R Y⊗t g⊗Y⊗t

−−−→ Y⊗t+1.

The middle morphism is identified with Y [−1]⊗R ( f ⊗R R/(x))⊗t , which is zero.
Thus, f ⊗t+1

= 0. �

Remark 2.8. (1) Theorem 2.7 extends the smash nilpotence theorem due to Hop-
kins [1987, Theorem 10] and Neeman [1992, Theorem 1.1], where X is also
assumed to belong to Kb(proj R), so that f : X→Y is a morphism in Kb(proj R).
Under this assumption one can reduce to the case where X = R, which plays
a key role in the proof of the original Hopkins–Neeman smash nilpotence
theorem.

(2) The proof of Theorem 2.7 has a similar frame to that of the original Hopkins–
Neeman smash nilpotence theorem, but we should notice that various delicate
modifications are actually made there. Indeed, Proposition 2.3 and Lemmas 2.5
and 2.6 are all established to prove Theorem 2.7, which are not necessary to
prove the original smash nilpotence theorem.

(3) The assumption in Theorem 2.7 that Y belongs to Kb(proj R) is used only to
have AnnRp( fp)= AnnR( f )p.

Our next goal is to classify cocompactly generated thick tensor ideals of D−(R).
To this end, we begin with deducing the following proposition concerning generation
of thick tensor ideals of D−(R), which will play an essential role throughout the
rest of the paper.
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Proposition 2.9. Let X be an object of D−(R), and let Y be a subcategory of D−(R).
If V(Ann X)⊆ Supp Y, then X ∈ thick⊗Y.

Proof. Clearly, we may assume X 6= 0. We prove the proposition by replacing
D−(R) with K−(R). There are a finite number of prime ideals p1, . . . , pn of R such
that V(Ann X)=

⋃n
i=1 V(pi ). Since each pi is in the support of Y, we find an object

Yi ∈Y with pi ∈ Supp Yi . All pi are in the support of Y := Y1⊕ · · ·⊕Yn ∈ K
−(R).

Choose an integer t with p1, . . . , pn ∈
⋃

i>t SuppHi (Y ), and let Y ′ = (· · · →
0→ 0→ Y t

→ Y t+1
→ · · · ) ∈ Kb(proj R) be the truncated complex of Y . Then

V(Ann X) is contained in Supp Y ′. Let f : Y ′ → Y be the natural morphism,
and let φ : R → HomR(Y ′, Y ) be the composition of the homothety morphism
R→ HomR(Y, Y ) and HomR( f, Y ) : HomR(Y, Y )→ HomR(Y ′, Y ). There is an
exact triangle Z ψ

−→ R φ
−→ HomR(Y ′, Y ) in K−(R). We establish two claims.

Claim 1. Let 8 : R→ C be a nonzero morphism in K−(R). If R is a field, then 8
is a split monomorphism.

Proof. Since C is isomorphic to H(C) in K−(R), we may assume that the differentials
of C are zero. As z :=80(1) is nonzero, we can construct a chain map 9 : C→ R
with 90(z)= 1 and 9 i

= 0 for all i 6= 0. It then holds that 98= 1. �

Claim 2. The morphism φ⊗R κ(p) in K−(κ(p)) is a split monomorphism for each
p ∈ V(Ann X).

Proof. Set S =
⋃

i>t SuppHi (Y ); note that this contains V(Ann X). We prove the
stronger statement that φ⊗ κ(p) is a split monomorphism for each p ∈ S. Since
Y ′ is a perfect complex, there are natural isomorphisms HomR(Y ′, Y )⊗ κ(p) ∼=
HomR(Y ′, Y ⊗κ(p))∼=Homκ(p)(Y ′⊗κ(p), Y ⊗κ(p)), which says that φ⊗κ(p) is
identified with the natural morphism κ(p)→ Homκ(p)(Y ′⊗ κ(p), Y ⊗ κ(p)). This
induces a map H0(φ⊗κ(p)) : κ(p)→HomK−(κ(p))(Y ′⊗κ(p), Y ⊗κ(p)), sending 1
to f ⊗ κ(p). If f ⊗ κ(p) = 0 in K−(κ(p)), then we see that H>t(Y ⊗ κ(p)) = 0,
contradicting the fact that p ∈ S. Thus, H0(φ⊗κ(p)) is nonzero, and so is φ⊗κ(p).
Applying Claim 1 completes the proof. �

Claim 2 implies ψ⊗R κ(p)= 0 for all p∈V(Ann X). Using Theorem 2.7 for the
morphism ψ⊗R (R/Ann X) in K−(R/Ann X), we have ψ⊗m

⊗R (R/Ann X)= 0
for some m > 0. Lemma 2.6(1) shows

0= ψ⊗u
⊗R K(x, R) : Z⊗u

⊗K(x, R)→ K(x, R), (2.9.1)

where x = x1, . . . , xr is a system of generators of the ideal Ann X , and u = 2r m.
For each i > 0, let Wi be the cone of the morphism ψ⊗i

: Z⊗i
→ R. Applying the

octahedral axiom to the compositionψ◦(ψ⊗i
⊗Z)=ψ⊗i+1, we get an exact triangle

Wi ⊗ Z→Wi+1→W1 in K−(R). As W1 ∼=HomR(Y ′, Y ) and Y ′ ∈ Kb(proj R),
we see that W1 is in thick Y . Using the triangle, we inductively observe that Wi
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belongs to thick⊗ Y for all i > 0, and so does Wu⊗K(x, R). It follows from (2.9.1)
that K(x, R) is a direct summand of Wu⊗K(x, R), and therefore, K(x, R) belongs
to thick⊗ Y .

There is an exact triangle R
xi
−→ R→ K(xi , R) in K−(R) for each 16 i 6 r .

Tensoring X with this and using the fact that each xi kills X , we see that X is a direct
summand of X ⊗K(x, R). Consequently, X belongs to thick⊗ Y . By construction
Y is in thickY, and hence, X belongs to thick⊗Y. �

Remark 2.10. (1) Proposition 2.9 extends Neeman’s result [1992, Lemma 1.2],
where both X and Y are contained in Kb(proj R) (and Y is assumed to consist
of a single object).

(2) Proposition 2.9 is no longer true if we replace V(Ann X) with Supp X , or if
we replace Supp Y with V(Ann Y). This will be explained in Remarks 6.7(1)
and 7.15.

The following result is a consequence of Proposition 2.9, which will often be
used later.

Corollary 2.11. Let X be a thick ⊗-ideal of D−(R). Let I be an ideal of R and
x = x1, . . . , xn a system of generators of I . Then there are equivalences

V(I )⊆ Supp X ⇐⇒ R/I ∈ X ⇐⇒ K(x, R) ∈ X.

Proof. By Proposition 2.3(3), we have that Supp R/I = V(Ann R/I ) = V(I ) =
V(Ann K(x, R))= Supp K(x, R). The assertion is shown by combining this with
Proposition 2.9. �

Now we can give a complete classification of the cocompactly generated thick
tensor ideals of D−(R), using Proposition 2.9. For each subset S of Spec R, we set
〈S〉 = thick⊗{R/p | p ∈ S}.

Theorem 2.12. The assignments X 7→ Supp X and 〈W 〉 7→W make mutually
inverse bijections

{Cocompactly generated thick ⊗-ideals of D−(R)}

� {Specialization-closed subsets of Spec R}.

Proof. Proposition 1.10(2) shows that the map X 7→ Supp X is well defined and that
for a specialization-closed subset W of Spec R the equality W = Supp〈W 〉 holds.
It remains to show that for any cocompactly generated thick ⊗-ideal X of D−(R)
one has X= 〈Supp X〉. Proposition 2.9 implies that X contains 〈Supp X〉. Since X

is cocompactly generated, there is a subcategory C of Db(R) with X= thick⊗ C by
Proposition 2.1. Thus, it suffices to prove that each M ∈ C belongs to 〈Supp X〉.
The complex M belongs to thick H(M) as M ∈ Db(R), and the finitely generated
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module H(M) has a finite filtration each of whose subquotients has the form R/p
with p ∈ SuppH(M). Hence, M is in 〈Supp M〉, and we are done. �

Let us give several applications of our Theorem 2.12.

Corollary 2.13. (1) Let C be a subcategory of Db(R). Then thick⊗
D−(R) C consists

of the complexes X ∈ D−(R) with V(Ann X) ⊆ Supp C. In particular, those
complexes X form a thick ⊗-ideal of D−(R).

(2) Let I be an ideal of R. Then thick⊗
D−(R)(R/I ) consists of the complexes

X ∈ D−(R) with I ⊆
√

Ann X.

(3) Let W be a specialization-closed subset of Spec R. Then 〈W 〉 consists of the
complexes X ∈ D−(R) such that V(Ann X)⊆W .

(4) Let X,Y be thick subcategories in Db(R). Then thick⊗ X = thick⊗Y if and
only if Supp X= Supp Y.

Proof. (1) Let X be the subcategory of D−(R) consisting of objects X ∈D−(R) with
V(Ann X)⊆ Supp C. Proposition 2.9 says that thick⊗ C contains X. Propositions
1.10(2) and 2.1 and Theorem 2.12 yield thick⊗ C= 〈Supp(thick⊗ C)〉 = 〈Supp C〉.
For each p ∈ Supp C, the set V(Ann R/p)= V(p) is contained in Supp C, whence
R/p is in X. Hence, thick⊗ C is contained in X, and we get the equality thick⊗ C=X.

(2) Applying (1) to C= {R/I }, we immediately obtain the assertion.

(3) Setting C = {R/p | p ∈ W } ⊆ Db(R), we have Supp C = W . The assertion
follows from (1).

(4) Let C be either X or Y. By Proposition 2.1 the thick ⊗-ideal thick⊗ C is
cocompactly generated, and Supp(thick⊗ C)= Supp C by Proposition 1.10(2). The
assertion now follows from Theorem 2.12. �

We obtain the following one-to-one correspondence by combining our Theorem
2.12 with the celebrated Hopkins–Neeman classification theorem [Neeman 1992,
Theorem 1.5].

Corollary 2.14. The assignments X 7→ X ∩ Kb(proj R) and thick⊗Y 7→Y make
mutually inverse bijections

{Cocompactly generated thick ⊗-ideals of D−(R)}

� {Thick subcategories of Kb(proj R)}.

In particular, all cocompactly generated thick ⊗-ideals of D−(R) are compactly
generated.

Proof. It is directly verified and follows from Proposition 2.1 that the assignments
X 7→ X∩Kb(proj R) and thick⊗Y 7→Y, respectively, make well defined maps. It
follows from [Neeman 1992, Theorem 1.5] that
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(#) the assignments X 7→ Supp X and W 7→ Supp−1
Kb(proj R)(W ) := Supp−1 W ∩

Kb(proj R) make mutually inverse bijections between the thick subcategories
of Kb(proj R) and the specialization-closed subsets of Spec R.

In view of Theorem 2.12 and (#), we only have to show that

(a) Supp−1
Kb(proj R)(Supp X)= X∩Kb(proj R) for any cocompactly generated thick

⊗-ideal X of D−(R), and

(b) 〈Supp Y〉 = thick⊗Y for any thick subcategory Y of Kb(proj R).

Using Propositions 2.1 and 1.10(2), we see that 〈Supp Y〉 and thick⊗Y are
cocompactly generated thick⊗-ideals of D−(R)whose supports are equal to Supp Y.
Now Theorem 2.12 shows the statement (b).

Clearly, Supp(X ∩ Kb(proj R)) is contained in Supp X. Take a prime ideal
p ∈ Supp X, and let x be a system of generators of p. Then V(Ann K(x, R)) =
Supp K(x, R)=V(p)⊆Supp X by Proposition 2.3(3), and K(x, R)∈X∩Kb(proj R)
by Proposition 2.9. It follows that p ∈ Supp K(x, R) ⊆ Supp(X ∩ Kb(proj R)).
Thus, we get Supp(X∩Kb(proj R))= Supp X, and obtain Supp−1

Kb(proj R)(Supp X)=

Supp−1
Kb(proj R)(Supp(X∩Kb(proj R))) = X∩Kb(proj R), where the last equality is

shown by (#). Now the statement (a) is proved. �

Remark 2.15. Corollary 2.14 in particular gives a classification of the compactly
generated thick ⊗-ideals of D−(R). This itself can also be deduced as follows. Let
X,Y be thick subcategories of Kb(proj R) with Supp(thick⊗ X)= Supp(thick⊗Y).
Then Supp X= Supp Y by Proposition 1.10(2), and the Hopkins–Neeman theorem
yields X= Y. Hence, thick⊗ X= thick⊗Y.

The essential benefit that Corollary 2.14 produces is the classification of the
cocompactly generated thick ⊗-ideals of D−(R). This should not follow from
the Hopkins–Neeman theorem or other known results, but requires the arguments
established in this section so far (especially, the generalized smash nilpotence
Theorem 2.7). A compactly generated thick tensor ideal of D−(R) is clearly co-
compactly generated by Proposition 2.1, but the converse (shown in Corollary 2.14)
should be rather nontrivial.

In view of Corollary 2.14 and Proposition 2.1, we obtain the following result
and definition.

Corollary 2.16. The following four conditions are equivalent for a thick ⊗-ideal X

of D−(R).

• X is compactly generated.

• X is cocompactly generated.

• X is generated by objects in Kb(proj R).

• X is generated by objects in Db(R).
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Definition 2.17. Let X be a thick ⊗-ideal of D−(R). We say that X is compact if
it satisfies one (hence all) of the equivalent conditions in Corollary 4.19.

Next, for two thick ⊗-ideals X,Y of D−(R) we define the thick ⊗-ideals X∧Y

and X∨Y by

X∧Y= thick⊗{X ⊗L
R Y | X ∈ X, Y ∈ Y}, X∨Y= thick⊗(X∪Y).

These two operations yield a lattice structure in the compact thick⊗-ideals of D−(R):

Proposition 2.18. (1) Let A and B be specialization-closed subsets of Spec R.
One then has equalities

〈A〉 ∧ 〈B〉 = 〈A∩ B〉, 〈A〉 ∨ 〈B〉 = 〈A∪ B〉.

(2) The set of compact thick⊗-ideals of D−(R) is a lattice with meet ∧ and join ∨.

Proof. (1) It is evident that the second equality holds. Let us show the first one.
We claim that for two subcategories M,N of D−(R) it holds that

(thick⊗M)∧ (thick⊗N)= thick⊗{M ⊗L
R N | M ∈M, N ∈ N}.

In fact, clearly (thick⊗M)∧ (thick⊗N) contains C := thick⊗{M ⊗L
R N | M ∈M,

N ∈ N}. For each N ∈ N, the subcategory of D−(R) consisting of objects X with
X ⊗L

R N ∈ C is a thick ⊗-ideal containing M, so contains thick⊗M. Let X be an
object in thick⊗M. Then X ⊗L

R N belongs to C for all N ∈ N. The subcategory
of D−(R) consisting of objects Y with X⊗L

R Y ∈C is a thick ⊗-ideal containing N,
so contains thick⊗N. Hence, X⊗L

R Y is in C for all X ∈ thick⊗M and Y ∈ thick⊗N,
and the claim follows.

Using the claim, we see that 〈A〉 ∧ 〈B〉 = thick⊗{R/p⊗L
R R/q | p ∈ A, q ∈ B}.

Therefore,

Supp(〈A〉 ∧ 〈B〉)= Supp{R/p⊗L
R R/q | p ∈ A, q ∈ B}

=

⋃
p∈A, q∈B

Supp(R/p⊗L
R R/q)=

⋃
p∈A, q∈B

(V(p)∩V(q))

= A∩ B = Supp〈A∩ B〉

by Proposition 1.10(2), Lemma 1.9(4), and the assumption we made that A, B are
specialization-closed. Theorem 2.12 implies that 〈A〉 ∧ 〈B〉 = 〈A∩ B〉.

