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On `-torsion in class groups
of number fields

Jordan Ellenberg, Lillian B. Pierce and Melanie Matchett Wood

For each integer ` � 1, we prove an unconditional upper bound on the size
of the `-torsion subgroup of the class group, which holds for all but a zero-
density set of field extensions of Q of degree d , for any fixed d 2 f2; 3; 4; 5g

(with the additional restriction in the case d D 4 that the field be non-D4). For
sufficiently large ` (specified explicitly), these results are as strong as a previously
known bound that is conditional on GRH. As part of our argument, we develop a
probabilistic “Chebyshev sieve,” and give uniform, power-saving error terms for
the asymptotics of quartic (non-D4) and quintic fields with chosen splitting types
at a finite set of primes.

1. Introduction

The distribution of class groups is a great mystery. The Cohen–Lenstra heuristics
[Cohen and Lenstra 1984] (for quadratic fields) and the Cohen–Lenstra–Martinet
heuristics [Cohen and Martinet 1990] (for more general number fields) make
predictions for the distribution of class groups, including for the average size of the
`-torsion subgroups for certain “good” primes `. However, the questions of proving
anything towards these predictions are almost entirely open, and mostly apparently
inaccessible.

The main goal of the present work is to prove, for each integer ` � 1, an
unconditional upper bound for the size of the `-torsion subgroup of the class group,
which holds for all but a zero-density set of field extensions of Q of degree d ,
for any fixed d 2 f2; 3; 4; 5g (with the additional restriction in the case d D 4

that the field be non-D4). Alternatively, these results may be viewed as the first
unconditional upper bounds for the average size of `-torsion in class groups as the
field varies over extensions of Q of fixed degree d 2 f2; 3; 4; 5g (and non-D4 in the
case d D 4).

Let K be a degree d field extension of Q with absolute discriminant DK D

j disc K=Qj. We will denote the class group by ClK and the `-torsion subgroup by
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ClK Œ`�. We note the trivial pointwise upper bound (see for example [Narkiewicz
1990, Theorem 4.4])

jClK Œ`�j � jClK j �d;" D
1=2C"
K

; (1-1)

for every ">0. (Throughout, ">0 is allowed to be arbitrarily small (possibly taking
a different value in different occurrences), and A� B indicates that jAj � cB for
an implied constant c, which we allow in any instance to depend on `; d; ".)

It is conjectured that
jClK Œ`�j �D"

K (1-2)

for every " > 0, but improving on the trivial bound (1-1) has proved difficult.
(Impetus for this conjecture may be found in [Duke 1998; Zhang 2005, page 10;
Brumer and Silverman 1996, “Question CL.`; d/”].) For K quadratic, Gauss’s
genus theory [1966] implies (1-2) in the case `D 2. Recently, Bhargava et al. [2017]
obtained nontrivial upper bounds for 2-torsion in fields of degree d for all d � 3,
proving jClK Œ2�j � D0:2784:::C"

K
for d D 3; 4 and jClK Œ2�j � D1=2�1=2dC"

K
for

d � 5. For `D 3, after initial incremental improvement in [Helfgott and Venkatesh
2006; Pierce 2005; 2006] over the trivial bound (1-1) for quadratic fields, Ellenberg
and Venkatesh [2007, Proposition 3.4, Corollary 3.7] proved that

jClK Œ3�j �D
1=3C"
K

(1-3)

holds for both quadratic and cubic fields, and moreover there is a positive constant
ı > 0 such that

jClK Œ3�j �D
1=2�ıC"
K

(1-4)

holds for quartic fields. (In particular, one may take ı D 1=168 in (1-4) for quartic
fields with Galois closure having Galois group A4 or S4.) At this time, these are
the best bounds in the literature that are unconditional and hold for all such fields.

In the realm of average results, there is little known, with the exceptions being
spectacular successes. For 3-torsion in quadratic fields, Davenport and Heilbronn
[1971] proved X

deg.K /D2
0<DK�X

jClK Œ3�j �
�

2

3�.2/
C

1

�.2/

�
X; (1-5)

in which the first contribution is from fields with disc K=Q> 0 and the second is
from fields with disc K=Q< 0; this has recently been improved to reflect second
order terms by [Bhargava et al. 2013; Taniguchi and Thorne 2013; Hough 2010].
For 2-torsion in cubic fields, Bhargava [2005] proved the asymptoticX

deg.K /D3
0<DK�X

jClK Œ2�j �
�

5

48�.3/
C

3

8�.3/

�
X; (1-6)
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in which each isomorphism class of fields is counted once, and the first contribution
is from fields with disc K=Q> 0 and the second is from fields with disc K=Q< 0.
For 4-torsion in quadratic fields, Fouvry and Klüners [2007] have determined the
asymptotics, for each nonnegative integer k,X

deg.K /D2
0<DK�X

jCl2K Œ2�j
k
� .ck Cp�k.ckC1� ck//X; (1-7)

where ck is the number of vector subspaces of Fk
2

. See also the recent work of Klys
[2016] giving analogous results on 3-torsion in cyclic cubic fields, and the recent
work of Milovic on 16-rank in quadratic fields, e.g., [Milovic 2017].

