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On `-torsion in class groups
of number fields

Jordan Ellenberg, Lillian B. Pierce and Melanie Matchett Wood

For each integer ` � 1, we prove an unconditional upper bound on the size
of the `-torsion subgroup of the class group, which holds for all but a zero-
density set of field extensions of Q of degree d , for any fixed d 2 f2; 3; 4; 5g

(with the additional restriction in the case d D 4 that the field be non-D4). For
sufficiently large ` (specified explicitly), these results are as strong as a previously
known bound that is conditional on GRH. As part of our argument, we develop a
probabilistic “Chebyshev sieve,” and give uniform, power-saving error terms for
the asymptotics of quartic (non-D4) and quintic fields with chosen splitting types
at a finite set of primes.

1. Introduction

The distribution of class groups is a great mystery. The Cohen–Lenstra heuristics
[Cohen and Lenstra 1984] (for quadratic fields) and the Cohen–Lenstra–Martinet
heuristics [Cohen and Martinet 1990] (for more general number fields) make
predictions for the distribution of class groups, including for the average size of the
`-torsion subgroups for certain “good” primes `. However, the questions of proving
anything towards these predictions are almost entirely open, and mostly apparently
inaccessible.

The main goal of the present work is to prove, for each integer ` � 1, an
unconditional upper bound for the size of the `-torsion subgroup of the class group,
which holds for all but a zero-density set of field extensions of Q of degree d ,
for any fixed d 2 f2; 3; 4; 5g (with the additional restriction in the case d D 4

that the field be non-D4). Alternatively, these results may be viewed as the first
unconditional upper bounds for the average size of `-torsion in class groups as the
field varies over extensions of Q of fixed degree d 2 f2; 3; 4; 5g (and non-D4 in the
case d D 4).

Let K be a degree d field extension of Q with absolute discriminant DK D

j disc K=Qj. We will denote the class group by ClK and the `-torsion subgroup by

MSC2010: primary 11R29; secondary 11N36, 11R45.
Keywords: number fields, class groups, Cohen–Lenstra heuristics, sieves.
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1740 Jordan Ellenberg, Lillian B. Pierce and Melanie Matchett Wood

ClK Œ`�. We note the trivial pointwise upper bound (see for example [Narkiewicz
1990, Theorem 4.4])

jClK Œ`�j � jClK j �d;" D
1=2C"
K

; (1-1)

for every ">0. (Throughout, ">0 is allowed to be arbitrarily small (possibly taking
a different value in different occurrences), and A� B indicates that jAj � cB for
an implied constant c, which we allow in any instance to depend on `; d; ".)

It is conjectured that
jClK Œ`�j �D"

K (1-2)

for every " > 0, but improving on the trivial bound (1-1) has proved difficult.
(Impetus for this conjecture may be found in [Duke 1998; Zhang 2005, page 10;
Brumer and Silverman 1996, “Question CL.`; d/”].) For K quadratic, Gauss’s
genus theory [1966] implies (1-2) in the case `D 2. Recently, Bhargava et al. [2017]
obtained nontrivial upper bounds for 2-torsion in fields of degree d for all d � 3,
proving jClK Œ2�j � D0:2784:::C"

K
for d D 3; 4 and jClK Œ2�j � D1=2�1=2dC"

K
for

d � 5. For `D 3, after initial incremental improvement in [Helfgott and Venkatesh
2006; Pierce 2005; 2006] over the trivial bound (1-1) for quadratic fields, Ellenberg
and Venkatesh [2007, Proposition 3.4, Corollary 3.7] proved that

jClK Œ3�j �D
1=3C"
K

(1-3)

holds for both quadratic and cubic fields, and moreover there is a positive constant
ı > 0 such that

jClK Œ3�j �D
1=2�ıC"
K

(1-4)

holds for quartic fields. (In particular, one may take ı D 1=168 in (1-4) for quartic
fields with Galois closure having Galois group A4 or S4.) At this time, these are
the best bounds in the literature that are unconditional and hold for all such fields.

In the realm of average results, there is little known, with the exceptions being
spectacular successes. For 3-torsion in quadratic fields, Davenport and Heilbronn
[1971] proved X

deg.K /D2
0<DK�X

jClK Œ3�j �
�

2

3�.2/
C

1

�.2/

�
X; (1-5)

in which the first contribution is from fields with disc K=Q> 0 and the second is
from fields with disc K=Q< 0; this has recently been improved to reflect second
order terms by [Bhargava et al. 2013; Taniguchi and Thorne 2013; Hough 2010].
For 2-torsion in cubic fields, Bhargava [2005] proved the asymptoticX

deg.K /D3
0<DK�X

jClK Œ2�j �
�

5

48�.3/
C

3

8�.3/

�
X; (1-6)
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in which each isomorphism class of fields is counted once, and the first contribution
is from fields with disc K=Q> 0 and the second is from fields with disc K=Q< 0.
For 4-torsion in quadratic fields, Fouvry and Klüners [2007] have determined the
asymptotics, for each nonnegative integer k,X

deg.K /D2
0<DK�X

jCl2K Œ2�j
k
� .ck Cp�k.ckC1� ck//X; (1-7)

where ck is the number of vector subspaces of Fk
2

. See also the recent work of Klys
[2016] giving analogous results on 3-torsion in cyclic cubic fields, and the recent
work of Milovic on 16-rank in quadratic fields, e.g., [Milovic 2017].

Turning to conditional results, Klys’s results [2016] extend to p-torsion in cyclic
degree p fields under GRH and Smith [2016] has results on 8-torsion averages
in quadratic fields under GRH as well. In the case of quadratic fields, Wong
[1999b] proved that, conditional on the Birch–Swinnerton-Dyer conjecture and the
Riemann hypothesis, jClK Œ3�j �D

1=4C"
K

. Before the proof of (1-3), Soundararajan
noted (as communicated in [Helfgott and Venkatesh 2006]) that one could prove
jClK Œ3�j � D

1=3C"
K

for K quadratic if one assumed the truth of the Riemann
hypothesis for only the L-function L.s; �/ of the quadratic character � associated
to the quadratic field K. The key idea of the latter bound was the use of many small
primes that split in K; the role of the Riemann hypothesis was to guarantee the
existence of sufficiently many such primes. This approach has been generalized by
Ellenberg and Venkatesh [2007] to number fields of any degree; we recall the key
result in the special case of field extensions of Q:

Theorem A [Ellenberg and Venkatesh 2007, Lemma 2.3]. Let K be a field extension
of Q of degree d , and let ` be a positive integer. Let ı < 1

2`.d�1/
. Suppose that

fp1; : : : ; pM g are M prime ideals in OK with Norm.pj /�Dı
K

that are unramified
in K=Q and are not extensions of ideals from any proper subfield K0 ¨ K.Then

jClK Œ`�j �d;`;" D
1=2C"
K

M�1: (1-8)

(Here we recall the convention in [Ellenberg and Venkatesh 2007] that an ideal
p in OK is said to be an extension of a prime ideal from a subfield K0 ¨ K if there
is a prime ideal p0 in OK0

such that pD p0OK .)
Upon assuming GRH, an application of the effective Chebotarev theorem of

Lagarias and Odlyzko [1977] guarantees, for any fixed � > 0, the existence of
�D

��"
K

rational primes of size �D
�
K

that split completely in K. Upon choosing
� D 1

2`.d�1/
� "0 for arbitrarily small "0 > 0, one obtains the following bound,

currently the state of the art for conditional pointwise upper bounds for jClK Œ`�j:
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Theorem B [Ellenberg and Venkatesh 2007, Proposition 3.1]. Let K be a field
extension of Q of degree d and ` a positive integer. Assuming GRH,

jClK Œ`�j �d;`;" D
1
2
� 1

2`.d�1/
C"

K
; (1-9)

for any " > 0.

One may attempt to remove the conditionality by proving results that hold on
average, or for all but a small exceptional family. In this vein, in the case of imaginary
quadratic fields, Soundararajan [2000] noted that for all but at most one imaginary
quadratic field K with DK 2 ŒX; 2X �, one has the bound jClK Œ`�j �X 1=2�1=2`C",
for any prime `. Also in the imaginary quadratic case, a recent result of Heath-
Brown and Pierce [2014] provides an upper bound for averages (and in addition
higher moments) of jClK Œ`�j, for example proving for any prime `� 5 thatX0

deg.K /D2
0<DK�X

jClK Œ`�j �X
3
2
� 3

2`C2
C"; (1-10)

with the sum restricted to imaginary quadratic fields.
In this paper, we prove unconditional results for jClK Œ`�j that are as strong as

(1-9) for all sufficiently large positive integers `, and hold for all but a zero-density
family of quadratic, cubic, non-D4-quartic, or quintic field extensions of Q.

For this we work with families of fields. Let Nd .X / denote the number of degree
d extensions of Q with 0<DK �X , in which each isomorphism class is counted
once; it is conjectured that for an appropriate constant cd ,

Nd .X /� cdX: (1-11)

Importantly for our work, this is known to be true for d D 2 (classical), d D 3 by
Davenport and Heilbronn [1971], d D 4 by Cohen, Diaz y Diaz, and Olivier [Cohen
et al. 2002] and Bhargava [2005], and d D 5 by Bhargava [2010]. Throughout our
work, in the case of d D 4, we restrict our attention to non-D4-quartic fields (that
is, quartic extensions whose Galois closure does not have Galois group D4); see
the remark on page 1758. Thus we let zN4.X / denote the further restricted count
of non-D4-quartic extensions of Q; then (1-11) is also known to hold for zN4.X /,
with a different constant [Bhargava 2005].

As a consequence of the field counts (1-11) combined with the trivial bound (1-1),
a trivial average bound for jClK Œ`�j isX

deg.K /Dd
0<DK�X

jClK Œ`�j �d;" X 3=2C": (1-12)

Our approach to improve upon (1-12) is to show that “most” degree d fields K

contain sufficiently many small primes that split completely in K for Theorem A to
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give a good upper bound for jClK Œ`�j. Roughly speaking, we will show that there is
some small ı0 > 0 such that for all but at most O.X 1�ı0/ of the degree d fields K

with 0<DK �X , at least a fixed positive proportion of the primes p �X ı0 split
completely in K. (Under GRH, the small set of exceptional fields is in fact empty.)

Our main results are as follows:

Theorem 1.1. Let d 2 f2; 3; 4; 5g and let ` be any positive integer with ` � `.d/
where

`.2/D `.3/D 1; `.4/D 8; `.5/D 25:

Then for all but Od;`;".X
1� 1

2`.d�1/
C"/ degree d fields K=Q with DK � X (and

non-D4 in the case d D 4),

jClK Œ`�j �d;`;" D
1
2
� 1

2`.d�1/
C"

K
;

for all " > 0. For d D 4; 5, in the remaining cases of positive integers ` < `.d/, for
all but Od;".X

1�ı0.d/C"/ degree d fields K=Q with 0<DK �X (and non-D4 in
the case d D 4),

jClK Œ`�j �d;`;" D
1
2
�ı0.d/C"

K
;

for all " > 0, where we may take

ı0.d/D

� 1
48

if d D 4;

1
200

if d D 5:

Remark. Theorem 2.1 states a version of this result in terms of bounding the
number of exceptional fields that fail to have many small split primes. One notes
from Theorem 2.1 that for sufficiently large `, the limiting reagent is not the
availability of small completely split primes, but the constraint ı < 1

2`.d�1/
in

Theorem A.

As immediate corollaries, we note:

Corollary 1.1.1. Let d 2 f2; 3; 4; 5g. As K ranges over degree d extensions of Q

with discriminant 0<DK �X (and non-D4 in the case d D 4),X
deg.K /Dd
0<DK�X

jClK Œ`�j �d;" X
3
2
� 1

2`.d�1/
C";

for all integers `� `.d/, where `.2/D `.3/D 1, `.4/D 8, `.5/D 25.

Corollary 1.1.2. For positive integers `� 7, averaging over non-D4-quartic fields,X0

deg.K /D4
0<DK�X

jClK Œ`�j �d;" X
3
2
� 1

48
C":
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For positive integers `� 24, averaging over quintic fields,

X
deg.K /D5
0<DK�X

jClK Œ`�j �d;" X
3
2
� 1

200
C":

Our strategy is as follows. Recall that Nd .X / denotes the number of degree d

fields K over Q, up to isomorphism, with 0<DK �X , and let Nd .X Ip/ denote the
number of degree d fields K over Q, up to isomorphism, with 0<DK �X , such
that the rational prime p splits completely in K. (For d D 4 we define zN4.X Ip/

analogously, restricting to non-D4-quartic fields.) Suppose we know that for each
fixed prime p, Nd .X Ip/ is a positive proportion of Nd .X /, so p splits completely
in a positive proportion of the fields. Then one would expect the fields in which the
primes split completely to distribute somewhat evenly, so that “most fields” have
the property that “near the average number” of primes split completely in them;
that is, one would expect that the primes do not conspire to cause many fields to
fail the criterion of Theorem A. We will make this argument precise by developing
a flexible “Chebyshev sieve” (Lemma 3.1, related to Chebyshev’s inequality); the
crucial input to the sieve will be asymptotics for Nd .X Ip/ with power-saving error
and explicitly given dependence on p (Lemma 2.2, Theorem C, Theorems 2.3
and 2.4).

Counting quadratic fields may be accomplished by a simple classical argument
(given in the Appendix). Power-saving error terms for Nd .X / were first found in
the cases d D 3; 4 by Belabas, Bhargava, and Pomerance [Belabas et al. 2010],
and first found in the case d D 5 by Shankar and Tsimerman [2014]. In the case
d D 3, Bhargava, Shankar, and Tsimerman [Bhargava et al. 2013] and Taniguchi and
Thorne [2013] have also proved a second main term and improved the power-saving
error term. For the refined estimates that we require on Nd .X Ip/, we quote the
necessary asymptotics for d D 3 from [Taniguchi and Thorne 2013], while for
d D 4; 5 we prove the necessary estimates using the methods and results from
[Belabas et al. 2010; Shankar and Tsimerman 2014]. In fact, in Sections 4 and 5,
we give the field counting asymptotics for fields with any chosen splitting types
at a finite set of primes with the expectation that they could be useful in other
applications; see Theorems 4.1 and 5.1.

Our counting theorems improve upon analogous results that appear in four recent
papers, three [Yang 2009; Cho and Kim 2015; Shankar et al. 2015] in the area of
finding symmetry groups of families of L-functions (see [Sarnak et al. 2016] for a
general overview of the area) and one [Lemke Oliver and Thorne 2017] studying
the distribution of ramified primes in small-degree number fields. See Sections 4
and 5 for detailed comparisons to these previous works.
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2. Anatomy of the proof

2A. Reduction to counting bad fields. We now outline the strategy in more detail;
for the sake of motivation, we focus temporarily on proving upper bounds on
average. Let us fix d and define for any degree d field K over Q and any real
parameter Y � 1,

N.KIY /D #frational primes p � Y that split completely in Kg:

(Implicitly, in the case d D 4 we further restrict to non-D4-quartic fields.) Let us
fix a positive integer ` and a parameter ı1 < 1

2`.d�1/
, to be chosen precisely later.

Then by Theorem A, for any X � 1,X
X<DK�2X

jClK Œ`�j �
X

X<DK�2X

D
1=2C"
K

N.KID
ı1

K
/�1

�X 1=2C"
X

X<DK�2X

N.KIX ı1/�1:

Now given real parameters X � 1 and 1�M � Y , we define B0
d
.X IY;M / to be

the set

B0
d .X IY;M /D

˚
K=Q; deg.K/D d; X <DK � 2X W

at most M primes p � Y split completely in K
	
;

(with the usual further restriction in the case d D 4).
We denote by �.Y / the number of rational primes p � Y , and let us regard

1�M ��.X ı1/ as fixed for the moment, to be specified later. Then we may make
the decompositionX
X<DK�2X

jClK Œ`�j

�X 1=2C"

� X
X<DK�2X

K 62B0
d
.X IX ı1 ;M /

N.KIX ı1/�1
C

X
K2B0

d
.X IX ı1 ;M /

N.KIX ı1/�1

�
:

Since N.KIX ı1/�M if K 62B0
d
.X IX ı1 ;M /, we haveX

X<DK�2X

jClK Œ`�j �X 1=2C"

� X
X<DK�2X

K 62B0
d
.X IX ı1 ;M /

M�1
C

X
K2B0

d
.X IX ı1 ;M /

1

�
;

and we may conclude thatX
X<DK�2X

jClK Œ`�j �X 3=2C"M�1
C #B0

d .X IX
ı1 ;M /X 1=2C": (2-1)
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Then upon defining the set

Bd .X IY;M /D
˚
K=Q; deg.K/D d; 0<DK �X W

at most M primes p � Y split completely in K
	

(2-2)

(with the usual further restriction in the case d D 4), we may trivially replace the
expression #B0

d
.X IX ı1 ;M / in (2-1) by #Bd .2X IX ı1 ;M / and only increase the

right-hand side.
We now suppose that we can bound from above the cardinality of the “bad

set” Bd .2X IX ı1 ;M / for appropriate ı1 and M . Note that one expects via the
Chebotarev density theorem that a positive proportion of the primes up to X ı1 split
completely in K, so that a reasonable choice for M will be proportional to �.X ı1/.
Precisely, we suppose that there is a small fixed ı2 > 0 such that for every X � 1

and an appropriate choice of M with X ı1= log X �M �X ı1= log X we have

#Bd .2X IX ı1 ;M /�X 1�ı2C"; (2-3)

for all " > 0. Then upon summing over O.log X / ranges and applying (2-1) and
(2-3) within each range, we see that for any X � 1,X
0<DK�X

jClK Œ`�j �
X

0�j�dlog2 X e

X
2j�1<DK�2j

jClK Œ`�j

�

X
0�j�dlog2 X e

˚
.2j�1/3=2C".2.j�1/ı1/�1 log 2j

C #Bd .2
j
I 2.j�1/ı1 ;M /.2j�1/1=2C"

	
� log X

X
0�j�dlog2 X e

˚
.2j /3=2�ı1C"C .2j /3=2�ı2C2"

	
�X 3=2�ıC3"; (2-4)

where ı D minfı1; ı2g and " > 0 is arbitrarily small. Thus we see that an upper
bound of the form (2-3) is the key to obtaining an average result in the shape
of Corollaries 1.1.1 and 1.1.2; this upper bound plays a similarly crucial role in
obtaining the results of Theorem 1.1, as we show in Section 7.

Ultimately, we will prove the following version of (2-3), which controls the
number of possible bad fields:

Theorem 2.1. Let Bd .X IY;M / be defined as in (2-2). Set

ı0.d/D

8̂̂̂<̂
ˆ̂:

1
6

if d D 2;
2

25
if d D 3;

1
48

if d D 4;
1

200
if d D 5:

(2-5)
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For each d D 2; 3; 4; 5, there is a constant 0 < c0.d/ < 1 such that for every
0< ı � ı0.d/ and every X � 1,

#Bd

�
X I .X=2/ı; 1

2
c0.d/

.X=2/ı

log.X=2/ı

�
�X 1�ıC"

for every " > 0.

Remark. The methods of this paper also prove an analogous theorem if the condi-
tion “split completely” in the definition (2-2) is replaced by another fixed splitting
type.

2B. Counting bad fields via a sieve and counts for fields with local conditions.
We prove Theorem 2.1 via a sieve we develop for this purpose; to describe the
strategy, we first recall the simplest classical setting of a sieve. Let A be a finite
set of elements of cardinality N , and let P denote the set of all rational primes.
We assume a certain property of interest has been specified so that each element
a 2 A either satisfies it or not, with respect to p, for each p 2P. For each prime
p 2P we let Ap denote the finite subset of A that satisfies the fixed property with
respect to the prime p. Moreover we assume we know that for each p there exists
a real number 0� ıp < 1 and a real number Rp with jRpj �N such that

#Ap D ıpN CRp: (2-6)

In simplest terms, a classical aim of a sieve is to provide an upper bound for the
number of elements in the set A such that the designated property fails for all
primes p � z, for some fixed threshold z. Thus one could use a sieve to provide an
upper bound for

#
�
A n

S
p�z

Ap

�
:

For example, to sieve for prime numbers, the set A is a finite set of integers, and
the property is that pja. Slightly more generally, one could apply a classical sieve
such as the Turán sieve to count

#
�
A n

S
p2P0

Ap

�
(2-7)

for an arbitrary fixed finite set of primes P0.
In our application, the set A is the set of fields K=Q of degree d with DK 2 .0;X �

and the property is that p splits completely in K, so that Ap is the subset of fields
in which the prime p splits completely. In this setting, assuming we possess an
appropriate understanding of #Ap as in (2-6), then (2-7) would allow us to count
those degree d fields K with DK 2 .0;X � in which a fixed set of primes fail to
split completely. But in order to bound the bad set Bd .X IX

ı1 ;M / we require
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more flexibility: a field belongs to this set if all the primes in a sufficiently large set
fail to split completely in K, but the relevant large set of primes might be different
for two different bad fields K. Thus we develop in Section 3 a flexible new sieve
that allows us to count elements a 2A that fail to lie in Ap for many p, without
specifying which p fail for any given a.

The key input to any sieve is an understanding of Ap that provides the expres-
sion (2-6). In our case, this requires an understanding of Nd .X /, Nd .X Ip/, and
Nd .X Ipq/ for two distinct primes p; q; here Nd .X Ipq/ counts the number of
degree d fields K=Q in which both p and q split completely. In the case of quartic
fields, we let

zN4.X /; zN4.X Ip/ and zN4.X Ipq/

denote the analogous quantities, restricted to non-D4-quartic fields K=Q.
We now summarize the key results we will require for the sieve. For quadratic

fields, we record:

Lemma 2.2. There exists a constant c2 > 0, such that for e D e1 or e D e1e2 for
distinct primes e1; e2,

N2.X /D c2X CO.X 1=2/; (2-8)

N2.X I e/D ıec2X CO.eX 1=2/; (2-9)

where ıe is a multiplicative function defined for any prime e by

ıe D
1

2

1

.1Ce�1/
: (2-10)

For completeness, we record a simple proof of this classical result in the Ap-
pendix; the error terms given here can be improved (see for example the survey
[Pappalardi 2005]), but will suffice for our application.

In contrast, the results for cubic, quartic, and quintic fields are deep. For cubic
fields, we cite:

Theorem C [Taniguchi and Thorne 2013, Theorems 1.1, 1.3]. There exist constants
c3 > 0, c0

3
< 0 such that for e D e1 or e D e1e2 for distinct primes e1; e2,

N3.X /D c3X C c03X 5=6
CO.X 7=9C"/; (2-11)

N3.X I e/D ıec3X C ı0ec03X 5=6
CO.e8=9X 7=9C"/; (2-12)

where ıe and ı0e are multiplicative functions defined for any prime e by

ıe D
1

6

1

.1Ce�1Ce�2/
; ı0e D

1

6
CO.e�1=3/: (2-13)

For quartic fields, we have:
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Theorem 2.3. There exists a constant c4 > 0 such that for e D e1 or e D e1e2 for
distinct primes e1; e2,

zN4.X /D c4X CO.X 23=24C"/; (2-14)

zN4.X I e/D ıec4X CO.e1=2C"X 23=24C"/; (2-15)

where ıe is a multiplicative function defined for any prime e by

ıe D
1

24

1

.1Ce�1C2e�2Ce�3/
: (2-16)

We note (2-14) is due to [Belabas et al. 2010, Theorem 1.3]; we deduce (2-15)
in Section 4, using the methods of Belabas, Bhargava, and Pomerance [Belabas
et al. 2010], which build on the work of Bhargava [2005] that obtained the original
count of S4-quartic fields with an o.X / error term. See Theorem 4.1 for our most
general result of this type, of which Theorem 2.3 is a special case.

For quintic fields, we have:

Theorem 2.4. There exists a constant c5 > 0 such that for e D e1 or e D e1e2 for
distinct primes e1; e2,

N5.X /D c5X CO.X 199=200C"/; (2-17)

N5.X I e/D ıec5X CO.e1=2C"X 79=80C"
CX 199=200C"/; (2-18)

where ıe is a multiplicative function defined for any prime e by

ıe D
1

120

1

.1C e�1C 2e�2C 2e�3C e�4/
: (2-19)

We note (2-17) is due to Shankar and Tsimerman [2014]; we deduce (2-18) in
Section 5, using their methods, which build on the work of Bhargava [2010] that
obtained the original count of S5-quintic fields with an o.X / error term. (We also
fill in a missing step from [Shankar and Tsimerman 2014].) See Theorem 5.1 for
our most general result, of which Theorem 2.4 is a special case.

We remark that the techniques for counting number fields that produced these
results for Nd .X I e/ continue to be refined, and we may expect that the error
terms will continue to be reduced. Thus in our subsequent computations involving
Nd .X I e/ we have worked more generally with error terms of the form O.e�X � /,
so that it will be immediately clear how improvements in counting fields will lead
to refinements of our results. (In particular, improved error terms for smoothed
versions of the counting functions Nd .X I e/ would suffice for our application.)
We note that the mechanism we employ will apply equally well to higher degree
extensions of Q (or extensions of a fixed number field, using the more general
form of Theorem A available in [Ellenberg and Venkatesh 2007, Lemma 2.3]) if
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suitable results for Nd .X / and Nd .X I e/ (or their analogues for extensions of a
fixed number field) become available. In addition, one might consider other families
of fields for which precise asymptotics are known, such as abelian fields over Q with
a fixed Galois group, ordered either by discriminant [Wright 1989; Frei et al. 2015]
or by conductor [Wood 2010]. It would be an interesting question to see whether
the existing methods can be refined to produce an appropriate power-saving error
term with sufficiently explicit dependence on a finite number of local conditions.

3. The Chebyshev sieve

We now develop in a fully general setting a new sieve that allows us to give an
upper bound for the number of elements a belonging to a set A that satisfy a
desired property with respect to p for “few” p (without specifying for which p it is
satisfied). We will see that the principal idea is probabilistic, relating to Chebyshev’s
inequality, thus we dub it the Chebyshev sieve.

As before, let A be a finite set of cardinality N , let P denote the set of all
rational primes, and let Ap denote the finite subset of A that satisfies the fixed
property with respect to the prime p. For a fixed real parameter z � 1, we let

P .z/D
Y

p2P
p�z

p

and we define for each a 2 A the quantity

N.a/D #fp W pjP .z/; a 2 Apg:

Next, we set
M.z/D

1

N

X
a2A

N.a/D
1

N

X
pjP.z/

#Ap (3-1)

to be the mean number of sets Ap (with p � z) to which a typical element a 2 A

belongs. (In nonvacuous cases, M.z/ is nonzero.) We would expect that a typical
element a 2A has N.a/ being about size M.z/, and we want to bound from above
the number of a 2 A which have N.a/ being unusually small, that is, less than a
fixed small proportion of M.z/.

Given 1�M � z, we define E .A I z;M / to be the set of elements a 2 A such
that at most M primes pjP .z/ have a 2 Ap. (Or in other words, E .A I z;M / is
the set of elements a 2 A such that N.a/�M .) Then we set

E.A I z;M /D #E .A I z;M /:

Our sieve lemma will provide us with an upper bound for E.A I z; 1
2
M.z//; that is,

the number of elements in A that lie in Ap for fewer than half the mean number
of p.
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For the purposes of the lemma, we introduce the following notation. Given
distinct primes p; q we let Apq D Ap \Aq , and let Rp;q denote the quantity such
that

#Apq D ıpıqN CRp;q:

(For notational convenience, we will interpret Rp;p as Rp.) Finally, we set

U.z/D
X

pjP.z/

ıp:

We now state the key sieve lemma.

Lemma 3.1 (Chebyshev sieve). With the setting described above,

E.A I z; 1
2
M.z//

�
4N

M.z/2

�
U.z/C

1

N

X
p;qjP.z/

jRp;qjC
2U.z/

N

X
pjP.z/

jRpjC

�
1

N

X
pjP.z/

jRpj

�2�
:

3A. Proof of the sieve lemma. We note that the sieve inequality we prove is related
to the classical Turán sieve (see for example Theorem 4.1.1 of [Cojocaru and Murty
2006]), and can be seen as an application of Chebyshev’s inequality

P.jX ��j � ˛/� �2=˛2;

for X a random variable with mean � and variance �2, applied to the random
variable N.a/ when a is drawn uniformly from A .

We prove the lemma directly. We begin by noting that

1

N
E
�
A I z; 1

2
M.z/

��
1
2
M.z/

�2
�

1

N

X
a2E .A Iz; 1

2
M.z//

.N.a/�M.z//2

�
1

N

X
a2A

.N.a/�M.z//2:

It then suffices to prove the variance term on the right-hand side satisfies

1

N

X
a2A

.N.a/�M.z//2

�U.z/C
1

N

X
p;qjP.z/

jRp;qjC2U.z/

�
1

N

X
pjP.z/

jRpj

�
C

�
1

N

X
pjP.z/

jRpj

�2

: (3-2)

We first note from (3-1) that the mean satisfies

M.z/D
1

N

X
pjP.z/

#Ap D
1

N

X
pjP.z/

.ıpN CRp/D U.z/C
1

N

X
pjP.z/

Rp: (3-3)
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We now consider the left-hand side of (3-2), which we trivially expand as

1

N

X
a2A

N.a/2�
2

N

X
a2A

N.a/M.z/CM.z/2 D
1

N

X
a2A

N.a/2�M.z/2: (3-4)

The first term on the right-hand side of (3-4) is equal to

1

N

X
p;qjP.z/

#.Ap \Aq/D
1

N

� X
pjP.z/

ıpN C
X

p;qjP.z/
p¤q

ıpıqN C
X

p;qjP.z/

Rp;q

�

D

X
pjP.z/

ıpC

� X
pjP.z/

ıp

�2

�

X
pjP.z/

ı2
pC

1

N

X
p;qjP.z/

Rp;q

D

X
pjP.z/

ıp.1� ıp/CU.z/2C
1

N

X
p;qjP.z/

Rp;q:

On the other hand, we may expand M.z/2 via (3-3) and see that after cancellation
of the U.z/2 factor, the right-hand side of (3-4) is equal toX
pjP.z/

ıp.1� ıp/C
1

N

X
p;qjP.z/

Rp;q � 2U.z/

�
1

N

X
pjP.z/

Rp

�
�

�
1

N

X
pjP.z/

Rp

�2

:

As Rp may be either positive or negative, we take absolute values; then using the
fact that ıp � 1 we see the resulting inequality simplifies to (3-2), thus proving the
lemma.

4. Asymptotic count of non-D4-quartic fields

In this section we will prove the following, of which Theorem 2.3 is a special case.

Theorem 4.1. Let P be a finite set of primes. For each prime p 2 P we choose a
splitting type at p and assign a corresponding density as follows:

ıp WD
1

24
.1Cp�1

C 2p�2
Cp�3/�1 for p D }1}2}3}4;

ıp WD
1
4
.1Cp�1

C 2p�2
Cp�3/�1 for p D }1}2}3;

ıp WD
1
3
.1Cp�1

C 2p�2
Cp�3/�1 for p D }1}2 with }2 inertia degree 3;

ıp WD
1
8
.1Cp�1

C 2p�2
Cp�3/�1 for p D }1}2 with }i inertia degree 2;

ıp WD
1
4
.1Cp�1

C 2p�2
Cp�3/�1 for p D }1;

ıp WD
p�1C2p�2Cp�3

.1Cp�1C2p�2Cp�3/
for p ramified:

Let ıP WD
Q

p2P ıp and let e D
Q

p2P p. Let zN4.X IP / be the number of non-D4

quartic fields with absolute discriminant at most X such that for each p 2 P , the
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prime p splits in the quartic field in the splitting type chosen for p above. There
exists a constant c4 > 0 such that

zN4.X IP /D ıP c4X CO.e1=2C"X 23=24C"/; (4-1)

where the implied constant in the O term is absolute (does not depend on P ).
Moreover, we may choose more than one splitting type at each prime and let ıp be
the sum of the corresponding densities and the result still holds.

Bhargava [2005] first determined the asymptotic count of non-D4-quartic fields,
and Belabas, Bhargava, and Pomerance [Belabas et al. 2010] gave a power-saving
asymptotic for this count. We will follow the method of [Belabas et al. 2010],
additionally requiring our chosen splitting types. While the main term for such a
restricted count appears in [Bhargava 2005, Theorem 3] (at least for one prime,
and the same argument would work for more primes), we require a power-saving
error term with explicit dependence on the primes. In fact, such results have
appeared at least four times recently, but we will improve upon the exponents in
all of these results and remove various hypotheses that don’t hold in the situation
in which we need to apply the bound. Yang [2009, Proposition 3.1.7] proved
such a power-saving error of the form zN4.X IP /D ıP c4X CO.e2X 143=144C"/.
([Yang 2009, Proposition 3.1.7] only states this for one local condition, but [Cho
and Kim 2015, Section 7] remarked it can be extended to finitely many local
conditions.) Lemke Oliver and Thorne [2017, Theorem 2.1] proved a power-
saving error (in which we may only specify that p is ramified) of zN4.X IP / D

ıP c4X CO.e9=10X 239=240C"/. Shankar, Södergren, and Templier [Shankar et al.
2015] proved zN4.X IP /D ıP c4X CO.e12X 23=24C"/ when P contains a single
prime.

The exposition of the method in [Bhargava 2005; Belabas et al. 2010] is quite
clear, so we will focus here on the particular aspects of the computation we need.
Instead of directly counting quartic fields, the method, equivalently, counts maximal
quartic orders. The parametrization of quartic rings with their cubic resolvents
due to Bhargava [2004] (see also [Belabas et al. 2010, Theorem 4.1]) gives an
injection from the set of isomorphism classes of maximal quartic orders to the
set of GL2.Z/� SL3.Z/ classes of pairs of ternary quadratic forms with integral
coefficients. Pairs of integral ternary quadratic forms comprise a 12 dimensional
lattice VZ D Z12. Counting GL2.Z/� SL3.Z/ classes of lattice points in Z12 is
the same as counting lattice points in a fundamental domain for GL2.Z/�SL3.Z/

on R12. In this paper, we need to count only these lattice points in particular
translates of sublattices of Z12. We collect some basic facts about the lattice
translates corresponding to our desired fields, apply the geometry of numbers result
from [Belabas et al. 2010] to count the necessary lattice points, and then work to
minimize the resulting error terms.
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As in [Bhargava 2005, Section 2.2] and [Belabas et al. 2010, Section 4] we use a
certain random fundamental domain for the action of GL2.Z/�SL3.Z/ on R12. For
a positive integer m, let L be a translate vCmVZ (v 2 VZ) of the sublattice mVZ

of VZ. Let N 0.LIX / denote the expected number of lattice points in L, with first
coordinate nonzero and discriminant less than X , in a random fundamental domain.
(This notion of expected value for a random fundamental domain is defined as in
[Bhargava 2005, Equation (5)], with S the set of points of L with first coordinate
nonzero, but without the “abs. irr.” condition that appears in [Bhargava 2005,
Equation (5)]. See also [Belabas et al. 2010, p. 198].) Let NS4

.qIX / be the number
of classes in VZ corresponding to isomorphism classes of S4-quartic orders and
whose index in their maximal order is divisible by q and whose discriminant is less
than X . We have the following result that estimates these counts.

Theorem D [Belabas et al. 2010, Theorem 4.11]. Let L be a translate vCmVZ

(v 2 VZ). Let .a; b; c; d/ denote the smallest positive first four coordinates of any
element of L. Then

N 0.L;X /D
NS4

.1IX /

m12
CO

�X
S

X .jS jC˛SCˇSC
SCıS /=12

mjS ja˛S bˇS c
S dıS
C log X

�
;

where S ranges over the nonempty proper subsets of the set of 12 coordinates on
VZ, and ˛S ; ˇS ; 
S ; ıS 2 Œ0; 1� are real constants that depend only on S and satisfy
jS jC˛S CˇS C 
S C ıS � 11.

Let q be square-free and .q; e/D 1. First, we will assume that we have chosen
unramified splitting types at each prime in P . Now, we will start by counting the
expected number N 0.q; eIX / of lattice points in a random fundamental domain
that satisfy the following conditions: (1) their first coordinate is nonzero, (2) their
discriminant is less than X , (3) their corresponding quartic ring is not maximal
at each prime dividing q and is maximal and of chosen splitting type at primes
in P . We do this by summing Theorem D over the collection T of translates of
eq2VZ that give quartic rings that are not maximal at each prime dividing q, and
are maximal and with chosen local splitting at each p 2 P . (See [Bhargava 2004,
Section 4] for a description of which pairs of ternary quadratic forms correspond to
quartic rings that are maximal or split in a certain way at a prime.)

Given .a; b; c; d/ 2 Œ1; eq2�4, we need to bound the number of translates in T

that have .a; b; c; d/ as the smallest positive first four coordinates of any element.
By [Belabas et al. 2010, Corollary 4.8], there are O.6!.q/q14/ translates of q2VZ

that are congruent to .a; b; c; d/ modulo q2 and whose lattice points correspond
to quartic rings that are not maximal at each prime dividing q. Since VZ is 12
dimensional, there are e8 translates of eVZ congruent to .a; b; c; d/ modulo e. Thus
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by the Chinese Remainder Theorem, there are O.6!.q/q14e8/ translates in T that
have .a; b; c; d/ as the smallest positive first four coordinates of any element.

For q square-free, we define �.q/ to be the multiplicative function defined for a
prime p by

�.p/ WDp�2
C2p�3

C2p�4
�3p�5

�4p�6
�p�7

C3p�8
C3p�9

�p�10
�p�11:

This is the density of lattice points that correspond to quartic rings nonmaximal at
p [Belabas et al. 2010, Lemma 4.4]. Then #T D �.q/q24e12�P , where

�P WD

Y
p2P

ıp.1� �.p//;

and 0� ıp � 1 is the density of lattice points corresponding to quartic rings that
are split as we chose at p as a subset of those corresponding to quartic rings that
are maximal at p [Bhargava 2004, Lemma 23].

If q2 >X , then all the classes counted by N 0.q; eIX / have discriminant 0, and
by [Belabas et al. 2010, Lemma 4.10], in this case there are O.X 11=12C"/ such
classes.

So now we consider the case when q2 �X , in which case, using the shorthand

�S D jS jC˛S CˇS C 
S C ıS and "S D a˛S bˇS c
S dıS ;

by Theorem D,

N 0.q; eIX /

D�.q/�P NS4
.1IX /CO

� X
.a;b;c;d/2Œ1;eq2�4

6!.q/q14e8

�X
S

X �
S
=12

.eq2/jS j"
S

Clog X

��
:

We haveX
.a;b;c;d/2Œ1;eq2�4

6!.q/q14e8

�X
S

X �
S
=12

.eq2/jS j"
S

C log X

�

D 6!.q/q14e8

�
e4q8 log X C

X
S

X �
S
=12

.eq2/jS j

X
.a;b;c;d/2Œ1;eq2�4

1

"
S

�

� 6!.q/q14e8

�
e4q8 log X C

X
S

X �
S
=12

.eq2/jS j

�
.eq2/4�˛S�ˇS�
S�ıS log4.eq2/

��
D 6!.q/q22e12

�
log X C

X
S

.X 1=12e�1q�2/�S log4.eq2/

�
:
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Since 0� �
S
� 11, and recalling that q2 �X , the above is

DO
�
6!.q/q22e12

�
.X 1=12e�1q�2/11 log4.eq2/C log4.eq2/C log X

��
DO

�
e1C"X 11=12C"

C q22e12C"X "
�
:

Let NS4
.q; eIX / be the number of classes in VZ, or equivalently lattice points in

a fundamental domain, corresponding to isomorphism classes of S4-quartic orders,
whose index in their maximal order is divisible by q and whose discriminant is
less than X , and that are maximal and of chosen splitting type at p 2 P . Now, by
inclusion-exclusion, as in the proof of [Belabas et al. 2010, Theorem 4.13], we have
that the number of isomorphism classes of maximal S4-quartic orders splitting as
chosen for p 2 P and having (absolute) discriminant less than X is given byX0

q�1

�.q/NS4
.q; eIX /

where the sum is restricted to square-free q that are relatively prime to e.
Now we compare NS4

.q; eIX / and N 0.q; eIX /. Note that the difference is that
N 0.q; eIX / excludes those lattice points with first coordinate 0, and NS4

.q; eIX /

excludes those lattice points that do not correspond to orders in S4-quartic fields.
So by [Belabas et al. 2010, Lemmas 4.9 and 4.10], we have

jNS4
.q; eIX /�N 0.q; eIX /j DO.X 11=12C"/:

Thus by our previous computation for N 0.q; eIX /,

NS4
.q; eIX /D �.q/�P NS4

.1IX /CO
�
e1C"X 11=12C"

C q22e12C"X "
�
: (4-2)

So for a fixed Q (to be chosen in terms of X; e later), we sum over square-free q

with .q; e/D 1 as in (4-2), obtainingX0

q�1

�.q/NS4
.q; eIX /

D

X0

1�q�Q

�.q/NS4
.q; eIX /C

X0

q>Q

�.q/NS4
.q; eIX /

D

X0

1�q�Q

�.q/�.q/�P NS4
.1IX /CO.E1/CO.E2/

D

X0

q�1

�.q/�.q/�P NS4
.1IX /CO.E1/CO.E2/CO.E3/

D

Y
p

.1� �.p//
Y

p2P

ıpNS4
.1IX /CO.E1/CO.E2/CO.E3/;
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where
E1 D

X0

1�q�Q

�
e1C"X 11=12C"

C q22e12C"X "
�
;

E2 D

X0

q>Q

�.q/NS4
.q; eIX /;

E3 D

X0

q>Q

�.q/�P NS4
.1IX /:

(Note that we handle the terms slightly differently than in [Belabas et al. 2010], so
that E3 above does not correspond to their E3 term.)

We have E1 DO.e1C"QX 11=12C"CQ23e12C"X "/. By [Belabas et al. 2010,
Lemma 4.3], we have NS4

.q; eIX / D O.Xq�2C"/, and so E2 D O.XQ�1C"/:

We have E3 DO.Q�1C"X /, since by [Belabas et al. 2010, Lemma 4.2], we have
NS4

.1IX /DO.X /, and by definition �.q/DO.q�2C"/.
If e �X 1=12, then we take QDX 1=24e�1=2, and we haveX0

q�1

�.q/NS4
.q; eIX /D

Y
p

.1��.p//
Y

p2P

ıpNS4
.1IX /CO.e1=2C"X 23=24C"/:

By [Belabas et al. 2010, Lemma 4.2], we have thatY
p

.1� �.p//NS4
.1IX /D c4X CO.X 23=24C"/;

for some positive constant c4. Thus we conclude that the number of isomorphism
classes of maximal S4-quartic orders with our chosen splitting types at p 2 P and
having (absolute) discriminant less than X is

ıP c4X CO.e1=2C"X 23=24C"/:

If e >X 1=12, then the number of isomorphism classes of maximal S4-quartic
orders with chosen splitting types for p 2 P and having (absolute) discriminant
less than X is O.X / by [Belabas et al. 2010, Lemma 4.2], which we may then also
write as

ıP c4X CO.e1=2C"X 23=24C"/:

There are at most O.X 7=8C"/ quartic extensions with DK < X with Galois
closure having Galois group C4;K4 or A4 [Baily 1980; Wong 1999a]. So we can
conclude Theorem 4.1 holds for unramified splitting types. This argument shows we
can also choose more than one splitting type at each p, and sum the corresponding
densities.

Now, given P and choices for local splitting types some of which may be
ramified, let P1 be the subset of P for which we choose only unramified splitting
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types. We can find zN4.X IP1/ using the result already proven. For any subset
P2 � P nP1, write zN4.X IP1[P2/ for the number of non-D4 quartic fields with
absolute discriminant at most X such that for each p 2 P1 the prime p splits in
one of our chosen spitting type, and for each p 2 P2 the prime p does not split in
one of our chosen splitting types. We can also apply the result already proven to
find zN4.X IP1[P2/. Then using inclusion exclusion, we have

zN4.X IP /D
X

P2�PnP1

.�1/jP2j zN4.X IP1[P2/

D ıP c4X C
X

P2�PnP1

.�1/jP2jO.e1=2C"X 23=24C"/:

Since each set P2 corresponds to a distinct divisor of e there are O.e"/ terms in
the sum and Theorem 4.1 follows.

Remark. On the other hand, the number of D4-quartic fields with DK < X is
� cX with c � 0:052326, as initially indicated (as an order of magnitude) by Baily
[1980] and refined with an explicit constant by Cohen, Diaz y Diaz and Olivier
[Cohen et al. 2002]. It is an interesting open problem to count D4 fields with local
conditions such as certain primes being split completely, and for now we exclude
them from our consideration.

5. Asymptotic count of quintic fields

In this section we will prove the following, of which Theorem 2.4 is a special case.

Theorem 5.1. Let P be a finite set of primes. For each prime p 2 P we choose
a splitting type at p and assign a corresponding density as follows (i.d. = inertia
degree):

ıp WD
1

120
.1Cp�1

C2p�2
C2p�3

Cp�4/�1 for p D }1}2}3}4}5;

ıp WD
1

12
.1Cp�1

C2p�2
C2p�3

Cp�4/�1 for p D }1}2}3}4;

ıp WD
1
8
.1Cp�1

C2p�2
C2p�3

Cp�4/�1 for p D }1}2}3 with }2; }3 i.d. 2;

ıp WD
1
6
.1Cp�1

C2p�2
C2p�3

Cp�4/�1 for p D }1}2}3 with }3 i.d. 3;

ıp WD
1
6
.1Cp�1

C2p�2
C2p�3

Cp�4/�1 for p D }1}2 with }2 i.d. 3;

ıp WD
1
4
.1Cp�1

C2p�2
C2p�3

Cp�4/�1 for p D }1}2 with }2 i.d. 4;

ıp WD
1
5
.1Cp�1

C2p�2
C2p�3

Cp�4/�1 for p D }1;

ıp WD
p�1C2p�2C2p�3Cp�4

.1Cp�1C2p�2C2p�3Cp�4/
for p ramified:

Let ıP WD
Q

p2P ıp and let e D
Q

p2P p. Let N5.X IP / be the number of quintic
fields with absolute discriminant at most X such that for each p 2 P , the prime
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p splits in the quartic field in the splitting type chosen for p above. There exists a
constant c5 > 0 such that

N5.X IP /D ıP c5X CO.e1=2C"X 79=80C"
CX 199=200C"/; (5-1)

where the implied constant in the O term is absolute (does not depend on P ).
Moreover, we may choose more than one splitting type at each prime and let ıp be
the sum of the corresponding densities and the result still holds.

Bhargava [2010] gave the first asymptotic count of quintic number fields, and
Shankar and Tsimerman [2014], building on Bhargava’s work, gave the first
power-saving error term. Both proofs fundamentally rely on Bhargava’s [2008]
parametrization of quintic rings. We will follow the outline of the argument of
[Shankar and Tsimerman 2014], additionally requiring our chosen splitting condi-
tions. While the main term for such a restricted count appears in [Bhargava 2010,
Theorem 3] (at least for one prime, and the same argument would work for more
primes), we require a power-saving error term with explicit dependence on the
primes. While such bounds have appeared in at least three recent papers, we will
improve on the exponents in all of them, as well as remove hypotheses that do
not hold in our cases of interest. Lemke Oliver and Thorne [2017, Theorem 2.1]
have shown, assuming that we choose ramification at each prime p 2 P , that
N5.X IP / D ıP c5X CO.eX 199=200C"/. Cho and Kim [2015, Section 6] have
recently proven a bound of the sort we desire; it seems they show N5.X IP / D

ıP c5X CO.e2�"X 399=400C"/. Also, Shankar, Södergren, and Templier [Shankar
et al. 2015] stated the bound N5.X IP /DıP c5XCO.e40X 79=80C"CX 199=200C"/

when P contains a single prime.
Instead of directly counting quintic fields, the method, equivalently, counts

maximal quintic orders. Analogously to the quartic case, we use a parametrization
of quintic rings with their sextic resolvents due to Bhargava [2008]. Let VZ D Z40

denote the space of quadruples of 5 � 5 skew-symmetric matrices with integer
coefficients. Then quintic rings with their sextic resolvents are parametrized by
GL4.Z/� SL5.Z/ orbits on VZ [Bhargava 2008, Theorem 1]. These orbits corre-
spond to lattice points in a fundamental domain for GL4.Z/� SL5.Z/ on R40. As
in [Bhargava 2010, Section 2.2; Shankar and Tsimerman 2014, Section 2.2], we
take a certain random fundamental domain for the action of GL4.Z/� SL5.Z/ on
R40. For a subset S � VZ, let Ndom.S IX / denote the expected number of elements
of S with absolute discriminant less than X and whose associated quintic ring is an
integral domain (i.e., is an order in a quintic field), in a random fundamental domain
(as in [Shankar and Tsimerman 2014, Equation (1)], summed over the implicit i

there). Let N �.S IX / denote the expected number of elements of S with absolute
discriminant less than X , in a random fundamental domain (as in the equation
after (1) in [Shankar and Tsimerman 2014], summed over the implicit i there).
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We first consider the case in which only unramified splitting types are chosen.
Let a12 denote the .1; 2/ coordinate of the first matrix in a quadruple of 5 � 5

skew-symmetric matrices. For a square-free integer q relatively prime to e, let
Wq;e � VZ denote the set of elements corresponding to quintic rings that are not
maximal at each prime dividing q and are maximal and of chosen splitting type at
primes dividing e. Recall from [Bhargava 2008, Section 12] that Wq;e is defined
by congruence conditions modulo q2e (for maximality, an argument analogous
to that in [Bhargava 2004, Lemma 22] is necessary). Let Ue � VZ denote the set
of elements corresponding to quintic rings that are maximal at all primes and of
chosen splitting type at the primes dividing e. Then counting Ndom.UeIX / will
provide us with precisely the count N5.X I e/ we require. We will count lattice
points in Ue by using inclusion-exclusion to reduce to counting lattice points in
the Wq;e.

By [Bhargava 2010, Equation (27)] (see also [Shankar and Tsimerman 2014,
Equation (4)]), if L is a translate of the lattice mVZ and mDO.X 1=40/, then

N �.L\fa12 ¤ 0gIX /D c0m�40X CO.m�39X 39=40/; (5-2)

for some positive absolute constant c0.
Bhargava gives the density of lattice points corresponding to rings maximal at a

given prime [2008, Equation (48)] and the density of lattice points corresponding to
rings maximal and of each splitting type [2008, Lemma 20]. Using these two com-
puted densities, we conclude that of the .q2e/40 quadruples of 5�5 skew-symmetric
matrices mod q2e, we have that Wq;e corresponds to �.q/q80ıP e40

Q
p2P .1��.p//

of them, where

�.p/D

1�
.p�1/8p12.pC1/4.p2C1/2.p2CpC1/2.p4Cp3Cp2CpC1/.p4Cp3C2p2C2pC1/

p40
;

and we extend this to a multiplicative function �.q/ for square-free q. (Here,
�.p/ is the density of lattice points correspond to rings that are nonmaximal at p

from [Bhargava 2008, Equation (48)].) Note that �.p/D p�2CO.p�3/ and thus
�.q/DO.q�2C"/.

We have that ıP � 1 and 1��.p/� 1. So, when q2eDO.X 1=40/, by summing
Equation (5-2) over all the translates of q2eVZ that comprise Wq;e, we find that

N �.Wq;e \fa12 ¤ 0gIX /

D �.q/q80ıP e40
Y

p2P

.1� �.P //c0q�80e�40X

CO.�.q/q80ıP e40
Y

p2P

.1� �.p//q�78e�39X 39=40/
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D �.q/ıP
Y

p2P

.1� �.p//c0X CO.�.q/q2ıP e
Y

p2P

.1� �.p//X 39=40/

D �.q/ıP
Y

p2P

.1� �.p//c0X CO.q"eX 39=40/; (5-3)

where in the last identity we have used the fact that �.q/DO.q�2C"/.
We then, by inclusion-exclusion as in [Shankar and Tsimerman 2014, Section 4],

have for an appropriate Q (to be chosen later in terms of X ),

Ndom.Ue \fa12 ¤ 0gIX /

D

X0

q�1

�.q/Ndom.Wq;e \fa12 ¤ 0gIX /

D

X0

1�q�Q

�.q/Ndom.Wq;e\fa12¤ 0gIX / C
X0

q>Q

�.q/Ndom.Wq;e\fa12¤ 0gIX /

D

X0

1�q�Q

�.q/N �.Wq;e \fa12 ¤ 0gIX /

C

X0

1�q�Q

�.q/
�
Ndom.Wq;e \fa12 ¤ 0gIX /�N �.Wq;e \fa12 ¤ 0gIX /

�
C

X0

q>Q

�.q/Ndom.Wq;e \fa12 ¤ 0gIX /;

where the sums are over square-free q relatively prime to e.
By [Shankar and Tsimerman 2014, Lemma 3], we have Ndom.Wq;eIX / D

O.q�2C"X / and we use this for the sum for q >Q. We will use Equation (5-3)
for the first 1� q �Q sum. For the second 1� q �Q sum, note that each lattice
point corresponding to a nondomain of discriminant D is counted with coefficient

�

X
1�q�Q

qjD

�.q/;

which is O.D"/DO.X "/, and by [Shankar and Tsimerman 2014, Equation (8)]
there are at most O.X 199=200C"/ lattice points corresponding to nondomains. (This
step, or something similar, should be added to the proof in [Shankar and Tsimerman
2014].)

As a result, as long as QDO.X 1=80e�1=2/,

Ndom.Ue \fa12 ¤ 0gIX /

D

X0

q�1

�.q/�.q/ıP
Y

p2P

.1� �.p//c0X CO.E1/CO.E2/CO.E3/;
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where

E1 D

X
1�q�Q

O.q"eX 39=40/; E2 DO.X 199=200C"/;

E3 D

X
q>Q

q�2C"X; E4 D

X
q>Q

�.q/�.q/ıP
Y

p2P

.1� �.p//c0X:

These terms trivially admit the estimates

E1 DO.Q1C"eX 39=40/; E2 DO.X 199=200C"/;

E3 DO.Q�1C"X /; E4 DO.Q�1C"X /;

where in the last estimate we have used the fact that �.q/DO.q�2C"/.
We take QDX 1=80e�1=2, and have

Ndom.Ue \fa12 ¤ 0gIX /

D

X0

q�1

�.q/�.q/ıP
Y

p2P

.1� �.p//c0X CO.e1=2X 79=80C"
CX 199=200C"/

D

Y
p

.1� �.p//ıP c0X CO.e1=2X 79=80C"
CX 199=200C"/:

From [Bhargava 2010, Lemma 11], we have that Ndom.fa12D0gIX /DO.X 39=40/,
and so

Ndom
�
Ue \fa12 D 0gIX

�
DO.X 39=40/:

It follows that

N5.X IP /DNdom.UeIX /

D

Y
p

.1� �.p//ıP c0X CO
�
e1=2X 79=80C"

CX 199=200C"
�
:

We thus conclude Theorem 5.1 holds with, c5 D
Q

p.1� �.p//c0 when we only
choose unramified splitting types. As at the end of Theorem 4.1, we can apply the
result we have just proven and inclusion-exclusion to prove Theorem 5.1 in general.

6. Application of the sieve

6A. Summary of the asymptotic inputs to the sieve. We now turn to the appli-
cation of the sieve lemma to degree d field extensions of Q. Note that when
applying the sieve, it is crucial to have error terms with explicit dependence on
local conditions (such as we have derived in Theorems 2.3 and 2.4): without such
an explicit dependence, we would not have quantitative control of the right-hand
side of the key sieve inequality in Lemma 3.1, since we would not have an explicit
bound for Rp in terms of p.
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Let A and Ap (for each rational prime p) be the sets such that #A D Nd .X /

and #Ap D Nd .X Ip/ (or zN4.X /, zN4.X Ip/ in the case of d D 4). With these
definitions, the quantity E

�
A I z; 1

2
M.z/

�
treated in the sieve (Lemma 3.1), which

we will now denote by Ed

�
A I z; 1

2
M.z/

�
, is the number of degree d extensions

K of Q with 0<DK �X (up to isomorphism, and non-D4 when d D 4) such that
there are at most 1

2
M.z/ primes p � z that split completely in K.

We recall the collection Bd .X IY;M / of bad fields, as defined in (2-2). We will
think of Y D z D .X=2/ı0 for ı0 > 0 to be chosen precisely later, and define M.z/

as in (3-1). In particular, the set of bad fields satisfies

#Bd

�
X I .X=2/ı0 ; 1

2
M..X=2/ı0/

�
DEd

�
A I .X=2/ı0 ; 1

2
M..X=2/ı0/

�
:

We will need to apply the sieve separately to fields of each degree, since in
several cases the count for Nd .X Ip/ takes a somewhat different form, but in an
effort to unify the presentation, we restate the asymptotics we will assume in more
general form. We write the results of Lemma 2.2, Theorem C, Theorems 2.3 and 2.4
as follows.

Quadratic fields: for ıe as in (2-10), there is some �2 > 0 and 0 < �2 � 1=2

such that

N2.X /D c2X CO.X �2C"/; N2.X I e/D ıec2X CO.e�2X �2C"/:

Cubic fields: for ıe; ı0e as in (2-13), there is some �3 > 0 and 0< �3 < 5=6 such
that

N3.X /D c3X C c03X 5=6
CO.X �3C"/;

N3.X I e/D ıec3X C ı0ec03X 5=6
CO.e�3X �3C"/:

Non-D4-quartic fields: for ıe as in (2-16), there is some �4 > 0 and 0< �4 < 1

such that

zN4.X /D c4X CO.X �4C"/; zN4.X I e/D ıec4X CO.e�4X �4C"/:

Quintic fields: for ıe as in (2-19), there is some �5 > 0 and 0< �5 < 1 as well
as some 0< 
 < 1 such that

N5.X /D c5X CO.X 
C"/; N5.X I e/D ıec5X CO.e�5X �5/CO.X 
C"/:

The main result of the sieve in this context is the following:

Proposition 6.1. With the notation as above, we have

Ed

�
A I .X=2/ı0 ; 1

2
M..X=2/ı0/

�
�X 1�ı0C";
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for any ı0 such that

ı0 �

8̂̂̂<̂
ˆ̂:

1��d

1C2�d

if d D 2; 4;

min
n

1��d

1C2�d

;
1

4

o
if d D 3;

min
n

1��d

1C2�d

; 1� 

o

if d D 5:

(6-1)

Moreover, for any such ı0 there exist positive real constants c0.d/ < c1.d/ < 1 and
Xd DXd .ı0/� 1 such that for all X �Xd ,

c0.d/
.X=2/ı0

log.X=2/ı0
�M..X=2/ı0/� c1.d/

.X=2/ı0

log.X=2/ı0
: (6-2)

The requirement that X �Xd simply is a quantification of the requirement that
X be sufficiently large, and will be incorporated later simply by enlarging certain
implicit constants.

Proposition 6.1 immediately provides the upper bound we require for the bad set
Bd .X IY;M / defined in (2-2), with an appropriate choice of the parameters Y;M.
As there are �.Y / D Y .log Y /�1CO.Y .log Y /�2/ primes p � Y , we could of
course only expect at most Y .log Y /�1 primes p � Y to split completely in any
given field. Proposition 6.1 shows that, up to a constant factor, this is a reasonable
expectation, in that the mean M..X=2/ı0/ is approximately ��..X=2/ı0/, for
some � 2 Œc0.d/; c1.d/�; moreover Proposition 6.1 provides an upper bound for the
number of fields with DK �X in which at most 1

2
M..X=2/ı0/ primes p� .X=2/ı0

split completely.
We will prove Proposition 6.1 case by case.

6B. Sieve for quadratic fields. For notational convenience, in this section we write
�; � for �2; �2. We compute that for any prime p,

Rp D #Ap � ıp#A DN2.X Ip/� ıpN2.X /DO.p�X �C"/:

Similarly, for distinct primes p; q

Rpq D #Apq � ıpıq#A DN2.X Ipq/� ıpıqN2.X /DO.p�q�X �C"/:

Thus since #A �X ,

1

#A

X
pjP.z/

jRpj � z1C�X ��1C";
1

#A

X
p;qjP.z/

jRpqj � z2C2�X ��1C":

We compute

U.z/D
X

pjP.z/

ıp D
1

2

X
pjP.z/

1

1Cp�1
;
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from which we deduce that

1
3
z.log z/�1

CO.z.log z/�2/� U.z/� 1
2
z.log z/�1

CO.z.log z/�2/: (6-3)

Indeed, letting "p D .1Cp�1/�1, the upper bound follows directly from the prime
number theorem and the fact that 0< "p < 1, while the lower bound only requires
noticing

U.z/�
1

2

X
pjP.z/

"2 D
1

3

X
pjP.z/

1D 1
3
z.log z/�1

CO.z.log z/�2/:

We may compute the mean as in (3-3):

M.z/D U.z/C
1

#A

X
pjP.z/

Rp D U.z/CO.z1C�X ��1C"/:

Recalling (6-3) and that z D .X=2/ı0 for a parameter ı0 to be chosen later, we see
the last error term will be < 1

2
U.z/ for sufficiently large X as long as

ı0 <
1��

�
: (6-4)

Assuming this, for sufficiently large X we have

c0z.log z/�1
�

1
2
U.z/�M.z/� 3

2
U.z/� c1z.log z/�1

for absolute constants 0< c0 < c1 � 1. We apply Lemma 3.1 to see that

E2

�
A I z; 1

2
M.z/

�
�

X 1C"

z2

�
zCz2C2�X ��1

Cz.z1C�X ��1/C.z1C�X ��1/2
�

�X ".Xz�1
Cz2�X � /;

still assuming (6-4). Balancing the terms in the last expression above would set

ı0 D .1� �/=.1C 2�/; (6-5)

which certainly satisfies (6-4); as a consequence, for any ı0 � .1� �/=.1C 2�/,
we obtain

E2

�
A I .X=2/ı0 ; 1

2
M..X=2/ı0/

�
�X 1�ı0C";

which proves Proposition 6.1 in the case of quadratic fields.

6C. Sieve for cubic fields. For notational convenience, in this section we write
�; � for �3; �3. We compute that

RpD#Ap�ıp#A Dc03.ı
0
p�ıp/X

5=6
CO.p�X �C"/DO.p�1=3X 5=6

Cp�X �C"/:
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For distinct primes p; q,

Rpq D c03.ı
0
pı
0
q � ıpıq/X

5=6
CO.p�q�X �C"/

DO.p�1=3X 5=6
C q�1=3X 5=6

Cp�q�X �C"/:

Since #A �X , we may compute that

1

#A

X
pjP.z/

jRpj � z2=3X�1=6
C z1C�X ��1C";

1

#A

X
p;qjP.z/

jRp;qj � z5=3X�1=6
C z2C2�X ��1C":

Next, we note that

U.z/D
X

pjP.z/

ıp D
1

6

X
pjP.z/

1

1Cp�1Cp�2
D

1

6

X
pjP.z/

ep;

say. From this we can deduce (as in the case of quadratic fields) that

2
21

z.log z/�1
CO.z.log z/�2/� U.z/� 1

6
z.log z/�1

CO.z.log z/�2/: (6-6)

Finally, we compute the mean

M.z/D U.z/C
1

#A

X
pjP.z/

Rp D U.z/CO
�
z2=3X�1=6

C z1C�X ��1C"
�
:

Recalling (6-6) and that z D .X=2/ı0 for a parameter ı0 to be chosen later, we see
the last error term will be < 1

2
U.z/ for sufficiently large X as long as the analogue

of (6-4) holds, in which case

c0z.log z/�1
�

1
2
U.z/�M.z/� 3

2
U.z/� c1z.log z/�1:

for absolute constants 0< c0 < c1 � 1.
We now apply Lemma 3.1, which shows that

E3

�
A I z; 1

2
M.z/

�
�

X 1C"

z2

�
zC

�
z5=3X�1=6

C z2C2�X ��1
�

Cz
�
z2=3X�1=6

C z1C�X ��1
�
C
�
z2=3X�1=6

C z1C�X ��1
�2�

:

As long as ı0 � 1=4, we have z5=3X�1=6� z; after further simplification and still
assuming the analogue of (6-4), we see that

E3

�
A I z; 1

2
M.z/

�
�X ".Xz�1

C z2�X � /:
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This is optimized by choosing ı0 as in (6-5) as before, which satisfies (6-4). In
particular, for any ı0 �minf1=4; .1� �/=.1C 2�/g, we obtain

E3

�
A I .X=2/ı0 ; 1

2
M..X=2/ı0/

�
�X 1�ı0C";

which proves Proposition 6.1 in the case of cubic fields.

6D. Sieve for non-D4-quartic fields. The case of non-D4-quartic fields is very
similar to that for real quadratic fields, thus we only mention the highlights, with
�; � denoting �4; �4. We have

Rp D #Ap � ıp#A DO.p�X �C"/;

Rpq D #Apq � ıpıq#A DO.p�q�X �C"/;

U.z/D
X

pjP.z/

ıp D
1

24

X
pjP.z/

1

1Cp�1C2p�2Cp�3
:

We deduce that

1

3�17
z.log z/�1

CO.z.log z/�2/�U.z/�
1

24
z.log z/�1

CO.z.log z/�2/: (6-7)

Next we compute the mean

M.z/D U.z/C
1

#A

X
pjP.z/

Rp D U.z/CO.z1C�X ��1C"/:

Recalling (6-7) and that zD .X=2/ı0 , we see that as long as the analogous condition
to (6-4) holds and X is sufficiently large,

c0z.log z/�1
�

1
2
U.z/�M.z/� 3

2
U.z/� c1z.log z/�1

for absolute constants 0< c0 < c1 � 1.
We apply Lemma 3.1 to see that under the assumption (6-4)

E4

�
A I z; 1

2
M.z/

�
�

X 1C"

z2

�
zCz2C2�X ��1

Cz.z1C�X ��1/C.z1C�X ��1/2
�

�X ".Xz�1
Cz2�X � /;

so that

E4

�
A I .X=2/ı0 ; 1

2
M..X=2/ı0/

�
�X 1�ı0C"

for any ı0 � .1� �/=.1C 2�/.
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6E. Sieve for quintic fields. Finally, we apply the sieve to quintic fields, denoting
�5; �5 by �; � . We compute that for any p DO.X �/,

Rp D #Ap � ıp#A DO.X ".p�X �
CX 
 //:

For distinct primes p; q,

Rpq D #Apq � ıpıq#A DO.X ".p�q�X �
CX 
 //:

We compute

U.z/D
X

pjP.z/

ıp D
1

120

X
pjP.z/

1

1Cp�1C2p�2C2p�3Cp�4
;

from which we deduce that
2

15�37
z.log z/�1

CO.z.log z/�2/� U.z/�
1

120
z.log z/�1

CO.z.log z/�2/:

The mean may be expressed as

M.z/D U.z/C
1

#A

X
pjP.z/

Rp D U.z/CO
�
X ".z1C�X ��1

C zX 
�1C"/
�
:

The last term will be < 1
2
U.z/ for sufficiently large X as long as 
 < 1 and the

analogous condition to (6-4) holds. Assuming this, we have

c0z.log z/�1
�

1
2
U.z/�M.z/� 3

2
U.z/� c1z.log z/�1

for absolute constants 0< c0 < c1 � 1.
We apply Lemma 3.1 to see that under the assumptions �; 
 < 1 and (6-4),

E5

�
A I z; 1

2
M.z/

�
�

X 1C"

z2

�
zCz2X�1.z2�X �

CX 
 /CzX�1.z�X �
CX 
 /

Cz2X�2.z�X �
CX 
 /2

�
:

After simplification, this shows

E5

�
A I z; 1

2
M.z/

�
�

X 1C"

z2
.zC z2X 
�1

C z2C2�X ��1/

�X ".Xz�1
CX 


C z2�X � /:

Assuming z D .X=2/ı0 , we may conclude that for any

ı0 �min
˚
.1� �/=.1C 2�/; 1� 


	
;

we have
E5

�
A I .X=2/ı0 ; 1

2
M..X=2/ı0/

�
�X 1�ı0C":

This completes the proof of Proposition 6.1.
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7. Proof of the main theorem and corollaries

7A. Proof of Theorem 2.1. We now derive Theorem 2.1 from Proposition 6.1. By
definition, if M1 �M2 then Bd .X IY;M1/�Bd .X IY;M2/. If X is sufficiently
large that (6-2) holds, say X �Xd .ı/, we may apply (6-2) to write

#Bd

�
X I .X=2/ı;

1

2
c0.d/

.X=2/ı

log.X=2/ı

�
� #Bd

�
X I .X=2/ı; 1

2
M..X=2/ı/

�
DEd

�
A I .X=2/ı; 1

2
M..X=2/ı/

�
:

We then apply Proposition 6.1 and deduce that for X �Xd .ı/,

#Bd

�
X I .X=2/ı;

1

2
c0.d/

.X=2/ı

log.X=2/ı

�
�X 1�ıC"

for every " > 0, and for ı constrained by (6-1). When we make the constraints
in (6-1) precise by applying the results of Lemma 2.2, Theorem C, Theorems 2.3
and 2.4, we obtain the parameters defined in (2-5). For any ı satisfying (2-5), we
may remove the explicit assumption that X �Xd .ı/ by including an appropriate
implicit constant, so that

#Bd

�
X I .X=2/ı;

1

2
c0.d/

.X=2/ı

log.X=2/ı

�
�d;ı;" X 1�ıC" (7-1)

for every X � 1 and every " > 0.