(2) Let X,Y be compact thick ⊗-ideals of D−(R). Theorem 2.12 implies that
X= 〈Supp X〉 and Y= 〈Supp Y〉, and Supp X and Supp Y are specialization-closed.
It follows from (1) that X∧Y=〈Supp X∩Supp Y〉 and X∨Y=〈Supp X∪Supp Y〉,
which are compact. It is seen by definition that any thick ⊗-ideal containing both
X and Y contains X∨Y. Let Z be a compact thick ⊗-ideal contained in both X

and Y. By Theorem 2.12 again we get Z= 〈Supp Z〉. Since Supp Z is contained in
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Supp X∩ Supp Y, we have that Z is contained in X∧Y. These arguments prove
the assertion. �

Note that the specialization-closed subsets of Spec R form a lattice with meet ∩
and join ∪. As an immediate consequence of this fact and Proposition 2.18(2), we
obtain a refinement of Theorem 2.12:

Theorem 2.19. The assignments X 7→ Supp X and 〈W 〉 7→W induce a lattice
isomorphism

{Compact thick ⊗-ideals of D−(R)} ∼= {Specialization-closed subsets of Spec R}.

Restricting to the artinian case, we get a complete classification of thick tensor
ideals of D−(R).

Corollary 2.20. Let R be an artinian ring. Then the following statements are true.

(1) All the thick ⊗-ideals of D−(R) are compact.

(2) The assignments X 7→ Supp X and 〈S〉 7→S induce a lattice isomorphism

{Thick ⊗-ideals of D−(R)} ∼= {Subsets of Spec R}.

Proof. (1) Take any thick ⊗-ideal X of D−(R). We want to show X = 〈Supp X〉.
Corollary 2.11 implies that X contains 〈Supp X〉. To show the opposite inclusion,
we may assume that X consists of a single object X . Let m1, . . . ,ms,ms+1, . . . ,mn

be the maximal ideals of R with Supp X = {m1, . . . ,ms}. Find an integer t > 0
with (m1 · · ·mn)

t
= 0. The Chinese remainder theorem yields an isomorphism

R ∼= R/mt
1⊕ · · ·⊕ R/mt

n of R-modules. Tensoring X , we obtain an isomorphism
X ∼= (X⊗L

R R/mt
1)⊕· · ·⊕(X⊗

L
R R/mt

n). Lemma 1.9(4) gives Supp(X⊗L
R R/mt

i )=

Supp X ∩ {mi }, which is an empty set for s + 1 6 i 6 n. For such an i we have
X ⊗L

R R/mt
i = 0 by Remark 1.8, and get X ∼= (X ⊗L

R R/mt
1)⊕· · ·⊕ (X ⊗

L
R R/mt

s).
It follows that X is in thick⊗{R/mt

1, . . . , R/mt
s}, which is the same as 〈Supp X〉 by

Corollary 2.13.

(2) Since all prime ideals of R are maximal, every subset of Spec R is specialization-
closed. (A more general statement will be given in Lemma 4.6.) The assertion
follows from (1) and Theorem 2.19. �

3. Correspondence between the Balmer and Zariski spectra

In this section, we construct a pair of maps between the Balmer spectrum SpcD−(R)
and the Zariski spectrum Spec R, which will play a crucial role in later sections.
First of all, let us recall the definitions of a prime thick tensor ideal of a tensor
triangulated category and its Balmer spectrum.
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Definition 3.1. Let T be an essentially small tensor triangulated category. A thick
⊗-ideal P of T is called prime provided that P 6= T and if X ⊗ Y is in P, then so
is either X or Y . The set of prime thick ⊗-ideals of T is denoted by Spc T and
called the Balmer spectrum of T.

Here is an example of a prime thick tensor ideal of D−(R).

Example 3.2. When R is local, the zero subcategory 0 of D−(R) is a prime thick
⊗-ideal. In fact, it is easy to verify that 0 is a thick ⊗-ideal of D−(R). (This also
follows from Remark 1.8 and Proposition 1.10(1).) If X, Y are objects of D−(R)
with X ⊗L

R Y = 0, then either X = 0 or Y = 0 by Lemma 1.9(4).

Now we introduce the following notation.

Notation 3.3. For a prime ideal p of R, we denote by S(p) the subcategory of
D−(R) consisting of complexes X with Xp

∼= 0 in D−(Rp).

The subcategory S(p) is always a prime thick tensor ideal:

Proposition 3.4. Let p be a prime ideal of R. Then S(p) is a prime thick ⊗-ideal
of D−(R) satisfying

Supp S(p)= {q ∈ Spec R | q* p}.

Proof. Since S(p) does not contain R, it is not equal to D−(R). Note that S(p)=

Supp−1({p}{). Using Lemma 1.9(4) and Proposition 1.10(1), we observe that S(p)

is a prime thick ⊗-ideal of D−(R).
Fix a prime ideal q of R. If q is in Supp S(p), then there is a complex X ∈ S(p)

with q ∈ Supp X , and it follows that Xp = 0 6= Xq. If q is contained in p, then
we have Xq = (Xp)q and get a contradiction. Therefore, q is not contained in p.
Conversely, assume this. Take a system of generators x = x1, . . . , xn of q, and
put K = K(x, R). Then we have Kq 6= 0 = Kp by Proposition 2.3(3). Hence, K
belongs to S(p) and q is in Supp K , which implies q ∈ Supp S(p). We thus obtain
the equality in the proposition. �

As an easy consequence of the above proposition, we get another example of a
prime thick tensor ideal.

Corollary 3.5. Let R be an integral domain of dimension one. It then holds that
D−

fl (R)=S((0)), where (0) stands for the zero ideal of R. Hence, D−
fl (R) is a prime

thick ⊗-ideal of D−(R).

Proof. For a complex X ∈ D−(R) it holds that

X ∈ D−
fl (R) ⇐⇒ `(Hi X) <∞ for all i

⇐⇒ Hi X(0) = 0 for all i ⇐⇒ X(0) = 0 ⇐⇒ X ∈ S((0)),
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where the second equivalence follows from the fact that Spec R = {(0)} ∪Max R.
This shows D−

fl (R)= S((0)). Proposition 3.4 implies that S((0)) is prime, which
gives the last statement of the corollary. �

Remark 3.6. Corollary 3.5 is no longer valid if we remove the assumption that R
is an integral domain. More precisely, the assertion of the corollary is not true even
if R is reduced. In fact, consider the ring R = k[[x, y]]/(xy), where k is a field.
Then R is a 1-dimensional reduced local ring. It is observed by Proposition 2.3(3)
that the Koszul complexes K(x, R),K(y, R) are outside D−

fl (R), while the complex
K(x, R)⊗L

R K(y, R)=K(x, y, R) is in D−
fl (R). This shows that D−

fl (R) is not prime.

We have constructed from each prime ideal p of R the prime thick tensor ideal
S(p) of D−(R). Now we are concerned with the opposite direction; that is, we
construct from a prime thick tensor ideal of D−(R) a prime ideal of R, which is
done in the following proposition.

Proposition 3.7. Let P be a prime thick ⊗-ideal of D−(R). Let K be the set of
ideals I of R such that V(I ) is not contained in Supp P. Then K has the maximum
element P with respect to the inclusion relation, and P is a prime ideal of R.

Proof. We claim that for ideals I, J of R, if Supp P contains V(I + J ), then it con-
tains either V(I ) or V(J ). Indeed, let x= x1, . . . , xa and y= y1, . . . , yb be systems
of generators of I and J , respectively. Corollary 2.11 yields that K(x, y, R) is in P.
There is an isomorphism K(x, R)⊗L

R K( y, R)∼=K(x, y, R) of complexes, whence
K(x, R)⊗L

R K( y, R) belongs to P. Since P is prime, it contains either K(x, R) or
K( y, R). Thus, Supp P contains either V(I ) or V(J ) by Corollary 2.11 again.

The claim says that K is closed under sums of ideals of R. Taking into account
that R is noetherian, we see that K has the maximum element P with respect to the
inclusion relation. There is a filtration 0=M0 ( M1 ( · · ·( Mt = R/P of submod-
ules of the R-module R/P such that for every 16 i 6 t one has Mi/Mi−1 ∼= R/pi

with some pi ∈ SuppR R/P , whence each pi contains P . Suppose that P is not a
prime ideal of R. Then the pi strictly contain P , and the maximality of P shows
that Supp P contains V(pi ). There is an equality SuppR R/P =

⋃t
i=1 Supp R/pi ,

or equivalently, V(P)=
⋃t

i=1 V(pi ). It follows that Supp P contains V(P), which
is a contradiction. Consequently, P is a prime ideal of R. �

Thus, we have got two maps in the mutually inverse directions, between Spec R
and SpcD−(R):

Notation 3.8. Let P be a prime thick ⊗-ideal of D−(R). With the notation of
Proposition 3.7, we set I(P) = K and s(P) = P . In view of Proposition 3.4, we
obtain a pair of maps

S : Spec R� SpcD−(R) : s

given by p 7→ S(p) and P 7→ s(P) for p ∈ Spec R and P ∈ SpcD−(R).
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Now we compare the maps S, s, and for this recall two basic definitions from
set theory. Let f : A→ B be a map of partially ordered sets. We say that f is
order-reversing if x 6 y implies f (x)> f (y) for all x, y ∈ A. Also, we call f an
order antiembedding if x 6 y is equivalent to f (x)> f (y) for all x, y ∈ A. Note
that any order antiembedding is an injection. We regard Spec R and SpcD−(R) as
partially ordered sets with respect to the inclusion relations. The following theorem
is the main result of this section.

Theorem 3.9. The maps S : Spec R � SpcD−(R) : s are order-reversing, and
satisfy

s ·S= 1, S · s= Supp−1 Supp .

Hence, S is an order antiembedding.

Proof. Let p, q be prime ideals of R with q⊆ p. Then Proposition 3.4 shows that
q is not in Supp S(p). Hence, Xq = 0 for all X ∈ S(p), which means that S(p) is
contained in S(q). On the other hand, let P,Q be prime thick ⊗-ideals of D−(R)
with P⊆ Q. Then Supp P is contained in Supp Q, and we see from the definition
of s that s(P) contains s(Q). Therefore, the maps S, s are order-reversing.

Fix a prime ideal p of R. Then s(S(p)) is the maximum element of I(S(p)),
which consists of ideals I with V(I )* Supp S(p). This is equivalent to saying that
I ⊆ p by Proposition 3.4. Hence, s(S(p))= p.

Let P be a prime thick⊗-ideal of D−(R). Note that a prime ideal p of R belongs
to I(P) if and only if p is not in Supp P. Let X ∈ D−(R) be a complex with
Xs(P) = 0. If p is a prime ideal of R with Xp 6= 0, then p is not contained in s(P),
and p must not belong to I(P), which means p ∈ Supp P. Therefore, Supp X is
contained in Supp P, and we obtain S(s(P)) ⊆ Supp−1 Supp P. Conversely, let
X ∈ D−(R) be a complex with Supp X ⊆ Supp P. Since s(P) is in I(P), it does
not belong to Supp P. Hence, s(P) is not in Supp X , which means Xs(P) = 0. We
thus conclude that S(s(P))= Supp−1 Supp P.

The last assertion is shown by using the equality p= s(S(p)) for all prime ideals
p of R. �

The above theorem gives rise to several corollaries, which will often be used
later. The rest of this section is devoted to stating and proving them.

Corollary 3.10. Let p be a prime ideal of R, and let P a prime thick ⊗-ideal of
D−(R). It holds that

p⊆ s(P) ⇐⇒ R/p /∈ P ⇐⇒ p /∈ Supp P ⇐⇒ P⊆ S(p).

In particular, s(P) is the maximum element of (Supp P){ with respect to the inclu-
sion relation.
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Proof. The second equivalence follows from Corollary 2.11, while the third one
is trivial. If p /∈ Supp P, then p⊆ s(P). If this is the case, then S(p)⊇ S(s(P))=

Supp−1 Supp P⊇ P by Theorem 3.9. �

Corollary 3.11. For two prime thick ⊗-ideals P,Q of D−(R) one has

s(P)⊆ s(Q) ⇐⇒ Supp P⊇ Supp Q, s(P)= s(Q) ⇐⇒ Supp P= Supp Q.

Proof. Theorem 3.9 and Proposition 1.10(1) yield the first equivalence, which
implies the second one. �

Here we introduce two notions of thick tensor ideals, which will play main roles
in the rest of this paper.

Definition 3.12. (1) For a thick⊗-ideal X of D−(R) we denote by
√

X the radical
of X, that is, the subcategory of D−(R) consisting of objects M such that the
n-fold tensor product M ⊗L

R · · · ⊗
L
R M belongs to X for some n > 1.

(2) A thick ⊗-ideal X of D−(R) is called radical if X =
√

X. Any prime thick
⊗-ideal is radical.

(3) A thick ⊗-ideal X of D−(R) is called tame if one can write X= Supp−1 S for
some subset S of Spec R. The set of tame prime thick ⊗-ideals of D−(R) is
denoted by tSpcD−(R).

Remark 3.13. For each subcategory X of D−(R) the following are equivalent:

(1) X is a tame thick ⊗-ideal of D−(R),
(2) X= Supp−1 S for some subset S of Spec R, and
(3) X= Supp−1 W for some specialization-closed subset W of Spec R.

This is a direct consequence of Proposition 1.10(1).

The following corollary of Theorem 3.9 gives an explicit description of tame
prime thick tensor ideals.

Corollary 3.14. tSpcD−(R)= Im S= {S(p) | p ∈ Spec R}.

Proof. For a prime ideal p of R, we have S(p)= SsS(p)= Supp−1(Supp S(p)) by
Theorem 3.9, which shows that the prime thick ⊗-ideal S(p) of D−(R) is tame. On
the other hand, let P be a tame prime thick ⊗-ideal of D−(R). Using Theorem 3.9
and Proposition 1.10, we get S(s(P))= Supp−1(Supp P)= P. �

Here is one more application of Theorem 3.9, giving a criterion for a thick tensor
ideal to be prime.

Corollary 3.15. Let W be a specialization-closed subset of Spec R. The following
are equivalent:

(1) the tame thick ⊗-ideal Supp−1 W of D−(R) is prime,
(2) there exists a prime ideal p of R such that W = Supp S(p),
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(3) there exists a prime thick ⊗-ideal P of D−(R) such that W = Supp P, and
(4) the set W { has a unique maximal element with respect to the inclusion relation.

Proof. (1) =⇒ (2). By Corollary 3.10, the complement of W = Supp(Supp−1 W )

(see Proposition 1.10(2)) has the maximum element p := s(Supp−1 W ). Using
Theorem 3.9, we obtain W = Supp S(p).

(2)=⇒ (3). Take P=S(p), which is a prime thick⊗-ideal of D−(R) by Proposition
3.4.

(3) =⇒ (4). This implication follows from Corollary 3.10.

(4) =⇒ (1). Let p be a unique maximal element of W {. We claim that there is an
equality W = Supp S(p). Indeed, Supp S(p) consists of the prime ideals q of R not
contained in p by Proposition 3.4. Now fix a prime ideal q of R. Suppose that q
is in W . If q is contained in p, then p belongs to W as W is specialization-closed.
This contradicts the choice of p, whence q belongs to Supp S(p). Conversely, if q
is not in W , then q is in W {, and the choice of p shows that q is contained in p.
Thus, the claim follows. Applying Theorem 3.9, we obtain Supp−1 W = S(p) and
this is a prime thick ⊗-ideal of D−(R). �

4. Topological structures of the Balmer spectrum

In this section, we study various topological properties of the maps S, s defined in
the previous section, and explore the structure of the Balmer spectrum SpcD−(R)
as a topological space. We begin with recalling the definition of the topology which
the Balmer spectrum possesses.

Definition 4.1. Let T be an essentially small tensor triangulated category.

(1) For an object X ∈ T the Balmer support of X , denoted by Spp X , is defined
as the set of prime thick ⊗-ideals of T not containing X . We set U(X) =
(Spp X){ = Spc T \ Spp X .

(2) The set Spc T is a topological space with open basis {U(X) | X ∈ D−(R)}
[Balmer 2005, Definition 2.1].

Therefore, SpcD−(R) is a topological space. We regard tSpcD−(R) as a subspace
of SpcD−(R) by the relative topology.

We first consider a direct sum decomposition of the Balmer spectrum.