Turning to conditional results, Klys’s results [2016] extend to p-torsion in cyclic
degree p fields under GRH and Smith [2016] has results on 8-torsion averages
in quadratic fields under GRH as well. In the case of quadratic fields, Wong
[1999b] proved that, conditional on the Birch–Swinnerton-Dyer conjecture and the
Riemann hypothesis, jClK Œ3�j �D

1=4C"
K

. Before the proof of (1-3), Soundararajan
noted (as communicated in [Helfgott and Venkatesh 2006]) that one could prove
jClK Œ3�j � D

1=3C"
K

for K quadratic if one assumed the truth of the Riemann
hypothesis for only the L-function L.s; �/ of the quadratic character � associated
to the quadratic field K. The key idea of the latter bound was the use of many small
primes that split in K; the role of the Riemann hypothesis was to guarantee the
existence of sufficiently many such primes. This approach has been generalized by
Ellenberg and Venkatesh [2007] to number fields of any degree; we recall the key
result in the special case of field extensions of Q:

Theorem A [Ellenberg and Venkatesh 2007, Lemma 2.3]. Let K be a field extension
of Q of degree d , and let ` be a positive integer. Let ı < 1

2`.d�1/
. Suppose that

fp1; : : : ; pM g are M prime ideals in OK with Norm.pj /�Dı
K

that are unramified
in K=Q and are not extensions of ideals from any proper subfield K0 ¨ K.Then

jClK Œ`�j �d;`;" D
1=2C"
K

M�1: (1-8)

(Here we recall the convention in [Ellenberg and Venkatesh 2007] that an ideal
p in OK is said to be an extension of a prime ideal from a subfield K0 ¨ K if there
is a prime ideal p0 in OK0

such that pD p0OK .)
Upon assuming GRH, an application of the effective Chebotarev theorem of

Lagarias and Odlyzko [1977] guarantees, for any fixed � > 0, the existence of
�D

��"
K

rational primes of size �D
�
K

that split completely in K. Upon choosing
� D 1

2`.d�1/
� "0 for arbitrarily small "0 > 0, one obtains the following bound,

currently the state of the art for conditional pointwise upper bounds for jClK Œ`�j:
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Theorem B [Ellenberg and Venkatesh 2007, Proposition 3.1]. Let K be a field
extension of Q of degree d and ` a positive integer. Assuming GRH,

jClK Œ`�j �d;`;" D
1
2
� 1

2`.d�1/
C"

K
; (1-9)

for any " > 0.

One may attempt to remove the conditionality by proving results that hold on
average, or for all but a small exceptional family. In this vein, in the case of imaginary
quadratic fields, Soundararajan [2000] noted that for all but at most one imaginary
quadratic field K with DK 2 ŒX; 2X �, one has the bound jClK Œ`�j �X 1=2�1=2`C",
for any prime `. Also in the imaginary quadratic case, a recent result of Heath-
Brown and Pierce [2014] provides an upper bound for averages (and in addition
higher moments) of jClK Œ`�j, for example proving for any prime `� 5 thatX0

deg.K /D2
0<DK�X

jClK Œ`�j �X
3
2
� 3

2`C2
C"; (1-10)

with the sum restricted to imaginary quadratic fields.
In this paper, we prove unconditional results for jClK Œ`�j that are as strong as

(1-9) for all sufficiently large positive integers `, and hold for all but a zero-density
family of quadratic, cubic, non-D4-quartic, or quintic field extensions of Q.

For this we work with families of fields. Let Nd .X / denote the number of degree
d extensions of Q with 0<DK �X , in which each isomorphism class is counted
once; it is conjectured that for an appropriate constant cd ,

Nd .X /� cdX: (1-11)

Importantly for our work, this is known to be true for d D 2 (classical), d D 3 by
Davenport and Heilbronn [1971], d D 4 by Cohen, Diaz y Diaz, and Olivier [Cohen
et al. 2002] and Bhargava [2005], and d D 5 by Bhargava [2010]. Throughout our
work, in the case of d D 4, we restrict our attention to non-D4-quartic fields (that
is, quartic extensions whose Galois closure does not have Galois group D4); see
the remark on page 1758. Thus we let zN4.X / denote the further restricted count
of non-D4-quartic extensions of Q; then (1-11) is also known to hold for zN4.X /,
with a different constant [Bhargava 2005].

As a consequence of the field counts (1-11) combined with the trivial bound (1-1),
a trivial average bound for jClK Œ`�j isX

deg.K /Dd
0<DK�X

jClK Œ`�j �d;" X 3=2C": (1-12)

Our approach to improve upon (1-12) is to show that “most” degree d fields K

contain sufficiently many small primes that split completely in K for Theorem A to
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give a good upper bound for jClK Œ`�j. Roughly speaking, we will show that there is
some small ı0 > 0 such that for all but at most O.X 1�ı0/ of the degree d fields K

with 0<DK �X , at least a fixed positive proportion of the primes p �X ı0 split
completely in K. (Under GRH, the small set of exceptional fields is in fact empty.)