7B. Proof of Theorem 1.1. To derive Theorem 1.1 from Theorem 2.1, we proceed
via a standard dyadic argument, which we now make precise. Let " > 0 be fixed
and for this ", let the implied constant in Theorem A be denoted by C0 D C0.d; "/,
so that (1-8) becomes

jClK Œ`�j � C0D
1
2
C"

K
M�1: (7-2)

Fix any ı < 1
2`.d�1/

. Then if K is a degree d extension of Q with DK 2 .X; 2X �

that is not in the bad set B0
d

�
X IX ı; 1

2
c0.d/X

ı= log X ı
�
, we see from (7-2) that

jClK Œ`�j � C0

�
1
2
c0.d/

��1
D

1
2
C"

K
X�ı log.X ı/� C 00D

1
2
�ıC"

K
log.Dı

K /;

where it suffices to take C 0
0
D C021Cı

�
1
2
c0.d/

��1. Now we assume that X is
sufficiently large, say X � C.d; `; "/, so that for all ı < 1

2`.d�1/
, and for all

DK 2 .X; 2X �, we have log.Dı
K
/�D"

K
. Under this assumption we have

jClK Œ`�j � C 00D
1
2
�ıC2"

K
(7-3)

for all these fields not in B0
d

�
X IX ı; 1

2
c0.d/X

ı= log X ı
�
.
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Let F0
d;`
.X I ı; "/ denote the collection of fields K=Q of degree d with X <

DK � 2X that fail the bound (7-3); we may conclude that for any ı < 1
2`.d�1/

and
for all X � C.d; `; "/,

F0
d;`.X I ı; "/�B0

d

�
X;X ı; 1

2
c0.d/X

ı= log X ı
�
: (7-4)

Now let Fd;`.X I ı; "/ denote the collection of fields K=Q of degree d with 0 <

DK �X that fail the bound (7-3); then

Fd;`.X I ı; "/�
[

0�j�dlog2 X e

F0
d .2

j
I ı; "/:

Set j0 to be the smallest j such that 2j0 �C.d; `; "/. Then for j � j0, we apply
the trivial bound, #F0

d;`
.2j ; ı; "/� 2j . (This bound is only “trivial” in the sense

that we know by (1-11) how to count fields of degree d with 0 < DK � X , for
d � 5.) For j > j0 we apply (7-4) to write[

j0<j�dlog2 X e

F0
d;`.2

j
I ı; "/�

[
j0<j�dlog2 X e

B0
d

�
2j ; 2jı; 1

2
c0.d/2

jı= log 2jı
�
:

Trivially enlarging each of the last sets to the nondyadic version

Bd

�
2jC1; 2jı; 1

2
c0.d/2

jı= log 2jı
�

and applying the result of Theorem 2.1 to each such set, we obtain

#Fd;`.X I ı; "/�C.d; `; "/C
X

j0<j�dlog2 X e

2j.1�ıC"0/
�c;d;`;";"0 X

1�ıC"0; (7-5)

which now holds (with a sufficiently large implicit constant) for all X � 1, for all
"0 > 0 arbitrarily small, and for all ı <min

˚
1

2`.d�1/
; ı0.d/

	
where ı0.d/ is defined

as in (2-5) in Theorem 2.1. For sufficiently large `, the first constraint on ı is a
stronger constraint than the second.

To be precise, we now break down into cases depending on d . For d D 2,
Theorem 1.1 is implied in the case `D 2 by Gauss genus theory, and in the case
`D 3 by the known asymptotic (1-5). For integers `� 4, Theorem 1.1 follows from
(7-5), since 1

2`
Dmin

˚
1
6
; 1

2`

	
for `� 4. (Of course, for primes `� 5 and imaginary

quadratic fields, Theorem 1.1 is implied by the stronger result (1-10), or indeed by
an earlier result of Soundararajan [2000] that at most one imaginary quadratic field
K with DK 2 ŒX; 2X � can have jClK Œ`�j � D

1
2
� 1

2`
C"

K
; see also Corollary 2.2 of

[Heath-Brown and Pierce 2014].) For d D 3, Theorem 1.1 is implied for `D 2 by
the known asymptotic (1-6), and for `D 3 by the stronger known result (1-3). The
cases ` � 4 are implied by (7-5), since 1

4`
D min

˚
2

25
; 1

4`

	
for ` � 4. For d D 4,

Theorem 1.1 follows from (7-5) since 1
6`
Dmin

˚
1

48
; 1

6`

	
for `� 8; the remaining

cases of ` � 7 follow from the choice ı0 D 1
48

. Finally, for d D 5, Theorem 1.1
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similarly follows from (7-5) since 1
8`
D min

˚
1

200
; 1

8`

	
for ` � 25; the remaining

cases of `� 24 follow from the choice ı0D 1
200

.
Corollaries 1.1.1 and 1.1.2 now follow from Theorem 1.1, or can be derived

directly from Theorem 2.1, as already demonstrated in Section 2A.

Appendix: Counting quadratic fields

In this appendix we prove the following result, from which Lemma 2.2 may be
deduced immediately.

Proposition A.1. Let P be a finite set of primes. For each prime p 2 P we choose
a splitting type at p and assign a corresponding density as follows:

ıp WD

8̂<̂
:

1
2
.1Cp�1/�1 for p D p1p2;

1
2
.1Cp�1/�1 for p D p1;

.pC 1/�1 for p ramified.

Let e D
Q

p2P p and ıe D
Q

p2P ıp. Let N˙
2
.X IP / denote the number of real

(respectively imaginary) quadratic extensions of Q with fundamental discriminant
jDK j �X such that for each p 2 P , the prime p splits in the quadratic field with
splitting type chosen for p above. Then

N˙2 .X IP /D ıe

�
1

3
C

1

6

�
1

�.2/
X CO.e

p
X /: (A-1)

We remark that in (A-1), the first term is contributed by fundamental discriminants
� 1 .mod 4/ and the second by fundamental discriminants � 0 .mod 4/. We prove
the proposition explicitly for NC

2
.X IP /, and omit the analogous argument for

N�
2
.X IP /. Upon combining the counts for real and imaginary fields, this implies

Lemma 2.2 as a special case.
The proof is a simple elaboration on the classical method for counting square-free

integers �X . Recall that, for a fundamental discriminant D, a prime p is ramified
in Q.

p
D/ precisely when p jD; otherwise a prime p−D splits in Q.

p
D/ if the

Kronecker symbol
�

D
p

�
evaluates as C1, and is nonsplit if

�
D
p

�
D �1 (see, e.g.,

[Hua 1982, Theorem 10.3, Chapter 16]). Thus for each unramified p 2P we assign
"p 2 f�1;C1g according to the specified splitting type of p. Let P0 be the set of
ramified primes in P and set P 0 D P nP0; define

e0 D

Y
p2P0

p and e0 D
Y

p2P 0

p:

Then we may write

NC
2
.X IP /D #

˚
fundamental discriminants 1� n�X W e0jn;

�
n
p

�
D "p;8p 2P 0

	
:
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We will find a count for this by sieving for fundamental discriminants (that is,
elements that are free of odd squares) in the following two sets:

A.1/ D
˚
1� n�X W n� 1 .mod 4/; e0jn;

�
n
p

�
D "p;8p 2 P 0

	
;

A.0/ D
˚
1� n�X W n� 8; 12 .mod 16/; e0jn;

�
n
p

�
D "p;8p 2 P 0

	
:

More generally, fix a power g and define for any b .mod 2g/ the set

AD
˚
1� n�X W n� b .mod 2g/; e0jn;

�
n
p

�
D "p;8p 2 P 0

	
:

For each odd prime q let Aq D fn 2A W q2jng. Note that certainly Aq is empty as
soon as q >

p
X ; we let M be the index of the greatest prime qM �

p
X . We will

denote by Aq the complement A nAq . We will deduce Proposition A.1 from the
following lemma:

Lemma A.2. Let A be as above, with P D P0[P 0 a set of odd primes. Then\
q odd

Aq D
X

3�2g�2�.2/

Y
p2P 0

ıp
Y

p2P0

ıpCO.e
p

X /;

with ıp as defined in Proposition A.1.

If the set P specified in Proposition A.1 is a set of odd primes, then the proposition
follows immediately from this lemma, by applying it to A.1/ with gD 2, bD 1 and
then partitioning A.0/ into two disjoint sets with gD 4 and bD 8 or 12, respectively,
and applying the lemma to each.

If 2 belongs to the set P specified in Proposition A.1, then we consider separately
the case when 2 is specified to be ramified or unramified. If 2 2 P0 then A.1/ is
empty. We already have 2 j n for every n 2 A.0/, so we set P00 D P0 n f2g and
apply Lemma A.2 to A.0/ with P D P00[P 0 (as before, separating A.0/ into two
disjoint sets and applying the lemma to each). We obtain\

q odd

Aq D 2 �
X

3�4�.2/

Y
p2P 0

ıp
Y

p2P00

ıpCO.e
p

X /

D ı2 �
X

2�.2/

Y
p2P 0

ıp
Y

p2P00

ıpCO.e
p

X /;

with ı2 D 1
3

, as claimed.
If 2 2 P 0 then A.0/ is empty. We recall that for p D 2 and n� 1 .mod 4/, the

Kronecker symbol
�

n
2

�
DC1 if n� 1 .mod 8/ and �1 if n� 5 .mod 8/. Thus if

2 2 P 0, we set P 00 D P 0 n f2g and A.1/ becomes

A.1/ D
˚
1� n�X W n� b .mod 8/; e0jn;

�
n
p

�
D "p;8p 2 P 00

	
;
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with bD 1 if the original specification was "2DC1 and bD 5 if "2D�1. Applying
Lemma A.2, we see that\

q odd

Aq D
X

3�2�.2/

Y
p2P 00

ıp
Y

p2P0

ıpCO.e
p

X /

D ı2 �
X

2�.2/

Y
p2P 00

ıp
Y

p2P0

ıpCO.e
p

X /;

with ı2 D 1
3

, again as claimed. This proves Proposition A.1.
We now prove Lemma A.2. By the inclusion-exclusion principle,

\
q odd

Aq D

MX
mD0

.�1/m
X

q1<���<qm

jAq1
\ � � � \Aqm

j; (A-2)

in which for the mD 0 term we sum the full set jAj. A priori, any fixed term in
(A-2) can be written as

jAq1
\ � � � \Aqm

j

D #
˚
n�X W q2

1 � � � q
2
mjn; n� b .mod 2g/; e0jn;

�
n
p

�
D "p;8p 2 P 0

	
:

Denote the set on the right-hand side by S , and let Q WD fq1; : : : ; qmg. We first
observe that if any p 2 P 0 belongs to Q then the set S must be empty. Thus we
may reduce to considering the case in which P 0 and Q are disjoint, in which case
we will prove that

#S D
1

2g

X

q2
1
� � � q2

m

gcd.q1 � � � qm; e0/

e0

Y
p2P 0

1

2

�
p�1

p

�
CO.e0/: (A-3)

First note that if a prime p in P0 belongs to Q as well, then the condition q2
1
� � � q2

mjn

already specifies that p is ramified. Thus upon defining e00 D
Q

p2P0nQ
p, we

may deduce that

S D
n
k �X.q2

1 � � � q
2
me00/

�1
W

k � b.q2
1 � � � q

2
me00/

�1 .mod 2g/;
�

k
p

�
D "0p;8p 2 P 0

o
; (A-4)

where for each p 2 P 0 we have defined "0p D "p
�

e00

p

�
.

We note that for any integer K � 1 and any residue class b modulo 2g, the
quantity

#
˚
k �K W k � b .mod 2g/;

�
k
p

�
D "0p;8p 2 P 0
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may be expressed asX
a .mod e0/
.a;e0/D1

� Y
p2P 0

1
2

�
1C "0p

�
a
p

��� X
k�K

k�a .mod e0/
k�b .mod 2g/

1

D
1

2jP
0j

X
a .mod e0/
.a;e0/D1

Y
p2P 0

�
1C "0p

�
a
p

��� K

2ge0
CO.1/

�

D

� Y
p2P 0

p�1

p

�
K

2gCjP 0j
C 0CO.e0/I

all the intermediate terms vanish by orthogonality of characters. Applying this to S

in (A-4), we obtain

#S D
X

q2
1
� � � q2

me00

1

2gCjP 0j

Y
p2P 0

�
p�1

p

�
CO.e0/;

proving (A-3).
Applying (A-3) to the inclusion-exclusion in (A-2) shows that\

q odd

Aq D

X
d�
p

X
.d;2e0/D1

�.d/

�
X

2gd2

gcd.d; e0/

e0

Y
p2P 0

1

2

�
p�1

p

�
CO.e0/

�
:

The error term contributes O.e
p

X /, while the main term contributes

X
1

2g

� Y
p2P 0

1

2

�
p�1

p

�� 1X
dD1

.d;2e0/D1

�.d/

d2

gcd.d; e0/

e0
CO

�
X
X

d>
p

X

1

d2

�
:

Here the error term is O.
p

X /, with an implied constant which may be taken to be
independent of P .

We now simplify the main term. We note that since P consists of odd primes
and .e0; e

0/D 1, upon setting d D ıf with ı D gcd.d; e0/, we have

1X
dD1

.d;2e0/D1

�.d/

d2

gcd.d; e0/

e0
D

X
ıje0

1X
fD1

.ıf;2e0/D.f;e0/D1

�.ıf /

ı2f 2

ı

e0

D
1

e0

�X
ıje0

�.ı/

ı

�� 1X
fD1

.f;2e0e0/D1

�.f /

f 2

�
:
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The sum over ıje0 is a multiplicative function with respect to e0. For p prime we
have X

ıjp

�.ı/

ı
D 1�

1

p

and thus for e0 square-free we may compute by multiplicativity that

1

e0

X
ıje0

�.ı/

ı
D

Y
p2P0

p� 1

p2
:

We next recall that for any <.s/ > 1 and any distinct primes q1; : : : ; qr ,� rY
iD1

�
1�

1

qs
i

�
�.s/

��1

D

Y
p 62fq1;:::;qr g

�
1�

1

ps

�
D

1X
dD1

.d;
Q

qi /D1

�.d/

d s
:

Thus
1X
fD1

.f;2e0e0/D1

�.f /

f 2
D

�
1�

1

22

��1 Y
p2P

�
1�

1

p2

��1 1

�.2/
:

Assembling this all together, we see that\
q odd

Aq

D
X

2g

�
1�

1

22

��1 1

�.2/

Y
p2P 0

�
p�1

2p

1

1� 1
p2

� Y
p2P0

�
p�1

p2

1

1� 1
p2

�
CO.e

p
X /:

This reduces to\
q odd

Aq D
X

3�2g�2�.2/

Y
p2P 0

1

2

1

.1Cp�1/

Y
p2P0

1

1Cp
CO.e

p
X /;

proving Lemma A.2, with ıp as in Proposition A.1.
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Torsion orders of complete intersections
Andre Chatzistamatiou and Marc Levine

By a classical method due to Roitman, a complete intersection X of sufficiently
small degree admits a rational decomposition of the diagonal. This means that
some multiple of the diagonal by a positive integer N , when viewed as a cycle in
the Chow group, has support in X × D ∪ F × X , for some divisor D and a finite
set of closed points F . The minimal such N is called the torsion order. We study
lower bounds for the torsion order following the specialization method of Voisin,
Colliot-Thélène, and Pirutka. We give a lower bound for the generic complete
intersection with and without point. Moreover, we use methods of Kollár and
Totaro to exhibit lower bounds for the very general complete intersection.
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Introduction

Decomposition of the diagonal has played a prominent role in recent progress on
stable rationality questions. For a rationally connected variety over a field k, there is
a minimal integer Tork(X)≥ 1 such that the multiple of the diagonal Tork(X) ·1X ,
when viewed in the Chow group of X × X , is supported in X × D ∪ F × X , for
some divisor D and some finite set of closed points F . We will call Tork(X) the
torsion order of X ; it is a stable birational invariant which equals 1 if X is stably
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rational and in general gives an upper bound on the exponent of the unramified
cohomology of X . This invariant is also studied by Kahn [2016]. In a proper flat
family the torsion order of a fiber divides the torsion order of the generic fiber (see
Lemma 1.5 for the precise statement). One can thus deduce a nontrivial torsion
order from a nontrivial torsion order of a cleverly chosen degeneration. In all current
implementations of this strategy divisors of the torsion order of the degeneration are
computed by finding a good resolution of singularities. On the resolution, the action
of algebraic correspondences on a suitable cohomology can be used to produce
divisors of the torsion order.

This method was pioneered by Voisin [2015]. It was significantly simplified and
applied by Colliot-Thélène and Pirutka [2016b] to show the nonrationality of a very
general quartic threefold by using a degeneration to a classical example of Artin
and Mumford (after a “universally CH0-trivial” resolution of singularities [Colliot-
Thélène and Pirutka 2016b, Définitions 1.1 and 1.2]), which is a unirational but
nonrational variety. The nontrivial 2-torsion in its Brauer group forces nontriviality
of the torsion order (in fact, it implies that the torsion order is even). The degen-
eration method is also used in the recent work of Hasset, Pirutka, and Tschinkel
[Hassett et al. 2016] exhibiting a family of smooth projective fourfolds containing
both rational and nonstably rational members. Totaro [2016] used [Colliot-Thélène
and Pirutka 2016b] and Voisin’s method combined with work of Kollár [1995] to
improve Kollár’s nonrationality results for hypersurfaces in [loc. cit.]. Roughly
speaking, Totaro showed how, for large enough degree, a general hypersurface
of even degree degenerates to an inseparable degree-2 cover in characteristic 2
with a universally CH0-trivial resolution of singularities that supports nonvanishing
differential forms. An action of correspondences on differentials shows that the
torsion order is even.

In this paper we study the torsion order of complete intersections in projective
space. The method used by Roitman to show that a degree-zero 0-cycle on a
hypersurface of degree d ≤ n in Pn over an algebraically closed field is d-torsion is
applied in Proposition 5.2 to establish an upper bound for the torsion index, more
precisely, that a complete intersection X of multidegree d1, . . . , dr in Pn+r

k (over
any field k) with

∑r
i=1 di ≤ n+ r satisfies Tork(X) |

∏r
i=1(di !). Our first result is a

lower bound for a generic complete intersection.

Theorem (Theorem 6.5 and Corollary 6.6). Let Y :=
∏r

i=1 P(H 0(Pn+r
k ,O(di ))

∨),
and let X⊂ Y×k Pn+r

k be the incidence variety

X= {( f1, . . . , fr , x) ∈ Y×k Pn+r
k | f1(x)= · · · = fr (x)= 0}.

We denote by K the quotient field of Y, and let X/K be the generic fiber of the
family X→ Y. For an integer d ≥ 1, let d!∗ be the l.c.m. of the integers 1, . . . , d.
Then:
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(i) TorK (X) is divisible by
∏r

i=1 di !
∗.

(ii) TorK (X)(X ⊗K K (X)) is divisible by
∏r

i=1 di !
∗/(d1 · · · dr ).

The invariant which detects divisors of the torsion order in the first part of the
theorem is the index of a variety, that is, the image of the Chow group of zero
cycles via the degree map. The index of X/K is given by d1 · · · dr . Divisibility of
the torsion order by other integers of the form i1 · · · ir with 1≤ i j ≤ d j is shown
by degeneration to a union of complete intersections with lower degrees and using
induction.

We also consider the generic cubic hypersurface with a line, and use Theorem 6.5
to show that this has torsion order exactly 2 (Example 6.8). We show the existence
of a cubic threefold over K =Qp((x)) or K = Fp((t))((x)), having a K -point and
torsion order divisible by 2 (Example 6.9); more generally, we construct examples
of cubic hypersurfaces of dimension n over a field K = k((x)), where k is a field of
characteristic zero and u-invariant at least n+1, which have a K -point and for which
2 divides the torsion order. This last series of examples is taken over from [Colliot-
Thélène 2016] (without the assumption that the u-invariant is a power of 2), with
the kind permission of the author, and it gives an improvement over a construction
in an earlier version of this paper, which relied on Rost’s degree formula. We
should mention that other examples of this kind already exist in the literature; see
for example [Colliot-Thélène and Pirutka 2016b, Théorème 1.21], where cubic
threefolds over a p-adic field with nonzero torsion order are constructed, as well as
examples over Fp((x)) [Colliot-Thélène and Pirutka 2016b, Remarque 1.23]; both
examples have a rational point.

Our second result concerns the torsion order of very general complete inter-
sections over algebraically closed fields of characteristic zero. The idea of the
proof is as in the papers of Kollár and Totaro. We are able to generalize the results
on the Hodge cohomology of the degeneration in characteristic p to Hodge–Witt
cohomology. In this way we can establish results on divisibility by powers of p.

Theorem (Theorem 8.2). Let k be an algebraically closed field of characteris-
tic zero. Let X ⊂ Pn+r

k be a very general complete intersection of multidegree
d1, d2, . . . , dr such that d ′ :=

∑r
i=1 di ≤ n + r and n ≥ 3. Let p be a prime, let

m ≥ 1, and suppose

di ≥ pm
·

⌈
n+ r + 1− d ′+ di

pm + 1

⌉
for some i , where d · e denotes the ceiling function. Assume that p is odd or n is
even. Then pm

| Tork(X).

For example, it is easy to see that if
∑r

i=1 di = n+ r and n ≥ 3, which is the
extreme case, then di | Tork(X) if di is odd or n is even. For hypersurfaces and
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m= 1, the theorem is due to Totaro, and we give a short proof of the straightforward
generalization to complete intersections and the case m = 1 in Theorem 7.1. We
should mention that our Theorems 7.1 and 8.2 are actually a bit stronger, in that we
prove the same divisibility result for the torsion orders of level n− 2 (see below),
which automatically divide the torsion orders described above.

The paper is divided into seven sections. Section 1 contains the definition and
basic properties of the torsion order. Following a suggestion of Claire Voisin, we
consider decompositions of the diagonal of higher level and the associated torsion
invariants; we also describe some elementary specialization results. In Section 3
we recall from Colliot-Thélène and Pirutka the notion of a universally CH0-trivial
morphism and a related notion, that of a totally CH0-trivial morphism. Behavior
under a combination of degeneration and modification by a birational totally CH0-
trivial morphism, which is the basic tool used for divisibility results, is the focus
of Section 4; in this section we follow Colliot-Thélène and Pirutka [2016b] and
extend their specialization results to cover decompositions of higher level. We
recall Roitman’s theorem in Section 5 and discuss the case of the generic complete
intersection in Section 6. We recall Totaro’s arguments leading to the divisibility
results for the torsion order of a very general complete intersection in Section 7 and
conclude by proving our refined version in Section 8.

1. Torsion orders

For a noetherian scheme Y , we let Z(Y ) denote the group of algebraic cycles on Y ,
that is, the free abelian group on the integral closed subschemes of Y . If Y is a
scheme of finite type over a field k, we grade Z(Y ) by dimension over k. For such a
scheme, we have the n-th Chow group CHn(Y ) :=Zn(Y )/∼, where∼ is the relation
of rational equivalence (see [Fulton 1984, §1.3], where this group is denoted An(Y )).
By an integral component of Y , we mean an irreducible component of Y , endowed
with the reduced scheme structure.

Let k be a field and X a k-scheme of finite type. If A is a presheaf on XZar, we let

A(X (i)) := colimF A(X \ F)

where F runs over all closed subsets of X with dimk F ≤ i . We extend this notation
to products, defining for a presheaf A on (X ×k Y )Zar

A(X (i)× Y ( j))= colimF,G A((X \ F)×k (Y \G)).

For example, the contravariant functoriality of the classical Chow groups for open
immersions [Fulton 1984, §1.7] allows us to apply this notation to A(X) :=CHn(X)
for some n.
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Let k be a field with algebraic closure k. Let P be a property of k-schemes,
such as “reduced” or “smooth over k”. We say that a finite type k-scheme X is
generically P if there exists an open Zariski dense subset U ⊂ X having property P .
The property of being generically smooth over k will be used frequently in this
paper. Recall that X is generically smooth over k if and only if X×k k is generically
smooth over k. Moreover, this notion is stable under taking products; that is, if X
and Y are generically smooth over k, then so is X ×k Y .

A closed subset D of a finite type k-scheme X is called nowhere dense if the
complement X \D is Zariski dense. We denote by k(X) the product over the residue
fields at the generic points of X , that is,

k(X) :=
∏
η∈X

OX,η/mη,

where η runs over the generic points of the irreducible components of X (we note
that OX,η is a field if X is generically reduced). We have an evident morphism of
schemes Spec k(X)→ X . If X is equidimensional of dimension d , then we can see
from the definition of Chow groups that

lim
−−→
D⊂X

D nowhere dense

CHd(Y ×k (X \ D))
∼=
−→ CH0(Y ×k Spec k(X))

=

⊕
η∈X

CH0(Y ×k Spec OX,η/mη),

for any Y . For any class α∈CHd(Y×k X), we will call its image in
⊕

η∈X CH0(Y×k

Spec OX,η/mη) under this composition the pullback under the morphism Y ×k

Spec k(X)→ Y ×k X .

Definition 1.1. Let k be a field, and let X be a reduced proper k-scheme that is
equidimensional of dimension d .

(1) For i = 0, 1, 2, . . ., the i-th torsion order of X , Tor(i)k (X) ∈ N+ ∪ {∞}, is the
order of the image of the diagonal 1X ⊂ X ×k X in CHd(X (i)× X (d − 1)). We
write Tork(X) for Tor(0)k (X) and call this the torsion order of X .

(2) Suppose X is generically smooth over k. For 1 ≤ i < j ≤ 3, let pi j : X ×k

X ×k X → X ×k X denote the projection on the i-th and j-th factors, and let
1i j ⊂ X×k X×k X denote the pullback p−1

i j (1X ). Consider the Cartesian diagram

Xk(X×k X)
j̃
//

��

X ×k X ×k X

p23

��

Spec k(X ×k X)
i

// X ×k X
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Let η1− η2 ∈ CH0(Xk(X×k X)) denote the class of the pullback j̃∗(112−113), via
the flat morphism j̃ . The generic torsion order of X , gTork(X) ∈ N+ ∪ {∞}, is the
order of η1− η2 in CH0(Xk(X×k X)).

(3) We say that X admits a decomposition of the diagonal of order N and level i if
there is a nowhere dense closed subset D, a closed subset Z of X with dimk Z ≤ i ,
and cycles γ, γ ′ on X ×k X , with γ supported in X ×k D, with γ ′ supported in
Z ×k X , and with

N · [1X ] = γ
′
+ γ

in CHd(X ×k X).

(4) Suppose X is geometrically integral. For an integer N ≥ 1, we say that X
admits a decomposition of the diagonal of order N if there is a 0-cycle x on X , a
proper closed subset D of X , and a dimension-d cycle γ on X ×k X , supported in
X ×k D, such that

N · [1X ] = x × X + γ

in CHd(X ×k X). Then x has degree N over k, which can be seen by pushing
forward along the second projection. We say that X admits a Q-decomposition of
the diagonal if X admits a decomposition of order N for some N , and that X admits
a Z-decomposition of the diagonal if X admits a decomposition of the diagonal of
order 1.

(5) Let degk :CH0(X)→Z be the degree map. For X smooth and integral, the index
of X is the positive generator IX of the subgroup degk CH0(X)⊂ Z. Equivalently,
IX is the g.c.d. of all degrees [k(x) : k] as x runs over closed points of X . We extend
the definition of the index to proper, integral, generically smooth k-schemes Y by
defining IY to be the g.c.d. of all degrees [k(y) : k] as y runs over closed points of
the smooth locus Ysm of Y (which is dense in Y ).

Remarks 1.2. (1) Suppose X is equidimensional of dimension d and is geomet-
rically integral. Since the only dimension-d cycles γ(0) on X ×k X , supported on
Z(0)×k X with Z(0)⊂ X a dimension-zero closed subset, are of the form γ(0)= x×X
for some 0-cycle x on X , a decomposition of the diagonal of order N and level 0 is
the same as decomposition of the diagonal of order N .

(2) We extend the definition of Tor(i)k (X) to all proper, equidimensional k-schemes
by setting Tor(i)k (X) := Tor(i)k (Xred).

(3) We will often use an equivalent formulation of Definition 1.1(3), namely, that
X admits a decomposition of the diagonal of order N and level i if there is a
closed subset D containing no generic point of X and a closed subset Z of X with
dimk Z ≤ i such that

N · j∗[1X ] = 0
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in CHd((X \Z)×k (X \D)), where j : (X \Z)×k (X \D)→ X×k X is the inclusion.
This equivalence follows from the localization sequence

CHd(Z ×k X ∪ X ×k D)
i∗
−→ CHd(X ×k X)

j∗
−→ CHd((X \ Z)×k (X \ D))→ 0

and the surjection

CHd(Z ×k X)⊕CHd(X ×k D)→ CHd(Z ×k X ∪ X ×k D).

(4) Decompositions of the diagonal for smooth proper k-varieties have been con-
sidered in [Bloch and Srinivas 1983; Colliot-Thélène and Pirutka 2016b; Totaro
2016] and by many others. Here we have extended the definition to proper, equidi-
mensional, but not necessarily smooth k-schemes.

(5) In the same way as in [Colliot-Thélène and Pirutka 2016b, Proposition 1.4],
one can prove the following equivalence for a smooth, proper, and equidimensional
k-scheme X , namely, X admits a decomposition of the diagonal of order N and
level i if and only if there exists a closed subvariety ι : Z ⊂ X with dim Z ≤ i and

image((ι×k K )∗ : CH0(Z ×k K )→ CH0(X ×k K ))⊃ N ·CH0(X ×k K )

for all field extensions k ⊂ K .

Lemma 1.3. Let X be a k-scheme that is proper and equidimensional of dimension
d over k.

(1) If Tor(i)k (X) is finite, then so is Tor(i+1)
k (X) and in this case, Tor(i+1)

k (X) divides
Tor(i)k (X).

(2) X admits a decomposition of the diagonal of order N and level i if and
only if Tor(i)k (X) divides N ; if X is geometrically integral, then X admits
a decomposition of the diagonal of order N if and only if Tork(X) divides
N and X does not admit a Q-decomposition of the diagonal if and only if
Tork(X)=∞.

(3) Suppose X is smooth over k and geometrically integral. If Tork(X) is finite,
then so is gTork(X) and gTork(X) divides Tork(X).

(4) Suppose X is generically smooth over k, and let L ⊃ k be a field extension.
If Tor(i)k (X) is finite, then so is Tor(i)L (X L) and in this case Tor(i)L (X L) divides
Tor(i)k (X). If L is finite over k, then Tor(i)k (X) is finite if and only if Tor(i)L (X L) is
finite and in this case Tor(i)k (X) divides [L : k] ·Tor(i)L (X L). The corresponding
statements hold replacing Tor(i) with gTor.

(5) X admits a decomposition of the diagonal of level i and order N if and only if
there is a closed subset Z ⊂ X of dimension ≤ i such that the pullback of 1X
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to (X \ Z)×k Spec k(X) via the inclusion

(X \ Z)×k Spec k(X)→ X ×k X

has order dividing N in CH0((X \ Z)×k Spec k(X)).

Proof. Statement (1) follows from the existence of the restriction homomorphism

CHd((X \ F)×k (X \ D))→ CHd((X \ F ′)×k (X \ D))

for F ⊂ F ′. Statement (2) follows from the localization sequence for CH∗( · ), as
in Remarks 1.2(3).

For (3), suppose
N · [1X ] = x × X + γ

in CHd(X×k X) for x and γ as in Definition 1.1. Since X is smooth and proper, we
have for every field extension F of k the action of CHd(X F ×F X F ) on CHn(X F )

as correspondences [Fulton 1984, Chapter 16]; that is, for α ∈ CHd(X F ×F X F )

and ρ ∈ CHn(X F ), one has the well defined element

α∗(ρ) := p1∗(p∗2ρ ·α).

Acting by the correspondence N ·1∗Xk(X×k X)
on CH0(Xk(X×k X)) gives

N · (η1− η2)= x − x = 0

and thus gTork(X) divides N . Applying (2) gives (3).
For (4), the first assertion follows by applying the pullback in CHd for X L ×L

X L → X ×k X and using (2). The second part follows by applying the push-
forward map CHd(X L×L X L)→CHd(X×k X) and using (2), and the assertion for
gTork(X) follows similarly by applying the pushforward map CHd(X L(X L×L X L ))→

CHd(Xk(X×k X)).
The last assertion (5) follows from the identity

CH0((X \ Z)×k Spec k(X))= lim
−−→
D⊂X

CHd((X \ Z)×k (X \ D))

where the limit is over all closed nowhere dense D ⊂ X . �

Remark 1.4. We have restricted our attention to proper k-schemes for the defi-
nitions of torsion orders and decompositions of the diagonal. Even though the
definitions would make sense for nonproper equidimensional k-schemes, a naive
extension is probably not useful. Possibly replacing Chow groups with Suslin ho-
mology would make more sense: following Lemma 1.3, one could define Tor(i)(X)
for an equidimensional finite type k-scheme as the order of the restriction of 1X
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to X ×k Spec k(X) in the quotient group

lim
−−→
Z⊂X

H Sus
0 (X ×k Spec k(X))/ im(H Sus

0 (Z ×k Spec k(X)))

where Z ⊂ X runs over all closed subsets of dimension at most i . We will not
investigate properties of these torsion orders for nonproper k-schemes here.

Here is the first in a series of elementary but useful specialization lemmas.

Lemma 1.5. Let O be a noetherian regular local ring and f : X → Spec O a
proper flat morphism, with X equidimensional over Spec O of relative dimension d ,
X → Spec K the generic fiber and Y → Spec k the special fiber. Fix an integer i .
Suppose that, for each z ∈ Spec O, the geometric fiber Xz is generically reduced
over k(z).

(1) If Tor(i)K (X) is finite, then so is Tor(i)k (Y ), and Tor(i)k (Y ) divides Tor(i)K (X).

(2) Suppose that, for each z ∈ Spec O, the fiber Xz is generically smooth over k(z).
If gTorK (X) is finite, then so is gTork(Y ), and gTork(Y ) divides gTorK (X).

(3) Let k and K be the algebraic closures of k and K , respectively, and suppose
either K has characteristic zero, or that O is excellent. If Tor(i)

K
(X K ) is finite,

then so is Tor(i)
k
(Yk), and Tor(i)

k
(Yk) divides Tor(i)

K
(X K ).

Proof. We use the definition of CHd(X (i)× X (d − 1)) as a limit to reduce to
making computations in groups of the form CHd((X \ Z)×K (X \D)) where Z , D
are closed subsets of X with dim Z ≤ i and dim D ≤ d − 1. We can find a chain of
regular closed subschemes Z0 ⊂ · · · ⊂ Zr = Spec O, with Zi of Krull dimension i .
This gives us the DVRs Oi := OZi ,Zi−1 and the restriction of X to Xi → Spec Oi .
Regarding the proof of (3), if the original local ring O has characteristic-zero quotient
field, we can find a chain as above such that each DVR Oi has characteristic-zero
quotient field, and if O is excellent, so are each of the Oi . Proving the result for each
of the families Xi gives the result for X, which reduces us to the case of a DVR O.

In this case, suppose we have a relation

N ·1X = 0 (1-1)

in CHd((X \ Z)×K (X \ D)), with dimK Z ≤ i and D nowhere dense. Taking the
closures Z and D in X, and letting Z0 = Y ∩ Z and D0 = Y ∩D (as intersections of
closed subsets of X), we have the specialization homomorphism (see for example
[Fulton 1984, §20.3])

sp : CHd((X \ Z)×K (X \ D))→ CHd((Y \ Z0)×k (Y \ D0))

associated to the family

X×O X \ Z ×O X∪X×O D→ Spec O.
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Since O is a DVR, the closure Z is automatically flat over Spec O, and thus dimk Z0≤

i ; similarly, D0 is nowhere dense in Y . We have two cartesian diagrams

Y ×k Y // X×O X X ×K Xoo

Y

1Y

OO

// X

1X

OO

X

1X

OO

oo

From [Fulton 1984, Proposition 20.3(a)] applied to f =1X, [Fulton 1984, Example
6.2.1], and our assumption that X and Y are generically reduced, we conclude

sp([1Xred])= sp([1X ])= sp(1X∗([X ]))=1Y∗(sp([X ]))

=1Y∗([Y ])= [1Y ] = [1Yred]

in CHd(Y×k Y ). We used [Fulton 1984, Example 6.2.1] in order to obtain ı∗([X])=
[Y ], where ı is the evident (regular) closed immersion, which implies sp([X ])= [Y ]
by definition of the specialization map. By using compatibility of sp with pullback
along open immersions and applying sp to (1-1), we have proved (1).

The proof of (2) is a similar specialization argument. Indeed, we reduce as before
to the case of a DVR O. Due to the generic smoothness assumption, there is a dense
open subscheme U of X×O X that is smooth over Spec O, with special fiber dense
in Y ×k Y . If now τ is a generic point of Y ×k Y , let R be the local ring OU,τ . Then
R is a DVR and we may consider the R-scheme X⊗O R→ Spec R. The quotient
field F of R is one of the field factors of k(X ×K X), and the residue field f of
R is the factor of k(Y ×k Y ) corresponding to τ . Let ηX

i , η
Y
i , i = 1, 2, denote the

images of the “generic” points used to define gTorK (X) and gTork(Y ) in CH0(XF )

and CH0(Yf), respectively. Applying the specialization homomorphism

sp : CH0(XF )→ CH0(Yf)

to a relation N · (ηX
1 − η

X
2 ) in CH0(XF ) shows that N · (ηY

1 − η
Y
2 )= 0 in CH0(Yf)

for each generic point τ , and thus gTork(Y ) divides N .
For (3), we note that there is a finite extension L of K so that

Tor(i)
K
(X K )= Tor(i)L (X L)= Tor(i)F (X F )

for all finite extensions F of L . Since either K has characteristic zero or O is
excellent, the normalization ON of O in L is a semilocal principal ideal ring, finite
over O (the characteristic-zero case follows from [Zariski and Samuel 1975, Chapter
V, Theorem 7], and the excellent case follows from [Matsumura 1980, Theorem 78]).
Thus, after replacing O with the localization O′ of ON at a maximal ideal, and
replacing X with X′ :=X⊗O O′, we may assume that Tor(i)K (X)= Tor(i)

K
(X K ). Since

Tor(i)
k
(Yk) divides Tor(i)k (Y ) by Lemma 1.3(4), (3) follows from (1). �
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Remark 1.6. We did not use the properness of X → Spec O in the proof of
Lemma 1.5, but we have defined Tor(i) for proper k-schemes only.

Next, we prove a modification of the specialization Lemma 1.5. A related result
may be found in [Totaro 2016, Lemma 2.4].

Lemma 1.7. Let O be a discrete valuation ring with quotient field K and residue
field k. Let f : X→ Spec O be a flat morphism of dimension d over Spec O with
generic fiber X and special fiber Y . We suppose Y is a union of closed subschemes,
Y = Y1 ∪ Y2, with Y1 and Y2 having no common components. Suppose in addition
that X admits a decomposition of the diagonal of order N and level i . Then there is
an identity in CHd(Y1×k Y1)

N1Y1 = γ + γ1+ γ2

with γ supported in Z1 ×k Y1 for some closed subset Z1 ⊂ Y1 of dimension ≤ i ,
γ1 supported on Y1 ×k D1 for some nowhere dense closed subset D1 ⊂ Y1, and
γ2 supported in (Y1 ∩ Y2)×k Y1.

Proof. We consider the (nonproper) O-scheme (X\Y2)×O (X\Y2)→ Spec O, closed
subsets Z , D of X with dimK Z ≤ i , D nowhere dense, and a relation

N · [1X ] = 0

in CHd((X \ Z)×K (X \ D)), where [1X ] denotes the cycle class represented by
the restriction of the diagonal.

As in the proof of Lemma 1.5(1), we have closed subsets Z0, D0 of Y 0
1 := Y1 \Y2

with dimk Z0 ≤ i , D0 nowhere dense, and a specialization homomorphism

sp : CHd((X \ Z)×K (X \ D))→ CHd((Y 0
1 \ Z0)×k (Y 0

1 \ D0)), (1-2)

which is induced by

sp : CHd(X ×K X)→ CHd(Y ×k Y ).

As in the proof of Lemma 1.5(1), we have sp([1X ]) = [1Y ] in CHd(Y ×k Y ). It
follows immediately that sp([1X ])= [1Y 0

1
] in CHd(Y 0

1 ×k Y 0
1 ), where [1Y 0

1
] is the

cycle class of the restriction of the diagonal on Y 0
1 . Applying (1-2) thus gives the

relation
N · [1Y 0

1
] = 0

in CHd((Y 0
1 \ Z0)×k (Y 0

1 \ D0)).
Let Z1 := Z0 be the closures of Z0 in Y1, let D0 be the closure of D0 in Y1, and

let D1 = D0 ∪ (Y1 ∩ Y2). Using the localization sequence

CHd(Z1×k Y1 ∪ Y1×k D1 ∪ (Y1 ∩ Y2)×k Y1)

→ CHd(Y1×k Y1)→ CHd((Y 0
1 \ Z0)×k (Y 0

1 \ D0))→ 0
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and the surjection

CHd(Z1×k Y1)⊕CHd(Y1×k D1)⊕CHd((Y1 ∩ Y2)×k Y1)

→ CHd(Z1×k Y1 ∪ Y1×k D1 ∪ (Y1 ∩ Y2)×k Y1),

the relation N · [1Y 0
1
] = 0 in CHd((Y 0

1 \ Z0)×k (Y 0
1 \ D0)) lifts to a relation of the

desired form in CHd(Y1×k Y1). �

We conclude this series of specialization results with the following variation on
Lemma 1.7; a similar result may be found in [Colliot-Thélène 2016, Lemme 2.2].

Lemma 1.8. Let O be a discrete valuation ring with quotient field K and residue
field k. Let f : X→ Spec O be a flat and proper morphism of dimension d over
Spec O with generic fiber X and special fiber Y . We suppose Y is a union of
closed subschemes, Y = Y1 ∪ Y2, with X and Y1 geometrically irreducible, X
generically smooth over K , and Y1 generically smooth over k. Suppose that X
admits a decomposition of the diagonal of order N. Let Z = (Y1 ∩ Y2)red with
inclusion iZ : Z → Y1. Suppose further that Y2k(Y1) admits a zero-cycle y2 of
degree r supported in the smooth locus of Y2k(Y1).

Then there is an identity in CHd(Y1×k Y1)

Nr1Y1 = γ1+ γ2

with γ1 supported on Y1 ×k D1, for some divisor D1 ⊂ Y1, and γ2 supported in
Z ×k Y1.

Proof. Let η1 be the generic point of Y1, let O1=OX,η1 , and let D be the henselization
of O1. Let L be the quotient field of D; clearly D has residue field k(Y1). Then as
Spec O1→ Spec O is essentially smooth, the base-change XD :=X⊗O D→ Spec D

has generic fiber XL and special fiber Yk(Y1) = Y1k(Y1) ∪ Y2k(Y1). Let Xsm
D ⊂ XD be

the maximal open subscheme of XD that is smooth over D.
Fix a rational equivalence

N ·1X ∼ x × X + γ

with x a 0-cycle on X and γ supported on X×K E for some divisor E . Pulling this
back to X L gives the rational equivalence

N ·1X L ∼ xL × X L + γL

with γL supported on X L ×L EL . Let E be the closure of EL in XD, and let
E0 = E ∩ Yk(Y1); E0 contains no generic point of Yk(Y1). Furthermore, since the
0-cycle y2 on Y2k(Y1) is contained in the smooth locus of Y2k(Y1), we may find a
0-cycle y′2 on Y2k(Y1), rationally equivalent to y2, and with support in the smooth
locus of Y2k(Y1) \ (E0 ∪ Zk(Y1)). Changing notation, we may assume that y2 is
supported in the smooth locus of Y2k(Y1) \ (E0 ∪ Zk(Y1)).
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Since D is hensel, we may lift η1 ∈ Y1(k(Y1)) to a section s1 : Spec D→ XD.
Since y2 is supported in the smooth locus of Yk(Y1), we may similarly lift the 0-cycle
y2 on Y2k(Y1) to a cycle y2 on XD of relative dimension zero and relative degree r
over D. This gives us the 0-cycle of degree zero ρL := r · s1(Spec L)− y2L on X L .
Since D is local, XD is flat over D and both y2 and η1 are supported in the smooth
locus of Y \ E0, it follows that both s1(Spec D) and y2 are supported in Xsm

D \E,
and thus ρL is supported in the smooth locus of X L \ E .

Let p be a closed point in the smooth locus of X L , inducing the inclusion
i p : X L×L p→ X L×L X L . Since i p is a regular codimension-d=dim X embedding,
we have the pullback map (see [Fulton 1984, §6.2, pp. 97–98 ], where this map is
called the Gysin homomorphism)

i∗p : CHd(X L ×L X L)→ CH0(X L ×L p).

If z is a 0-cycle supported in the smooth locus of X L , z=
∑

j n j p j , we have the map

z∗ : CHd(X L ×L X L)→ CH0(X L)

defined as the sum
∑

j n j p1∗ ◦ i∗p j
. If γ is a d-cycle on X L ×L X L such that each

component of γ intersects each subvariety X L × p j properly, then γ ∗(z) is well
defined and

z∗(γ )= γ ∗(z).

We apply these comments to the 0-cycle ρL and the cycles N ·1X L , xL ×L X L ,
and γL . We get the identities in CH0(X L)

N · ρL = ρ
∗

L(N ·1X L )

= ρ∗L(xL ×L X L)+ ρ
∗

L(γL).

Both terms in this last line are zero: the first since, as X L is irreducible, we have
ρ∗L(xL ×L X L) = degL(ρL) · xL = 0, and the second since X L ×L supp(ρL) ∩

supp(γL)=∅. In other words, N · ρL = 0 in CH0(X L).
We apply the specialization map

sp : CH0(X L)→ CH0(Yk(Y1))

and find N (r ·η1−y2)= 0 in CH0(Yk(Y1)). Thus, Nr ·η1= 0 in CH0(Y1k(Y1)\Zk(Y1)),
and by using the localization sequence for the inclusion Zk(Y1)→ Yk(Y1), there is a
0-cycle γ2k(Y1) on Zk(Y1) with

Nr · η1 = iZ∗(γ2k(Y1))

in CH0(Y1k(Y1)). Spreading this relation out over Y1 as in previous proofs gives the
desired decomposition of Nr ·1Y1 . �
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Remark 1.9. Suppose we have X, Y = Y1 ∪ Y2, and Z = Y1 ∩ Y2 satisfying the
hypotheses of Lemma 1.8; suppose in addition that Y1 is smooth over k. Then for all
fields F ⊃ k, the quotient group CH0(Y1F )/ iZ∗(CH0(Z F )) is Nr -torsion. Indeed,
since Y1 is smooth, we have an operation of correspondences on CH0(Y1F ), the
correspondence γ ∗1 of Lemma 1.8 acts trivially on CH0(Y1F ), γ ∗2 maps CH0(Y1F )

to iZ∗(CH0(Z F )), and the sum acts by multiplication by Nr .

The torsion orders behave well with respect to base-change.

Lemma 1.10. Let X and Y be proper generically smooth k-schemes, with Y integral
and with X equidimensional over k. Let K be the function field k(Y ) and IY the
index of Y .

(1) For all i , Tor(i)k (X) is finite if and only if Tor(i)K (X K ) is finite and in this case,
Tor(i)k (X) divides IY Tor(i)K (X K ).

(2) Suppose X is geometrically integral. If gTork(X) is finite, then so is Tork(X)
and Tork(X) divides IX · gTork(X).

Proof. For (1), if Tor(i)k (X) is finite, then so is Tor(i)K (X K ) by Lemma 1.3(4). Suppose
Tor(i)K (X K ) is finite. Let y be a closed point of Y , contained in the smooth locus of Y
over k, and let O := OY,y . Applying Lemma 1.5 to the constant family X := X ×k O,
we see that Tor(i)k(y)(Xk(y)) is finite and Tor(i)k(y)(Xk(y)) divides Tor(i)K (X K ). Applying
Lemma 1.3(4) again, Tor(i)k (X) is finite and divides [k(y) : k] ·Tor(i)k(y)(Xk(y)). This
proves the first assertion.

For (2), let y be a closed point of X , contained in the smooth locus of X over k,
let O := OX,y , and let η ∈ X (k(X)) be the canonical point, that is, the restriction
of the diagonal section X→ X ×k X to Spec k(X). As in the proof of Lemma 1.5,
we may find a sequence of regular closed subschemes y = Z0 ⊂ · · · ⊂ Zd = Spec O,
d = dimk X , and thereby define specialization homomorphisms

spi : CH0(Xk(Zi )(X))→ CH0(Xk(Zi−1)(X)), i = 1, . . . , d.

Letting spy : CH0(Xk(X×k X))→ CH0(Xk(y)(X)) be the composition of the spi , we
have spy(η1 − η2) = ηy − ygen, where ηy ∈ X (k(y)(X)) is the base-change of
y ∈ X (k(y)) and ygen ∈ X (k(y)(X)) is the base-change of η ∈ X (k(X)). Thus,
gTork(X) · (ηy− ygen)= 0 in CH0(Xk(y)(X)); pushing forward to CH0(Xk(X)) gives
[k(y) : k] ·gTork(X) ·η−gTork(X) · y×k k(X)= 0 in CH0(Xk(X)). Applying local-
ization gives us the decomposition of the diagonal1X of order [k(y) : k] ·gTork(X);
doing this for each closed point y gives us the decomposition of the diagonal of
order IX · gTork(X). Hence, Tork(X) is finite and divides IX · gTork(X). �

For example, Tor(i)k (X)= Tor(i)L (X L) if L is a pure transcendental extension of a
field k.
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Lemma 1.11. Let X be a proper k-scheme. Let k ⊂ L be an extension of fields with
k algebraically closed. The following hold:

(1) For all i , Tor(i)k (X)= Tor(i)L (X L).

(2) Suppose in addition X is smooth and integral. Then gTork(X)= gTorL(X L)

and Tork(X)= gTork(X).

Proof. We may assume that L is finitely generated over k. Using openness of
the regular locus for finite type k-schemes and k algebraically closed, we can find
a noetherian local regular k-algebra O with quotient field L and residue field k.
Applying Lemma 1.5(1) to X := X ×k O→ Spec O implies (1).

The assertions about gTor follow from (1), Lemma 1.10(2), and Lemma 1.3. �

Definition 1.12. Let X be a proper, generically smooth k-scheme. Let k be the
algebraic closure of k, and define Tor(i)(X) := Tor(i)

k
(Xk). We call Tor(i)(X) the

i-th geometric torsion order of X . We write Tor(X) for Tor(0)(X).

Note that Tor(i)(X) is invariant under base-extension X X L for a field extension
L ⊃ k. Also, assuming X to be smooth and geometrically integral, Tor(X) is equal
to gTork(Xk).

In much the same vein as Lemma 1.3, we show that the generic torsion order
measures the torsion order after adjoining a “generic” rational point, that is:

Lemma 1.13. Let X be a smooth proper geometrically integral k-scheme, and let
K = k(X). Then gTork(X)= TorK (X K ).

Proof. If N · (η1−η2)= 0 in CH0(Xk(X×k X)), then we have a decomposition of the
diagonal of order N for Xk(X):

N ·1X K = N · [η]×K X K + γ

with γ supported in X K ×K D, with D ( X K , and with η the restriction of 1X

to X ×k k(X)⊂ X ×k X . In other words, η is the K -rational point of X K induced
by the generic point of X . Thus, TorK (X K ) divides gTork X . Conversely, if X K

admits a decomposition of the diagonal of order n,

n ·1X K = x × X K + γ (1-3)

with x a 0-cycle on X K and γ supported on X K ×K D for some divisor D ⊂ X K ,
then pulling (1-3) back along (idX K , η) : X K → X K ×K X K gives us x = n · [η]
in CH0(X K ), so n ·1X K = n · [η] × X K + γ in CHd(X K ×K X K ). Restriction
to X K ×K K (X K ) gives n · η1 = n · η2 in CH0(Xk(X×k X)), so gTork(X) divides
TorK (X K ). �

One last elementary property of the torsion indices concerns the behavior with
respect to morphisms.
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Lemma 1.14. Let f : Y → X be a surjective morphism of integral reduced proper
k-schemes of the same dimension d. Then Tor(i)k X divides deg f ·Tor(i)k Y for all i .
If X and Y are generically smooth over k, then gTork X divides (deg f )2 · gTork Y .

Proof. Suppose the diagonal for Y admits a decomposition of order N and level i :

N ·1Y = γi + γ
′

with γ ′ supported on Y ×k D for some divisor D and γi supported on Z ×k Y for
some closed subset Z of Y with dimk Z ≤ i . Pushing forward by f × f gives

deg f · N ·1X = ( f × f )∗γi + ( f × f )∗γ ′,

and thus Tor(i)k X divides deg f ·Tor(i)k Y . Similarly, we have ( f × f × f )∗(1Y,i j )=

(deg f )2 ·1X,i j for i j = 12, 13, which shows gTork X divides (deg f )2 ·gTork Y . �

The behavior of the torsion indices with respect to rational and birational maps
will be discussed in Section 3.

2. Torsion orders for very general fibers

The following global version of Lemma 1.5(3) follows by an argument using Hilbert
schemes. See [Voisin 2015, Theorem 1.1 and Proposition 1.4] or [Colliot-Thélène
and Pirutka 2016b, Appendice B] for similar statements. This result will only be
used in Sections 7 and 8.

Proposition 2.1. Let p : X→ B be a flat, equidimensional, and projective family
over a scheme B of finite type over a field k, and let b0 be a point of B. We suppose
that each geometric fiber of p is generically reduced. Fix an integer i ≥ 0. Then
there is a countable union of closed subsets F =

⋃
∞

j=1 F j with b0 /∈ F such that for
all b ∈ B \ F , the geometric fiber Xk(b) satisfies Tor(i)(Xk(b0)

) | Tor(i)(Xk(b)). Here
we use the convention that N | ∞ for all N ∈ N+ ∪ {∞} and∞ | N =⇒ N =∞.

The proof uses the following elementary lemma, which we were not able to find
in the literature.

Let X be a noetherian equidimensional scheme with integral components X1, . . . ,

X t . Let xi ∈ X i be the generic point. The associated cycle [Fulton 1984, §1.5] of X
is the cycle cyc(X) :=

∑s
i=1 ei X i ∈ Z(X) with ei defined as

ei := lngOXi ,xi
OX i ,xi .

Lemma 2.2. Let B be a noetherian scheme, let p : Y→ B be a flat morphism,
and let W0,W1, . . . ,Ws be closed subschemes of Y, flat and equidimensional of
dimension r over B. For each b ∈ B, let Wib ⊂ Yb be the respective fibers over b.
Fix integers m0, . . . ,ms .
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(1) The subset

TY(B) :=
{

b ∈ B
∣∣∣∣ s∑

i=0

mi · cyc(Wib)= 0 in Z(Yb)

}
is a constructible subset of B.

(2) For each b ∈ B, let b be a geometric point mapping to b, and Wib ⊂ Yb be the
respective fibers over b. Fix integers m0, . . . ,ms . Then, the equality

TY(B)=
{

b ∈ B
∣∣∣∣ s∑

i=0

mi · cyc(Wib)= 0 in Z(Yb)

}
(2-1)

holds.

Proof. We first prove (1); we proceed by a series of reductions. Firstly, we may
assume that B is integral and separated. As the assertion is obvious if B is a point,
we may use noetherian induction and replace B with any dense open subscheme.
Moreover, if Y=

⋃
i Ui is a finite open covering, then TY(B)=

⋂
i TUi (B); hence,

it suffices to prove the assertion for each i .
Let S be the set of all integral components of the subschemes W0, . . . ,Ws . Let

us consider the elements of S as integral schemes. We claim that there is an open
dense subset U of B such that for all b ∈U and W,V ∈ S with W 6=V, Wb and Vb

have no common integral component. Indeed, for W,V∈ S with W 6=V, there is an
open dense UV,W ⊂ B such that W×Y V×Y p−1(UV,W)→UV,W is flat of relative
dimension ≤ r−1 (it need not be equidimensional). All integral components of Wb

and Vb have dimension r , and therefore Wb and Vb do not have a common integral
component if b ∈ UV,W. Taking the intersection of the UV,W for all V 6=W in S
gives the desired open dense subset U .

After passing from B to U , we get TY(B)= TY′(B) with

Y′ = Y \
⋃

W,V∈S
W6=V

W∩V=
⋃

W∈S

Y \

( ⋃
V∈S\{W}

V

)
.

Therefore, we may suppose S = {W}, in other words, there is only one integral
component.

For each i , define ni by cyc(Wi )= ni ·W. We claim that there is an open dense
U ⊂ B such that cyc(Wib)=ni ·cyc(Wb) for all b∈U . This will imply the assertion,
because after shrinking U further so that Wb 6=∅ holds, either TY∩p−1(U )(U )=U
or TY∩p−1(U )(U )=∅, depending on whether 0=

∑
i mi · ni holds.

In order to prove our claim, let η be the generic point of W and Wi . Since OW,η

is a field, there is a filtration

OWi ,η = F0
⊂ F1

⊃ · · · ⊃ Fr
= 0
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by OWi ,η submodules such that the quotients F j+1/F j are free OW,η modules of
rank r j . By definition, the equality ni =

∑
j r j holds. We can extend this filtration

to a nonempty open subset W′i of Wi such that the quotients are free OW′ modules
of rank r j , where W′ =W∩W′i . We denote it by

OW′i
= F̃0

⊂ F̃1
⊃ · · · ⊃ F̃r

= 0.

Define U ⊂ B to be a nonempty open subset such that (W \W′)∩ p−1(U )→U
is flat of relative dimension ≤ r − 1 and W′ ∩ p−1(U )→U is flat. For b ∈U , the
generic points of the integral components of Wib (= integral components of Wb)
are contained in W′i . Flatness of W′∩ p−1(U )→U implies that we get an induced
filtration

OW′ib
= F̃0

b ⊂ F̃1
b ⊃ · · · ⊃ F̃r

b = 0

with quotients F̃ j+1
b /F̃ j

b free of rank r j as OW′b
-modules. For every generic point ε

of Wib (hence W′ib) we get

lngOWib ,ε
OWib,ε =

(∑
j

r j

)
· lngOWb ,ε

OWb,ε = ni · lngOWb ,ε
OWb,ε,

which proves the claim.
For (2), we note that for each b→ b ∈ B, the map b→ b is flat and the pullback

map
Z(Yb)→ Z(Yb)

is injective; (2) follows directly from this and (1). �

Proof of Proposition 2.1. Let d be the relative dimension of X over B. For a
positive integer M , let S(M) be the set of b ∈ B such that M does not divide
Tor(i)(Xk(b)). Taking M = Tor(i)(Xk(b0)

) and F = S(M), it suffices to show that
S(M) is a countable union of closed subsets of B.

We first show that S(M) is closed under specialization. Indeed, if we have
a specialization b  b̃ with b ∈ S(M), then there is an excellent DVR O and a
morphism Spec O→ B with b the image of the generic point of Spec O and b̃ the
image of the closed point. Indeed, let C be the closure of b in B, blow-up Spec OC,b̃
along b̃, normalize to obtain a normal scheme π : T → Spec OC,b̃ of finite type
over OC,b̃, choose a generic point t of the Cartier divisor π−1(b̃) on T , and take
O := OT,t . The local ring OC,b̃ is excellent since C is of finite type over a field, and
the operations used in constructing O from OC,b̃ all preserve excellence [Matsumura
1980, Chapters 12 and 13]. Pulling back X to Spec O, it follows from Lemmas 1.5(3)
and 1.11(1) that b̃ is also in S(M).

Since S(M) is closed under specialization, it suffices to show that, for each affine
open subscheme U of B, S(M)∩U is a countable union of constructible subsets
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of U . Thus, we may assume that B is affine, and that X is a closed subscheme
of B×k Pn

k for some n, with p : X→ B the restriction of the projection.
By standard Hilbert scheme arguments, there is a projective B-scheme q :Yα,β→

B such that the geometric points of Yα,β consist of triples (b, Zb, Db), with b a
geometric point of B, Zb ⊂ Xb a closed subscheme of dimension j ≤ i , and
Db ⊂ Xb a closed subscheme of dimension < d , and with Zb and Db having fixed
Hilbert polynomials α, β. Let Z⊂ X×B Yα,β and D⊂ X×B Yα,β be the universal
subschemes. We set

U := X×B X×B Yα,β \ (X×B D∪Z×B X).

Similarly, there is a finite type B-scheme g :Wφ→ B whose geometric points
consist of pairs (b,W ) with W ⊂Xb×b Xb×b P1

b a closed subscheme of dimension
d + 1, having Hilbert polynomial φ and being flat over P1

b. Indeed, denoting by

H := Hilbφ(X×B X×B P1
B)

the Hilbert scheme, we can consider the subfunctor F of H defined by

F(T )= {W ∈ H(T ) |W → T ×B P1
B is flat}.

If Wuni ⊂ H ×B X ×B X ×B P1
B denotes the universal subscheme, then we let

W ′uni ⊂ Wuni be the closed subset where Wuni→ H ×B P1
B is not flat. We define

Wφ as the complement of the image of W ′uni in H . By using critère de platitude par
fibres [EGA IV3 1966, Théorème 11.3.10], we conclude that Wφ represents F .

For each integer r ≥ 1, and each choice of Hilbert polynomials α, β and
φ1, . . . , φr , we obtain subschemes W0

1,W∞1 , . . . ,W0
r ,W∞r of U×B Wφ1×B · · ·×B

Wφr that are flat of relative dimension d over Yα,β×B Wφ1×B · · ·×B Wφr as follows.
Let Vi ⊂X×B X×B P1

B×B Wφi be the universal subscheme. Since Vi→P1
B×B Wφi

is flat, the base-change Vε
i to Wφi via B

ε
−→ P1

B , for ε = 0 and ε = ∞, is flat.
We define Wε

1 to be the restriction of Vε
1 ×B Yα,β ×B Wφ2 ×B · · · ×B Wφ2 to

U×B Wφ1 ×B · · · ×B Wφr , and similarly for Wε
i .

Fix a sequence of integers m1, . . . ,mr and an integer N > 0. By Lemma 2.2,
the image of all geometric points (b, Zb, Db,W1, . . . ,Wr ) satisfying

N ·1Xb×bXb |Xb×bXb\(Xb×b Db∪Zb×bXb) =

∑
i

mi · (cyc(W 0
i )− cyc(W∞i )),

where W ε
i is the scheme theoretic intersection of Wi with Xb×b Xb× ε in Xb×b

Xb×b P1
b, forms a constructible subset Tr,φ∗,α,β,m∗,N of Yα,β×B Wφ1×B · · ·×B Wφr .

Let Rr,φ∗,α,β,m∗,N be the image of Tr,φ∗,α,β,m∗,N in B.
If b is a geometric point of B with image in Rr,φ∗,α,β,m∗,N , and if we choose

a geometric point (b, Zb, Db,W1, . . . ,Wr ) of Yα,β ×B Wφ1 ×B · · · ×B Wφr lying
over b, then the cycle

∑
i mi ·cyc(Wi ) on Xb×b Xb×P1 gives a rational equivalence

showing that Tor(i)(Xb) | N . Conversely, as each integral closed subscheme W ⊂
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Xb ×b Xb × P1 that dominates P1 is flat over P1, each geometric point b ∈ B
such that Tor(i)(Xb) | N is in Rr,φ∗,α,β,m∗,N for some choice of Hilbert polynomials
α, β, φ∗ and integers r and m1, . . . ,mr . Thus, S(M) is the union of the subsets
Rr,φ∗,α,β,m∗,N over all α, β, r , φ∗, m∗, and all N > 0 not divisible by M . As this set
of choices is countable, it follows that S(M) is a countable union of constructible
subsets of B. Since S(M) is closed under specialization, the proof is complete. �

3. Universally and totally CH0-trivial morphisms

We recall the notion of a universally CH0-trivial morphism and a related notion,
that of a totally CH0-trivial morphism.

Definition 3.1 [Colliot-Thélène and Pirutka 2016b, Définitions 1.1 and 1.2]. Let
p : Z → Y be a proper morphism of finite type k-schemes for some field k. The
morphism p is universally CH0-trivial if for all field extensions F ⊃ k, the map
p∗ :CH0(Z F )→CH0(YF ) is an isomorphism. A proper k-scheme πY : Y→ Spec k
is called a universally CH0-trivial k-scheme if πY is a universally CH0-trivial
morphism.

Definition 3.2. A proper morphism p : Z→ Y of k-schemes is totally CH0-trivial
if for each point y ∈ Y , the fiber p−1(y) is a universally CH0-trivial k(y)-scheme.

It follows directly from the definition that the property of a proper morphism
being totally CH0-trivial is stable under arbitrary base-change.

We rephrase a result of Colliot-Thélène and Pirutka.

Proposition 3.3 [Colliot-Thélène and Pirutka 2016b, Proposition 1.8]. Let p : Z→
Y be a totally CH0-trivial morphism. Then p is universally CH0-trivial.

Remarks 3.4. (1) By the base-change property of totally CH0-trivial morphisms,
we see that for p : Z → Y a totally CH0-trivial morphism and W → Y a
morphism of k-schemes, the projection Z×Y W→W is universally CH0-trivial.

(2) There are examples of universally CH0-trivial morphisms that are not totally
CH0-trivial;1 in particular, the property of a morphism being universally CH0-
trivial is not stable under base-change.

Corollary 3.5. (1) Universally CH0-trivial morphisms and totally CH0-trivial
morphisms are closed under composition.

1For example, let k be an algebraically closed field of characteristic 6= 2, let S be the cone in P3
k

over a smooth plane curve C of degree ≥ 3, let Y → S be the double cover branched over the
transverse intersection of S with a quadric, and let y1, y2 ∈ Y be the points lying over the vertex of
S. Let p : Z → Y be the blow-up of Y at y1, and let z = p−1(y2). Then for all fields L ⊃ k,
CH0(zL )

iz∗
−−→ CH0(ZL ) and CH0(y2L )

iy2∗
−−→ CH0(YL ) are isomorphisms, and thus p is universally

CH0-trivial. However, p−1(y1)∼= C , so p is not totally CH0-trivial.
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(2) Let p : Z → Y be a morphism of smooth k-schemes that is a sequence of
blow-ups with smooth centers. Then p is a totally CH0-trivial morphism.

(3) Suppose that the field k admits resolution of singularities of birational mor-
phisms for smooth k-schemes of dimension ≤ d; that is, if p : Z → Y is a
proper birational morphism of smooth k-schemes of dimension ≤ d, there
is a sequence of blow-ups of Y with smooth centers, q : W → Y , such that
the resulting birational map r : W → Z is a morphism. Then each proper
birational morphism p : Z → Y of smooth k-schemes of dimension ≤ d is
totally CH0-trivial. In particular, this holds for k of characteristic zero, or for
d ≤ 3 and k algebraically closed [Abhyankar 1966].