Proposition 4.2. There is a direct sum decomposition of sets

SpcD−(R)=
∐

p∈Spec R

s−1(p),

where s−1(p) := {P ∈ SpcD−(R) | s(P) = p} = {P ∈ SpcD−(R) | Supp P =

{q ∈ Spec R | q* p}}.
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Proof. Theorem 3.9 says that the map s is surjective. Using this, we easily get the di-
rect sum decomposition. Applying Theorem 3.9, Corollary 3.11, and Proposition 3.4,
we observe that for any p ∈ Spec R and P ∈ SpcD−(R) one has s(P) = p if and
only if Supp P= {q ∈ Spec R | q* p}. �

Next we investigate the dimension of the Balmer spectrum. The (Krull) dimension
of a topological space X , denoted by dim X , is defined to be the supremum of
integers n > 0 such that there exists a chain Z0 ( Z1 ( · · · ( Zn of nonempty
irreducible closed subsets of X . (Recall that a subset of X is called irreducible if it
cannot be written as a union of two nonempty proper closed subsets.)

Proposition 4.3. (1) Let T be an essentially small ⊗-triangulated category. The
dimension of Spc T is equal to the supremum of integers n > 0 such that there
is a chain P0 ( P1 ( · · ·( Pn in Spc T.

(2) There is an inequality

dim(SpcD−(R))> dim R.

Proof. Applying [Balmer 2005, Propositions 2.9 and 2.18] shows (1), while (2)
follows from (1) and Theorem 3.9. �

Remark 4.4. We will see that the inequality in Proposition 4.3(2) sometimes
becomes an equality, and sometimes becomes a strict inequality. See Corollaries 4.16
and 7.13 and Theorem 7.11.

Let P,Q be prime thick ⊗-ideals of D−(R). We write P ∼ Q if Supp P =

Supp Q. Then ∼ defines an equivalence relation on SpcD−(R). We denote by
SpcD−(R)/Supp the quotient topological space of SpcD−(R) by the equiva-
lence relation ∼, so that a subset U of SpcD−(R)/Supp is open if and only if
π−1(U ) is open in SpcD−(R), where π : SpcD−(R)→ SpcD−(R)/Supp stands
for the canonical surjection. By definition, π is a continuous map. Denote by
θ : tSpcD−(R)→ SpcD−(R) the inclusion map, which is continuous. Now we
can state our first main result in this section.

Theorem 4.5. (1) The set tSpcD−(R) is dense in SpcD−(R).
(2) The composition πθ is a continuous bijection.
(3) The maps S, s induce the bijections S′, S̃, s′, s̃ which make the following

diagram commute:

tSpcD−(R)

θ
��

s′

))

Spec R
S̃

))

S
//

S′
55

SpcD−(R)

π
��

s
// Spec R

SpcD−(R)/Supp

s̃
55
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In particular, one has sS= s′S′ = s̃S̃= 1.
(4) The maps s, s′, s̃ are continuous. The maps S′, S̃ are open and closed.

Proof. First of all, recall from Corollary 3.14 that the image of S coincides with
tSpcD−(R).

(1) Let X be a complex in D−(R), and suppose that U := U(X) is nonempty.
Then U contains a prime thick ⊗-ideal P of D−(R), and X is in P. It is seen
from Theorem 3.9 that P is contained in S(s(P)), and hence, X is in S(s(P)).
Therefore, S(s(P)) belongs to the intersection U ∩ tSpcD−(R), and we have
U ∩ tSpcD−(R) 6=∅. This shows that any nonempty open subset of SpcD−(R)
meets tSpcD−(R).

(2) Since π and θ are continuous, so is πθ . Let P,Q be tame prime thick ⊗-ideals
of D−(R). Then P=Ss(P) and Q=Ss(Q) by Theorem 3.9. One has P∼Q if and
only if s(P)= s(Q) by Corollary 3.11, if and only if P= Q by Theorem 3.9 again.
This shows that the map πθ is well defined and injective. To show the surjectivity,
pick a prime thick⊗-ideal R of D−(R). It is seen from Proposition 1.10(1) that R∼

Supp−1 Supp R, and the latter thick⊗-ideal is tame. Consequently, πθ is a bijection.

(3) Using Theorem 3.9, we obtain the bijection S′ satisfying θS′ = S. Set S̃= πS

and s′ = sθ . Define the map s̃ : SpcD−(R)/Supp→ Spec R by s̃([P])= s(P) for
P∈SpcD−(R). Corollary 3.11 guarantees that this is well defined, and by definition
we have s̃π = s. Thus, the commutative diagram in the assertion is obtained, which
and Theorem 3.9 yield 1= sS= s′S′ = s̃S̃. It follows that the map S′ is bijective,
and so is s′. We have S̃= (πθ)S′, which is bijective by (2), and so is s̃.

(4) Let P ∈ SpcD−(R). An ideal I of R is contained in s(P) if and only if V(I ) is
not contained in Supp P, if and only if R/I does not belong to P by Corollary 2.11.
We obtain an equality

s−1(V(I ))= Spp R/I,

which shows that s is a continuous map. Since the map θ is continuous, so is the
composition s′ = sθ . The equality s′ =S′−1 from (3) and the continuity of s′ imply
that the map S′ is open and closed.

Fix an ideal I of R. A prime ideal p of R is in D(I ) if and only if S(p) is in
U(R/I ). This shows S(D(I ))= U(R/I )∩ tSpcD−(R), and we get π−1S̃(D(I ))=
π−1πS(D(I )) = π−1π(U(R/I ) ∩ tSpcD−(R)). Let P ∈ SpcD−(R) and Q ∈
tSpcD−(R). One has π(P) = π(Q) if and only if Supp P = Supp Q, if and only
if Supp−1 Supp P = Q since Supp−1 Supp Q = Q by Proposition 1.10. Hence, P

is in π−1π(U(R/I ) ∩ tSpcD−(R)) if and only if Supp−1 Supp P contains R/I
(note here that Supp−1 Supp P is in tSpcD−(R) by Theorem 3.9), if and only if
Supp P contains V(I ), if and only if R/I belongs to P by Corollary 2.11. Thus,
we obtain π−1S̃(D(I ))= U(R/I ), which shows that S̃(D(I )) is an open subset of
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SpcD−(R)/Supp. Therefore, S̃ is an open map. This map is also closed since it
is bijective. Combining the equality s̃= S̃−1 from (3) and the openness of S̃, we
observe that s̃ is a continuous map. �

The assertions of the above theorem naturally lead us to ask when the maps in the
diagram in the theorem are homeomorphisms. We start by establishing a lemma.

Lemma 4.6. The following are equivalent:

(1) the set Spec R is finite,

(2) there are only finitely many specialization-closed subsets of Spec R,

(3) there are only finitely many closed subsets of Spec R, and

(4) every specialization-closed subset of Spec R is closed.

Proof. (1) =⇒ (2). If Spec R is finite, then there are only finitely many subsets
of Spec R.

(2) =⇒ (3). This implication follows from the fact that any closed subset is
specialization-closed.

(3) =⇒ (4). Every specialization-closed subset is a union of closed subsets. This is
a finite union by assumption, and hence, it is closed.

(4) =⇒ (1). Since Max R is specialization-closed, it is closed by our assumption.
Hence, Max R possesses only finitely many minimal elements with respect to the
inclusion relation, which means that it is a finite set. Therefore, the ring R is
semilocal. In particular, it has finite Krull dimension, say d .

Suppose that R possesses infinitely many prime ideals. Then there exists an
integer 06 n 6 d such that the set S of prime ideals of R with height n is infinite.
Then the specialization-closed subset W =

⋃
p∈S V(p) is not closed because S

consists of the minimal elements of W , which is an infinite set. This provides a
contradiction, and consequently, R has only finitely many prime ideals. �

Now we can prove the following theorem, which answers the question stated
just before the lemma.

Theorem 4.7. Consider the following seven conditions: (1) S is continuous, (2)
S′ is homeomorphic, (3) s′ is homeomorphic, (4) S̃ is homeomorphic, (5) s̃ is
homeomorphic, (6) πθ is homeomorphic, and (7) Spec R is finite. Then the following
implications hold:

(1) ks +3 (2) ks +3 (3) ks +3 (5+ 6) ks +3

u} !)

(7)

(4) ks +3 (5) (6)
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Proof. In this proof we tacitly use Theorem 4.5.

(2)⇐⇒ (3). Note that S′ and s′ are mutually inverse bijections. The equivalence
follows from this.

(4)⇐⇒ (5). As S̃, s̃ are mutually inverse bijections, we have the equivalence.

(7)=⇒ (2). For each X ∈D−(R)we have S′−1(Spp X∩tSpcD−(R))={p ∈ Spec R |
S(p) ∈ Spp X} = Supp X . As Supp X is specialization-closed, it is closed by
Lemma 4.6. Hence, the map S′ is continuous.

(2) =⇒ (1). This follows from the fact that S is the composition of the continuous
maps S′ and θ .

(1) =⇒ (7). It is easy to observe that for any complex X ∈ D−(R) one has

S−1(Spp X)= Supp X. (4.7.1)

Since S is continuous, Supp X is closed in Spec R for all X ∈ D−(R) by (4.7.1).
Suppose that Spec R is an infinite set. Then by Lemma 4.6 there is a nonclosed
specialization-closed subset W of Spec R. There are infinitely many minimal
elements of W with respect to the inclusion relation, and we can choose countably
many pairwise distinct minimal elements p1, p2, p3, . . . of W . Consider the complex
X =

⊕
∞

i=1(R/pi )[i] ∈ D−(R). Then Supp X =
⋃
∞

i=1 V(pi ) is not closed since it
has infinitely many minimal elements. This contradiction shows that Spec R is a
finite set.

(2) =⇒ (4+ 6). Since π, θ,S′ are all continuous, so is S̃= πθS′. Combining this
with the fact that S̃ is bijective and open, we see that S̃ is a homeomorphism. As
S′ is homeomorphic, so is πθ = S̃S′−1.

(4+ 6) =⇒ (2). We have S′ = (πθ)−1S̃. Since πθ and S̃ are homeomorphisms, so
is S′. �

Next we consider the maximal and minimal elements of SpcD−(R) with respect
to the inclusion relation.

Definition 4.8. Let T be an essentially small tensor triangulated category.

(1) A thick ⊗-ideal M of T is said to be maximal if M 6= T and there is no thick
⊗-ideal X of T with M ( X ( T. We denote the set of maximal thick ⊗-ideals
of T by Mx T. According to [Balmer 2005, Proposition 2.3(c)], any maximal
thick ⊗-ideal is prime, or in other words, it holds that Mx T⊆ Spc T.

(2) A prime thick ⊗-ideal P of T is said to be minimal if it is minimal in Spc T

with respect to the inclusion relation. We denote the set of minimal prime
thick ⊗-ideals of T by Mn T.
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By Proposition 4.2 the Balmer spectrum of D−(R) is decomposed into the fibers
by s : SpcD−(R)→ Spec R as a set. Concerning the fibers of maximal ideals and
minimal primes of R, we have the following:

Proposition 4.9. Let m ∈Max R and p ∈Min R. Then

min s−1(m)⊆ MnD−(R), max s−1(p)⊆ MxD−(R).

Proof. Take P ∈ min s−1(m), and let Q be a prime thick ⊗-ideal contained in P.
Then m = s(P) ⊆ s(Q) by Theorem 3.9. Since m is a maximal ideal, we get
m= s(P)= s(Q), and Q ∈ s−1(m). The minimality of P implies P= Q. Thus, the
first inclusion follows. The second inclusion is obtained similarly. �

To prove our next theorem, we establish a lemma and a proposition. Recall that
a topological space is called T1-space if every one-point subset is closed.

Lemma 4.10. (1) The subspaces Max R,Min R of Spec R are T1-spaces, so every
finite subset is closed.

(2) Let T be an essentially small ⊗-triangulated category. The subspaces Mx T,

Mn T of Spc T are T1-spaces, so every finite subset is closed.

Proof. (1) Let A be either Max R or Min R. For each p ∈ A the closure of {p} in A
is V(p)∩ A, which coincides with {p}. Hence, A is a T1-space.

(2) Let B be either Mx T or Mn T. For each P ∈ B the closure of {P} in B is
{Q ∈ B | Q ⊆ P} by [Balmer 2005, Proposition 2.9], which coincides with {P}.
Hence, B is a T1-space. �

Proposition 4.11. For each complex X ∈ D−(R) it holds that

Supp X = Spec R ⇐⇒ thick⊗ X = D−(R) ⇐⇒ Spp X = SpcD−(R).

Proof. The second equivalence follows from [Balmer 2005, Corollary 2.5]. Let us
prove the first equivalence. Proposition 1.10(2) implies Supp X = Supp(thick⊗ X),
which shows (⇐=). As for (=⇒), for every M ∈ D−(R) we have V(Ann M) ⊆
Spec R = Supp X , by which and Proposition 2.9 we get M ∈ thick⊗ X . �

Now we can prove the following theorem. This especially says that D−(R) is
“semilocal” in the sense that D−(R) admits only a finite number of maximal thick
tensor ideals. If R is an integral domain, then D−(R) is “local” in the sense that
D−(R) has a unique maximal thick tensor ideal.

Theorem 4.12. The restriction of S to Min R induces a homeomorphism

S|Min R :Min R
∼=
−→ MxD−(R).
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Proof. Let us show that there is an equality

MxD−(R)= {S(p) | p ∈Min R}. (4.12.1)

Let p1, . . . , pn be the minimal prime ideals of R.
Let M be a maximal thick ⊗-ideal of D−(R). Suppose that M is not contained

in S(pi ) for any 1 6 i 6 n. Then for each i we find an object Mi ∈ M such
that (Mi )pi is nonzero. Set M = M1⊕ · · · ⊕ Mn . This object belongs to M, and
Mpi is nonzero for all 1 6 i 6 n. Hence, Supp M contains all the pi , and we
get Supp M = Spec R because Supp M is specialization-closed. Proposition 4.11
yields thick⊗ M = D−(R), and hence, we have M= D−(R), which contradicts the
definition of a maximal thick ⊗-ideal. Thus, M is contained in S(pl) for some
16 l 6 n. The maximality of M implies that M= S(pl).

Fix an integer 1 6 i 6 n. By [Balmer 2005, Proposition 2.3(b)] there exists
a maximal thick ⊗-ideal Mi of D−(R) that contains S(pi ). Applying the above
argument to Mi , we see that Mi coincides with S(p j ) for some 16 j 6 n. Hence,
S(pi ) is contained in S(p j ), and Theorem 3.9 shows that pi contains p j . The fact that
pi , p j are minimal prime ideals of R forces us to have i = j . Therefore, we obtain
Mi = S(pi ), which especially says that S(pi ) is a maximal thick ⊗-ideal of D−(R).

Thus, we get the equality (4.12.1). This shows that the restriction of the map
S : Spec R→ SpcD−(R) to Min R gives rise to a surjection Min R→ MxD−(R).
As Theorem 3.9 says that S is an injection, the map S|Min R is a bijection. By
Lemma 4.10 we see that S|Min R is a homeomorphism. �

Theorem 4.12 yields the following result concerning the structure of the Balmer
spectrum of D−(R).

Corollary 4.13. (1) There are equalities

SpcD−(R)=
⋃

p∈Spec R

{S(p)} =
⋃

p∈Min R

{S(p)}.

(2) The topological space SpcD−(R) is irreducible if and only if so is Spec R.

Proof. (1) The inclusions SpcD−(R)⊇
⋃

p∈Spec R {S(p)}⊇
⋃

p∈Min R {S(p)} clearly
hold. Pick a prime thick ⊗-ideal P of D−(R). Then one finds a maximal thick
⊗-ideal M containing P by [Balmer 2005, Proposition 2.3(b)]. Theorem 4.12
implies that M= S(p) for some minimal prime ideal p of R, and it follows from
[Balmer 2005, Proposition 2.9] that P belongs to the closure {S(p)}.