Our main results are as follows:

Theorem 1.1. Let d 2 f2; 3; 4; 5g and let ` be any positive integer with ` � `.d/
where

`.2/D `.3/D 1; `.4/D 8; `.5/D 25:

Then for all but Od;`;".X
1� 1

2`.d�1/
C"/ degree d fields K=Q with DK � X (and

non-D4 in the case d D 4),

jClK Œ`�j �d;`;" D
1
2
� 1

2`.d�1/
C"

K
;

for all " > 0. For d D 4; 5, in the remaining cases of positive integers ` < `.d/, for
all but Od;".X

1�ı0.d/C"/ degree d fields K=Q with 0<DK �X (and non-D4 in
the case d D 4),

jClK Œ`�j �d;`;" D
1
2
�ı0.d/C"

K
;

for all " > 0, where we may take

ı0.d/D

� 1
48

if d D 4;

1
200

if d D 5:

Remark. Theorem 2.1 states a version of this result in terms of bounding the
number of exceptional fields that fail to have many small split primes. One notes
from Theorem 2.1 that for sufficiently large `, the limiting reagent is not the
availability of small completely split primes, but the constraint ı < 1

2`.d�1/
in

Theorem A.

As immediate corollaries, we note:

Corollary 1.1.1. Let d 2 f2; 3; 4; 5g. As K ranges over degree d extensions of Q

with discriminant 0<DK �X (and non-D4 in the case d D 4),X
deg.K /Dd
0<DK�X

jClK Œ`�j �d;" X
3
2
� 1

2`.d�1/
C";

for all integers `� `.d/, where `.2/D `.3/D 1, `.4/D 8, `.5/D 25.

Corollary 1.1.2. For positive integers `� 7, averaging over non-D4-quartic fields,X0

deg.K /D4
0<DK�X

jClK Œ`�j �d;" X
3
2
� 1

48
C":
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For positive integers `� 24, averaging over quintic fields,

X
deg.K /D5
0<DK�X

jClK Œ`�j �d;" X
3
2
� 1

200
C":

Our strategy is as follows. Recall that Nd .X / denotes the number of degree d

fields K over Q, up to isomorphism, with 0<DK �X , and let Nd .X Ip/ denote the
number of degree d fields K over Q, up to isomorphism, with 0<DK �X , such
that the rational prime p splits completely in K. (For d D 4 we define zN4.X Ip/

analogously, restricting to non-D4-quartic fields.) Suppose we know that for each
fixed prime p, Nd .X Ip/ is a positive proportion of Nd .X /, so p splits completely
in a positive proportion of the fields. Then one would expect the fields in which the
primes split completely to distribute somewhat evenly, so that “most fields” have
the property that “near the average number” of primes split completely in them;
that is, one would expect that the primes do not conspire to cause many fields to
fail the criterion of Theorem A. We will make this argument precise by developing
a flexible “Chebyshev sieve” (Lemma 3.1, related to Chebyshev’s inequality); the
crucial input to the sieve will be asymptotics for Nd .X Ip/ with power-saving error
and explicitly given dependence on p (Lemma 2.2, Theorem C, Theorems 2.3
and 2.4).

Counting quadratic fields may be accomplished by a simple classical argument
(given in the Appendix). Power-saving error terms for Nd .X / were first found in
the cases d D 3; 4 by Belabas, Bhargava, and Pomerance [Belabas et al. 2010],
and first found in the case d D 5 by Shankar and Tsimerman [2014]. In the case
d D 3, Bhargava, Shankar, and Tsimerman [Bhargava et al. 2013] and Taniguchi and
Thorne [2013] have also proved a second main term and improved the power-saving
error term. For the refined estimates that we require on Nd .X Ip/, we quote the
necessary asymptotics for d D 3 from [Taniguchi and Thorne 2013], while for
d D 4; 5 we prove the necessary estimates using the methods and results from
[Belabas et al. 2010; Shankar and Tsimerman 2014]. In fact, in Sections 4 and 5,
we give the field counting asymptotics for fields with any chosen splitting types
at a finite set of primes with the expectation that they could be useful in other
applications; see Theorems 4.1 and 5.1.

Our counting theorems improve upon analogous results that appear in four recent
papers, three [Yang 2009; Cho and Kim 2015; Shankar et al. 2015] in the area of
finding symmetry groups of families of L-functions (see [Sarnak et al. 2016] for a
general overview of the area) and one [Lemke Oliver and Thorne 2017] studying
the distribution of ramified primes in small-degree number fields. See Sections 4
and 5 for detailed comparisons to these previous works.
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2. Anatomy of the proof

2A. Reduction to counting bad fields. We now outline the strategy in more detail;
for the sake of motivation, we focus temporarily on proving upper bounds on
average. Let us fix d and define for any degree d field K over Q and any real
parameter Y � 1,

N.KIY /D #frational primes p � Y that split completely in Kg:

(Implicitly, in the case d D 4 we further restrict to non-D4-quartic fields.) Let us
fix a positive integer ` and a parameter ı1 < 1

2`.d�1/
, to be chosen precisely later.