Proof. Statement (1) for universally CH0-trivial morphisms is obvious from the
definition, and for totally CH0-trivial morphisms this follows with the help of
Proposition 3.3.

For (2), we use (1) to reduce to checking for the blow-up of Y along a smooth
closed subscheme F , for which the assertion is clear.

For (3), let y be a point of Y and L ⊃ k(y) a field extension. Dominating Z by a
q :W → Y as above, we have the maps

CH0(q−1(y)L)
r∗
−→ CH0(p−1(y)L)

p∗
−→ CH0(Spec L)= Z

which, as CH0(q−1(y)L)→ CH0(Spec L) is an isomorphism, gives us a splitting
to p∗. Applying resolution of singularities to r :W → Z gives a sequence of blow-
ups with smooth centers s : X → Z such that t := r−1s : X → W is a morphism.
Since X→ Z is totally CH0-trivial, the sequence

CH0(t−1(q−1(y))L)
t∗
−→ CH0(q−1(y)L)

r∗
−→ CH0(p−1(y)L)

gives a splitting to r∗, so p∗ is an isomorphism. �

Lemma 3.6. (1) Let q : Z → Y be a birational totally CH0-trivial morphism
of integral, generically smooth k-schemes. Let N > 0 be an integer, let
Yi ,W, D ⊂ Y be proper closed subsets with dim Yi ≤ i , and suppose we have
a decomposition of 1Y as

N ·1Y = γ + γ1+ γ2,

with γ supported on Yi ×k Y , γ1 supported on Y ×k D, and γ2 supported
on W ×k Y . Then there are proper closed subsets Zi , D′ ⊂ Z with dim Zi ≤ i
and a decomposition of 1Z as

N ·1Z = γ
′
+ γ ′1+ γ

′

2,

with γ ′ supported on Zi ×k Z , γ ′1 supported on Z ×k D′, and γ ′2 supported on
q−1(W )×k Z.
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(2) Let q : Z→ Y be a birational totally CH0-trivial morphism of integral, generi-
cally smooth, proper k-schemes. Then Tor(i)k (Z)= Tor(i)k (Y ) for all i .

(3) Let q : Z → Y be a birational universally CH0-trivial morphism of integral
proper k-schemes. Then Tork(Z)= Tork(Y ). If moreover Z and Y are geomet-
rically integral, then gTork(Z)= gTork(Y ).

Proof. We note that (2) follows easily from (1). Indeed, (1) with W = ∅ shows
that Tor(i)k (Z) divides Tor(i)k (Y ) for all i ; as (q × q)∗(1Z )=1Y , it follows that a
decomposition of 1Z of order N and level i gives a similar decomposition of 1Y

by applying (q × q)∗.
We now prove (1). We may assume that W =∅. Indeed, if we replace Y with

Y ′ := Y \W and Z with Z ′ := Z \ q−1(W ), the result for q|Z ′ : Z ′→ Y ′ and the
decomposition

N ·1Y ′ = γ |Y ′×kY ′ + γ1|Y ′×kY ′,

together with localization gives (1) for the original data.
Suppose then we have

N ·1Y = γ + γ1

with γ supported on Yi ×k Y and γ1 supported on Y ×k D. Let K = k(Y ), and let
ηY ∈ Y be the generic point. We have a rational equivalence of 0-cycles on Y ×k ηY

N · ηY × ηY ∼ γηY

with γηY a 0-cycle supported on Yi ×k ηY . Thus, N ·ηY ×ηY ∼ 0 on (Y \Yi )×k ηY .
Since Z\q−1(Yi )→Y \Yi is birational and universally CH0-trivial (Remarks 3.4),

there is a rational equivalence of 0-cycles

N · ηZ × ηZ ∼ 0

on (Z \ q−1(Yi ))×k ηZ , where ηZ ∈ Z is the generic point. We claim that there
is a dimension ≤ i closed subset Z ′ of Z and a rational equivalence of 0-cycles
on Z ×k ηZ

N · ηZ × ηZ ∼ ρZ

with ρZ a 0-cycle supported on Z ′×k ηZ . We proceed by a noetherian induction.
We assume there is a closed subset Y j

⊂ Yi , a dimension ≤ i closed subset Z j

of q−1(Yi ), and a rational equivalence of 0-cycles on (Z \ q−1(Y j ))×k ηZ

N · ηZ × ηZ ∼ ρ j

with ρ j a 0-cycle supported on Z j ×k ηZ , and we show the parallel statement for a
proper closed subset Y j+1 of Y j . The induction starts with Y 0

= Yi .
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Choose an integral component Y j
0 of Y j , and let ν be its generic point. Let

Y ′ be the union of the components of Y j different from Y j
0 . We have the exact

localization sequence

CH0((q−1(Y j
0 \ Y ′))×k ηZ )

i∗
−→ CH0((Z \ q−1(Y ′))×k ηZ )

→ CH0((Z \ q−1(Y j ))×k ηZ )→ 0,

and thus there is a 0-cycle ρ ′ on q−1(Y j
0 \ Y ′)×k ηZ and a rational equivalence

N · ηZ × ηZ ∼ ρ j + i∗(ρ ′)

on (Z \ q−1(Y ′))×k ηZ .
Write

ρ ′ =
∑

i

mi xi +
∑

j

n j x ′j ,

where the xi , x ′j are closed points of q−1(Y j
0 \ Y ′)×k ηZ , such that q ◦ p1(xi )= ν

for all i and q ◦ p1(x ′j ) is contained in some proper closed subset (say Y ′′) of Y j
0

for all j . Replacing Y ′ with Y ′ ∪ Y ′′ and changing notation, we may assume that
ρ ′ =

∑
i mi xi .

By assumption, the map q−1(ν)→ ν is universally CH0-trivial, so there is a
degree-one 0-cycle ε on q−1(ν) so that εL generates CH0(q−1(ν)L) for all field
extensions L ⊃ k(ν); in particular, ε×ηZ generates CH0(q−1(ν)×k ηZ ). Enlarging
Y ′ again by a proper closed subset of Y j

0 , we may assume that

ρ ′ = m · ε× ηZ

in CH0(q−1(Y j
0 \ Y ′)×k ηZ ), for some m ∈ Z. Since ε is a 0-cycle on q−1(ν),

the dimension of the closure Z ′ of the support of ε in q−1(Y j
0 ) is bounded by the

transcendence dimension of k(ν) over k, that is, by dimk Y j
0 ; since Y j

0 ⊂ Yi ,

dimk Z ′ ≤ i.

Taking Y j+1
= Y ′, Z j+1 = Z j ∪ Z ′, and ρ j+1 = ρ j +m · ε× ηZ , the 0-cycle ρ j+1

is supported on Z j+1×k ηZ , dimk Z j+1 ≤ i , and we have

N · ηZ × ηZ = ρ j+1

in CH0((Z \ q−1(Y j+1))×k ηZ ). The induction thus goes through, proving the
result.

The proof of (3) is similar but easier. We have already seen that if Z has a
decomposition of the diagonal of order N , then so does Y . If conversely Y has a
decomposition of the diagonal of order N , then there is a 0-cycle y on Y with

N · ηY × ηY = y× ηY
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in CH0(Y ×ηY ). As q : Z→ Y is universally CH0 trivial, there is a 0-cycle z on Z
with q∗z = y in CH0(Y ) and since (q × q)∗ : CH0(Z ×k ηZ )→ CH0(Y ×k ηY ) is
an isomorphism, we have

N · ηZ × ηZ = z× ηZ

in CH0(Z ×k ηZ ). The proof for gTor is the same. �

We note some consequences of Lemma 3.6.

Proposition 3.7. Let f : Y → X be a dominant rational map of smooth integral
proper k-schemes of the same dimension d.

(1) Suppose k admits resolution of singularities for rational maps of varieties
of dimension ≤ d; that is, if p : Y → X is a rational morphism of smooth
k-schemes of dimension ≤ d , there is a sequence of blow-ups of Y with smooth
center, q : W → Y , such that the resulting rational map r : W → X is a
morphism. Then Tor(i)k X divides deg f ·Tor(i)k Y for all i .

(2) Without assumption on k, Tork X divides deg f ·Tork Y and gTork X divides
(deg f )2 · gTork Y .

Proof. For (1) we may find a sequence of blow-ups with smooth centers, g : Z→ Y ,
so that the induced rational map h : Z → X is a morphism. Since g is a totally
CH0-trivial morphism, Tor(i)k Z = Tor(i)k Y by Lemma 3.6(2), so we may assume
that g is a morphism; the result then follows from Lemma 1.14.

For (2), let Z ⊂ Y ×k X be the graph of f , that is, the closure of the graph
of f : V → X for a nonempty open subset V ⊂ Y on which f is defined. The
map p1 : Z → Y is birational and there is a nonempty open X0 ⊂ X such that
p1 : p−1

2 (X0) ∩ Z → Y is an open immersion; set Y0 := p1(p−1
2 (X0) ∩ Z). The

correspondence Z ×k Z yields a homomorphism

g : CHd(Y ×k Y )→ CHd(X ×k X).

We claim that g(1Y ) = deg( f ) ·1X + γ where γ is a cycle supported on X ×k

(X \ X0), which implies the assertion for Tork X . Keeping track of supports and
using localization, we have an identity in CHd(Z ×k Z) of the form

[Z ×k Z ] · (p1× p1)
∗(1Y )=1Z + γ

′, (3-1)

where γ ′ has support in (p−1
1 (Y \ Y0) ∩ Z)×Y\Y0 (p

−1
1 (Y \ Y0) ∩ Z). Therefore,

(p2× p2)∗(γ
′) has support in X ×k (X \ X0). Applying (p2 × p2)∗ to (3-1) we

prove our claim.
The proof for gTork is similar. �

In particular, if we have resolution of singularities of birational maps, Tor(i)k is a
birational invariant and in general Tork is a birational invariant; from this it follows
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easily that Tor(i)k is a stable birational invariant if we have resolution of singularities
of birational maps and in general Tork is a stable birational invariant.

4. Specialization and degeneration

The next result, in a somewhat different form, is proven in [Colliot-Thélène and
Pirutka 2016b, Théorème 1.12]. In a less general setting, a similar result may be
found in [Voisin 2015, Theorem 1.1].

Proposition 4.1. Let O be a regular local ring with quotient field K and residue
field k. Let f :X→Spec O be a flat and proper morphism with geometrically integral
fibers, and let X be the generic fiber XK and Y the special fiber Xk . We suppose
that Y admit a resolution of singularities q : Z → Y such that q is a universally
CH0-trivial morphism. Suppose in addition that X admits a decomposition of the
diagonal of order N. Then Z also admits a decomposition of the diagonal of
order N. In particular, if TorK (X) is finite, then so is Tork(Z), and in this case
Tork(Z) | TorK (X).

In [Colliot-Thélène and Pirutka 2016b] it is assumed that X has a resolution
of singularities X̃ → X such that X̃ K admits a decomposition of the diagonal of
order N , which implies the same condition on X by pushing forward; there is also
an assumption that Z has a 0-cycle of degree 1. This resolution of singularities in
[Colliot-Thélène and Pirutka 2016b] arises because they consider decompositions
of the diagonal only on smooth proper varieties; the existence of a degree-1 0-cycle
comes from considering only the case N = 1. The modified version stated above is
proved exactly as in [loc. cit.].

We prove an extension of this specialization result which takes the decompositions
of higher level into account.

Proposition 4.2. Let O be a regular local ring with quotient field K and residue
field k. Let f :X→Spec O be a flat and proper morphism with geometrically integral
fibers, and let X be the generic fiber XK and Y the special fiber Xk . Suppose that
there is a birational totally CH0-trivial morphism q : Z → Y of geometrically
integral proper k-schemes.

(1) Suppose X admits a decomposition of the diagonal of order N and level i .
Then Z also admits a decomposition of the diagonal of order N and level i . If
Tor(i)K (X) is finite, then so is Tor(i)k (Z) and in this case Tor(i)k (Z) | Tor(i)K (X).

(2) Let K and k be the respective algebraic closures of K and k, and suppose that
X K admits a decomposition of the diagonal of order N and level i . Suppose
that K has characteristic zero, or that O is excellent. Then Zk also admits a
decomposition of the diagonal of order N and level i . If Tor(i)(X) is finite,
then so is Tor(i)(Z) and in this case Tor(i)(Z) | Tor(i)(X).
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Proof. The assertion (2) follows from (1) by first stratifying Spec O as in the proof
of Lemma 1.5 to reduce to the case of a DVR. We then take a finite extension L
of K so that Tor(i)(X) = Tor(i)L (X L), take the normalization O→ ON of O in L ,
and replace O with the localization O′ of ON at some maximal ideal. Letting k ′ be
the residue field of O′, Tor(i)(Z) divides Tor(i)k′ (Zk′), so (1) implies (2). We now
prove (1).

By Lemma 1.5, Y admits a decomposition of the diagonal of order N and level i .
By Lemma 3.6, Z also admits a decomposition of the diagonal of order N and
level i , proving (1). �

We also have a version that incorporates Totaro’s extended specialization Lemma
1.7.

Proposition 4.3. Let O be a discrete valuation ring with quotient field K and residue
field k. Let f :X→Spec O be a flat and proper morphism of dimension d over Spec O

with generic fiber X and special fiber Y . We suppose Y is a union of closed
subschemes, Y = Y1 ∪Y2, and that X and Y1 are geometrically integral. Suppose
there is a birational totally CH0-trivial morphism q : Z → Y1 of geometrically
integral proper k-schemes and that X admits a decomposition of the diagonal of
order N and level i . Then there are proper closed subsets Zi , D⊂ Z with dim Zi ≤ i
and a decomposition

N ·1Z = γ + γ1+ γ2

with γ supported in Zi ×k Z , γ1 supported in Z ×k D, and γ2 supported in
q−1(Y1 ∩ Y2)×k Z.

Proof. This follows directly from Lemmas 1.7 and 3.6. �

Remark 4.4. As in the second part of Proposition 4.2, we may take the N in
Proposition 4.3 to be Tor(i)

K
(X K ) if O is excellent or if K has characteristic zero,

by replacing O with its normalization O′ in a finite extension L of K so that
Tor(i)

K
(X K ) = Tor(i)L (X L), replacing X with X×O O′, replacing k with a residue

field k ′ of O′, and replacing Z with Z ⊗k k ′.

5. Torsion order for complete intersections in a projective space:
an upper bound

We concentrate on the 0-th torsion order of a (reduced, generically smooth) complete
intersection X = Xn

d1,...,dr
in Pn+r of dimension n and multidegree d1, d2, . . . , dr .

In this section, we recall the construction of Roitman [1980], which when suitably
refined gives an upper bound for Tork(X); by Lemma 1.3(1), this gives an upper
bound for Tor(i)k (X) for all i .

Remark 5.1. Roitman [1980] considered 0-cycles modulo rational equivalence on
a smooth hypersurface X of degree d ≤ n in Pn

k for k an algebraically closed field.
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His argument (in part) consisted in showing that through each point x of X , there
is a line ` in Pn containing x with either `⊂ X or `∩ X = {x} (set-theoretically).
To do this, he showed how the defining equation for X gives equations for the
set of all ` with the above properties, as a closed subset of the projective space
Pn−1(x) of lines through x . For his purpose, it is enough to show that the closed
subset of all ` containing x , with `⊂ X or with `∩ X = {x}, is nonempty; for our
purposes, we need the degree of this closed subscheme. More concretely, if x, x ′

are points of X (k) with k algebraically closed, Roitman’s argument shows that
d · x ∼ d · x ′ by finding lines `, `′ as described above, whereas we need to consider
points x, x ′ in X (k(X)), so the factor d becomes multiplied by the degree of the
closed subscheme of lines through x or x ′. Finally, Roitman eventually shows that
x ∼ x ′ for all x ∈ X (k), k algebraically closed, by applying his famous theorem on
the torsion in the group of 0-cycles modulo rational equivalence.

We often shorten the notation by writing d∗ for a sequence d1, d2, . . . , dr .

Proposition 5.2. Let k be a field, and let X = Xn
d1,...,dr

in Pn+r
k with

∑
i di ≤ n+ r

be a reduced, generically smooth complete intersection of multidegree d1, . . . , dr ,
with n ≥ 1. Then Tork(X) is finite and divides

∏r
i=1 di !.

Proof. The reduced, generically smooth complete intersections in Pn+r and of
multidegree d1, . . . , dr are parametrized by an open subscheme Ud∗;n of a product
of projective spaces; by Lemma 1.5 it suffices to prove the result for the subscheme
X := Xd∗,gen of Pn+r

K defined over the field K := k(Ud∗;n) corresponding to the
generic point of Ud∗;n . For such an X , there is an open subset V ⊂ X , such that,
for x ∈ V , the set of lines `⊂ Pn+r such that x ∈ ` and (`∩ X)red is either {x} or
is ` is defined by a complete intersection Wx of multidegree

d1− 1, d1− 2, . . . , 2, 1, d2− 1, d2− 2, . . . 2, 1, . . . , dr − 1, . . . , 2, 1

in the projective space Pn+r−1
K (x) of lines through x . Indeed, we may choose a standard

affine open U in Pn+r
K (x) containing x and choose affine coordinates t0, . . . , tn+r−1

for U so that x is the origin, and X ∩U is defined by inhomogeneous equations
F1 = · · · = Fr = 0. Writing each Fi as a sum of homogeneous terms F ( j)

i of
degree j ,

Fi =

di∑
j=1

F ( j)
i ,

Wx is defined by ideal (· · · F ( j)
i · · · ), i=1, . . . , r and j=1, . . . , di−1. Since we are

choosing X to be the generic hypersurface, and as we may also choose x to lie outside
any proper closed subset of X , the homogeneous terms F ( j)

i ∈K (x)[t0, . . . , tn+r−1] j

will define a complete intersection in Pn+r−1
K (x) . In particular Wx has codimension∑r

i=1(di − 1)≤ n+ r − 1 in Pn+r−1
K (x) , is nonempty, and has degree

∏r
i=1(di − 1)!.
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Let W 0
x ⊂ Wx be the closed subset of lines ` containing x with ` ⊂ X ; this is

defined by the r additional equations F (di )
i = 0. Thus, for general (X, x), W 0

x has
codimension r on Wx (or is empty).

Since n+ r − 1−
∑r

i=1(di − 1) ≥ r − 1, we may intersect Wx with a suitably
general linear space L⊂Pn+r−1

K (x) to form a closed subscheme W x ⊂Wx of dimension
r −1 and degree

∏r
i=1(di −1)! and we may choose L with L ∩W 0

x =∅. The cone
over W x with vertex x , Cx ⊂ Pn+r

K (x), is thus a dimension-r closed subscheme of
degree

∏r
i=1(di − 1)! with intersection (set) Cx ∩ X = {x}. Thus, as cycles

Cx · X =
( r∏

i=1

di !

)
· x .

Let η be the generic point of X . Taking x = η in the above discussion gives

r∏
i=1

di ! · η = Cη · X.

But Cη is an r -cycle on Pn+r
K (η) of degree

∏r
i=1(di − 1)!, so Cη =

∏r
i=1(di − 1)! · Lr

in CHr (P
n+r
K (η)), where Lr ⊂ Pn+r

K is any dimension-r linear subspace. Since K
is infinite, we may choose Lr so that the intersection Lr ∩ X has dimension zero.
Thus, letting z =

∏r
i=1(di − 1)! · (Lr · X), we have

r∏
i=1

di ! · η− zK (η) = 0

in CH0(X K (η)), which gives a decomposition of the diagonal in X of order
∏r

i=1 di !.
Thus, TorK (X) is finite and divides

∏r
i=1 di !, as desired. �

Corollary 5.3. Let X = Xn
d1,...,dr

in Pn+r
k be a smooth complete intersection of

multidegree d1, . . . , dr and of dimension n ≥ 1 with
∑

i di ≤ n+ r . Then gTork(X)
and Tor(X) are both finite and both divide

∏r
i=1 di !.

Proof. Both gTork(X) and Tor(X) := Tork(Xk) divide Tork(X) (Lemma 1.3), so
the result follows from Proposition 5.2. �

6. A lower bound in the generic case

In this section we discuss the case of the generic complete intersection. Let k
denote a fixed base-field, for instance the prime field. The bounds we find for the
generic case are independent of k, so one could equally well take k to be the reader’s
favorite field, even an algebraically closed one.

Before going into details, we outline the case of hypersurfaces, which uses all
the main ideas.
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Let d!∗ denote the l.c.m. of the integers 2, . . . , d . Note that d!∗ is inductively the
l.c.m. of d and (d−1)!∗ (Lemma 6.4). Our main result in the case of hypersurfaces
is that the torsion order of level 0 of the generic hypersurface of degree d ≤ n+ 1
in Pn+1 is divisible by d!∗, in other words, if the generic hypersurface admits a
decomposition of the diagonal of degree N , then d!∗ divides N .

The hypersurfaces of degree d ≤ n+ 1 in Pn+1
k are parametrized by a projective

space PNn,d , and it is not hard to show that the index over k(PNn,d ) of the generic
degree-d hypersurface X is d . In fact, we have a much stronger statement, namely
CH0(X)= Z, generated by X · ` for `⊂ Pn+1 a line (Lemma 6.1(1)). In particular,
for any zero cycle x on X , we have d | degk(PNn,d ) x .

If we have a decomposition of order N of the diagonal on X ,

N ·1X ∼ x × X + γ,

then, as projecting this identity on the second factor shows that N = degk(PNn,d ) x , it
follows that d | N . Now degenerate X to the generic degree-(d−1) hypersurface Y
in Pn+1 plus the hyperplane H given by xn+1 = 0, and let Z = Y ∩ H . Here Y
and Z are defined over L := k(PNn,d−1). Specializing the above rational equivalence
using Lemma 1.7 gives a rational equivalence on Y ×L Y of the form

N ·1Y ∼ x × Y + γ1+ γ2

with x a zero-cycle on Y , γ1 a dimension-n cycle on Z ×L Y , and γ2 supported
in Y ×L D for some divisor D on Y . Passing to the generic point of Y , γ1 gives a
0-cycle on Z ×L L(Y ). The main point is to show that CH0(Z ×L L(Y )) is also Z,
generated by intersections from Pn−1 (Lemma 6.1(3)), so we can replace γ1 with
y× Y + γ3, where y is a 0-cycle on Z and γ3 is supported on Z ×L D′ for some
divisor D′ on Y (Lemma 6.2). In other words,

N ·1Y ∼ (x + y)× Y + γ2+ γ3,

so Y admits a decomposition of the diagonal of degree N . Now use induction on d
to conclude that (d − 1)!∗ | N . As we already know that d | N , we find d!∗ | N .

Now we address the details and the case of a general complete intersection. Fix
integers n, r ≥ 1. For an integer d , let Sd,n+r be the set of indices I = (i0, . . . , in+r )

with 0 ≤ i j and
∑

j i j = d. We let Si = Sdi ,n+r and let Ni := #Si − 1. Let
{u(I )i | I ∈ Si } be homogeneous coordinates for PNi , and let x0, . . . , xn+r be homo-
geneous coordinates for Pn+r . The universal family of intersections of multidegree
d1, . . . , dr in Pn+r , Xd∗,n , is the subscheme of PN1×· · ·×PNr×Pn+r defined by the
multihomogeneous ideal in the polynomial ring k[{u(I )i }I∈Si , i=1,...,r , x0, . . . , xn+r ]

generated by the elements
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I∈Si

u(I )i x I , i = 1, . . . , r,

where as usual x I
= x i0

0 · · · x
in+r
n+r for I = (i0, . . . , in+r ). We let η := ηd∗;n denote

the generic point of PN1 × . . .×PNr and let Xd∗,n
η denote the fiber product

Xd∗,n
η := Xd∗,n ×PN1×···×PNr η ⊂ Pn+r

η .

By Proposition 5.2, we know that if
∑r

i=1 di ≤ n+r , then Tork(η)(X
d∗,n
η ) is finite

and divides
∏

i di !. We turn to a computation of a lower bound.
Let H ⊂ PN1 × · · ·×PNr ×Pn+r be the subscheme defined by (xn+r = 0), let

Xd∗,n
H := Xd∗,n ∩ H , and let Xd∗,n

H,η := Xd∗,n
η ∩ H . Let η′ := ηd∗,n−1.

We separate the indices Si into two disjoint subsets S0
i and S1

i , with S0
i the

set of (i0, . . . , in+r ) with in+r = 0 and S1
i those with ir+n > 0. We set v(I )i = u(I )i

for I ∈ S0
i and w(I )i = u(I )i for I ∈ S1

i . We write k({u(I )i }0) for the field extension
of k generated by the ratios u(I )i /u(I

′)
i , I 6= I ′, and similarly for k({v(I )i }0), giving

us the field extension k({v(I )i }0) ⊂ k({u(I )i }0). We note that k({u(I )i }0) = k(η),
k({v(I )i }0) = k(η′), and the k(η)-scheme Xd∗,n

H,η is canonically isomorphic to the
base-change of the k(η′)-scheme Xd∗,n−1

η′ via the base-extension k(η′)⊂ k(η):

Xd∗,n
H,η
∼= Xd∗,n−1

η′ ⊗k(η′) k(η).

This defines for us the projection q1 : X
d∗,n
H,η → Xd∗,n−1

η′ .
Let K = k(η)(Xd∗;n

η )= k(Xd∗,n). We have the morphism of k(η′)-schemes

π : Xd∗,n
H,η ⊗k(ηd∗;n)

K → Xd∗,n−1
η′

formed by the composition

Xd∗,n
H,η ⊗k(η) K

p1
−→ Xd∗,n

H,η
q1
−→ Xd∗,n−1

η′ .

Lemma 6.1. (1) For i = 0, . . . , n, the intersection map

CHr+i (P
n+r
k(η))→ CHi (X

d∗;n
η )

is an isomorphism.

(2) For i = 0, . . . , n− 1, the pullback

π∗ : CHi (X
d∗,n−1
η′ )→ CHi (X

d∗,n
H,η ⊗k(η) K )

is an isomorphism.

(3) For i = 0, . . . , n− 1, the intersection map

CHr+i+1(P
n+r
K )→ CHi (X

d∗,n
H,η ⊗k(η) K )

is an isomorphism.
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Proof. Noting that the base-extension CH∗(Pn+r
k(η))→CH∗(Pn+r

K ) is an isomorphism,
the assertion (3) follows from (1) (for n− 1) and (2). For (1), the projection

p2 : X
d∗,n→ Pn+r

expresses Xd∗,n as a PN1−1
× · · ·×PNr−1-bundle over Pn+r , with fibers embedded

in PN1 × · · · × PNr linearly in each factor. Thus, CH∗(Xd∗;n) is generated by
CH∗(PN1×· · ·×PNr ×Pn+r ) via restriction. After localization at η, this shows that
CH∗(Xd∗;n

η ) is generated by CH∗(Pn+r
k(η)) via restriction. The fact that the surjective

map CHr+i (P
n+r
k(η))→ CHi (X

d∗;n
η ) is also injective in the stated range follows by

noting that the intersection pairing on Xd∗;n
η is nondegenerate when restricted to

these cycles. This proves (1).
For (2), fix for each i the index I 0

i := (di , 0, . . . , 0), and the index I 1
i :=

(0, . . . , 0, di ), and for each homogeneous variable w(I )i , let w(I )0i be the corre-
sponding affine coordinate w(I )i /v(I

0
i )

i . Similarly, we let v(I )0i = v
(I )
i /v(I

0
i )

i . Let
yi = xi/xn+r , i = 0, . . . , n+ r −1 and yn+r = 1. The field extension k(η′)→ K is
isomorphic to the field extension given by including the constants k({v(I )i }0) of the
k({v(I )i }0)-algebra A,

A := k({v(I )i }0, y0, . . . , yn+r )[{w
(I )0
i }]/

(
. . . ,

∑
I∈S0

i

v
(I )0
i · y I

+

∑
I ′∈S1

i

w
(I ′)0
i · y I ′, . . .

)
into the quotient field L of A. In each defining relation for A, we can solve forw

(I 1
i )0

i
in terms of the yi and the other w(I

′)0
i . After eliminating each w(I

1
i )0

i in this way, we
see that A is a polynomial algebra over k({v(I )i }0, y0, . . . , yn+r−1). The yi and the
w
(I ′)0
i , after removing w(I

1
i )0

i for each i , therefore form an algebraically independent
set of generators for L over k({v(I )i }0), and thus K is a pure transcendental extension
of k(η′). As Chow groups are invariant under base-change by purely transcendental
field extensions, this proves (2). �

Lemma 6.2. Take γ in CHn(X
d∗,n
H,η×k(η)X

d∗,n
η ). Then there is a zero cycle y on Xd∗,n

H,η ,
a proper closed subset D′ of Xd∗,n

η , and a cycle γ ′ supported on Xd∗,n
H,η ×k(η) D′ such

that
γ = y×Xd∗,n

η + γ ′

in CHn(X
d∗,n
H,η ×k(η) Xd∗,n

η ). Furthermore, the degree of y is divisible by
∏r

i=1 di .

Proof. Let ξ denote the generic point of Xd∗,n
η . By Lemma 6.1(3), the class of the

restriction j∗γ of γ to Xd∗,n
H,η ×k(η) ξ is of the form

j∗γ = M · L ·Xd∗,n
H,η ×k(η) ξ,

where L is a linear subspace of H ⊂ Pn+r , M an integer. Letting y ∈ CH0(X
d∗,n
H,η )

be the 0-cycle M · L ·Xd∗,n
H,η , the result follows from the localization theorem for
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the Chow groups; the assertion on the degree follows from the fact that Xd∗,n
H,η has

degree
∏r

i=1 di and hence y has degree M ·
∏r

i=1 di . �

Definition 6.3. For a natural number n ≥ 1, we let n!∗ denote the l.c.m. of the
numbers 1, 2, . . . , n.

Lemma 6.4. Let d1, . . . , dr be a sequence of positive natural numbers. Then the
product

∏r
i=1(di !

∗) is equal to the l.c.m. M of all products i1 · · · ir with 1≤ i j ≤ d j ,
j = 1, . . . , r .

Proof. Fix a prime number p. For each j = 1, . . . , r , let i∗j be an integer with
1≤ i∗j ≤ d j and with p-adic valuation νp(i∗j ) equal to νp(d j !

∗). Then

νp

( r∏
j=1

i∗j

)
= νp

( r∏
i=1

(di !
∗)

)
and νp

(∏r
j=1 i j

)
≤ νp

(∏r
j=1 i∗j

)
for all sequences i1, . . . , ir with 1 ≤ i j ≤ d j .

Thus, νp(M) = νp
(∏r

i=1 i∗j
)
= νp

(∏r
i=1(di !

∗)
)
. Since p was arbitrary, this gives

M =
∏r

i=1(di !
∗). �

Theorem 6.5. For integers d1, . . . , dr with
∑

i di ≤n+r ,
∏r

i=1 di !
∗
|Tork(η)(X

d∗,n
η ).

Proof. We may suppose that d1 > 1. Let d ′
∗
= (d1 − 1, d2, . . . , dr ). Let O be

the local ring of the origin in A1
k(η) = Spec k(η)[t], and let X̃ be the subscheme

of PN1 × · · ·×P
Nr
O defined by the homogeneous ideal ( f1, . . . , fr ), with

f j =

{∑
I∈Sd j ,n+r

u(I )j x I for j 6= 1,

t ·
∑

I∈Sd1,n+r
u(I )1 x I

+ (1− t) · xn+r ·
∑

J∈Sd1−1,n+r
u(J )1 x J for j = 1.

The generic fiber of X is thus isomorphic to Xd∗,n
η ×k(η) k(η, t), and the special fiber

is Xd ′∗,n
η ∪ H .

Suppose that Xd∗,n
η admits a decomposition of the diagonal of order N :

N ·1Xd∗,n
η
= x ×Xd∗,n

η + γ

with γ supported on Xd∗,n
η ×D for some divisor D. By Lemma 6.1, deg x is divisible

by
∏r

i=1 di , and thus
∏r

i=1 di divides N .
By applying Totaro’s specialization lemma (Lemma 1.7) to the family X→

Spec O, the diagonal for Xd ′∗,n
η admits a decomposition of the form

N ·1
X

d′∗,n
η

= x ×X
d ′∗,n
η + γ1+ γ2

with γ1 supported in X
d ′∗,n
H,η×X

d ′∗,n
η and γ2 supported in X

d ′∗,n
η ×D2 for some divisor D2

on Xd ′∗,n
η . By Lemma 6.2, we have the identity

γ1 = y×X
d ′∗,n
η + γ3
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with y a zero-cycle on X
d ′∗,n
η and γ3 supported on X

d ′∗,n
η × D3 for some divisor D3.

Thus, the diagonal on X
d ′∗,n
η admits a decomposition of order N as well. By induction

(d1−1)!∗ ·
∏r

i=2(di !
∗) divides N ; by symmetry (d j−1)!∗ ·

∏r
i=1,i 6= j (di !

∗) divides N
for all j with d j > 1. As we have already seen that

∏
i di divides N , Lemma 6.4

completes the proof. �

We also have a lower bound for the generic complete intersection with a rational
point.

Corollary 6.6. For integers d1, . . . , dr with
∑

i di ≤n+r , let K be the function field
of the generic complete intersection of multidegree d1, . . . , dr , K := k(η)(Xd∗,n

η ).
Then

(
1/
∏r

i=1 di
)∏r

i=1(di !
∗) divides TorK (X

d∗,n
η ×k(η) K ).

Proof. Let X = Xd∗,n
η . By Lemma 6.1, IX =

∏r
i=1 di and thus by Lemma 1.10,

Tork(η)(X
d∗,n
η ) divides IX ·TorK (X

d∗,n
η ×k(η)K ). Clearly

∏r
i=1 di divides

∏r
i=1(di !

∗),
whence the result. �

Example 6.7 (generic cubic hypersurfaces). For the generic cubic hypersurface
X := X3,n

η , n ≥ 2, we thus have Tork(η) X = 6 and the generic cubic hypersurface
with a rational point X K , K = k(η)(X), has 2 | TorK X K | 6.

It follows from [Colliot-Thélène 2016, Théorème 4.1] that the generic cubic
hypersurface with a rational point does have TorK X K = 6, at least if k has char-
acteristic not equal to 3. Indeed, in view of Lemma 1.3(4), we may enlarge k.
First we may suppose that k contains a primitive third root of unity. Then we
pass from k to k(λ0, . . . , λn−2). The smooth cubic Y ⊂ Pn+1

k(λ0,...,λn−2)
given by

x3
0 + x3

1 + x3
2 +

∑n−2
i=0 λi x3

i+3 = 0 has a rational point but also has nontrivial higher
unramified cohomology with Z/3-coefficients. We apply Lemma 1.5(1) to conclude
that 3 | TorK X K .

In particular, the generic dimension-n cubic hypersurface with a rational point
does not admit a rational map Pn 99K X K of degree not divisible by 6 by Proposition
3.7(2).

Example 6.8 (generic cubic hypersurfaces with a line). Take n ≥ 2. For X a cubic
hypersurface in Pn+1

L (defined over some field L ⊃ k), we have the Fano variety of
lines on X , FX , a closed subscheme of the Grassmann variety Gr(2, n+2)L . In fact,
if U→Gr(2, n+2) is the universal rank-two bundle, and f is the defining equation
for X , then FX is the closed subscheme defined by the vanishing of the section
of the rank-four bundle Sym3 U determined by f . In particular, the class of FX

in CH4(Gr(2, n + 2)L) is given by the Chern class c4(Sym3 U ). One computes
this easily as c4 = 9c2

2(U )+18c1(U )2c2(U ). As c2(U )n and c2(U )n−2c1(U )2 both
have degree one, we see that FX · c2(U )n−2 has degree 27, and thus IFX divides 27.
This 27 is of course the famous 27 lines on a cubic surface, as intersecting FX with
c2(U )n−2 in Gr(2, n+ 2) is the same as taking the Fano variety of the intersection
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of X with a general P3 in Pn+1. See for example [Fulton 1984, Example 14.7.13]
for details of the Chern class computation.

Taking X =X3,n
η , and letting K = k(η)(FX ), it follows from Lemma 1.10(1) that

6 = Tork(η)(X
3,n
η ) divides 27 · TorK (X

3,n
η ×k(η) K ); since we have the degree-two

rational map Pn
K 99K X3,n

η ×k(η) K , we have TorK (X
3,n
η ×k(η) K )= 2. In particular,

the generic cubic with a line is not stably rational over its natural field of definition
k(η)(FX ).

We are indebted to J.-L. Colliot-Thélène [2016, Théorème 3.2] for the next
example, which improves the bounds and simplifies the argument of an example in
an earlier version of this paper.

Example 6.9 (cubics over a “small” field). Take n ≥ 2. We consider a DVR O

with quotient field K and residue field k (of characteristic 6= 2), and a degree-3
hypersurface X⊂ Pn+1

O . Let X = XK and Y = Xk . We suppose that X is smooth
and Y = Q ∪ H , with Q a smooth quadric and H a hyperplane. Furthermore, we
assume

(1) IQ = 1,

(2) Q and H intersect transversely, and

(3) IQ∩H = 2.

From Proposition 5.2, we know that TorK (X) is finite and divides 6. We will show
that 2 divides TorK (X).

For this, suppose we have a decomposition of the diagonal of X of order N . We
note that our family X satisfies the hypotheses of Lemma 1.8, with Y1= Q, Y2= H ,
and r = 1. By Remark 1.9, N · (CH0(Q)/ iQ∩H∗(CH0(Q ∩ H)))= 0; considering
degrees, we see that 2 | N .

To construct an explicit example, recall [Lam 1980, Chapter 11, Definition 4.1]
that the u-invariant u(k) of a field k is the maximum r such that there exists an
anisotropic quadratic form over k of dimension r , or is∞ if no maximum exists. For
example, for p odd, Fp has u-invariant 2, and Qp has u-invariant 4; more generally,
for a field k of characteristic different from 2, k((t)) has u-invariant 2 · u(k) [Lam
1980, Chapter 4, Examples 4.2].

The above construction gives us a cubic hypersurface X of dimension n ≥ 2
over K := k((x)) with 2 | TorK (X) and X (K ) 6= ∅ if k is an infinite field of
characteristic 6= 2 with u-invariant ≥ n+ 1. Indeed, take an anisotropic quadratic
form q0 in (n+ 1)-variables X0, . . . , Xn , choose α ∈ k× represented by q0, and let
q = q0−α ·X2

n+1, so q is nondegenerate. Let Q⊂Pn+1
k be the quadric defined by q ,

and let H be the hyperplane Xn+1=0. Take a cubic form c0∈ k[X0, . . . , Xn+1], and
let c= xc0+q · Xn+1 ∈ k[[x]][X0, . . . , Xn+1]. Since k is infinite, we can choose c0

so that the subscheme X of Pn+1
k((x)) defined by c is smooth (and hence geometrically
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integral); it suffices to choose c0 so that c0 = 0 is smooth and intersects Q and H
transversely. Clearly IQ = 1, Q and H intersect transversely, and IQ∩H = 2, giving
us the desired example.

Thus, there are cubic threefolds X over K := Qp((x)) with 2 | TorK (X) and
with X (K ) 6= ∅. Similarly, there are examples of such cubic threefolds over
K = Fp((t))((x)) for p 6= 2. Over K =Q((x)) or even over K = R((x)) there are
cubic hypersurfaces X of dimension n over K for arbitrary n ≥ 2, with 2 | TorK (X)
and X (K ) 6= ∅. As in the previous example, we may pass to an odd-degree
field extension L of K to find a cubic hypersurface X L with a line, and with
TorL(X L)= 2; all these cubics are thus not stably rational over their corresponding
field of definition.

Remark 6.10. As mentioned in the introduction, Colliot-Thélène and Pirutka have
constructed cubic threefolds over a p-adic field [2016b, Théorème 1.21] and over
Fp((x)) [2016b, Remarque 1.23] with nonzero torsion order and having a rational
point.

7. Torsion order for very general complete intersections in a projective space:
a lower bound

As in the previous sections, we consider smooth complete intersection subschemes X
of Pn+r of multidegree d1, . . . , dr .

By saying a property holds for a very general complete intersection in Pn+r
k of

multidegree d1, . . . , dr , we mean that there is a countable union F of proper closed
subsets of the parameter scheme of such complete intersections (an open subset in
a product of projective spaces over k) such that the property holds for Xb if b /∈ F .

Recall that for X a proper, generically smooth L-scheme for some field L , and L
the algebraic closure of L , we have defined Tor(i)(X) :=Tor(i)

L
(X L) (Definition 1.12).

Theorem 7.1. Let k be a field of characteristic zero. Let d1, . . . , dr and n ≥ 3 be
integers with d ′ :=

∑r
j=1 d j ≤ n+ r . Let p be a prime number. Suppose that

di ≥ p ·
⌈

n+ r + 1− d ′+ di

p+ 1

⌉
(7-1)

for some i , 1≤ i ≤ r . Then p |Tor(n−2)(X) for all very general X = Xd1,...,dr ⊂Pn+r
k .

Corollary 7.2. Let k, d1, . . . , dr , n, and p be as in Theorem 7.1, and suppose that
di satisfies (7-1). Then p | Tor(X) for all very general X = Xd1,...,dr ⊂ Pn+r

k .

Proof. Tor(n−2)(X) divides Tor(X) := Tor(0)(X) by Lemma 1.3(1). �

Remarks 7.3. (1) We know that Tor(X) is finite for all X = Xd1,...,dr ⊂Pn+r with∑
j d j ≤ n+ r by Proposition 5.2 and hence Tor(n−2)(X) is also finite.
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(2) For p= 2 and for hypersurfaces, the corollary follows directly from the results
in [Totaro 2016].

(3) We only use the hypothesis of characteristic zero to allow for a specialization
to characteristic p, where p is the prime number in the statement. For k a field
of positive characteristic, the analogous result holds, but only for p = char k.

(4) There are two interesting cases of complete intersection threefolds we would
like to mention: that of a multidegree-(3, 2) complete intersection in P5 and
a multidegree-(2, 2, 2) complete intersection in P6 (see the recent results of
Hassett and Tschinkel [2016]). In both cases we take di =2 and get a divisibility
by 2. Notice that in the (2, 3) case taking di = 3 and p = 3 works.

Proof of Theorem 7.1. This is another application of the argument of Kollár [1995],
as used for example by Totaro [2016], Colliot-Thélène and Pirutka [2016a], or
Okada [2016]. We may reorder the d j so that di = d1. We first assume that p
divides d1, d1 = q · p. Take f and g suitably general homogeneous polynomials of
degree d1 and q , respectively, and let f2, . . . , fr be suitably general homogeneous
polynomials, with f j of degree d j , j = 2, . . . , r . We take these to be in the
polynomial ring O[X0, . . . , Xn+r ], where O is a complete (hence excellent) discrete
valuation ring with maximal ideal (t), with residue field k=Fp, the algebraic closure
of Fp, and with quotient field K a field of characteristic zero. We let X→ Spec O be
the closed subscheme of a weighted projective space P= Proj O[X0, . . . , Xn+r , Y ],
with the X i having weight 1 and Y having weight q , defined by the homogeneous
ideal

( f2, . . . , fr , Y p
− f, g− tY ).

The generic fiber X := XK is isomorphic to the complete intersection subscheme
of Pn+r

K defined by g p
− t p f = f2 = · · · = fr = 0, and the special fiber Y := Xk is

the cyclic p to 1 cover Y →W , with W ⊂ Pn+r
k the complete intersection defined

by g = f 2 = · · · = f r = 0, and y p
= f |W .

For general f, g, f2, . . . , fr , X and W are smooth, and Y has only finitely many
singularities, which may be resolved by an explicit iterated blow-up q : Z → Y
which is totally CH0-trivial: for details, see Proposition 8.5 if p ≥ 3. If p =
d1 = 2, then we use Lemma 8.7 and Proposition 8.8 for the construction of the
resolution of singularities and the proof that the resolution morphism q is totally
CH0-trivial. Kollár shows in addition that, under the assumption (7-1), one has
H 0(Z , �n−1

Z/k) 6= {0}. In somewhat more detail, Kollár [1995, §15, Lemma 16]
defines an invertible sheaf Q (denoted π∗Q(L , s) in [loc. cit.]) with an injection
Q → (�n−1

Y/k )
∗∗, where ∗∗ denotes the double dual. A local computation (see

[Colliot-Thélène and Pirutka 2016a], [Okada 2016], or Remark 8.18 for details)
in a neighborhood of the finitely many singularities of Y shows that this injection
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extends to an injection q∗Q→�n−1
Z/k ; here is where the condition n ≥ 3 is used. In

addition, q∗Q is isomorphic to the pullback to Z of ωW ⊗ OW (d1), where ωW is
the canonical sheaf on W . As ωW = OW

(
d1/p+

∑
j≥2 d j − n− r − 1

)
, we have a

nonzero section of �n−1
Z/k if d1(p+ 1)/p ≥ n+ r + 1−

∑r
i=2 di , which is exactly

the condition in the statement of the theorem.
By Proposition 5.2, we know that Tor(X K ) is finite and thus Tor(n−2)(X K ) is finite

as well. The specialization result Proposition 4.2 thus implies that Tor(n−2)(Zk) is
finite and divides Tor(n−2)(X K ). By [Gros 1985, Chapitre II, Proposition 4.2.33;
Chatzistamatiou and Rülling 2011, Theorem 3.1.8; El Zein 1978, §3.3, Proposition
4], correspondences on Z ×k Z act on H 0(Z , �n−1

Z/k), and if γ is a correspondence
on Z×k Z supported in some Z ′×k Z with dimk Z ′≤n−2, then by [Chatzistamatiou
and Rülling 2011, Proposition 3.2.2(2)], γ∗ acts by zero on H 0(Z , �n−1

Z/k). Similarly,
if γ is a correspondence on Z ×k Z , supported in Z ×k D for some divisor D ⊂ Z ,
then γ∗(ω)|Z\D = 0 for each ω ∈ H 0(Z , �n−1

Z/k); as �n−1
Z/k is locally free, it follows

that γ∗(ω)= 0. Thus, if 1Z admits a decomposition of order N and level n−2, this
implies that N ·ω= 0 for all ω∈ H 0(Z , �n−1

Z/k), and since H 0(Z , �n−1
Z/k) is a nonzero

k-vector space, this implies that p | N . Since Tor(n−2)(Zk) divides Tor(n−2)(X K ),
it follows that p | Tor(n−2)(X K ) and Proposition 2.1 finishes the proof in this case.

In the case of a general d1, write d1 = q · p+c, 0< c< p, and consider a family
X→ Spec O defined by a homogeneous ideal of the form

( f2, . . . , fr , (Y p
− h)s+ tu, g− tY ),

with u, h, g, s∈O[X0, . . . , Xn+r ], u of degree d1, h of degree pq , g of degree q , and
s of degree c, suitably general, and with Y as above of weight q . The generic fiber X
is the complete intersection f1= f2= · · · = fr = 0, with f1= (g p

− t ph)s+ t p+1u;
the special fiber Y has two components Y1, Y2, with Y1 the p to 1 cyclic cover of
W := ( f 2 = · · · = f r = g = 0), branched along W ∩ (h = 0). We take q : Z→ Y1

to be the resolution as in the previous case. Having chosen h, g, s, we may take u
sufficiently general so that X is a smooth complete intersection.

Since O is excellent, we are free to make a finite extension L of K , take the
integral closure OL of O in L , replace O with the localization O′ at a maximal
ideal of OL , and replace X with X⊗O O′; changing notation, we may assume that
Tor(n−2)

K (X) is the geometric torsion order Tor(n−2)(X). By Proposition 4.3, the
smooth proper k-scheme Z admits a decomposition of the diagonal as

N ·1Z = γ + γ1+ γ2,

with N = Tor(n−2)(X), γ supported in Zn−2 ×k Z with dim Zn−2 ≤ n − 2, γ1

supported in q−1(Y1∩Y2)×k Z , and γ2 supported in Z×k D for some divisor D on Z .
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We may take the degree-c part s as general as we like. In particular, we may
assume that Y1 ∩ Y2 is contained in the smooth locus of Y1 and is thus isomorphic
to a closed subscheme Z ′ of Z .

Our decomposition of the diagonal on Z gives the relation

N ·ω = γ1∗ω

for each ω ∈ H 0(Z , �n−1
Z ). Indeed,

N ·ω = N ·1Z∗ω = γ1∗ω+ γ2∗ω+ γ∗ω.

But γ∗ factors through the restriction to Zn−2, so γ∗ω=0. Similarly, γ2∗ω is a global
section of �n−1

Z supported in D, which is zero, since �n−1
Z is a locally free sheaf.

One computes that the canonical class of Y1 ∩ Y2 is antiample, and thus the
canonical line bundle on the dimension-(n−1) subscheme Z ′ has no sections. Note
that Z ′ is a cyclic p to 1 cover of the complete intersection W ∩ V (s). If s is
general, then there is a rational resolution of singularities Z̃ ′ (Proposition 8.8 and
Lemma 8.9), hence the canonical line bundle of Z̃ ′ has no nonvanishing sections.
But γ1∗ω factors through the restriction of ω to Z̃ ′; hence, γ1∗ω = 0. Since h has
degree q · p in the range needed to give the existence of a nonzero ω in H 0(Z , �n−1

Z ),
we conclude as before that p | N . �

Example 7.4. We consider the case of hypersurfaces of degree d in Pn+1, n ≥ 3.
The theorem says that p divides Tor(n−2)(X) for very general degree d ≤ n + 1
hypersurfaces X in Pn+1 if

d ≥ p ·
⌈

n+ 2
p+ 1

⌉
.

For p= 2, this is the range considered by Totaro; for p= 3, the first case is degree 6
in P6. For the extreme case of degree d = n+ 1 in Pn+1, we have p | Tor(n−2)(X)
for all p dividing n+ 1.

8. An improved lower bound for the very general complete intersection

In this section we extend Theorem 7.1 to cover prime powers. The basic idea is to
replace the differential forms with Hodge–Witt cohomology. We are grateful to Kay
Rülling for providing the argument for the next lemma which shows that a cycle on
Z×k Z , supported on Z ′×k Z with dim Z ′≤n−2, acts trivially on H 0(Z ,Wm�

n−1
Z ).

Lemma 8.1. Let k be a perfect field of positive characteristic p, and let X, Y
be smooth, equidimensional, and quasiprojective k-schemes. Set n = dim X and
CHn

prop/Y (X ×k Y ) = lim
−−→Z CHdim Y (Z), where the limit is over all closed subsets
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Z ⊂ X ×k Y that are proper over Y . For α ∈ CHn
prop/Y (X ×k Y ) denote by

α∗ :
⊕
i, j

H i (X,Wm�
j )→

⊕
i, j

H i (Y,Wm�
j )

the map induced by α via the cycle action from [Chatzistamatiou and Rülling 2012,
§3.5]. Assume α is supported on A ×k Y , where A ⊂ X is a closed subset of
codimension ≥ r . Then α∗ vanishes on

⊕
i, j+r>n H i (X,Wm�

j ).

Proof. We may assume α = [Z ], with Z ⊂ X ×k Y an integral closed subscheme of
codimension n supported on A×k Y . Denote by pX , pY the respective projections
from X ×k Y . It suffices to show for i ≥ 0, j + r > n, and b ∈ H i (X,Wm�

j ) that

p∗X (b)∪ cl[Z ] = 0 in H i+n
Z (X ×k Y,Wm�

j+n
X×kY ). (8-1)

Then α∗(b)= pY∗(p∗X (b)∪ cl[Z ]) will also vanish.
We first prove (8-1) for i = 0. Denote by η ∈ X ×k Y the generic point of Z .

Since Wm�
j+n
X×kY is Cohen–Macaulay, the natural map H n

Z (X ×k Y,Wm�
j+n
X×kY )→

H n
η (X ×k Y,Wm�

j+n
X×kY ) is injective. Set B = OX×kY,η and C = OX,pX (η); by

assumption we have dim C ≥ r . Since B is formally smooth over C we find
t1, . . . , tr ∈C and sr+1, . . . , sn ∈ B such that p∗X (t1), . . . , p∗X (tr ), sr+1, . . . , sn form
a regular sequence of parameters of B. Hence, by [Gros 1985, Chapitre II, §3.5]
(see also [Chatzistamatiou and Rülling 2012, Proposition 2.4.1]) and [Chatzista-
matiou and Rülling 2012, Lemma 3.1.5] and in the notation of [Chatzistamatiou
and Rülling 2012, §1.11.1] the image of p∗X (b) ∪ cl[Z ] = 1∗(p∗X (b) × cl[Z ])
in H n

η (X ×k Y,Wm�
j+n
X×kY ) is up to a sign given by[
p∗X (b · d[t1] · · · d[tr ]) · d[sr+1] · · · d[sn]

p∗X ([t1]), . . . , p∗X ([tr ]), [sr+1], . . . , [sn]

]
.

Hence, the vanishing follows from b · d[t1] · · · d[tr ] ∈Wm�
j+r
X = 0.

For the general case i ≥ 0, we first observe that the CM property of Wm�
j+n
X×kY

implies R0Z (Wm�
j+n
X×kY )

∼=Hn
Z (Wm�

j+n
X×kY )[−n]. Therefore,

H i+n
Z (X ×k Y,Wm�

j+n
X×kY )= H i (X × Y,Hn

Z (Wm�
j+n
X×kY )).

Let U be an open affine cover of X , and denote by U×k Y the open (not necessarily
affine) cover of X ×k Y . We can consider the Cech cohomology with respect to
U×k Y and obtain a natural map

Ȟ i (U×k Y,Hn
Z (Wm�

j+n
X×kY ))→ H i (X ×k Y,Hn

Z (Wm�
j+n
X×kY )). (8-2)

Since Ȟ i (U,Wm�
j
X )= H i (X,Wm�

j
X ) and pullback and cup product are compati-

ble with restriction to open subsets, we see that p∗X ( · )∪ cl[Z ] : H i (X,Wm�
j
X )→
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H i+n
Z (X ×k Y,Wm�

j+n
X×kY ) naturally factors via (8-2). Therefore, the case i ≥ 0

follows from the case i = 0. �

Theorem 8.2. Let k be a field of characteristic zero. Let X ⊂Pn+r
k be a very general

complete intersection of multidegree d1, d2, . . . , dr such that d ′ :=
∑r

i=1 di ≤ n+ r
and n ≥ 3. Let p be a prime and m ≥ 1, and suppose

di ≥ pm
·

⌈
n+ r + 1− d ′+ di

pm + 1

⌉
(8-3)

for some i . Furthermore, suppose that p is odd or n is even. Then pm
| Tor(n−2)(X).

Remark 8.3. Just as for Theorem 7.1, the same result holds for k a field of positive
characteristic, but only for p = char k.

Proof. The proof relies on Theorem 8.17, which we prove later in this section.
By Proposition 2.1, we need to find only one smooth complete intersection

X ⊂ Pn+r
k such that pm

| Tor(n−2)(X).
For a scheme X with locally free sheaf E and a section s : OX → E, we let V (s)

denote the closed subscheme of X defined by s.
We set d = di , a = d(n+ r + 1− d ′+ d)/(pm

+ 1)e, and c = d − pm
· a. Let

O=W (Fp) and K =Frac(O); we take r , f , g, l, and f2, . . . , fr suitably general (we
will make this precise) homogeneous polynomials in O[X0, . . . , Xn+r ] of degrees
d, d − c, a, 1, and d2, . . . , dr , respectively. We let X → Spec O be the closed
subscheme of the weighted projective space P= Proj O[X0, . . . , Xn+r , Y ], with the
X i having weight 1, and Y having weight a, defined by the homogeneous ideal

lc
· (Y pm

− f )+ p · r, g− p · Y, f2, . . . , fr . (8-4)

The generic fiber X := XK is isomorphic to the complete intersection of Pn+r
K

defined by lc
· (g pm

− p pm
· f )+ p pm

+1
· r, f2, . . . , fr . For r, f2, . . . , fr general, it

is smooth. By replacing O with its normalization in a suitable finite extension of K
and changing notation, we may assume that Tor(n−2)

K (X) is equal to the geometric
torsion order Tor(n−2)(X).

The special fiber Y := XFp
is Y = Y1+ c · Y2. Here, Y1 is the cyclic pm cover

Y1→W defined by f ∈ H 0(W,O(a)⊗pm
), with W ⊂Pn+r

Fp
the complete intersection

defined by g, f2, . . . , fr . We will take f, g, f2, . . . , fr general enough so that

(1) W is smooth,

(2) Y1 has nondegenerate singularities (see Section 8A), and

(3) the assumption (3) of Theorem 8.17 is satisfied for Y1.

For (2) we use Proposition 8.5 if d − c ≥ 3. If d − c = 2 and hence p = 2, then
we use Lemma 8.7. For (3) we use the theorem of Illusie [1990, Théorème 2.2]
about ordinarity of a general complete intersection. Let us check that all other
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assumptions of Theorem 8.17 are satisfied. Assumption (1) is evident, and (2) is
equivalent to (pm

+1) ·a−n−r−1+d ′−d ≥ 0, which follows immediately from
the definition of a. Assumption (4) is equivalent to i ·a+a−n−r−1+d ′−d < 0,
for all i = 0, . . . , pm

− 1, which follows from d ′ < n+ r + 1; (5) is obvious.
The variety Y2 is defined by l, g, f2, . . . , fr , and only exists if c 6= 0. We take l

general so that Y2 does not contain the singular points of Y1, W∩V (l) is smooth, and
the pm cyclic covering of W ∩ V (l) corresponding to f |W∩V (l) has nondegenerate
singularities.

Let r : Ỹ1 −→ Y1 be the resolution of singularities constructed in Proposition 8.8;
the map r : Ỹ1→ Y1 is totally CH0-trivial. By Proposition 4.3,

Tor(n−2)(X) ·1Ỹ1
= γ + Z + Z2,

where γ is a cycle with support in A×Fp
Ỹ1 with dim A ≤ n − 2, Z has support

in Ỹ1×Fp
D with D a divisor, and Z2 has support in (Y1 ∩ Y2)×Fp Ỹ1.

In view of Theorem 8.17, we have Z/pm
⊂ H 0(Ỹ1,Wm�n−1). By the work

[Chatzistamatiou and Rülling 2012] on Hodge–Witt cohomology, we have an
action of algebraic correspondences on H 0(Ỹ1,Wm�

n−1) (relying on the cycle
class of Gros [1985, Chapitre II, §3.4]; see [Chatzistamatiou and Rülling 2012,
Proposition 2.4.1]). Let us show that Z2 acts trivially. Note that T := Y1∩Y2 is the
pm cyclic covering of W ∩ V (l) corresponding to f |W∩V (l). An easy computation
shows H>0(Y1 ∩Y2,O)= 0; hence, H>0(T̃ ,O)= 0 by Lemma 8.9, where T̃ is the
resolution constructed in Proposition 8.8, and H>0(T̃ ,Wm(O)) = 0. By Ekedahl
duality [Ekedahl 1984, Chapter I, Theorem 4.1, Chapter II, Theorem 2.2, and
Chapter III, Proposition 2.4] (see [Chatzistamatiou and Rülling 2012, Theorems
1.10.1 and 1.10.3]), we get H<n−1(T̃ ,Wm�

n−1) = 0. Let Z̃2 be a lift of Z2

to T̃ ×Fp
Ỹ1. The action of Z2 factors as

H 0(Ỹ1,Wm�
n−1)→ H 0(T̃ ,Wm�

n−1)
Z̃2
−→ H 0(Ỹ1,Wm�

n−1),

the first map being the pullback for the map T̃ → Ỹ1; thus, it is zero.
Lemma 8.1 implies that the action of γ on H 0(Ỹ1,Wm�

n−1) vanishes. Therefore,

H 0(Ỹ1,Wm�
n−1)

Tor(n−2)(X)·
−−−−−−→ H 0(Ỹ1,Wm�

n−1)
restriction
−−−−−→ H 0(Ỹ1 \ D,Wm�

n−1)

is zero. Since the restriction map is injective, we get pm
| Tor(n−2)(X). �

Corollary 8.4. Let k be a field of characteristic zero. Let X ⊂ Pn+r
k be a very

general complete intersection of multidegree d1, . . . , dr with
∑

i di = n + r and
n ≥ 3. For each i , di | Tor(n−2)(X) if di is odd or if n is even.

8A. Let X be a smooth variety over an algebraically closed field k of characteristic p.
Suppose that n := dim X ≥ 2. Let L be a line bundle on X , and let s ∈ H 0(X, L⊗pm

).
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We denote by π : Y −→ X the pm cyclic covering corresponding to s. It is an
inseparable morphism and induces a homeomorphism on the underlying topological
spaces.

There is a tautological connection d : L⊗pm
−→ L⊗pm

⊗ �1
X which satisfies

d(t pm
)= 0 for all sections t ∈ L . In particular, we have d(s) ∈ H 0(X, L⊗pm

⊗�1
X ).

Note that Ysing = π
−1(V (d(s))).

We say that Y has nondegenerate singularities if the following conditions hold:

(1) Y has at most isolated singularities, or equivalently, dim(V (d(s))) = 0 or
V (d(s))=∅.

(2) For all x ∈ V (d(s)), length(OV (d(s)),x)≤ 1, if p is odd or p = 2 and n is even.
If p = 2 and n is odd, then we require length(OV (d(s)),x)≤ 2 and the blow-up
Blx Y of x has an exceptional divisor that is a cone over a smooth quadric.

Around a nondegenerate singularity of Y , we can find local coordinates x1, . . . , xn

of X such that Y is defined by

y pm
+ x2

1 + · · ·+ x2
n + f3 if p is odd, (8-5)

y pm
+ x1x2+ · · ·+ xn−1xn + f3 if p = 2 and n is even, (8-6)

y pm
+ x2

1 + x2x3+ · · ·+ xn−1xn + b · x3
1 + f3 if p = 2 and n is odd, (8-7)

where f3 ∈ (x1, . . . , xn)
3, b ∈ k×, and f3 has no x3

1 term in the last case.
An easy dimension counting argument yields the following proposition (cf.

[Kollár 1995, §18]).

Proposition 8.5. Let W ⊂ H 0(X, L⊗pm
) be such that for every closed point x ∈ X

the restriction map
W → OX,x/m4

x ⊗ L⊗pm

is surjective. For a general section s ∈W the corresponding pm cyclic covering has
nondegenerate singularities.

Remark 8.6. If p 6= 2 or dim X even, then the following surjectivity is sufficient
to conclude the assertion of the proposition:

W → OX,x/m3
x ⊗ L⊗pm

for every closed point x ∈ X .

In order to handle the case di = 2 = p, m = 1, and n + r + 1− d ′ + 2 ≤ 3 in
Theorem 8.2 we need the following lemma.

Lemma 8.7. For a general complete intersection X in Pn+r with n≥ 2 and multide-
gree d1, d2, . . . , dr such that d1 ≥ 2, and a general s ∈ H 0(Pn+r ,O(2)), the double
covering corresponding to s|X has nondegenerate singularities.
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Proof. Only the case p = 2 and n odd has to be proved. Consider the variety
A consisting of points (x, f1, . . . , fr , s) where x ∈ Pn+r , ( f1, . . . , fr , s) are ho-
mogeneous of degree d1, . . . , dr , 2, X = V ( f1)∩ · · · ∩ V ( fr ) is smooth at x , and
d(s)|X is vanishing at x . Those points for which the double covering corresponding
to s|X has nondegenerate singularities at x form an open set B. It is not difficult to
show that it is nonempty. Indeed, take x = [1 : 0 : 0 : · · · : 0], and (in coordinates
x1, . . . , xn+r around x) s = 1+ x2

1+ x2x3+· · ·+ xn−1xn+ x1xn+1, f1 = xn+1+ x2
1 ,

and fi = xn+i + terms of degree ≥ 2.
Let V ⊂ A be the open set consisting of points such that V ( f1)∩ · · · ∩ V ( fr ) is

smooth. Since B ∩ V 6=∅, we conclude that for a general complete intersection X
there is an open nonempty set U ⊂ X such that for any x ∈U the set{
s ∈ H 0(Pn+r ,O(2))

∣∣ d(s)|X (x)= 0 and s does not yield

a nondegenerate double covering at x
}

has codimension ≥ n+ 1. Counting dimensions yields the claim. �

The following proposition has been proved for the case m= 1 in [Colliot-Thélène
and Pirutka 2016a], and for the general case in [Okada 2016].

Proposition 8.8. Suppose Y has nondegenerate singularities. Then by successively
blowing up singular points, we can construct a resolution of singularities r : Ỹ → Y
such that the exceptional divisor is a normal crossings divisor (cf. [Kollár 1995]).
Over every singular point y ∈ Y the fiber r−1(y) is a chain of smooth irreducible
divisors, each component of which is either a projective space, a smooth quadric,
or a projective bundle over a smooth quadric. The intersection of two irreducible
components is a smooth quadric or is empty. In particular, since k is algebraically
closed, the morphism r is totally CH0 trivial.

Proof. We distinguish three cases:

(1) p is odd,

(2) p = 2, and n is even, and

(3) p = 2, and n is odd.

In any case we will only blow up singular points, and over any singular s there will
be at most one singular point appearing in the exceptional divisor of the blow-up of s.

We may assume that Y has only one singular point. In case (1), note that we
have a singularity of the form (8-5). We need (pm

− 1)/2+ 1 blow-ups:

Ỹ := Y(pm−1)/2+1→ Y(pm−1)/2→ · · · → Y1→ Y0 := Y.

Around the singularity of Yi , for 0≤ i < (pm
− 1)/2, Yi is defined by

y pm
−2·i
+ x ′21 + · · ·+ x ′2n + f ′3, (8-8)
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where x ′i = xi/yi and f ′3 ∈ yi
· (x ′1, . . . , x ′n)

3. Therefore, the exceptional divisor
of Yi+1→ Yi is the cone C defined by x ′21 + · · ·+ x ′2n in the projective space with
homogeneous variables y, x ′1, . . . , x ′n . For i = (pm

−1)/2, Yi is also given by (8-8)
around the vertex of the exceptional divisor; hence, pm

− 2i = 1 implies that it is
smooth and the exceptional divisor of Y(pm−1)/2+1→ Y(pm−1)/2 is Pn−1. Denoting
by Ẽi the strict transform in Ỹ of the exceptional divisor of Yi→ Yi−1, we conclude
that Ẽi is the blow-up of C in its vertex if i ≤ (pm

−1)/2, and Ẽ(pm−1)/2+1 =Pn−1.
Every Ẽi has only nonempty intersection with Ẽi+1 (if i ≤ (pm

− 1)/2) and Ẽi−1

(if i > 1); the intersection is the smooth quadric given by x ′21 + · · · + x ′2n in the
projective space with homogeneous variables x ′1, . . . , x ′n .

For case (2), this case is similar to (1). We need 2m−1 blow-ups to arrive at Ỹ .
Around the singularity of Yi , for 0≤ i < 2m−1, Yi is defined by

y2m
−2·i
+ x ′1x ′2+ · · ·+ x ′n−1x ′n + f ′3, (8-9)

and the exceptional divisor of Yi→Yi−1 is the cone C defined by x ′1x ′2+· · ·+x ′n−1x ′n
in the projective space P with homogeneous variables y, x ′1, . . . , x ′n . The ex-
ceptional divisor of Ỹ := Y2m−1 → Y2m−1−1 is the smooth quadric defined by
y2
+x ′1x ′2+· · ·+x ′n−1x ′n in P . Again, the intersection of Ẽi with Ẽi−1 is the smooth

quadric given by x ′1x ′2+ · · · + x ′n−1x ′n in the projective space with homogeneous
variables x ′1, . . . , x ′n .

For case (3), we need 2m blow-ups to arrive at Ỹ . The case m = 1 is easy to
check; we will assume m > 1. We start with Y and the singularity (8-7). After
2m−1

− 1 blow-ups the singularity is of the form

b · y2m−1
+2
+ x [1]1

2
+ x ′2x ′3+ · · ·+ x ′n−1x ′n + b · x [1]1 · y

2m−1
+1
+ h.o.t.,

where x ′i = xi/y2m−1
−1, x [1]1 = x ′1+y, and the higher order terms h.o.t. can be ignored.