(2) First of all, SpcD−(R) is irreducible if and only if SpcD−(R)= {P} for some
P∈SpcD−(R). In fact, the “if” part is obvious, while the “only if” part follows from
[Balmer 2005, Proposition 2.18]. By [Balmer 2005, Proposition 2.9], the set {P}
consists of the prime thick ⊗-ideals contained in P. Hence, SpcD−(R)= {P} for
some P ∈ SpcD−(R) if and only if D−(R) has a unique maximal element, which
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is equivalent to Spec R having a unique minimal element by Theorem 4.12. This is
equivalent to saying that Spec R is irreducible. �

The following theorem is opposite to Theorem 4.12. The third assertion says that
if R is local, then D−(R) is an “integral domain” in the sense that 0 is a (unique)
minimal prime thick tensor ideal of D−(R).

Theorem 4.14. (1) For every maximal ideal m of R, the subcategory S(m) is a
minimal prime thick ⊗-ideal of D−(R), or in other words, the restriction of S

to Max R induces an injection

S|Max R :Max R ↪→ MnD−(R). (4.14.1)

(2) The ring R is semilocal if and only if D−(R) has only finitely many minimal
prime thick ⊗-ideals. When this is the case, the map (4.14.1) is a homeomor-
phism.

(3) If (R,m) is a local ring, then S(m) = 0 is a unique minimal prime thick
⊗-ideal of D−(R).

Proof. (1) Let P be a prime thick ⊗-ideal of D−(R) contained in S(m). Take any
object X ∈ S(m). Then Supp(X ⊗L

R R/m)= Supp X ∩ {m} =∅ by Lemma 1.9(4).
Remark 1.8 shows X ⊗L

R R/m= 0, which belongs to P. As P is prime, either X
or R/m is in P. Since S(m) does not contain R/m, neither does P. Therefore, X
must be in P, and we obtain P= S(m). This shows that the prime thick ⊗-ideal
S(m) is minimal. Thus, S induces a map Max R → MnD−(R). The injectivity
follows from Theorem 3.9.

(2) The first assertion of the theorem implies the “if” part, and it suffices to show
that if R is semilocal, then (4.14.1) is a homeomorphism. Let us first prove the
surjectivity of the map (4.14.1). Take a minimal prime thick ⊗-ideal P of D−(R).
What we want is that there is a maximal ideal m of R such that P= S(m).

Suppose that P does not contain S(m) for all m ∈ Max R. Write Max R =
{m1, . . . ,mt }. For each 16 i 6 t we find an object X i of D−(R) with X i ∈ S(mi )

and X i /∈P. Setting X = X1⊗
L
R · · ·⊗

L
R X t , for each i we have Xmi = X1⊗

L
R · · ·⊗

L
R

(X i )mi ⊗
L
R · · ·⊗

L
R X t = 0. Hence, Xm = 0 for all m ∈Max R, which implies Xp = 0

for all p ∈ Spec R. This means that Supp X is empty, and Remark 1.8 yields X = 0.
In particular, X = X1⊗

L
R · · · ⊗

L
R X t is in P. As P is prime, it contains some Xu ,

which is a contradiction.
Consequently, P must contain S(m) for some m ∈Max R. The minimality of P

shows that P= S(m). We conclude that the map (4.14.1) is surjective, whence it is
bijective. Since the set Max R is finite, so is MnD−(R). Applying Lemma 4.10, we
observe that (4.14.1) is a homeomorphism.



Thick tensor ideals of right bounded derived categories 1711

(3) As R is a local ring with maximal ideal m, the equality S(m)= 0 holds, which
especially says that 0 is a prime thick ⊗-ideal of D−(R) by Proposition 3.4. If P is
a minimal prime thick ⊗-ideal, then P contains 0, and the minimality of P implies
P= 0. Thus, 0 is a unique minimal prime thick ⊗-ideal. �

Question 4.15. Is the map (4.14.1) bijective even if R is not semilocal?

Recall that a topological space X is called noetherian if any descending chain
of closed subsets of X stabilizes. Applying the above two theorems to the artinian
case gives rise to the following result.

Corollary 4.16. Let R be an artinian ring. Then the map S : Spec R→ SpcD−(R)
is a homeomorphism. Hence, the topological space SpcD−(R) is noetherian, and
one has dim(SpcD−(R))= dim R = 0<∞.

Proof. Since Spec R =Min R =Max R, the assertion is deduced from Theorems
4.12 and 4.14(2). �

From here we consider when D−(R) is a local tensor triangulated category. Let
us recall the definition.

Definition 4.17. (1) A topological space X is called local if for any open cover
X =

⋃
i∈I Ui of X there exists t ∈ I such that X =Ut . In particular, any local

topological space is quasicompact.

(2) An essentially small tensor triangulated category T is called local if Spc T is
a local topological space.

Remark 4.18. It is clear that the topological space Spec R is local if and only if
the ring R is local.

For an essentially small ⊗-triangulated category T the following are equivalent
[Balmer 2010a, Proposition 4.2]:

(i) T is local,

(ii) T has a unique minimal prime thick ⊗-ideal, and

(iii) the radical thick ⊗-ideal
√

0 of T is prime.

If moreover T is rigid, then the above three conditions are equivalent to

(iv) the zero subcategory 0 of T is a prime thick ⊗-ideal.

Also, it follows from [Balmer 2010a, Example 4.4] that Kb(proj R) is local if and
only if so is R.

The following result says that the same statements hold for D−(R). Also, we
emphasize that it contains the equivalent condition (4), even though D−(R) is not
rigid; see Remark 1.3.

Corollary 4.19. The following are equivalent:
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(1) the ⊗-triangulated category D−(R) is local,

(2) there is a unique minimal thick ⊗-ideal of D−(R),

(3) the radical thick ⊗-ideal
√

0 of D−(R) is prime,

(4) the zero subcategory 0 of D−(R) is a prime thick ⊗-ideal, and

(5) the ring R is local.

Proof. Combining Theorem 4.14 with the result given just before the corollary, we
observe that (1)⇐⇒ (2)⇐⇒ (3)⇐⇒ (5) =⇒ (4) holds. If 0 is prime, then it is easy
to see that

√
0= 0. Thus, (4) implies (3). �

One can indeed obtain more precise information on the structure of SpcD−(R)
than Corollary 4.19:

Proposition 4.20. One has

SpcD−(R)=
{

U(R/m)t {0} if (R,m) is local,⋃
m∈Max R U(R/m) if R is nonlocal.

If m, n are distinct maximal ideals of R, then SpcD−(R)= U(R/m)∪ U(R/n).

Proof. Suppose that (R,m, k) is a local ring. Corollary 4.19 implies that 0 is
prime, and SpcD−(R) contains U(k)∪{0}. Let P be a nonzero prime thick ⊗-ideal
of D−(R). Then there exists an object X 6= 0 in P. By Remark 1.8 the support of X
is nonempty and specialization-closed, whence contains m. Using Lemma 1.9(4),
we have Supp(X ⊗L

R k)= Supp X ∩Supp k = {m} 6=∅. Hence, X ⊗L
R k is nonzero

by Remark 1.8 again. Since X ⊗L
R k is isomorphic to a direct sum of shifts of

k-vector spaces, it contains k[n] as a direct summand for some n ∈ Z. As X ⊗L
R k

is in P, so is k. Therefore, P is in U(k), and we obtain SpcD−(R)= U(k)∪ {0}. It
is obvious that U(k)∩ {0} =∅. We conclude that SpcD−(R)= U(k)t {0}.

Now, let m and n be distinct maximal ideals of R. Applying Lemma 1.9(4),
we have Supp(R/m⊗L

R R/n) = {m} ∩ {n} = ∅, and hence, R/m⊗L
R R/n = 0 by

Remark 1.8. Therefore, we obtain U(R/m)∪ U(R/n)= U(R/m⊗L
R R/n)= U(0)=

SpcD−(R), where the first equality follows from [Balmer 2005, Lemma 2.6(e)].
Thus, the last assertion of the proposition follows, which shows the first assertion
in the nonlocal case. �

So far we have investigated the irreducible and local properties of SpcD−(R).
In general, there is no implication between the local and irreducible properties of
SpcD−(R):

Remark 4.21. If R is a local ring possessing at least two minimal prime ideals,
then SpcD−(R) is local by Corollary 4.19, but not irreducible by Corollary 4.13(2).
Similarly, if R is a nonlocal ring with unique minimal prime ideal, then SpcD−(R)
is irreducible but not local.
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5. Relationships among thick tensor ideals and specialization-closed subsets

This section compares compact, tame, and radical thick tensor ideals of D−(R), relat-
ing them to specialization-closed subsets of Spec R and tSpcD−(R) and Thomason
subsets of SpcD−(R). We start with some notation.

Definition 5.1. (1) Let T be a tensor triangulated category. Let P be a property of
thick ⊗-ideals of T. For a subcategory X of C we denote by XP the P-closure
of X, that is to say, the smallest thick ⊗-ideal of T which contains X and
satisfies the property P. Furthermore, we denote by XP the P-interior of X,
namely the largest thick ⊗-ideal of T which is contained in X and satisfies the
property P. We define these only when they exist.

(2) Let X be a topological space. Let P be a property of subsets of X . For a subset
A of X we denote by AP the P-closure of A, namely, the smallest subset of X
that contains A and satisfies P. Furthermore, we denote by AP the P-interior
of A — that is, the largest subset of X that is contained in A and satisfies P.
We define these only when they exist.

Here is a list of properties P as in the above definition which we consider:

rad= radical, tame= tame, cpt= compact, spcl= specialization-closed.

Notation 5.2. We denote by Rad, Tame, and Cpt the sets of radical, tame, and
compact thick ⊗-ideals of D−(R), respectively. Also, Spcl(Spec) and Spcl(tSpc)
stand for the sets of specialization-closed subsets of the topological spaces Spec R
and tSpcD−(R), respectively.

Our first purpose in this section is to give a certain commutative diagram of
bijections. To achieve this, we prepare several propositions. We state here two
propositions. The first one is shown by using Proposition 1.10, while the second
one is nothing but Theorem 2.19.

Proposition 5.3. There is a one-to-one correspondence Supp :Tame�Spcl(Spec) :
Supp−1.

Proposition 5.4. There is a one-to-one correspondence Supp :Cpt� Spcl(Spec) :
〈 · 〉.

Notation 5.5. For an object M of D−(R) we denote by Sp M the set of tame prime
thick⊗-ideals of D−(R) not containing M ; i.e., Sp M=Spp M∩tSpcD−(R). For a
subcategory X of D−(R) we set Sp X=

⋃
M∈X Sp M . For a subset A of SpcD−(R)

we denote by Sp−1 A the subcategory of D−(R) consisting of objects M such that
Sp M is contained in A.

The second following assertion is a variant of [Balmer 2005, Lemma 4.8].
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Lemma 5.6. (1) For a subcategory X of D−(R), the subset Sp X of tSpcD−(R)
is specialization-closed.

(2) For a subset A of tSpcD−(R) one has Sp−1 A =
⋂

P∈A{ P, where A{ =
tSpcD−(R) \ A.

(3) Let {Xλ}λ∈3 be a collection of tame thick ⊗-ideals of D−(R). Then the inter-
section

⋂
λ∈3 Xλ is also a tame thick ⊗-ideal of D−(R).

Proof. (1) We have Sp X =
⋃

X∈X Sp X , and Sp X = Spp X ∩ tSpcD−(R) is
closed in tSpcD−(R) since Spp X is closed in SpcD−(R). Therefore, Sp X is
specialization-closed in tSpcD−(R).

(2) An object X of D−(R) belongs to Sp−1 A if and only if Sp X is contained in A,
if and only if A{ is contained in (Sp X){ = {P ∈ tSpcD−(R) | X ∈P}, if and only
if X belongs to

⋂
P∈A{ P.

(3) For each λ ∈3 there is a subset Sλ of Spec R such that Xλ = Supp−1 Sλ. Then
it is clear that the equality

⋂
λ∈3 Xλ = Supp−1(⋂

λ∈3 Sλ
)

holds, which shows the
assertion. �

Using the above lemma, we obtain a bijection induced by Sp.

Proposition 5.7. There is a one-to-one correspondence Sp : Tame� Spcl(tSpc) :
Sp−1.

Proof. Fix a tame thick ⊗-ideal X of D−(R) and a specialization-closed subset
U of tSpcD−(R). Lemma 5.6(1) implies that Sp X is specialization-closed in
tSpcD−(R), that is, Sp X ∈ Spcl(tSpc). Lemma 5.6(2) implies that Sp−1 U =⋂

P∈U{ P, and each P ∈U { is a tame thick ⊗-ideal of D−(R). Hence, Sp−1 U is
also a tame thick ⊗-ideal of D−(R) by Lemma 5.6(3); namely, Sp−1 U ∈ Tame.

Let us show that Sp(Sp−1 U ) = U . It is evident that Sp(Sp−1 U ) is contained
in U . Pick any P ∈ U . Corollary 3.14 says P = S(p) for some prime ideal p
of R. Since U is specialization-closed in tSpcD−(R), the closure C of S(p) in
tSpcD−(R) is contained in U . Using [Balmer 2005, Proposition 2.9], we see that
C consists of the prime thick ⊗-ideals of the form S(q), where q is a prime ideal
of R with S(q)⊆ S(p). In view of Theorem 3.9, we have C = {S(q) | q ∈ V(p)},
and it is easy to observe that this coincides with Sp(R/p). Hence, R/p is in Sp−1 U ,
and P= S(p) belongs to Sp(Sp−1 U ). Now we obtain Sp(Sp−1 U )=U .

It remains to prove that Sp−1(Sp X)=X. We have Sp−1(Sp X)=
⋂

P∈(Sp X){ P by
Lemma 5.6(2). Fix a prime thick ⊗-ideal P of D−(R). Then P is in (Sp X){ if and
only if P is tame and P is not in Sp X. The former statement is equivalent to saying
that P= S(p) for some p ∈ Spec R by Corollary 3.14, while the latter is equivalent
to saying that X is contained in P. Hence, Sp−1(Sp X) =

⋂
p∈Spec R,X⊆S(p) S(p).

Thus, an object Y of D−(R) belongs to Sp−1(Sp X) if and only if Y belongs to S(p)

for all p ∈ Spec R with X ⊆ S(p), if and only if Yp = 0 for all p ∈ Spec R with
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Xp = 0, if and only if Supp Y is contained in Supp X, if and only if Y belongs to X

by Proposition 5.3. �

Here we consider describing rad-closures, tame-closures, and cpt-interiors, and
their supports.

Lemma 5.8. Let X be a subcategory of D−(R), and let Y be a thick ⊗-ideal
of D−(R). One has

(1) (thick⊗ X)cpt = 〈Supp X〉, Xrad
=
√
thick⊗ X, Xtame

= Supp−1 Supp X and

(2) Ycpt⊆Y⊆Yrad
⊆Ytame, Supp(Ycpt)=Supp Y=Supp(Yrad)=Supp(Ytame).

Proof. (1) It follows from [Balmer 2005, Lemma 4.2] and Remark 3.13 that
√
thick⊗ X and Supp−1 Supp X are thick⊗-ideals of D−(R), respectively. It is clear

that
√
thick⊗ X and Supp−1 Supp X are radical and tame, respectively, and contain X.

If C is a radical or tame thick ⊗-ideal of D−(R) containing X, then we have
√
thick⊗ X ⊆

√
thick⊗ C =

√
C = C or Supp−1 Supp X ⊆ Supp−1 Supp C = C by

Proposition 5.3, respectively. Thus, we obtain the two equalities Xrad
=
√
thick⊗ X

and Xtame
= Supp−1 Supp X. It remains to show the equality (thick⊗ X)cpt =

〈Supp X〉. Clearly, 〈Supp X〉 is a compact thick ⊗-ideal of D−(R). Applying
Corollary 2.11, we observe that 〈Supp X〉 is contained in thick⊗ X. Let C be a
compact thick ⊗-ideal of D−(R) contained in thick⊗ X. Then it follows from
Proposition 5.4 that C = 〈Supp C〉, which is contained in 〈Supp(thick⊗ X)〉 =

〈Supp X〉 by Proposition 1.10(2). We now conclude (thick⊗ X)cpt = 〈Supp X〉.