Then by Theorem A, for any X � 1,X
X<DK�2X

jClK Œ`�j �
X

X<DK�2X

D
1=2C"
K

N.KID
ı1

K
/�1

�X 1=2C"
X

X<DK�2X

N.KIX ı1/�1:

Now given real parameters X � 1 and 1�M � Y , we define B0
d
.X IY;M / to be

the set

B0
d .X IY;M /D

˚
K=Q; deg.K/D d; X <DK � 2X W

at most M primes p � Y split completely in K
	
;

(with the usual further restriction in the case d D 4).
We denote by �.Y / the number of rational primes p � Y , and let us regard

1�M ��.X ı1/ as fixed for the moment, to be specified later. Then we may make
the decompositionX
X<DK�2X

jClK Œ`�j

�X 1=2C"

� X
X<DK�2X

K 62B0
d
.X IX ı1 ;M /

N.KIX ı1/�1
C

X
K2B0

d
.X IX ı1 ;M /

N.KIX ı1/�1

�
:

Since N.KIX ı1/�M if K 62B0
d
.X IX ı1 ;M /, we haveX

X<DK�2X

jClK Œ`�j �X 1=2C"

� X
X<DK�2X

K 62B0
d
.X IX ı1 ;M /

M�1
C

X
K2B0

d
.X IX ı1 ;M /

1

�
;

and we may conclude thatX
X<DK�2X

jClK Œ`�j �X 3=2C"M�1
C #B0

d .X IX
ı1 ;M /X 1=2C": (2-1)
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Then upon defining the set

Bd .X IY;M /D
˚
K=Q; deg.K/D d; 0<DK �X W

at most M primes p � Y split completely in K
	

(2-2)

(with the usual further restriction in the case d D 4), we may trivially replace the
expression #B0

d
.X IX ı1 ;M / in (2-1) by #Bd .2X IX ı1 ;M / and only increase the

right-hand side.
We now suppose that we can bound from above the cardinality of the “bad

set” Bd .2X IX ı1 ;M / for appropriate ı1 and M . Note that one expects via the
Chebotarev density theorem that a positive proportion of the primes up to X ı1 split
completely in K, so that a reasonable choice for M will be proportional to �.X ı1/.
Precisely, we suppose that there is a small fixed ı2 > 0 such that for every X � 1

and an appropriate choice of M with X ı1= log X �M �X ı1= log X we have

#Bd .2X IX ı1 ;M /�X 1�ı2C"; (2-3)

for all " > 0. Then upon summing over O.log X / ranges and applying (2-1) and
(2-3) within each range, we see that for any X � 1,X
0<DK�X

jClK Œ`�j �
X

0�j�dlog2 X e

X
2j�1<DK�2j

jClK Œ`�j

�

X
0�j�dlog2 X e

˚
.2j�1/3=2C".2.j�1/ı1/�1 log 2j

C #Bd .2
j
I 2.j�1/ı1 ;M /.2j�1/1=2C"

	
� log X

X
0�j�dlog2 X e

˚
.2j /3=2�ı1C"C .2j /3=2�ı2C2"

	
�X 3=2�ıC3"; (2-4)

where ı D minfı1; ı2g and " > 0 is arbitrarily small. Thus we see that an upper
bound of the form (2-3) is the key to obtaining an average result in the shape
of Corollaries 1.1.1 and 1.1.2; this upper bound plays a similarly crucial role in
obtaining the results of Theorem 1.1, as we show in Section 7.

Ultimately, we will prove the following version of (2-3), which controls the
number of possible bad fields:

Theorem 2.1. Let Bd .X IY;M / be defined as in (2-2). Set

ı0.d/D

8̂̂̂<̂
ˆ̂:

1
6

if d D 2;
2

25
if d D 3;

1
48

if d D 4;
1

200
if d D 5:

(2-5)
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For each d D 2; 3; 4; 5, there is a constant 0 < c0.d/ < 1 such that for every
0< ı � ı0.d/ and every X � 1,

#Bd

�
X I .X=2/ı; 1

2
c0.d/

.X=2/ı

log.X=2/ı

�
�X 1�ıC"

for every " > 0.

Remark. The methods of this paper also prove an analogous theorem if the condi-
tion “split completely” in the definition (2-2) is replaced by another fixed splitting
type.