After 2m−2 more blow-ups we introduce x [2]1 = x [1]1 /y2m−2
+
√

b · y, after 2m−3 more
blow-ups we introduce x [3]1 = x [2]1 /y2m−3

+

√√
b · b · y, etc. The singularity is after

2m−1
− 1+ 2m−2

+ 2m−3
+ · · ·+ 2m−i blow-ups of the form

bi · y2m−i
+2
+ x [i]1

2
+ x ′2x ′3+ · · ·+ x ′n−1x ′n + b · x [i]1 · y

2m−i
+1
+ h.o.t., (8-10)

where x ′i = xi/y−1+
∑i

j=1 2m− j
and bi = b ·

√
bi−1 with b1= b. After 2m

−2 blow-ups
we get a singularity (8-10) with i =m. After one more blow-up the variety becomes
smooth, and we need one more blow-up to obtain an exceptional divisor with strict
normal crossings.

The exceptional divisor Ei of Yi → Yi−1 is a cone defined by x [ j]1
2
+ x ′2x ′3 +

· · ·+x ′n−1x ′n in the projective space with homogeneous variables y, x [ j]1 , x ′2, . . . , x ′n ,
except for the last blow-up where it is a projective space. The strict transform Ẽi

is the blow-up of the vertex. �
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For p odd or n odd, we get a projective space as exceptional divisor in the last
step. Denoting by E the sum over all components of the exceptional divisor of r ,
we set

E ′ :=
{

E + (exc. div. from last step) if p is odd or n is odd,
E if p = 2 and n is even.

(8-11)

Thus, the exceptional divisor of the last blow-up (a projective space) has multiplicity
2 in E ′ in the first case. If the singularity is of the form (8-5), (8-6), or (8-7), then
E ′ is the restriction of div(y) to the exceptional divisor of the resolution r .

Lemma 8.9. The resolution r : Ỹ → Y is rational; that is, Rr∗OỸ = OY .

Proof. We may suppose that Y has only one singularity. We will show that for each
ri : Yi → Yi−1, we have Rri∗OYi = OYi−1 . Since Yi−1 is normal, it suffices to prove
R jri∗OYi =0 for j >0. We know that ri is the blow-up of a point and the exceptional
divisor D is a cone over a smooth quadric, a smooth quadric, or a projective space,
and comes with a given embedding into projective space; we call the corresponding
ample line bundle OD(1). In any case, H>0(D,O(−s · D)) ∼= H>0(D,O(s)) = 0
for all s ≥ 0, where OD(s)= OD(1)⊗s . This implies the claim. �

Lemma 8.10. Let E ′ be as defined in (8-11). For all i ≥ 2 we have

H i (E ′,O(E ′))= 0.

Proof. We may suppose that Y has only one singular point. The exceptional divisor
is
∑s

i=1 Ẽi , and Ẽi has nonempty intersection only with Ẽi+1 and Ẽi−1. Recall
that all intersections are smooth quadrics. If i 6= s, then Ẽi is the blow-up at the
vertex of a cone Ci ⊂Pn over a smooth quadric Qi ⊂Pn−1; let ri : Ẽi→Ci denote
the blow-up.

For i = 1, . . . , s− 2, we have OẼi
(Ẽi + Ẽi+1)∼= r∗i OCi (−1), hence

OẼi∩Ẽi+1
(E ′)∼= OẼi∩Ẽi+1

. (8-12)

For i = 2, . . . , s− 2, we obtain OẼi
(E ′)∼= OẼi

.
If p or n is odd, then

OẼs−1
(Ẽs−1+ 2 · Ẽs)∼= r∗s−1OCs−1(−1);

hence OẼs−1
(E ′) ∼= OẼs−1

, and OẼs
(Ẽs−1 + 2 · Ẽs) ∼= OPn−1 ; thus (8-12) holds for

i = s − 1. If p and n are even, then OẼs−1
(Ẽs−1 + Ẽs) ∼= r∗s−1OCs−1(−1), hence

OẼs−1
(E ′)∼= OẼs−1

. Moreover, OẼs
(E ′)∼= OẼs

. This implies the assertion easily. �

8B. Again, we assume that Y has nondegenerate singularities. We denote by U ⊂ X
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the complement of the critical points, Ysm = π
−1(U ); we have

Wl(π)
∗Wl�

1
U/k→Wl�

1
Ysm/k,

but there is no Verschiebung on Wl(π)
∗Wl�

1
U/k . Therefore, we define

ImV (Wl�
1
U/k)⊂Wl�

1
Ysm/k

inductively on l by

ImV (Wl�
1
U/k)= image(Wl(π)

∗Wl�
1
U/k→Wl�

1
Ysm/k)+ V (ImV (Wl−1�

1
U/k)).

We have an R, V, F calculus for ImV (Wl�
1
U/k), that is, morphisms

R : ImV (Wl�
1
U/k)→ ImV (Wl−1�

1
U/k),

V : ImV (Wl−1�
1
U/k)→ ImV (Wl�

1
U/k),

F : ImV (Wl�
1
U/k)→ ImV (Wl−1�

1
U/k)

satisfying the relations induced by W∗�1
Ysm/k [Illusie 1979, p. 541]. By abuse of

notation, any composition of maps R will be also denoted by R.
We are going to need several statements on ImV (Wl�

1
U/k) in Theorem 8.17

which we provide in the following:

Lemma 8.11. The evident map

ker(R :Wl(π)
∗Wl�

1
U/k→ π∗�1

U )

→ ker(R : ImV (Wl�
1
U/k)→ ImV (W1�

1
U/k))/V (ImV (Wl−1�

1
U/k)) (8-13)

is surjective if l ≤ m.

Proof. The target is the image of R−1(ker(π∗�1
U →�1

Ysm
))⊂Wl(π)

∗Wl�
1
U/k via

the evident map Wl(π)
∗Wl�

1
U/k→ ImV (Wl�

1
U/k)/V (ImV (Wl−1�

1
U/k)). Locally,

Ysm is defined by y pm
− f , for f ∈ OU , and ker(π∗�1

U → �1
Ysm
) is generated

by d( f ). Since d([ f ]) ∈Wl(π)
∗Wl�

1
U/k is a lifting of d( f ) whose image vanishes

in ImV (Wl�
1
U/k) (here we use l ≤ m), the claim follows. �

Recall the subsheaves Bn�
1
U/k of �1

U/k , n = 1, 2, . . . (see for example [Illusie
1979, Chapitre I, §2.2]). We have a short exact sequence

Wl−1�
1
U/k

V
−→ ker(R :Wl�

1
U/k→�1

U )
F l−1

−−→ Bl−1�
1
U → 0.

With the appropriate Wl(OU )-module structures this becomes a short exact sequence
of Wl(OU )-modules. We obtain the diagram
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Wl(π)
∗ ker(R :Wl�

1
U/k→�1

U )/Wl(π)
∗(V )(Wl(π)

∗Wl−1�
1
U/k)

∼=
//

surjective by Lemma 8.11
����

π∗Bl−1�
1
U

ker(R : ImV (Wl�
1
U/k)→ ImV (W1�

1
U/k))/V (ImV (Wl−1�

1
U/k))

(∗)

��

ker(R :Wl�
1
Ysm/k→�1

Ysm
)/V (Wl−1�

1
Ysm/k)

∼=
// Bl−1�

1
Ysm

(8-14)

The induced map
π∗Bl−1�

1
U → Bl−1�

1
Ysm

(8-15)

is the natural one, that is, given by a⊗π−1(ω) 7→ Frobl−1(a) ·π−1(ω). We would
like to show that (∗) is injective, which we prove by computing the kernel of (8-15)
and showing that it is killed in ImV (Wl�

1
U/k).

It is convenient to use the isomorphism [Illusie 1979, Chapitre I, (3.11.4)]

F l−2d :Wl−1(OU )/F(Wl−1(OU ))
∼=
−→ Bl−1�

1
U . (8-16)

The Wl(OU )-module structure on the left is via the Frobenius F : Wl(OU ) →

Wl−1(OU ). We give Wl−1(OYsm)/F(Wl−1(OYsm)) the analogous Wl(OYsm)-module
structure.

Lemma 8.12. Suppose Ysm is defined by y pm
− f for f ∈ OU (this is the local

picture). The kernel of

Wl(π)
∗(Wl−1(OU )/F(Wl−1(OU )))→Wl−1(OYsm)/F(Wl−1(OYsm))

is generated by V (Wl−1(OYsm))⊗Wl(π)
−1(Wl−1(OU )), and elements of the form

[yi
]⊗π−1(V j (b))− [yi%pm−1− j

]⊗π−1(V j ([ f (i :p
m−1− j )

] · b)), (8-17)

for all 0≤ j ≤ l−2, i ≥ pm−1− j , and b ∈Wl−1− j (OU ). Here, i%pm−1− j means the
remainder of i in the division by pm−1− j , and i= (i : pm−1− j )·pm−1− j

+i%pm−1− j .

Proof. The kernel contains V (Wl−1(OYsm))⊗Wl(π)
−1(Wl−1(OU )), because V (a)⊗

π−1(b) maps to F(V (a)) ·π−1(b)= pa ·π−1(b)= F(V (a ·π−1(b))). Moreover,

[yi
]⊗π−1(V j (b))− [yi%pm−1− j

]⊗π−1(V j ([ f (i :p
m−1− j )

] · b))

7→ [y pi
] · V j (b)− [y(i%pm−1− j )·p

] · V j ([ f (i :p
m−1− j )

] · b)

= V j (([y p1+ j
·i
] − [y(i%pm−1− j )·p1+ j

· f (i :p
m−1− j )

]) · b)= 0.

To show that these are all elements in the kernel, we proceed by induction
on l. First, we assume l = 2. Without loss of generality, we need only con-
sider elements in the kernel that are of the form

∑
i [y

i
] ⊗ π−1(bi ). By étale
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base-change, we may assume that U = Spec(k[x1, . . . , xn]) and x1 = f ; hence,
Ysm = Spec(k[y, x2, . . . , xn]). By using elements of the form (8-17), we may
suppose that bi = bi (x2, . . . , xn). Since

∑
i yi pbi ∈ k[y p, x p

2 , . . . , x p
n ] implies

bi ∈ k[x p
2 , . . . , x p

n ], we are done.
Suppose now that l > 2. By induction, we need only consider elements in the

kernel that are of the form ∑
i

[yi
]⊗π−1(V l−2(bi )),

and we may use the same argument as for the l = 2 case. �

Proposition 8.13. Suppose l ≤ m. The map

ker(R : ImV (Wl�
1
U/k)→ ImV (W1�

1
U/k))/V (ImV (Wl−1�

1
U/k))

→ ker(R :Wl�
1
Ysm/k→�1

Ysm
)/V (Wl−1�

1
Ysm/k)

is injective.

Proof. In view of diagram (8-14) and Lemma 8.12, we need to prove that the
following elements vanish in ImV (Wl�

1
U/k)/V (ImV (Wl−1�

1
U/k)):

(1) V (a) · dV (b) for a ∈Wl(OYsm) and b ∈Wl−1(OU ) and

(2) [yi
] · dV j+1(b)− [yi%pm−1− j

] · dV j+1([ f (i :p
m−1− j )

] · b) for b ∈Wl−1− j (OU ).

For (1), we have

V (a) · dV (b)= V (a · d(b)) ∈ V (ImV (Wl−1�
1
U/k)).

For (2), we compute

[yi
] · dV j+1(b)= d([yi

] · V j+1(b))− V j+1(b) · d([yi
])

= dV j+1([yi ·p1+ j
] · b)− V j+1(b) · d([yi

])

= dV j+1([y(i%pm−1− j )·p1+ j
] · [ f (i :p

m−1− j )
] · b)− V j+1(b) · d([yi

])

= d([yi%pm−1− j
] · V j+1([ f (i :p

m−1− j )
] · b))− V j+1(b) · d([yi

])

= V j+1([ f (i :p
m−1− j )

] · b) · d([yi%pm−1− j
])

+ [yi%pm−1− j
] · dV j+1([ f (i :p

m−1− j )
] · b)− V j+1(b) · d([yi

]),

which together with

V j+1([ f (i :p
m−1− j )

] · b) · d([yi%pm−1− j
])− V j+1(b) · d([yi

])

= V j+1(b · ([ f (i :p
m−1− j )

] · F j+1(d([yi%pm−1− j
]))− F j+1(d([yi

]))))

= V j+1(b · F j+1(d([y(i :p
m−1− j )·pm−1− j

][yi%pm−1− j
] − [yi

])))= 0

(note that F j+1(d([y(i :p
m−1− j )·pm−1− j

]))= 0) implies the claim. �
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8C. We denote by  : r−1(Ysm)→ Ỹ the open immersion. We will work with the
logarithmic de Rham–Witt complex

Wl�
1
Ỹ/k
(log E)⊂ ∗Wl�

1
Ysm/k .

Locally, when E =
⋃r

i=1 V ( fi ) with V ( fi ) smooth, Wl�
1
Ỹ/k
(log E) is generated

as a Wl(OỸ ) submodule of ∗Wl�
1
Ysm/k by Wl�

1
Ỹ/k

and 〈d[ fi ]/[ fi ] | i = 1, . . . , r〉.
As for the de Rham complex there is an exact sequence

0→Wl�
1
Ỹ/k
→Wl�

1
Ỹ/k
(log E)→

r⊕
i=0

Wl(OV ( fi ))→ 0. (8-18)

We have the usual F, V, R calculus for W∗�1
Ỹ/k
(log E).

We define

Kl := ∗ ImV (Wl�
1
U/k)∩Wl�

1
Ỹ/k
(log E)⊂ ∗Wl�

1
Ysm/k .

We have an F, V, R calculus for K∗ induced by the one for ImV (W∗�1
U/k) and

W∗�1
Ỹ/k
(log E). We set Q∗ :=W∗�1

Ỹ/k
(log E)/K∗.

Lemma 8.14. Suppose that p 6= 2 or n is even. Then, for all l ≥ 1, the following
map is surjective:

R : Kl→ K1.

Proof. The first case is p 6= 2. We need to compute K1. We may assume that Y has
only one singularity as in the proof of Proposition 8.8. Recall that Ỹ is constructed
as a sequence of blow-ups · · ·→ Yi→ Yi−1→· · ·→ Y . We denote by ri : Yi→ Y
the evident composition; we let Di be the exceptional divisor of ri , and Ei denotes
the exceptional divisor of Yi → Yi−1. We would like to understand

Yi\Di ,∗(image(r∗i π
∗�1

X |Yi\Di →�1
Yi\Di

))∩�1
Yi,sm

(log Di |Yi,sm), (8-19)

in a neighborhood of Ei ∩Yi,sm, where Yi,sm is the smooth locus of Yi , and Yi\Di :

Yi \ Di → Yi,sm is the open immersion.
As in the proof of Proposition 8.8, we have coordinates y, x ′1, . . . , x ′n around

the singular point of Yi−1, where x ′j = x j/yi−1. We can cover Ei by n+ 1 open
sets V0, V1, . . . , Vn , where V0 is a hypersurface in the affine space with coordinates
y, x ′1/y, . . . , x ′n/y, and V j is a hypersurface in the affine space with coordinates
y/x ′j , x ′1/x ′j , . . . , x ′j , . . . , x ′n/x ′j , for j = 1, . . . , n. On V0 we have Ei ∩ V0 =

Di ∩ V0 = V (y). Note that if i = (pm
− 1)/2+ 1, which is the last blow-up, then

Ei ∩ V0 is empty.
On V j we have Ei ∩ V j = V (x ′j ) and Di ∩ V j = V (y) if j = 1, . . . , n and

i /∈ {1, (pm
− 1)/2+ 1}, that is, except for the first and the last blow-ups. For the

first blow-up (i = 1), we have Ei ∩ V j = Di ∩ V j = V (x ′j ). For the last blow-up
(i = (pm

− 1)/2+ 1), we have Ei ∩ V j = V (x ′j ) and Di ∩ V j = V (y/x ′j ).
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We claim that the restriction of (8-19) to V0 is generated by dx1/yi , . . . , dxn/yi ,
and the restriction of (8-19) to V j is generated by dx1/x j , . . . , dx j/x j , . . . , dxn/x j .
It is obvious that all differential forms are contained in the left-hand side of (8-19),
and we need to show that they are contained in�1

Yi,sm
(log Di |Yi,sm). Indeed, dx j/yi

=

d(x ′j/y · yi )/yi
= d(x ′j/y)+ i · (x ′j/y) · (dy/y), and

dxk

x j
=d

(
xk

x j

)
+

xk

x j
·
dx j

x j
=d

(
x ′k
x ′j

)
+

x ′k
x ′j
·
dx j

x j
=d

(
x ′k
x ′j

)
+

x ′k
x ′j
·

(dx ′j
x ′j
+(i−1)·

dy
y

)
.

In order to show that the given differential forms are generators, we note that the
quotient of �1

Yi,sm
(log Di |Yi,sm) ∩ V j by the module generated by these forms is

a quotient of a free rank = 1 module. Since the quotient of �1
Ysm

by the image
of π∗(�1

U ) is free of rank 1, the claim follows.
The case p = 2 and n even can be proved in the same way.
In order to prove that Kl→ K1 is surjective, we may argue by induction on i and

only consider a neighborhood of Ei ∩ Yi,sm in Yi,sm. We note that dx j/yi can be
lifted by d[x j ]/[yi

] ∈ Kl(V0), and dxk/x j can be lifted by d[xk]/[x j ] ∈ Kl(V j ). �

Remark 8.15. We do not know whether Lemma 8.14 holds if p = 2 and n is
odd. We can still describe K1, but the coordinate changes x [1]1 , x [2]1 , . . . used in the
resolution process are incompatible with the multiplicative Teichmüller map and
evident liftings do not exist.

8D. Let us assume that p 6= 2 or n is even. In view of the lemma, the map

ker
(
W∗�1

Ỹ/k
(log E)

R
−→W1�

1
Ỹ/k
(log E)

)
→ ker(Q∗

R
−→ Q1) (8-20)

is surjective.
As a consequence of Proposition 8.13 we obtain the following corollary.

Corollary 8.16. For all l ≤ m, the composition

OỸ /O
pl−1

Ỹ

dV l−2,∼=
−−−−→ ker(V :Wl−1�

1
Ỹ/k
→Wl�

1
Ỹ/k
)

→ ker
(
V :Wl−1�

1
Ỹ/k
(log E)→Wl�

1
Ỹ/k
(log E)

)
→ ker(V : Ql−1→ Ql)

is surjective on the open set Ysm.

Proof. The first isomorphism follows from [Illusie 1979, Chapitre I, Proposition
3.11]. The second arrow is an isomorphism on Ysm. Set

Al := ker(R : ImV (Wl�
1
U/k)→ ImV (W1�

1
U/k)),

Bl := ker(R :Wl�
1
Ysm/k→�1

Ysm
),

Cl := ker(R : Ql|Ysm → Q1|Ysm).



Torsion orders of complete intersections 1829

In view of (8-20) we have a morphism of exact sequences

0 // ImV (Wl−1�
1
U/k)

//

V
��

Wl−1�
1
Ysm/k

//

V
��

Ql−1|Ysm
//

V
��

0

0 // Al // Bl // Cl // 0

and the snake lemma and Proposition 8.13 imply the assertion. �

Theorem 8.17. Let X be a smooth projective variety of dimension n over an alge-
braically closed field of characteristic p. Suppose that p is odd or n is even. Let L
be a line bundle on X , and let s ∈ H 0(X, L⊗pm

) for m ≥ 1. Suppose that the pm

cyclic covering π : Y→ X corresponding to s has only nondegenerate singularities;
let r : Ỹ → Y be the resolution from Proposition 8.8. Suppose that

(1) n ≥ 3,

(2) H 0(X, L⊗pm
⊗ K X ) 6= 0,

(3) the Frobenius acts bijectively on H n−1(V (s),O),

(4) H n(X, L⊗− j )= 0 for all j = 0, . . . , pm
− 1, and

(5) H n−1(X, L⊗− j )= 0 for all j = 0, . . . , pm .

Then Wm(k)⊂ H 0(Ỹ ,Wm�
n−1).

Proof. We have
coker(π∗(�1

U )→�1
Ysm
)= π∗(L−1),

and this identity extends to

Q1 = r∗π∗(L−1)(E ′)

on Ỹ , with E ′ as defined in (8-11). If the singularity of Y is of the form (8-5), (8-6),
or (8-7), then Q1 is generated by dy/y.

In view of Lemmas 8.9 and 8.10, and conditions (2), (4), and (5), we obtain

H n−1(Ỹ , Q1)= 0, H n(Ỹ , Q1)∼= H n(X, L⊗−pm
) 6= 0. (8-21)

We will work with the short exact sequences

0→ ker(R : Ql→ Q1)→ Ql→ Q1→ 0, (8-22)

Ql−1
V
−→ ker(R : Ql→ Q1)→ Tl→ 0, (8-23)

where Tl is simply defined to be the cokernel. We claim

H n−1(Ỹ , Tl)= 0= H n(Ỹ , Tl) (8-24)
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for all l ≤ m. The surjectivity of (8-20) yields the surjectivity of the composition

ker
(
Wl�

1
Ỹ/k
(log E)

R
−→�1

Ỹ
(log E)

)
/V Wl−1�

1
Ỹ/k
(log E)

F l−1

−−→
∼=

Bl−1�
1
Ỹ
→ Tl (8-25)

[Illusie 1979, p. 575]. Note that

ker(Wl�
1
Ỹ/k

R
−→�1

Ỹ
)/V Wl−1�

1
Ỹ/k

∼=
−→ ker

(
Wl�

1
Ỹ/k
(log E)

R
−→�1

Ỹ
(log E)

)
/V Wl−1�

1
Ỹ/k
(log E)

is an isomorphism.
Now we need to find a complex of Wl(OỸ )-modules

R1→ R0→ ker(Bl−1�
1
Ỹ
→ Tl),

such that the following conditions hold:

• R0|Ysm → ker(Bl−1�
1
Ỹ
→ Tl)|Ysm is surjective and

• H n(Ỹ , R1)→ H n(Ỹ , R0) is surjective.

It will follow that H n(Ỹ , Tl)= 0= H n−1(Ỹ , Tl). Indeed, we have

H n(Ỹ , Bl−1�
1
Ỹ
)= 0= H n−1(Ỹ , Bl−1�

1
Ỹ
)

by induction on l, and using the exact sequence (8-26). The case l = 2 follows from
assumptions (4) and (5), Lemma 8.9, and the short exact sequence (8-27).

We take

R0,l := r∗π∗Bl−1�
1
X , R1,l = ker(R0,l→ Bl−1�

1
Ỹ
).

Clearly, the image of r∗π∗Bl−1�
1
X is contained in ker(Bl−1�

1
Ỹ
→ Tl). The surjec-

tivity of R0|Ysm → ker(Bl−1�
1
Ỹ
→ Tl)|Ysm follows from Lemma 8.11 and diagram

(8-14).
We claim that H n(Ỹ , R1,l)→ H n(Ỹ , R0,l) is surjective. We will proceed by

induction on l. We have an exact sequence of locally free OX -modules

0→ Frobl−2
∗

B1�
1
X → Bl−1�

1
X

C
−→ Bl−2�

1
X → 0, (8-26)

where C is the Cartier operator. Therefore,

0→ r∗π∗Frobl−2
∗

B1�
1
X → R0,l

C
−→ R0,l−1→ 0

is exact. Lemma 8.12 shows that R1,l|Ysm

C
−→ R1,l−1|Ysm is surjective; note that

under the isomorphism F l−2d from (8-16) the Cartier operator corresponds to the
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restriction. By induction we need to prove that the image of

H n(Ỹ , r∗π∗Frobl−2
∗

B1�
1
X )→ H n(Ỹ , R0,l)

is contained in the image of H n(Ỹ , R1,l). Rationality of the resolution r implies

H n(Ỹ , r∗π∗Frobl−2
∗

B1�
1
X )= H n(Y, π∗Frobl−2

∗
B1�

1
X )

= H n(X,Frobl−2
∗
(B1�

1
X )⊗OX π∗OY ).

In view of the exact sequence

0→ OX
Frob
−−→ Frob∗OX → B1�

1
X → 0, (8-27)

we obtain a surjective map

H n
(

X,
pm
−1⊕

i=pm−l+1

L−i ·pl−1
)
→ H n(Ỹ , r∗π∗Frobl−2

∗
B1�

1
X ),

because

Frobl−1
∗

OX ⊗OX π∗OY =

pm
−1⊕

i=0

Frobl−1
∗
(Frobl−1,∗L−i ).

For every pm > i ≥ pm−l+1, we have two morphisms Frobl−1
∗
(Frobl−1,∗(L−i ))→

Frobl−1
∗
(Frobl−1,∗(π∗OY )); the first one is induced by Frobl−1

∗
Frobl−1,∗ applied to

L−i
⊂ π∗OY . The second one is induced by Frobl−1

∗
applied to

Frobl−1,∗(L−i )= L−i ·pl−1 s(i :p
m+1−l )

−−−−−→ L−(i%pm+1−l )·pl−1

= Frobl−1,∗(L−(i%pm+1−l ))

→ Frobl−1,∗(π∗OY ),

where the last arrow comes from L−(i%pm+1−l )
⊂ π∗OY . Note that after application

of H n(X, · ) this map vanishes, because it factors over

H n(X, L−(i%pm+1−l )·pl−1
)= 0.

Subtracting the two maps yields a morphism

r∗π∗Frobl−1
∗
(Frobl−1,∗(L−i ))→ (R1,l ∩ r∗π∗Frobl−2

∗
B1�

1
X )

which shows that the H n(X, L−i ·pl−1
) piece of H n(Ỹ , r∗π∗Frobl−2

∗
B1�

1
X ) is con-

tained in the image of H n(Ỹ , R1,l). This proves claim (8-24).
In view of the short exact sequences (8-22) and (8-23), Corollary 8.16, vanishing

of H n(Ỹ ,OỸ /O
pl−1

Ỹ
), and (8-24), we obtain, for all l ≤ m, a short exact sequence

0→ H n(Ỹ , Ql−1)
V
−→ H n(Ỹ , Ql)

R
−→ H n(Ỹ , Q1)→ 0. (8-28)
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This enables us to define

ψl−1 : H n(Ỹ , Q1)→ H n(Ỹ , Q1), a 7→ F l−1(R−1(a)).

It is evident that ψl−1 = ψ
l−1
1 . In view of (8-21) we have

H n(Ỹ , Q1)∼= H n(X, L−pm
).

Via this identification, the map ψ1 is given by

H n(X, L−pm
)→ H n(X, L−pm+1

)
·s p−1

−−→ H n(X, L−pm
),

where the first arrow is induced by the p-th power map L−pm
→ L−pm+1

, a 7→ a p.
Indeed, denoting by ı : L−pm

→ π∗r∗Q1 the evident map, we have a commutative
diagram

L−pm ( · )p
//

ı

��

L−pm+1 s p−1
// L−pm

ı
��

π∗r∗Q1
π∗r∗(F◦R−1)

// π∗r∗

(
Q1

image(B1�
1
Ỹ
)

)
π∗r∗Q1

image(π∗r∗B1�
1
Ỹ
)

oo

Moreover, ψ1 equals the composition

H n(Ỹ , Q1)
=
−→ H n(X, π∗r∗Q1)

π∗r∗(F◦R−1)
−−−−−−−→ H n(X, π∗r∗(Q1/ image(B1�

1
Ỹ
)))

→ H n(Ỹ , Q1/ image(B1�
1
Ỹ
))
∼=
−→ H n(Ỹ , Q1),

where the last morphism is the inverse of H n(Ỹ , Q1)
η
−→ H n(Ỹ , Q1/ image(B1�

1
Ỹ
)),

which is injective because H n(Ỹ , Q1)
V
−→ H n(Ỹ , Q2) factors through η.

In the notation of [Chatzistamatiou 2012, Definition 1.3.1], we therefore get

H n
c (X \ V (s),O)s ∼=

⋂
i≥1

image(ψ i
1).

Since H n−1(X,OX )= 0= H n(X,OX ), [Chatzistamatiou 2012, §1.4] implies

H n
c (X \ V (s),O)s ∼= H n−1(V (s),O)s =

⋂
i≥1

image(Frobi ).

By using assumption (3), we obtain

H n(Ỹ , Ql)∼=

h⊕
i=1

W (k)/pl, (8-29)

where h = dimk H n(X, L−pm
). Indeed, since the Frobenius acts bijectively on

H n−1(V (s),O)∼= H n(X, L−pm
), ψ1 is bijective on H n(Ỹ , Q1). In view of (8-28),
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any lifting of a basis of H n(Ỹ , Q1) via the map R : H n(Ỹ , Ql)→ H n(Ỹ , Q1) will
be a W (k)/pl-basis of H n(Ỹ , Ql).

Finally, let us show that Wl(k)⊂ H 0(Ỹ ,Wl�
n−1
Ỹ
). In view of (8-29), there is a

surjective morphism of W (k)-modules

H n(Ỹ ,Wl�
1
Ỹ/k
(log E))→W (k)/pl

=Wl(k).

From the residue short exact sequence (8-18) we obtain a surjective map

H n(Ỹ ,Wl�
1
Ỹ/k
)→Wl(k).

Ekedahl duality [1984] implies

R0(Wl�
n−1
Ỹ
)
∼=
−→ R HomWl (k)(R0(Wl�

1
Ỹ
),Wl(k)[−n]),

hence the claim. �

Remark 8.18. Even for the case m = 1 the approach is dual to the one in [Kollár
1995]. With the notation in the proof of Theorem 8.17, we show that the composition

H n(Ỹ , �1
Ỹ
)→ H n(Ỹ , Q1)

∼=
−→ H n(X, L⊗−pm

)

is surjective. For the last isomorphism we use n ≥ 3, because we need to use
Lemma 8.10, where vanishing holds for i > 1 only. Since we don’t use Lemma 8.14
for this part, the argument also works for p = 2 and n odd. Taking duals we obtain
an inclusion

H 0(X, ωX ⊗ L⊗pm
)⊂ H 0(Ỹ , �n−1

Ỹ
).

This corresponds to a result about extending (n−1)-forms from Ysm to Ỹ in [Kollár
1995] (and [Colliot-Thélène and Pirutka 2016a; Okada 2016]).
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Integral canonical models for automorphic
vector bundles of abelian type

Tom Lovering

We define and construct integral canonical models for automorphic vector bundles
over Shimura varieties of abelian type.

More precisely, we first build on Kisin’s work to construct integral canonical
models over OE [1/N ] for Shimura varieties of abelian type with hyperspecial
level at all primes not dividing N compatible with Kisin’s construction. We
then define a notion of an integral canonical model for the standard principal
bundles lying over Shimura varieties and proceed to construct them in the abelian
type case. With these in hand, one immediately also gets integral models for
automorphic vector bundles.
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1. Introduction

Since the introduction of the abstract theory of Shimura varieties and their canonical
models by Deligne [1971; 1979] following Shimura, and given its promise as a
rich generalisation of the classical theory of modular curves, substantial bodies of
literature have arisen whose aim is to extend features of the classical theory to this
wider context.

One such feature is the existence of smooth integral models at primes not dividing
the level, and their subsequent utility for studying the action of Frobenius on the
Galois representations arising from Shimura varieties crucial for the Langlands
programme. Such results have been available in the PEL type case for a long time,
thanks largely to the programme of Kottwitz, but have recently been extended to
the much more general case of abelian type Shimura varieties in work culminating
with the recent papers of Kisin [2010; 2017].

Another feature is the manifestation of certain automorphic forms as algebraic
sections of a vector bundle over a Shimura variety, generalising the classical alge-
braic description of modular forms. The vector bundles playing the role analogous
to the tensor powers of the Hodge bundle in the theory of modular forms are the
automorphic vector bundles, and canonical models were defined and shown to exist
in some cases by Harris [1985] and more generally by Milne [1988; 1990].

In the present paper we start to draw these two threads of the literature together,
working in the case of general1 abelian type Shimura varieties, first filling a gap in
the existing literature and showing that Kisin’s good integral models can be spread
out to smooth models over OE [1/N ], then defining a notion of integral canonical
models for automorphic vector bundles with a uniqueness property, and finally
proving existence in the abelian type case.

More precisely, suppose (G,X) is a Shimura datum, with reflex field E =
E(G,X), N >1 and suppose G admits a reductive2 model G/Z[1/N ]. Take an open
compact K = K N KN ⊂G(A∞) where K N

=
∏

p -N G(Zp) and KN ⊂
∏

p|N G(Qp)

is open compact. Consider the tower

ShK N (G,X) := lim
←−−
KN

ShK N KN (G,X)

of quasiprojective E-schemes, which comes equipped with an algebraic
∏

p|N G(Qp)

action (in fact it carries the action of a slightly larger group as in [Deligne 1979]).
The main result of Kisin’s first integral models paper [2010] tells us that when
(G,X) is of abelian type this tower admits, for every v -N , a smooth integral model

1We do require a small technical restriction: that Z(G)◦ is split by a CM field, but feel it should
be possible to remove this restriction, and that it ought to be harmless for most applications.

2Recall that a (connected) reductive group scheme G→ S is a smooth affine group scheme with
connected reductive geometric fibres.
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SKis,v
K N /OE,v to which the

∏
p|N G(Qp)-action extends. Note that by a “smooth”

model, we mean one which is smooth quasiprojective at any finite level and for
which the maps between different finite levels are finite étale.

It is natural to ask whether these all come from a global model over OE [1/N ].
Moreover, Kisin’s models also enjoy an “extension property” which characterises
them uniquely, so it is natural to ask if furthermore we can find a global model
having this extension property. Our first theorem answers this in the affirmative.

Theorem. With the above setup, suppose (G,X) is of abelian type. Then the tower
ShK N (G,X) admits a smooth integral model SK N (G,X)/OE [1/N ] to which the∏

p|N G(Qp)-action extends and having the extension property.
Moreover, for any v -N a place of E , the model SK N (G,X)⊗OE [1/N ] OE,v is

canonically identified3 with the model SKis,v
K N obtained from Kisin’s theory.

We call these models “integral canonical models” because the extension property
guarantees their uniqueness.

We make some remarks about the proof. The obvious direct “patching” argument
to obtain the result formally from Kisin’s models fails because one cannot auto-
matically get the extension property for the models obtained by spreading out, so
instead we give a direct construction. The proof in the Hodge type case very closely
follows that of [Kisin 2010]. In the abelian type case we need several new ideas.

Firstly, we have no guarantee that
∏

p|N G(Qp) acts transitively on the com-
ponents of ShK N (G,X) so we replace the group theoretic “Deligne-induction”
argument by an argument that uses the extension property to reduce the problem to
constructing models for each component individually over the ring of integers of
the maximal abelian unramified extension of E . Secondly, to prove the analogue of
[Kisin 2010, 3.4.6] without the lemma which follows it, which may not be true in
our context, we show that Kisin’s “twisting abelian varieties” construction can be
carried out using torsors for the centre of Gder rather than G, and since such torsors
are finite, they are simpler to work with. Finally, we believe in fact that unless
Gder
=Gad, the group 1(G,Gad) [ibid.] is not finite, which is necessary to descend

the extension property. Fortunately we are able to prove that the corresponding
group at level K N (our situation) is finite, which perhaps also helps to fill a small
gap in the original argument.

We then turn to automorphic vector bundles, and following [Milne 1990, III],
the heart of the matter is really to define and construct integral canonical models
for the standard principal bundles PK N (G,X)→ ShK N (G,X). Such bundles are
torsors for the quotient

Gc
= G/Znc

3This identification is as an OE,v-scheme with
∏

p|N G(Qp)-action and equivariant identification
ι of its generic fibre with ShK N (G,X).
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by the maximal subtorus Znc ⊂ Z(G)◦ which is R-split but Q-anisotropic. They
come equipped with a flat connection ∇, an equivariant

∏
p|N G(Qp)-action and a

“filtration” which can be written down by giving a map

γ : PK N (G,X)→ Grµ

where Grµ is the flag variety corresponding to a Hodge cocharacter µ : Gm→ G
coming from X. Informally, it is helpful to think of the fibre functors ω attached
to these bundles as giving one the sheaf of de Rham cohomology of a family of
motives over ShK N with its Gauss–Manin connection and Hodge filtration.

Any smooth integral model for PK N (G,X) that is a Gc-torsor would give, for
each representation ρ : Gc

→ GL(VZ[1/N ]), a Z[1/N ] lattice inside ω(V ⊗Q). We
define an integral canonical model to be one where at “crystalline points” this lattice
coincides with a different lattice constructed using Kisin’s theory of S-modules
[2006]. Roughly speaking, working on the generic fibre one has a Galois cover
ShK N p(G,X)→ ShK N (G,X) with Galois group Gc(Zp) so we obtain attached to
ρ a lisse Zp-sheaf

L := ShK N p(G,X)× VZp/G
c(Zp)

on ShK N (G,X). Restricting this to a crystalline point s, the theory of S-modules
gives a lattice D(s∗L)⊂ DdR(s∗L[1/p]). Thus we have defined lattices (at each
prime) inside ω(V ⊗Q), and we say a model

(PK N (G,X), ι : PK N (G,X)⊗OE [1/N ] E −→∼ PK N (G,X))

is canonical if the lattices it generates agree with these lattices coming from p-adic
Hodge theory. We then check that if such a model exists and there are enough
crystalline points (which we check in the abelian type case), it is unique up to
canonical isomorphism. We also reserve the term “canonical” for models for which
the connection, Hecke action and filtration extend, but these seem to be automatic
properties of the models satisfying the lattice condition in the abelian type case
(and we would assume in general).

Of course, with this definition, our main theorem is the following.

Theorem. Let (G,X) be a Shimura datum of abelian type and G/Z[1/N ] a reduc-
tive model for G. Then PK N (G,X) has an integral canonical model (PK N , ι).

We give a quick summary of the proof. For the “special type” case where G is a
torus, we use the theory of CM motives to find lattices in the de Rham cohomology
of abelian varieties. For the Hodge type case, the universal abelian variety has an
integral model so we take as our starting point the sheaf V of its relative de Rham
cohomology, and note that the Hodge tensors of [Kisin 2010, 2.2] sα,dR ∈V⊗E extend
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to V⊗, at which point they may be used to define a functor

PK N := Isomsα (V,V)

which we show is a G-torsor using several ingredients from [Kisin 2010], and is the
required integral canonical model.

For passing from the Hodge type to abelian type case, we need a new idea which
may be more widely applicable. Suppose (G2,X2) is an abelian type Shimura
datum of interest. If we let (G,X) be a Hodge type datum such that there is
an isogeny Gder

→ Gder
2 witnessing that (G2,X2) is of abelian type, we do not

have a map relating G2 to G but only between the derived groups. However, the
torsors PK N (G,X) cannot be reduced to Gder without passing to C, which loses the
information we are interested in.

Our solution, inspired by Deligne [1979, 2.5], is to define for each connected
Shimura datum (Gder,X+) and field E ⊃ E(Gder,X+) := E(Gad,Xad) a new
Shimura datum (B,XB) with the property that any Shimura datum (G,X) whose
reflex field is contained in E and whose connected Shimura datum is (Gder,X+)

admits a canonical map

(B,XB)→ (G,X).

We then pass from Hodge type to abelian type by first giving a direct construction
of a canonical model for PK N

B
(B,XB) given one for PK N (G,X). With this, we are

in business, because if we let (B2,XB,2) be the corresponding pair for (G2,X2)

there is a map

(B,XB)→ (B2,XB,2)→ (G2,X2)

and we are able to descend the torsor through the map on connected components
while pushing out the Bc-action to a Gc

2-action. Finally we translate our results
into results for automorphic vector bundles.

While we do not give applications in this paper, we anticipate this construction
playing a useful role in several places. It is already used to study integrality of
periods in a preprint of Ichino and Prasanna [2016], and we expect it should be
useful in much more general contexts along these lines.

Working at a formal completion at a single place the same construction gives
families of strongly divisible filtered F-crystals. This theory is developed and used
in [Lovering 2017] to establish a new result that the Galois representations formed
by taking the cohomology of the Shimura variety with coefficients in the usual
lisse sheaves are crystalline, and in appropriate situations Fontaine Laffaille. In
particular this gives a new proof of part of local global compatibility at l = p in
certain cases, as well as providing a new tool for studying the p-adic geometry of
Shimura varieties and p-adic automorphic forms.
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2. Integral canonical models for Shimura varieties of abelian type

2.1. Extension property.

2.1.1. We first recall the extension property used to characterise Shimura varieties
at infinite level. Let R be a domain with field of fractions K . We call S/R a test
scheme if it is regular and formally smooth over R.4 Suppose we are given a scheme
X/R. We say X has the extension property if for any test scheme S/R any map
SK → X K extends over R.

The following uniqueness statement is well known.

Lemma 2.1.2. Suppose Y/K is a scheme. Then if X/R is a model for it over R and
is both a test scheme and has the extension property, X is the unique such model up
to canonical isomorphism.

Proof. Let X and X ′ be two such models. Then we are (as part of the data of a
model) given maps

X K −→
∼ Y −→∼ X ′K .

Since X is a test scheme, and since X ′ has the extension property, this isomorphism
extends to an isomorphism X −→∼ X ′ of R-schemes. �

We also record the following useful formal properties.

Lemma 2.1.3. Let R′/R be an étale or indétale (or formally smooth) extension of
domains with fraction field extension K ′/K . Suppose X/R satisfies the extension
property. Then so does X ⊗R R′/R′.

Conversely, if R′/R is also faithfully flat, then if X ⊗R R′/R′ satisfies the exten-
sion property, so does X/R.

Proof. Let S′/R′ be a test scheme. Then S′ is regular, and it is formally smooth over
R since indétale algebras are formally étale. Suppose we are given S′⊗R′ K ′→ X R′ ,
and first compose it with the map X R′→ X . By the extension property for X/R,
S′⊗R′ K ′ = S′⊗R K → X extends to a map S′→ X over R. But since we have a
diagram

S′ −−−→ Xy y
Spec R′ −−−→ Spec R

this map must factor through X ⊗R R′, as required, giving the extension property
for X ⊗R R′/R′.

For the converse, a test scheme S/R gives rise to a test scheme SR′/R′ together
with a descent datum θS for R′/R. Given a map SK → X K we obtain SK ′→ X K ′

4I believe there is still some controversy over the “correct” definition of a test scheme but this
should do for our purposes.
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compatible with the descent data on both sides. By the extension property this map
extends to SR′→ X R′ , and being a map of descent data this descends to the desired
extension S→ X . �

Lemma 2.1.4. Let X/R have the extension property and Y → X be finite or
profinite étale. Then Y/R has the extension property.

Proof. It clearly suffices to do the finite étale case (the profinite one then following
formally). Let K = Frac(R) and suppose we have a test scheme S and a map
SK → YK . Then this map composed with YK → X K extends to a map S→ X .
Pulling this back we get S ×X Y → Y . The map SK → YK gives a section of
(S×X Y )K → SK . But S×X Y → S is finite étale so such sections extend uniquely
and we get the required S→ Y . �

Lemma 2.1.5. Let Y → X be finite étale, and suppose Y/R has the extension
property. Then X/R has the extension property.

Proof. By the theory of the étale fundamental group and Lemma 2.1.4 we may
assume Y → X is Galois. The argument then follows from that of [Moonen 1998,
3.21.4]. �

We remark that the above result fails for pro(finite étale) extensions. Indeed,
Shimura varieties at finite level certainly do not generally have the extension property.
For example, for the modular curve at finite level this would imply all elliptic curves
have good reduction.

2.2. Main theorem. Now, let (G,X) be a Shimura datum of abelian type with
reflex field E .

Fix S a finite nonempty set of finite primes containing all those at which G is
ramified, set N =

∏
p∈S p, a reductive integral model GZ[1/N ] of G (which exists

by taking an arbitrary integral model, observing that it is reductive at all but finitely
many primes and then gluing in models for the remaining primes). We abusively
denote this model by G, and let K N

=
∏

p 6∈S G(Zp).
Consider the tower

ShK N = lim
←−−

KN⊂
∏

p∈S G(Qp)

ShKN K N

of Shimura varieties over E with infinite level at the primes dividing N but hyper-
special level at all other primes.

Recall that in this context a smooth integral model SK N for ShK N over OE [1/N ] is
an integral model on which

∏
p|N G(Qp) acts such that whenever KN⊂

∏
p|N G(Qp)

compact open is sufficiently small that ShKN K N is a scheme, the model SK N /KN

is smooth quasiprojective, and the maps between such finite level schemes induced
by Hecke operators are finite étale.
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In this chapter we prove the following theorem.

Theorem 2.2.1. The tower ShK N has a smooth integral model SK N /OE [1/N ] satis-
fying the extension property. For any v -N the localisation of this model at v agrees
with Kisin’s smooth integral model.

The following together with Lemma 2.1.2 gives us that this model is canonical.

Lemma 2.2.2. If SK N is a smooth integral model in the above sense, then it is
regular and formally smooth (in the usual sense).

Proof. That it is formally smooth follows formally because it is a limit of smooth
schemes with finite étale transition maps. That it is regular follows from the same
argument as [Milne 1992, 2.4]. �

2.2.3. We now set out to prove the theorem, following the outline of Kisin’s
strategy, first using the modular interpretation of Siegel varieties to get going, then
making constructions in the Hodge and abelian cases close enough to his that the
smoothness, extension and comparison properties follow by direct comparison or
in a very similar way.

2.3. Siegel case. For this case we recall the following theorem.

Theorem 2.3.1 [Mumford 1965, 7.9]. If n ≥ 6gd
√

g! then the fine moduli scheme
Ag,d,n of abelian schemes of dimension g together with a polarisation of degree d
and a level n structure exists, and is quasiprojective over Z.

Moreover, for N = lcm(d, n) these moduli schemes are smooth over Z[1/N ].

2.3.2. We may also (since we may take quotients of quasiprojective schemes by
finite free group actions) form moduli Ag,d,KN with GSp2g(Ẑ

N )KN -level structures
for all KN ⊂

∏
p|N GSp2g(Qp) sufficiently small. These are also smooth over

Z[1/N ] by étale descent.

2.3.3. Moreover, recall that for K = KN GSp2g(Ẑ
N )⊂ GSp2g(A

∞), the Shimura
variety ShK (GSp2g, S±) is defined over Q and has a moduli interpretation giving
an embedding ShK (GSp2g, S±) ↪→Ag,d,KN . We define its integral model

SK := ShK (GSp2g, S±)⊂Ag,d,KN .

It is well known that such models are smooth and admit an explicit description as
moduli schemes. In particular, they carry a universal abelian scheme defined over
Z[1/N ]. Moreover the transition maps as we vary KN are finite étale, so we obtain
the desired smooth integral models

SN = lim
←−−
KN

SK /Z
[ 1

N

]
.

We are required to check the following. Note that in preparation for the Hodge
type case we need to observe the following holds in the slightly more general
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context where we assume that K =
∏

K p as above except for some finitely many
p -N , K p is not necessarily hyperspecial but merely maximal compact. Luckily
with this remark made the argument goes through unchanged.

Proposition 2.3.4. The scheme SN satisfies the extension property.

Proof. This follows because the argument of Milne [1992, 2.10] adapts practically
unchanged to our situation. For the reader’s convenience we sketch the argument.
Let S be a test scheme. A map

SQ→ SN

gives the data of a triple (A, λ, η)where A/SQ is an abelian scheme, λ a polarisation
(defined up to a constant) and η an infinite level structure at the primes l|N . Since
N > 1, the set of such primes is nonempty, and we may let l be one of them.

Now, since S is assumed regular, in particular each of its components is integral.
Let S0 be such a component, and denote by η its generic point. The infinite level
structure at l defined over SQ in particular trivialises the l-adic Tate module of Aη.
By the “generalised Neron criterion” [ibid., 2.13] we see that this implies Aη extends
over S0. Since it does so for all components S0 of S and S is normal (so these
components do not meet), we deduce that we have extended A to some A/S.

The polarisation λ also extends by [ibid., 2.14], and the level structures (being
at primes away from the characteristic of the base) also obviously extend. This
suffices to show the extension property. �

2.4. Hodge type case. Suppose we have (G,X) a Shimura datum of Hodge type,
and fix a symplectic embedding

i : (G,X) ↪→ (GSp(VQ, ψ), S±).

Let N be the product of all primes where G is ramified. Recall that we are
fixing an integral model G/Z[1/N ] for G and taking the hyperspecial level K N

=∏
p -N G(Zp) away from N . We begin with some group theoretic preliminaries.

Lemma 2.4.1. Let V/Q be a finite dimensional vector space. Take N ≥ 1 and p -N ,
and suppose we have a Z[1/pN ]-lattice3⊂ V and a Zp-lattice L ⊂ V ⊗Qp. Then
L ∩3 is a Z[1/N ]-lattice in V .

Proof. We first observe that for any Z[1/pN ]-basis e1, . . . , en of 3, for all i =
1, . . . , n and some m sufficiently large pmei ⊂ L . In particular 3 ∩ L contains
Z[1/pN ]-bases for 3. Let us take some such basis e1, . . . , en such that the p-adic
volume is maximal (or equivalently such that the index of its Zp-span in L is
minimal). We claim this basis generates 3′ =3∩ L as a free Z[1/N ]-module.

Since it’s a Z[1/pN ]-basis for 3, its span certainly is a free Z[1/N ]-module.
Suppose it doesn’t generate. Then there is some y ∈3′ not in the span of the ei .
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Since the ei are a Z[1/pN ]-basis we may write y uniquely as

y =
∑

i

λi ei ,

with λi ∈ Z[1/pN ]. After reordering, let us assume λ1 = p−kλ with λ ∈ Z[1/N ]
and k ≥ 1 is the coefficient with the largest p-adic norm amongst the λi . Then we
can take the new basis y, e2, . . . , en and it visibly has strictly larger p-adic volume,
contradicting our original choice of basis and hence the existence of y. �

Proposition 2.4.2. Let G/Q be a reductive group unramified away from N , let
N |M and T be the set of primes dividing M/N. If 2 ∈ T , assume further that any
factors of G of type B have simply connected derived group.

Then given choices of reductive models G M/Z[1/M] and G p/Zp for p ∈ T
for G, we can find a model G/Z[1/N ] isomorphic to each of these.

Moreover, if we have a faithful representation i : G M ↪→ GL(VZ[1/M]) there is a
Z[1/N ]-lattice 3′ ⊂ VZ[1/M] such that i extends to ĩ : G ↪→ GL(3′).

Proof. It obviously suffices to consider the case where M = pN . Let i : G M ↪→

GL(VZ[1/pN ]) be a faithful representation. By [Kisin 2010, 2.3.1], and the remark
of Madapusi Pera [2012, 4.3, footnote] in the 2 ∈ T case, we can find a Zp-lattice
3⊂ V ⊗Qp such that G p(Qp)= G(Qp)= G M

Qp
↪→ GL(VQp) is induced from a

map G p→ GL(3) over Zp.
By Lemma 2.4.1 we obtain a Z[1/N ]-lattice 3′ =3∩ VZ[1/pN ]. Of course we

can canonically identify 3′⊗Z[1/pN ] ∼= VZ[1/pN ], in the context of which we take
G/Z[1/N ] to be the closure of

Im(G M ↪→ GL(VZ[1/pN ]) ↪→ GL(3′)).

We claim this G does the job. It’s evident that G|Z[1/pN ] ∼= G M . Since we have
a canonical isomorphism 3′ ⊗ Zp ∼= 3 and by the other identifications in the
construction we also have G|Zp

∼= G p. We also need it to be reductive (i.e., smooth
affine with connected reductive geometric fibres). Being a closed subgroup of
GL(3′) it’s visibly affine, its geometric fibres are reductive by what we already
know, and smoothness can be checked fpqc locally, whence it also follows by the
identifications we have made.

The second part of the proposition is an immediate consequence of our argument.
�

We also echo the remarks in [Madapusi Pera 2012, 4.3], that in the case of G
coming from a Hodge type Shimura datum, the condition on factors of type B is
always satisfied, by Deligne’s classification of symplectic representations. We shall
also need the following modification of [Kisin 2010, 2.1.2].
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Lemma 2.4.3. Let i : (G1,X1) ↪→ (G2,X2) be an embedding of Shimura data with
K N

2 ⊂
∏
′

p -N G2(Qp)=: G2(A
∞,N ) compact open, and K1 = K N

1 K1,N a compact
open of G1(A

∞) such that K N
1 = K N

2 ∩G1(A
∞,N ). Suppose G1 and G2 both have

centre which is compact modulo its split part.5 Then there exists an open compact
subgroup K2,N ⊂

∏
p|N G2(Qp) such that K2 := K2,N K N

2 ⊃ K1 and the induced
map of E(G1,X1)-schemes

ShK1(G1,X1)→ ShK2(G2,X2)E(G1,X1)

is a closed embedding.

Proof. By the same argument as [Deligne 1971, 1.15] it suffices to check

α : ShK N
1
(C)→ ShK N

2
(C)

is injective.
On the level of complex points (by the assumption on centres, which removes

the technicalities involving units) this map is

α : G1(Q)\X1×G1(A
∞)/K N

1 → G2(Q)\X2×G2(A
∞)/K N

2 .

We prove this is injective by first noting that

G1(Q)\
∏
p|N

G1(Qp)→ G2(Q)\
∏
p|N

G2(Qp)

is injective as in [Deligne 1971, 1.15.3]. Now fix a set of coset representa-
tives of G1(Q) in

∏
p|N G1(Qp) and note that translating by these, the fibres

of G1(Q)\X1 × G1(A
∞)/K N

1 → G1(Q)\
∏

p|N G1(Qp) may be identified with
X1×G1(A

∞,N )/K N
1 . But now since K N

1 = K N
2 ∩G1(A

∞,N ), we have that

X1×G1(A
∞,N )/K N

1 → X2×G2(A
∞,N )/K N

2 ,

is injective, and the lemma follows. �

2.4.4. We now proceed with the construction in the Hodge type case.
Firstly, by finite-presentedness we note that i is in fact defined over Z[1/M] for

some M divisible by N . By Proposition 2.4.2 we can find a lattice VZ[1/N ] ⊂ V
and G/Z[1/N ] a reductive model such that (forgetting the symplectic pairing) i
is obtained from a map G ↪→ GL(VZ[1/N ]) and G(Zp) = G(Zp) for all p -N , in
particular giving K N

=
∏

p -N G(Zp).
Let K ′N be the stabiliser of VZ[1/N ] in

∏
p -N GSp(V ⊗Qp, ψ), noting that K ′N

will be maximal compact but need not be hyperspecial at the primes dividing M/N .
We also fix a Z-lattice VZ ⊂ VZ[1/N ] and note that for all KN ⊂

∏
p|N G(Qp)

sufficiently small K = KN K N fixes V
Ẑ

.

5We expect the argument can be modified slightly as in Deligne to remove this hypothesis.
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2.4.5. Applying the lemma Lemma 2.4.3 in our setting (since G is Hodge type
the hypothesis on the centre holds), and letting E = E(G,X), we obtain a closed
embedding of Shimura varieties

ShK N (G,X) ↪→ ShK ′N (GSp, S±)E ⊂ SN ,OE [1/N ].

Letting ShK N ⊂SN ,OE [1/N ] be the scheme theoretic closure of this map, the extension
property for SN implies the extension property for ShK N . Now let SK N be the
normalisation of ShK N . Since test schemes are regular and a fortiori normal, the
universal property of normalisation implies that SK N also has the extension property.

2.4.6. We need to check smoothness at finite level. It suffices to check smoothness in
a formal neighbourhood of any closed point. When the point has characteristic zero
it is in the generic fibre and smoothness is guaranteed. When it has characteristic p,
we observe that at finite level our construction exactly follows that of Kisin [2010,
2.3] and Kim and Madapusi Pera [2016, 3.5] for the case p= 2, and so in particular
the necessary local rings are smooth. Hence the SK N give the required integral
canonical models in the Hodge type case, compatible with Kisin’s by construction.

2.5. Abelian type case. We begin by making some more observations about the
Hodge type setting. As before we fix connected reductive G/Z[1/N ] belonging to
a Shimura datum (G,X) of Hodge type with reflex field E , and consider the tower

ShK N = lim
←−−
KN

ShKN K N

obtained by fixing K N
= G(ẐN ) and letting the level at p|N go to infinity.

Lemma 2.5.1. The connected component Sh+K N ⊂ ShK N ,E is defined over the maxi-
mal abelian extension EN/E unramified away from N.

Proof. By [Kisin 2010, 2.2.4], and taking a suitable quotient, we see that Sh+K N is
defined over the maximal abelian extension E p/E unramified away from p for all
p -N . By the identification

⋂
p -N E p

= EN inside Eab, we deduce that Sh+K N is
defined over EN . �

2.5.2. Let q -N be a prime, and recall the following groups which are used to
construct Kisin’s integral models, and the following results from [Kisin 2010, 3.3].
We adopt the usual notations where Gad(Q)+ is the intersection of Gad(Q) with
the connected component Gad(R), G(Q)+ the inverse image of Gad(Q)+ in G(Q),
Gad(Z(q))

+
= Gad(Q)+ ∩Gad(Z(q)) and G(Z(q))+ = G(Q)+ ∩G(Z(q))+.

We have

Aq(G) := G(A∞,q)/Z(Z(q)) ∗G(Z(q))+/Z(Z(q)) Gad(Z(q))
+
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which acts on ShKq = lim
←−−K q ShG(Zq )K q , and the subgroup

A◦q(G) := G(Z(q))+/Z(Z(q)) ∗G(Z(q))+/Z(Z(q)) Gad(Z(q))
+

which acts on a connected component Sh+Kq
. It follows from the argument in [Kisin

2010, 3.3.7] that this is precisely the subgroup sending Sh+Kq
into itself.

2.5.3. We make the following new remarks. The construction of twisting abelian
varieties by a Z -torsor from [Kisin 2010, §3] can be carried out by twisting by a
Zder
= Z(Gder)-torsor instead. Indeed, given γ ∈ Gad(Q)+ we may take P to be

the fibre of γ along Gder
→ Gad. It will suffice to check the following.

Proposition 2.5.4. (1) With notation as above, if P′ is the fibre of γ along G→
Gad then P′ = P×Zder

Z.

(2) If V is a Q-vector space with an OZ -comodule action, P and P′ as above, there
is a natural isomorphism

(V ⊗Q OP)
Zder
−→∼ (V ⊗Q OP′)

Z .

Proof. For (1) we can define (using P′ ⊂ G) a map

P×Zder
Z 3 (p, z) 7→ p.z ∈ P′

which is obviously an isomorphism of Z -torsors and proves the claim.
Part (2) can be seen easily by appealing to the general Tannakian framework that

Z -torsors over Spec Q correspond to fibre functors ω : RepQ Z→ VecQ, and that
P×Zder

Z = P′ implies that we can factor ωP′ as

ωP′ : RepQ Z Res
−→RepQ Zder ωP−→VecQ .

Writing out what this statement actually means algebraically (and writing an arbitrary
OZ -comodule as a filtered colimit of finite dimensional ones), we recover (2). �

This has the technical advantage given by the following lemma. We thank
Kestutis Cesnavicius for pointing out to us that the analogous result from [Kisin
2010, 3.4.8] where G = Z is a general group of multiplicative type is false over the
base Z[1/N ] in general.

Lemma 2.5.5. Let R be an integrally closed domain with fraction field K , and
G/R a finite group scheme. Then a torsor T/R for G is trivial if and only if TK is a
trivial G K -torsor.

Proof. Since G/R is finite, it is proper, which as a property stable under fpqc
descent is inherited by T , and so T (R)=

⋂
Rv⊂K T (Rv)= T (K ). In particular the

latter is nonempty if and only if the former is. �
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2.5.6. With these remarks in mind, we can rewrite the action of Aq(G) on the inte-
gral model SKq/OE,v explicitly following [Kisin 2010, 3.4.5]. A point x ∈ SKq (T )
gives rise to a triple (A, λ, εq) where A/T is an abelian scheme up to prime to q-
isogeny, λ a weak polarisation of A and εq a section of 0(T, Isom(VA∞,q , V̂ q(A))).

By [Kisin 2010, 3.4.5] and our previous remarks, if we take (h, γ−1) ∈Aq(G)
and x associated to the triple (A, λ, εq) then the triple associated to x .(h, γ−1) is
isogenous to

(AP, λP, εq,P
◦ γ̃ hγ̃−1)

where P is the torsor for Zder
⊂ Gder given by the fibre of γ , γ̃ is an element of

Gder(F) for some finite Galois extension F/Q mapping to γ under Gder(F)→
Gad(F), and the notations AP, λP, εq,P are the “twists by P” as defined in [Kisin
2010, 3.1.3].

2.5.7. We introduce the notation ZN
:= Z[1/N ], to provide a slight simplification

in situations where the notation quickly becomes messy. Let (where plus notation
denotes intersection with G(R)+,Gad(R)+ as usually defined, and overline notation
denotes closures in

∏
p|N G(Qp))

AN (G) :=

∏
p|N G(Qp)

Z(ZN )
∗G(ZN )+/Z(ZN ) Gad(ZN )+,

AN ,◦(G) :=
G(ZN )+

Z(ZN )
∗G(ZN )+/Z(ZN ) Gad(ZN )+,

and (where here overline notation means closures in G(A∞,q))

ÃN
q (G) :=

∏
p|N G(Qp)×

∏
p -q N G(Zp)

Z(ZN )
∗G(ZN )+/Z(ZN ) Gad(ZN )+ ⊂Aq(G).

Let K N
=
∏

p -N G(Zp), K Nq
=
∏

p -Nq G(Zp) and

1N
= Ker(AN ,◦(G)→AN ,◦(Gad)).

First, a group theoretic lemma following Deligne’s Corvallis paper.

Lemma 2.5.8. (1) The group AN ,◦(G) is canonically the completion of Gad(ZN )+

with respect to the topology generated by the images of congruence sub-
groups of Gder the form KN ×

∏
p -N Gder(Zp) as KN varies. In particular

AN ,◦(Gder) :=AN ,◦(G) canonically depends only on Gder.

(2) We can naturally identify

AN ,◦(Gder)= Gder(ZN )+ ∗Gder(ZN )+ Gad(ZN )+

(where the closure is taken in
∏

p|N Gder(Qp)).
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Proof. For (1) we have a natural inclusion Gad(ZN )+ ⊂AN ,◦(G), and it is easily
checked that the image is dense. Moreover, a neighbourhood of the identity is
G(ZN )+/Z(ZN ) whose topology is generated by that of the congruence subgroups
of G with fixed hyperspecial level away from N . But by [Deligne 1979, 2.0.13]
this topology is the same as that generated by the congruence subgroups of Gder

with fixed hyperspecial level away from N . Finally this neighbourhood of the
identity is obviously complete, so we are done. From this description (2) follows
immediately. �

Our key result is the following, whose proof follows that of [Kisin 2010, 3.4.6].

Proposition 2.5.9. The group AN (G) acts naturally on the integral canonical
model SK N , and 1N acts freely.

Proof. By the extension property, the first part can be checked on the generic fibre,
where it follows from the self evident isomorphism

Ã
N
q (G)/K Nq

−→∼ AN (G).

This (together with the compatibility with Kisin’s construction) gives us the addi-
tional information that for v | q and q -N , the action on SK N ,v can be described on
the level of triples (A, λ, εq) where εq is now given modulo K Nq .

Take (h, γ−1) ∈1N
⊂ Gder(ZN )+ ∗Gder(ZN )+ Gad(ZN )+, and γ̃ ∈ Gder(F) map-

ping to γ ∈ Gad(F) with F/Q finite Galois. We also let P denote the Zder-
torsor of elements of Gder mapping to γ . Since (h, γ−1) ∈ 1N we see that
hγ̃−1

∈
∏

p|N Zder(Qp⊗ F).
Suppose x ∈ SK N (κ) for some algebraically closed field κ of characteristic q

or 0, that x .(h, γ−1)= x and associated to x is the triple (A, λ, εq/K q N ). We need
to show that (h, γ−1)= 1.

As in the proof of [Kisin 2010, 3.4.6] we can find a unique quasiisogeny α :
A→ AP such that

V ⊗A∞,q ⊗ F
γ̃ hγ̃−1

−−−→ V ⊗A∞,q ⊗ F
γ̃−1

−−−→ V ⊗A∞,q ⊗ F

εq

y εq,P

y εq

y
V̂ q(A)⊗ F −−−→

α∗⊗1
V̂ q(AP)⊗ F −−−→

ιγ̃
V̂ q(A)⊗ F.

commutes. This demonstrates that also hγ̃−1
∈ AutQ(A)⊗ F . But the intersection

of
∏

p|N Zder(Qp⊗F) and AutQ(A)⊗F inside
∏

p|N AutQ(A)(Qp⊗F) is Zder(F),
so we conclude that

hγ̃−1
∈ Zder(F).

As in [Kisin 2010, 3.4.6] this demonstrates that P is trivial as a Zder
Q

-torsor
over Q. But Zder is a finite group, Lemma 2.5.5 implies that PZ[1/N ] (the torsor
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given by the inverse image of γ in Gder
Z[1/N ]) is a trivial Z[1/N ]-torsor, so we can

assume γ̃ ∈ Gder(Z[1/N ])+ and replacing h by hγ̃−1, assume γ = 1. Moreover,
we may take F =Q, and so we deduce h ∈ Zder(Q)= Zder(Z[1/N ]): that is to say,
it is trivial as an element of 1N , as required. �

We also need the following ingredient.6

Lemma 2.5.10. The group 1N is finite.

Proof. Let ρ :Gder
→Gad be the usual finite isogeny. By the discussion in [Deligne

1979, 2.0] there is a diagram with exact rows.

Gder(ZN )+ −−−→ AN ,◦(Gder) −−−→ Gad(ZN )+/ρGder(ZN )+y y y
Gad(ZN )+ −−−→ AN ,◦(Gad) −−−→ 1

Considering the kernels of the vertical maps, this puts 1N in an exact sequence
between a subgroup of Zder(AN ) and the group Gad(ZN )+/ρGder(ZN )+. The
former as a product of finite groups is visibly finite. The latter group is a subgroup
of Gad(ZN )/ρGder(ZN ), which is in turn a subgroup of H 1

fppf(Z
N , Zder), so it

suffices to check that this is finite.
Since Zder is a finite group of multiplicative type, we may find a finite Zariski

cover Ui of Spec Z[1/N ] and finite étale covers Vi → Ui such that Zder
|Vi is iso-

morphic to a product of split finite multiplicative groups µk . By the Čech to derived
functor spectral sequence for this cover, we may reduce our claim to checking that
for L a number field and k,M positive integers, the groups H 1

fppf(OL [1/M], µk)

are finite. But the Kummer exact sequence gives an exact sequence

1→ OL
[ 1

M

]∗
/OL

[ 1
M

]∗k
→ H 1

fppf
(
OL
[ 1

M

]
, µk

)
→ Pic

(
OL
[ 1

M

])
,

and both the outer terms are finite by classical algebraic number theory. �

2.5.11. We now set out to prove the main theorem Theorem 2.2.1 in the abelian
type case. Let (G2,X2) be a Shimura datum of abelian type, with G2/Z[1/N ]
reductive. We first need to relate it to a datum of Hodge type, modifying [Kisin
2010, 3.4.13] slightly.

Lemma 2.5.12. Let (H,Y) be a Shimura datum of abelian type with H adjoint.
Then there exists a central isogeny H ′→ H such that whenever (G,X) is of Hodge
type with (Gad,Xad)∼= (H,Y) then Gder is a quotient of H ′.

6Note that we believe the corresponding result of [Kisin 2010] is not true, so a result like this is
perhaps also needed to deduce the extension property in that case.
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Assume that H is quasisplit and unramified at all p -N. Then there exists a
Shimura datum (G,X) of Hodge type such that (Gad,Xad) ∼= (H,Y), Gder

= H ′

and G is quasisplit and unramified at all p -N.