(2) Fix a prime ideal p of R. Proposition 3.4 says that S(p) is a prime thick ⊗-ideal
of D−(R), whence it is radical. Therefore, Yp = 0 if and only if (

√
Y)p = 0. This

shows Supp(
√

Y)= Supp Y. Hence,
√

Y is contained in Supp−1 Supp Y, meaning
that Yrad is contained in Ytame by (1). Thus, we get the inclusions Ycpt ⊆ Y ⊆

Yrad
⊆ Ytame, which implies Supp(Ycpt)⊆ Supp Y⊆ Supp(Yrad)⊆ Supp(Ytame).

By (1) and Proposition 1.10 we get Supp(Ytame) = Supp Y = Supp(Ycpt). The
equalities in the assertion follow. �

The inclusion Yrad
⊆ Ytame in Lemma 5.8 in particular says:

Corollary 5.9. Every tame thick ⊗-ideal of D−(R) is radical.

We now obtain a bijection, using the above lemma.

Proposition 5.10. There is a one-to-one correspondence ( · )tame
: Cpt� Tame :

( · )cpt.

Proof. Fix a compact thick ⊗-ideal X, and a tame thick ⊗-ideal Y of D−(R).
We have (Xtame)cpt = 〈Supp(Xtame)〉 = 〈Supp X〉 = X, where the first equal-
ity follows from Lemma 5.8(1), the second from Lemma 5.8(2), and the last
from Proposition 5.4. Also, it holds that (Ycpt)

tame
= Supp−1 Supp(Ycpt) =

Supp−1 Supp Y = Y, where the first equality follows from Lemma 5.8(1), the
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second from Lemma 5.8(2), and the last from Proposition 5.3. Thus, we obtain the
one-to-one correspondence in the proposition. �

For each subset A of Spec R, we put S(A)= {S(p) | p ∈ A}. For each subset B
of SpcD−(R), we put s(B)= {s(P) | P ∈ B}. We get another bijection.

Proposition 5.11. There exists a one-to-one correspondence S : Spcl(Spec) �
Spcl(tSpc) : s.

Proof. First of all, applying Theorem 3.9 and Corollary 3.14, we observe that

s(S(p))= p for all p ∈ Spec R,

S(s(P))= P for all P ∈ tSpcD−(R).
(5.11.1)

Fix a specialization-closed subset W of Spec R and a specialization-closed subset U
of tSpcD−(R). It follows from (5.11.1) that s(S(W ))=W and S(s(U ))=U .

Pick a prime ideal p in W . Let X be the closure of {S(p)} in tSpcD−(R). Then
X = Y ∩ tSpcD−(R), where Y is the closure of {S(p)} in SpcD−(R), and hence,

X = {P ∈ tSpcD−(R) | P⊆ S(p)} = {S(q) | q ∈ Spec R, S(q)⊆ S(p)}

= {S(q) | q ∈ V(p)} ⊆ S(W ),

where the first equality follows from [Balmer 2005, Proposition 2.9], the second
from Corollary 3.14, and the third from Theorem 3.9. The inclusion holds since W is
a specialization-closed subset of Spec R. Therefore, S(W ) is a specialization-closed
subset of tSpcD−(R); namely, S(W ) ∈ Spcl(tSpc).

Pick P ∈U . As U is a subset of tSpcD−(R), the prime thick ⊗-ideal P is tame.
Let q be a prime ideal of R containing s(P). We then get S(q) ⊆ S(s(P)) = P

by Theorem 3.9 and (5.11.1), which says that S(q) belongs to the closure of the
set {P} in tSpcD−(R) by [Balmer 2005, Proposition 2.9]. The specialization-closed
property of U implies that S(q) belongs to U . We have q = s(S(q)) by (5.11.1),
which belongs to s(U ). Consequently, the subset s(U ) of Spec R is specialization-
closed; that is, s(U ) ∈ Spcl(Spec). �

Here we note an elementary fact on commutativity of a diagram of maps.

Remark 5.12. Consider the following diagram of bijections:

A

a

��

c−1

��

B

a−1

BB

b
// C

c

\\

b−1
oo

One can choose infinitely many compositions of maps in the diagram, but once one
of them is equal to another, this triangle with edges having any direction commutes.
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To be more explicit, if c = ba for instance, then the set {1, a, a−1, b, b−1, c, c−1
}

is closed under possible compositions.

Now we can state and prove our first main result in this section.

Theorem 5.13. There is a commutative diagram of mutually inverse bijections:

Spcl(Spec)

〈 · 〉

uu

S

∼= **

Supp−1∼=

��

Cpt

∼=

Supp
55

( · )tame

∼=
))

Spcl(tSpc)
s

jj

Sp−1

∼=

ttTame( · )cpt

ii Sp
44

Supp

OO

Proof. The five one-to-one correspondences in the diagram are shown in Propositions
5.3, 5.4, 5.7, 5.10, and 5.11. It remains to show the commutativity, and for this we
take Remark 5.12 into account.

For a thick⊗-ideal X of D−(R), we have Supp(Xtame)=Supp X by Lemma 5.8(2),
which shows that the left triangle in the diagram commutes. It is easy to observe
from Corollary 3.14 that

Sp X= S(Supp X) for any subcategory X of D−(R). (5.13.1)

The commutativity of the right triangle in the diagram follows from (5.13.1). �

Remark 5.14. The bijections in the diagram of Theorem 5.13 induce lattice struc-
tures in Tame and Spcl(tSpc), so that the maps are lattice isomorphisms. However,
we do not know if there is an explicit way to define lattice structures like the one
of Cpt given in Proposition 2.18(2).

Let f : A→ B and g : B→ A be maps with g f = 1. Then we say that ( f, g) is
a section-retraction pair, and write f a g. Our next goal is to construct a certain
commutative diagram of section-retraction pairs, and for this we again give several
propositions. The first one is a consequence of [Balmer 2005, Theorem 4.10].

Proposition 5.15. There is a one-to-one correspondence Spp : Rad � Thom :
Spp−1.

Proposition 5.16. There is a section-retraction pair ( · )rad
: Cpt� Rad : ( · )cpt.

Proof. For every X∈Cpt, we have (Xrad)cpt=〈Supp(Xrad)〉= 〈Supp X〉=Xcpt=X

by Lemma 5.8. �

Let X be a topological space. A subset T of X is called Thomason if T is a
union of closed subsets of X whose complements are quasicompact. Note that a
Thomason subset is specialization-closed.
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For each subset A of Spec R, we set S(A) =
⋃

p∈A {S(p)}. For each subset B
of SpcD−(R), we set S−1(B) = {p ∈ Spec R | S(p) ∈ B}. We obtain another
section-retraction pair.

Proposition 5.17. There is a section-retraction pair S : Spcl(Spec)�Thom :S−1.

Proof. Corollary 3.10 and [Balmer 2005, Proposition 2.9] yield

Spp(R/p)= {S(p)} for any prime ideal p of R, (5.17.1)

whence ({S(p)}){ = U(R/p), which is quasicompact by [Balmer 2005, Proposition
2.14(a)]. Hence, S(A) is a Thomason subset of SpcD−(R) for any subset A
of Spec R. In particular, we get a map S : Spcl(Spec)→ Thom.

Let T be a Thomason subset of SpcD−(R). Let p, q be prime ideals of R with
p⊆q and S(p)∈T . Then S(q) belongs to {S(p)} by Theorem 3.9 and [Balmer 2005,
Proposition 2.9]. Since T is Thomason, it contains {S(p)}. Hence, S(q) belongs
to T . Thus, the assignment T 7→S−1(T ) defines a map S−1

:Thom→ Spcl(Spec).
For a specialization-closed subset W of Spec R and a prime ideal p of R,

S(p) ∈ {S(q)} for some q ∈W ⇐⇒ S(p)⊆ S(q) for some q ∈W

⇐⇒ p⊇ q for some q ∈W ⇐⇒ p ∈W,

where the first and second equivalences follow from [Balmer 2005, Proposition 2.9]
and Theorem 3.9, and the last equivalence holds by the fact that W is specialization-
closed. This yields S−1(S(W ))=W . �

Now we consider describing spcl-closures and spcl-interiors.

Proposition 5.18. Let A be a specialization-closed subset of SpcD−(R), and let B
be a specialization-closed subset of tSpcD−(R).

(1) Let Aspcl stand for the spcl-interior of A in tSpcD−(R). Then

Aspcl = A∩ tSpcD−(R).

(2) Let Bspcl stand for the spcl-closure of B in SpcD−(R). Then

Bspcl
= {P ∈ SpcD−(R) | Ptame

∈ B} =
⋃

P∈Bspcl

Spp(R/s(P)).

In particular, Bspcl is a Thomason subset of SpcD−(R).

Proof. (1) We easily observe that A∩ tSpcD−(R) is a specialization-closed subset
of the topological space tSpcD−(R) contained in A. Also, it is obvious that if X is
a specialization-closed subset of tSpcD−(R) contained in A, then X is contained
in A∩ tSpcD−(R). Hence, A∩ tSpcD−(R) coincides with Aspcl.

(2) Let C be the set of prime thick ⊗-ideals P of D−(R) with Ptame
∈ B. We

proceed step by step.
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(a) Each Q ∈ B is tame. Hence, Qtame
= Q ∈ B. This shows that C contains B.

(b) Let Y be a specialization-closed subset of SpcD−(R) containing B. Take
any element P of C . Then Ptame belongs to B, and hence to Y . Since Y is
specialization-closed, {Ptame} is contained in Y . Hence, P belongs to Y by [Balmer
2005, Proposition 2.9]. It follows that C is contained in Y .

(c) We prove C =
⋃

P∈C Spp(R/s(P)). Combining Theorem 3.9, Lemma 5.8(1),
and (5.17.1) gives rise to Spp(R/s(P))= {Ptame}, and thus, it is enough to verify
C =

⋃
P∈C {P

tame}. By [Balmer 2005, Proposition 2.9] we see that C is contained
in
⋃

P∈C {P
tame}. Conversely, let P ∈ C and Q ∈ {Ptame}. Then Ptame belongs

to B, and Q is contained in Ptame by [Balmer 2005, Proposition 2.9], which shows
that Qtame is contained in Ptame. Hence, Qtame is in {Ptame} ∩

tSpcD−(R). As
B is specialization-closed in tSpcD−(R), it contains {Ptame} ∩

tSpcD−(R), and
therefore, Qtame is in B. Thus, Q belongs to C . We obtain C =

⋃
P∈C {P

tame}.

The equality C =
⋃

P∈C Spp(R/s(P)) shown in (c) especially says that C is
specialization-closed. By this together with (a) and (b) we obtain C = Bspcl,
and it follows that C =

⋃
P∈Bspcl Spp(R/s(P)). �

We now obtain another section-retraction pair:

Proposition 5.19. The operations ( · )spcl and ( · )spcl defined in Proposition 5.18
make a section-retraction pair ( · )spcl

: Spcl(tSpc)� Thom : ( · )spcl.

Proof. Let U be a specialization-closed subset of tSpcD−(R). By Proposition 5.18,
U spcl is a Thomason subset of SpcD−(R), and (U spcl)spcl =U spcl

∩
tSpcD−(R)=

{P ∈ tSpcD−(R) | Ptame
∈U } =U . �

We can prove our second main result in this section.

Theorem 5.20. There is a diagram

Rad ∼

a ( · )cpt

��

Thom

a S−1

��

Thom

a ( · )spcl

��

Cpt ∼

( · )rad

OO

Spcl(Spec)

S

OO

∼ Spcl(tSpc)

( · )spcl

OO

where the upper horizontal bijections are the one given in Proposition 5.15 and an
equality, and the lower horizontal bijections are the ones appearing in Theorem 5.13.
The diagrams with vertical arrows from the bottom to the top and the top to the
bottom are commutative.

Proof. The three section-retraction pairs are obtained in Propositions 5.16, 5.17,
and 5.19.

We claim that for any thick ⊗-ideal X of D−(R) one has

Spp(Xrad)= Spp X. (5.20.1)
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Indeed, Lemma 5.8(1) shows Xrad
=
√

X. The inclusion X⊆
√

X implies Spp X⊆

Spp
√

X. Let P be a prime thick ⊗-ideal of D−(R). If X is contained in P, then so
is
√

X as P is prime. Therefore, we obtain Spp
√

X= Spp X, and the claim follows.
Fix a thick ⊗-ideal C of D−(R). For a prime ideal p of R one has S(p) ∈ Spp C

if and only if C*S(p), if and only if Cp 6= 0, if and only if p∈ Supp C. This shows
S−1(Spp C) = Supp C. Lemma 5.8(2) gives Supp(Ccpt) = S−1(Spp C). Next,
suppose that C is compact. Lemma 5.8(1), (5.17.1), and (5.20.1) yield

Spp(Crad)= Spp C= Spp(Ccpt)= Spp(〈Supp C〉)

= Spp{R/p | p ∈ Supp C} = S(Supp C).

Thus, we obtain the commutativity of the left square of the diagram.
Let A be any subset of Spec R. It is clear that S(A) = {S(p) | p ∈ A} is

contained in S(A). As S(A) is a union of closed subsets of the topological
space SpcD−(R), it is a specialization-closed subset of SpcD−(R). Note that any
specialization-closed subset of SpcD−(R) containing S(A) contains S(A). Hence,
we have S(A)= (S(A))spcl. Let B be a specialization-closed subset of SpcD−(R).
Then S(S−1(B))= {S(p) | p ∈ Spec R, S(p) ∈ B} = B ∩ tSpcD−(R)= Bspcl by
Corollary 3.14 and Proposition 5.18(1). Now it follows that the right square of the
diagram commutes. �

We close this section by producing another commutative diagram, coming from
the above theorem.

Corollary 5.21. There is a commutative diagram

Rad
( · )cpt

tt

Supp

}}

( · )tame

��

Sp

**

Cpt ∼ Spcl(Spec) ∼ Tame ∼ Spcl(tSpc)

Here, the three bijections are the ones appearing in Theorem 5.13, and the other
maps are retractions.

Proof. We have the following diagram:

Rad

( · )cpta

��

Cpt

( · )rad

OO

Supp

∼=

//

Spcl(Spec)
Supp−1

∼=

//

〈 · 〉

oo Tame
Sp

∼=

//

Supp
oo Spcl(tSpc)

Sp−1
oo
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Thus, it suffices to verify the equalities of compositions of maps Supp ◦( · )cpt =

Supp, Supp−1
◦Supp= ( · )tame, and Sp ◦( · )tame

= Sp. This is equivalent to show-
ing that the equalities

(i) Supp(Xcpt)= Supp X,

(ii) Supp−1 Supp X= Xtame, and

(iii) Sp(Xtame)= Sp X

hold for each (radical) thick ⊗-ideal X of D−(R). The equalities (i) and (ii) im-
mediately follow from Lemma 5.8. We have Sp(Xtame) = Sp(Supp−1 Supp X) =

(Sp ◦Supp−1)(Supp X) = S(Supp X) = Sp X, where the first and last equalities
follow from Lemma 5.8(1) and (5.13.1). Proposition 1.10(2) says that Supp X

belongs to Spcl(Spec), and the third equality above is obtained by Theorem 5.13.
Now the assertion (iii) follows, and the proof of the corollary is completed. �

6. Distinction between thick tensor ideals, and Balmer’s conjecture

In this section, we consider when the section-retraction pairs in Theorem 5.20 and
Corollary 5.21 are one-to-one correspondences, and construct a counterexample to
the conjecture of Balmer. We begin with a lemma on the annihilator of an object in
the thick ⊗-ideal closure.

Lemma 6.1. Let {Xλ}λ∈3 be a family of objects of D−(R). For M ∈ thick⊗{Xλ}λ∈3
there are (pairwise distinct) indices λ1, . . . , λn ∈ 3 and integers e1, . . . , en > 0
such that Ann M contains

∏n
i=1(Ann Xλi )

ei .

Proof. Let C be the subcategory of D−(R) consisting of objects C such that there
are λ1, . . . , λn ∈3 and e1, . . . , en > 0 such that Ann C contains

∏n
i=1(Ann Xλi )

ei .
The following statements hold in general.

• If A is an object of D−(R) and B is a direct summand of A, then Ann A ⊆
Ann B.

• For each object A ∈ D−(R) one has Ann(A[±1])= Ann A.