2B. Counting bad fields via a sieve and counts for fields with local conditions.
We prove Theorem 2.1 via a sieve we develop for this purpose; to describe the
strategy, we first recall the simplest classical setting of a sieve. Let A be a finite
set of elements of cardinality N , and let P denote the set of all rational primes.
We assume a certain property of interest has been specified so that each element
a 2 A either satisfies it or not, with respect to p, for each p 2P. For each prime
p 2P we let Ap denote the finite subset of A that satisfies the fixed property with
respect to the prime p. Moreover we assume we know that for each p there exists
a real number 0� ıp < 1 and a real number Rp with jRpj �N such that

#Ap D ıpN CRp: (2-6)

In simplest terms, a classical aim of a sieve is to provide an upper bound for the
number of elements in the set A such that the designated property fails for all
primes p � z, for some fixed threshold z. Thus one could use a sieve to provide an
upper bound for

#
�
A n

S
p�z

Ap

�
:

For example, to sieve for prime numbers, the set A is a finite set of integers, and
the property is that pja. Slightly more generally, one could apply a classical sieve
such as the Turán sieve to count

#
�
A n

S
p2P0

Ap

�
(2-7)

for an arbitrary fixed finite set of primes P0.
In our application, the set A is the set of fields K=Q of degree d with DK 2 .0;X �

and the property is that p splits completely in K, so that Ap is the subset of fields
in which the prime p splits completely. In this setting, assuming we possess an
appropriate understanding of #Ap as in (2-6), then (2-7) would allow us to count
those degree d fields K with DK 2 .0;X � in which a fixed set of primes fail to
split completely. But in order to bound the bad set Bd .X IX

ı1 ;M / we require
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more flexibility: a field belongs to this set if all the primes in a sufficiently large set
fail to split completely in K, but the relevant large set of primes might be different
for two different bad fields K. Thus we develop in Section 3 a flexible new sieve
that allows us to count elements a 2A that fail to lie in Ap for many p, without
specifying which p fail for any given a.

The key input to any sieve is an understanding of Ap that provides the expres-
sion (2-6). In our case, this requires an understanding of Nd .X /, Nd .X Ip/, and
Nd .X Ipq/ for two distinct primes p; q; here Nd .X Ipq/ counts the number of
degree d fields K=Q in which both p and q split completely. In the case of quartic
fields, we let

zN4.X /; zN4.X Ip/ and zN4.X Ipq/

denote the analogous quantities, restricted to non-D4-quartic fields K=Q.
We now summarize the key results we will require for the sieve. For quadratic

fields, we record:

Lemma 2.2. There exists a constant c2 > 0, such that for e D e1 or e D e1e2 for
distinct primes e1; e2,

N2.X /D c2X CO.X 1=2/; (2-8)

N2.X I e/D ıec2X CO.eX 1=2/; (2-9)

where ıe is a multiplicative function defined for any prime e by

ıe D
1

2

1

.1Ce�1/
: (2-10)

For completeness, we record a simple proof of this classical result in the Ap-
pendix; the error terms given here can be improved (see for example the survey
[Pappalardi 2005]), but will suffice for our application.

In contrast, the results for cubic, quartic, and quintic fields are deep. For cubic
fields, we cite:

Theorem C [Taniguchi and Thorne 2013, Theorems 1.1, 1.3]. There exist constants
c3 > 0, c0

3
< 0 such that for e D e1 or e D e1e2 for distinct primes e1; e2,

N3.X /D c3X C c03X 5=6
CO.X 7=9C"/; (2-11)

N3.X I e/D ıec3X C ı0ec03X 5=6
CO.e8=9X 7=9C"/; (2-12)

where ıe and ı0e are multiplicative functions defined for any prime e by

ıe D
1

6

1

.1Ce�1Ce�2/
; ı0e D

1

6
CO.e�1=3/: (2-13)

For quartic fields, we have:
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Theorem 2.3. There exists a constant c4 > 0 such that for e D e1 or e D e1e2 for
distinct primes e1; e2,

zN4.X /D c4X CO.X 23=24C"/; (2-14)

zN4.X I e/D ıec4X CO.e1=2C"X 23=24C"/; (2-15)

where ıe is a multiplicative function defined for any prime e by

ıe D
1

24

1

.1Ce�1C2e�2Ce�3/
: (2-16)

We note (2-14) is due to [Belabas et al. 2010, Theorem 1.3]; we deduce (2-15)
in Section 4, using the methods of Belabas, Bhargava, and Pomerance [Belabas
et al. 2010], which build on the work of Bhargava [2005] that obtained the original
count of S4-quartic fields with an o.X / error term. See Theorem 4.1 for our most
general result of this type, of which Theorem 2.3 is a special case.

For quintic fields, we have:

Theorem 2.4. There exists a constant c5 > 0 such that for e D e1 or e D e1e2 for
distinct primes e1; e2,

N5.X /D c5X CO.X 199=200C"/; (2-17)

N5.X I e/D ıec5X CO.e1=2C"X 79=80C"
CX 199=200C"/; (2-18)

where ıe is a multiplicative function defined for any prime e by

ıe D
1

120

1

.1C e�1C 2e�2C 2e�3C e�4/
: (2-19)

We note (2-17) is due to Shankar and Tsimerman [2014]; we deduce (2-18) in
Section 5, using their methods, which build on the work of Bhargava [2010] that
obtained the original count of S5-quintic fields with an o.X / error term. (We also
fill in a missing step from [Shankar and Tsimerman 2014].) See Theorem 5.1 for
our most general result, of which Theorem 2.4 is a special case.