Proof. Most of this is proved in [Kisin 2010, 3.4.13]; the only thing to check is
that we can arrange for G to be quasisplit and unramified at all p -N . But since H
has this property, clearly H ′ does, and so it suffices to control the centre, whose
ramification is given by the totally imaginary quadratic extension L/F of [Deligne
1979, 2.3.10] which can be chosen arbitrarily. In particular, we may take any prime
q | N , construct L by adjoining a q-th (or 4th if q = 2) root of unity and passing
to a quadratic subfield. Then note that L/F is unramified at all primes v -q, in
particular at places over p -N . �

Lemma 2.5.13. Suppose we are given G and G2, reductive over Q and unramified
away from N , and a central isogeny f : Gder

→ Gder
2 . Suppose we are also given a

reductive model G2/Z[1/N ] of G2.
Then there exists a reductive model G/Z[1/N ] of G such that f extends to

f : Gder
→ Gder

2 .

Proof. We do the usual patching argument. Take any integral model G/Z[1/N ] and
note that there will be some M such that G[1/M] is reductive and Gder

→ Gder
2

extends to Gder
[1/M] → Gder

2 [1/M].
By Proposition 2.4.2 we will be done if for every p |M and p -N we can find

G p/Zp a reductive model such that f extends to Gder
p → Gder

2,Zp
. But this is the case

by the argument of [Kisin 2010, 3.4.14]. �

2.5.14. Now given our (G2,X2) of abelian type, it gives rise to an adjoint Shimura
datum, which by Lemma 2.5.12 is covered by (G,X) of Hodge type and by
Lemma 2.5.13 we may take G/Z[1/N ] reductive and Gder

→Gder
2 a central isogeny

inducing a morphism (Gder,X+)→ (Gder
2 ,X+2 ) of connected Shimura data. Let

E = E(G,X) ⊂ Q. Since for every p -N , G and G2 split over an unramified
extension of p, we deduce that E/Q is unramified at all p -N , and by Lemma 2.5.1
we see their connected Shimura varieties at levels K N

:=G(ẐN ) and K N
2 :=G2(Ẑ

N )

are defined over EN/E , the maximal abelian extension of E unramified away
from N . Let ON be its ring of integers, and note that ON [1/N ]/Z[1/N ] is indétale.

Now, comparing our description (2.5.8(1)) of AN ,◦(Gder) with Deligne’s descrip-
tion [1979, 2.1.6] of the group acting on a connected Shimura variety, it is clear
that AN ,◦(G) acts on Sh+K N (G,X)EN , and considering the subgroup

1N (G,G2) := Ker(AN ,◦(Gder)→AN ,◦(Gder
2 ))⊂1N ,

that the morphism Sh+K N (G,X)EN → Sh+
K N

2
(G2,X2)EN is given by taking the quo-

tient by 1N (G,G2). Moreover, by the previous section we have an integral model
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S+K N (G,X)ON [1/N ] for Sh+K N (G,X)EN satisfying the extension property, with a
free Proposition 2.5.9 action of the finite Lemma 2.5.10 group 1N . We may
therefore form the quotient by the finite subgroup 1N (G,G2) and obtain a model
S+

K N
2
(G2,X2)ON [1/N ] for Sh+

K N
2
(G2,X2)EN over ON [1/N ]. By Lemma 2.1.5 this

model enjoys the extension property, and passing to finite levels we see it is smooth.

2.5.15. Unlike at infinite or K p-level, we do not know whether
∏

p|N G2(Qp) acts
transitively on π0(ShK N (G2,X2)Q), so to conclude our proof we need an alternative
to the usual “Deligne induction.” Noting that our argument up to this point holds
for any model G2/Z[1/N ] for G2, the following lemma is enough to conclude our
argument.

We will need the Shimura variety

Sh(G,X)= lim
←−−

K
ShK (G,X)

at full infinite level, together with the usual fixed connected component Sh+
Q
⊂

Sh(G,X)Q containing the complex point [x, 1] for x ∈ X+.

Lemma 2.5.16. Let (G,X) be any Shimura datum unramified away from N , E ⊃
E(G,X), K N

=
∏

p -N G(Zp) for some choice of integral model for G, and EN/E
the maximal abelian extension unramified away from N.

(1) Let X+K N be any component of ShK N (G,X)Q. Then X+K N is defined over EN ,
and given for every choice of hyperspecial levels of the form U N

=
∏

p -N G(Zp)

for G/Z[1/N ] a reductive model for G a smooth integral model S+U N /ON [1/N ]
for Sh+U N ,EN

with the extension property, we can construct a smooth integral
model for X+K N ,EN

with the extension property.

(2) Given any smooth integral model for every X+K N ,EN
with the extension property,

their disjoint union gives a smooth integral canonical model for ShK N ,EN which
descends to OE [1/N ] and to which the AN (G) action extends.

Proof. For (1), let π : Sh(G,X)Q → ShK N (G,X)Q be the canonical projection,
and take a ∈ G(A∞) such that π(Sh+ .a)= X+K N . Note that this a descends to an
identification

ShK N (G,X)Q −→
∼ Sha−1 K N a(G,X)Q

defined over E and under which X+K N is identified with Sh+
a−1 K N a,Q

. Since the
latter is defined over EN by Lemma 2.5.1, the former must be also. Moreover,
since ap ∈ G(Zp) for all but finitely many p, and in all other cases we are taking
the conjugate of a hyperspecial subgroup, which are always hyperspecial and so
have local reductive models, by Proposition 2.4.2 there exists a reductive model
G/Z[1/N ] for G giving rise to the level a−1K N a. Hence by hypothesis we have a
smooth integral model for Sh+a−1 K N a,EN

with the extension property. Composing
with the isomorphism induced by a gives the required model for X+K N ,EN

.
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For (2), we assume we are given for each X+K N ,EN
some smooth integral model

X+K N with the extension property. Letting SK N ,ON [1/N ] together with

ι : SK N ,ON [1/N ]⊗ON [1/N ] EN −→
∼ ShK N ,EN

be their disjoint union, note that it still has the extension property. In particular
the Gal(EN/E)-action on ShK N ,EN extends to SK N ,ON [1/N ], and since EN/E is
unramified away from N this gives an étale descent datum from ON [1/N ] to
OE [1/N ]. Thus we may descend our model to SK N /OE [1/N ] and by Lemma 2.1.3
this model still has the extension property. The AN (G)-action also extends to
SK N ,ON [1/N ] by the extension property, and commutes with the Gal(EN/E)-action,
so it descends, and for any KN ⊂

∏
p|N G(Qp) we have that (SK N /KN )⊗ON [1/N ]

is smooth, which is a property stable by fpqc descent and allows us to see that SK N

is a smooth canonical model. �

3. Automorphic vector bundles and filtered G-bundles

3.1. Review of characteristic zero. We sketch the main results of [Milne 1990,
III], on which our results will build.

3.1.1. Let (G,X) be a Shimura datum with reflex field E , and µ : Gm,E → GE a
Hodge cocharacter of X. Then we can form the compact dual Grµ which represents
the following functor. Fix a faithful representation G ↪→GL(V ) and tensors sα ∈V⊗

such that G is exactly the subgroup fixing these tensors, and note that µ induces a
filtration Fil•⊂V⊗E . For π : S→Spec Q we let VS :=π

∗V be the constant vector
bundle, which also carries tensors sα,S = π∗sα. Then as a functor on E-schemes

Grµ(S)=
{
filtrations F• of VS such that (Vs,Fil•s, sα)∼= (VS,s,F•s, sα,S)

for each geometric point s ∈ S
}
.

This depends only on the conjugacy class of µ and is representable as an E-
scheme. Moreover by construction it carries an algebraic action of GE , which we
write as a right action

Grµ(S)×G(S) 3 (F•, g) 7→ g−1(F•) ∈ Grµ(S).

3.1.2. Let Znc ⊂ Z(G) be the largest subtorus of Z(G) split over R but with no
subtorus split over Q, and Gc

=G/Znc. Then there is a Gc-torsor P= P(G,X) over
Sh(G,X) with an equivariant G(A∞)-action,7 which can be easily defined analyti-
cally over C and by [Milne 1990, III,4.3] admits a canonical model (in Milne’s sense)
over E , together with an integrable connection with regular singularities at infinity.

7It is natural to ask whether this extends to an equivariant action of Deligne’s extension
G(A∞)/Z(Q)∗G(Q)+/Z(Q)Gad(Q)+: in fact this group does act but not quite in a way that commutes
with the algebraic Gc-action, as we shall later see.
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Moreover P(G,X) has a G-action, via G→ Gc, and there is a G-equivariant
map [Milne 1990, III,4.6] γ : P(G,X)→Grµ which complex analytically is given
by the Hodge filtration coming from X, but is algebraic and descends to E .

To begin discussing any functoriality of this construction we need a lemma.

Lemma 3.1.3. Let f : (G1,X1)→ (G2,X2) be a morphism of Shimura data. Then
there is an induced map

Gc
1→ Gc

2.

Proof. This comes down to showing that f (Z(G1)nc) ⊂ Z(G2). Suppose for
contradiction we have R∗ ∼=9 ⊂ Z(G1)(R) with f (9) intersecting trivially with
Z(G2)(R). Let h ∈ X1, and recall that ad f (h(i)) is a Cartan involution acting on
Gad

2 , so the real group

H = {g ∈ Gad
2 (C) : f (h(i))g f (h(i))−1

= g}

is compact. On the other hand for any ψ ∈9 we have

h(i)ψh(i)−1
= ψ = ψ

since ψ is central in G1, h(i)∈G1(R), and ψ is real. Hence, we have an embedding
of 9 ∼= R∗ into the compact group H(R), which is absurd. �

Note that there is no such functoriality for general group morphisms. For example
letting F be a totally real field of degree d acting on itself by multiplication we get
a morphism

F× ↪→ GLd

failing to have the required property for all d > 1.

3.1.4. Automorphic vector bundles are typically parametrised by complex repre-
sentations of the parabolic subgroup Pµ associated with the Hodge cocharacter µ in
the usual fashion (for example one may define Pµ ⊂GC as the subgroup preserving
the filtrations µ induces on Rep GC). By a complex analytic interpretation of the
Grassmannian it is easy to show these are in correspondence with GC-equivariant
vector bundles on Grµ,C. We therefore take as our input data a G-equivariant vector
bundle J on Grµ defined over L/E some number field, and we assume the G-action
factors through Gc.8

Given this data, we can pull it back along γ to get a G(A∞)×Gc-equivariant
vector bundle on P(G,X)L and therefore a G(A∞)-equivariant vector bundle V(J)

on Sh(G,X)L . This is the construction of canonical models for automorphic vector
bundles we seek to perform integrally.

8This is a reasonable condition to impose since Z ⊂ Pµ acts trivially on Grµ.
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3.1.5. We need a basic functoriality property for which we could not find a direct
reference but which follows easily from Milne’s definition together with the map on
complex points induced by X×G(A∞)×Gc(C)→X′×G ′(A∞)×G ′c(C) which
we note relies on Lemma 3.1.3.

Lemma 3.1.6. Let f : (G,X)→ (G ′,X′) be a morphism of Shimura data, µ and µ′

Hodge cocharacters of X and X′, respectively. Then there is a diagram

Sh(G,X) ←−−− P(G,X) −−−→ Grµy y y
Sh(G ′,X′) ←−−− P(G ′,X′) −−−→ Grµ′

defined over E(G,X) which is G-equivariant and G(A∞)-equivariant in the obvi-
ous senses.

3.1.7. In the case where G= T a torus we also need the following, the main content
of which is due to Blasius. Let p be a prime containing a place v of E ⊃ E(T, h),
ωet the usual fibre functor giving étale local systems on the Shimura variety, and
fix Ev an algebraic closure of Ev letting 0Ev := Gal(Ev/Ev). Consider the fibre
functor coming from p-adic Hodge theory

ωv,dR : RepQp
(T c) 3 V 7→ (ωet(V )⊗Qp BdR)

0Ev ∈ VecEv .

Proposition 3.1.8. Suppose T is split by a CM field, and let X = Spec E ⊂
ShU (T, h) be a component of the Shimura variety for U ⊂ T (A∞) open compact.
There is a natural isomorphism between ωP,X,v : V 7→ (V ×T c

PU (T, h)|X )⊗E Ev
and ωv,dR.

Proof. By Lemma 3.1.6 it suffices to do the case T = T c. We observe that
any cocharacter µ : Gm,E → T c

E has weight defined over Q. Indeed, by definition
X∗(T c)Q is the summand of X∗(T )Q on which either Galois acts trivially or complex
conjugation acts via −1, so for any µ ∈ X∗(T c), µ+µc lands in the summand on
which Galois acts trivially.

Combining this with fact that T hence T c is split by a CM field, the induced
Shimura datum (T c, hc) is of CM type, and thus admits a characterisation as a
moduli space of CM motives M , which we take as those for which the Betti fibre
functor ωB = HB(M(ρ)) : RepQ T → VecQ is trivial.

Therefore a point x ∈ X (Q) has attached to it a T -valued CM motive M :
RepQ(T )→ (C M/Q), and the fibre functor attached to x∗PU (T, h) is given by
ωP(ρ) := HdR(M(ρ)/Q) Noting that for σ ∈ Gal(Q/E) we have a canonical
isomorphism

HdR(Mσ (ρ)/Q)∼= HdR(M(ρ)/Q)⊗σ Q,
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we see that ωP carries a canonical descent datum to X = Spec E which defines
PU (T, h)|X . We may also use the reciprocity law to canonically identify the p-adic
étale cohomology fibre functors

Het ◦M = ωet : RepQp
(TQp)→ VecQp ,

which in particular have an equivariant 0E -action coming from ωet.
Now fix an embedding Q ↪→ Ev, and a faithful representation T ↪→ GL(V ),

and sα cycles on V⊗ fixed precisely by T . For any M ∈ X (Q), these give rise
to absolute Hodge cycles on HB(M(V ))⊗, which in turn give rise to de Rham
cycles sα,dR ∈ HdR(M(V ))⊗ via the Betti–de Rham comparison, and étale cycles
sα,et ∈ ωet(V )⊗. These sα,et are 0E -invariant because the action factors

0E →Up ⊂ T (Qp)→ GL(ωet(V ))

by construction, and as in [Kisin 2010, 2.2.1] this implies the sα,dR ∈ ωP,X,v(V )⊗

because an absolute Hodge cycle is determined by either component.
Let us fix Y/L with Q ⊃ L a finite Galois extension of E such that M(V ) is

realised in the cohomology of Y , and a place w|v of L determining Lw ⊂ Ev. By
Blasius’ theorem on de Rham cycles [1994], the p-adic Hodge theoretic compari-
son map

Het(M(V ),Qp)
⊗
⊗Qp BdR −→

∼ HdR(M(V )Lw/Lw)⊗⊗Lw BdR

identifies sα,et with sα,dR. Unravelling the definitions, we see that

PU (T, h)L = Isomsα (VL , HdR(M(V ))L)

and
Pωv,dR ⊗ Lw = Isomsα (VLw , (ωet(V )⊗Lw BdR)

0Lw ).

Thus putting it all together we get a canonical9 identification

ωP,X,v ⊗ Lw ∼= ωv,dR⊗ Lw.

We conclude by checking that this descends to Ev . Indeed, 0Ev acts canonically
on both sides of the p-adic comparison map compatibly, so we have an isomorphism
of Gal(Lw/Ev)-modules

(ωet(V )⊗Qp BdR)
0Lw −→∼ HdR(M(V )Lw/Lw)= ωP,X,v(V )⊗Ev Lw

and taking Gal(Lw/Ev)-invariants therefore ωv,dR(V ) = ωP,X,v(V ). Finally, we
have already observed that the sα,et and sα,dR are Galois invariant, so these too
descend to Ev. �

9The choice of sα does not affect the identification. To see this note that it does not change under
adding more tensors so given two sets of choices one can just compare both with the union.
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3.2. Moduli of µ-filtrations of G. In §3.2 and §3.3 we make a brief digression
from the theory of Shimura varieties to discuss Grassmannians and filtrations more
generally. Let R be a domain with fraction field K of characteristic zero, R′/R an
étale cover, and G/R a connected reductive group.

3.2.1. Suppose we are given a cocharacter µ :Gm,R′→G R′ . This cocharacter gives
us a parabolic subgroup Pµ ⊂ G R′ , which we can view as a point xµ ∈ ParG/R(R′),
where we recall [Conrad 2014, 5.2.9] that ParG/R , the functor assigning to each
R′/R the set of parabolic subgroups of G R′ defined over R′, is a proper smooth
scheme over R.

After making a base change R ⊂ K → K we get a well-known finite decompo-
sition

ParG/R ⊗R K = ParG K /K =
∐

i

G K /Pi

where the Pi are representatives of the finitely many K conjugacy classes of para-
bolic subgroups of G K .

For Pµ ⊂ G R′ a parabolic subgroup, we denote its conjugacy class by [Pµ], in
a precise sense we will soon make clear. Let us say that [Pµ] is defined over R if
there is a component10 Zµ ⊂ ParG/R defined over R such that xµ ∈ Zµ(R′) and
Zµ,K is connected.

This definition in a sense is saying that “being étale locally conjugate to Pµ” is a
notion that is defined over R, even if Pµ itself is not. More precisely, we have the
following.

Lemma 3.2.2. Let µ be a cocharacter as above defined over R′ such that [Pµ] is
defined over R. For S an R-algebra, and P ⊂ GS a parabolic subgroup, P is étale
locally conjugate to Pµ if and only if xP ∈ ParG/R(S) factors through Zµ.

Proof. The statement may be checked étale locally, so we may work over R′, at which
point by the construction of ParG/R , G R′/Pµ ⊂ Zµ,R′ is a union of components.
Working over R′⊗R K using the fact that the fibres of Zµ over each generic point
are connected, we see that in fact G R′/Pµ= Zµ,R′ , so the desired statement follows
immediately from [Conrad 2014, 5.2.8]. �

For us an important context where the above holds will be the following.

Proposition 3.2.3. Assume R is a Dedekind domain with K = Frac R of char-
acteristic zero, G/R connected reductive and L/K a finite extension. Suppose
µ : Gm,L → GL is a cocharacter whose conjugacy class is defined over K .

10Here and in much of what follows we use “component” in the relative sense of a “component”
of a morphism X→ Y being a Y -subscheme X ′ ⊂ X such that the preimage of any connected open
subscheme U ⊂ Y is connected.
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Then there exists an étale cover R′/R and a cocharacter µ′ :Gm,R′→ G R′ such
that if we write R′⊗R K ∼=

∏
i L i , there are embeddings L ↪→ L i such that µ′⊗R K

is G(R′⊗R K )-conjugate to µ⊗L
∏

i L i .
Furthermore, thisµ′ has the property that [Pµ′] is defined over R and independent

of the choice of µ′.

Proof. For existence, take R′/R an étale cover which splits G and whose generic
points contain L , and fix embeddings L ↪→ L i . Let T ⊂ G R′ be a split maximal
torus and let Tµ ⊂ G R′⊗R K be a maximal torus containing the image of µ which
perhaps after enlarging R′ we may assume is also split. Then there exists g ∈
G
(∏

i L i
)
=
∏

i G(L i ) such that gTK g−1
= Tµ and so

µ′ = g−1µg ∈ HomR′⊗R K (Gm, TK )= HomR′(Gm, T )

is a cocharacter with the desired property.
Let us next show that [Pµ′] is defined over R. By definition we see that xµ and

xµ′ lie on the same component of ParG/R ⊗(R′⊗R K ), whence certainly on that
of ParG/R ⊗R′. But since the conjugacy class of µ is defined over K , xµ lies on a
component Zµ,K ⊂ ParG K /K which is geometrically connected. Letting Zµ be its
closure in (i.e., the corresponding component of) ParG/R , we obtain our witness to
the fact that xµ′ is a defined over R. Also since Zµ is determined by µ, in particular
it does not depend on µ′. �

3.2.4. Let S/R be a scheme. We let VecS denote the category of vector bundles
(projective finitely generated modules) on S, and RepR(G) the category of algebraic
representations G→ Aut(V ) for V ∈ VecR = VecSpec R .

A filtered bundle over S is a vector bundle M/S together with a decreasing
complete exhaustive filtration F • ⊂ M by flat submodules such that gr•F M :=⊕

p F p/F p+1 is flat over S. These form an exact category FilS , allowing us to
define a filtered G-bundle over S to be a faithful exact tensor functor

F : RepR(G)→ FilS .

We say that F is a filtration of G over S (or just “filtration of G” if no confusion
will arise) if its composite with the forgetful functor FilS → VecS is naturally
isomorphic to the usual forgetful functor RepR(G)→ VecR

⊗OS−−−→VecS .
Let µ : Gm,R′→ G R′ be a cocharacter defined over some étale cover R′/R such

that [Pµ] is defined over R. It induces a grading on each V ∈ RepR(G)⊗ R′, each
of which in turn gives such V the structure of a filtered bundle, so we can define a
canonical filtration of G associated with µ

Fµ : RepR(G)
Fil ◦µ∗−−−→FilR(G)⊗ R′.
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3.2.5. Let us say that a filtration F of G over S is a µ-filtration if étale locally on S
we have F∼= Fµ. We make the necessary remark that of course given f : S′→ S,
whenever F is a µ-filtration of G over S, we may take an étale cover {Uα→ S}
witnessing that F is a µ filtration and pulling it back along f it will give an étale
cover of S′ witnessing that f ∗ ◦F is a µ-filtration of G over S′.

Thus we have a natural functor on R′-schemes

Grµ,R′(S)= {µ-filtrations of G over S}.

Proposition 3.2.6. This has the following properties:

(1) The functor Grµ,R′ is representable by a smooth proper R′-scheme which in
fact canonically descends to Grµ /R.

(2) The scheme Grµ /R comes equipped with a natural G-action.

(3) If R is a field, this agrees with the construction of Section 3.1.1.

Proof. In the usual fashion µ determines a parabolic Pµ ⊂ G R′ , and we claim that
Grµ,R′ ∼= G/Pµ which in turn is smooth and projective by [Conrad 2014, 5.2.8],
and canonically descends by the definition of [Pµ] being defined over R.

In [ibid.] it is also shown that G/Pµ represents the functor of subgroups of G
which are étale locally conjugate to Pµ, so it suffices to check this coincides with
our functor. Given a µ-filtration F over S we can define the subgroup PF ⊂ G of
elements which preserve F (if you like, acting on all representations). Since F is a
µ-filtration, étale locally there is an identification of F with Fµ, which conjugates
PF onto Pµ. Thus F 7→ PF gives a map Grµ(S)→ G/Pµ(S).

Let us construct an inverse. Given P/S étale locally conjugate to Pµ,S , after
passing to an étale cover S′→ S there exists g ∈ G(S′) such that PS′ = g Pµ,S′g−1.
In particular PS′ is a parabolic subgroup of GS′ , and letting µP := g ◦µ we see that
PS′ preserves the filtration FP defined by µP of G over S′. We must now check
this filtration is independent of the choice of g and so in particular is canonical and
descends to S.

Suppose we take h ∈ G(S′) such that h Pµ,S′h−1
= g Pµ,S′g−1

= PS′ . Then

hg−1 PS′gh−1
= h Pµ,S′h−1

= PS′

so hg−1
∈ NG(P)(S′)= P(S′), where the final equality is again by [Conrad 2014,

5.2.8]. It follows that gµ and hµ induce the same filtration.
Part (2) is now obvious, since G acts by conjugation on G/Pµ, and part (3) is

immediate from [Conrad 2014, 5.2.7 (1)] and an easy verification shows that the
G-actions agree. �

3.2.7. In the context of Proposition 3.2.3 where we are given a conjugacy class of
cocharacters µ : Gm,L → GL defined over K = Frac(R) and deduce the existence
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of a µ′ defined over an étale cover of R inducing a conjugacy class of parabolics
defined over R and hence a Grµ′ /R we use the notation GRµ := Grµ′ noting the
canonical identification

GRµ⊗R K ∼= Grµ .

Lemma 3.2.8. Suppose G1 → G2 is a map of connected reductive groups over
R and µ1 : Gm → G1,R′ giving a conjugacy class defined over R and inducing
µ2 : Gm→ G1,R′→ G2,R′ . There is a natural map

Grµ1 → Grµ2 .

Proof. Given S/R and F ∈ Grµ1(S), recall that F is specified by a fibre functor

RepR(G1)→ FilS .

Composing with the restriction map RepR(G2)→ RepR(G1), we get a new fibre
functor from RepR(G2) which it is easy to check gives an element of Grµ2(S),
defining the map required. �

3.3. Filtered G-bundles. Fix G, µ as above and suppose we have X/R a scheme
and P → X a G-bundle on X . A µ-filtration of P is a G-equivariant map of
R-schemes

γ : P→ Grµ .

Lemma 3.3.1. To give a µ-filtration γ on P is to give a fibre functor

ω
γ

P : RepR(G)→ FilX

which étale locally is isomorphic to Fµ and such that the composite with the
forgetful functor

RepR(G)
ω
γ

P−→ FilX → VecX

is equal to the fibre functor ωP defined by P.

Proof. Suppose we are given a µ-filtration γ : P → Grµ of P . Pulling back the
universal µ-filtration of G, we obtain a G-equivariant µ-filtration of G over P ,
which descends to a µ-filtration of G over X , i.e., we obtain a fibre functor

ω
γ

P : RepR(G)→ FilX .

Since it comes from a G-equivariant µ-filtration of G over P , whose forgetful
functor to VecP by definition is the canonical one from RepR(G) which descends
to ωP , we see that it satisfies the condition in the lemma.

Conversely, if we are given ωγP satisfying the condition, we can pull it back
along P→ X to obtain a G-equivariant µ-filtration on P , which is the same as a
G-equivariant map γ : P→ Grµ. �
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We also need the following criterion for extending µ-filtrations over K to µ-
filtrations over R.

Lemma 3.3.2. Suppose we are given µ : Gm,L → GL for L/K = Frac(R) a finite
extension whose conjugacy class is defined over K , X/R a scheme and P→ X a
G-bundle. A µ-filtration

γ : PK → Grµ
extends to a G-equivariant

P→ GRµ

if for ρ : G ↪→GL(V ) a faithful representation on V/R finite projective, the bundle
V := V ×G P/X carries a filtration V• (making V into a filtered bundle in the above
sense) extending that of VK = ω

γ

PK
(V ).

Proof. Let R′/R be an étale cover and µ : Gm,R′→ G R′ a cocharacter conjugate
to µ as in Proposition 3.2.3. We let GrG

µ′ and GrGL(V )
µ′ be the two Grassmannians

formed from considering µ′ : Gm→ G and µ′ : Gm→ G ρ
−→GL(V ) respectively,

both defined over R.
By Lemma 3.2.8 we obtain a map

ρ∗ : GrG
µ′→ GrGL(V )

µ′ .

We claim this map is a closed immersion, and this suffices to prove the lemma be-
cause we are assuming that ρ∗(γ )∈GrGL(V )

µ′ ⊗R K extends to a map γ̃ : P→GrGL(V )
µ′ ,

and since GrGL(V )
µ′ is flat that the ideal sheaf of GrG

µ′ is killed by γ̃ ∗ may be checked
on the generic fibre.

Since it is clearly proper (as both the source and target are proper), it suffices to
show it is a monomorphism, for which it suffices to check the functor of points is
injective. But this is obvious: given two µ′-filtrations of GT for a test scheme T ,
if they induce the same filtration on VT then they are equal, since any other repre-
sentation of GT can be embedded in a tensor construction on VT and will have to
receive the induced filtration. �

4. Integral Models for the standard principal bundle

4.1. Breuil–Kisin modules and lattices in de Rham cohomology. We consider the
following adaptation of the results of [Kisin 2006], as packaged in [Kisin 2010, 1.2].
Fix F =

∏s
i=1 Fi some finite étale algebra over Qp, and let κi be the residue field

of Fi , and Ei (u) the monic minimal polynomial of a uniformiser $i for Fi over
W (κi ). Consider the ring S=SF :=

∏
i W (κi )[[u]] and E(u)= (E1(u), . . . , Es(u)).

We equip S with the Frobenius ϕ raising u 7→ u p and the canonical Frobenius on
each W (κi ).
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Define the category Lissecrys
Zp
(F) to be that of crystalline constant rank lisse

Zp-sheaves on Spec F , i.e., Galois-stable Zp-lattices in tuples of crystalline p-
adic representations (σi : Gal(Fi/Fi )→ GLn(Qp)). Define the category ModϕS of
S-modules to consist of finite free S-modules M together with a ϕ-semilinear
isomorphism

1⊗ϕ : ϕ∗(M)[1/E(u)] −→∼ M[1/E(u)].

Theorem 4.1.1. There is a fully faithful tensor functor

M : Lissecrys
Zp
(F)→ModϕSF

compatible with the formation of symmetric and exterior powers, unramified base
change F→ F ′ of finite étale algebras over Qp, and with the property that

D(L) := ϕ∗M(L)⊗SF OF ⊂ DdR(L ⊗Qp)

obtained by tensoring along the map u 7→($i) is a natural OF -lattice in DdR(L⊗Qp).
Moreover, if A is an abelian variety over OF , and L = Tp(AF )

∗, then this lattice is
identified with integral de Rham cohomology

H 1
dR(A/OF )

⊂
−−−→ H 1

dR(AF/F)∥∥∥ yo
D(L)

⊂
−−−→ DdR(L ⊗Qp).

Proof. The first part is just [Kisin 2010, 1.2.1] and the second follows perhaps
most quickly from [Bhatt et al. 2016, 1.8 (ii)] (although since we are in the case of
abelian varieties the theorem probably also can be deduced directly from the theory
of Breuil and Kisin). �

4.1.2. For our application to integral models of Shimura varieties over OE [1/N ],
we also need the following abstract lemmas. We thank one of the anonymous
referees for pointing out the ideas for the argument for Lemma 4.1.3 in [Maulik
2014, 6.15].

Lemma 4.1.3. (1) Let A be a Dedekind domain with fraction field K , X/A a
smooth scheme and suppose we are given two vector bundles L1 and L2 over
X together with an identification

θ : L1⊗A K −→∼ L2⊗A K .

Suppose further that θ extends as an isomorphism to the formal completion of
X at all maximal ideals of A. Then θ extends over X.
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(2) Let W = W (k) for k a perfect field with fraction field K . Suppose X/W is a
smooth scheme, with p-adic completion X̂ , and special fibre X0, and suppose
we are given vector bundles L1 and L2 over X̂ together with an identification

θ : L1
[ 1

p

]
−→∼ L2

[ 1
p

]
.

Suppose further that there is a Zariski dense subset U0⊂ X0 of the special fibre
such that each x0 ∈U0 admits a lift x̃0 ∈ X̂(W (κ(x0))) with the property that
x̃∗0 (θ) extends to an isomorphism x̃∗0 (L1)−→

∼ x̃∗0 (L2). Then θ extends over X̂ .

Proof. Note that in both cases the claim may be checked locally on X , so we may
assume L1,L2 are both free and that X = Spec R is affine, and by picking bases
and considering the matrices of both θ and θ−1 the question can be reduced to a
question about the matrix coefficients.

For (1), we wish to show matrix values lying in R⊗A K in fact lie in R. The
matrix values all lie in R[1/D] for some D ∈ A, since R is of finite type over A,
and the Li of finite rank. But by the hypothesis for each maximal ideal p containing
D, we know θ and θ−1 extend over X̂/p, implying that the matrix values also lie in
R⊗A Ap, hence they lie in R as required.

For (2), letting R̂ be the p-adic completion of R, we are required to show that a
matrix coefficient f ∈ R̂[1/p] in fact lies in R̂. Suppose for contradiction it does
not, and let r > 0 be minimal such that F = pr f ∈ R̂. The hypothesis tells us
that for any x0 ∈ U0 and some lift x̃0 we have that x̃∗0 ( f ) ∈ W (κ(x0)). Therefore
x̃∗0 (F) ∈ pr W (κ(x0)) and in particular x∗0 (F)= 0, or F ∈mx0 ⊂ R⊗W k. Since the
set of such x0 is dense, and R⊗W k a reduced algebra of finite type over a field, we
deduce that the F = 0 restricted to the special fibre. I.e. F = pF ′ for some F ′ ∈ R̂.
But then pr−1 f = F ′ ∈ R giving the required contradiction. �

Lemma 4.1.4. Let R be a PID with fraction field K , X/R a flat scheme, G/R a
flat affine group scheme of finite type, and P/X K a G K -torsor. Suppose we have
two pairs (Pi , ιi ) i = 1, 2 where Pi is a G-torsor over X and ιi : Pi ⊗R K −→∼ P
an isomorphism of G K -torsors over X K .

Then the map ι−1
2 ι1 : P1⊗ K −→∼ P2⊗ K extends over R if and only if for every

representation G→ GL(V ) with V/R finite free the composite isomorphism

ωP1(V )⊗ K ι1∗−→ωP(VK )
ι−1
2∗−→ωP2(V )⊗ K

identifies the lattices ωP1(V ) and ωP2(V ).

Proof. Recall the natural equivalence [Broshi 2013, 1.2] under our hypotheses
between the groupoid of G X -torsors and the groupoid of fibre functors Rep(G)→
Vec(X), and that it is functorial in X/R. In particular, ι−1

2 ◦ ι1 extends over R if
and only if the composite induced map ωP1 ⊗R K −→∼ ωP2 ⊗R K on fibre functors
extends over R, and this is the case if and only if the condition on lattices holds. �
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4.2. Special type case.

4.2.1. Let (T, h) be the Shimura datum defined by a torus split by a CM field,
ET := E(T, h). Then Sh(T, h)/ET is a product of algebraic field extensions, and
we recall that its integral canonical model S(T, h) is that obtained by taking integral
closures. In particular, recall that if T is unramified at all p -N , we get a unique
integral model (also abusively written) T/Z[1/N ] and letting K N

=
∏

p -N T (Zp)we
get SK N (T, h) indétale over OET [1/N ]with a natural

∏
p|N T (Qp) action extending

that on the generic fibre.
Recall that we also have PK N (T, h)→ ShK N (T, h) the standard principal T c-

bundle, defined over ET . Our aim here is to construct for it a canonical integral
model. We assume henceforth that T is unramified at p -N .

4.2.2. Suppose P/SK N (T, h) together with ι :PET −→
∼ PK N (T, h) is such a model.

We can study the associated fibre functor

ωP : RepZ[1/N ](T
c) 3W 7→W ×T c

P ∈ Vec(SK N (T, h)).

The identification ι realises the image of such as lattices

ωP(W )⊂ ωPK N (T,h)(W ⊗Q)

in the “de Rham sheaves” defined by PK N (T, h).
On the other hand, for each prime q -N , and v|q a place of ET we can let K Nq

=∏
p -Nq T (Zp) and it is immediate from the setup and class field theory that the pro-

étale T c(Zq)-cover ShK Nq (T, h)→ ShK N gives rise to, for each representation Wq

of T c(Zq), a crystalline lisse Zq -sheaf ωet(Wq) on ShK N . By Theorem 4.1.1 we have
associated to such a datum a canonical lattice D(ωet(Wq))⊂ DdR(ωet(Wq)⊗Zq Qq).

Finally recall Proposition 3.1.8 which gives a natural identification

θ : ωPK N (T,h)(W ⊗Q)⊗ET ET,v −→
∼ DdR(ωet(Wq)⊗Zq Qq).

We say that the model P is canonical if for every q -N and W ∈RepZ[1/N ](T ) the
two lattices ωP(W )⊗OET [1/N ] OET ,v and D(ωet(Wq)) constructed above are, under
the map θ , identified.

Proposition 4.2.3. With (T, h) as above, there exists a unique integral canonical
model for PK N (T, h).

Proof. We first remark that uniqueness follows directly from (4.1.3 (1)) and
Lemma 4.1.4.

For existence, let us first remark that we have the map of Shimura data (T, h)→
(T c, hc) giving rise to a map of integral canonical models for the Shimura varieties
i : SK N (T, h)→ SK cN (T c, hc). Suppose Pc is an integral canonical model for
PK cN (T c, hc). Then i∗Pc is an integral canonical model for PK N (T, h) because
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i∗ωet,(T c,hc) = ωet,(T,h). Since any h : S→ T c
R has weight defined over Q, we are

therefore reduced to the case where (T, h) is a CM pair (i.e., where T is split by a
CM field and the weight of h is defined over Q).

Let T → GL(W ) be a representation of T/Z[1/N ]. Since (T, h) is a CM
pair, ShK N (T, h), a union of copies of Spec E for some field E , can be inter-
preted as a moduli space of CM motives with level structures. Let PK N (T, h)0→
ShK N (T, h)0 −→∼ Spec E be any single component together with the restriction
of PK N (T, h) over it. There exists a finite extension F/E and a CM abelian
variety A/F for such that ωPK N (T,h)0(W ⊗Q)⊗E F ⊂ H 1

dR(A/F)⊗ and ωet(W )=

H 1
et(A,Zp)

⊗
∩ωet(W )⊗Qp for all p -N ′ some N ′ divisible by N . Let A/OF be the

Neron model of A, and notice that it is an abelian variety over OF [1/M] for some
M which we may assume is divisible by N ′. Thus we construct an OE [1/M]-lattice

3′ := ωPK N (T,h)0(W ⊗Q)∩ H 1
dR
(
A/OF

[ 1
M

])⊗
⊂ ωPK N (T,h)0(W ⊗Q).

The second part of Theorem 4.1.1 assures us that at all p -M this lattice agrees with
that obtained via first taking the dual Tate module and applying Breuil–Kisin theory.

Moreover, using the construction of Theorem 4.1.1 together with Lemma 2.4.1
for the finitely many p which divide M but do not divide N , we are able to extend3′

to a lattice 3 over OF [1/N ]. This 3 (applying the construction for all components)
gives us the lattice in ωPK N (T,h)(W ⊗Q) we require to prove existence. Note that
since we already have uniqueness, we may observe that the construction does not
depend on the choices of F and A/F . �

4.3. Connections on G-bundles. It will help to collect some basic facts about
connections on G-bundles. Let S be a scheme and G/S a flat affine group scheme
of finite type.

Suppose X/S a scheme, and let12(1)=12
X/S(1) be the first order neighbourhood

of the diagonal in X×S X , δ : X ↪→1(1) and p1, p2 :1(1)→ X the two projection
maps. We also will need 13(1), the first order neighbourhood of the diagonal in
X ×S X ×S X and its three projections p12, p23, p13 :1

3(1)→12(1).

4.3.1. Recall that if we have a vector bundle V on X a connection on V/X (relative
to S) is given by an isomorphism

∇ : p∗1V−→∼ p∗2V

such that δ∗∇ = id (under the canonical identification (δ ◦ pi )
∗V = id∗V ∼= V).

Such a connection is said to be flat if

p∗13(∇)= p∗23(∇) ◦ p∗12(∇).

It is well known that these definitions are equivalent to the more usual definitions
from differential geometry.
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4.3.2. Let P→ X be a G X -torsor. A connection on P is an isomorphism

∇ : p∗1 P −→∼ p∗2 P

such that δ∗∇ = idP , and ∇ is said to be flat, again if

p∗13(∇)= p∗23(∇) ◦ p∗12(∇).

Lemma 4.3.3. Let X/S be a scheme, and assume S is Dedekind. Let P→ X be a
G-bundle, with associated fibre functor ωP . To give the following pieces of data are
equivalent:

(1) A (flat) connection on P→ X.

(2) For each representation V ∈ RepS(G) a (flat) connection on ωP(V ) in such a
way that the isomorphisms

ωP(V ⊗W )∼= ωP(V )⊗ωP(W )

and

ωP(V∨)∼= ωP(V )∨

are isomorphisms of bundles with connection.

(3) Given a faithful representation G ↪→ GLS(V ) and tensors sα ∈ V⊗ such that
G = GLS,sα (V ), a (flat) connection on ωP(V ) with the property that each
ωP(sαOS)⊂ ωP(V⊗)= ωP(V )⊗ receives the trivial connection.

Proof. The equivalence of (1) and (2) is formal given Broshi’s Tannakian formalism
over a Dedekind scheme [Broshi 2013, 1.2]. Indeed the conditions in (2) are
exactly those needed to say that the connections ∇ωP (V ) define an isomorphism of
tensor functors p∗1ωP −→

∼ p∗2ωP , which is the same as an isomorphism of torsors
p∗1 P −→∼ p∗2 P , and one easily verifies that the conditions translate across.

It is obvious how to pass from (1) to (3). For going from (3) to (1), we note that
P can be canonically identified with the frame bundle

P ∼= Isomsα (V ⊗OX , P ×G V ),

(via p 7→ (v 7→ (p, v))). Let V=ωP(V )= P×G V and sα,1 = (1, sα) ∈V⊗. If we
are given a connection ∇ : p∗1V−→∼ p∗2V, which is trivial on each line containing
sα,1, that is to say ∇(p∗1sα,1)= p∗2sα,1, we obtain a well-defined isomorphism

∇P : p∗1 P 3 φ 7→ ∇ ◦φ ∈ p∗2 P,

giving the desired connection on P . Again it is easy to check that if ∇ is flat then
so is ∇P . �
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4.4. Definition of canonical models. Let (G,X) be a Shimura datum with reflex
E = E(G,X), and for what follows assume it admits an integral canonical model
over OE [1/N ] at any level hyperspecial away from N .

4.4.1. We shall need the mild assumption that Z(G)◦ is split by a CM field, which
we impose for the rest of the paper. This can be removed if the arguments relying
on CM motives in proving Proposition 3.1.8 and Proposition 4.2.3 can be replaced
by arguments that work with greater generality.

4.4.2. Recall Section 3.1.2 that the Shimura variety Sh(G,X) is equipped with
a standard principal bundle P(G,X), which is a G(A∞)-equivariant Gc-torsor
defined over E , with a flat connection ∇ and a G-equivariant map γ : P(G,X)→
Grµ. Suppose also G is quasisplit and unramified away from N , fix G = GZ[1/N ] a
reductive model, K N

=
∏

p -N G(Zp) and for µ the Hodge cocharacter note that
over an integral model one has the canonical inclusion Grµ ⊂ GRµ.

We also let
ωet : RepZp

(Gc)→ LisseZp(ShK (G,X))

denote the standard étale Zp-sheaves coming from the tower at p, and ωet,η :

RepQp
(Gc)→ LisseQp(ShK (G,X)) the corresponding lisse Qp-sheaves.

4.4.3. We will say that a (G,X) has enough crystalline points if for every prime p

of E with p|p -N , and every KN ⊂
∏

q|N G(Qq) compact open, K = KN K N , there
is a dense subset U0 of the special fibre of SKN K N /p with the property that for each
x0 ∈U0 there is a lift x̃0 ∈ SKN K N (W (κ(x0)) such that x̃0[1/p]∗ωet,η takes values
in crystalline representations of 0W (κ(x0))[1/p].

We say (G,X) has all the crystalline points if for every W (k)-valued point
x ∈ SKN K N for k a finite field of characteristic p -N , x[1/p]∗ωet,η takes values
in crystalline representations of 0W (k)[1/p]. Clearly in the present context where
the base is smooth and so every k-point admits a W (k)-lift, if you have all the
crystalline points you have enough crystalline points.

Moreover, we note that when (G,X) is of Hodge type or special type it has
all the crystalline points. In the Hodge type case, this is because the relevant
Galois representations live inside H 1

et(Ax [1/p],Qp)
⊗, where Ax is the fibre of the

universal abelian scheme at x , and since Ax/W (κ(x)) is an abelian scheme, this
representation is crystalline. In the special type case it follows from the explicit
reciprocity law computation as in Section 4.2.2. We shall later use the methods of
§4.6 to establish that (G,X) of abelian type also has all the crystalline points.

In what follows, a crystalline point is understood to be, for some KN and some
finite field k of characteristic p -N , a point of SKN K N (W (k)) such that x[1/p]∗ωet,η

takes values in crystalline representations, and any p, KN , k, K0 = W (k)[1/p]
appearing will be understood to be part of this data.
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4.4.4. We will also say that to give (G,X) a de Rham structure is to give for every
crystalline point x ∈ SKN K N (W (k)), an identification

DdR ◦ x
[ 1

p

]∗
ωet,η −→

∼ x
[ 1

p

]∗
ωPKN K N (G,X) : RepQp

(Gc)→ VecK0 .

In the case where (G,X) is of abelian type (and we expect in general), there is
a canonical de Rham structure. This follows using functoriality and the morphism
(G,X)→ (Gc,Xc) to reduce to the case where the weight is defined over Q. Here
we may use Milne’s moduli interpretation [1994] in such a situation to interpret
x[1/p] as an abelian motive, and get the required identification by the same argument
as Proposition 3.1.8. It is also straightforward to check that these canonical de Rham
structures are compatible under morphisms of Shimura varieties induced by maps of
Shimura data. In what follows, we will usually assume (G,X) is of abelian type in
which case we are always working with reference to the canonical de Rham structure.

4.4.5. Let (G,X) be a Shimura datum as above equipped with a de Rham structure.
An integral canonical model P= PK N (G,X) for PK N (G,X) is a Gc-torsor over
the integral canonical model SK N (G,X) for ShK N (G,X) with an identification

ι : PK N (G,X)⊗OE [1/N ] E −→∼ PK N (G,X)

and equivariant
∏

p|N G(Qp)-action such that we have the lattice property given
below for any crystalline point x ∈ SKN K N (W (k)).

Consider

ωdR,x : DdR ◦ x
[ 1

p

]∗
ωet,η : RepQp

(Gc)→ VecK0 .

This functor comes with two canonical lattices. First, there is the lattice given
by ωPKN K N coming via ι and the de Rham structure. Second, there is the lattice
D ◦ x[1/p]∗ωet coming from the theory Theorem 4.1.1 of S-modules. The lattice
property requires that these lattices are equal. Note that since everything is Hecke
equivariant, it suffices to check the lattice property at infinite level, an observation
of which we shall make liberal use.

We will also insist that for PK N to qualify as a canonical model the connection
∇ and the µ-filtration γ extend to P, although we shall see that in the abelian type
situation these additional properties are automatic given the condition on crystalline
points.

4.4.6. We remark that this definition is compatible with Section 4.2.2. We also
remark that one can make definitions of integral canonical models defined over
any unramified-away-from-N extension F/E , and for any such F containing the
abelian extension over which ShK N (G,X) splits into its geometrically connected
components we may also define integral canonical models for PK N (G,X)+F . These
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definitions are made in exactly the same way and such models enjoy the properties
we are about to note for the same reasons.

Lemma 4.4.7. Suppose (G,X) has enough crystalline points. An integral canonical
model (P, ι), if it exists, is unique up to canonical isomorphism.

This is true without assuming ∇ or γ extend.

Proof. Suppose we have (P, ι) and (P′, ι′), two integral canonical models for
PK N (G,X). We will aim to show that ι′−1

◦ ι : P⊗ E −→∼ P′ ⊗ E extends over
OE [1/N ]. By Lemma 4.1.4 it suffices to check that for any representation of Gc

Z[1/N ]

on a finite free module V that the composite (ι′−1
◦ ι)∗ :ωP(V )⊗E −→∼ ωP′(V )⊗E

identifies the OE [1/N ]-lattice ωP(V ) with ωP′(V ).
By Hecke equivariance we may reduce to checking this at every finite level

KN K N . Noting that SKN K N is smooth, we may invoke our lattice Lemma 4.1.3 to
reduce the statement first (4.1.3(1)) to checking equality of lattices over the formal
completion of SKN K N at each (maximal) prime p of OE [1/N ], and then (4.1.3 (2))
to checking equality of lattices on lifts of a dense subset of the special fibre at p.
But since (G,X) has enough crystalline points, and by the lattice condition we have
the necessary equality at these points, we get the desired identification.

Note that the connection and µ-filtration are extended from the generic fibre and
that they extend is a property, so they have no impact on the uniqueness statement.

�

The following functoriality properties can now be read off.

Proposition 4.4.8. Let f : (G1,X1)→ (G2,X2) be a morphism of Shimura data
with enough crystalline points and compatible de Rham structures induced by a map
G1,Z[1/N ]→ G2,Z[1/N ] of reductive groups over Z[1/N ], and K N

i =
∏

p -N Gi (Zp)

and (Pi , ιi ) an integral canonical model for PK N
i
(Gi ,Xi ), i = 1, 2.

(1) We can canonically identify

P1×
Gc

1 Gc
2 −→
∼ f ∗P2.

(2) The induced diagram
P1

γ1
−−−→ GRµ1y y

P2
γ2
−−−→ GRµ2

commutes.

Proof. Let E = E(G1,X1). Note that by Lemma 3.1.6 we have a natural identifica-
tion

θ : PK N
1
(G1,X1)×

Gc
1 Gc

2 −→
∼ f ∗PK N

2
(G2,X2)



1872 Tom Lovering

and so as in the previous lemma it will suffice to check that

f ∗(ι−1
2 ) ◦ θ ◦ ι1 : (P1×

Gc
1 Gc

2)⊗OE [1/N ] E −→∼ ( f ∗P2)⊗OE [1/N ] E

exchanges the natural lattices when taken on the level of fibre functors

ω : RepZ[1/N ] G
c
2→ Vec(SK N

1
(G1,X1)).

As in the previous lemma, we may reduce to working at finite level and checking
equality at crystalline points. But this is then immediate from the lattice condition,
the compatibility of the étale fibre functors on both Shimura varieties, together
with the (consequent) observation that the image of a crystalline point is always a
crystalline point. This completes the proof of (1). Now (2) follows directly from
the fact that after taking ⊗OE [1/N ]E the diagram commutes by Lemma 3.1.6. Note
that the right hand vertical map is that given by Lemma 3.2.8. �

Lemma 4.4.9. Suppose F/E = E(G,X) a Galois extension unramified away from
N , and (P′/OF [1/N ], ι′) an integral canonical model for PK N (G,X)F .

Then the descent data

Gal(F/E) 3 σ 7→ θσ : σ
∗PK N (G,X)F −→

∼ PK N (G,X)F

extend to P′, and the pair (P, ι) obtained by étale descent is an integral canonical
model for PK N (G,X) over OE [1/N ].

Proof. Take σ ∈ Gal(F/E). We claim that σ ∗P′K N together with the composite

σ ∗P′K N ⊗ F σ ∗ι
−→ σ ∗PK N (G,X)F

σ
−→ PK N (G,X)F

is an integral canonical model. From this claim it is immediate that the descent data
extend and in its turn P′K N descends to an integral canonical model over OE [1/N ],
because being a crystalline point and the lattices coming from S-modules are stable
under finite unramified base change.

We may pull back the Hecke action, so it remains to check the lattice condition on
crystalline points at finite level. Let x ∈SKN K N (G,X)(W (κ)) be a crystalline point
and v the corresponding place of F , and σ ∗(x) its pullback along σ : SKN K N −→∼

SKN K N . Let ωet,x and ωet,σ ∗(x) be the Zp-linear étale fibre functors coming from
the Shimura variety at infinite level at p and restricting to the fibres at x[1/p] and
σ ∗(x)[1/p] respectively, viewing both as taking values in 0K0-representations. Note
that by construction (since Sh(G,X) is defined over E) there is an isomorphism
ωet,σ ∗(x) −→

∼ ωet,x covering σ : σ ∗x −→∼ x . In particular, σ ∗(x) is also crystalline.
For V ∈ RepZp

(Gc) it is necessary to check an equality of two lattices in
DdR(ωet,x(V )[1/p]). The first is the usual D(ωet,x(V )) coming straight from S-
modules, the second obtained as the composite

D(ωet,σ ∗(x)(V ))⊂ DdR
(
ωet,σ ∗(x)(V )

[ 1
p

])
−→∼ DdR

(
ωet,x(V )

[ 1
p

])
.
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Having thus spelt it out, we see that it follows immediately from functoriality of the
D construction. Moreover, the Gc-action, connection and filtration are all defined
over E on the generic fibre and it can be checked they extend to OE [1/N ] étale
locally, so the fact they do over F immediately gives them all. �

4.5. Hodge type case. We turn our attention to existence.

Theorem 4.5.1. Let (G,X) be a Shimura variety of Hodge type with G unrami-
fied away from N and K N

=
∏

p -N G(Zp). Then PK N (G,X) admits an integral
canonical model.

We let E = E(G,X) throughout this paragraph, and unless otherwise specified
all Shimura varieties ShK ,SK or bundles PK or PK will be understood to be those
attached to the Shimura datum (G,X). We also note that (G,X) being of Hodge
type implies G = Gc.

4.5.2. First some more algebraic preliminaries. Let R be a ring, M a finite free R-
module, and M⊗ the direct sum of all R-modules formed from M by the operations
of taking duals, tensor products, symmetric powers and exterior powers. If sα ∈M⊗

is a collection of tensors, we say that they define a subgroup G ⊂ GL(M) if it is
precisely the group which acts trivially on all the sα.

We need the following version of [Kisin 2010, 1.3.2], whose proof is basically
identical.

Proposition 4.5.3. Let R be a PID with field of fractions K , M a finite free R-
module, and G ⊂ GL(M) a closed subgroup, flat over R with reductive generic
fibre. Then it is defined by a finite collection of tensors sα.

Proof. Exactly as in [Kisin 2010, 1.3.2] we can reduce to showing that it suffices
to find tensors defining G in some representation of GL(M) on a finite projective
R-module, and we take I ⊂ OGL(M) the ideal of G in the Hopf algebra of GL(M),
which has scheme-theoretic stabiliser precisely G.

By [Waterhouse 1979, 3.3] there is a finite dimensional GL(M)K -stable subspace
Wη ⊂ OGL(M) ⊗ K containing a finite set of generators for I as an ideal. Let
W = Wη ∩ OGL(M), which is visibly GL(M)-stable, and it is finitely generated
because OGL(M) is a free R-module and letting e1, . . . , en be a basis for Wη, writing
them as elements of OGL(M)⊗ K we see they lie in W̃ ⊗ K for some W̃ ⊂ OGL(M)

a finite free R-submodule, and such that W ⊂ W̃ . But R is a PID, so we deduce W
is finite free.

Now we see that G is the stabiliser of W ∩ I ⊂ W , and the argument can be
concluded exactly as in [Kisin 2010, 1.3.2]. �

4.5.4. Now recall Section 2.4.4 that for (G,X) our Shimura datum of Hodge type
with G unramified away from Z[1/N ] (taking GZ[1/N ] = G from the discussion in
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Section 2.4.4) we may choose a symplectic embedding i : (G,X) ↪→ (GSp2g, S±)
extending to a closed immersion

i : GZ[1/N ] ↪→ GL(VZ[1/N ]).

Henceforth view V as a Z[1/N ]-module, and G as a reductive group over Z[1/N ].
By the above proposition we can find sα ∈ V⊗ such that G = Autsα (V ).

4.5.5. The map i defines (pulling back the universal abelian variety) an abelian
variety π : AK N→SK N , and we can study its sheaf of relative de Rham cohomology
V=H1

dR(AK N /SK N ) with Gauss–Manin connection ∇.
By the absolute Hodge cycles argument of [Kisin 2010, 2.2.2] we obtain ∇-

horizontal
∏

p|N G(Qp)-invariant tensors sα,dR ∈V⊗⊗Z[1/N ]Q, and by [ibid., 2.3.9]
for any v -N a finite place of E these sections extend over OE,(v), which is enough
to conclude they in fact lie in V⊗.

Let us therefore define the sheaf on (SK N )fppf

PK N := Isomsα (V,V)

whose sections over u :U→SK N are those trivialisations θ : V ⊗Z[1/N ]OU −→
∼ u∗V

such that (after applying (−)⊗ to both sides) each sα is identified with sα,dR. Note
that since

∏
p|N G(Qp) acts equivariantly on V and fixes sα,dR we may freely pass

between infinite and finite level.

Proposition 4.5.6. The sheaf PK N is a G-torsor over SK N .

Proof. It obviously suffices to check at finite level K = KN K N for some sufficiently
small KN . We claim it also suffices to check in the formal neighbourhood of any
closed point x ∈ SK .

First we may directly verify that PK is representable because passing to a Zariski
cover making V free, and then choosing arbitrary identifications V ∼=V, PK can be
constructed as a closed (hence affine) subvariety of GL(V ). Now suppose we know
it is a G-torsor in a formal neighbourhood of every closed point. Then since G is
faithfully flat, PK is faithfully flat over the formal neighbourhood of every closed
point, which is enough to prove that PK /SK is faithfully flat. It remains to show
that the natural map

PK ×SK GSK 3 (p, g) 7→ (p, pg) ∈ PK ×SK PK

is an isomorphism, but this also is the case if and only if it is the case over a formal
neighbourhood of each closed point, where again it follows from our assumption.

Thus we are reduced to the study of P̂x := PK | ˆSK ,x
for closed points x ∈ SK .

If char(x) = 0, the Betti–de Rham comparison theorem gives an identification
V ˆSK ,x

⊗C−→∼ V̂x ⊗C, giving a fpqc-local section. This suffices because it shows
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P̂x is smooth by fpqc descent, and so P̂x admits a section étale locally, which is
enough to see it is a G-torsor.

If char(x)= p, we may follow the proof of [Kisin 2010, 2.3.5] to study Nx :=

O ˆSK ,x
together with the p-divisible group G = AK | ˆSK ,x

[p∞] over the formally
smooth ring Nx .

First note that x determines a place v of E above p and since E is unramified at
p we may identify OE,v =W (κ(x))=:W , over which Nx is canonically an algebra.
The crystalline-de Rham comparison gives an identification VNx = D(G)(Nx). We
let G0 denote the restriction of G to x .

Taking x̃ : Nx → W a lift, we may follow the argument of [ibid., 2.3.5] to
obtain from the Tate module of x̃∗G tensors sα,0 ∈D(G0)(W )⊗ defining a reductive
subgroup G(x̃)⊂GL(D(G0)(W )), which gives rise to an explicit versal deformation
ring RG(x̃) of G(x̃)-adapted deformations of G0. This then has the property that we
may identify RG(x̃) −→

∼ Nx in such a way that induces an identification of G with
the explicit versal deformation (let’s also call it G) one constructs over RG(x̃), so in
particular we have

VNx = D(G)(RG(x̃)).

As in [ibid., 2.3.9] one has by an explicit construction lifts s̃α,0 to D(G)(RG(x̃))
⊗ of

sα,0 which are identified with sα,dR ∈ V⊗Nx
. This explicit construction comes about

in [ibid., §1.5] by defining D(G)(RG(x̃))= D(G0)(W )⊗W RG(x̃) as a module and
taking the lift s̃α,0 = sα,0⊗ 1. Finally let us note that by [ibid., 1.4.3] (since G is
connected) there exists a W -linear isomorphism

VW −→
∼ D(G0)(W )

identifying sα with sα,0. In particular this identifies GW −→
∼ G(x̃) uniquely up to

inner automorphisms and the composite

VW ⊗W RG(x̃) −→
∼ D(G0)(W )⊗W RG(x̃) −→

∼ D(G)(RG(x̃))= VNx

gives a section of P̂x as required. �

4.5.7. We would now like to show it is the desired canonical model for PK N (G,X).
Firstly we must check that the additional structures extend.

We have already noted that the
∏

p|N G(Qp)-action extends. By Lemma 4.3.3,
the connection ∇ on PK N extends to PK N because the Gauss–Manin connection
extends to (i.e., can be constructed directly on) V=H1

dR(AK N /SK N ) and by the
construction of sα,dR in [Kisin 2010, 2.2] it is clear they are parallel sections. It
is also immediate the µ-filtration extends, by Lemma 3.3.2 and that the Hodge
filtration is naturally defined on the integral de Rham cohomology V.

Finally, we need to verify that it is indeed a canonical model, and as usual we
check the lattice condition at a crystalline point x . But in our situation this is very
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straightforward: we just use the facts that, taking Ax to be the pullback of the uni-
versal abelian scheme to x , that Theorem 4.1.1 D(H 1

et(Ax ,Zp))= H 1
dR(Ax/W (k))

and that by compatibility of D with the p-adic comparison theorems, D(x∗sα,et)=

x∗sα,dR.

4.5.8. For making the transition from Hodge to abelian type, we will need to
extend the equivariant Gc

×
∏

p|N G(Qp)-action to an equivariant action of the
ZN
= Z[1/N ]-group scheme

AN
P (G)=

(
Gc
×

∏
p|N G(Qp)

Z(ZN )

)
∗G(ZN )+/Z(ZN ) Gad(ZN )+

which sits in an exact sequence

1→ Gc
→AN

P (G)→AN (G)→ 1.

To do this it suffices to give the Gad(ZN )+-action and then check it is compatible,
for which we imitate the approach taken in [Kisin 2010, 3.2] and [Kissin and
Pappas 2015, 4.5], with our modifications from Section 2.5.6 and further slight
modifications.

To be precise, recall that a point x ∈ PK N (T ) gives the data of an quadruple
(A, λ, εet, εdR) where A/T is an abelian scheme up to an isogeny whose degree is
supported on N , λ a weak polarisation of A, εdR a section of Isomsα (VT ,VT ), and
εet ∈ 0(T, Isomsα (V

∏
p|N Qp ,

∏
p|N V̂p(A))).

Given γ ∈Gad(ZN )+, we may form the Zder-torsor P={g∈Gder
|π(g)=γ }. We

may take F/Q Galois such that P(OF [1/N ]) is nonempty, and take γ̃ ∈P(OF [1/N ]).
This can be used to define an action just as in [Kisin 2010, 3.2]. Indeed we can define

AP(T )= (A(T )⊗Z[1/N ] OP)
Zder

and specialise the map

AP
⊗Z[1/N ] OP −→

∼ A⊗Z[1/N ] OP

at γ̃ to obtain

ιγ̃ : AP
⊗Z[1/N ] OF

[ 1
N

]
−→∼ A⊗Z[1/N ] OF

[ 1
N

]
.

These allow one to give the action of γ as taking

(A, λ, εet, εdR) 7→ (AP, λP, εP
et , ε

P
dR),

where all but the last of these are as defined by Kisin. For the action on the de Rham
component, we need the following modification of [Kisin 2010, 3.2.5].
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Lemma 4.5.9. With notation as above, the composite

VT ⊗ZN ON
F
γ̃−1

−→ VT ⊗ZN ON
F
εdR−→ H 1

dR(A/T )⊗ZN ON
F

ι−1
γ̃
−→ H 1

dR(A
P/T )⊗ZN ON

F

is Gal(F/Q)-invariant, hence induces a section

εP
dR : VT −→

∼ H 1
dR(A

P/T )

which takes sα to sα,dR.

Proof. The cocycle computation argument of [ibid., 3.2.5] goes through unchanged.
For the claim about tensors, the only nonobvious point is that ι−1

γ̃
preserves the

tensors, which one checks directly by working over C, using the comparison with
Betti cohomology as in [ibid., 3.2.6]. �

It is also clear that this action is compatible with the Gc
×
∏

p|N G(Qp)/Z(ZN )-
action in the sense that if we are given g ∈ Gc(ZN )+ we may take F = Q and
γ̃ =γ =g−1 and postcompose the whole quadruple by the quasiisogeny ιγ to identify

(A, λ, εet ◦ g, εdR ◦ g)= (AP, λP, εP
et , ε

P
dR).

4.6. Some distinguished Shimura data. In this section we digress a little. To get
from the Hodge type to the abelian type case we would like to follow Deligne
[1979] and pass via connected components, but unfortunately a straightforward
reduction of P to the derived group is not possible to carry out over OE [1/N ]
(roughly speaking because carrying out such a construction requires “trivialising the
Gab part of the motivic structure”, which can only be done canonically over C using
Betti–de Rham comparison). We address this by constructing some distinguished
Shimura data B(Gder,X+, E) which are in some sense initial among Shimura data
whose connected Shimura datum is (Gder,X+) and whose reflex field is contained
in E . Pulling back our torsors from the Hodge type case we may then reduce along
B→ G while leaving all motivic structures intact.

4.6.1. Let (G,X) be a Shimura datum, and E its reflex field. Our goal is to construct
a new Shimura datum (B,XB)→ (G,X) with Bder

= Gder and reflex field E and
show it depends only on these data and X+ and not on G.

Since E is the reflex field, we obtain a well-defined

µE : Gm,E → Gab
E

taking the “determinant” (composite with G → Gab) of any Hodge cocharacter.
Taking Weil restriction along E/Q and the norm map, we get a composite

r : E∗ := ResE/Q Gm,E → ResE/Q Gab
E → Gab.

Define B = G ×Gab E∗, where the first map is the natural δ : G → Gab. It is
straightforward to check the following.
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Lemma 4.6.2. The scheme B is a reductive group scheme over Q, sitting in a short
exact sequence of Q-group schemes

0→ Gder
→B→ E∗→ 0.

Suppose now that (G,X) induces a connected Shimura datum (Gder,X+) with re-
flex field E(Gder,X+) := E(Gad,Xad)⊂ E . We could make the above construction
varying over all Shimura data with connected datum (Gder,X+) and reflex field con-
tained in E . The following is an adaptation of the argument in [Deligne 1979, 2.5].

Proposition 4.6.3. The extension

0→ Gder
→B→ E∗→ 0

depends only on the connected Shimura datum (Gder,X+) and the field E.

Proof. Let (G,X) and (G ′,X′) be two Shimura data whose reflex fields are both
contained in E and which give rise to the same connected Shimura datum. By
[Deligne 1979, 2.5.6] we can find a third such Shimura datum (G ′′,X′′) which
admits maps

(G,X)← (G ′′,X′′)→ (G ′,X′).

It will therefore suffice to show for any morphism α : (G,X, E)→ (G2,X2, E2)

of Shimura data with a field of definition (where E→ E2 represents an inclusion
E2 ⊂ E) that we have an induced natural morphism of extensions

0 −−−→ Gder
−−−→ B −−−→ E∗ −−−→ 0y y y

0 −−−→ Gder
2 −−−→ B2 −−−→ E∗2 −−−→ 0

where the outer maps are the natural ones induced by α : G → G2 and NE/E2 :

E∗→ E∗2 . Since in the above special case both these maps are isomorphisms, we
will get a canonical identification

B←−∼ B′′ −→∼ B′

of extensions, proving the proposition.
Let us verify the claim. Recall that to give a map B→ B2 is to give maps

f :B→G2 and k :B→ E∗2 that agree when extended to Gab
2 . Write Nµ : E∗→Gab

and δ : G→ Gab and Nµ2 and δ2 for the analogues for G2. Let us take f to be the
natural composite

f :B prG
−→G→ G2

and k to be
k :B prE∗
−→ E∗ NE/E2−−−→ E∗2 .
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We must check that whenever δ(g)= Nµ(e), we have

δ2(α(g))= Nµ2(NE/E2(e)).

But by functoriality of (−)ab

δ2(α(g))= αab(δ(g))= αab(Nµ(e))= Nµ2(NE/E2(e)),

where the final equality holds because since α is a morphism of Shimura data
we have in particular that αabµ = µ2 : Gm,C→ Gab

2,C, from which it follows that
αab
◦ Nµ= Nµ2 ◦ NE/E2 by functoriality of the norm map between tori. Thus we

have a map B→B2, and it is clear from its definition that it fits into the diagram
described. �

4.6.4. Our next task is to define a Shimura datum. Take any hG ∈ X+, and we
define a canonical map

hE : C
∗
→ E∗(R)

as follows. Let τ : E ↪→ C be the canonical inclusion of the reflex field E into C,
and write E∗(R)= E∗τ ×

∏
τ ′ 6=τ E∗τ ′ . If τ is real, set

hE(z)= (zz; 1, 1, . . . , 1).

If τ is complex,
hE(z)= (z; 1, . . . , 1)

(i.e., the entries away from the place τ are all trivial in both cases).

Proposition 4.6.5. These give a map hG × hE : S→BR which defines a Shimura
datum with a natural map (B,XB)→ (G,X). Moreover, it is independent of the
choice of hG , has reflex field E , and only depends on E and the connected Shimura
datum (Gder,X+) up to canonical isomorphism.

Proof. We must check it is defined, which amounts to proving that rR(hE(z)) =
δ(hG(z)). First we note that

δ(hG(z))= µE(z)µE(z)= µE(z)µE(z)

where we viewµE as a character Gm,C→Gab
C

using the canonical embedding τ of E .
On the other hand recall that

rR = (NE/Q ◦µE)R : E∗R→ Gab
E⊗QR→ Gab

R .