• If A→ B→ C→ A[1] is an exact triangle in D−(R), then Ann B contains
Ann A ·Ann C .

• For any objects A, B of D−(R) one has Ann(A⊗L
R B)⊇ Ann A.

It follows from these that C is a thick ⊗-ideal of D−(R). Since Xλ is in C for all
λ ∈ 3, it holds that C contains thick⊗{Xλ}λ∈3. The assertion of the lemma now
follows. �

The proposition below says in particular that in the case where R is a local ring
D−(R) has a compact prime thick tensor ideal. On the other hand, in the nonlocal
case it is often that D−(R) has no such one.
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Proposition 6.2. (1) If R is a local ring with maximal ideal m, then Cpt ∩
s−1(m)= {0} 6=∅.

(2) Let R be a nonlocal semilocal domain. Then there exists no compact prime
thick ⊗-ideal of D−(R). In particular, one has Pcpt ( P = Prad for all
P ∈ SpcD−(R).

Proof. (1) Let P be in SpcD−(R). Then P is in s−1(m) if and only if Supp P =

{p ∈ Spec R | p*m} =∅ by Proposition 4.2, if and only if P= 0 by Remark 1.8.
Since 0 is compact, we are done.

(2) Let m1, . . . ,mn be the (pairwise distinct) maximal ideals of R with n > 2. For
each 1 6 i 6 n one finds an element xi ∈ mi that does not belong to any other
maximal ideals. As R is a domain of positive dimension, xi is a nonzerodivisor
of R. Set Ci =

⊕
t>0 R/x t+1

i [t]; note that this is an object of D−(R). We have
Supp(C1⊗

L
R · · · ⊗

L
R Cn) =

⋂n
i=1 Supp Ci =

⋂n
i=1 V(xi ) = V(x1, . . . , xn) = ∅ by

Lemma 1.9(4) and the fact that (x1, x2) is a unit ideal of R. Remark 1.8 gives
C1⊗

L
R · · · ⊗

L
R Cn = 0.

Suppose that there exists a compact prime thick ⊗-ideal P of D−(R). Then
C1 ⊗

L
R · · · ⊗

L
R Cn = 0 is contained in P, and so is C` for some 1 6 ` 6 n. We

have P = 〈Supp P〉 by Proposition 5.4, and by Lemma 6.1 there exist prime
ideals p1, . . . , pr ∈ Supp P and integers e1, . . . , er > 0 such that Ann C` contains
(Ann R/p1)

e1 · · · (Ann R/pr )
er =pe1

1 · · · p
er
r . Since R is a domain and x` is a nonunit

of R, we have Ann C`=
⋂

t>0 x t+1
` R=0 by Krull’s intersection theorem. Therefore,

pe1
1 · · · p

er
r =0, and ps =0 for some 16 s6 r as R is a domain. Thus, the zero ideal 0

of R belongs to Supp P, which implies Supp P= Spec R. We obtain P= D−(R)
by Proposition 4.11, which is a contradiction. �

To show a main result of this section, we make two lemmas. The first one
concerns the structure of the radical and tame closures, while the second one gives
an elementary characterization of artinian rings.

Lemma 6.3. Let X be a subcategory of D−(R). One has

Xrad
=

⋂
X⊆P∈Spc D−(R)

P, Xtame
=

⋂
X⊆P∈tSpc D−(R)

P.

Proof. Lemma 5.8(1) implies Xrad
=
√
thick⊗ X, which coincides with the in-

tersection of the prime thick ⊗-ideals of D−(R) containing thick⊗ X by [Balmer
2005, Lemma 4.2]. This is equal to the intersection of the prime thick ⊗-ideals
containing X, and thus, the first equality holds. As for the second equality, if P is a
tame thick ⊗-ideal containing X, then we have Xtame

⊆ Ptame
= P, which shows

the inclusion (⊆). Let M be an object of D−(R) belonging to all P ∈ tSpcD−(R)
with X ⊆ P. Corollary 3.14 says that M is in S(p) for all prime ideals p of R
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with X ⊆ S(p). This means that Supp M is contained in Supp X. Hence, M is in
Supp−1 Supp X, which coincides with Xtame by Lemma 5.8(1). Thus, the second
equality follows. �

Lemma 6.4. The ring R is artinian if and only if for any sequence I1, I2, . . . of
ideals of R it holds that V

(⋂
n>1 In

)
=
⋃

n>1 V(In).

Proof. First of all, note that the inclusion V
(⋂

n>1 In
)
⊇
⋃

n>1 V(In) always holds.
If R is artinian, then there exists an integer m > 1 such that

⋂
n>1 In =

⋂m
j=1 I j .

From this we obtain V
(⋂

n>1 In
)
=V

(⋂m
j=1 I j

)
=
⋃m

j=1 V(I j )⊆
⋃

n>1 V(In). This
shows the “only if” part.

Let us prove the “if” part. Assume first that R has infinitely many maximal
ideals, and take a sequence m1,m2, . . . of pairwise distinct maximal ideals of R.
By assumption, we get V

(⋂
n>1 mn

)
=
⋃

n>1 V(mn). Since V
(⋂

n>1 mn
)

is a
closed subset of Spec R, it has only finitely many minimal elements with respect
to the inclusion relation. However,

⋃
n>1 V(mn) = {m1,m2, . . .} has infinitely

many minimal elements, which is a contradiction. Thus, R is a semilocal ring.
Let m1, . . . ,mt be the maximal ideals of R, and J = m1 ∩ · · · ∩mt the Jacobson
radical of R. Applying the assumption to the sequence {J n

}n>1 of ideals gives
V
(⋂

n>1 J n
)
=
⋃

n>1 V(J n)= V(J ). By Krull’s intersection theorem, we obtain⋂
n>1 J n

= 0, whence V(J ) = Spec R. Hence, Spec R = {m1, . . . ,mt } =Max R,
and we conclude that R is artinian. �

Now we can prove our first main result in this section. Roughly speaking, if our
ring R is artinian, then everything is explicit and behaves well, and vice versa. Note
that this result includes Corollary 4.16.

Theorem 6.5. The following are equivalent.

(1) The ring R is artinian.

(2) Every thick ⊗-ideal of D−(R) is compact, tame, and radical.

(3) The maps S : Spec R� SpcD−(R) : s are mutually inverse homeomorphisms.

(4) The section-retraction pair S : Spec R� SpcD−(R) : s is a one-to-one corre-
spondence.

(5) The section-retraction pair ( · )cpt : Rad� Cpt : ( · )rad is a one-to-one corre-
spondence.

(6) The section-retraction pair S−1
: Thom � Spcl(Spec) : S is a one-to-one

correspondence.

(7) The section-retraction pair ( · )spcl : Thom� Spcl(tSpc) : ( · )spcl is a one-to-
one correspondence.

(8) The retraction Supp : Rad→ Spcl(Spec) is a bijection.
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(9) The retraction ( · )tame
: Rad→ Tame is a bijection.

(10) The retraction Sp : Rad→ Spcl(tSpc) is a bijection.

(11) The inclusion Rad⊇ Tame is an equality.

Proof. Theorems 3.9, 5.13, and 5.20 and Corollary 5.9 imply that the pairs in
(4), (5), (6), and (7) are section-retraction pairs, the maps in (8), (9), and (10) are
retractions, and one has the inclusion in (11).

The equivalences (5)⇐⇒ (6)⇐⇒ (7) and (5)⇐⇒ (8)⇐⇒ (9)⇐⇒ (10) follow
from Theorem 5.20 and Corollary 5.21, respectively. It is trivial that (3) implies
(4), while (1) implies (2) by Corollaries 2.20 and 5.9 and Proposition 1.10(1).
If SpcD−(R) = tSpcD−(R), then S = S′ and s = s′. From Theorems 4.5(3)
and 4.7 we see that (2) implies (3). Corollary 5.9 says Xtame

∈ Rad for each
X ∈Rad. Hence, if ( · )tame

:Rad→Tame is injective, then X=Xtame holds. This
shows that (9) implies (11). It is easily seen that the converse is also true, and we
get the equivalence (9) ⇐⇒ (11). When S : Spec R→ SpcD−(R) is surjective,
we have SpcD−(R) = tSpcD−(R), and for a radical thick ⊗-ideal X it holds
that X= Xrad

=
⋂

X⊆P∈Spc D−(R) P=
⋂

X⊆P∈tSpc D−(R) P= Xtame by Lemma 6.3,
whence X is tame. Therefore, (4) implies (11).

Now it remains to prove that (11) implies (1). By Lemma 6.4, it suffices to
prove that V

(⋂
n>1 In

)
is contained in

⋃
n>1 V(In) for any sequence I1, I2, . . .

of ideals of R. For each n > 1, fix a system of generators x(n) of In . Set
C =

⊕
n>1 K(x(n), R)[n]; note that this is defined in D−(R). Then Supp C =⋃

n>1 Supp K(x(n), R) =
⋃

n>1 V(In) by Proposition 2.3(3). The radical clo-
sure E of

〈⋃
n>1 V(In)

〉
is tame by assumption. Lemma 5.8 implies Supp E =⋃

n>1 V(In)= Supp C . Thus, C is in Supp−1 Supp E= E by Proposition 5.3, and
C⊗r
∈
〈⋃

n>1 V(In)
〉

for some r > 0. Using [Bruns and Herzog 1998, Proposition
1.6.21], we have

C⊗r
=

⊕
n>1

( ⊕
i1+···+ir=n

K(x(i1), R)⊗L
R · · · ⊗

L
R K(x(ir ), R)

)
[n]

m
⊕
n>1

K(x(n), R)⊗r
[nr ] =

⊕
n>1

K(x(n), . . . , x(n)︸ ︷︷ ︸
r

, R)[nr ]

m
⊕
n>1

K(x(n), R)[nr ] =: B. (6.5.1)

Thus, B is in
〈⋃

n>1 V(In)
〉
, and Corollary 2.13(3) implies V(Ann B)⊆

⋃
n>1 V(In).

We have Ann B =
⋂

n>1 Ann K(x(n), R) =
⋂

n>1 In by Proposition 2.3(3). It
follows that V

(⋂
n>1 In

)
⊆
⋃

n>1 V(In). �

Our second main result in this section deals with the difference between the
radical and tame closures.
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Theorem 6.6. Let W be a specialization-closed subset of Spec R. Set X= 〈W 〉 and
Y= Supp−1 W .

(1) The subcategory X is compact, and satisfies Xrad
=
√

X and Xtame
= Y.

(2) The subcategories X and Y are the smallest and largest thick ⊗-ideals of
D−(R) whose supports are W , respectively. In particular, X⊆

√
X⊆ Y.

(3) Assume that R is either a domain or a local ring, and that W is nonempty and
proper. Then one has

√
X ( Y. Hence, Y is not compact, and Xrad ( Xtame.

Proof. (1) The first statement is evident. The equalities follow from Lemma 5.8
and Proposition 1.10.

(2) Let Z be a thick ⊗-ideal of D−(R) whose support is W . Then it is clear that Z

is contained in Y. Proposition 2.9 implies that R/p belongs to Z for each p ∈W ,
which shows that Z contains X.

(3) Since W is nonempty, there is a prime ideal p ∈ W . Let x = x1, . . . , xr be a
system of generators of p, and put C =

⊕
i>0 K(xi+1, R)[i], which is an object

of D−(R). The support of C is equal to V(p) by Proposition 2.3(3), which is
contained in W as it is specialization-closed. Hence, C is in Supp−1 W = Y.

Suppose that
√

X coincides with Y, and let us derive a contradiction. There exists
an integer n>0 such that the n-fold tensor product D :=C⊗L

R · · ·⊗
L
R C belongs to X.

An analogous argument to (6.5.1) yields that D contains E :=
⊕

k>0 K(xk+1, R)[nk]
as a direct summand, whence E belongs to X. We use a similar technique to the
one in the latter half of the proof of Proposition 6.2. By Lemma 6.1, there are
prime ideals p1, . . . , pm ∈W and integers e1, . . . , em > 0 such that Ann E contains
pe1

1 · · · p
em
m . We have

Ann E =
⋂
k>0

Ann K(xk+1, R)=
⋂
k>0

xk+1 R = 0 (6.6.1)

by Proposition 2.3(3) and Krull’s intersection theorem. This yields pe1
1 · · · p

em
m = 0,

which says that each prime ideal of R contains pi for some 1 6 i 6 m. As W
is specialization-closed, we observe that W = Spec R, which is contrary to the
assumption. Consequently,

√
X is strictly contained in Y.

If Y is compact, then we have Y=〈Supp Y〉=〈W 〉=X⊆
√

X by Propositions 5.4
and 1.10(1), which is a contradiction. Hence, Y is not compact. �

Remark 6.7. (1) Let p,C be as in the proof of Theorem 6.6(3). Then

(a) Supp C is contained in Supp R/p, but C does not belong to thick⊗ R/p.
(b) V(Ann R) is contained in V(Ann C), but R does not belong to thick⊗ C .

This guarantees in Proposition 2.9 one cannot replace V(Ann X) by Supp X ,
or Supp Y by V(Ann Y).
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Indeed, we have Supp C = Supp R/p= V(p)⊆W 6= Spec R and Ann C =⋂
i>0 xi+1 R = 0. The former together with Proposition 4.11 shows R /∈

thick⊗ C , while the latter implies V(Ann R)= V(0)= V(Ann C). Assume C
is in thick⊗ R/p. Then Ann C = 0 contains some power of Ann R/p = p by
Lemma 6.1. Hence, V(p)= Spec R, which is a contradiction. Therefore, C is
not in thick⊗ R/p.

(2) The assumption in Theorem 6.6(3) that R is either domain or local is indispens-
able. In fact, let R = A× B be a direct product of two commutative noetherian
rings. Then Spec R = Spec AtSpec B and D−(R)∼= D−(A)×D−(B), which
imply that Supp−1

D−(R)(Spec A)= D−(A)= 〈Spec A〉D−(R).

(3) Recall that we have the following first section-retraction pair (Proposition 5.16),
while Corollary 5.9 gives rise to the following second section-retraction pair:

( · )rad
: Cpt� Rad : ( · )cpt, inc : Tame� Rad : ( · )tame.

Corollary 5.21 implies that the left diagram below commutes. Therefore, it is
natural to ask whether the right diagram below also commutes:

Rad
( · )cpt

||

( · )tame

##

Cpt ∼ Tame

Rad

Cpt

( · )rad
<<

∼ Tame

inc

cc

This is equivalent to asking if (Xcpt)
rad
= X for all X ∈ Tame, and to asking if

Ytame
= Yrad for all Y ∈ Cpt. Theorem 6.6 gives rise to a negative answer to

this question.

Finally, we consider a conjecture of Balmer. Let T be an arbitrary essentially
small tensor triangulated category. Balmer [2010a] constructs a continuous map

ρ•T : Spc T→ Spech R•T

given by ρ•T(P)= ( f ∈ R•T | cone f /∈P), where R•T = HomT(1, 6•1) is a graded-
commutative ring. (The ideal generated by a subset S of a ring A is denoted
by (S).) Recall that a triangulated category is called algebraic if it arises as the
stable category of some Frobenius exact category. Balmer [2010b, Conjecture 72]
conjectures the following:

Conjecture 6.8 (Balmer). The map ρ•T is (locally) injective when T is algebraic.

Here, recall that a continuous map f : X → Y of topological spaces is called
locally injective at x ∈ X if there exists a neighborhood N of x such that the
restriction f |N : N→ Y is an injective map. We say that f is locally injective if it is
locally injective at every point in X . If for any x ∈ X there exists a neighborhood E
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of f (x) such that the induced map f −1(E)→ E is injective, then f is locally
injective.

Let us consider the above conjecture for our tensor triangulated category D−(R).
It turns out that for T= D−(R), Balmer’s constructed map ρ•T coincides with our
constructed map s : SpcD−(R)→ Spec R.

Proposition 6.9. Let P be a prime thick ⊗-ideal of D−(R). One then has

(1) s(P)= (a ∈ R | R/a /∈ P)= {a ∈ R | R/a /∈ P} and

(2) s(P)= ρ•
D−(R)(P).