We remark that the techniques for counting number fields that produced these
results for Nd .X I e/ continue to be refined, and we may expect that the error
terms will continue to be reduced. Thus in our subsequent computations involving
Nd .X I e/ we have worked more generally with error terms of the form O.e�X � /,
so that it will be immediately clear how improvements in counting fields will lead
to refinements of our results. (In particular, improved error terms for smoothed
versions of the counting functions Nd .X I e/ would suffice for our application.)
We note that the mechanism we employ will apply equally well to higher degree
extensions of Q (or extensions of a fixed number field, using the more general
form of Theorem A available in [Ellenberg and Venkatesh 2007, Lemma 2.3]) if
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suitable results for Nd .X / and Nd .X I e/ (or their analogues for extensions of a
fixed number field) become available. In addition, one might consider other families
of fields for which precise asymptotics are known, such as abelian fields over Q with
a fixed Galois group, ordered either by discriminant [Wright 1989; Frei et al. 2015]
or by conductor [Wood 2010]. It would be an interesting question to see whether
the existing methods can be refined to produce an appropriate power-saving error
term with sufficiently explicit dependence on a finite number of local conditions.

3. The Chebyshev sieve

We now develop in a fully general setting a new sieve that allows us to give an
upper bound for the number of elements a belonging to a set A that satisfy a
desired property with respect to p for “few” p (without specifying for which p it is
satisfied). We will see that the principal idea is probabilistic, relating to Chebyshev’s
inequality, thus we dub it the Chebyshev sieve.

As before, let A be a finite set of cardinality N , let P denote the set of all
rational primes, and let Ap denote the finite subset of A that satisfies the fixed
property with respect to the prime p. For a fixed real parameter z � 1, we let

P .z/D
Y

p2P
p�z

p

and we define for each a 2 A the quantity

N.a/D #fp W pjP .z/; a 2 Apg:

Next, we set
M.z/D

1

N

X
a2A

N.a/D
1

N

X
pjP.z/

#Ap (3-1)

to be the mean number of sets Ap (with p � z) to which a typical element a 2 A

belongs. (In nonvacuous cases, M.z/ is nonzero.) We would expect that a typical
element a 2A has N.a/ being about size M.z/, and we want to bound from above
the number of a 2 A which have N.a/ being unusually small, that is, less than a
fixed small proportion of M.z/.

Given 1�M � z, we define E .A I z;M / to be the set of elements a 2 A such
that at most M primes pjP .z/ have a 2 Ap. (Or in other words, E .A I z;M / is
the set of elements a 2 A such that N.a/�M .) Then we set

E.A I z;M /D #E .A I z;M /:

Our sieve lemma will provide us with an upper bound for E.A I z; 1
2
M.z//; that is,

the number of elements in A that lie in Ap for fewer than half the mean number
of p.
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For the purposes of the lemma, we introduce the following notation. Given
distinct primes p; q we let Apq D Ap \Aq , and let Rp;q denote the quantity such
that

#Apq D ıpıqN CRp;q:

(For notational convenience, we will interpret Rp;p as Rp.) Finally, we set

U.z/D
X

pjP.z/

ıp:

We now state the key sieve lemma.

Lemma 3.1 (Chebyshev sieve). With the setting described above,

E.A I z; 1
2
M.z//

�
4N

M.z/2

�
U.z/C

1

N

X
p;qjP.z/

jRp;qjC
2U.z/

N

X
pjP.z/

jRpjC

�
1

N

X
pjP.z/

jRpj

�2�
:

3A. Proof of the sieve lemma. We note that the sieve inequality we prove is related
to the classical Turán sieve (see for example Theorem 4.1.1 of [Cojocaru and Murty
2006]), and can be seen as an application of Chebyshev’s inequality

P.jX ��j � ˛/� �2=˛2;

for X a random variable with mean � and variance �2, applied to the random
variable N.a/ when a is drawn uniformly from A .

We prove the lemma directly. We begin by noting that

1

N
E
�
A I z; 1

2
M.z/

��
1
2
M.z/

�2
�

1

N

X
a2E .A Iz; 1

2
M.z//

.N.a/�M.z//2

�
1

N

X
a2A

.N.a/�M.z//2:

It then suffices to prove the variance term on the right-hand side satisfies

1

N

X
a2A

.N.a/�M.z//2

�U.z/C
1

N

X
p;qjP.z/

jRp;qjC2U.z/

�
1

N

X
pjP.z/

jRpj

�
C

�
1

N

X
pjP.z/

jRpj

�2

: (3-2)

We first note from (3-1) that the mean satisfies

M.z/D
1

N

X
pjP.z/

#Ap D
1

N

X
pjP.z/

.ıpN CRp/D U.z/C
1

N

X
pjP.z/

Rp: (3-3)
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We now consider the left-hand side of (3-2), which we trivially expand as

1

N

X
a2A

N.a/2�
2

N

X
a2A

N.a/M.z/CM.z/2 D
1

N

X
a2A

N.a/2�M.z/2: (3-4)