If τ is real then we have

(zz, 1, 1, . . . , 1) 7→ (µE(zz), 1, . . . , 1) 7→ µE(zz)= µE(z)µE(z)
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and if τ is complex then

(z, 1, 1, 1, 1) 7→ (µE(z), 1, . . . , 1) 7→ µE(z)µE(z),

where again all occurrences of µE are viewed over C via τ .
In particular we have checked the necessary equality.
It defines a Shimura datum because after projecting along B→ Gad, hG × hE

agrees with hG . This is independent of the choice of hG because in general X is
a union of copies of X+ so every other choice for hG ∈ X

+ must be obtained. For
the statement about the reflex field, we note that it is immediate from the general
fact that E(B,X)= E(Bad,Xad

B )E(B
ab, h)= E .

To show it only depends on (Gder,X+) and E we just return to the argument above
for B being independent. Given (G,X) and (G ′,X′) Shimura data with reflex fields
contained in E and the same connected Shimura datum, we can again apply [Deligne
1979, 2.5.6] and find (G ′′,X′′) mapping to both. Since the construction of (B,XB)

is functorial in (G,X), choosing h ∈ X+ immediately gives a commuting diagram

S S Sy y y
BR

∼
←−−− B′′R

∼
−−−→ B′R.

From this it is clear that (B,XB) depends only on (Gder,X) and E . �

We would like to check the obvious functorialities for the pair (B,XB).

Lemma 4.6.6. The above construction is functorial in the following senses:

(1) Let u : (G1,X
+

1 )→ (G2,X
+

2 ) be a map of connected Shimura data: that is, a
central isogeny G1→ G2 of semisimple groups such that X+,ad

1 = X+,ad
2 , and

E ⊃ E(G1,X
+

1 ). Let (B1,X1) and (B2,X2) be the Shimura data associated to
the triples (G1,X

+

1 , E) and (G2,X
+

2 , E) by the above procedure. Then there
is a canonical morphism

u∗ : (B1,X1)→ (B2,X2)

of Shimura data also induced by a natural central isogeny B1→B2.

(2) Let (Gder,X+) be a connected Shimura datum, E(Gder,X+) ⊂ F ⊂ E two
fields, and (BF ,XF ) and (BE ,XE) the associated data. Then the norm map
induces a canonical morphism of Shimura data

NE/F : (BE ,XE)→ (BF ,XF ).

Proof. For (1), let 11 ⊂ G1 ⊂B1 be the kernel of G1→ G2 viewed as a subgroup
of the centre of B1. Then (B1/11,X1/11) is a Shimura datum with connected
Shimura datum (G2,X

+

2 ) and reflex field contained in E . It therefore receives a
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natural map (B2,X2)→ (B1/11,X1/11) which we claim is an isomorphism. It
will suffice to check B2→B1/11 is an isomorphism, which is immediate because
it is a pullback of the identity map on E∗. Thus we obtain the canonical map

(B1,X1)→ (B1/11,X1/11)←−
∼ (B2,X2)

required.
For (2), for any Shimura datum (G,X)with connected Shimura datum (Gder,X+)

and reflex field contained in F , one obviously has a canonical map BE = G×Gab

E∗→G×Gab F∗=BF induced by the norm morphism11 NE/F : E∗→ F∗. Visibly
hF = NE/F ◦ hE , so this induces the map of Shimura data claimed. �

4.7. Abelian type case. We now return to integral canonical models of standard
principal bundles. Fix (G2,X2) a Shimura datum of abelian type unramified away
from N , G2/Z[1/N ] a reductive integral model and K N

2 =
∏

p -N G2(Zp). The
goal of this section is to prove the following.

Theorem 4.7.1. There exists an integral canonical model for PK N
2
(G2,X2).

4.7.2. As in Section 2.5.14 we may find (G,X) of Hodge type with G unramified
away from N with j : Gder

→ Gder
2 a central isogeny inducing a morphism of

connected Shimura data (Gder,X+)→ (Gder
2 ,X+2 ). By Lemma 2.5.13 we may take

G/Z[1/N ] reductive such that j is defined over Z[1/N ].
By the construction of the previous section, we may obtain a diagram of Shimura

data
(B,XB) −−−→ (G,X)y
(B2,XB,2) −−−→ (G2,X2).

The plan has three stages. We first combine our constructions in the special and
Hodge type cases to construct a canonical integral model of P(B,XB). We next
pass to connected components and take a quotient to transfer this bundle from a
Bc-bundle on Sh(B,XB)

+ to a Gc
2-bundle on Sh(G2,X2)

+ defined over the field
EN over which the connected components split off. We finally then assemble
over the whole Shimura variety and descend these models making liberal use of
the uniqueness statement for canonical models in place of the extension property
from §2.5. We believe this framework could be useful in other contexts where one
wants to extend a “G-valued” construction over Hodge type Shimura varieties to
abelian type Shimura varieties.

11Recall that the norm map NE/F may be defined for example as the composite of Q-group maps

E∗ ↪→ ResF/Q GLF (E)
det
−→ F∗.
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4.7.3. We start out by checking this picture respects the integral structures on G
and G2. Since E := E(G,X) is absolutely unramified at p -N and E2 ⊂ E (hence
E∗2 and E∗ are smooth tori over Z[1/N ]) we have a diagram defined over Z[1/N ]

G←B= G×Gab E∗→B2 = G2×Gab
2

E∗2 → G2.

We remark that the middle map is a composite of Lemma 4.6.6(1) and (2), the first
of which involves a change of derived group (and by construction Gder

→ Gder
2 is

defined over Z[1/N ]), and the second of which is a norm map NE/E2 : E
∗
→ E∗2

which clearly respects integral structures. We let K N , K N
2 and K N

B denote the
obvious corresponding hyperspecial prime to N level structures and note there is a
corresponding diagram of integral models of Shimura varieties

SK N (G,X)← SK N
B
(B,XB)→ SK N

2
(G2,X2).

Let us, now this diagram is in place, check the following condition Section 4.4.3,
which we recall is important in guaranteeing the uniqueness of canonical models.

Proposition 4.7.4. With notation as above, SK N
B
(B,XB) and SK N

2
(G2,X2) both

have all the crystalline points.

Proof. Let x ∈ SK N
B
(B,XB)(W (k)) and K0 =W (k)[1/p]. Also let W (k)ur be the

ring of integers of the maximal unramified (algebraic) extension K ur
0 /K0. Note

that its images in SK N (G,X) and S ˆE∗,N (E
∗, hE) are both crystalline (since these

Shimura data have all the crystalline points). To check x is crystalline, it will suffice
to check ωet,x(V ) is crystalline for V a faithful representation of B. Let us take
G ↪→ GL(V1) and E∗ ↪→ GL(V2) and consider the representation

B⊂ G× E∗ ↪→ GL(V1)×GL(V2)⊂ GL(V1⊕ V2).

Considering the diagram of Shimura varieties and towers at infinite level at p, it is
clear that 0K0 → GL(ωet(V1⊕ V2)) acts via 0K0 → GL(ωet(V1))×GL(ωet(V2)),
each projection of which is crystalline, and this is enough to give the first part of
our proposition.

We turn our attention to SK N
2
(G2,X2). First, since it receives a map from

the Shimura variety SK N
B
(B,XB) and we observe that the image of a crystalline

point is crystalline, and moreover at finite level these maps are finite étale, we
deduce that in particular all W (k)ur points on the geometric connected component
SK N

2

+(G2,X2)W (k)ur are crystalline.
To show that any point x ∈SK N

2 K2,N
(W (k)) is crystalline, recall that Kisin’s inte-

gral model at level K2,p := G2(Zp) over W (k), SK2,p(G2,X2)W (k) has a G(A∞,p)-
action that acts transitively on geometric connected components and acts equiv-
ariantly with regard to the tower at p on the generic fibre. Therefore, taking a lift
x̃ of x to level K2,p, which we may assume is a W (k)ur point since SK2,p,W (k)→
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SK2,p K p,W (k) is formally étale, and taking a translate x̃ .a by a Hecke operator
a∈G(A∞,p) such that x̃ .a lies in the connected component, we may deduce that x is
crystalline from the fact that all points on the connected component are, and that the
crystalline property can be checked after restricting a 0K0 representation to 0K ur

0
. �

We now proceed with constructing the canonical models. The content of the
next step can be extracted as a lemma.

Lemma 4.7.5. Let S be a scheme, and G � 1 ← H a diagram of S-groups,
B= G×1 H the fibre product group. Let X be an S-scheme and suppose we are
given PG a G-torsor and PH an H-torsor on X with the property that there is an
isomorphism of 1-torsors θ : PH ×

H 1−→∼ PG ×
G 1.

Then there is a unique (up to canonical isomorphism) B-torsor PB together with
torsor isomorphisms θG : PB×

B G −→∼ PG and θH : PB×
B H −→∼ PH such that

the induced isomorphism

θH ◦ θ
−1
G : PG ×

G 1−→∼ PB×
B1−→∼ PH ×

H 1

is equal to θ , and it is given by

PB = PG ×θ PH ,

with θG and θH the natural projections.

We use the notation X ×θ Y in a situation where we are given maps X → Z X

and Y → ZY and an isomorphism θ : Z X −→
∼ ZY between two schemes to mean

the limit of the diagram

Yy
X −−−→ Z X

θ
−−−→
∼

ZY .

Proof. Let us first show that PB = PG ×θ PH is indeed a B-torsor. We define the
B= G×1 H -action

(pG, pH ).(g, h)=: (pG .g, pH .h)

which is visibly an action. Passing to an étale cover X ′→ X over which PG and PH

admit sections pG and pH . Since G surjects onto 1 these may be chosen (perhaps
at the cost of passing to a finer étale cover) such that if πG : PG→ PG ×

G 1 and
πH : PH → PH ×

H 1 are the projection maps, we have θ(πG(pG)) = πH (pH ),
giving a section (pG, pH ) ∈ PB(X ′), from which we may see immediately that it
is a B-torsor. It is also obvious that it has the required property.

Uniqueness is essentially formal, but we give the argument. Suppose we are
given P ′B together with θ ′G : P

′

B×
B G −→∼ PG and θ ′H : P

′

B×
B H −→∼ PH satisfying
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the compatibility given. Then by the universal property of PB = PG ×θ PH there
exists a unique map α : P ′B→ PB making everything commute. It is easy to check
α is a map of B-torsors, whence it is automatically an isomorphism. �

4.7.6. Let us apply this in the context of our standard principal bundles. If T is a
torus unramified away from N we introduce the notation T̂ N

=
∏

p -N T (Zp).
Consider the diagram (whose arrows we have named for convenience)

SK N
B
(B,XB) −−−→

δ′
SÊ∗,N (E

∗, hE)

π

y yNµ

SK N (G,X) −−−→
δ

SĜab,N (Gab, hab).

By Theorem 4.5.1 we have PK N over SK N (G,X) an integral canonical model for
PK N (G,X), and by Proposition 4.2.3 we have PÊ∗,N and PĜab,N canonical models
over the right hand side of the diagram also. By Proposition 4.4.8 there are natural
isomorphisms of Gab torsors

Nµ∗PĜab,N
∼= PÊ∗,N ×

E∗c Gab and δ∗PĜab,N
∼= PK N ×

G Gab.

Pulling these back further and using that the diagram commutes and so we have
canonical identifications π∗δ∗ ∼= (δπ)∗ = (Nµδ′)∗ ∼= δ′∗(Nµ)∗, we obtain a natural
isomorphism

θ : π∗(PK N ×
G Gab)−→∼ δ′∗(PÊ∗,N ×

E∗c Gab).

Note further that any integral canonical model PK N
B

for PK N
B
(B,XB) will by

Proposition 4.4.8 be required to satisfy the conditions of Lemma 4.7.5 with respect
to this isomorphism θ . Therefore by Lemma 4.7.5 if it exists it is given by

PK N
B
:= π∗PK N ×θ δ

′∗PÊ∗,N ,

together with the identification

ιB : PK N
B
⊗OE [1/N ] E = (π∗PK N ×θ δ

′∗PÊ∗,N )⊗OE [1/N ] E
(ιG ,ιE∗ )
−−−→π∗PK N (G,X)×θ⊗E δ

′∗PÊ∗,N (E
∗, hE)= PK N

B
(B,XB).

Proposition 4.7.7. As defined above, (PK N
B
, ιB) is an integral canonical model for

PK N
B
(B,XB) with equivariant AN

P (B)-action.12

Proof. Our task is to show the connection, filtration and AN
P (B)-actions extend,

and check the lattice property.

12Recall we defined this group in Section 4.5.8.
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We first study the connection. Let pi , i = 1, 2 be the projections from a first
order neighbourhood of the diagonal, abusively retaining the same notation for
morphisms of schemes and their first order thickenings. Then13

p∗i PK N
B
= p∗i (π

∗PK N ×θ δ
′∗PÊ∗,N )

∼= π
∗ p∗i PK N ×p∗i (θ) δ

′∗ p∗i PÊ∗,N ,

and in these coordinates, ∇B = (π
∗
∇G, δ

′∗ id) is the connection required so we see
directly that it extends.

For the filtrations, it is easy to check using [Conrad 2014, 5.3.4] that in fact we
may naturally identify

GRµ = G/Pµ = Gder/(Pµ ∩Gder)=B/PµB = GRµB

with G and B-actions factoring through Gad, so actually the composite

γB : PK N
B
→ PK N

γ
−→GRµ = GRµB

does the job.
We also note that we already have a natural extension of the Hecke action via∏

p|N

B(Qp)⊂

(∏
p|N

G(Qp)

)
×

(∏
p|N

E∗(Qp)

)
which acts via its two projections on π∗PK N ×θ δ

′∗PÊ∗,N .
For the lattice property, we borrow the trick from the first part of the proof

of Proposition 4.7.4, taking a faithful representation V = V1⊕ V2 of B, formed
as a sum of faithful representations of G and E∗. It is easy to check from the
construction that

ωPK N
B

(V )= ωπ∗PK N (V1)⊕ωδ′∗PÊ∗,N
(V2)

whence the lattice property follows immediately from that already known for the
two terms on the right hand side together with the fact that the image of a crystalline
point is always crystalline. Now we know the lattice property, we get a uniqueness
statement, and the AN

P (B)-action extends formally. �

4.7.8. We now pass to a connected component

Sh+
K N

B

(B,XB)= Sh+K N (G,X),

recalling Lemma 2.5.1 that it is defined over an extension EN/E unramified away
from N and letting O :=OEN [1/N ]. We may therefore extend the above identification
to

S+
K N

B

(B,XB)O = S+K N (G,X)O,

13We also abuse notation here and confuse π and δ′ with their induced maps on first order
neighbourhoods of the diagonal.
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and restrict PK N
B

to get the Bc-torsor

P+B := PK N
B
×SK N

B
(B,XB)O S+K N (G,X)O→ S+K N (G,X)O.

Recall the group

1N (G,G2)= Ker(AN ,◦(Gder)→AN ,◦(Gder
2 ))

with the property that

S+K N (G,X)O/1N (G,G2)= S+
K N

2
(G2,X2)O.

Let us also recall the extension of group schemes over Z[1/N ]

1→Bc
→AN

P (B)→AN (B)→ 1.

Forming the pullback along AN ,◦(Gder)=AN ,◦(B)⊂AN (B) we get an extension

1→Bc
→AN ,◦

P (B)→AN ,◦(Gder)→ 1

which acts on P+B equivariantly in the obvious fashion.

Lemma 4.7.9. These group schemes have the following additional properties:

(1) The group 4 := Ker(Bc
→ Gc

2)⊂Bc is a normal subgroup of AN ,◦
P (B).

(2) The kernel 1N
P (B,G2) := Ker(AN ,◦

P (B)→ AN ,◦
P (G2)) is canonically an ex-

tension
1→4→1N

P (B,G2)→1N (G,G2)→ 1

which acts freely on P+B.

Proof. We first remark that (1) is obvious because 4 ⊂ Z(Bc) which commutes
with the whole of AN ,◦

P (B).
For (2), that 4 is a subgroup is clear and normality follows by (1). Existence of

the maps and exactness in the middle follow in the usual way. That the final map is a
surjection follows because for any (g, γ−1) ∈1N (G,G2), it is hit by (1, g, γ−1) ∈

1N
P (B,G). Finally the action on P+B→ S+K N (G,X)O is free because 4 acts freely

on each fibre, and 1N (G,G2) acts freely on S+K N (G,X)O by Proposition 2.5.9. �

4.7.10. Equipped with this lemma we may construct a Gc
2-bundle

P+2 := (P
+

B/1
N
P (B,G2))×

Bc/4 Gc
2→ S+

K N
2
(G2,X2)O

with equivariant AN ,◦
P (G2)-action. Moreover we have

ι2 : P
+

2 ⊗O EN = (P
+

B⊗O EN/1
N
P (B,G2))×

Bc/4 Gc
2

ιB
−→(P+

K N
B ,EN

/1N
P (B,G2))×

Bc/4 Gc
2 = P+

K N
2 ,EN

,
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where the final equality follows by working over C and the argument of [Milne
1988, 7.2].

Proposition 4.7.11. The pair (P+2 , ι2) is an integral canonical model for the bundle
P+

K N
2 ,EN

(G2,X2).

Proof. The Hecke action extends by construction. Let us check that the connection
extends. We know (from direct observation over C) that the 1N

P (B,G2) action
is horizontal, so the flat connection ∇ : p∗1P+B −→

∼ p∗2P+B descends (and then can
obviously be pushed out along Bc/4→ Gc

2) to a flat connection

∇ : p∗1P+2 −→
∼ p∗2P+2 .

Since a similar relationship also relates the connections on the generic fibre we
have shown that this ∇ extends over O the connection on PK N

2 ,EN
.

To check the lattice condition at a crystalline point x , note the commutative
diagram of EN -schemes, letting K N p

B and K N p
2 be the obvious full level structures

at all primes except N and p

ShK N p
B
(B,XB)|Sh+

K N
B

(B,XB)
−−−→ ShK N p

2
(G2,X2)|Sh+

K N
2
(G2,X2)y y

Sh+
K N

B

(B,XB) −−−→ Sh+
K N

2
(G2,X2).

Taking a lift x̃ of x to S+
K N

B

(B,XB)O, which is crystalline since the map

S+
K N

B

(B,XB)O→ S+
K N

2
(G2,X2)O

is finite étale and its source has all the crystalline points, the diagram gives an
identification

ωet,x̃ ◦Res
Gc

2(Zp)

Bc(Zp)
= ωet,x : RepZp

(Gc
2)→ RepZp

(0Qur
p
).

But now the lattice condition is immediate, since equality of lattices can be checked
after passing to a finite étale cover, and P+2,x pulls back to P+B,x̃ ×

Bc
Gc

2 which as a
canonical model already has the required property that ωP+B,x̃

=D◦ωet,x̃ by its own
lattice condition.

It remains to check the filtration γB :P
+

B→ GRµB descends to γ2 :P
+

2 → GRµ2 ,
which amounts to showing that the composite

P+B→ GRµB → GRµ2

is1N
P (B,G2)-invariant. But this is clear; since4=Ker(Bc

→Gc
2)⊂ Z(Bc) it acts

trivially on GRµ2 and 1N (G,G2) acts trivially because Hecke operators always
act trivially on any Grµ. �
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4.7.12. With this in hand, we are finally able to construct an integral canonical
model P2 for PK N

2
(G2,X2) in the spirit of Lemma 2.5.16, but with the uniqueness

of canonical models used in place of the extension property, because it may be used
to canonically extend any isomorphism.

Indeed, let us decompose SK N
2 ,O
=
∐

c∈π0
Sc into components each of which

is geometrically integral. By the argument of Lemma 2.5.16(1) we can find for
each c ∈ π0 some Gc/Z[1/N ] a model for G2 such that we may identify Sc ∼=

S∏
p -N Gc(Zp),O

+ via a Hecke operator. For each c we may make such a choice and
invoking Proposition 4.7.11 for G= Gc and using the Hecke equivariance of PK N

we obtain a canonical model P+c for PK N
2 ,EN

(G2,X2)|Sc⊗O EN . Taking the disjoint
union of these we obtain

P2,O :=
∐
c∈π0

P+c ,

an integral canonical model minus a full Hecke action. But by the uniqueness of
canonical models (Lemma 4.4.7) it is formal to extend the Hecke operators acting be-
tween components. Finally by Lemma 4.4.9 it descends to P2/OE2[1/N ], an integral
canonical model for PK N

2
(G2,X2)/E2. Thus our main theorem has been proved.

4.8. Automorphic vector bundles. With our integral canonical models PK N (G,X)
constructed in the abelian type case, we should discuss the construction of automor-
phic vector bundles (recall the discussion Section 3.1.4) in this setting, although it
requires no new ideas.

Theorem 4.8.1. Let (G,X) be a Shimura datum of abelian type, G/Z[1/N ] a
reductive model for G, K N

=
∏

p -N G(Zp) and for µ a Hodge cocharacter of
(G,X), and L/E = E(G,X) a finite extension.

Then we have a canonical functor J 7→ V(J) from GOL [1/N ]-equivariant vector
bundles on GRµ,OL [1/N ] to vector bundles on SK N which on the generic fibre is
identified naturally with that of [Milne 1990, III 5.1].

Proof. Recall that we have the picture

SK N ← PK N
γ
−→GRµ.

The functor J 7→V(J) is given by pulling back J 7→ γ ∗J and then using the usual
equivalence between G-equivariant vector bundles on PK N and vector bundles on
SK N . This is obviously a functor, and the compatibility with the usual construction
[Milne 1990, III 5.1] follows because PK N comes with a canonical identification

ι : PK N ⊗ E −→∼ PK N (G,X)

under which γ is an extension of the G-filtration on the RHS. �
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It is also easy to deduce from our construction the following additional functori-
ality property.

Proposition 4.8.2. We are given a morphism f : (G1,X1,G1)→ (G2,X2,G2) of
Shimura data of abelian type together with reductive models for Gi over Z[1/N ],
L/E(G1,X1) finite, and µ1 and µ2 Hodge cocharacters for X1 and X2 respectively.
Suppose we are also given J2 a G2-equivariant vector bundle on GRµ2,OL [1/N ].
Pulling back J2 along

GRµ1,OL [1/N ]→ GRµ2,OL [1/N ]

and restricting the G2 action to G1 we obtain a G1-equivariant vector bundle J1.
There is a canonical identification of vector bundles over S∏

p -N G1(Zp)(G1,X1)

V(J1)∼= f ∗V(J2).

Proof. This is immediate from the construction of V(−) and Proposition 4.4.8. �

Acknowledgements

The author would like to extend the greatest of thanks to his PhD supervisor Mark
Kisin, under whose guidance this project was completed. This project owes much
to his sharp insights, but also his optimism, energy and patience.

We would also like to thank Jack Thorne, after a conversation with him in 2013
provided the initial motivation for this project. For other useful conversations we
thank Chris Blake, George Boxer, Lukas Brantner, Justin Campbell, Kestutis Ces-
navicius, Erick Knight, Ananth Shankar, Jack Shotton, Rong Zhou, and Yihang Zhu.

This paper is part of the author’s PhD thesis completed at and funded by Harvard
University, and begun while the author was on a Kennedy Scholarship.

References

[Bhatt et al. 2016] B. Bhatt, M. Morrow, and P. Scholze, “Integral p-adic Hodge theory”, preprint,
2016. arXiv 1602.03148

[Blasius 1994] D. Blasius, “A p-adic property of Hodge classes on abelian varieties”, pp. 293–308 in
Motives (Seattle, WA, 1991), edited by U. Jannsen et al., Proc. Sympos. Pure Math. 55, Amer. Math.
Soc., Providence, RI, 1994. MR Zbl

[Broshi 2013] M. Broshi, “G-torsors over a Dedekind scheme”, J. Pure Appl. Algebra 217:1 (2013),
11–19. MR Zbl

[Conrad 2014] B. Conrad, “Reductive group schemes”, lecture notes, Stanford University, 2014. Zbl

[Deligne 1971] P. Deligne, “Travaux de Shimura”, exposeé 389, pp. 123–165 in Séminaire Bourbaki,
1970/1971, Lecture Notes in Math. 244, Springer, 1971. MR Zbl

[Deligne 1979] P. Deligne, “Variétés de Shimura: interprétation modulaire, et techniques de construc-
tion de modèles canoniques”, pp. 247–289 in Automorphic forms, representations and L-functions
(Oregon State Univ., Corvallis, Ore., 1977), Proc. Sympos. Pure Math., XXXIII 2, Amer. Math. Soc.,
Providence, R.I., 1979. MR Zbl

http://msp.org/idx/arx/1602.03148
http://msp.org/idx/mr/1265557
http://msp.org/idx/zbl/0821.14028
http://dx.doi.org/10.1016/j.jpaa.2012.01.011
http://msp.org/idx/mr/2965898
http://msp.org/idx/zbl/1271.14062
http://msp.org/idx/zbl/1349.14151
http://msp.org/idx/mr/0498581
http://msp.org/idx/zbl/0225.14007
http://msp.org/idx/mr/546620
http://msp.org/idx/zbl/0437.14012


1890 Tom Lovering

[Harris 1985] M. Harris, “Arithmetic vector bundles and automorphic forms on Shimura varieties. I”,
Invent. Math. 82:1 (1985), 151–189. MR Zbl

[Ichino and Prasanna 2016] A. Ichino and K. Prasanna, “Periods of quaternionic Shimura varieties.
I”, preprint, 2016. arXiv

[Kim and Madapusi Pera 2016] W. Kim and K. Madapusi Pera, “2-adic integral canonical models”,
Forum Math. Sigma 4 (2016), e28, 34. MR Zbl

[Kisin 2006] M. Kisin, “Crystalline representations and F-crystals”, pp. 459–496 in Algebraic
geometry and number theory, edited by V. Ginzburg, Progr. Math. 253, Birkhäuser, Boston, 2006.
MR Zbl

[Kisin 2010] M. Kisin, “Integral models for Shimura varieties of abelian type”, J. Amer. Math. Soc.
23:4 (2010), 967–1012. MR Zbl

[Kisin 2017] M. Kisin, “mod p points on Shimura varieties of abelian type”, J. Amer. Math. Soc. 30:3
(2017), 819–914. MR Zbl

[Kissin and Pappas 2015] M. Kissin and G. Pappas, “Integral models of Shimura varieties with
parahoric level structure”, preprint, 2015. arXiv

[Lovering 2017] T. Lovering, “Filtered F-crystals on Shimura varieties of abelian type”, preprint,
2017. arXiv

[Madapusi Pera 2012] K. Madapusi Pera, “Toroidal compactifications of integral models of Shimura
varieties of Hodge type”, preprint, 2012. arXiv

[Maulik 2014] D. Maulik, “Supersingular K3 surfaces for large primes”, Duke Math. J. 163:13 (2014),
2357–2425. MR Zbl

[Milne 1988] J. S. Milne, “Automorphic vector bundles on connected Shimura varieties”, Invent.
Math. 92:1 (1988), 91–128. MR Zbl

[Milne 1990] J. S. Milne, “Canonical models of (mixed) Shimura varieties and automorphic vector
bundles”, pp. 283–414 in Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor,
MI, 1988)), edited by L. Clozel and J. S. Milne, Perspect. Math. 10, Academic Press, Boston, 1990.
MR Zbl

[Milne 1992] J. S. Milne, “The points on a Shimura variety modulo a prime of good reduction”,
pp. 151–253 in The zeta functions of Picard modular surfaces, edited by R. P. Langlands and D.
Ramakrishnan, Univ. Montréal, Montreal, QC, 1992. MR Zbl

[Milne 1994] J. S. Milne, “Shimura varieties and motives”, pp. 447–523 in Motives (Seattle, WA,
1991), edited by U. Jannsen et al., Proc. Sympos. Pure Math. 55, Amer. Math. Soc., Providence, RI,
1994. MR Zbl

[Moonen 1998] B. Moonen, “Models of Shimura varieties in mixed characteristics”, pp. 267–350 in
Galois representations in arithmetic algebraic geometry (Durham, 1996), edited by A. J. Scholl and
R. L. Taylor, London Math. Soc. Lecture Note Ser. 254, Cambridge Univ. Press, 1998. MR Zbl

[Mumford 1965] D. Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer
Grenzgebiete (2) 34, Springer, 1965. MR Zbl

[Waterhouse 1979] W. C. Waterhouse, Introduction to affine group schemes, Graduate Texts in
Mathematics 66, Springer, 1979. MR Zbl

Communicated by Brian Conrad
Received 2016-08-29 Revised 2017-06-08 Accepted 2017-07-21

tlovering1729@gmail.com Department of Mathematics, Harvard University,
1 Oxford St., Cambridge, MA 02138, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1007/BF01394784
http://msp.org/idx/mr/808114
http://msp.org/idx/zbl/0598.14019
http://msp.org/idx/arx/1610.00166
http://dx.doi.org/10.1017/fms.2016.23
http://msp.org/idx/mr/3569319
http://msp.org/idx/zbl/1362.11059
http://dx.doi.org/10.1007/978-0-8176-4532-8_7
http://msp.org/idx/mr/2263197
http://msp.org/idx/zbl/1184.11052
http://dx.doi.org/10.1090/S0894-0347-10-00667-3
http://msp.org/idx/mr/2669706
http://msp.org/idx/zbl/1280.11033
http://dx.doi.org/10.1090/jams/867
http://msp.org/idx/mr/3630089
http://msp.org/idx/zbl/06699460
http://msp.org/idx/arx/1512.01149
http://msp.org/idx/arx/1702.06611
http://msp.org/idx/arx/1211.1731
http://dx.doi.org/10.1215/00127094-2804783
http://msp.org/idx/mr/3265555
http://msp.org/idx/zbl/1308.14043
http://dx.doi.org/10.1007/BF01393994
http://msp.org/idx/mr/931206
http://msp.org/idx/zbl/0684.14006
http://msp.org/idx/mr/1044823
http://msp.org/idx/zbl/0704.14016
http://msp.org/idx/mr/1155229
http://msp.org/idx/zbl/0821.14016
http://msp.org/idx/mr/1265562
http://msp.org/idx/zbl/0816.14022
http://dx.doi.org/10.1017/CBO9780511662010.008
http://msp.org/idx/mr/1696489
http://msp.org/idx/zbl/0962.14017
http://msp.org/idx/mr/0214602
http://msp.org/idx/zbl/0147.39304
http://msp.org/idx/mr/547117
http://msp.org/idx/zbl/0442.14017
mailto:tlovering1729@gmail.com
http://msp.org


msp
ALGEBRA AND NUMBER THEORY 11:8 (2017)

dx.doi.org/10.2140/ant.2017.11.1891

Quasi-Galois theory
in symmetric monoidal categories

Bregje Pauwels

Given a ring object A in a symmetric monoidal category, we investigate what
it means for the extension 1→ A to be (quasi-)Galois. In particular, we define
splitting ring extensions and examine how they occur. Specializing to tensor-
triangulated categories, we study how extension-of-scalars along a quasi-Galois
ring object affects the Balmer spectrum. We define what it means for a separable
ring to have constant degree, which is a necessary and sufficient condition for the
existence of a quasi-Galois closure. Finally, we illustrate the above for separable
rings occurring in modular representation theory.

Introduction 1891
1. The Eilenberg–Moore category 1894
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6. Splitting rings 1906
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Introduction

Classical Galois theory is the study of field extensions l/k through the group of
automorphisms of l that fix k. If f is a polynomial over k, the splitting field of f
over k is the smallest extension over which f decomposes into linear factors. If
f ∈ k[x] is moreover separable, its splitting field is the smallest extension l such that
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l⊗k k[x]/( f )∼= l× deg( f ). The field extension l/k is often called quasi-Galois1 if l
is the splitting field of some polynomial in k[x]. Then, an algebraic field extension
is called Galois whenever it is quasi-Galois and separable.

The generalization of Galois extensions from fields to rings originated with Aus-
lander and Goldman [1960, Appendix]; see also Remark 5.6. Grothendieck [SGA 1
1971] took on an axiomatic viewpoint to Galois theory and revealed its relation with
the fundamental group. Janelidze [2001] adopted a purely categorical approach
which covered the above examples. More recently, Rognes [2008] introduced a
Galois theory up-to-homotopy. For more generalizations in various directions, see
[Chase and Sweedler 1969; Hess 2009; Kreimer 1967].

In this paper, we adapt some of these ideas to the context of ring objects in an
additive symmetric monoidal category (K,⊗,1), with special emphasis on tensor-
triangulated categories. That is, our analogue of a field extension will be a monoid
η : 1→ A in K with associative commutative multiplication µ : A⊗ A→ A. We
call A a ring in K, and moreover assume that A is separable, which means µ has
an (A, A)-bilinear right inverse A→ A⊗ A.

Separable ring objects play an important (though at times invisible) role in
various areas of mathematics. In algebraic geometry, for instance, they appear as
étale extensions of quasicompact and quasiseparated schemes; see [Balmer 2016a;
Neeman 2015]. More precisely, given a separated étale morphism f : V → X ,
the object A := R f∗(OV ) in Dqcoh(X) is a separable ring, and we can understand
Dqcoh(V ) as the category of A-modules in Dqcoh(X). In representation theory, we
can let K(G) be the (derived or stable) module category of a group G over a field k,
and consider a subgroup H < G of finite index. Balmer [2015] showed there
is a separable ring AG

H in K(G) such that the category of AG
H -modules in K(G)

coincides with K(H), and such that the restriction functor

ResG
H : K(G)→ K(H)

is just extension-of-scalars along AG
H . In the same vein, extension-of-scalars along

a separable ring recovers restriction to a subgroup in equivariant stable homotopy
theory, in equivariant KK-theory and in equivariant derived categories; see [Balmer
et al. 2015]. For more examples of separable rings in stable homotopy categories,
we refer to [Baker and Richter 2008; Rognes 2008].

Thus motivated, we study how much Galois theory carries over. Recall that a
ring A in K is indecomposable if it does not decompose as a product of nonzero
rings. Separable ring objects have a well-behaved notion of degree [Balmer 2014]
and our first Galois-flavored result (Theorem 4.5) shows that the number of ring
endomorphisms of a separable indecomposable ring in K is bounded by its degree.

1see [Bourbaki 1981, V.9.3]. In the literature, a quasi-Galois extension is sometimes called normal
or Galois, probably because these notions coincide when l/k is separable and finite.
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Definition. Let A and B be separable rings of finite degree in K. We say B splits A
if B⊗ A ∼= B× deg(A) as (left) B-algebras in K. We call an indecomposable ring B
a splitting ring of A if B splits A and any ring morphism C→ B, where C is an
indecomposable ring splitting A, is an isomorphism.

Definition. If A is a ring in K and 0 is a group of ring automorphisms of A, we
call A quasi-Galois in K with group 0 if the A-algebra homomorphism

λ0 : A⊗ A→
∏
γ∈0

A

defined by prγ λ0 = µ(1⊗ γ ) is an isomorphism.

Under mild conditions on K, Corollary 6.10 shows an indecomposable ring B
is quasi-Galois in K for some group 0 if and only if B is a splitting ring of some
separable ring A in K. By Theorem 5.9, this happens exactly when B has deg(B)
distinct ring endomorphisms in K. Moreover, Proposition 6.9 shows that every
separable ring in K has (possibly multiple) splitting rings. In particular, l is a
splitting field of a separable polynomial f over k if and only if l is a splitting ring
of k[x]/( f ) in the category k-mod; our terminology matches classical field theory.

If, in addition, we assume that K is tensor-triangulated, we can say more about
the way splitting rings arise. Balmer [2005] introduced a topological space Spc(K)
associated to K, in which every object x ∈K has a support supp(x)⊂ Spc(K). The
Balmer spectrum Spc(K) provides an algebro-geometric approach to the study of
triangulated categories, and a complete description of the spectrum is equivalent to
a classification of the thick ⊗-ideals in the category.

For the remainder of the introduction, we assume K is tensor-triangulated and
nice (say, Spc(K) is noetherian or K satisfies Krull–Schmidt). If A is a separable
ring in K, the Eilenberg–Moore category A-ModK of A-modules in K admits a tri-
angulation such that extension-of-scalars K→ A-ModK is exact; see [Balmer 2011,
Corollary 4.3]. We can thus extend scalars along a separable ring without leaving the
tensor-triangulated world or descending to a model category. If A is quasi-Galois
with group 0 in K, then 0 acts on A-ModK and on the spectrum Spc(A-ModK).
By Theorem 9.1, the 0-orbits of Spc(A-ModK) are given by supp(A) ⊂ Spc(K).
In particular, we recover Spc(K) from Spc(A-ModK) if supp(A)= Spc(K), which
happens exactly when A⊗ f =0 implies f is⊗-nilpotent for every morphism f in K.

Recall that for a quasi-Galois field extension l/k, any irreducible polynomial
f ∈ k[x] with a root in l splits in l; see [Bourbaki 1981, V.9.3]. Proposition 9.6
provides us with a tensor triangular analogue:

Proposition. Let A be a separable ring in K such that the spectrum Spc(A-ModK)

is connected, and suppose B is an A-algebra with supp(A) = supp(B). If B is
quasi-Galois in K, then B splits A.
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Finally, Theorem 9.7 reveals which separable rings have a quasi-Galois closure
in K. Given P ∈ Spc(K), we consider the local category KP at P, the idempotent
completion of the Verdier quotient K/P. We say a ring A has constant degree in K

if the degree of A as a ring in KP is the same for every prime P ∈ supp(A).

Theorem. If A has constant degree in K and the spectrum Spc(A-ModK) is con-
nected, then A has a unique splitting ring A∗. Furthermore, supp(A)= supp(A∗)
and A∗ is the quasi-Galois closure of A in K. That is, for any A-algebra B that is
quasi-Galois in K with supp(A)= supp(B), there exists a ring morphism A∗→B.

We conclude this paper by computing degrees and splitting rings for the separable
rings AG

H := k(G/H) mentioned above. Here, H < G are finite groups and k is a
field with characteristic p dividing |G|. The degree of AG

H in Db(kG-mod) is simply
[G : H ] and AG

H is quasi-Galois if and only if H is normal in G. Accordingly, the
quasi-Galois closure of AG

H in Db(kG-mod) is the ring AG
N , where N is the normal

core of H in G (see Corollary 10.11). On the other hand, Proposition 10.13 shows
the degree of AG

H in kG-stab is the greatest 0≤ n ≤ [G : H ] such that there exist
distinct [g1], . . . , [gn] in H\G with p dividing |H g1 ∩ · · · ∩ H gn |. In that case, the
splitting rings of AG

H are exactly the AG
H g1∩···∩H gn with g1, . . . , gn as above.

1. The Eilenberg–Moore category

Definition 1.1. Let K be an additive category. We say K is idempotent-complete
if for all x ∈ K, any morphism e : x → x with e2

= e yields a decomposition
x ∼= x1 ⊕ x2 under which e becomes

(
1 0
0 0

)
. Every additive category K can be

embedded in an idempotent-complete category K\ in such a way that K ↪→ K\ is
fully faithful and every object in K\ is a direct summand of some object in K. We
call K\ the idempotent-completion of K, and [Balmer and Schlichting 2001] shows
that K\ stays triangulated if K was.

Notation 1.2. Throughout, (K,⊗, 1) denotes an idempotent-complete symmetric
monoidal category. For objects x1, . . . , xn in K and a permutation τ ∈ Sn , we also
write τ : x1⊗ . . .⊗xn→ xτ(1)⊗ . . .⊗xτ(n) to denote the isomorphism that permutes
the tensor factors.

Definition 1.3. A ring object A ∈ K is a monoid (A, µ : A⊗ A→ A, η : 1→ A)
with associative multiplication µ and two-sided unit η. We call A commutative
if µ(12) = µ. All ring objects in this paper will be commutative and we often
simply call A a ring in K. For rings A and B in K, a ring morphism f : A→ B is
a morphism in K that is compatible with the ring structure.

A (left) A-module is a pair (x ∈ K, % : A ⊗ x → x), where the action % is
compatible with the ring structure in the usual way. Right A-modules as well as
(A, A)-bimodules are defined analogously.
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The Eilenberg–Moore category A-ModK has left A-modules as objects and
A-linear morphisms, which are defined in the usual way. See [Eilenberg and Moore
1965] or [Mac Lane 1998, Chapter VI] for more details. Every object x ∈K gives
rise to a free A-module FA(x)= A⊗ x with action given by

% : A⊗ A⊗ x
µ⊗1
−−→ A⊗ x .

We call the functor FA :K→ A-ModK the extension-of-scalars, and write UA for
its forgetful right adjoint:

K

a

A-ModK

FA UA

A ring A in K is separable if the multiplication map µ has an (A, A)-bilinear
section σ : A→ A⊗ A. That is, µσ = 1A and the diagram

A⊗ A

A⊗ A⊗ A A A⊗ A⊗ A

A⊗ A

σ⊗1 1⊗σ
µ

1⊗µ
σ

µ⊗1

commutes.

Remark 1.4. The module category A-ModK is idempotent-complete whenever K

is idempotent-complete.

Example 1.5. Let R be a commutative ring and consider the category R-mod
of finitely generated R-modules. Let A be a commutative projective R-algebra
and suppose A is separable over R, that is A is projective as an A⊗R A-module.
Then A is finitely generated as an R-module by [DeMeyer and Ingraham 1971,
Proposition 2.2.1], so A defines a separable ring object in R-mod. On the other
hand, we can think of A= A[0] as a separable ring object in Dperf(R), the homotopy
category of bounded complexes of finitely generated projective R-modules. Note
that the category of A-modules in Dperf(R) is equivalent to Dperf(A) by [Balmer
2011, Theorem 6.5].

Notation 1.6. Let A and B be rings in K. The ring structure on A⊗ B is given
by (µA⊗µB)(23) : (A⊗ B)⊗2

→ (A⊗ B). We write Ae for the enveloping ring
A⊗ Aop, so that left Ae-modules are just (A, A)-bimodules. We write A× B for
the ring A⊕ B with componentwise multiplication.
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Remark 1.7. If A and B are separable rings in K, then so are Ae, A⊗B and A×B.
Conversely, A and B are separable whenever A× B is separable.

Remark 1.8. Let A be a ring in K. Note that every (left) A-linear endomorphism
A→ A is in fact Ae-linear, by commutativity of A. What is more, any two A-linear
endomorphisms A→ A commute.

Definition 1.9. We call a nonzero ring A in K indecomposable if the only idem-
potent A-linear endomorphisms A→ A in K are the identity 1A and 0. In other
words, A is indecomposable if it does not decompose as a direct sum of nonzero
Ae-modules. By the following lemma, this is equivalent to saying A does not
decompose as a product of nonzero rings.

Lemma 1.10 [Balmer 2014, Lemma 2.2]. Let A be a ring in K. Suppose there is
an Ae-linear isomorphism h : A −→∼ B⊕C for some Ae-modules B,C in K. Then
B and C admit unique ring structures under which h becomes a ring isomorphism
h : A −→∼ B×C.

Let (A, µ, η) be a separable ring in K with separability morphism σ . In what
follows, we define a tensor structure ⊗A on A-ModK under which extension-of-
scalars becomes monoidal. The following results all appear in [Balmer 2014, §1].
For detailed proofs, see [Pauwels 2015, §1.1]. Let (x, %1) and (y, %2) be A-modules.
Here, we can write %1 to indicate both a left and right action of A on x , as A is
commutative. Seeing how the endomorphism v : x ⊗ y→ x ⊗ y given by

x ⊗ y x ⊗ A⊗ y x ⊗ A⊗ A⊗ y x ⊗ y
1⊗η⊗1 1⊗σ⊗1 %1⊗%2

is idempotent and K is idempotent-complete, we can define x ⊗A y as the direct
summand im(v) of x ⊗ y. Note that x ⊗A y is independent, up to canonical
isomorphism, of the choice of separability section σ . We get a split coequalizer in K,

x ⊗ A⊗ y x ⊗ y x ⊗A y,
%1⊗1

1⊗%2

and A acts on x ⊗A y by

A⊗ x ⊗A y A⊗ x ⊗ y x ⊗ y x ⊗A y.
%1⊗1

Proposition 1.11. The tensor product ⊗A yields a symmetric monoidal structure
on A-ModK under which FA becomes monoidal. We will write 1A = A for the unit
object in A-ModK.

Notation 1.12. If A and B are rings in K and h : A→ B is a ring morphism, we
say that B is an A-algebra. As usual, we equip B with the A-module structure
given by

A⊗ B B⊗ B B,h⊗1 µB
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and we write B for the corresponding object in A-ModK, so that B =UA(B).

Remark 1.13. Let A be a separable ring in K. There is a one-to-one correspondence
between A-algebras B in K and rings B in A-ModK. More precisely, if (B, µ, η)
is a ring in K and h : A→ B is a ring morphism, then (B, µ, η := h) defines a
ring in A-ModK, with µ : B⊗ B � B⊗A B −→µ B. Moreover, B is separable in K

if and only if B is separable in A-ModK.

Remark 1.14. Let A be a separable ring in K and suppose B is an A-algebra via
h : A→B. For every A-module x , we let B act on the left factor of Fh(x) := B⊗A x
as usual. This defines a functor Fh : A-ModK→ B-ModK and the following diagram
commutes up to isomorphism:

K

A-ModK B-ModK

FA FB

Fh

Note also that Fgh ∼= Fg Fh for any ring morphism g : B→ C .

Proposition 1.15. Let A be a separable ring in K and suppose B is a separable
A-algebra, say B ∈ L := A-ModK. There is an equivalence B-ModK ' B-ModL

of symmetric monoidal categories such that

K L

B-ModK B-ModL,

FA

FB
FB

'

commutes up to isomorphism.

2. Separable rings

Proposition 2.1. Let A be a separable ring in K. If A∼= B×C for rings B,C in K,
then any indecomposable ring factor of A is a ring factor of B or C. In particular,
if A can be written as a product of indecomposable A-algebras A ∼= A1× · · ·× An ,
this decomposition is unique up to isomorphism.

Proof. Suppose A1 ∈ K is an indecomposable ring factor of A, say A ∼= A1× A2

for some ring A2 in K. The category A-ModK decomposes as

A-ModK
∼= A1-ModK× A2-ModK,

with 1A corresponding to (1A1,1A2). Accordingly, the A-algebras B and C corre-
spond to (B1, B2) and (C1,C2) respectively, with Bi ,Ci in Ai -ModK for i = 1, 2,
such that B ∼= B1× B2 and C ∼= C1×C2 in A-ModK. Given that 1A ∼= B×C , we
see 1A1

∼= B1×C1, hence A1 ∼= B1 or A1 ∼= C1. �
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Lemma 2.2. Let A be a separable ring in K.

(a) For every ring morphism α : A→ 1, there exists a unique idempotent A-linear
morphism e : A→ A such that αe = α and eηα = e.

(b) Suppose 1 is indecomposable. If αi : A→ 1 are distinct ring morphisms for
1 ≤ i ≤ n, with corresponding idempotent morphisms ei : A→ A as above,
then ei ej = δi, j ei and αi ej = δi, jαi .

Proof. Let σ be a separability morphism for A. To show (a), consider the A-linear
map e := (α⊗1)σ : A→ A. We immediately see that αe= α(α⊗1)σ = αµσ = α.
Idempotence of e follows from the diagram

A A⊗ A A

A⊗ A⊗ A A⊗ A

A A⊗ A A

σ α⊗1

1⊗σ σ

α⊗1⊗1

µ⊗1 α⊗1

σ α⊗1

in which the left square commutes by bilinearity of σ . Seeing how

A 1 A

A⊗ A A⊗ A⊗ A A⊗ A

A A⊗ A 1⊗ A

α

1⊗η

η

σ

1⊗σ

µ

α⊗1⊗1

µ⊗1 α⊗1

σ α⊗1

commutes, we moreover get eηα= e. Suppose e′ is also an A-linear morphism with
αe′ = α and e′ηα = e′. Then, e = eηα = eηαe′ = ee′ = e′e = e′ηαe = e′ηα = e′

by Remark 1.8. For (b), let 1≤ i, j ≤ n. From the commuting diagram

A 1 A

A⊗ A A⊗ A A

A A 1,

αi

1⊗η

η

ej

1⊗ej

µ µ

αi⊗1

αi

ej αi

we see that αi ejηαi = αi ej . Hence, (αi ejη)(αi ejη) = αi ej ejη = αi ejη, so the
morphism αi ejη : 1 → 1 is idempotent and equals 0 or 11. In the first case,
αi ej = αi ejηαj = 0 and ei ej = eiηαi ej = 0, in particular i 6= j . On the other hand,
if αi ejη = 11 we get αi ej = αi ejηαi = αi and αi ej = αi ejηαj = αj , so i = j . �
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Lemma 2.3. Let (A, µA, ηA) and (B, µB, ηB) be separable rings in K.

(a) Suppose f : A→ B and g : B→ A are ring morphisms such that g f = 1A. We
equip A with the structure of Be-module via the morphism g. There exists a
Be-linear morphism f̃ : A→ B such that g f̃ = 1A. In particular, A is a direct
summand of B as a Be-module.

(b) Suppose A is indecomposable. Let gi : B→ A be distinct ring morphisms for
1 ≤ i ≤ n and suppose f : A→ B is a ring morphism with gi f = 1A. Then
A⊕n is a direct summand of B as a Be-module, with projections gi : B→ A
for 1≤ i ≤ n.

Proof. Considering the A-module structure on B given by f , we note that g : B→A
is A-linear:

A⊗ B B⊗ B B

A⊗ A A⊗ A A

f⊗1

1⊗g

µB

g⊗g g

µA

We can thus apply Lemma 2.2 to the ring morphism ḡ : B→ 1A in A-ModK and
find an idempotent Be-linear morphism ē : B→ B such that ḡē = ḡ and ēηB̄ ḡ = ē.
Forgetting the A-action, UA(ē) := e : B → B is idempotent and Be-linear, with
ge = g and e f g = e. Let f̃ := e f . We need to show that f̃ is Be-linear, where Be

acts on A via g. Left B-linearity of f̃ follows from the commuting diagram

B⊗ A A⊗ A A

B⊗ B B

B⊗ B B⊗ B B

B⊗ B B

g⊗1

1⊗ f

µA

f⊗ f f

µB

e⊗1 e

e⊗1

1⊗e

µB

µB

and right B-linearity follows similarly. Finally, g f̃ = ge f = g f = 1A.
For (b), let gi : B→ A be distinct ring morphisms with gi f = 1A for 1≤ i ≤ n.

As in part (a), we find idempotent Be-linear morphisms ei : B→ B and Be-linear
morphisms f̃i := ei f with gi f̃i = 1A and ei = f̃i gi . In fact, Lemma 2.2(b) shows the
ei are orthogonal. Seeing how A = im(ei ), we conclude A⊕n is a direct summand
of B as a Be-module, with projections gi : B→ A for 1≤ i ≤ n. �

Corollary 2.4. Let A and B be separable rings in K and suppose B is an A-algebra.
The corresponding ring B in A-ModK is a ring factor of FA(B).
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Proof. Applying Lemma 2.3 to the ring morphisms f : B
ηA⊗1B
−−−−→A⊗ B and g given

by the action of A on B, we see that B is a direct summand of A⊗ B as (A⊗ B)e-
modules in K. In particular, B is a direct summand of FA(B) as FA(B)e-modules
in A-ModK. By Lemma 1.10, B admits a ring structure under which B becomes a
ring factor of FA(B). This new ring structure on B is the original one, seeing how
the projection g : FA(B)→ B is a ring morphism for both structures. �

3. Degree of a separable ring

We recall Balmer’s definition [2014] of the degree of a separable ring in a tensor-
triangulated category, and show the definition works for any idempotent-complete
symmetric monoidal category K.

Theorem 3.1. Let A and B be separable rings in K. Suppose f : A → B and
g : B→ A are ring morphisms such that g f = 1A. There exists a separable ring C
in K and a ring isomorphism h : B −→∼ A×C such that pr1 h = g. If we equip C
with the A-algebra structure coming from pr2 h f , it is unique up to isomorphism of
A-algebras.

Proof. This proposition is proved in [Balmer 2014, Theorem 2.4] when K is
a tensor-triangulated category. In our case, Lemma 2.3 yields an isomorphism
h : B −→∼ A⊕C of Be-modules with pr1 h = g. By Lemma 1.10, A and C admit
ring structures under which h becomes a ring isomorphism. This new ring structure
on A is the original one, seeing how

1A : A
f
−→ B

pr1 h
−−→ A

is a ring morphism. The rest of the proof is identical to the proof in [loc. cit.]. �

Definition 3.2 [Balmer 2014, Definition 3.1]. Let (A, µ, η) be a separable ring
in K. Applying Theorem 3.1 to the ring morphisms f = 1A⊗ η : A→ A⊗ A and
g = µ : A⊗ A→ A, we find a separable A-algebra A′, unique up to isomorphism,
and a ring isomorphism h : A⊗ A −→∼ A× A′ such that pr1 h = µ.

The splitting tower

1= A[0]
η
−→ A = A[1]→ A[2]→ · · · → A[n]→ A[n+1]

→ · · ·

is defined inductively by A[n+1]
= (A[n])′, where we consider A[n] as a ring in

A[n−1]-ModK. We say the degree of A is d, writing degK(A)= d, if A[d] 6= 0 and
A[d+1]

= 0. We say A has infinite degree if A[d] 6= 0 for all d ≥ 0.

Remark 3.3. By construction, we have (A[n])[m+1]∼= A[n+m] as A[n+m−1]-algebras
for all m ≥ 0 and n ≥ 1, where we regard A[n] as a ring in A[n−1]-ModK. In other
words, degA[n−1]-ModK

(A[n])= degK(A)− n+ 1 for 1≤ n ≤ degK(A)+ 1.
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Example 3.4. Let R be a commutative ring and suppose A is a commutative
projective separable R-algebra. If Spec R is connected, then the degree of A as
a ring in Dperf(R) (see Example 1.5) recovers its rank as an R-module. This will
follow from Proposition 7.9.

Proposition 3.5. Let A and B be separable rings in K.

(a) We have FA[n](A)∼= 1×n
A[n] × A[n+1] as A[n]-algebras.

(b) Let F : K→ L be an additive monoidal functor. For every n ≥ 0, the rings
F(A[n]) and F(A)[n] are isomorphic. In particular, degL(F(A))≤ degK(A).

(c) Suppose A is a B-algebra. Then degB-ModK
(FB(A))= degK(A).

Proof. The proofs for (a) and (b) in [op. cit., Theorems 3.7 and 3.9] still hold in our
(not necessarily triangulated) setting. To prove (c), note that A[n] is a B-algebra
and hence a direct summand of FB(A[n]) ∼= FB(A)[n]. This means FB(A)[n] 6= 0
when A[n] 6= 0 so that degB-ModK

(FB(A))≥ degK(A). �

Lemma 3.6 [Balmer 2014, Lemma 3.11]. Let n ≥ 1 and A := 1×n
∈ K. There is

an isomorphism A[2] ∼= A×(n−1) of A-algebras.

Proof. We prove there is an A-algebra isomorphism λ : A⊗ A −→∼ A× A×(n−1)

with pr1 λ= µA. We write A =
∏n−1

i=0 1i , A⊗ A =
∏

0≤i, j≤n−1 1i ⊗ 1j and A×n
=∏n−1

k=0
∏n−1

i=0 1ik with 1= 1i = 1ik for all i, k. Define λ : A⊗ A→ A×n by mapping
the factor 1i ⊗1j identically to 1i(i− j), with indices in Zn . Then, λ is an A-algebra
isomorphism and prk=0 λ= µA. �

Corollary 3.7. Let n ≥ 1. Then degK(1
×n)= n and (1×n)[n] ∼= 1×n! in K.

Proof. Let A := 1×n . The result is clear when n = 1, and we proceed by induction
on n. By Lemma 3.6, we know A[2]∼= 1×(n−1)

A in A-ModK. Assuming the induction
hypothesis, degA-ModK

(A[2])= n− 1 and

A[n] ∼= (A[2])[n−1] ∼= 1×(n−1)!
A

∼= (1×n)×(n−1)! ∼= 1×n!. �

Lemma 3.8. Let A and B be separable rings of finite degree in K. Then,

(a) deg(A× B)≤ deg(A)+ deg(B)

(b) deg(A×1×n)= deg(A)+ n

(c) deg(A×t)= deg(A) · t .

Proof. To prove (a), let n := deg(A×B) and C := (A×B)[n]. Writing A′ := FC(A)
and B ′ := FC(B), we know from Proposition 3.5(a) that

A′× B ′ = FC(A× B)∼= 1×n
C .

If we let D := (A′)[deg(A′)] and apply FD to the isomorphism, we get

1× deg(A′)
D × FD(B ′)∼= 1×n

D .
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Similarly, putting E := (FD(B ′))[deg(FD(B ′))] and applying FE gives

1× deg(A′)
E ×1× deg(FD(B ′))

E
∼= 1×n

E .

This shows n = deg(A′)+ deg(FD(B ′))≤ deg(A)+ deg(B) by Proposition 3.5(b).
For (b), let B := A[deg(A)]. Then, FB(A×1×n)∼= 1× deg(A)

B ×1×n
B and we find

deg(A×1×n)≥ deg(FB(A×1×n))= deg(A)+ n.

To prove (c), we write B := A[deg(A)] again and note that FB(A×t)∼= (1× deg(A)
B )×t.

Hence, deg(A×t)≥ deg(FB(A×t))= deg(A) · t . �

4. Counting ring morphisms

Lemma 4.1. Let A be a separable ring in K and suppose 1 is indecomposable. If
there are n distinct ring morphisms A→ 1, then A has 1×n as a ring factor. In
particular, there are at most deg A distinct ring morphisms A→ 1.

Proof. Let αi : A→ 1 be distinct ring morphisms for 1≤ i ≤ n. By Lemma 2.3(b),
we know that 1⊕n is a direct summand of A as an Ae-module, with projections
αi : A→ 1 for 1≤ i ≤ n. Moreover, Lemma 1.10 shows that every such summand 1
admits a ring structure, under which 1×n becomes a ring factor of A and the
projections αi are ring morphisms. In fact, these new ring structures on 1 are the
original one, seeing how αiηA = 11 is a ring morphism for every 1≤ i ≤ n. Finally,
Lemma 3.8(b) shows that deg(A)≥ n. �

Proposition 4.2. Let A and B be separable rings in K and suppose B is indecom-
posable. Let n ≥ 1. The following are equivalent:

(i) There are (at least) n distinct ring morphisms A→ B in K.

(ii) The ring 1×n
B is a ring factor of FB(A) in B-ModK.

(iii) There is a ring morphism A[n]→ B in K.

Proof. Firstly, we claim there is a one-to-one correspondence between ring mor-
phisms α : A→ B in K and ring morphisms β : FB(A)→ 1B in B-ModK. Indeed,
this correspondence sends α : A→ B in K to the B-algebra morphism

B⊗ A
1B⊗α
−−−→ B⊗ B

µ
−→ B,

and conversely, β : FB(A)→ 1B gets mapped to A
ηB⊗1A
−−−−→ B⊗ A

β
−→ B in K.

To show (i)⇒ (ii), note that n distinct ring morphisms A → B in K give n
distinct ring morphisms FB(A)→ 1B in B-ModK. By Lemma 4.1, 1×n

B is a ring
factor of FB(A). For (ii)⇒ (i), suppose 1×n

B is a ring factor of FB(A) in B-ModK

and consider the projections pri : FB(A)→ 1B with 1≤ i ≤ n. By the claim, there
are at least n distinct ring morphisms A→ B in K.
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We show (ii)⇒ (iii) by induction on n. The case n = 1 has already been proven.
Let n≥1 and suppose 1×(n+1)

B is a ring factor of FB(A). By the induction hypothesis,
there exists a ring morphism A[n]→ B. As usual, we write B for the separable ring
in A[n]-ModK corresponding to the A[n]-algebra B in K. The diagram

K A[n]-ModK

B-ModK B-ModA[n]-ModK

FA[n]

FB FB

'

(4.3)

from Proposition 1.15 shows that FB(A) is mapped to FB(FA[n](A)) under the
equivalence B-ModK ' B-ModA[n]-ModK

. It follows that 1×(n+1)
B

is a ring factor
of FB(FA[n](A)). On the other hand, by Proposition 3.5(a) we know that

FB(FA[n](A))∼= FB(1
×n
A[n] × A[n+1])∼= 1×n

B × FB(A
[n+1]). (4.4)

Hence, 1B is a ring factor of FB(A
[n+1]) by Proposition 2.1 and we conclude there

exists a ring morphism A[n+1]
→ B in A[n]-ModK.

To show (iii)⇒ (ii), suppose B is an A[n]-algebra and write B for the corre-
sponding separable ring in A[n]-ModK. Using diagram (4.3) again, it is enough to
show that 1×n

B
is a ring factor of FB(FA[n](A)). This follows from (4.4). �

Theorem 4.5. Let A and B be separable rings in K, where A has finite degree and
B is indecomposable. There are at most deg(A) distinct ring morphisms from A
to B.

Proof. If there are n distinct ring morphisms from A to B, we know 1×n
B is a

ring factor of FB(A) by Proposition 4.2. So, n ≤ degB-ModK
(FB(A))≤ degK(A) by

Proposition 3.5(b) and Lemma 3.8(b). �

Remark 4.6. The assumption B is indecomposable is necessary in Theorem 4.5.
Indeed, deg(1×n)= n but 1×n has at least n! ring endomorphisms.

5. Quasi-Galois theory

Suppose (A, µ, η) is a nonzero ring in K and 0 is a finite set of ring endomorphisms
of A with 1A ∈ 0. Consider the ring

∏
γ∈0 Aγ , where we write Aγ = A for all

γ ∈ 0 to keep track of the different copies of A. We define ring morphisms
ϕ1 : A→

∏
γ∈0 Aγ by prγ ϕ1 = 1A and ϕ2 : A→

∏
γ∈0 Aγ by prγ ϕ2 = γ for all

γ ∈ 0. Thus, ϕ1 renders the (standard) left A-module structure on
∏
γ∈0 Aγ and

we introduce a right A-module structure on
∏
γ∈0 Aγ via ϕ2.

Definition 5.1. We will consider the following ring morphism:

λ0 = λ : A⊗ A −→
∏
γ∈0

Aγ with prγ λ= µ(1⊗ γ ).
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Note that λ(1⊗ η)= ϕ1 and λ(η⊗ 1)= ϕ2,

A

A⊗ A
∏
γ∈0 Aγ

1⊗η

η⊗1

ϕ2

ϕ1
λ

(5.2)

so that λ is an Ae-algebra morphism.

Lemma 5.3. Suppose λ0 : A⊗ A→
∏
γ∈0 Aγ is an isomorphism.

(a) There is an Ae-linear morphism σ : A→ A⊗ A such that µ(1⊗ γ )σ = δ1,γ

for every γ ∈ 0. In particular, A is separable.

(b) Let γ ∈ 0. If there exists a nonzero ring B in K and ring morphism α : A→ B
with αγ = α, then γ = 1.

(c) The separable ring A has degree |0| in K.

Proof. To prove (a), consider the Ae-linear morphism σ := λ−1 incl1 : A→ A⊗ A.
The following diagram shows that µ(1⊗ γ )σ = δ1,γ :

A A⊗ A A⊗ A A

∏
γ∈0 Aγ

∏
γ∈0 Aγ

σ

incl1

1⊗γ

λ

µ

λ−1 prγ

For (b), suppose αγ = α and σ : A→ A⊗ A as in (a). We get

α = αµσ = µ(α⊗α)σ = µ(α⊗α)(1⊗ γ )σ = αµ(1⊗ γ )σ = αδγ,1.

Hence, either α = 0 or γ = 1A. Finally, given that FA(A) ∼= 1×|0|A in A-ModK,
Proposition 3.5(c) shows that deg(A)= |0|. �

Definition 5.4. Suppose that A is a nonzero ring in K and 0 is a finite group of
ring automorphisms of A. We say that A is quasi-Galois in K with group 0 if
λ0 : A⊗ A→

∏
γ∈0 Aγ is an isomorphism. By the above lemma, it follows that A

is separable of degree |0| in K. We also call FA : K−→ A-ModK a quasi-Galois
extension with group 0.

Example 5.5. Let A := 1×n and consider the ring morphism γ := (1 2 · · · n) which
permutes the factors. Then A is quasi-Galois with group 0={γ i

|0≤ i ≤n−1}∼=Zn .
Indeed, the isomorphism λ : A⊗ A→ A×n constructed in the proof of Lemma 3.6
is exactly λ0 . In particular, 0 does not always contain all ring automorphisms of A.

Remark 5.6. The Galois theory of commutative rings was introduced by Auslander
and Goldman [1960, Appendix], and was further developed by Chase, Harrison
and Rosenberg [Chase et al. 1965] and many others. They considered commutative
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rings R ⊂ A such that A is separable and projective as an R-algebra. If 0 is a finite
group of ring automorphisms of A fixing R, then A is Galois over R with group 0
if the maps R ↪→ A0 and

A⊗R A→
∏
γ∈0

A, x ⊗ y 7→ (x · γ (y))γ∈0

are isomorphisms. In particular, A defines a ring object in the categories R−mod
and Dperf(R) (see Example 1.5), which is quasi-Galois with group 0.

Lemma 5.7. Let A be quasi-Galois of degree d in K with group 0 and suppose
F : K→ L is an additive monoidal functor. If F(A) 6= 0, then F(A) is quasi-
Galois of degree d in L with group F(0) = {F(γ ) | γ ∈ 0}. In particular, being
quasi-Galois is stable under extension-of-scalars.

Proof. We immediately see that

F(λ0) : F(A)⊗ F(A)∼= F(A⊗ A)→
∏
γ∈0

F(A)

is an isomorphism in L, so it suffices to show 0 ∼= F(0) and F(λ0)= λF(0). Now,
λ0 is defined by prγ λ0 = µA(1A⊗ γ ), hence prγ F(λ0) = µF(A)(1F(A)⊗ F(γ ))
for every γ ∈ 0. In particular, the morphisms µF(A)(1F(A)⊗ F(γ )) with γ ∈ 0 are
distinct. This shows the morphisms F(γ ) with γ ∈0 are distinct, so that 0∼= F(0)
and F(λ0)= λF(0). �

Proposition 5.8. Suppose A is quasi-Galois in K with group 0.

(a) If B is a separable indecomposable A-algebra, then 0 acts freely and transi-
tively on the set of ring morphisms from A to B. In particular, there are exactly
deg(A) distinct ring morphisms from A to B in K.

(b) If A is indecomposable then 0 contains all ring endomorphisms of A.

Proof. Note that the set S of ring morphisms from A to B is nonempty and 0 acts
on S by precomposition. The action is free by Lemma 5.3(b) and transitive because
|S| ≤ deg A = |0| by Theorem 4.5. In particular, if A is indecomposable, then A
has exactly deg A = |0| ring endomorphisms in K. �

By the above proposition, we can simply say an indecomposable ring A in K

is quasi-Galois, with the understanding that the Galois group 0 contains all ring
endomorphisms of A.

Theorem 5.9. Let A be a separable indecomposable ring of finite degree in K and
write 0 for the set of ring endomorphisms of A. The following are equivalent:

(i) |0| = deg(A).

(ii) FA(A)∼= 1×t
A in A-ModK for some t > 0.
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(iii) λ0 : A⊗ A→
∏
γ∈0 Aγ is an isomorphism.

(iv) 0 is a group and A is quasi-Galois in K with group 0.