Proof. Corollary 2.11 and (1) imply (2). Let us show (1). Set J = (a ∈ R |
R/a /∈ P). As R is noetherian, we find a finite number of elements x1, . . . , xn

with R/x1, . . . , R/xn /∈ P and J = (x1, . . . , xn). Therefore, K(x1, . . . , xn, R) =
K(x1, R)⊗L

R · · · ⊗
L
R K(xn, R) is not in P by Corollary 2.11 and the fact that P is

prime. Using Corollary 2.11 again shows J ∈ I(P), whence J is contained in s(P).
Next, take any a ∈ s(P). Since V(s(P)) is not contained in Supp P, neither is V(a).
This implies R/a /∈ P by Corollary 2.11. �

As an application of our Theorem 6.6, we confirm that Conjecture 6.8 is not true
in general; our D−(R) is an algebraic triangulated category, but does not satisfy
Conjecture 6.8 under quite mild assumptions.

Corollary 6.10. Assume that R has positive dimension, and that R is either a
domain or a local ring. Then the map s : SpcD−(R) → Spec R is not locally
injective. Hence, Conjecture 6.8 does not hold.

Proof. We can choose a nonunit x ∈ R such that the ideal x R of R has positive height
(hence, it has height 1). Put X= 〈V(x)〉. Using Theorem 6.6(3) and Lemma 6.3,
we find a prime thick ⊗-ideal P such that X⊆P ( Ptame. Suppose that s is locally
injective at P. Then there exists a complex M ∈ D−(R) with P ∈ U(M) such that
the restriction s|U(M) : U(M)→ Spec R is injective. Since M is in P, it is also
in Ptame. Hence, both P and Ptame belong to U(M). However, these two prime
thick ⊗-ideals are sent by s to the same point; see Theorem 3.9. This contradicts
the injectivity of s|U(M), and we conclude that s is not locally injective at P. The
last assertion of the corollary follows from Proposition 6.9(2). �

Remark 6.11. The reader may think that Corollary 6.10 can also be obtained by
showing that the map

f : SpcD−(R)→ SpcKb(proj R), P 7→ P∩Kb(proj R)

is not injective. We are not sure whether the noninjectivity of the map f im-
plies Corollary 6.10, but at least showing the noninjectivity of f is equivalent
to our approach. Using Proposition 2.9, we see that P∩Kb(proj R) contains the
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Koszul complex of a system of generators of each prime ideal belonging to Supp P.
Hence, Supp(P∩Kb(proj R))=Supp P, and the Hopkins–Neeman theorem implies
P∩Kb(proj R)= Supp−1

Kb(proj R) Supp P. Therefore, for P,Q ∈ SpcD−(R),

f (P)= f (Q) ⇐⇒ Supp P= Supp Q,

which says that the map f is injective if and only if all the prime thick tensor
ideals of D−(R) are tame. In the end, even if we intend to prove Corollary 6.10
by showing the noninjectivity of the map f , we must find a nontame prime thick
tensor ideal of D−(R), which is what we have done in this section.

7. Thick tensor ideals over discrete valuation rings

In this section, we concentrate on handling the case where R is a discrete valuation
ring. Several properties that are specific to this case are found out in this section.
Just for convenience, we write complexes as chain complexes, rather than as cochain
complexes. We start by studying complexes with zero differentials.

Proposition 7.1. Let X =
⊕

i>0 X i [i] = (· · ·
0
−→ X3

0
−→ X2

0
−→ X1

0
−→ X0→ 0) be

a complex in D−(R). Then it holds that thick⊗ X = thick⊗ Y in D−(R), where

Y =
⊕
i>0

( i⊕
j=0

X j

)
[i]

= (· · ·
0
−→ X3⊕ X2⊕ X1⊕ X0

0
−→ X2⊕ X1⊕ X0

0
−→ X1⊕ X0

0
−→ X0→ 0).

Proof. Putting F=
⊕

j>0 R[ j], we have X⊗L
R F=

(⊕
i>0 X i [i]

)
⊗

L
R

(⊕
j>0 R[ j]

)
=⊕

i, j>0 X i [i + j] = Y . Hence, thick⊗ X contains thick⊗ Y . The opposite inclusion
also holds as X is a direct summand of Y . �

Proposition 7.2. Let X =
⊕

i>0 X i [i] = (· · ·
0
−→ X3

0
−→ X2

0
−→ X1

0
−→ X0→ 0) be a

complex in D−(R). Then for all integers ai > 0, the thick ⊗-ideal closure thick⊗ X
in D−(R) contains⊕

i>0

X⊕ai
i [2i] = (· · · → X⊕a3

3 → 0→ X⊕a2
2 → 0→ X⊕a1

1 → 0→ X⊕a0
0 → 0).

Proof. The complex
⊕

i>0 X⊕ai
i [2i] =

⊕
i>0(X i ⊗

L
R R⊕ai )[2i] is a direct summand

of
⊕

i, j>0(X i⊗
L
R R⊕a j )[i+ j]=

(⊕
i>0 X i [i]

)
⊗

L
R

(⊕
j>0 R⊕a j [ j]

)
= X⊗L

R Y in the
category D−(R), where Y =

⊕
j>0 R⊕a j [ j] = (· · · 0

−→ R⊕a2 0
−→ R⊕a1 0

−→ R⊕a0→ 0)
is a complex in D−(R). Thus, the assertion follows. �

Corollary 7.3. Let X =
⊕

i>0 X i [i] = (· · ·
0
−→ X3

0
−→ X2

0
−→ X1

0
−→ X0→ 0) be a

complex in D−(R). Then for any integers ai > 0 the complex

Y =
⊕
i>0

X⊕ai
i [i] = (· · ·

0
−→ X⊕a3

3
0
−→ X⊕a2

2
0
−→ X⊕a1

1
0
−→ X⊕a0

0 → 0)
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is in thick⊗{Xeven, Xodd}, where Xeven=
⊕

i>0 X2i [i] = (· · ·
0
−→ X6

0
−→ X4

0
−→ X2

0
−→

X0→ 0) and Xodd =
⊕

i>0 X2i+1[i] = (· · ·
0
−→ X7

0
−→ X5

0
−→ X3

0
−→ X1→ 0).

Proof. The complex Y is the direct sum of A= (· · ·→ 0→ X⊕a4
4 → 0→ X⊕a2

2 →

0→ X⊕a0
0 → 0) and B = (· · · → X⊕a5

5 → 0→ X⊕a3
3 → 0→ X⊕a1

1 → 0→ 0).
Proposition 7.2 shows that A is in thick⊗ Xeven and B is in thick⊗ Xodd. Therefore,
Y belongs to thick⊗{Xeven, Xodd}. �

A natural question arises from Proposition 7.2 and Corollary 7.3:

Question 7.4. Does thick⊗(· · · → 0→ X2→ 0→ X1→ 0→ X0→ 0) contain
(· · ·

0
−→ X2

0
−→ X1

0
−→ X0 → 0)? Does thick⊗(· · ·

0
−→ X1

0
−→ X0 → 0) contain

(· · ·
0
−→ X⊕a1

1
0
−→ X⊕a0

0 → 0) for all integers ai > 0?

We do not know the general answer to this question. The following example
gives an affirmative answer.

Example 7.5. Let (R, x R) be a discrete valuation ring. Then

thick⊗(· · ·
0
−→ R/x3 0

−→ R/x2 0
−→ R/x→ 0)

= thick⊗(· · · → 0→ R/x3
→ 0→ R/x2

→ 0→ R/x→ 0).

Proof. In fact, the inclusion (⊇) follows from Proposition 7.2. To check the
inclusion (⊆), set A = (· · · 0

−→ R/x3 0
−→ R/x2 0

−→ R/x→ 0) and B = (· · · → 0→
R/x3

→ 0→ R/x2
→ 0→ R/x→ 0). Note that for each integer n > 0 there is

an exact sequence 0→ R/xn xn+1
−−→ R/x2n+1

→ R/xn+1
→ 0 of R-modules. This

induces an exact sequence 0→ C → A→ B→ 0 of complexes of R-modules,
where

C =
(
· · ·

0
−→ R/xn 0

−→ R/x2n 0
−→ R/xn−1 0

−→ R/x2(n−1)

0
−→ · · ·

0
−→ R/x2 0

−→ R/x4 0
−→ R/x 0

−→ R/x2
→ 0

)
.

We see that C = B[2] ⊕ D, where D = (· · · → 0→ R/x2n
→ 0→ · · · → 0→

R/x4
→ 0→ R/x2

→ 0), and have an exact sequence 0→ B[1]→ D→ B[1]→ 0
of complexes. The assertion now follows. �

The Loewy length of a finitely generated R-module M , denoted by ``R(M), is
by definition the infimum of integers i such that the ideal (rad R)i kills M . Let us
consider thick ⊗-ideals defined by Loewy lengths.

Notation 7.6. Let R be a local ring with maximal ideal m. Let c > 0 be an integer.

(1) Let Lc be the subcategory of D−
fl (R) consisting of complexes X such that there

exists an integer t > 0 with ``(Hi X)6 tic−1 for all i � 0.

(2) When c > 1, let Gc be the complex
⊕

i>0(R/m
ic−1
)[i] = (· · · 0

−→ R/m3c−1 0
−→

R/m2c−1 0
−→ R/m→ 0).
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Proposition 7.7. Let (R,m, k) be local. One has L0 ( L1 ( L2 ( · · · and L0 =

Db
fl(R)= thickD−(R) k.

Proof. Fix an integer n > 0. It is clear that Ln is contained in Ln+1. We have
``(Hi Gn+1) = in for each i > 0, which shows Ln 6= Ln+1. Hence, the chain
L0 (L1 (L2 ( · · · is obtained. Let X be a complex in D−(R). Suppose that there
exists an integer t > 0 such that ``(Hi X)6 ti−1 for i � 0. Then we have to have
``(Hi X)= 0 for i � 0, which says that H j X = 0 for j � 0. Thus, we obtain L0 =

Db
fl(R)= thickD−(R) k, where the second equality is shown in Proposition 1.4. �

Recall that an abelian category A is called hereditary if it has global dimension
at most one, that is, if Ext2A(A,A)= 0. Recall also that a ring R is called hereditary
if R has global dimension at most one.

From now on, we study thick ⊗-ideals of D−(R) when R is local and hereditary.
In this case, R is either a field or a discrete valuation ring. If R is a field, then by
Corollary 2.20 there are only trivial thick ⊗-ideals. So, we mainly consider the
case of a discrete valuation ring. First, we mention a well known fact, saying that
each complex in the derived category of a hereditary abelian category has zero
differentials.

Lemma 7.8 [Krause 2007, §1.6]. Let A be a hereditary abelian category. Then for
each object M ∈ D(A) there exists an isomorphism M ∼= H(M)=

⊕
i∈Z Hi (M)[i]

in D(A).

The lemma below is part of our first main result in this section.

Lemma 7.9. Let R be a discrete valuation ring. Then Lc is a thick ⊗-ideal of
D−(R) for every c > 1.

Proof. By Proposition 1.10(3), it suffices to show Lc is a thick ⊗-ideal of D−
fl (R).

We do this step by step.

(1) Take any complex X in Lc. There exist integers t, u > 0 such that ``(Hi X)6
tic−1 for all i > u. Let Y be a direct summand of X in D−

fl (R). Then Hi Y is a direct
summand of Hi X , and we have ``(Hi Y )6 ``(Hi X)6 tic−1 for all i > u. Hence,
Y belongs to Lc.

(2) Let X→ Y → Z  be an exact triangle in D−
fl (R). Suppose that both X and Z

belong to Lc. Then there exist integers t, u, a, b> 0 such that ``(Hi X)6 tic−1 and
``(H j Z)6 u j c−1 for all i > a and j > b. An exact sequence · · ·→Hk X→HkY→
Hk Z→· · · is induced, and from this we see that ``(HkY )6 ``(Hk X)+``(Hk Z)6
(t + u)kc−1 for all k >max{a, b}. Therefore, Y belongs to Lc.

(3) Let X be a complex in Lc. Then there exist integers t, u> 0 such that ``(Hi X)6
tic−1 for all i > u. It holds that ``(Hi (X [1]))= ``(Hi−1 X)6 t (i − 1)c−1 6 tic−1

for all i > u+1 for all i > u+1, where the second inequality holds as c> 1. Also,
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``(Hi (X [−1])) = ``(Hi+1 X) 6 t (i + 1)c−1 6 t (i + i)c−1
= (2c−1t) · ic−1 for all

i >max{1, u−1}, where the first inequality holds as i > u−1, and the second one
holds since i > 1 and c > 1. Thus, the complexes X [1] and X [−1] belong to Lc.

(4) Let X, Y be complexes in D−
fl (R). Suppose that X belongs to Lc. We want to

show that X ⊗L
R Y also belongs to Lc. Taking into account (3) and Lemma 7.8,

we may assume that X =
⊕

i>1 X i [i] and Y =
⊕

j>0 Y j [ j] with X i , Y j being R-
modules, and that there exist s > 1 and t > 0 such that ``(X i )6 tic−1 for all i > s.
Set u=max{``(X i ) | 16 i 6 s−1}; note that each X i has finite length, whence has
finite Loewy length. We have X⊗L

R Y =
⊕

i>1, j>0(X i⊗
L
R Y j )[i+ j], and from this

we get Hk(X ⊗L
R Y ) =

⊕
i>1, j>0, i+ j6k TorR

k−i− j (X i , Y j ) for all integers k. Note
here that TorR

k−i− j (X i , Y j )= 0 for i + j > k.
We claim that ``(X i ) 6 (t + u)ic−1 for all i > 1. In fact, recall c > 1 and

t, u > 0. If i > s, then ``(X i ) 6 tic−1 6 (t + u)ic−1. If 1 6 i 6 s − 1, then
``(X i )6 u 6 t + u 6 (t + u)ic−1. The claim follows.

Fix three integers i, j, k with i > 1, j > 0, and i + j 6 k. Then (t + u)kc−1 >
(t + u)ic−1 since k > i and c > 1. The claim shows that X i is killed by m(t+u)kc−1

,
and so is TorR

k−i− j (X i , Y j ), where m stands for the maximal ideal of R. Hence,
``(Hk(X ⊗L

R Y ))6 (t + u)kc−1 for all k ∈ Z, which implies X ⊗L
R Y ∈ Lc.

It follows from the above arguments (1)–(4) that Lc is a thick⊗-ideal of D−
fl (R). �

Remark 7.10. Let (R,m, k) be a local ring. When c = 0, the subcategory Lc is
never a thick ⊗-ideal of D−(R). Indeed, by Proposition 7.7 we have L0 = Db

fl(R).
The module k is in L0, but the complex (· · · 0

−→ k 0
−→ k→ 0)= k⊗L

R (· · ·
0
−→ R 0

−→

R→ 0) is not in L0.

Now we have our first theorem concerning the subcategories Lc of D−(R) for a
discrete valuation ring R. This especially says that the equality of Proposition 4.3(2)
does not necessarily hold.

Theorem 7.11. Let R be a discrete valuation ring. Then Lc is a prime thick⊗-ideal
of D−(R) for all integers c > 1. In particular, one has

dim(SpcD−(R))=∞> 1= dim R.