The first term on the right-hand side of (3-4) is equal to

1

N

X
p;qjP.z/

#.Ap \Aq/D
1

N

� X
pjP.z/

ıpN C
X

p;qjP.z/
p¤q

ıpıqN C
X

p;qjP.z/

Rp;q

�

D

X
pjP.z/

ıpC

� X
pjP.z/

ıp

�2

�

X
pjP.z/

ı2
pC

1

N

X
p;qjP.z/

Rp;q

D

X
pjP.z/

ıp.1� ıp/CU.z/2C
1

N

X
p;qjP.z/

Rp;q:

On the other hand, we may expand M.z/2 via (3-3) and see that after cancellation
of the U.z/2 factor, the right-hand side of (3-4) is equal toX
pjP.z/

ıp.1� ıp/C
1

N

X
p;qjP.z/

Rp;q � 2U.z/

�
1

N

X
pjP.z/

Rp

�
�

�
1

N

X
pjP.z/

Rp

�2

:

As Rp may be either positive or negative, we take absolute values; then using the
fact that ıp � 1 we see the resulting inequality simplifies to (3-2), thus proving the
lemma.

4. Asymptotic count of non-D4-quartic fields

In this section we will prove the following, of which Theorem 2.3 is a special case.

Theorem 4.1. Let P be a finite set of primes. For each prime p 2 P we choose a
splitting type at p and assign a corresponding density as follows:

ıp WD
1

24
.1Cp�1

C 2p�2
Cp�3/�1 for p D }1}2}3}4;

ıp WD
1
4
.1Cp�1

C 2p�2
Cp�3/�1 for p D }1}2}3;

ıp WD
1
3
.1Cp�1

C 2p�2
Cp�3/�1 for p D }1}2 with }2 inertia degree 3;

ıp WD
1
8
.1Cp�1

C 2p�2
Cp�3/�1 for p D }1}2 with }i inertia degree 2;

ıp WD
1
4
.1Cp�1

C 2p�2
Cp�3/�1 for p D }1;

ıp WD
p�1C2p�2Cp�3

.1Cp�1C2p�2Cp�3/
for p ramified:

Let ıP WD
Q

p2P ıp and let e D
Q

p2P p. Let zN4.X IP / be the number of non-D4

quartic fields with absolute discriminant at most X such that for each p 2 P , the
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prime p splits in the quartic field in the splitting type chosen for p above. There
exists a constant c4 > 0 such that

zN4.X IP /D ıP c4X CO.e1=2C"X 23=24C"/; (4-1)

where the implied constant in the O term is absolute (does not depend on P ).
Moreover, we may choose more than one splitting type at each prime and let ıp be
the sum of the corresponding densities and the result still holds.

Bhargava [2005] first determined the asymptotic count of non-D4-quartic fields,
and Belabas, Bhargava, and Pomerance [Belabas et al. 2010] gave a power-saving
asymptotic for this count. We will follow the method of [Belabas et al. 2010],
additionally requiring our chosen splitting types. While the main term for such a
restricted count appears in [Bhargava 2005, Theorem 3] (at least for one prime,
and the same argument would work for more primes), we require a power-saving
error term with explicit dependence on the primes. In fact, such results have
appeared at least four times recently, but we will improve upon the exponents in
all of these results and remove various hypotheses that don’t hold in the situation
in which we need to apply the bound. Yang [2009, Proposition 3.1.7] proved
such a power-saving error of the form zN4.X IP /D ıP c4X CO.e2X 143=144C"/.
([Yang 2009, Proposition 3.1.7] only states this for one local condition, but [Cho
and Kim 2015, Section 7] remarked it can be extended to finitely many local
conditions.) Lemke Oliver and Thorne [2017, Theorem 2.1] proved a power-
saving error (in which we may only specify that p is ramified) of zN4.X IP / D

ıP c4X CO.e9=10X 239=240C"/. Shankar, Södergren, and Templier [Shankar et al.
2015] proved zN4.X IP /D ıP c4X CO.e12X 23=24C"/ when P contains a single
prime.

The exposition of the method in [Bhargava 2005; Belabas et al. 2010] is quite
clear, so we will focus here on the particular aspects of the computation we need.
Instead of directly counting quartic fields, the method, equivalently, counts maximal
quartic orders. The parametrization of quartic rings with their cubic resolvents
due to Bhargava [2004] (see also [Belabas et al. 2010, Theorem 4.1]) gives an
injection from the set of isomorphism classes of maximal quartic orders to the
set of GL2.Z/� SL3.Z/ classes of pairs of ternary quadratic forms with integral
coefficients. Pairs of integral ternary quadratic forms comprise a 12 dimensional
lattice VZ D Z12. Counting GL2.Z/� SL3.Z/ classes of lattice points in Z12 is
the same as counting lattice points in a fundamental domain for GL2.Z/�SL3.Z/