Proof. First note that d := deg(A)= deg(FA(A)) by Proposition 3.5(c). To show
(i)⇒ (ii), recall that 1×d

A is a ring factor of FA(A) if |0| = d by Proposition 4.2.
By Lemma 3.8(b), we know FA(A)∼= 1×d

A . For (ii)⇒ (iii), we note that t = d and
consider an A-algebra isomorphism l : A⊗A

'
−→ A×d. We define ring endomorphisms

αi : A A⊗ A A×d A,
η⊗1A l pri i = 1, . . . , d,

such that µ(1A⊗αi )= pri l(µ⊗ 1A)(1A⊗ η⊗ 1A)= pri l for every i . This shows
the αi are all distinct, so that 0 = {αi | 1≤ i ≤ d} by Theorem 4.5 and l = λ0 . For
(iii)⇒ (iv), we show that every γ ∈0 is an automorphism. By Lemma 5.3(a), we can
find an Ae-linear morphism σ : A→A⊗A such thatµ(1⊗γ )σ =δ1,γ for every γ ∈0.
Let γ ∈ 0 and note that γ = µ(γ ⊗ 1)(1⊗ γ )σ so that (1⊗ γ )σ : A→ A⊗ A is
nonzero. Thus there exists γ ′ ∈ 0 such that

prγ ′ λ0(1⊗ γ )σ = µ(1⊗ γ
′)(1⊗ γ )σ = δ1,γ ′γ

is nonzero. This means 1= γ ′γ and γ ′(γ γ ′)= γ ′ so γ γ ′ = 1 by Lemma 5.3(b).
Finally, (iv)⇒ (i) is the last part of Lemma 5.3. �

Corollary 5.10. Let A, B and C be separable rings in K with A ∼= B × C , and
suppose B is indecomposable. If FA(A)∼=1×d

A , then B is quasi-Galois. In particular,
being quasi-Galois is stable under passing to indecomposable ring factors.

Proof. Consider the decomposition A-ModK
∼= B-ModK×C-ModK, under which

FA(A) corresponds to (FB(B×C), FC(B×C)) and 1×d
A corresponds to (1×d

B ,1×d
C ).

Given that 1B is indecomposable and FB(B) is a ring factor of 1×d
B in B-ModK, we

know FB(B)∼= 1×t
B for some 1≤ t ≤ d . The result now follows from Theorem 5.9.

�

6. Splitting rings

Definition 6.1. Let A and B be separable rings of finite degree in K. We say B
splits A if FB(A) ∼= 1× deg(A)

B in B-ModK. We call an indecomposable ring B a
splitting ring of A if B splits A and any ring morphism C → B, where C is an
indecomposable ring splitting A, is an isomorphism.

Remark 6.2. Let A be a separable ring in K with deg(A)= d . The ring A[d] in K

splits A by Proposition 3.5(a). Moreover, if B is a separable indecomposable ring
in K, then B splits A if and only if B is an A[d]-algebra. This follows immediately
from Proposition 4.2.
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Remark 6.3. Let A be a separable ring in K with deg(A)= d . The ring A[d] in K

splits itself by Proposition 3.5(a), (b) and Corollary 3.7:

FA[d](A
[d])∼= (FA[d](A))

[d] ∼= (1×d
A[d])
[d] ∼= 1×d!

A[d] .

Lemma 6.4. Let A be a separable ring in K that splits itself. If A1 and A2

are indecomposable ring factors of A, then any ring morphism A1 → A2 is an
isomorphism.

Proof. Let A1 and A2 be indecomposable ring factors of A and suppose there is a
ring morphism f : A1→ A2. We know FA1(A)∼= 1× deg(A)

A1
because A splits itself.

Meanwhile, FA1(A2) is a ring factor of FA1(A), so that FA1(A2) ∼= 1×d
A1

for some
d ≥ 0. In fact, d = deg(A2)≥ 1 by Proposition 3.5(c). Proposition 4.2 shows there
exists a ring morphism g : A2 → A1. Note that A1 and A2 are quasi-Galois by
Corollary 5.10, so that the ring morphisms g f : A1→ A1 and f g : A2→ A2 are
isomorphisms by Proposition 5.8(b). �

Definition 6.5. We say K is nice if for every separable ring A of finite degree in K,
there are indecomposable rings A1, . . . , An in K such that A ∼= A1× · · ·× An .

Example 6.6. Let G be a group and k a field. The categories kG-mod, Db(kG-mod)
and kG-stab (see Section 10) are nice categories. More generally, K is nice if it
satisfies Krull–Schmidt.

Example 6.7. Let X be a noetherian scheme and let Dperf(X) be the derived category
of perfect complexes over X with left derived tensor product. By Example 7.4 and
Proposition 7.12, Dperf(X) is nice.

Lemma 6.8. Suppose K is nice and let A, B be separable rings of finite degree
in K. If B is indecomposable and there exists a ring morphism A→ B in K, then
there exists a ring morphism C→ B for some indecomposable ring factor C of A.

Proof. Since K is nice, we can write A ∼= A1× · · ·× An with Ai indecomposable
for 1≤ i ≤n. If there exists a ring morphism A→B in K, Proposition 4.2 shows that
1B is a ring factor of FB(A)∼= FB(A1)×· · ·×FB(An). Since 1B is indecomposable,
it is a ring factor of some FB(Ai ) with 1≤ i ≤ n by Proposition 2.1. �

Proposition 6.9. Suppose K is nice and let A be a separable ring of finite degree
in K. An indecomposable ring B in K is a splitting ring of A if and only if B is a
ring factor of A[deg(A)]. In particular, any separable ring in K has a splitting ring
and at most finitely many.

Proof. Let d :=deg(A) and suppose B is a splitting ring of A. By Remark 6.2, B is an
A[d]-algebra. Hence, there exists a ring morphism C→ B for some indecomposable
ring factor C of A[d] by Lemma 6.8. Now, A[d] splits A, so C splits A and the ring
morphism C→ B is an isomorphism. Conversely, suppose B is an indecomposable
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ring factor of A[d], so B splits A. Let C be an indecomposable separable ring
splitting A and suppose there is a ring morphism C→ B. As before, C is an A[d]-
algebra and there exists a ring morphism B ′→ C for some indecomposable ring
factor B ′ of A[d]. The composition B ′→C→ B is an isomorphism by Remark 6.3
and Lemma 6.4. In other words, B is a ring factor of the indecomposable ring C ,
so that C ∼= B. �

Corollary 6.10. Suppose K is nice and B is a separable indecomposable ring of
finite degree in K. Then B is quasi-Galois in K if and only if there exists a nonzero
separable ring A of finite degree in K such that B is a splitting ring of A.

Proof. Suppose B is indecomposable and quasi-Galois of degree t , so B[2]∼=1×(t−1)
B

as B-algebras. Then, B is a splitting ring for B because B is a ring factor of B[t]:

B[t] ∼= (B[2])[t−1] ∼= (1×(t−1)
B )[t−1] ∼= B×(t−1)!.

Now suppose B is a splitting ring for some A in K, say with deg(A) = d > 0.
Seeing how FB(B) is a ring factor of

FB(A[d])∼= FB(A)[d] ∼= (1×d
B )[d] = 1×d!

B ,

we know FB(B)∼= 1×t
B for some t > 0. By Theorem 5.9, B is quasi-Galois. �

7. Tensor triangular geometry

Definition 7.1. A tt-category K is an essentially small, idempotent-complete tensor-
triangulated category. In particular, K comes equipped with a symmetric monoidal
structure (⊗,1) such that x⊗− :K→K is exact for all objects x in K. A tt-functor
K→ L is an exact symmetric monoidal functor.

Throughout the rest of this paper, (K,⊗,1) will denote a tt-category.

Remark 7.2. Balmer [2011] proved in that extension along a separable ring object
A preserves the triangulation: (A-ModK,⊗A,1A) is a tt-category, extension-of-
scalars FA becomes a tt-functor and UA is exact.

Definition 7.3. We briefly recall some tt-geometry and refer the reader to [Balmer
2005] for precise statements and motivation. The spectrum Spc(K) of a tt-category K

is the set of all prime thick ⊗-ideals P ( K. The support of an object x in K is
supp(x) = {P ∈ Spc(K) | x /∈ P} ⊂ Spc(K). The complements of these supports
U(x) := Spc(K)− supp(x) form an open basis for the Zariski topology on Spc(K).

Example 7.4. Let X be a noetherian scheme. Then (Dperf(X),⊗L
OX
) is a tt-category

with spectrum Spc(Dperf(X)) homeomorphic to X ; see [op. cit., Theorem 6.3].
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Remark 7.5. The spectrum is functorial. In particular, every tt-functor F :K→L

induces a continuous map

Spc(F) : Spc(L)→ Spc(K).

Moreover, for all x ∈ K, we have

(Spc F)−1(suppK(x))= suppL(F(x))⊂ Spc L.

Let A be a separable ring in K. We will consider the continuous map

f A := Spc(FA) : Spc(A-ModK)→ Spc(K)

induced by the extension-of-scalars FA : K→ A-ModK.

Theorem 7.6 [Balmer 2016b, Theorem 3.14]. Let A be a separable ring of finite
degree in K. Then

Spc((A⊗ A)-ModK) Spc(A-ModK) suppK(A)
f1

f2

f A (7.7)

is a coequalizer, where f1, f2 are the maps induced by extension-of-scalars along
the morphisms 1⊗ η and η⊗ 1 : A→ A⊗ A respectively. In particular, the image
of f A is suppK(A)⊂ Spc(K).

Definition 7.8. We call a tt-category K local if x ⊗ y = 0 implies that x or y is
⊗-nilpotent for all x, y ∈K. The local category KP at the prime P ∈ Spc(K) is the
idempotent completion of the Verdier quotient K/P. We write qP for the canonical
tt-functor K � K/P ↪→ KP.

Proposition 7.9 [Balmer 2014, Theorem 3.8]. Suppose A is a separable ring in K.
If the ring qP(A) has finite degree in KP for every P ∈ Spc(K), then A has finite
degree and

degK(A)= max
P∈Spc(K)

degKP
(qP(A)).

Proposition 7.10 [Balmer 2014, Corollary 3.12]. Let K be a local tt-category
and suppose A, B are separable rings of finite degree in K. Then deg(A× B) =
deg(A)+ deg(B).

Lemma 7.11 [Balmer 2014, Theorem 3.7]. Let A and B be separable rings in K

and suppose supp(A)⊆ supp(B). Then degB-ModK
(FB(A))= degK(A).

Proposition 7.12. Suppose the spectrum Spc(K) of K is noetherian. Then K is
nice. That is, any separable ring A of finite degree in K has a decomposition
A ∼= A1× . . .× An where A1, . . . , An are indecomposable rings in K.
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Proof. Let A be a separable ring of finite degree in K. We prove that any ring
decomposition of A in K has at most finitely many nonzero ring factors. Suppose
there is a sequence of nontrivial decompositions A = A1× B1, B1 = A2× B2, . . . ,
with Bn = An+1× Bn+1 for n ≥ 1. By Proposition 7.10, we know

deg(qP(Bn))≥ deg(qP(Bn+1))

for every P ∈ Spc(K). We note that deg(qP(Bn))≥ i if and only if P ∈ supp(B[i]n ),
so we get supp(B[i]n ) ⊇ supp(B[i]n+1) for every i ≥ 0. Since Spc(K) is noetherian,
we can find k ≥ 1 with supp(B[i]n ) = supp(B[i]n+1) for every i ≥ 0 and n ≥ k. In
particular, deg(qP(Bk))= deg(qP(Bk+1)) for every P ∈ Spc(K), so qP(Ak+1)= 0
for all P ∈ Spc(K). By Proposition 7.9, we conclude Ak+1 = 0, a contradiction. �

8. Rings of constant degree

Definition 8.1. We say a separable ring A in K has constant degree d ∈ N if the
degree degKP

qP(A) equals d for every P ∈ supp(A)⊂ Spc(K).

Lemma 8.2. Let A be a separable ring of degree d in K. Then A has constant
degree if and only if supp(A[d])= supp(A).

Proof. Note that supp(A[2]) ⊆ supp(A) because A⊗ A ∼= A× A[2] in K. Hence
supp(A[d]) ⊆ supp(A). Now, let P ∈ supp(A). Then qP(A) has degree d if and
only if qP(A[d]) 6= 0, in other words P ∈ supp(A[d]). �

Lemma 8.3. Let A be a separable ring in K and suppose F :K→L is a tt-functor
with F(A) 6= 0. If A has constant degree d, then F(A) has constant degree d.
Conversely, if F(A) has constant degree d and supp(A)⊂ im(Spc(F)), then A has
constant degree d.

Proof. We first note that deg(F(A))≤ deg(A) by Proposition 3.5(b). Now, if A has
constant degree d , then

suppL(F(A)
[d])= suppL(F(A

[d]))= Spc(F)−1(suppK(A
[d]))

= Spc(F)−1(suppK(A))= suppL(F(A)) 6=∅,

which shows F(A) has constant degree d . Conversely, suppose F(A) has constant
degree d and supp(A) ⊂ im(Spc(F)). In particular, supp(A[d+1]) ⊂ im(Spc(F)),
so

∅= supp(F(A[d+1]))= Spc(F)−1(supp(A[d+1]))

implies supp(A[d+1])=∅. Thus A has degree d . Moreover, seeing how

Spc(F)−1(suppK(A
[d]))= suppL(F(A)

[d])

= suppL(F(A))= Spc(F)−1(suppK(A)),

we can conclude suppK(A
[d])= suppK(A). �
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Proposition 8.4. Let A be a separable ring in K. Then A has constant degree d if
and only if there exists a separable ring B in K with supp(A)⊂ supp(B) and such
that FB(A) ∼= 1×d

B . In particular, if A is quasi-Galois in K with group 0, then A
has constant degree |0| in K.

Proof. If A has constant degree d , we can let B := A[d] and use Proposition 3.5(a).
On the other hand, if A and B are separable rings in K with supp(A)⊂ supp(B),
then Theorem 7.6 and Lemma 8.3 show that A has constant degree d whenever
FB(A) has constant degree d. �

Proposition 8.5. Let A be a separable ring of constant degree in K with connected
support supp(A)⊂ Spc(K). If B and C are nonzero rings in K such that A= B×C ,
then B and C have constant degree and supp(A)= supp(B)= supp(C).

Proof. Given that A has constant degree d , we claim that for every 1≤ n ≤ d ,

supp(A)= supp(B[n])t supp(C [d−n+1]).

Fix 1≤ n ≤ d and suppose P ∈ supp(B[n])∩ supp(C [d−n+1]), so deg(qP(B))≥ n
and deg(qP(C))≥ d−n+1. By Proposition 7.10, deg(qP(A))≥ d+1, which is a
contradiction. So far we’ve proven supp(A)⊃ supp(B[n])t supp(C [d−n+1]). Now,
if P ∈ supp(A)− supp(B[n]), we get deg(qP(A))= d and deg(qP(B))≤ n− 1. It
follows that deg(qP(C))≥ d−n+1, so P ∈ supp(C [d−n+1]) and the claim follows.

Assuming A has connected support, we note that for every 1 ≤ n ≤ d, either
supp(B[n]) = supp(A) or supp(B[n]) = ∅. In particular, taking n = deg(B) and
then n = 1 shows that supp(A) = supp(B[deg(B)]) = supp(B). Similarly, we see
supp(A)= supp(C [deg(C)])= supp(C) by letting n= d+1−deg(C) and then n= 1.
In other words, supp(A)= supp(B)= supp(C) and B,C have constant degree. �

9. Quasi-Galois theory and tensor triangular geometry

Let A be a separable ring in K and suppose 0 is a finite group of ring automorphisms
of A. Then, 0 acts on A-ModK (see Remark 1.14) and therefore on the spectrum
Spc(A-ModK).

Theorem 9.1. Suppose A is quasi-Galois in K with group 0. Then,

supp(A)∼= Spc(A-ModK)/0.

Proof. Diagram (5.2) yields a diagram of topological spaces

Spc(A-ModK)

Spc((A⊗ A)-ModK) Spc(
∏
γ∈0 Aγ -ModK),

f1

f2
∼=

l

g2

g1
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where f1, f2, g1, g2 and l are the maps induced by extension-of-scalars along the
morphisms 1⊗η, η⊗1, ϕ1, ϕ2 and λ respectively (in the notation of Definition 5.1).
That is, g1, g2 :

⊔
γ∈0 Spc(Aγ -ModK)→ Spc(A-ModK) are continuous maps such

that g1 inclγ is the identity and g2 inclγ is the action of γ on Spc(A-ModK). Now,
the coequalizer (7.7) turns into⊔

γ∈0

Spc(Aγ -ModK) Spc(A-ModK) supp(A),
g1

g2

f A

which shows supp(A)∼= Spc(A-ModK)/0. �

Remark 9.2. Let A be a ring in K. We call A nil-faithful if FA( f )= 0 implies f
is ⊗-nilpotent for any morphism f in K. By [Balmer 2016b, Proposition 3.15], A
is nil-faithful if and only if supp(A)= Spc(K). If A is nil-faithful and quasi-Galois
in K with group 0, Theorem 9.1 recovers Spc(K) as the 0-orbits of Spc(A-ModK).

The following is a tensor-triangular version of Lemma 6.4.

Lemma 9.3. Let A be a separable ring in K that splits itself. If A1 and A2 are
indecomposable ring factors of A, then supp(A1)∩ supp(A2)=∅ or A1 ∼= A2.

Proof. Let A1 and A2 be indecomposable ring factors of A and suppose A splits
itself. We know FA1(A)∼= 1× deg(A)

A1
and hence FA1(A2)∼= 1×t

A1
for some t ≥ 0. In

fact, t = 0 only if supp(A1⊗ A2) = supp(A1)∩ supp(A2) = ∅. If t > 0, we can
find a ring morphism A2→ A1 by Proposition 4.2. Now Lemma 6.4 shows this is
an isomorphism. �

Proposition 9.4. Suppose K is nice. Let A be a separable ring in K with connected
support supp(A) and constant degree. Then the splitting ring A∗ of A is unique up
to isomorphism and supp(A)= supp(A∗).

Proof. Let d := deg(A). Recall that by Proposition 6.9, the splitting rings of A
are exactly the indecomposable ring factors of A[d]. We now prove that any two
indecomposable ring factors, say A1 and A2, of A[d] are isomorphic. Note that
supp(A)= supp(A[d]) is connected and A[d] has constant degree d! by Remark 6.3,
so that supp(A) = supp(A1) = supp(A2) by Proposition 8.5. Now, Lemma 9.3
shows A1 and A2 are isomorphic. �

Remark 9.5. In what follows, we consider a separable ring A in K and assume
the spectrum Spc(A-ModK) is connected, which implies that A is indecomposable.
Moreover, if the tt-category A-ModK is rigid, Spc(A-ModK) is connected if and
only if A is indecomposable, see [Balmer 2007, Theorem 2.11]. We note that many
tt-categories are rigid, including all examples given in this paper.

Proposition 9.6. Suppose K is nice. Let A be a separable ring in K and suppose
Spc(A-ModK) is connected. Let B be an A-algebra with supp(A)= supp(B). If B
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is quasi-Galois in K with group 0, then B splits A. In particular, the degree of A in
K is constant.

Proof. If B is quasi-Galois in K for some group 0, then all of its indecom-
posable ring factors are also quasi-Galois by Corollary 5.10. What is more,
supp(B) = f A(Spc(A-ModK)) is connected, so the indecomposable ring factors
of B have support equal to supp(B) by Proposition 8.5. It thus suffices to prove
the proposition when B is indecomposable. Now, FA(B) is quasi-Galois by
Lemma 5.7 and supp(FA(B))= f −1

A (supp(B))= Spc(A-ModK) is connected. By
Corollary 2.4, B is an indecomposable ring factor of FA(B), and all ring factors
of FA(B) have equal support by Proposition 8.5. In fact, Lemma 9.3 shows that
FA(B)∼= B×t for some t ≥ 1. Forgetting the A-action, we get A⊗ B ∼= B×t in K

and FB(A⊗ B)∼= FB(B×t)∼= 1×dt
B in B-ModK, where d := deg(B). On the other

hand, FB(A⊗B)∼= FB(A)⊗B 1×d
B
∼= (FB(A))×d . It follows that FB(A)∼= 1×t

B , with
t = deg(A) by Lemma 7.11. �

Theorem 9.7 (Quasi-Galois closure). Suppose K is nice. Let A be a separable ring
of constant degree in K and suppose Spc(A-ModK) is connected. The splitting ring
A∗ is the quasi-Galois closure of A. That is, A∗ is quasi-Galois in K, supp(A)=
supp(A∗) and for any A-algebra B that is quasi-Galois in K with supp(A) =
supp(B), there exists a ring morphism A∗→ B.

Proof. Corollary 6.10 and Proposition 9.4 show that A∗ is quasi-Galois in K and
supp(A)= supp(A∗). Suppose there is an A-algebra B as above. By Proposition 9.6,
B splits A, so there exists a ring morphism A[deg(A)]

→ B. The result now follows
because A[deg(A)] ∼= A∗× · · ·× A∗ by Proposition 9.4. �

Remark 9.8. By Proposition 9.6, the assumption that A has constant degree is
necessary for the existence of a quasi-Galois closure A∗ of A with supp(A) =
supp(A∗).

10. Some modular representation theory

Let G be a finite group and k a field with characteristic p> 0 dividing |G|. We write
kG-mod for the category of finitely generated left kG-modules. This category is
nice, idempotent-complete and symmetric monoidal: the tensor is ⊗k with diagonal
G-action, and the unit is the trivial representation 1= k.

We will also work in the bounded derived category Db(kG-mod) and stable cate-
gory kG-stab, which are nice tt-categories. The spectrum Spc(Db(kG-mod)) of the
derived category is homeomorphic to the homogeneous spectrum Spech(H •(G, k))
of the graded-commutative cohomology ring H •(G, k). Accordingly, the spectrum
Spc(kG-stab) of the stable category is homeomorphic to the projective support
variety VG(k) := Proj(H •(G, k)); see [Benson et al. 1997].
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Notation 10.1. Let H ≤ G be a subgroup. The kG-module AH = AG
H := k(G/H)

is the free k-module with basis G/H and left G-action given by g · [x] = [gx] for
every [x] ∈ G/H . The kG-linear map µ : AH ⊗k AH → AH is given by

γ ⊗ γ ′ 7→

{
γ if γ = γ ′,
0 if γ 6= γ ′,

for all γ, γ ′ ∈ G/H .

We define η : 1→ AH by sending 1 ∈ k to
∑

γ∈G/H γ ∈ k(G/H).
We will write K(G) to denote any of kG-mod, Db(kG-mod) or kG-stab and

consider the object AH in each of these categories.

Proposition 10.2 [Balmer 2015, Proposition 3.16 and Theorem 4.4]. Let H ≤ G
be a subgroup. Then,

(a) The triple (AH , µ, η) is a commutative separable ring object in K(G).

(b) There is an equivalence of categories

9G
H : K(H)−→

' AH -ModK(G)

sending V ∈ K(H) to kG⊗kH V ∈ K(G) with AH -action

% : k(G/H)⊗k (kG⊗kH V )→ kG⊗kH V

given for γ ∈ G/H , g ∈ G and v ∈ V by γ ⊗ g⊗ v→
{

g⊗ v if g ∈ γ ,
0 if g /∈ γ .

(c) The following diagram commutes up to isomorphism:

K(G)

K(H) AH -ModK(G).

FAHResG
H

9G
H

'

So, every subgroup H ≤ G provides an indecomposable separable ring AH

in K(G), along which extension-of-scalars becomes restriction to the subgroup.

Proposition 10.3. The ring AH has degree [G : H ] in kG-mod and Db(kG-mod).

Proof. Seeing how the fiber functor ResG
{1} is conservative, we get

degkG-mod(AH )= degk-mod(ResG
{1}(AH ))= [G : H ].

The degree of AH in Db(kG-mod) is computed in [Balmer 2014, Corollary 4.5]. �

Lemma 10.4. Let K(G) denote Db(kG-mod) or kG-stab and consider subgroups
K ≤ H ≤ G. Then supp(AH ) = supp(AK ) ⊂ Spc(K(G)) if and only if every
elementary abelian p-subgroup of H is conjugate in G to a subgroup of K .
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Proof. This follows from [Evens 1991, Theorem 9.1.3], seeing how supp(AH )=

(ResG
H )
∗(Spc(K(H))) can be written as a union of disjoint pieces coming from

conjugacy classes in G of elementary abelian p-subgroups of H . �

Notation 10.5. For any two subgroups H, K ≤ G, we write H [g]K for the equiv-
alence class of g ∈ G in H −G/K , just [g] if the context is clear. We will write
H g
:= g−1 Hg for the conjugate subgroups of H .

Remark 10.6. Let H, K ≤ G be subgroups and choose a complete set T ⊂ G of
representatives for H\G/K . Consider the Mackey isomorphism of G-sets,∐

g∈T

G/(K ∩ H g)−→
∼= G/K ×G/H,

sending [x]∈G/(K∩H g) to ([x]K , [xg−1
]H ). The corresponding ring isomorphism

τ : AK ⊗ AH −→
∼=
∏
g∈T

AK∩H g

in K(G) [Balmer 2016b, Construction 4.1] is given for g ∈ T and x, y ∈ G by

prgτ([x]K ⊗[y]H )=
{
[xk]K∩H g if H [g]K = H [y−1x]K ,
0 otherwise,

with k ∈ K such that y−1xkg−1
∈ H . This yields an AK -algebra structure on AK∩H t

for every t ∈ T , given by

AK
1⊗η
−−→ AK ⊗ AH ∼=

∏
g∈T

AK∩H g
prt
−→ AK∩H t ,

which sends [x]K ∈ G/K to ∑
[k]∈K/K∩H t

[xk]K∩H t ∈ AK∩H t .

In the notation of Proposition 10.2(b), this just means AK∩H t = 9G
K (A

K
K∩H t ) in

AK -ModK(G). In other words, τ defines an isomorphism

FAK (AH )∼=9
G
K

(∏
g∈T

AK
K∩H g

)
of rings in AK -ModK(G).

Lemma 10.7. Let H < G. Suppose x, g1, g2, . . . , gn ∈ G and 1≤ i ≤ n. Then

H [x]H∩H g1∩···∩H gn = H [gi ]H∩H g1∩···∩H gn

if and only if H [x] = H [gi ].
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Proof. It suffices to prove that for x, y ∈G, we have H [x]H y = H [y]H y if and only if
H [x] = H [y]. This follows because for [x] = [y] in H−G/H y , there are h, h′ ∈ H
with x = hy(y−1h′y)= hh′y. �

Notation 10.8. We fix a subgroup H < G and a complete set S ⊂ G of representa-
tives for H −G/H . Likewise, if g1, g2, . . . , gn ∈ G we will write Sg1,g2,...,gn ⊂ G
to denote some complete set of representatives for H −G/H ∩ H g1 ∩ · · · ∩ H gn .

Recall that K(G) can denote kG-mod, Db(kG-mod) or kG-stab.

Lemma 10.9. Let 1≤ n < [G : H ]. There is an isomorphism of rings

A[n+1]
H
∼=

∏
g1,...,gn

AH∩H g1∩···∩H gn

in K(G), where the product runs over all g1 ∈ S and gi ∈ Sg1,...,gi−1 for 2 ≤ i ≤ n
with H [1], H [g1], . . . , H [gn] distinct in H\G.

Proof. By Remark 10.6, we know that

AH ⊗ AH ∼=
∏
g∈S

AH∩H g = AH ×
∏
g∈S

H [g]6=H [1]

AH∩H g ,

so Proposition 2.1 shows

A[2]H
∼=

∏
g∈S

H [g]6=H [1]

AH∩H g in K(G).

Now suppose
A[n]H
∼=

∏
g1,...,gn−1

AH∩H g1∩···∩H gn−1

for some 1≤ n< [G : H ], where the product runs over all g1 ∈ S and gi ∈ Sg1,...,gi−1

for 2≤ i ≤ n− 1 with H [1], H [g1], . . . , H [gn−1] distinct in H\G. Then

A[n]H ⊗ AH ∼=
∏

g1,...,gn−1

AH∩H g1∩···∩H gn−1 ⊗ AH ∼=
∏

g1,...,gn−1

∏
gn∈Sg1,...,gn−1

AH∩H g1∩···∩H gn ,

again by Remark 10.6. We note that every gn ∈ Sg1,...,gn−1 with either H [gn] = H [1]
or H [gn] = H [gi ] for 1≤ i ≤ n− 1 provides a copy of A[n]H . By Lemma 10.7, this
happens exactly n times. Hence,

A[n]H ⊗ AH ∼=
(
A[n]H

)×n
×

∏
g1,...,gn

AH∩H g1∩···∩H gn ,

where the product runs over all g1 ∈ S and gi ∈ Sg1,...,gi−1 for 2≤ i ≤ n with distinct
H [1], H [g1], . . . , H [gn] in H\G. The lemma follows by Proposition 3.5(a). �

Corollary 10.10. Let d := [G : H ]. There is an isomorphism of rings

A[d]H
∼=
(
AnormG

H

)×k(G,H)
, where k(G, H)= d!

[G : normG
H ]

,
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in kG-mod and Db(kG-mod). Here, normG
H :=

⋂
g∈G

g−1 Hg is the normal core of H
in G.

Proof. From the above lemma, we know

A[d]H
∼=

∏
g1,...,gd−1

AH∩H g1∩···∩H gd−1 ,

where the product runs over some g1, . . . gd−1 ∈ G with

{H [1], H [g1], . . . , H [gd−1]} = H −G.

This shows A[d]H
∼= A×t

normG
H

for some t ≥ 1. Now, deg(AnormG
H
)= [G : normG

H ] and
deg(A[d]H )= d! by Remark 6.3, so t = d!/[G : normG

H ] by Lemma 3.8(c). �

Corollary 10.11. The ring AH in Db(kG-mod) has constant degree [G : H ] if and
only if normG

H contains every elementary abelian p-subgroup of H. In that case, its
quasi-Galois closure is AnormG

H
. Furthermore, AH is quasi-Galois in Db(kG-mod)

if and only if H is normal in G.

Proof. By Lemma 8.2, AH has constant degree [G : H ] in Db(kG-mod) if and
only if supp(A[d]) = supp(A) ⊂ Spc(Db(kG-mod)). Hence, the first statement
follows immediately from Lemma 10.4 and Corollary 10.10. By Proposition 6.9,
the splitting ring of AH is AnormG

H
, so the second statement is Theorem 9.7. Since

AH is an indecomposable ring, it is quasi-Galois if and only if it is its own splitting
ring. Thus AH is quasi-Galois if and only if AnormG

H
∼= AH , which yields normG

H = H
by comparing degrees. �

Remark 10.12. Let H ≤ G be a subgroup. Recall that AH ∼= 0 in kG-stab if and
only if p does not divide |H |. On the other hand, AH ∼= k in kG-stab if and only
if H is strongly p-embedded in G, that is p divides |H | and p does not divide
|H ∩ H g

| if g ∈ G− H .

Proposition 10.13. Let H ≤ G and consider the ring AH in kG-stab. Then,

(a) The degree of AH is the greatest 0≤ n ≤ [G : H ] such that there exist distinct
[g1], . . . , [gn] in H\G with p dividing |H g1 ∩ · · · ∩ H gn |.

(b) The ring AH is quasi-Galois if and only if p divides |H | and p does not divide
|H ∩ H g

∩ H gh
| whenever g ∈ G− H and h ∈ H − H g.

(c) If AH has degree n, the degree is constant if and only if there exist distinct
[g1], . . . , [gn] in H\G such that H g1 ∩ · · · ∩ H gn contains a G-conjugate of
every elementary abelian p-subgroup of H.
In that case, AH has quasi-Galois closure given by AH g1∩···∩H gn .

Proof. For (a), recall that deg(AH ) is the greatest n such that A[n]H 6= 0, thus such that
there exist distinct H [1], H [g1], . . . , H [gn−1] with |H ∩H g1 ∩· · ·∩H gn−1 | divisible
by p.
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To show (b), recall that FAH (AH ) ∼= 9
G
H

(∏
g∈S AH

H∩H g

)
by Remark 10.6. It

follows that FAH (AH )∼= 1× deg(AH )
AH

in AH -ModkG-stab if and only if∏
g∈S

AH
H∩H g

∼= k× deg(AH )

in kH -stab. So, AH is quasi-Galois in kG-stab if and only if AH 6= 0 and for every
g ∈ G, either AH

H∩H g = 0 or AH
H∩H g

∼= k in kH -stab. By Remark 10.12, this means
either p does not divide |H ∩ H g

|, or p divides |H ∩ H g
| but does not divide

|H∩H g
∩H gh

| when h ∈ H−H g. Equivalently, p does not divide |H∩H g
∩H gh

|

whenever g ∈ G− H and h ∈ H − H g.
For (c), suppose AH has constant degree n. By Proposition 9.4, any indecom-

posable ring factor of A[n]H is isomorphic to the splitting ring A∗H , so Lemma 10.9
shows that the quasi-Galois closure is given by A∗H ∼= AH g1∩···∩H gn for any dis-
tinct H [g1], . . . , H [gn] with |H g1 ∩ · · · ∩ H gn | divisible by p. Then, supp(AH ) =

supp(A∗H )= supp(AH g1∩···∩H gn ) so H g1∩· · ·∩H gn contains a G-conjugate of every
elementary abelian p-subgroup of H . On the other hand, if there exist distinct
[g1], . . . , [gn] in H\G such that H g1 ∩ · · · ∩ H gn contains a G-conjugate of every
elementary abelian p-subgroup of H , then supp(A[n]H ) = supp(AH g1∩···∩H gn ) =

supp(AH ), so the degree of AH is constant. �

Example 10.14. Let p = 2 and suppose G = S3 is the symmetric group on 3
elements {1, 2, 3}. Consider the subgroup H := {( ), (1 2)} ∼= S2 of permutations
fixing {3}. Its conjugate subgroups in G are the subgroups of permutations fixing
{1} and {2} respectively, so normG

H = {( )}. Now, AH is a ring of degree 3 in
Db(kG-mod), and we immediately see that supp(AH )=Spc(Db(kG-mod)) because
p does not divide [G : H ]. Seeing how supp(A[3]H )⊂ Spc(Db(kG-mod)) contains
only one point, the ring AH does not have constant degree in Db(kG-mod). On the
other hand, the ring AH considered in kG-stab is quasi-Galois of degree 1, since
H is strongly p-embedded in G.

Example 10.15. Let p = 2 and suppose G = S4 is the symmetric group on 4
elements {1, 2, 3, 4}. If H ∼= S3 is the subgroup of permutations fixing {4}, the
ring AH in kG-stab has constant degree 2. Indeed, the intersections H ∩ H g

with g ∈ G − H each fix two elements of {1, 2, 3, 4} pointwise, so p does not
divide [H : H ∩ H g

]; thus supp(A[2]H )= supp(AH ). Furthermore, the intersections
H∩H g1∩H g2 with [1], [g1], [g2] distinct in H\G are trivial, so A[3]H =0 in kG-stab.
The quasi-Galois closure of AH in kG-stab is AS2 , with S2 embedded in H .
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p-rigidity and Iwasawa µ-invariants
Ashay A. Burungale and Haruzo Hida

Let F be a totally real field with ring of integers O and p be an odd prime
unramified in F . Let p be a prime above p. We prove that a mod p Hilbert
modular form associated to F is determined by its restriction to the partial
Serre–Tate deformation space Ĝm ⊗ Op (p-rigidity). Let K/F be an imaginary
quadratic CM extension such that each prime of F above p splits in K and λ a
Hecke character of K . Partly based on p-rigidity, we prove that the µ-invariant
of the anticyclotomic Katz p-adic L-function of λ equals the µ-invariant of the
full anticyclotomic Katz p-adic L-function of λ. An analogue holds for a class of
Rankin–Selberg p-adic L-functions. When λ is self-dual with the root number−1,
we prove that the µ-invariant of the cyclotomic derivatives of the Katz p-adic
L-function of λ equals the µ-invariant of the cyclotomic derivatives of the Katz
p-adic L-function of λ. Based on previous works of the authors and Hsieh, we
consequently obtain a formula for the µ-invariant of these p-adic L-functions
and derivatives. We also prove a p-version of a conjecture of Gillard, namely the
vanishing of the µ-invariant of the Katz p-adic L-function of λ.

1. Introduction 1921
2. Hilbert modular Shimura variety 1928
3. p-rigidity 1932
4. p-independence 1937
5. p-adic differential operators 1940
6. Iwasawa µ-invariants 1944
Acknowledgements 1949
References 1949

1. Introduction

Zeta values seem to suggest deep phenomena in Mathematics. They seem to
mysteriously encode deep arithmetic information. They also seem to suggest
surprising modular and Iwasawa-theoretic phenomena.
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Sometimes, they are a sum of evaluations of modular forms at CM points.
Such an expression for critical Hecke L-values and conjectural nontriviality of the
corresponding anticyclotomic p-adic L-function, suggested to the second named
author a linear independence of mod p Hilbert modular forms. Based on Chai’s
theory of Hecke-stable subvarieties of a Shimura variety (see [Chai 1995; 2003;
2006]), this guess was proven in [Hida 2010]. Let p be a prime above p (see the
abstract). Recently, the expression and conjectural nontriviality of the corresponding
anticyclotomic p-adic L-function suggested to us a rather surprising rigidity property
of mod p Hilbert modular forms. Partly based on the rigidity, we obtain intriguing
equalities of Iwasawa µ-invariants of seemingly independent p-adic L-functions.

Let F be a totally real field of degree d and O the integers ring. Let p be an odd
prime unramified in F . Let p1, . . . , pr be the primes above p. Fix two embeddings
ι∞ : Q→ C and ιp : Q→ Cp. Let vp be the p-adic valuation of Cp normalised
such that vp(p)= 1. Let F be an algebraic closure of Fp.

Let Sh/F be the Kottwitz model of the prime-to-p Hilbert modular Shimura variety
associated to F . We refer to Section 2B for the definition. Here we only mention
that in the moduli interpretation for Sh/Z(p) , the full prime-to-p level structure
appears. Let x ∈ Sh be a closed ordinary point. From Serre–Tate deformation
theory, a p∞-level structure on x induces a canonical isomorphism

Spf(ÔSh,x)'
∏

i

Ĝm ⊗ Opi . (1-1)

Let p = pi , for some i . Let f be a mod p Hilbert modular form in the sense of
Section 2D. In view of the irreducibility of the connected components of Sh, the
form f is determined by its restriction to Spf(ÔSh,x). In fact, we have the following
rigidity result.

Theorem 1.1 (p-rigidity). Let F/Q be a totally real extension with integer ring O ,
p an odd prime unramified in F and p|p a prime in F. Let f be a nonzero mod p
Hilbert modular form over F as above.

Then, f does not vanish identically on the partial Serre–Tate deformation space
Ĝm ⊗ Op. In particular, a mod p Hilbert modular form is determined by its
restriction to the partial Serre–Tate deformation space Ĝm ⊗ Op.

We now describe the results regarding the Iwasawa µ-invariants.
Let K be a totally imaginary quadratic extension of F . Let h? denote the

class number of ?, for ? = K , F . Let c denote the complex conjugation on C
which induces the unique nontrivial element of Gal(K/F) via ι∞. We assume the
following hypothesis:

(ord ) Every prime of F above p splits in K .
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The condition (ord ) guarantees the existence of a p-adic CM type 6, i.e., 6 is a
CM type of K such that the p-adic places induced by elements in6 via ιp are disjoint
from the ones induced by 6c. We fix such a CM type. We also identify it with the
set of infinite places of F . Let K−

∞
(resp. K+

∞
) be the anticyclotomic Zd

p-extension
(resp. cyclotomic Zp-extension) of K and K−p,∞ ⊂ K−

∞
be the p-anticyclotomic

subextension, i.e., the maximal subextension unramified outside the primes above
p in K . Let Kp,∞ = K−p,∞K+

∞
. Let 0± := Gal(K±

∞
/K ), 0−p := Gal(K−p,∞/K ) and

0p := Gal(Kp,∞/K ).
Let C be a prime-to-p integral ideal of K . Let λ be an arithmetic Hecke character

over K . Suppose that C is the prime-to-p conductor of λ. Associated to this data, a
natural (d + 1)-variable Katz p-adic L-function

L6,λ = LΣ,λ(T1, . . . , Td , S) ∈ Zp[[0]]

is constructed in [Katz 1978; Hida and Tilouine 1993]. Here, the Ti are the
anticyclotomic variables and S is the cyclotomic variable. The Katz p-adic L-
function interpolates critical Hecke L-values L(0, λχ) as χ varies over certain
Hecke characters over K factoring through the Ray class group with conductor Cp∞

(see [Hida and Tilouine 1993, Theorem II]). Let L−6,λ ∈ Zp[[0
−
]] (resp. L−6,λ,p ∈

Zp[[0
−
p ]]) be the anticyclotomic (resp. p-anticyclotomic) projection obtained from

the projection π− : Zp[[0]] � Zp[[0
−
]] (resp. π−p : Zp[[0]] � Zp[[0

−
p ]]). Let

L6,λ,p ∈ Zp[[0p]] be obtained from the projection πp : Zp[[0]] � Zp[[0p]]. We
call L6,λ,p the Katz p-adic L-function to emphasise the consideration of the p-
component. This is a slightly nontraditional terminology as the construction is still
under the same embedding ιp.

For the notion of Iwasawa µ-invariants, we refer to [Hida 2010, §1]. Here we
only mention that the µ-invariant measures nontriviality modulo p. We now state
our results regarding the Iwasawa µ-invariants of p-adic L-functions and derivatives
arising in the context of the Iwasawa theory of an arithmetic Hecke character over
a CM field as above.

The µ-invariant of L−6,λ,p is given by the following theorem.

Theorem 1.2. Let F/Q be a totally real extension, p an odd prime unramified in F
and p|p a prime in F. Let K/F be a p-ordinary CM quadratic extension. Let λ be
an arithmetic Hecke character over K . Let L−6,λ (resp. L−6,λ,p) be the corresponding
anticyclotomic Katz p-adic (resp. anticyclotomic Katz p-adic) L-function as above.
Then, we have

µ(L−6,λ)= µ(L
−

6,λ,p).

In most of the cases, µ(L−6,λ) has been explicitly determined (see [Hida 2010;
Hsieh 2014a]). Thus, we obtain a formula for µ(L−6,λ,p).



1924 Ashay A. Burungale and Haruzo Hida

We show a result analogous to Theorem 1.2 for a class of Rankin–Selberg
anticyclotomic p-adic L-functions.

When λ is self-dual with the root number−1, all the Hecke L-values appearing in
the interpolation property of L−6,λ vanish. Accordingly, L−6,λ and L−6,λ,p identically
vanish. The anticyclotomic arithmetic information contained in L−Σ,λ and L−Σ,λ,p
may seem to have disappeared. However, we can look at the cyclotomic derivatives

L ′6,λ =
(
∂

∂S
L6,λ(T1, . . . , Td , S)

)∣∣∣
S=0

(1-2)

and L ′6,λ,p (defined analogously).
The µ-invariant of L ′6,λ,p is given by the following theorem.

Theorem 1.3. Let F/Q be a totally real extension, p an odd prime unramified in
F and p|p a prime in F. Let K/F be a p-ordinary CM quadratic extension. Let λ
be an arithmetic self-dual Hecke character over K with root number −1. Let L ′6,λ
(resp. L ′6,λ,p) be the corresponding cyclotomic derivative of the Katz p-adic (resp.
Katz p-adic) L-function as above.

Suppose that p - h−K , where h−K is the relative class number given by h−K = hK /hF .
Then, we have

µ(L ′6,λ)= µ(L
′

6,λ,p).

In most of the cases, µ(L ′6,λ) has been explicitly determined (see [Burungale
2015]). Thus, we obtain a formula for µ(L ′6,λ,p).

Finally, we consider the p-adic L-function. We have the following p-version
of a conjecture of Gillard [1991, Conjecture (i)] regarding the vanishing of the
µ-invariant of Katz p-adic L-function.

Theorem 1.4. Let F/Q be a totally real extension, p an odd prime unramified in F
and p|p a prime in F. Let K/F be a p-ordinary CM quadratic extension. Let λ be
an arithmetic Hecke character over K . Let L6,λ,p be the corresponding cyclotomic
Katz p-adic L-function as above. Then, we have

µ(L6,λ,p)= 0.

We now describe the strategy of the proof of Theorem 1.1. Some of the notation
used here is not followed in the rest of the article.

We begin with general remarks on rigidity. Here is a geometric reason for this
rigidity, which we refer to as L-rigidity. Let Ŝ be a formal torus over a field which
is the residue field of a mixed characteristic ring. Suppose that we have a rational
structure coming from an algebraic subscheme S over the mixed characteristic
ring whose formal completion at a closed point x ∈ S gives Ŝ. Here S is not
necessarily an algebraic torus. We suppose that there exists a positive dimensional
transcendental linear subvariety L of Ŝ with strictly smaller dimension, i.e., a
nontrivial formal subtorus which does not equal the formal completion along x of
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an algebraic subscheme of S. Transcendence of L implies the “algebraic” Zariski
closure of L in S is the entire S. This may not happen for the formal Zariski closure.
Let A =OS,x and L = Spf(B). Thus, the transcendence of L is equivalent to the
injectivity of the natural morphism A→ B given by φ 7→ φ|L for φ ∈ A and hence
the L-rigidity, i.e., φ is determined by its restriction to the formal subtorus L . The
rigidity remains true for φ ◦ a for any automorphism a of Ŝ. It turns out that often
the rigidity also remains true for

∑
i φi ◦ ai for a well chosen set of automorphisms

ai of Ŝ and φi ∈ 0(S,OS), i.e.,∑
i

φi ◦ ai = 0⇒ φi = 0

for all i . As the notion of well chosen may vary from context to context, we only
mention that {ai }’s typically satisfy a transcendental property which we later specify
in this context. We study the case for the Serre–Tate deformation space Ŝ with
rational structure induced from the Hilbert modular Shimura variety. The formal
subtorus we study is the partial p-deformation subspace of Ŝ. We consider certain
{ai }i such that the differences {ai a−1

j }i 6= j are “transcendental” automorphisms of
the Serre–Tate deformation space (see Section 4A).

Let G = ResO/Z(GL2). The group G(Z(p)) acts on the prime-to-p Hilbert
modular Shimura variety Sh/Z(p). We refer to Section 3B for the action. Here we
only mention that in terms of the moduli interpretation, the action corresponds to
the one on the level structure. Let V be an irreducible component of Sh containing
x . Let Hx(Z(p)) be the stabiliser of x in G(Z(p)). It acts on Spec(OV,x) and thus
on the Serre–Tate deformation space Spf(ÔV,x). In view of the description of the
action on the Serre–Tate coordinates, we observe that the formal subtorus

Ĝm ⊗ Op ⊂ Spf(ÔV,x)

is stable under the action of Hx(Z(p)). Chai and the second named author have
proven that a positive dimensional closed irreducible subvariety of V containing
x and stable under Hx(Z(p)) equals V itself. In this sense, the formal subtorus
Ĝm ⊗ Op is transcendental in the Shimura variety. Recall that the Igusa tower is
étale over V. As a mod p Hilbert modular form is an algebraic function on the
Igusa tower, we prove p-rigidity (Theorem 1.1) based on the transcendence.

We now describe the strategy of the proof of Theorem 1.2. Some of the notation
used here is not followed in the rest of the article.

Let us first recall the second named author’s strategy [2010] to determineµ(L−6,λ).
Let Op = O ⊗Zp. Let

G6,λ ∈ Zp[[T1, . . . , Td ]]
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be the power series expansion of the measure L−6,λ regarded as a p-adic measure
on Op with support in 1+ pOp, given by

G6,λ =

∫
1+pOp

t y d L−6,λ(y)

=

∑
(k1,...,kd )∈(Z≥0)d

(∫
1+pOp

( y
k1, . . . , kd

)
d L−6,λ(y)

)
T k1

1 · · · T
kd

d . (1-3)

The starting point is the observation that there are classical Hilbert modular Eisen-
stein series ( fλ,i )i such that

G6,λ =

∑
i

ai ◦ ( fλ,i (t)), (1-4)

where fλ,i (t) is the t-expansion of fλ,i around a well chosen CM point y with
the CM type (K , 6) on the Hilbert modular Shimura variety Sh and ai is an
automorphism of the Serre–Tate deformation space Spf(ÔSh,y), i.e., ai ∈ Hy(Zp)

(see Section 3B). Based on Chai’s study of Hecke-stable subvarieties of a Shimura
variety, the second named author has proven the linear independence of (ai ◦ fλ,i )i
modulo p. It follows that

µ(L−6,λ)=min
i
µ( fλ,i (t)).

Let GΣ,λ,p∈ Zp[[0
−
p ]] be the analogous power series expansion of the measure L−6,λ,p.

Based on the action of p-adic differential operators on the t-expansion of a p-adic
Hilbert modular form around an ordinary point in terms of the partial Serre–Tate
coordinates, we show that

G6,λ,p =

∑
i

ai,p ◦ ( fλ,i (tp)), (1-5)

where ai,p is the projection of ai to Hy(Zp)p (see Section 3B) and fλ,i (tp) is the
p-adic Serre–Tate expansion of f around y (see Section 6A). Based on p-rigidity
and Chai’s theory of Hecke-stable subvarieties of a Shimura variety, we prove
p-independence, i.e., the linear independence of

(
ai,p ◦ ( fλ,i (tp))

)
i modulo p. It

follows that
µ(L−6,λ,p)=min

i
µ( fλ,i (tp)).

In view of the p-rigidity, we have

µ( fλ,i (t))= µ( fλ,i (tp)).

This concludes the proof of Theorem 1.2.
The strategy of the proof of Theorem 1.3 is similar to the above strategy. It

involves p-adic modular forms f ′λ,i arising from the p-adic derivative of fλN s ,i
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with N being the norm Hecke character. In this sense, the proof involves p-rigidity
for nonclassical p-adic modular forms. Finally, Theorem 1.4 is proven based on
Theorem 1.2 and the proof of results in [Hida 2011; Burungale and Hsieh 2013]. As
in [Hida 2010], we would like to emphasise that Chai’s theory plays an underlying
role in all of the above results.

In this article, we give an elementary construction of p-adic differential operators
on the space of p-adic Hilbert modular forms avoiding the use of Gauss–Manin
connection in Katz’s construction. This is based on the ideas of the second named
author in the early nineties. Based on this construction, we determine the action of
p-adic differential operators on the t-expansion of a p-adic Hilbert modular form
around an ordinary point in terms of the partial Serre–Tate coordinates.

Along with the p-adic Gross–Zagier formula, Theorem 1.2 and Theorem 1.3 have
application towards generic nonvanishing of p-adic heights on CM abelian varieties
(see [Burungale and Disegni ≥ 2017]). This provides evidence for Schneider’s
conjecture on the nonvanishing of p-adic heights in the CM case. In view of
[Burungale 2017], the underlying ideas also have application towards generic
nonvanishing of the p-adic Abel–Jacobi image of generalised Heegner cycles in
the non-CM case. We refer to [Burungale 2016b] for a survey.

Let pi and pj be primes above p as above. Theorem 1.2 implies an intriguing
equality

µ(L−Σ,λ,pi
)= µ(L−Σ,λ,pj

)

of Iwasawa µ-invariants. This is rather surprising as theses µ-invariants could
be nonzero and one in general does not expect any relation between the p-adic
L-functions LΣ,λ,pi . These p-adic L-functions correspond to independent variables
whose number may vary with i . As far as we know, Theorem 1.2 is a first phenomena
possibly suggesting a relation. It would be interesting to see whether an analogue
holds for Iwasawa λ-invariants. One can perhaps first collect experimental data.
In the case of self-duality and the root number being −1, the equality of the µ-
invariants persists even after taking the cyclotomic derivative. It seems tempting to
suppose that a deeper phenomena mediates the relation.

In view of the anticyclotomic main conjectures, Theorem 1.2 would imply an
equality of the corresponding algebraic µ-invariants. Note that the underlying
Selmer groups correspond to rather different local conditions. In many cases, the
anticyclotomic main conjecture has been proven (see [Hida 2006; 2009b]). It would
be interesting to prove the equality of the algebraic µ-invariants directly. This sort
of equality does not seem to be conjectured in the literature.

In [Burungale ≥ 2017], the first named author proves the analogue of p-rigidity
and p-independence for quaternionic modular forms over totally real fields. These
results concern a quaternion algebra which is not totally definite. In the near
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future, he hopes to consider an analogue of Theorem 1.2 for a class of quaternionic
Rankin–Selberg p-adic L-functions. In [Harris et al. 2006], a construction of p-adic
L-functions for unitary Shimura varieties is announced (see [Eischen et al. 2016]).
In such a case, the number of variables of the p-adic L-function is typically less
than the dimension of the Shimura variety. The variables of the p-adic L-function
may correspond to an analogue of the Ĝm⊗Op-variables. In the future, we hope to
consider this question starting with the case of U (n, 1) Shimura varieties.

Formulating a p-rigidity type statement for a PEL Shimura variety may have an
independent interest. In characteristic zero, we hope to explore rigidity based on
the approach in [Burungale and Hida 2016].

The article is organised as follows. In Section 2, we recall basic facts about
the Hilbert modular Shimura variety Sh. In Section 3, we prove Theorem 1.1. In
Sections 3A–3B, we firstly recall some facts about Serre–Tate deformation theory of
an ordinary closed point in Sh. In Section 3C, we prove the theorem. In Section 4,
we prove p-rigidity, i.e., the linear independence of mod p Hilbert modular forms
restricted to the partial Serre–Tate deformation space Ĝm ⊗ Op. In Section 5A, we
give an elementary construction of p-adic differential operators on the space of
p-adic Hilbert modular forms. In Section 5B, we use it to compute the action of
the p-adic differential operators on the t-expansion of a p-adic Hilbert modular
form around an ordinary point in terms of the partial Serre–Tate coordinates. In
Section 6, we consider Iwasawa µ-invariants as in Theorems 1.2–1.4. In Section 6A,
we determine the µ-invariant of certain anticyclotomic p-adic L-functions (see
Theorem 1.2). In Section 6B, we determine the µ-invariant of the cyclotomic
derivative L ′Σ,λ,p of the Katz p-adic L-function, when the branch character λ is
self-dual with the root number −1 (see Theorem 1.3). In Section 6C, we prove a
p-version of a conjecture Gillard regarding the vanishing of the µ-invariant of the
Katz p-adic L-function (see Theorem 1.4).

Notation. We use the following notation unless otherwise stated.
For a number field L , let AL be the adele ring and A f

L the finite adeles of L .
Let hL denote the ideal class number. Let GL be the absolute Galois group of L
and Gab

L the maximal abelian quotient. Let recL : A×L → Gab
L be the geometrically

normalised reciprocity law.

2. Hilbert modular Shimura variety

In this section, we recall basic facts about Hilbert modular Shimura varieties. We
follow [Hida 2004].

2A. Setup. In this subsection, we recall a basic setup regarding Hilbert modular
Shimura varieties.
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Let G =ResF/Q GL2 and h0 :ResC/R Gm→G/R be the morphism of real group
schemes arising from

a+ bi 7→
[

a −b
b a

]
,

where a+ bi ∈ C×. Let X be the set of G(R)-conjugacy classes of h0. We have a
canonical isomorphism X ' (C − R)I , where I is the set of real places of F . The
pair (G,X) satisfies Deligne’s axioms for a Shimura variety. It gives rise to a tower
(ShK = ShK (G,X))K of quasiprojective smooth varieties over Q indexed by open
compact subgroups K of G(A f ). The pro-algebraic variety Sh/Q is the projective
limit of these varieties. The complex points of these varieties are given as follows

ShK (C)= G(Q)\X ×G(A f )/K , Sh(C)= G(Q)\X ×G(A f )/Z(Q). (2-1)

Here, Z(Q) is the closure of the center Z(Q) in G(A f ) under the adélic topology.
From (2-1) and the general theory of Shimura varieties, it follows that Sh/Q is
endowed with an action of G(A f ) (see [Hida 2004, §4.2]). This gives rise to the
Hecke action.

2B. p-integral model. In this subsection, we briefly recall a canonical p-integral
smooth model Sh(p)/Z(p) of the Shimura variety Sh/G(Zp)/Q .

Hilbert modular Shimura variety Sh/Q represents a functor F classifying abelian
schemes having multiplication by O along with additional structure, where O
is the ring of integers of F (see [Hida 2004, §4.2; Shimura 1963]). As in the
introduction, let p be an odd prime unramified in F . Under this hypothesis, a p-
integral interpretation F (p) of F leads to a p-integral smooth model of Sh/G(Zp)/Q .

The functor F (p) is given by

F (p)
: SCH/Z(p)→ SETS,

S 7→ {(A, ι, λ̄, η(p))/S}/∼ . (2-2)

Here,

(PM1) A is abelian scheme over S of dimension of d.

(PM2) ι : O ↪→ EndS A is an algebra embedding.

(PM3) λ̄ is the polarisation class of a homogeneous polarisation λ up to scalar
multiplication by ι(O×(p),+), where O(p),+ := {a ∈ O(p) | σ(a) > 0, ∀σ ∈ I }.
Also, the Rosati involution of EndS A takes ι(l) to ι(l∗), for l ∈ O .

(PM4) Let T (p)(A) be the prime-to-p Tate module lim
←−−p-N A[N ]. Then η(p) is a

prime-to-p level structure given by an O-linear isomorphism

η(p) : O2
⊗Z Ẑ(p)

' T (p)(A),

where Ẑ(p)
=
∏

l 6=p Zl .
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(PM5) Let LieS(A) be the relative Lie algebra of A. There exists an O⊗ZOS-
module isomorphism

LieS(A)' O ⊗Z OS,

locally under the Zariski topology of S.

The notation ∼ denotes up to a prime-to-p isogeny.

Theorem 2.1 (Kottwitz). Let the notation and assumptions be as above. Then, the
functor F (p) is represented by a pro-algebraic scheme Sh(p)(G,X)/Z(p) . Moreover,
there exists an isomorphism given by

Sh(p)×Q ' Sh /G(Zp)/Q.

(see [Hida 2004, §4.2.1]).

The pro-algebraic scheme Sh(p)(G,X)/Z(p) is usually referred as the Kottwitz
model. In what follows, we let Sh(p)/Z(p) denote Sh(p)(G,X)/Z(p) for simplicity of
notation.

2C. Igusa tower. In this subsection, we briefly recall the notion of p-ordinary
Igusa tower over the p-integral model (see Section 2B).

Let Q be an algebraic closure of Q and Q p be an algebraic closure of Q p. We
fix a complex embedding ι∞ : Q ↪→ C and a p-adic embedding ιp : Q ↪→ Q p.

Let W be the strict Henselisation inside Q of the local ring of Z(p) corresponding
to ιp. Let F be the residue field of W . Note that F is an algebraic closure of Fp.

Let Sh(p)/W = Sh(p)×Z(p)W and Sh(p)/F = Sh(p)/W ×WF.
From now, let Sh denote Sh(p)/F . Let A be the universal abelian scheme over Sh.
Let Shord be the subscheme of Sh on which the Hasse-invariant does not vanish.

It is an open dense subscheme. Over Shord, the connected part A[pm
]
◦ of A[pm

] is
étale-locally isomorphic to µpm ⊗Zp O∗ as an Op-module, where O∗ = O−1d−1

F ,
dF is the different of F/Q and Op = O ⊗ Zp.

We now define the Igusa tower. For m ∈ N, the m-th layer of the Igusa tower
over Shord is defined by

Igm = IsomOp(µpm ⊗Zp O∗,A[pm
]
◦). (2-3)

Note that the projection πm : Igm→ Shord is finite and étale. The full Igusa tower
over Shord is defined by

Ig= Ig∞ = lim
←−−

Igm = IsomOp(µp∞ ⊗Zp O∗,A[p∞]◦). (2-4)

(Ét) Note that the projection π : Ig→ Shord is étale.

Let x be a closed ordinary point in Sh. We have the following description of the
level p∞-structure on the corresponding p-divisible group Ax [p∞].



p-rigidity and Iwasawa µ-invariants 1931

(PL) Let η◦p be a level p∞-structure on Ax [p∞]◦. For the primes p in O dividing p,
it is a collection of level p∞ structures η◦p, given by isomorphisms

η◦p : O
∗

p ' Ax [p
∞
]
◦,

where O∗p = O∗⊗ Op. The Cartier duality and the polarisation λ̄x induces an
isomorphism

ηét
p : Op ' Ax [p

∞
]
ét.

Thus, we get a level p∞-structure ηét
p on Ax [p∞]ét from η◦p.

Let V be an irreducible component of Sh and V ord be V ∩ Shord. Let I be the
inverse image of V ord under π . In [Hida 2004, Chapter 8; 2009a], it has been shown
that

(Ir) I is an irreducible component of Ig.

2D. Mod p modular forms. In this subsection, we briefly recall the notion of mod
p modular forms on an irreducible component of the Hilbert modular Shimura
variety (see Section 2B).

Let V and I be as in Section 2C. Let B be an F-algebra. The space of mod p
modular forms on V over B is defined by

M(V, B)= H 0(I/B,OI/B ), (2-5)

where I/B := I ×F B. In view of Sections 2B–2C, we have the following geometric
interpretation of mod p modular forms.

A mod p modular form is a function f of isomorphism classes of x̃ = (x, η◦p)/B ′ ,
where B ′ is a B-algebra, x = (A, ι, λ̄, η(p))/B ′ ∈ F (p)(B ′) and

η◦p : µp∞ ⊗Zp O∗ ' A[p∞]◦

is an Op-linear isomorphism, such that the following conditions are satisfied.

(G1) f (x̃) ∈ B ′.

(G2) If x̃' x̃ ′, then f (x̃)= f (x̃ ′), where x̃' x̃ ′ means x' x ′ and the corresponding
isomorphism between A and A′ induces an isomorphism between η◦p and η′◦p .

(G3) f (x̃ ×B ′ B ′′)= h( f (x̃)) for any B-algebra homomorphism h : B ′→ B ′′.

We also have the key notion of q-expansion and q-expansion principle for mod
p modular forms (see [Hida 2004, Theorem 4.21]).
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2E. p-adic modular forms. In this subsection, we briefly recall the notion of p-
adic modular forms on an irreducible component of the Hilbert modular Shimura
variety (see Section 2B).

Let W denote the Witt ring W(F). The construction of the Igusa tower in
Section 2C is well defined for the base W . Let I/W be the irreducible component
of the Igusa tower Ig/W over an irreducible component V/W of the Shimura variety
Sh/W . Let C be a p-adically complete local W-algebra with maximal ideal mC .
The space of p-adic modular forms on V over C is defined by

M(V,C)= H 0(I/C ,OI/C ), (2-6)

where I/C := I/W ×/W C .
By definition, a p-adic modular form over C modulo mC is a mod p modular

form.
We have an analogous moduli interpretation as in Section 2D and also the

q-expansion principle, for p-adic modular forms (see [Hida 2010, §4.1]).

3. p-rigidity

In this section, we prove the rigidity of mod p modular forms (see Theorem 1.1). In
Sections 3A–3B, we firstly recall basic facts about Serre–Tate deformation theory
of an ordinary closed point on the Hilbert modular variety (see Section 2B). In
Section 3C, we prove the rigidity.

3A. Serre–Tate deformation theory. In this subsection, we briefly recall Serre–
Tate deformation theory of an ordinary closed point on the Hilbert modular variety
(see Section 2B). We follow [Hida 2004, §8.2; 2010, §2; 2013b, §1].

Let the notation and assumptions be as in Section 2. Let x be a closed point
in Shord carrying (Ax , ιx , λ̄x , η

(p)
x )/F. Let V be the irreducible component of Sh

containing x .
Let CLW be the category of complete local W-algebras with residue field F. Let

D/W be the fiber category over CLW of deformations of x/F defined as follows. Let
R ∈CLW . The objects of D/W over R consist of x ′∗ = (x ′, ιx ′), where x ′ ∈F (p)(R)
and

ιx ′ : x ′×R F' x .

Let x ′∗ and x ′′∗ be in D/W over R. By definition, a morphism φ between x ′∗ and
x ′′∗ is a morphism (still denoted by) φ between x ′ and x ′′ satisfying [Hida 2004,
(7.3)] and the following condition.

(M) Let φ0 be the special fiber of φ. The automorphism ιx ′′ ◦φ0 ◦ ι
−1
x ′ of x equals

the identity.
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Let F̂x be the deformation functor given by

F̂x : CL/W → SETS,

R 7→ {x ′∗/R ∈ D}/' .
(3-1)

The notation ' denotes up to an isomorphism.
Recall, R ∈ CLW . As R is a projective limit of local W-algebras with nilpotent

maximal ideal, we can (and do) suppose that R is a local Artinian W-algebra with
nilpotent maximal ideal mR . Let x ′∗/R ∈D and A denote Ax ′ . By Drinfeld’s theorem
(see [Hida 2004, §8.2.1]), A[p∞]◦(R) is killed by pn0 for sufficiently large n0. Let
y ∈ A(F) and ỹ ∈ A(R) such that ỹ0 = y, where ỹ0 denotes the special fiber of ỹ
(as A/R is smooth, such a lift always exists). By definition, ỹ is determined modulo
ker(A(R)→ A(F))= A[p∞]◦(R). Thus, for n≥ n0, “pn”y0 := pn ỹ is well defined.
From now, we suppose that n ≥ n0. If y ∈ A[pn

](F), then “pn”y ∈ A[p∞]◦(R).
Strictly speaking, we apply the idempotent ep corresponding to p so that ep“pn”y ∈
A[p∞]◦(R). We let “pn”y denote ep“pn”y for simplicity of notation.

Thus, we have a homomorphism

“pn” : A[pn
](F)→ A[p∞]◦(R). (3-2)

We also have the commutative diagram

A[pn+1
]
ét(R) '

//

p
��

A[pn+1
](F)

“pn+1”
//

p

��

A[p∞]◦(R)

=

��

A[pn
]
ét(R) '

// A[pn
](F)

“pn”
// A[p∞]◦(R).

Passing to the projective limit, this gives rise to a homomorphism

“p∞” : A[p∞](F)→ A[p∞]◦(R). (3-3)

(CC) For lim
←−−

yn ∈ lim
←−−

A[pn
](F), let

y = lim
←−−

yn ∈ A[p∞](F)' Ax [p
∞
]
ét.

The isomorphism is induced by ιx ′ .

Let qn,p(yn)= “pn”yn and qp(y)= lim qn,p(yn). By definition,

qp(y) ∈ A[p∞]◦(R)' Hom(A∨x [p
∞
]
ét, Ĝm(R)),

where A∨x is the dual of the abelian variety Ax . Let qA,p be the pairing given by

qA,p : Ax [p
∞
]
ét
× A∨x [p

∞
]
ét
→ Ĝm(R),

qA,p(y, z)= qp(y)(z).
(3-4)

We have the following fundamental result.
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Theorem 3.1 (Serre–Tate). (1) There exists a canonical isomorphism

F̂x(R)'
∏
p

HomZp

(
Ax [p

∞
]
ét
× A∨x [p

∞
]
ét, Ĝm(R)

)
(3-5)

given by x ′∗ 7→ qA :=
∏

p qAx ′ ,p.

(2) The deformation functor F̂x is represented by the formal scheme Ŝ/W :=

Spf(ÔV,x). A level p∞-structure as in (PL), gives rise to a canonical isomor-
phism of the deformation space Ŝ/W with the formal torus

∏
p Ĝm⊗Zp Op (see

[Hida 2013b, Proposition 1.2]).

Let xST be the universal deformation of the closed ordinary point x .
We now recall key underlying notions.

Definition 3.2. Let x be a closed ordinary point on the Hilbert modular variety as
above. Recall that a level p∞-structure on x (see (PL)) gives rise to a canonical
isomorphism of the deformation space Ŝ/W with the formal torus

∏
p Ĝm ⊗Zp Op

(see part (2) of Theorem 3.1). Under this identification, let

t = (tp)p

be the coordinates of the deformation space Ŝ/W , where tp is the coordinate
of Ĝm ⊗Zp Op. We call t = (tp)p the Serre–Tate coordinates of the deformation
space Ŝ/W .

We have Ŝ = Spf(Ŵ [O]), where S = Gm ⊗ O∗, W [O] =W [X (S)] and Ŵ [O]
is the completion at the augmentation ideal. Here, X (S) is the character group of S.
Note that W [O] is the ring consisting of formal finite sums

∑
ξ∈O a(ξ)tξ , where

a(ξ) ∈W and t is the coordinate of Gm . Here, tξ is the character given by

tξ (t ⊗ u)= tTrF/Q(ξu)

for u ∈ O∗.

Definition 3.3. Let f be a mod p modular form over F (see Section 2D). A level
p∞-structure η◦p of x gives rise to a canonical level p∞-structure η◦p,ST of the
universal deformation xST. We denote by

f ((xST, η
◦

p,ST)) ∈ F̂[O]

the t-expansion of f around x .

We have the following t-expansion principle.