Proof. Lemma 7.9 says that Lc is a thick ⊗-ideal of D−(R). Proposition 7.7
especially says Lc 6= D−(R). Let X, Y be complexes in D−(R) with X ⊗L

R Y ∈Lc,
and we shall prove that either X or Y is in Lc. Applying Lemma 7.8 and taking
shifts if necessary, we may assume X =

⊕
i>0 X i [i] and Y =

⊕
j>0 Y j [ j], where

X i , Y j are finitely generated R-modules. Assume that X is not in D−
fl (R). Then

Xa has infinite length for some a > 0. As R is a discrete valuation ring, Xa

has a nonzero free direct summand. Hence, R[a] is a direct summand of X ,
and Y [a] = R[a] ⊗L

R Y is a direct summand of X ⊗L
R Y . As X ⊗L

R Y is in Lc,
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so is Y . Similarly, if Y /∈ D−
fl (R), then X ∈ Lc. This argument shows that we

may assume that both X and Y belong to D−
fl (R), or equivalently, that all X i

and Y j have finite length as R-modules. Since X ⊗L
R Y belongs to Lc, there

exist integers t, u > 0 such that Hn(X ⊗L
R Y ) has Loewy length at most tnc−1 for

all n > u. Assume that X is not in Lc. Then we can find an integer e > u such that
``(Xe) > tec−1. We have X ⊗L

R Y =
⊕

i, j>0(X i ⊗
L
R Y j )[i + j], which gives rise

to Hn(X ⊗L
R Y )=

⊕
i, j>0 Torn−i− j (X i , Y j ) for all integers n. Setting ai = ``(X i )

and b j = ``(Y j ) for i, j > 0, we obtain for every integer n > e

Hn(X ⊗L
R Y )mTorn−e−(n−e)(Xe, Yn−e)

= Xe⊗R Yn−e m R/xae ⊗R R/xbn−e = R/xmin{ae,bn−e}.

It is seen that min{ae, bn−e} 6 tnc−1 for all n > e. As ae > tec−1, we must have
ae > bn−e, and bn−e 6 tnc−1 for all n > e. Hence, ``(Hn(Y [e])) = ``(Yn−e) =

bn−e 6 tnc−1 for n > e, which implies that Y [e] is in Lc, and so is Y . Similarly,
if Y is not in Lc, then X is in Lc. Thus, Lc is a prime thick ⊗-ideal of D−(R).
Now L1 ( L2 ( L3 ( · · · from Lemma 7.9 is an ascending chain of prime thick
⊗-ideals with infinite length, which shows the inequality in the proposition; see
Proposition 4.3(1). �

To give an application of the above theorem, we state and prove a lemma.

Lemma 7.12. For each prime ideal p of R, dim SpcD−(Rp)6 dim SpcD−(R).

Proof. We first show that the localization functor L : D−(R)→ D−(Rp) is an
essentially surjective. Let X = (· · · d2

−→ X1
d1
−→ X0→ 0) be a complex in D−(Rp).

What we want is a complex Y ∈ D−(R) such that X ∼= L(Y ). For each integer
i > 0, choose a finitely generated R-module Yi with (Yi )p = X i , and R-linear
maps dY

i : Yi → Yi−1 and si ∈ R \ p such that d X
i = dY

i /si in HomRp(X i , X i−1)=

Hom(Yi , Yi−1)p. Then (dY
i−1dY

i )/(si−1si ) = d X
i−1d X

i = 0, and there is an element
ti ∈ R \ p such that ti dY

i−1dY
i = 0. Define a complex Y = (· · · ti+1dY

i−1−−−−→ Yi
ti dY

i−−→

· · ·
t2dY

2−−→ Y1
t1dY

1−−→ Y0→ 0) in D−(R). Then there is an isomorphism

Yp

��

(· · · // (Yi )p

ti dY
i

1
//

ui∼=

��

(Yi−1)p //

ui−1∼=

��

· · · // (Y2)p

t2dY
2

1
//

u2∼=

��

(Y1)p

t1dY
1

1
//

u1∼=

��

(Y0)p // 0)

X (· · · // X i
d X

i
// X i−1 // · · · // X2

d X
2
// X1

d X
1
// X0 // 0)

of complexes, where ui := t1 · · · ti s1 · · · si . Thus, we obtain L(Y )= Yp
∼= X .

The essentially surjective tensor triangulated functor L induces an injective
continuous map Spc L : SpcD−(Rp)→ SpcD−(R) given by P 7→ L−1(P) [Balmer
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2005, Corollary 3.8]. This map sends a chain P0 ( · · · ( Pn of prime thick ⊗-
ideals of D−(Rp) to the chain L−1(P0)( · · ·( L−1(Pn) of prime thick ⊗-ideals
of D−(R). The lemma now follows. �

The following corollary of Theorem 7.11 provides a class of rings R such that
the Balmer spectrum of D−(R) has infinite Krull dimension. This class includes
normal local domains for instance.

Corollary 7.13. If Rp is regular for some p with ht p> 0, then dim SpcD−(R)=∞.

Proof. We may assume ht p= 1. We have dim SpcD−(R)> dim SpcD−(Rp)=∞,
where the inequality follows from Lemma 7.12, and the equality is shown in
Theorem 7.11. �

Next we study generation of the thick tensor ideals Lc. In fact each of them
possesses a single generator.

Theorem 7.14. Let (R, x R, k) be a discrete valuation ring, and let c > 1 be
an integer. It then holds that Lc = thick⊗

D−(R)Gc. In particular, one has L1 =

thick⊗
D−(R)k.

Proof. Clearly, Gc is in Lc. Lemma 7.9 implies that thick⊗ Gc is contained in Lc.
We establish a claim.

Claim. Let 0 6 n 6 c− 1 be an integer. Let X ∈ D−
fl (R) be a complex. Suppose

that there exists an integer t > 0 such that ``(Hi X) 6 tin for all i � 0. Then X
belongs to thick⊗ Gc.

Once we show this claim, it will follow that Lc is contained in thick⊗ Gc, and
we will be done.

First of all, note that k is a direct summand of Gc. Combining this with
Proposition 1.4, we have

thick⊗ Gc ⊇ thick⊗ k ⊇ thick k = Db
fl(R). (7.14.1)

Let X be a complex as in the claim. Using Lemma 7.8, we may assume X =⊕
i>s X i [i] for some integer s and R-modules X i of finite length. There is an integer

u > s with ``(X i )6 tin for all i > u. We have X =
(⊕

i>u X i [i]
)
⊕
(⊕u−1

i=s X i [i]
)
,

whose latter summand is in Db
fl(R). In view of (7.14.1), replacing X with the former

summand, we may assume u = s. When s > 0, we set X i = 0 for 0 6 i 6 s − 1.
When s < 0, we have X =

(⊕
i>0 X i [i]

)
⊕
(⊕
−1
i=s X i [i]

)
, whose latter summand

is in Db
fl(R). By similar replacement as above, we may assume s = 0. Thus,

X =
⊕

i>0 X i [i] and ``(X i )6 tin for all i > 0.
Since R is a discrete valuation ring with maximal ideal x R, for every i > 1 there

is an integer ai j > 0 such that X i is isomorphic to
⊕tin

j=1(R/x j )⊕ai j . Therefore, it
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holds that

X ∼=
⊕
i>0

( tin⊕
j=1

(R/x j )⊕ai j

)
[i]l

⊕
i>0

( tin⊕
j=1

R/x j
)⊕ai

[i]

∈ thick⊗
{⊕

i>0

(t (2i)n⊕
j=1

R/x j
)
[i],

⊕
i>0

(t (2i+1)n⊕
j=1

R/x j
)
[i]
}

= thick⊗
{

A1, A2⊕

( t⊕
j=1

R/x j
)}
,

where ai := max{ai j | 1 6 j 6 tin
} and Al :=

⊕
i>1
(⊕t (2i−l+2)n

j=t (2i−l)n+1 R/x j
)
[i] for

l = 1, 2. The relations “∈” and “=” follow from Corollary 7.3 and Proposition 7.1,
respectively. Since

⊕t
j=1 R/x j is in thick⊗ Gc by (7.14.1), it suffices to show that

Al belongs to thick⊗ Gc for l = 1, 2.
We prove this by induction on n. When n= 0, we have A1= A2= 0∈ thick⊗ Gc,

and are done. Let n > 1. Fix l = 1, 2. The exact sequences

0→ R/x t (2i−l)n x j

−→ R/x j+t (2i−l)n
→ R/x j

→ 0 (i > 1, 16 j 6 tbil)

with bil = (2i − l + 2)n − (2i − l)n induce exact sequences

0→ (R/x t (2i−l)n )⊕tbil →

t (2i−l+2)n⊕
j=t (2i−l)n+1

R/x j
→

tbil⊕
j=1

R/x j
→ 0 (i > 1),

which induce an exact triangle Bl → Al → Cl  in D−
fl (R), where we set Bl =⊕

i>1(R/x t (2i−l)n )⊕tbil [i] and Cl =
⊕

i>1
(⊕tbil

j=1 R/x j
)
[i]. Since ``(Hi Cl)= tbil

has degree at most n− 1 as a polynomial in i , the induction hypothesis implies that
Cl is in thick⊗ Gc. By Corollary 7.3, Bl belongs to

thick⊗
{⊕

i>0

(R/x t (4i+r)n )[i]
∣∣∣∣ 06 r 6 3

}
.

Let f (i) be a polynomial in i over N with leading term ein . The exact sequences

0→ R/x (t−1) f (i) x f (i)

−−→ R/x t f (i)
→ R/x f (i)

→ 0 (i > 0)

induce an exact triangle Dt−1 → Dt → D1  in D−
fl (R), where we put Dt =⊕

i>0 R/x t f (i)
[i]. An inductive argument on t shows that Dt belongs to the thick

closure of D1. The exact sequences

0→ R/x f (i)−(m+1)in x in

−→ R/x f (i)−min
→ R/x in

→ 0 (i > 0)
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induce an exact triangle Em+1→ Em→Gc , where Em :=
⊕

i>0(R/x f (i)−min
)[i]

for 06 m 6 e. Hence, E0 is in the thick closure of Gc and Ee. Since ``(Hi Ee)=

f (i)− ein has degree at most n− 1 as a polynomial in i , the induction hypothesis
shows that Ee is in thick⊗ Gc. Hence, D1 = E0 is also in thick⊗ Gc, and so is Dt .
Therefore, Bl is in thick⊗ Gc. Thus, Al belongs to thick⊗ Gc for l = 1, 2. �

Remark 7.15. Let (R, x R, k) be a discrete valuation ring, and let c > 2 be an
integer. Then Supp Gc = {x R} = Supp k. In particular, we have Supp Gc 6= Spec R,
so that R is not in thick⊗ Gc by Proposition 4.11. Krull’s intersection theorem
implies Ann Gc = 0= Ann R. Proposition 7.7 and Theorem 7.14 imply that Gc is
not in L1 = thick⊗ k. In summary,

(1) Supp Gc is contained in Supp k, but Gc does not belong to thick⊗ k, and

(2) V(Ann R) is contained in V(Ann Gc), but R does not belong to thick⊗ Gc.

This guarantees that in Proposition 2.9 one cannot replace V(Ann X) by Supp X ,
or Supp Y by V(Ann Y).

Example 7.16. Let us deduce the conclusion of Proposition 6.2(1) directly in the
case where (R,m, k) is a discrete valuation ring. In this case, we have Spcl(Spec)=
{∅, {m},Spec R}. Using Proposition 5.4, we obtain Cpt = {0, thick⊗ k,D−(R)}.
Example 3.2 and Theorems 7.14 and 7.11 say that 0 and thick⊗ k are prime. Thus,
the compact prime thick ⊗-ideals of D−(R) are 0 and thick⊗ k. It follows from
Corollary 3.10 that s(thick⊗ k) does not contain m, which implies s(thick⊗ k)= 0.
Hence, Cpt∩ s−1(m)= {0}.

Let us consider for a discrete valuation ring R the tameness and compactness of
the thick ⊗-ideals Lc.

Proposition 7.17. Let R be a discrete valuation ring, and let c > 1 be an integer.
Then Lc is a nontame prime thick⊗-ideal of D−(R). If c>2, then Lc is noncompact.

Proof. It is shown in Theorem 7.11 that Lc is a prime thick ⊗-ideal of D−(R).
Denote by x R the maximal ideal of R. Using Proposition 7.7 and Theorem 7.14,
we easily see that Supp Lc = V(x)= {x R}.

Suppose that Lc is tame. Then Lc = Supp−1
{x R} by Proposition 5.3. For

example, consider the complex E =
⊕

i>0(R/x i !)[i]. We have Supp E = {x R},
which shows E ∈Lc. Hence, there exists an integer t > 0 such that i ! = ``(Hi E)6
tic−1 for all i � 0. This contradiction shows that Lc is not tame.

Suppose that Lc is compact. Then Lc=〈Supp Lc〉= thick⊗ k=L1 by Proposition
5.4 and Theorem 7.14. This gives a contradiction when c > 2; see Proposition 7.7.
Thus, Lc is not compact for all c > 2. �

Remark 7.18. Theorem 7.14 implies that Lc is generated by the complex Gc,
whose support is the closed subset {m} of Spec R. Proposition 7.17 says that Lc
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is not compact for c > 2. This gives an example of a noncompact thick ⊗-ideal
which is generated by objects with closed supports.

In the proof of Proposition 7.17, a complex defined by using factorials of integers
played an essential role. In relation to this, a natural question arises.

Question 7.19. Let (R, x R) be a discrete valuation ring. Consider the complex

E =
⊕
i>0

(R/x i !)[i]

= (· · ·
0
−→ R/x120 0

−→ R/x24 0
−→ R/x6 0

−→ R/x2 0
−→ R/x 0

−→ R/x→ 0)

in D−(R). Is it possible to establish a similar result to Theorem 7.14 for thick⊗ E?
For example, can one characterize the objects of thick⊗ E in terms of the Loewy
lengths of their homologies?

We have no idea how to answer this question. In relation to it, in the next example
we will consider complexes defined by using not factorials but polynomials. To do
this, we provide a lemma.

Lemma 7.20. Let x be a nonzerodivisor of R. Then the complex
⊕

i>0(R/xai+bi )[i]
belongs to the thick closure of

⊕
i>0(R/xai )[i] and

⊕
i>0(R/xbi )[i] for all integers

ai , bi > 0. In particular, the complex
⊕

i>0(R/xcai )[i] is in the thick closure
of
⊕

i>0(R/xai )[i] for all integers c, ai > 0.

Proof. For each i > 0 there is an exact sequence 0→ R/xai
xbi
−→ R/xai+bi →

R/xbi → 0. From this we induce an exact sequence 0 →
⊕

i>0(R/xai )[i] →⊕
i>0(R/xai+bi )[i] →

⊕
i>0(R/xbi )[i] → 0. The first assertion follows from this.

The second assertion is shown by induction and the first assertion. �

Example 7.21. Let x ∈ R be a nonzerodivisor. For integers a, b, c > 0, define a
complex

X (a, b, c)=
⊕
i>0

(R/ fi )[i] =
(
· · ·

0
−→ R/ f2

0
−→ R/ f1

0
−→ R/ f0→ 0

)
,

where fi = xai2
+bi+c

∈ R. Then it holds that thick⊗{X (a, b, c) | a, b, c > 0} =
thick⊗{X (1, 0, 0)}.

Proof. It is obvious that the left-hand side contains the right-hand side. In view of
Lemma 7.20, the opposite inclusion will follow if we show that X (1,0,0), X (0,1,0),
X (0, 0, 1) are in thick⊗{X (1, 0, 0)}, whose first containment is evident. The com-
plex X (1, 0, 0) has the direct summand (R/x)[1], so the module R/x belongs to
thick⊗{X (1, 0, 0)}. We have X (0, 0, 1) = R/x ⊗L

R (· · ·
0
−→ R 0

−→ R→ 0), which
is in thick⊗{X (1, 0, 0)}. The exact sequences 0 → R/x i2 x2i+1

−−−→ R/x (i+1)2
→

R/x2i+1
→ 0 and 0 → R/x2i+1 x

−→ R/x2i+2
→ R/x → 0 with i > 0 induce
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exact sequences 0→ X (1, 0, 0)→ X (1, 0, 0)[−1] → X (0, 2, 1)→ 0 and 0→
X (0, 2, 1)→ X (0, 2, 2)→ X (0, 0, 1)→ 0, which shows that thick⊗{X (1, 0, 0)}
contains X (0, 2, 1)= (· · · 0

−→ R/x5 0
−→ R/x3 0

−→ R/x→ 0) and X (0, 2, 2)= (· · · 0
−→

R/x6 0
−→ R/x4 0

−→ R/x2
→ 0). Applying Corollary 7.3, we see that X (0, 1, 0)

belongs to thick⊗{X (1, 0, 0)}. �

Remark 7.22. One can consider a general statement of Example 7.21 by defining
fi = xa0id

+a1id−1
+···+ad , so that it is nothing but the example for d = 2. We do not

know if it holds for d > 3.
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