(t-expansion principle) The above t-expansion of a mod p modular form f around
a closed ordinary point determines f uniquely (see (Ir)).

We have an analogous t-expansion principle for p-adic modular forms (see [Hida
2010, §4.1]).
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3B. Reciprocity law for the deformation space. In this subsection, we recall the
action of the local algebraic stabiliser of a closed ordinary point x on the Serre–Tate
coordinates of the deformation space of x . This can be considered as an infinitesimal
analogue of Shimura’s reciprocity law.

Let g ∈ G(Z(p)) act on Sh through the right multiplication on the prime-to-p
level structure, i.e.,

(A, ι, λ̄, η(p))/S 7→ (A, ι, λ̄, η(p) ◦ g)/S

(see Section 2B).
Recall that x is a closed ordinary point in Sh with a p∞-level structure ηord

p .
Let (Kx , 6x) be the CM-type of x . We suppose that ι : O ↪→ End(A) extends
to ιx : O ↪→ End(A), where O is the ring of integers of Kx . Let Hx(Z(p)) be the
stabiliser of x in G(Z(p)). Note that

Hx(Z(p))= (ResO(p)/Z(p) Gm)(Z(p))=O×
(p), (3-6)

where O(p) =O⊗ Z(p) (see [Hida 2010, §3.2; Shimura 1998]). We call Hx(Z(p))

the local algebraic stabiliser of x .
Let cx be the complex conjugation of Kx .
As x is ordinary, 6x is a p-ordinary CM type. When considered as a p-adic

CM type, we denote it by 6x,p. Let p=
∏
v∈6x,p

pv, for the primes pv associated
to the valuation v ∈6x,p. Note that Op = Op =

∏
p Op and Op =Op×Opcx . Let

Hx(Zp)p be the p-component O×p of Hx(Zp)=O×p . We have a natural inclusion
O(p) ⊂Op. Thus, we regard Hx(Z(p))⊂ Hx(Zp). Let Hx(Z(p))p be the projection
of Hx(Z(p)) to Hx(Zp)p. Note that we have an isomorphism Hx(Z(p))' Hx(Z(p))p.
Let α ∈ Hx(Z(p)). Let αp be the projection of α to the p-component O×p of O×p . As
Hx(Z(p)) stabilises x , it follows that α acts on Spec(OV,x) and thus on Spf(ÔV,x).
In particular, it acts on the Serre–Tate coordinates (see Definition 3.2). The action
is given by the following lemma.

Lemma 3.4 [Hida 2010, Lemma 3.3]. The endomorphism α acts on the Serre–Tate
coordinates t = (tp)p by

t 7→ tα
1−cx

for tα
1−cx
= (t

α
1−cx
p

p )p.

We have the following immediate corollary.

Corollary 3.5. The partial Serre–Tate deformation space Ĝm ⊗Op ⊂ Spf(ÔV,x) is
stable under the action of the local algebraic stabiliser Hx(Z(p)).

This simple corollary is crucial for p-rigidity. It may lead to rigidity-style
phenomena with different flavour.
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3C. p-rigidity. In this subsection, we prove the rigidity of mod p modular forms
(see Theorem 1.1).

Recall that x is a closed ordinary point in V with p∞-level structure η◦p and
V = lim

←−−
VK , where VK is the projection of V to ShK = Sh/K for K small and

maximal at p. This gives rise to a closed point x̃ = (x, η◦p) in the Igusa tower I
over x . In view of (Ét), there exists a canonical isomorphism

ÔV,x ' Ô I,x̃ .

Thus, a mod p modular form can be considered as a function on Spec(OV,x).
Let f be a nonzero mod p modular form. We suppose that f is a nonunit

in OV,x . Let b ⊂ OV,x be the zero ideal of f , i.e., b = ( f ) ∩OV,x . As f is an
algebraic function on I , it follows that V (b) is nonempty not only in Spf(ÔV,x)

but also in Spec(OV,x). In particular, we have b 6= 0. Let X be the Zariski closure
of Spec(OV,x/b) in V. Note that X ⊂ V is a closed irreducible pro-subscheme
containing x and X = lim

←−−
X K , where X K is the projection of X to VK .

We start with a preparatory lemma.

Lemma 3.6. Let Yi be a family of closed subschemes of an irreducible noetherian
scheme Y such that there exists a closed point y ∈ Yi , for all i , i.e., y ∈

⋂
i Yi .

Suppose that the intersection of the Spf(ÔYi ,y) (viewed inside Spf(ÔY,y)) is positive
dimensional. Then, the intersection of the Yi is positive dimensional.

Proof. It suffices to consider the affine case.
Let A be a noetherian integral domain and Ri = A/ai , for ideals ai . Take nonunits

t1, . . . , tr in A and let (t)= (t1, . . . , tr ). Suppose that

V (t)= Spec(R/(t))⊂ Vi = Spec(R/ai ), for all i.

This implies ai ⊂ (t). In particular,
∑

i ai ⊂ (t).
If A is local noetherian with maximal ideal m, by faithful flatness of Â =

lim
←−−

A/mn over A, ∑̂
i

ai =
∑

i

âi .

So, the above argument can be applied to (t) ∈ m̂, Â and (̂A/ai ).
This finishes the proof as

dim
(⋂

i

Spec(A/ai )

)
= dim

(
Spec

(
A
/∑

i

ai

))
= dim

(
Spec

(
Â
/∑

i

âi

))
= dim

(⋂
i

Spec( Â/âi )

)
≥ dim( Â/(t)). �

We are now ready to prove the rigidity.
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Theorem 3.7 (p-rigidity). Let the notation and assumptions be as above. The par-
tial Serre–Tate deformation space Ĝm⊗Op is not a formal subscheme of Spf(ÔX,x)

(viewed inside Spf(ÔV,x)).

Proof. Suppose that it is a formal subscheme.
We now consider Z =

⋂
α∈Hx (Z(p))

α(X) (viewed inside V ). As above, recall that
Z = lim

←−−
Z K .

Note that Spf(Ôα(X),x) = α(Spf(ÔX,x)) (viewed inside Spf(ÔX,x)). It follows
that if Ĝm ⊗ Op ⊂ Spf(ÔX,x), then Ĝm ⊗ Op ⊂ Spf(Ôα(X),x) (see Corollary 3.5).
In particular, we have Ĝm ⊗ Op ⊂ Spf(Ôα(X)K ,x). In the last equality, α(X)K is
the projection of α(X) to VK . By Lemma 3.6, Z K is positive dimensional. As the
projection πK : V → VK is étale, we conclude that Z itself is positive dimensional.

Thus, Z is a closed irreducible pro-subscheme of V containing x and stable
under Hx(Z(p)). We conclude that Z = V (see [Hida 2010, Proposition 3.8]). It
follows that b = 0. This is a contradiction for f being nonzero as noted in the
paragraph before Lemma 3.6. �

In particular, Theorem 1.1 holds. The following consequence is immediate.

Corollary 3.8. Let g be a p-adic modular form. Then,

µ(g)= µ(g|Ĝm⊗Op
).

Proof. Let g be nonzero and defined over a p-adically complete local W-algebra C .
If g is a unit in OV,x , the corollary follows instantly. We thus suppose that g is a

nonunit in OV,x .
In view of the t-expansion principle, we have

µ(g)= µ(g|∏
p Ĝm⊗Zp Op

).

Let c ∈ C such that µ(g/c)= 0. By definition, g/c modulo the maximal ideal mC

is a nonzero mod p modular form. In view of Theorem 3.7, it thus follows that

µ(g/c|Ĝm⊗Op
)= 0. �

4. p-independence

In this section, we consider p-independence, i.e., a linear independence of mod p
modular forms restricted to the partial Serre–Tate deformation space Ĝm ⊗ Op (see
Section 3A). In Section 4A, we first state the formulation and in Section 4B, we
prove the independence.

4A. Formulation. In this subsection, we give a formulation of the linear indepen-
dence of mod p modular forms restricted to the partial Serre–Tate deformation
space Ĝm ⊗ Op (Section 3A).
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Let the notation and assumptions be as in Section 3. Recall that x is a closed
ordinary point in V with p∞-level structure η◦p. This gives rise to a closed point
x̃ = (x, η◦p) in the Igusa tower I over x and a canonical isomorphism

Spf(ÔV,x)'
∏
p

Ĝm ⊗Zp Op (4-1)

(see Theorem 3.1).
Recall that we have a canonical isomorphism ÔV,x ' Ô I,x̃ (see (Ét)). Thus, the

p-completed stabiliser Hx(Zp) acts on Ô I,x̃ .
Let f be a mod p modular form and a ∈ Hx(Zp). Note that

(a( f ))|Ĝm⊗Op
= ap( f |Ĝm⊗Op

)

(see Corollary 3.5). Here ap is as in Section 3B.
To provide context for the following independence, note that there exists a ∈

Hx(Zp) such that api ∈ Hx(Z(p))pi and apj /∈ Hx(Z(p))pj , for j 6= i . Indeed,

Hx(Zp)= O×p =
∏
p

O×p

and we may choose a to be nonidentity precisely at the pi -th component.
Let n be a positive integer. For 1≤ i ≤ n, let ai ∈ Hx(Zp) such that (ai a−1

j )p /∈

Hx(Z(p))p for all i 6= j (see Section 3B). Let f1, . . . , fn be n nonconstant mod p
modular forms on V (see Section 2D).

Our formulation of the linear independence is the following.

Theorem 4.1 (p-independence). Let the notation and assumptions be as above, and
suppose that (ai a−1

j )p /∈ Hx(Z(p))p for all i 6= j . Then, the (ai,p ◦ ( fi |Ĝm⊗Op
))i are

linearly independent in the partial Serre–Tate deformation space Ĝm ⊗ Op.

Note that ai,p ◦ ( fi |Ĝm⊗Op
) is not necessarily the restriction of a mod p modular

form to Ĝm ⊗ Op.
The above independence is p-analogue of the linear independence in [Hida 2010,

§3.5]. As expounded in Section 4B, the approach in [Hida 2010, §3] is fundamental
to the p-independence.

4B. p-independence. In this subsection, we prove the linear independence of
mod p modular forms restricted to the partial Serre–Tate deformation space Ĝm⊗Op

(see Section 4A).
The approach is based on p-rigidity and Chai’s theory of Hecke-stable subvarieties

of a mod p Shimura variety adopted for local algebraic stabilisers in [Hida 2010,
§3]. For a detailed treatment of the latter, we refer to [Chai 1995; 2003; 2006; Hida
2010].

Let n be a positive integer. In this subsection, any tensor product is taken n-times.
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We consider an F-algebra homomorphism

φI :OI,x̃ ⊗F · · · ⊗F OI,x̃ → Ĝm ⊗ Op (4-2)

given by

f1⊗ · · ·⊗ fn 7→

i=n∏
i=1

ai,p ◦ ( fi |Ĝm⊗Op
). (4-3)

As we are interested in the linear independence of (ai,p( fi |Ĝm⊗Op
))i , we consider

bI := ker(φI ).
Similarly, we consider an F-algebra homomorphism

φ = φV :OV,x ⊗F · · · ⊗F OV,x → Ĝm ⊗ Op (4-4)

given by

h1⊗ · · ·⊗ hn 7→

i=n∏
i=1

ai,p ◦ (hi |Ĝm⊗Op
). (4-5)

In view of Theorem 3.7, it follows that φI and φV are both nontrivial.

(EQ) We note that φ is equivariant with the Hx(Z(p))-action.

Let bI = ker(φV ) and b= ker(φV ).

Lemma 4.2. bI = 0 if and only if b= 0.

Proof. In view of (Ét), we have an étale morphism

πm
:OV,x ⊗F · · · ⊗F OV,x →OI,x̃ ⊗F · · · ⊗F OI,x̃ .

Note that bI is the unique prime ideal of OI,x̃ ⊗F · · · ⊗F OI,x̃ over b. �

As φ is equivariant with the Hx(Z(p))-action (see (EQ)), it follows that b is a
prime ideal of OV,x ⊗F · · · ⊗F OV,x stable under the diagonal action of Hx(Z(p)).
Let Y be the Zariski closure of Spec(OV,x ⊗F · · · ⊗F OV,x/b) in V n. Thus, Y is a
closed irreducible subscheme of V n containing xn stable under the diagonal action
of Hx(Z(p)). We also have an analogue of the commutative diagram [Hida 2010,
(3.22)] with ÔS replaced by Ĝm ⊗ Op. For n ≥ 2, the subscheme Y thus satisfies
the hypothesis in [Hida 2010, Corollary 3.19].

Theorem 4.3. The subscheme Y equals V n.

Proof. When n = 1, this is nothing but [Hida 2010, Proposition 3.8].
We thus suppose that n ≥ 2. From [Hida 2010, Corollary 3.19], we have two

possibilities, namely Y = V n−2
×1α,β (up to a permutation of the factors) for some

α, β ∈ Hx(Z(p)), or Y = V n. The skewed diagonal 1α,β is given by

1α,β = {(α(v), β(v)) | v ∈ V }.
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Suppose that Y = V n−2
×1α,β (up to a permutation of the factors). Let (t, t ′) be

the Serre–Tate coordinates of the last two factors 1α,β at (x, x), respectively. It
follows that

tβ
1−cx
= t ′α

1−cx
.

On the other hand, from the definition of Y it follows that

tan,p
p = t ′an−1,p

p .

Thus, (ana−1
n−1)p = (βα

−1)
1−cx
p ∈ Hx(Z(p))p. This contradicts the hypothesis on

the ai . We conclude that Y = V n . �

We have the following immediate consequence.

Corollary 4.4. Theorem 4.1 holds.

Proof. In view of Theorem 4.3, it follows that b= 0. Thus, bI = 0 (see Lemma 4.2).
�

5. p-adic differential operators

In this section, we consider p-adic operators on the space of p-adic Hilbert modular
forms. This is a p-adic analogue of the Maass–Shimura differential operators on
complex Hilbert modular forms. In Section 5A, we give an elementary construction
of these operators. In Section 5B, we compute their action on the t-expansion of
a p-adic Hilbert modular form around an ordinary point in terms of the partial
Serre–Tate coordinates. For a more detailed account in the elliptic modular case,
we refer to [Hida 2013a, §1.3.6]. In Section 6, we will use these results to compute
the power series expansion of anticyclotomic Katz p-adic L-functions and variants
(see Section 1).

5A. Elementary construction. In this subsection, we give an elementary construc-
tion of p-adic differential operators on the space of p-adic Hilbert modular forms.

Let the notation and assumptions be as in Section 2. For the geometric definition
of classical and p-adic modular forms on the Hilbert modular Shimura variety, we
refer to [Hida 2004, §4.2; 2010, §4.1].

Recall that F denotes an algebraic closure of Fp, W the Witt ring W(F), ιp :
Q ↪→ Cp a p-adic embedding and ι∞ : Q ↪→ C a complex embedding. Let W
denote ι−1

p (W ). Possibly enlarging W , we suppose that τ(O)⊂W , for all τ ∈6.
In this subsection, we suppose the prime-to-p level of classical or p-adic Hilbert

modular forms is one. This is only to simplify the notation.
Let Gκ(01(pm),W) be the space of classical Hilbert modular forms of weight κ

and level 01(pm) over W , where κ ∈ Z≥0[6] and m is a nonnegative integer. Let
f ∈ Gκ(01(pm),W). Via ι∞, we regard f as a Hilbert modular form over C . Let
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z = (zτ )τ∈6 be the complex variables of the Hilbert modular Shimura variety or
those of HΣ , where H is the upper half plane (see [Hida 2010, §4.1]). Let (a, b) be
a pair giving rise to a cusp of the Hilbert modular Shimura variety (see [Hida 2010,
§4.1]). The Fourier expansion of f at the cusp corresponding to (a, b) is given by

f (z)=
∑
ξ∈O

a(ξ)eF (ξ z)

for eF (ξ z)= exp
(
2π i

∑
τ∈6 τ(ξ)zτ

)
.

Let φ : O/prO → W be an arbitrary function with the normalised Fourier
transform φ∗ given by

φ∗(y)= 1
prd/2

∑
u∈O/pr O

φ(u)eF (yu/pr ), (5-1)

where y ∈ O/prO and eF (w)= exp(2π i TrF/Q(w)) for w ∈ F .
Let f |φ be the classical Hilbert modular form given by

f |φ(z)=
∑

u′=(σ1(u),...,σd (u)),u∈O/prO

φ∗(−u) f (z+ u′/pr ), (5-2)

where z+ u′/pr
= (zτ + τ(u)/pr )τ .

Note that f |φ ∈ Gκ(01(ps),W), where s =max(m, 2r). In view of the Fourier
inversion formula, it follow that the Fourier expansion of f |φ at the cusp corre-
sponding to (a, b) is given by

f |φ(z)=
∑
ξ∈O

φ(ξ)a(ξ)eF (ξ z). (5-3)

Let (φσn : O/pnO→W)n be a sequence of functions such that

φσn (ξ)≡ σ(ξ) (mod pnW).

In view of the q-expansion principle, it follow that the sequence ( f |φσn )n of classical
Hilbert modular forms converges p-adically to a p-adic Hilbert modular form dσ f
whose formal Fourier expansion at the cusp corresponding to (a, b) is given by

dσ f (z)=
∑
ξ∈O

σ(ξ)a(ξ)eF (ξ z). (5-4)

In other words, the operator dσ equals the Maass–Shimura differential operator

δσ0 =
1

2π i
∂

∂zσ
on Gκ(01(pm),W).

This construction extends to the space of p-adic Hilbert modular forms over W
as follows. Let V(W ) be the space of p-adic Hilbert modular forms of prime-to-p
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level one over W. Via ιp, we can regard Gκ(01(pm),W) as a subspace of V(W )

(see [Hida 2004, §8.1]). The space Gκ(01(p∞),W) =
⋃

m Gκ(01(pm),W) is
p-adically dense in V(W ) (see [Hida 2004, §8.1]). Thus, the differential operator
dσ extends to V(W ).

Remark. In [Katz 1978, Chapter II], the operator dσ is constructed based on the
Gauss–Manin connection of the universal abelian scheme over the Shimura variety.
The above approach can be generalised for a class of PEL Shimura varieties.

5B. Action on the t-expansion. In this subsection, we compute the action of the
differential operator on the t-expansion of a p-adic Hilbert modular form around a
p-ordinary point in terms of the partial Serre–Tate coordinates.

Let (ζpn = exp(2π i/pn))n ∈ Q be a compatible system of p-power roots of
unity. Via ιp, we regard it as a compatible system in Cp.

Let p be the prime corresponding to σ via ιp and 6p be the set of places above
p in F . For q ∈6p, let 6q ⊂6 be the subset giving rise to q under ιp.

Let Wn =W [µpn ] and mn be the maximal ideal. We have

(Ĝm ⊗ O∗p )(Wn)= (1+mn)⊗ O∗p (5-5)

and
Ĝm ⊗ O∗q =

∏
τ∈6q

Ĝm . (5-6)

Let u ∈ O and α(u/pm) ∈ G(A f ) such that

α(u/pm)p =

[
1 u/pm

0 1

]
and α(u/pm)l = 1, for l 6= p.

Let us recall some notation. Let π : Ig→ Sh be the Igusa tower over W. Let
x ∈ Shord

/F be a closed point and x̃ be a point above it in Sh. Let Ŝ/W be the
deformation space of x̃ . For q ∈6p, recall tq = t⊗1q ∈ Ĝm⊗Oq is the Serre–Tate
coordinate of the partial deformation space Ĝm ⊗ Oq (see Section 3A). We regard
1⊗ u ∈ Ĝm ⊗ Oq via the image u ∈ Oq.

We start with a preparatory lemma.

Lemma 5.1. The isogeny action of α(u/pm) on the Igusa tower π : Ig→ Sh/Wm

preserves the deformation space Ŝ and induces tp 7→ ζpm t ⊗ u (see (5-5)) and
tp′ 7→ tp′ , for p′ 6= p.

Proof. Let xST = (Ax , · ) be the universal deformation and x0 = (A0, · ) be the
origin of the deformation space Ŝ. In particular, we have

A0[p
m
] = µpm ⊗ O∗p ⊕ Op/p

mOp. (5-7)
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By the universal level structure, we have an exact sequence

0 // µpm ⊗ O∗p // Ax [p
m
]

h
// Op/p

mOp
// 0.

A section of the morphism h determines an Op-cyclic subgroup Cu isomorphic to
Op/p

mOp defined over Wm , which specialises at the origin A0 to a cyclic subgroup
generated by (ζpm ⊗ u, γ0) in A0[p

m
] (see (5-7)). Here γ0 denotes the image of 1

under the identification A0[p
m
]
ét
= Op/p

mOp.
The isogeny action α(u/pm) corresponds to the isogeny Ax →Ax,u :=Ax/Cu .

By an argument similar to the proof of [Brakočević 2011, Lemmas 7.1, 7.2], it
follows that the p-Serre–Tate coordinates of Ax,u is given by ζpm t ⊗ u. For p′ 6= p,
in view of the construction of the Serre–Tate coordinates (see Section 3A), it follows
that the p′-Serre–Tate coordinate is given by tp′ . �

For τ ∈6q, let tτq be the τ -component of tq (see (5-6)).

Proposition 5.2. The action of the p-adic differential operator dσ on the deforma-
tion space Ŝ is given by

tσp
∂

∂tσp
.

Proof. As a p-adic Hilbert modular form is a p-adic limit of classical Hilbert
modular forms, it suffices to verify the proposition for classical Hilbert modular
forms.

Let f ∈ Gκ(01(pm),W) and the t-expansion of f around x be given by

f (t)=
∑
ω

a(ω)
∏
q∈6p

tωq
q . (5-8)

Here by tωq
q , we mean the character tωq (see Section 3A) and the summation is over

ω ∈ O (see [Hida 2010, pp. 106–107]). To emphasise the notion of t-expansion
around a point, we use the indexing notation ω instead of the traditional notation ξ
for q-expansion around a cusp.

We have
f |φ =

∑
u∈O/prO

φ∗(−u) f |α(u/pr ),

as α(u/pm) acts on H6 by z 7→ z+ u′/pr (see (5-2)).
In view of Lemma 5.1, it follows that

f |φσn (t)=
∑
ω

a(ω)
( ∑

u∈O/pn O

(φσn )
∗(−u)ζTrF/Q(uωp)

pn

)
tωp
p

∏
p′ 6=p

t
ωp′

p′

=

∑
ω

φσn (ωp)a(ω)
∏
q∈6p

tωq
q . (5-9)
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The last equality follows from the Fourier inversion formula.
Thus, we have

dσ f (t)= lim
n

f |φσn (t)=
∑
ω

σ(ωp)a(ω)
∏
q∈6p

tωq
q = tp,σ

∂ f
∂tp,σ

. �

We have the following immediate consequence.

Corollary 5.3. The p-adic differential operator dσ is Ŝ-invariant.

Remark. The above corollary is proven in [Katz 1981, §4.3] based on the compu-
tation of the Gauss–Manin connection in terms of the Serre–Tate coordinates. The
above approach can be generalised for a class of PEL Shimura varieties.

6. Iwasawa µ-invariants

In this section, we consider Iwasawa µ-invariants as in Theorems 1.2–1.4. In
Section 6A, we determine the µ-invariant of certain anticyclotomic p-adic L-
functions (see Theorem 1.2). In Section 6B, we determine the µ-invariant of
the cyclotomic derivative L ′Σ,λ,p of the Katz p-adic L-function, when the branch
character λ is self-dual with the root number −1 (see Theorem 1.3). In Section 6C,
we prove a p-version of a conjecture Gillard regarding the vanishing of the µ-
invariant of Katz p-adic L-function (see Theorem 1.4).

6A. µ-invariant of anticyclotomic p-adic L-functions. In this subsection, we first
obtain a formula for the µ-invariant anticyclotomic Katz p-adic L-function (see
Theorem 1.2). Towards the end, we comment on a similar formula for a class of
Rankin–Selberg anticyclotomic p-adic L-functions.

Let the notation and assumptions be as in the introduction. Let C be a prime-to-p
ideal of K . Let Z(C) be the Ray class group of K modulo Cp∞. Let Z(C)− be the
anticyclotomic quotient. The reciprocity law recK : (A

f
K )
×
→ Z(C)− induces the

isomorphism

recK : lim←−−
n

K×(A f
F )
×
\(A f

K )
×/UK (Cpn)−→∼ Z(C)−

for UK = (OK ⊗ Ẑ)× and

UK (Cpn)= {u ∈UK | u ≡ 1 (mod Cpn)}.

Let 0− be the maximal Zp-free quotient of Z(C)− and 0−p be the p-part of 0− (see
Section 1).

Let 0′ and 0′p be the open subgroups of 0− generated by the images via recK of

O×p ×
∏

v|DK/F

K×v and O×p ×
∏

v|DK/F

K×v ,
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respectively. Let Σp be the places above p in K induced by the p-ordinary CM
type Σ . The reciprocity law recK at Σp induces an injective map

recΣp : 1+ pOp ↪→ O×p =
⊕
w∈Σp

O×Kw

recK
−−→ Z(C)−

with finite cokernel as p - DF . It induces isomorphisms recΣp : 1+ pOp −→
∼ 0′

and recΣp : 1+ pOp −→
∼ 0′p. Via these isomorphisms, we identify 0′ (resp. 0′p)

with the subgroup recΣp(1+ pOp) (resp. recΣp(1+ pOp)) of the anticyclotomic
quotient Z(C)−.

In [Katz 1978; Hida and Tilouine 1993], a Zp-valued p-adic measure LC,Σ on
Z(C) is constructed. It interpolates a class of critical Hecke L-values corresponding
to Hecke characters over K with prime-to-p conductor C (see [Katz 1978; Hida
and Tilouine 1993; Burungale 2016a]). Let λ be an arithmetic Hecke character over
K with prime-to-p conductor C. Let L−Σ,λ (resp. L−Σ,λ,p) be the p-adic measure on
0− (resp. 0−p ) obtained by the push-forward of LC,Σ along λ.

Recall that the µ-invariant µ(ϕ) of a Zp-valued p-adic measure ϕ on a p-adic
group H is defined by

µ(ϕ)= inf
U⊂H open

vp(ϕ(U )).

The µ-invariants of the above measures are related by the following theorem.

Theorem 6.1. Let the notation and assumptions be as above. Then, we have

µ(L−Σ,λ)= µ(L
−

6,λ,p).

Proof. Let L−Σ,λ (resp. L−Σ,λ,p) be the power series of the measure L−Σ,λ (resp. L−Σ,λ,p)
in the sense of (1-3).

We first suppose that p - h−K , where h−K is the relative class number given by
h−K = hK /hF and h? is the class number of ?, for ?= F, K . We thus have

Z(C)− ' 0−.

We now describe the approach of the second named author to determine µ(L−6,λ)
(see [Hida 2010]).

Under the hypothesis, there exist a finite number of classical Hilbert modular
Eisenstein series ( fλ,i )i such that

L−6,λ =
∑

i

ai ◦ ( fλ,i (t)) (6-1)

up to an automorphism of Zp[[0
−
]]. Here fλ,i (t) is the t-expansion of fλ,i around a

well chosen CM point x with the CM type (K , 6) on the Hilbert modular Shimura
variety Sh and ai is an automorphism of the deformation space of x in Sh for each i
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(see [Hida 2010, Theorem 5.1; Hsieh 2014a, §5.2]). Moreover, the ai satisfy the
hypothesis in Theorem 4.1.

For κ ∈ Z≥0[Σ], let νκ be the p-adic character of 0′ such that

νκ(recΣp(y))= yκ

for y ∈ 1+ pOp. Let dκ be the p-adic differential operator corresponding to κ (see
Section 5A). From (6-1), we thus conclude(

dκ
∑

i

ai ◦ ( fλ,i (t))
)∣∣∣∣

t=1
=

∫
0−
νκ dL−Σ,λ. (6-2)

In view of the linear independence of (ai ◦( fλ,i ))i (see [Hida 2010, Theorem 3.20]),
it follows that

µ(L−6,λ)=min
i
µ( fλ,i (t))=min

i
µ( fλ,i ). (6-3)

We now turn towards the anticyclotomic Katz p-adic L-function.
For a p-adic Hilbert modular form f , let f (tp) be obtained from f (t) by substi-

tuting tp′ = 1, for all p′ 6= p.
Let

f −6,λ,p =
∑

i

ai,p ◦ ( fλ,i (tp)). (6-4)

Recall that 6p ⊂Σ denotes the subset of infinite places of F corresponding to p,
via ιp. For σ ∈6p, let dσ

′

be the formal differential operator given by

f (tp) 7→ tσp
∂ f
∂tσp

.

In view of Proposition 5.2, it follows that

dσ
′

( f (tp))= (dσ f )(tp). (6-5)

From now on, let κ ∈ Z≥0[Σp]. Let dκ
′

be the corresponding formal differential
operator.

We now have

dκ
′

( f −6,λ,p)|tp=1 = (dκL−6,λ)|t=1 =

∫
0−
νκ dL−Σ,λ =

∫
0−p

νκ dL−Σ,λ,p. (6-6)

The first two equalities follow from (6-5) and (6-2), respectively. The last equality
follows from the fact that for κ ∈ Z≥0[Σp], the character νκ factors through 0−p .

In other words, dκ
′

( f −6,λ,p)|tp=1 interpolates the κ-th moment of the measure L−Σ,λ,p.
Thus,

f −6,λ,p = L−Σ,λ,p

up to an automorphism of Zp[[0
−
p ]].
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In view of the linear independence of (ai,p ◦ ( fλ,i |Ĝm⊗Op
))i (see Theorem 4.1),

it follows that

µ(L−6,λ,p)=min
i
µ( fλ,i (tp))=min

i
µ( fλ,i |Ĝm⊗Op

)). (6-7)

In view of Corollary 3.8, this finishes the proof of the theorem for the case p - h−K .
When p | h−K , the power series L−6,λ restricted to an explicit finite open cover of

0− is still of the form (5-1) (see [Hsieh 2014a, §5.2]). Thus, a similar argument
proves the Theorem. �

In most of the cases, µ(L−6,λ) has been explicitly determined [Hida 2010; Hsieh
2014a]. Thus, we obtain a formula for µ(L−6,λ,p).

Remark. A class of Rankin–Selberg anticyclotomic p-adic L-functions for Hilbert
modular forms is constructed in [Hsieh 2014b]. It also satisfies a property analo-
gous to (6-1) [Hsieh 2014b, §6.2]. Thus, by an argument similar to the proof of
Theorem 6.1, we get an analogue of Theorem 6.1. In the near future, the first named
author hopes to consider Rankin–Selberg anticyclotomic p-adic L-functions for
quaternionic modular forms. In these situations, the underlying Shimura variety
turns out to be a quaternionic Shimura variety arising from a quaternion algebra
over a totally real field which is not totally definite.

6B. µ-invariant of the cyclotomic derivative of the Katz p-adic L-function. In
this subsection, we determine the µ-invariant of the cyclotomic derivative of the
Katz p-adic L-function, when the branch character λ is self-dual with the root
number −1 (see Theorem 1.3).

Let K+
∞

be the cyclotomic Zp-extension of K and Kp,∞ = K−p,∞K+
∞

. Let
0 = Gal(K−

∞
K+
∞
/K ) and 0p = Gal(Kp,∞/K ). Let λ be an arithmetic Hecke

character over K . Let LΣ,λ (resp. LΣ,λ,p) be the p-adic measure on 0 (resp. 0p)
obtained by the pull-back of LC,Σ (see Section 6A) along λ. We call LΣ,λ,p the Katz
p-adic L-function with branch character λ. Let L6,λ(T1, T2, . . . , Td , S) ∈ Zp[[0]]

(resp. L6,λ,p( · , S) ∈ Zp[[0p]]) be the power series of LΣ,λ (resp. LΣ,λ,p). Here,
T1, . . . , Td are the anticyclotomic variables and S is the cyclotomic variable.

In this subsection, we now suppose that λ is self-dual, i.e.,

λ|A×F
= τK/F | · |AF ,

where τK/F is the quadratic character associated to K/F and | · |AF is the adelic
norm. In particular, the global root number of λ is±1. Now, suppose that the global
root number is −1. In view of the functional equation of the Hecke L-function, this
root number condition forces all the Hecke L-values appearing in the interpolation
property of L−6,λ to vanish. Accordingly, we have L−6,λ = 0. This also follows from
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the functional equation of L6,λ [Hida and Tilouine 1993, §5]. In particular, we
have L−6,λ,p = 0.

We can consider the cyclotomic derivatives

L ′6,λ =
(
∂

∂S
L6,λ(T1, . . . , Td , S)

)∣∣∣
S=0

(6-8)

and L ′6,λ,p (defined analogously).
The µ-invariants of these derivatives are related by the following theorem.

Theorem 6.2. Let the notation and assumptions be as above. In addition, suppose
that p - h−K , where h−K is the relative class number given by h−K = hK /hF . Then,

µ(L ′6,λ)= µ(L
′

6,λ,p).

Proof. We follow the notation in the proof of Theorem 6.1.
In the proof of [Burungale 2015, Theorem 3.2], it is shown there are p-adic

Hilbert modular forms ( f ′λ,i )i such that

L ′6,λ =
1

logp(1+ p)

∑
i

ai ◦ ( f ′λ,i (t)), (6-9)

up to an automorphism of Zp[[0
−
]]. More precisely, f ′λ,i is the p-adic derivative of

fλN s ,i at s = 0 for N the norm Hecke character over K . Being a p-adic limit of
classical Hilbert modular forms, it is a p-adic Hilbert modular form. We refer to
the proof of [Burungale 2015, Theorem 3.2] for details.

In view of (6-4), (6-6) and by a similar argument as in the proof of [Burungale
2015, Theorem 3.2], it follows that

L ′6,λ,p =
1

logp(1+ p)

∑
i

ai,p ◦ ( f ′i,λ(tp)), (6-10)

up to an automorphism of Zp[[0
−
p ]].

We finish the proof in the same way as in Theorem 6.1. �

In most of the cases, µ(L ′6,λ) has been explicitly determined [Burungale 2015,
Theorem A]. Thus, we obtain a formula for µ(L ′6,λ,p).

Remark. When p | h−K , we do not know an expression for LΣ,λ in terms of the
t-expansion of certain Hilbert modular forms. Such an expression seems to be
essential in the above approach.

6C. p-version of a conjecture of Gillard. In this subsection, we prove a p-version
of a conjecture Gillard regarding the vanishing of the µ-invariant of Katz p-adic
L-function (see Theorem 1.4).

Let λ be an arithmetic Hecke character over K. Recall that we have the Katz p-
adic L-function L6,λ,p∈ Zp[[0p]] (see Section 6B). As a consequence of Theorem 6.1
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and the results of [Hida 2011; Burungale and Hsieh 2013], we prove a p-version
of a conjecture of Gillard [1991, Conjecture (i)] regarding the vanishing of the
µ-invariant of the Katz p-adic L-function. The conjecture was originally formulated
for the (d + 1)-variable Katz p-adic L-function.

Theorem 6.3. Let the notation and assumptions be as above. Then, we have

µ(L6,λ,p)= 0.

Proof. Let X+ be the set consisting of finite order characters ε : 0+→ µp∞ . For
every ε ∈ X+, we regard ε as a Hecke character.

In [Hida 2011; Burungale and Hsieh 2013], it has been shown that

lim inf
ε∈X+

µ(L−6,λε)= 0. (6-11)

In view of Theorem 6.1, this finishes the proof:

0≤ µ(L6,λ,p)≤ lim inf
ε

µ(L−6,λε). �

The theorem evidently implies the main results of [Hida 2011; Burungale and
Hsieh 2013].
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A Mordell–Weil theorem for cubic
hypersurfaces of high dimension

Stefanos Papanikolopoulos and Samir Siksek

Let X/Q be a smooth cubic hypersurface of dimension n ≥ 1. It is well-known
that new rational points may be obtained from old ones by secant and tangent
constructions. In view of the Mordell–Weil theorem for n = 1, Manin (1968)
asked if there exists a finite set S from which all other rational points can be
thus obtained. We give an affirmative answer for n ≥ 48, showing in fact that
we can take the generating set S to consist of just one point. Our proof makes
use of a weak approximation theorem due to Skinner, a theorem of Browning,
Dietmann and Heath-Brown on the existence of rational points on the intersection
of a quadric and cubic in large dimension, and some elementary ideas from
differential geometry, algebraic geometry and numerical analysis.

1. Introduction

Let X ⊂Pn+1 be a smooth cubic hypersurface over Q of dimension n. Let `⊂Pn+1

be a line defined over Q. If ` is not contained in X then ` · X = P + Q+ R where
P , Q, R ∈ X . If any two of P , Q, R are rational then so is the third. If S ⊆ X (Q),
we write Span(S) for the subset of X (Q) generated from S by successive secant
and tangent constructions. More formally, we define a sequence

S = S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ X (Q)

by letting Sn+1 be the set of points R ∈ X (Q) such that either R ∈ Sn , or for some
Q-line ` 6⊂ X we have ` ·X = P+Q+ R where P , Q ∈ Sn . Then Span(S) :=

⋃
Sn .

Manin [1974, page 3] (see also [Kanevsky and Manin 2001] and [Manin 1997])
asks if there is some finite subset S ⊂ X (Q) such that Span(S)= X (Q).

Theorem 1. Let X be a smooth cubic hypersurface of dimension n ≥ 48 defined
over Q. Then there exists a point A ∈ X (Q) such that Span(A)= X (Q).

Siksek is supported by the EPSRC LMF: L-Functions and Modular Forms Programme Grant
EP/K034383/1.
MSC2010: primary 14G05; secondary 11G35.
Keywords: cubic hypersurfaces, rational points, Mordell–Weil problem.

1953

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2017.11-8
http://dx.doi.org/10.2140/ant.2017.11.1953


1954 Stefanos Papanikolopoulos and Samir Siksek

We are grateful to Tim Browning, Simon Rydin Myerson, Michael Stoll and
Damiano Testa for valuable discussions, and to the referees for useful remarks. We
thank Yuri Manin for drawing our attention to the distinction between weak and
strong Mordell–Weil generation (discussed below).

Some remarks. It appears that the Mordell–Weil problem for cubic surfaces was
first posed by Segre [1943]. In the sixties Manin posed the same question for
cubic hypersurfaces of arbitrary dimension. Prior to Theorem 1, so far as we know,
the only positive result is for cubic surfaces endowed with a skew pair of rational
lines [Siksek 2012, Theorem 1]. More recently, Manin [2012] made a distinction
between “weak Mordell–Weil generation” where both secant and tangent operations
are allowed, and “strong Mordell–Weil generation” where only secant operations
are allowed. On the basis of computational experiments carried out by Vioreanu
[2009], Manin expects that the weak version of the Mordell–Weil property holds
for dimension 2, but that the strong version probably fails. In the language of
[Manin 2012], our Theorem 1 establishes the weak Mordell–Weil property for cubic
hypersurfaces of dimension ≥ 48; tangent operations are crucial to our proofs, and
we are unable to adapt them to prove the strong Mordell–Weil property.

Notation. Throughout X ⊂ Pn+1 is a smooth cubic hypersurface of dimension n
defined over Q (for now n ≥ 2). Thus there is some non-zero homogeneous cubic
polynomial F ∈Q[x0, . . . , xn+1] such that X is given by the equation

X : F(x0, . . . , xn+1)= 0. (1)

For P ∈ X we let TP X denote the tangent plane to X at P:

TP X : ∇F(P) · (x0, . . . , xn+1)= 0.

The Gauss map on X sends P to TP X ∈ Pn+1∗. We let X P := X ∩ TP X . Thus

X P :

{
F(x0, . . . , xn)= 0,

∇F(P) · (x0, . . . , xn)= 0.

In Section 4 we introduce the second fundamental form 5P X , and the Hessian
HF (P). We write G(n+ 1, 1) for the Grassmannian parametrizing lines in Pn+1.
Throughout the terms “open” and “closed” will pertain to the real topology, unless
prefixed by “Zariski”.

A sketch of the proof of Theorem 1. We show in Section 5 that if B ∈ X (Q) is not
an Eckardt point then X B(Q)⊆ Span(B) (the definition of Eckardt points is given
in Section 4). Fix B ∈ X (Q) that is non-Eckardt. Given D ∈ X (Q), we ask if there
is C ∈ X B(Q) such that D ∈ XC(Q)? If so, then provided C is non-Eckardt, we
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have D ∈ Span(C)⊆ Span(B). The answer to this question is positive provided the
variety YB,D ⊂ Pn+1 given by

YB,D :


F(x0, . . . , xn+1)= 0,

∇F(x0, . . . , xn+1) · D = 0,

∇F(B) · (x0, . . . , xn+1)= 0.

(2)

has a rational point. A theorem of Browning, Dietmann and Heath-Brown allows us
to deduce the existence of a rational point under some conditions, the most important
being that n is large, and that YB,D has a smooth real point. By considering the
second fundamental form, and using a theorem on weak approximation for cubic
hypersurfaces due to Skinner, we shall show the existence of a point B ∈ X (Q) and
a non-empty open U ⊆ X (R), so that YB,D has a smooth real point for all D ∈U .
It follows (with a little care) that U ∩ X (Q)⊆ Span(B). Once the existence of such
a set U is established, we use Mordell–Weil operations to enlarge U and quickly
complete the proof of Theorem 1.

2. Some results from analytic number theory

Weak approximation.

Theorem 2 [Skinner 1997]. Suppose n ≥ 15. Then X satisfies weak approximation.

This means that X (Q) is dense in X (AQ)where AQ denotes the adeles. It follows
that X (Q) is dense in X (R); a fact we use repeatedly in the proof of Theorem 1.

Corollary 2.1. Suppose n≥ 15. Let U , V ⊆ X (R) be disjoint open sets. Let A′ ∈U ,
B ′ ∈ V , and let `′ 6⊂ X be an R-line such that `′ · X = 2A′ + B ′. Then there are
A ∈U ∩ X (Q), B ∈ V ∩ X (Q) and a Q-line ` 6⊂ X such that ` · X = 2A+ B.

Proof. The projectivized tangent bundle TX of X parametrizes pairs (P, `) with
P ∈ X and ` a line tangent to X at P . We make use of the fact that TX is locally
trivial; thus there is a Zariski open U containing A′, and a local isomorphism
ϕ : U ×Pn−1

→ TX such that ϕ(P, α)= (P, `P,α) where `P,α is a line tangent to
X at P . Moreover, as A′ is real we take ϕ to be defined over R. Let W = U(R)∩U
which is necessarily an open neighbourhood of A′. Let α∈Pn−1(R) so that `′=`A′,α .
By Theorem 2 we can find {Ai } ⊂W ∩ X (Q) converging to A′. Write `i = `Ai ,α.
Then {`i } converges to `′ in G(n+ 1, 1)(R). In particular, for sufficiently large i ,
the line `i meets V . Let A = Ai ∈U ∩ X (Q) for any such large i . Choosing a line
`/Q tangent to X at A that sufficiently approximates `i completes the proof. �

Intersections of a cubic with a quadric. Let Q, C ∈ Q[x1, . . . , xk] be a pair of
forms of degrees 2 and 3 respectively, such that

Y : C(x1, . . . , xk)= 0, Q(x1, . . . , xk)= 0
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is a complete intersection Y ⊂Pk−1. Using the circle method, Browning, Dietmann
and Heath-Brown establish various sufficient conditions for Y to have a rational
point. We recount one of their theorems [Browning et al. 2015, Theorem 4] which
will be essential to our proof of Theorem 1. Define ordQ(C) as the least non-
negative integer m such that C = L Q+C ′, with linear form L ∈Q[x1, . . . , xk], and
such that there is a matrix T ∈ GLk(Q) with C ′(T (x1, . . . , xk)) ∈Q[x1, . . . , xm].

Theorem 3 (Browning, Dietmann and Heath-Brown). With notation as above,
suppose k ≥ 49 and ordQ(C)≥ 17. If Y has a smooth real point then Y (Q) 6=∅.

Corollary 2.2. Let f , q , l ∈Q[x0, . . . , xn+1], be forms of degree 3, 2, 1. Write

Z : f (x0, . . . , xn+1)= q(x0, . . . , xn+1)= l(x0, . . . , xn+1)= 0

for their common locus of zeros in Pn+1. Suppose that

(i) the cubic hypersurface in Pn+1 defined by f is smooth;

(ii) Z has a smooth real point;

(iii) n ≥ 48.

Then Z has a rational point.

Proof. By a non-singular change of variable, we may suppose that l = x0. Let

f ′(x1, . . . , xn+1)= f (0, x1, . . . , xn+1), q ′(x1, . . . , xn+1)= q(0, x1, . . . , xn+1).

We may therefore consider Z as being given in Pn as the common locus of f ′ =
q ′ = 0. Suppose ordq ′( f ′)≤ 16. Then a further non-singular change of variables
allows us to write

f = x0q0+ l ′q ′+ h(x1, . . . , x16).

where q0 is a quadratic form, l ′ is a linear form, and h is a cubic form. Now as
n ≥ 48, there is a common zero in Pn+1 to

x0 = x1 = · · · = x16 = l ′ = q0 = q ′ = 0.

This gives a singular point on the cubic hypersurface f = 0 in Pn+1 contradicting
(i). We may thus suppose that ordq ′( f ′) ≥ 17. A similar argument shows that
f ′ = q ′ = 0 defines a complete intersection in Pn . By (ii) this intersection has a
smooth real point. Applying Theorem 3 with k = n+ 1 completes the proof. �

3. A numerical stability criterion

Newton–Raphson. We need a rigorous version of the multivariate Newton–Raphson
method. The following result is part of Theorem 5.3.2 of [Stoer and Bulirsch 1980].
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Here ‖·‖ denotes the usual Euclidean norm (both for vectors and for matrices). For
differentiable f = ( f1, . . . , fn) : Rn

→ Rn , denote the Jacobian matrix by J f :

J f :=

(
∂ fi

∂x j

)
i, j=1,...,n

.

Theorem 4. Let C⊆Rn be open, C0 be convex such that C0⊆C, and let f : Rn
→Rn

be differentiable for all x ∈ C0 and continuous for all x ∈ C.
For x0 ∈ C0 let r , α, β, γ , h be given positive numbers with the following

properties:

Br (x0) := { x : ‖x− x0‖< r} ⊆ C0, h := αβγ/2< 1, r := α/(1− h),

and let f satisfy:

(i) ‖J f (x)− J f ( y)‖ ≤ γ ‖x− y‖ for all x, y ∈ C0;

(ii) J f (x)−1 exists and satisfies ‖J f (x)−1
‖ ≤ β for all x ∈ C0;

(iii) ‖ f (x0) · J f (x0)
−1
‖ ≤ α.

Then beginning at x0 each point

xk+1 = xk − f (xk) · J f (xk)
−1 , k = 0, 1, 2, . . .

is well-defined and belongs to Br (x0). Moreover the limit limk→∞ xk = ξ exists,
belongs to Br (x0) and satisfies f (ξ)= 0.

Stability. For f ∈ R[x1, . . . , xn] we shall let ‖ f ‖c denote the maximum of the
absolute values of the coefficients of f .

Lemma 3.1. Let g1, . . . , gm ∈R[x1, . . . , xn] be polynomials with m≤n. Let ζ ∈Rn

be a common zero of g1, . . . , gm , such that ∇g1(ζ ), . . . ,∇gm(ζ ) are linearly inde-
pendent. Let ε > 0 be given. There is δ > 0 such that if f1, . . . , fm ∈ R[x1, . . . , xn]

satisfy ‖ fi − gi‖c < δ, then there is ξ ∈ Rn such that

(a) ξ is a common zero to f1, . . . , fm ;

(b) ∇ f1(ξ), . . . ,∇ fm(ξ) are linearly independent;

(c) ‖ξ − ζ‖< ε.

Proof. Choose vm+1, . . . , vn ∈ Rn so that ∇g1(ζ ), . . . ,∇gm(ζ ), vm+1, . . . , vn is a
basis. Let

gi (x)= vi · (x− ζ ), i = m+ 1, . . . , n.

Then ζ is a common zero to g1, . . . , gn and ∇g1(ζ ), . . . ,∇gn(ζ ) are linearly in-
dependent. Let g = (g1, . . . , gn). Then Jg(ζ ) is invertible. We shall fix fi = gi

for i = m + 1, . . . , n, and let f = ( f1, . . . , fn). We will apply Theorem 4 with
x0 = ζ . There is some δ0 > 0 such that if ‖ fi − gi‖c < δ0 then J f (x0) is invertible.
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Choose 0< r0 ≤ ε so that condition (ii) of the theorem is satisfied for some β > 0,
with C0 = Br0(x0). Condition (i) holds for some γ > 0 by the multivariate Taylor
Theorem. Let α = ‖ f (x0) · J f (x0)

−1
‖, which depends on f . Now g(x0)= 0, so

clearly if δ→ 0, then α→ 0. Therefore for sufficiently small δ < δ0, we have
h := αβγ/2< 1 and r := α/(1−h) < r0. By the theorem, there is ξ ∈ Br (x0) such
that f (ξ)= 0. By construction ξ satisfies (a), (b), (c). �

Smooth real points on the varieties YB,D.

Lemma 3.2. Let B, D′ be points belonging to X (R) such that the variety YB,D′ ⊂

X ⊂ Pn+1 given by (2) has a smooth real point C ′. Let V ⊆ X (R) be an open
neighbourhood of C ′. Then there is an open neighbourhood U ⊆ X (R) of D′, such
that for every D ∈U , the variety YB,D has a smooth real point C ∈ V .

Proof. We may suppose that B, C ′, D′ are contained in the affine patch x0 = 1.
Let G1, G2, G3 be the three polynomials defining YB,D′ in (2) and let g1, g2,
g3 ∈ R[x1, . . . , xn+1] be their dehomogenizations by x0 = 1. Write f1, f2, f3 for
the corresponding polynomials in R[x1, . . . , xn+1] defining YB,D ∩ {x0 = 1} with
D ∈ X (R)∩ {x0 = 1}. Of course f1 = g1, f3 = g3, and moreover

‖ f2− g2‖c ≤ µ · ‖D− D′‖∞

where µ > 0 is a constant and ‖·‖∞ denotes the infinity norm in the affine patch
x0 = 1 (which we identify with Rn+1). Now C ′ ∈ Rn+1 is a common zero for
g1, g2, g3 with ∇g1(C ′), ∇g2(C ′), ∇g3(C ′) linearly independent (as C ′ is now a
smooth point on the affine patch YB,D′ ∩ {x0 = 1}). Let ε > 0 be sufficiently small
so that Bε(C ′)∩ X (R) is contained in V . Applying Lemma 3.1, we know that if
‖D− D′‖∞ is sufficiently small then there is a non-zero vector C ∈ Bε(C ′) that is
a common zero for f1, f2, f3 with ∇ f1(C), ∇ f2(C), ∇ f3(C) linearly independent.
This completes the proof. �

Lemma 3.3. Suppose n ≥ 48. Let B ∈ X (Q). Suppose D′ ∈ X (R) such that YB,D′

has a smooth real point C ′. Then there is a non-empty open U ⊆ X (R) such that if
D ∈U ∩ X (Q), then YB,D(Q) 6=∅.

Proof. Let U be as in Lemma 3.2. Then YB,D is defined over Q and has a smooth
real point for every D ∈U ∩ X (Q). Now the lemma follows from Corollary 2.2. �

4. A little geometry

Lines on X.

Lemma 4.1. Let ` be a line contained in X and P ∈ `. Then `⊂ TP X.

This is well-known; for a proof, see [Siksek 2012, Lemma 2.1].
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The second fundamental form. Let P ∈ X . Associated to P is a quadratic form
(well-defined up to multiplication by a non-zero scalar) known as the second
fundamental form which we denote by5P X , and which is defined as the differential
of the Gauss map (e.g., [Griffiths and Harris 1979; Harris 1992, Chapter 17]. For
our purpose the following explicit recipe given in [Griffiths and Harris 1979, pages
369–370] is useful. By carrying out a non-singular change of coordinates we may
suppose P is (1 : 0 : . . . : 0), and the tangent plane TP X to X at P given by xn+1= 0.
Then X has the equation F = 0 with

F = x2
0 xn+1+ x0q(x1, . . . , xn+1)+ c(x1, . . . , xn+1) (3)

where q and c are homogeneous of degree 2 and 3 respectively. Write z1 =

x1/x0, . . . , zn+1 = xn+1/x0. We can take z1, . . . , zn as local coordinates for X at
P , and then X is given by the local equation

zn+1 = q ′(z1, . . . , zn)+ (higher order terms).

Here q ′(z1, . . . , zn) = −q(z1, . . . , zn, 0). The second fundamental form 5P X is
the quadratic form q ′(dz1, . . . , dzn) (up to scaling). We shall only be concerned
with the rank and signature of 5P X , which are precisely the rank and signature of
q(x1, . . . , xn, 0) and so we will take this as the second fundamental form. We may
therefore view it as the restriction of q to TP X . The following follows easily from
the above description and the implicit function theorem.

Lemma 4.2. Suppose 5P X has full rank n.

(i) If 5P X is definite then there is an open neighbourhood U ⊆ X (R) such that
U ∩ X P(R)= {P}.

(ii) If 5P X is indefinite then for every open neighbourhood U ⊆ X (R) of P the
intersection contains a real manifold of dimension n− 1.

Lemma 4.3. There is a non-empty subset U1 ⊆ X (R), open in the real topology,
such that for P ∈U1 the second fundamental form 5P X is indefinite of full rank.

Proof. A theorem of Landsberg [1994, Theorem 6.1] asserts that at a general point
on smooth hypersurface of degree ≥ 2, the second fundamental form has full rank.
Thus there is a Zariski open U ⊂ X such that 5P X has full rank for P ∈ U .

A straightforward application of Bertini’s Theorem shows the existence of a real
3-dimensional linear subvariety 3⊂ Pn+1 such that X ′ =3∩ X is a smooth real
cubic surface. A classical theorem of Schläfli asserts that the number of real lines
on smooth real cubic surface is either 3, 7, 15 or 27. Let `⊂3∩ X be a real line.
Recall that a point on a smooth real surface is called hyperbolic if the Gaussian
curvature at the point is negative. By [Siksek 2012, Lemma 2.2] all but at most two
points of `(R) are hyperbolic for X ′. Let Q ∈ `(R) be a hyperbolic point for X ′.
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The determinant of the second fundamental form 5Q X ′ is the Gaussian curvature
of X ′ at Q, which is negative. It follows that the binary quadratic form 5Q X ′ is
indefinite. Now 5Q X ′ is the restriction of 5Q X to TQ X ′ and so 5Q X is indefinite.
Thus there is a neighbourhood V ⊆ X (R) of Q, open in the real topology, such
that 5P X is indefinite for P ∈ V . Now V is necessarily Zariski-dense in X . Thus
V ∩U(R) is non-empty (as well as being open in the real topology). The proof is
complete upon letting U1 = V ∩U(R). �

The Hessian. Given P ∈ X , the Hessian of F evaluated at P is given by the
(n+ 2)× (n+ 2) matrix

HF (P)=
(
∂2 F
∂xi∂x j

(P)
)

i, j=0,...,n+1
.

Of course the Hessian is well-defined up to multiplication by a non-zero scalar.

Lemma 4.4. Let P ∈ X and suppose 5P(X) has full rank n. Then HF (P) has full
rank n+ 2.

Proof. Starting from (3), an easy computation shows that the determinant of the
Hessian at P is (up to sign) the determinant of q(x1, . . . , xn, 0). �

Eckardt points. We call P ∈ X an Eckardt point if X P := X ∩ TP X is a cone with
vertex at P . Note that if n = 2 and P is an Eckardt point then X P consists of three
lines meeting at P; in this case 5P X vanishes identically.

For a proof of the following classical theorem see [Coskun and Starr 2009,
Section 2].

Theorem 5. The set of Eckardt points on X is finite.

Components of a real cubic hypersurface. We summarize some well-known facts
about components of real cubic hypersurfaces. Everything we need is actually
contained in [Viro 1998, Section 4.3]. A smooth real cubic hypersurface has
either one or two connected components. If it has two connected components then
one of these is two-sided, and homeomorphic to Sn , and the other is one-sided
and homeomorphic to RPn . If a line intersects the two-sided component then it
intersects it in two points, and intersects the odd-sided component in one point.

Lemma 4.5. Suppose X (R) has two connected components. Then 5P X is definite
of full rank for all P belonging to the two-sided component.

Proof. Let P be a point on the two-sided component. Suppose 5P X is indefinite
or not of full rank. Then there is a real line `⊂ TP X (along which 5P X vanishes)
that meets X with multiplicity ≥ 3 at P . As this is impossible for points on the
two-sided component, we have a contradiction. �
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5. Mordell–Weil generation: first steps

Proposition 5.1. Let P ∈ X (Q) be a non-Eckardt point. Then the set X P(Q)

(considered as a subset of X (Q)) is contained in Span(P).

The following lemma follows from the definitions.

Lemma 5.2. Let P ∈ X (Q) and let Q ∈ X P(Q) be distinct from P. Suppose the
line ` joining P to Q is not contained in X. Then Q ∈ Span(P).

For the proof of Proposition 5.1 it remains to show that Q ∈ Span(P) in the
case ` ⊂ X . For n = 2 this is [Siksek 2012, Lemma 3.2], so we suppose for the
remainder of this section that n ≥ 3.

Lemma 5.3. Any hyperplane section of X is absolutely irreducible.

Proof. Let L = 0 be a hyperplane such that X ∩ {L = 0} is absolutely reducible.
Then we can write F = L Q+ L ′Q′ where L , L ′ are homogeneous linear, and Q,
Q′ are homogeneous quadratic. As n ≥ 3, the variety L = L ′ = Q = Q′ = 0 has a
point R ∈ Pn+1. It follows that R is a singular on X giving a contradiction. �

Lemma 5.4. Let P ∈ X (Q) be a non-Eckardt point. Let Q ∈ X P(Q) with TQ X 6=
TP X. Then Q ∈ Span(P).

Proof. Let W ⊆ X P be the subvariety consisting of lines through P contained in X P .
As P is a non-Eckardt point, W is a proper subvariety. Moreover, by Lemma 5.3,
the tangent plane section X P is irreducible, and so dim(W) < dim(X P). Let
U = X P −W which is Zariski dense in X P .

Let V := X P \ (X P ∩ TQ). As TQ 6= TP , this is a dense open subset of X P . Let
ι : V→ V be the involution given as follows. If R ∈ V we join R to Q by the line
`R,Q and we let ι(R) be the third point of intersection of this line with X . We note
that `R,Q 6⊂ X , since otherwise it will be contained in TQ X by Lemma 4.1. Now
(V ∩U)∩ ι(V ∩U) is a Zariski dense subset of the rational variety X P . This dense
subset must contain a rational point R. Then R, ι(R) /∈W and so R, ι(R)∈Span(P)
by Lemma 5.2. Finally the line joining R with ι(R) passes through Q and is not
contained in X . Thus Q ∈ Span(R). �

Proof of Proposition 5.1. Let Q ∈ X P(Q). We would like to show that Q ∈Span(P).
Thanks to Lemmas 5.2 and 5.4, we may suppose there is a Q-line `⊂ X containing
P , Q, and TQ X = TP X . Now the line ` contains at most finitely many Eckardt
points by Theorem 5. Moreover, the Gauss map on a smooth hypersurface has
finite fibres [Harris 1992, Lecture 15]. Thus there is a non-Eckardt R ∈ `(Q) with
TR X 6= TP X . It follows that R ∈ Span(P). Moreover, Q ∈ `⊂ TR by Lemma 4.1
and so Q ∈ Span(R) (again by Lemma 5.4). This completes the proof. �
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Lemma 5.5. Suppose n ≥ 48. Let B ∈ X (Q) so that X B does not contain points
that are Eckardt for X. Suppose D′ ∈ X (R) such that YB,D′ has a smooth real point
C ′. Then there is a non-empty open U ⊆ X (R) such that U ∩ X (Q)⊆ Span(B).

Proof. Take U to be as in Lemma 3.3. Let D ∈U ∩ X (Q). By the conclusion of
Lemma 3.3 we see that YB,D has a rational point C . From the equations defining
YB,D in (2) we have that C ∈ X B(Q) and D ∈ XC(Q). Moreover, neither B nor
C (both contained in X B) are Eckardt points. Applying Proposition 5.1, we have
C ∈ Span(B) and D ∈ Span(C) completing the proof. �

6. A smoothness criterion

Lemma 6.1. Let B ∈ X , Let C ′ ∈ X B and D′ ∈ XC ′ . Suppose

(i) TC ′X 6= TB X ;

(ii) HF (C ′) has full rank, where HF is the Hessian matrix;

(iii) D′ does not belong to the line

{ (λ∇F(B)+µ∇F(C ′)) · HF (C ′)−1
: (λ : µ) ∈ P1

} . (4)

Then C ′ is a smooth point on the variety YB,D′ ⊂ Pn+1 given by (2).

Proof. As C ′ ∈ X B and D′ ∈ XC ′ we see that C ′ ∈ YB,D′ . We need to show that C ′

is a smooth point on YB,D′ . Write

f (x0, . . . , xn+1)=∇F(x0, . . . , xn+1) · D′, g =∇F(B) · (x0, . . . , xn+1).

To show that C ′ is smooth on YB,D′ it is enough to show that ∇F(C ′), ∇ f (C ′) and
∇g(C ′) are linearly independent. A straightforward computation shows that

∇ f (C ′)= D′ · HF (C ′), ∇g(C ′)=∇F(B).

Suppose
εD′ · HF (C ′)+ λ∇F(B)+µ∇F(C ′)= 0.

By assumptions (ii) and (iii) we see that ε = 0. However, ∇F(B) and ∇F(C ′) are
linearly independent by assumption (i), and so λ= µ= 0. �

7. Proof of Theorem 1

In this section n ≥ 48.

Lemma 7.1. There is A ∈ X (Q) and a non-empty open U ⊆ X (R) such that:

(i) U ∩ X (Q)⊆ Span(A);

(ii) Span(A) contains at least one point in every connected component of X (R).
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Proof. Suppose first that X (R) is connected. Let U1⊆ X (R) be the non-empty open
subset whose existence is guaranteed by Lemma 4.3: for every P ∈U1, the second
fundamental form 5P X is indefinite of full rank. It follows from Theorem 5 that
the set of points P with X P containing an Eckardt point is a proper subset of X
that is closed in the Zariski topology. Thus we may replace U1 by a non-empty
open set U2 ⊆U1 such that for every P ∈U2, the subvariety X P does not contain
points that are Eckardt for X . Fix B ∈U2 ∩ X (Q) whose existence is guaranteed
by Theorem 2. The hypersurface X is smooth of degree 3, and so the Gauss map
X → X∗ has finite fibres [Harris 1992, Lecture 15]. We can therefore take an
open neighbourhood U3 ⊆ U2 of B such that for all C ′ ∈ U3 with C ′ 6= B, we
have TB X 6= TC ′X . By Lemma 4.2, the intersection U3 ∩ X B(R) contains a real
manifold of dimension n−1; choose C ′ ∈U3∩ X B(R) with C ′ 6= B. As the second
fundamental form has full rank on U3, we see from Lemma 4.4 that HF (C ′) is of
full rank n+ 2. Now again by Lemma 4.2, the intersection U3 ∩ XC ′(R) contains a
manifold of real dimension n−1, and so we can find D′ ∈U3∩ XC ′(R) that avoids
the line (4). The points B, C ′, D′ satisfy the conditions of Lemma 6.1. Thus C ′ is
a smooth point on YB,D′ . By Lemma 5.5, there is a non-empty open U such that
U ∩ X (Q) ⊆ Span(B). We simply take A = B, and the proof is complete in the
case when X (R) is connected.

Now suppose X (R) has two connected components. Let U2 ⊆ X (R) be as above.
From Lemma 4.5 we know that U2 is contained in the one-sided component. Let
B ′ ∈ U2. Let `′ be a real line passing through B ′ and tangent to the two-sided
component at a point A′. By Corollary 2.1, there is a point A ∈ X (Q) belonging
to the two-sided component and a line ` defined over Q such that ` · X = 2A+ B
where B ∈U2 ∩ X (Q). Now B ∈ Span(A) and Span(A) contains points belonging
to both components of X (R). From the above argument there is a non-empty open
U ⊆ X (R) such that U ∩ X (Q)⊆ Span(B)⊆ Span(A). �

Lemma 7.2. Let A ∈ X (Q) be as in Lemma 7.1. Then there is an open W ⊆ X (R)
such that W ∩ X (Q)= Span(A).

Proof. Let U be as in Lemma 7.1. We may suppose Span(A) 6⊂ U , otherwise
we simply take W = U and there is nothing to prove. Let P ∈ Span(A) that
does not belong to U . By Theorem 2, there is some P ′ ∈ U ∩ X (Q) such that
P ′ /∈ TP X . Let ` be the line joining P to P ′. The line ` is not contained in TP X
and so, by Lemma 4.1, not contained in X . Let P ′′ ∈ X (Q) be the third point of
intersection of ` with X . Since P ∈ Span(A) and P ′ ∈U ∩ X (Q)⊆ Span(A), we
have P ′′ ∈ Span(A). Observe that ` is not contained in the tangent plane of P ′′ (for
otherwise ` would be contained in X ). Now there is some non-empty open U ′ ⊂U
containing P ′ that is disjoint from the tangent plane of P ′′. For a point R ∈U ′, let
ϕ(R) denote the third point of intersection of the (real) line joining R to P ′′. Then
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the map ϕ : U ′→ X (R) is continuous and injective. By the invariance of domain
theorem [Bredon 1993, Corollary IV.19.9], the image ϕ(U ′) is open. We shall let
WP = ϕ(U ′). Clearly P ∈ WP and WP ∩ X (Q) ⊆ Span(A). The lemma follows
on taking

W =U ∪
⋃

P∈Span(A)\U

WP . �

Lemma 7.3. Let W be as in Lemma 7.2, and write W for its closure. Then W is
closed under secant operations: if P , Q ∈W are distinct, and if the line ` joining
them is not contained in X , then R ∈W where ` · X = P + Q+ R.

Proof. By Theorem 2 there exist {Pk}, {Qk} ⊂ W ∩ X (Q), with Pk 6= Qk , that
converge respectively to P , Q. Write F ⊂ G(n + 1, 1) for the Fano scheme of
lines on X . Then the real points of F are closed in G(n+ 1, 1)(R). As ` /∈ F(R),
we see for large enough k that the line `k/Q joining Pk , Qk is not contained
in X . Let `k · X = Pk + Qk + Rk . Then {Rk} converges to R. Moreover, Pk ,
Qk ∈W ∩ X (Q)⊆ Span(A). Hence Rk ∈ Span(A)⊂W and so R ∈W . �

Lemma 7.4. Let A, W be as above. Then W = X (R).

Proof. We claim that W is open. From that it follows that W is a union of connected
components of X (R). As Span(A)⊂W contains points from every component, the
lemma follows from the claim.

To prove the claim we mimic the argument in the proof of Lemma 7.2. Let
P ∈W . Let P ′ ∈W such that P ′ /∈ TP X , and let ` be the line joining P to P ′. As W
is closed under secant operations, P ′′ ∈W where ` · X = P + P ′+ P ′′. Now there
is some non-empty open W ′ ⊂ W containing P ′ that is disjoint from the tangent
plane of P ′′. For a point R ∈ W ′, let ϕ(R) denote the third point of intersection
of the (real) line joining R to P ′′. Then the map ϕ : W ′→ X (R) is continuous
and injective, and thus the image ϕ(W ′) is open. Clearly ϕ(W ′) contains P and is
contained in W (as the latter is closed under secant operations). �

Proof of Theorem 1. Let A, W be as above. In particular, Span(A) = W ∩ X (Q)
and W = X (R). We write ∂W = X (R) \W . We note that ∂W is the complement
of an open dense set, and therefore nowhere dense.

We want to show that X (Q)= Span(A). Let P ∈ X (Q). Then there is a Zariski
open U ⊂ X and an involution ι : U→ U that sends R ∈ U to the third point of the
line joining R to P . Choose R ∈ U(R)∩ X (Q) such that R /∈ ∂W ∪ ι(∂W ). Then
R, ι(R) ∈ Span A and so P ∈ Span(A). �
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