on R12. In this paper, we need to count only these lattice points in particular
translates of sublattices of Z12. We collect some basic facts about the lattice
translates corresponding to our desired fields, apply the geometry of numbers result
from [Belabas et al. 2010] to count the necessary lattice points, and then work to
minimize the resulting error terms.
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As in [Bhargava 2005, Section 2.2] and [Belabas et al. 2010, Section 4] we use a
certain random fundamental domain for the action of GL2.Z/�SL3.Z/ on R12. For
a positive integer m, let L be a translate vCmVZ (v 2 VZ) of the sublattice mVZ

of VZ. Let N 0.LIX / denote the expected number of lattice points in L, with first
coordinate nonzero and discriminant less than X , in a random fundamental domain.
(This notion of expected value for a random fundamental domain is defined as in
[Bhargava 2005, Equation (5)], with S the set of points of L with first coordinate
nonzero, but without the “abs. irr.” condition that appears in [Bhargava 2005,
Equation (5)]. See also [Belabas et al. 2010, p. 198].) Let NS4

.qIX / be the number
of classes in VZ corresponding to isomorphism classes of S4-quartic orders and
whose index in their maximal order is divisible by q and whose discriminant is less
than X . We have the following result that estimates these counts.

Theorem D [Belabas et al. 2010, Theorem 4.11]. Let L be a translate vCmVZ

(v 2 VZ). Let .a; b; c; d/ denote the smallest positive first four coordinates of any
element of L. Then

N 0.L;X /D
NS4

.1IX /

m12
CO

�X
S

X .jS jC˛SCˇSCSCıS /=12

mjS ja˛S bˇS cS dıS
C log X

�
;

where S ranges over the nonempty proper subsets of the set of 12 coordinates on
VZ, and ˛S ; ˇS ; S ; ıS 2 Œ0; 1� are real constants that depend only on S and satisfy
jS jC˛S CˇS C S C ıS � 11.

Let q be square-free and .q; e/D 1. First, we will assume that we have chosen
unramified splitting types at each prime in P . Now, we will start by counting the
expected number N 0.q; eIX / of lattice points in a random fundamental domain
that satisfy the following conditions: (1) their first coordinate is nonzero, (2) their
discriminant is less than X , (3) their corresponding quartic ring is not maximal
at each prime dividing q and is maximal and of chosen splitting type at primes
in P . We do this by summing Theorem D over the collection T of translates of
eq2VZ that give quartic rings that are not maximal at each prime dividing q, and
are maximal and with chosen local splitting at each p 2 P . (See [Bhargava 2004,
Section 4] for a description of which pairs of ternary quadratic forms correspond to
quartic rings that are maximal or split in a certain way at a prime.)

Given .a; b; c; d/ 2 Œ1; eq2�4, we need to bound the number of translates in T

that have .a; b; c; d/ as the smallest positive first four coordinates of any element.
By [Belabas et al. 2010, Corollary 4.8], there are O.6!.q/q14/ translates of q2VZ

that are congruent to .a; b; c; d/ modulo q2 and whose lattice points correspond
to quartic rings that are not maximal at each prime dividing q. Since VZ is 12
dimensional, there are e8 translates of eVZ congruent to .a; b; c; d/ modulo e. Thus
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by the Chinese Remainder Theorem, there are O.6!.q/q14e8/ translates in T that
have .a; b; c; d/ as the smallest positive first four coordinates of any element.

For q square-free, we define �.q/ to be the multiplicative function defined for a
prime p by

�.p/ WDp�2
C2p�3

C2p�4
�3p�5

�4p�6
�p�7

C3p�8
C3p�9

�p�10
�p�11:

This is the density of lattice points that correspond to quartic rings nonmaximal at
p [Belabas et al. 2010, Lemma 4.4]. Then #T D �.q/q24e12�P , where

�P WD

Y
p2P

ıp.1� �.p//;

and 0� ıp � 1 is the density of lattice points corresponding to quartic rings that
are split as we chose at p as a subset of those corresponding to quartic rings that
are maximal at p [Bhargava 2004, Lemma 23].

If q2 >X , then all the classes counted by N 0.q; eIX / have discriminant 0, and
by [Belabas et al. 2010, Lemma 4.10], in this case there are O.X 11=12C"/ such
classes.

So now we consider the case when q2 �X , in which case, using the shorthand

�S D jS jC˛S CˇS C S C ıS and "S D a˛S bˇS cS dıS ;

by Theorem D,

N 0.q; eIX /

D�.q/�P NS4
.1IX /CO

� X
.a;b;c;d/2Œ1;eq2�4

6!.q/q14e8

�X
S

X �
S
=12

.eq2/jS j"
S

Clog X

��
:

We haveX
.a;b;c;d/2Œ1;eq2�4

6!.q/q14e8

�X
S

X �
S
=12

.eq2/jS j"
S

C log X

�

D 6!.q/q14e8

�
e4q8 log X C

X
S

X �
S
=12

.eq2/jS j

X
.a;b;c;d/2Œ1;eq2�4

1

"
S

�

� 6!.q/q14e8

�
e4q8 log X C

X
S

X �
S
=12

.eq2/jS j

�
.eq2/4�˛S�ˇS�S�ıS log4.eq2/

��
D 6!.q/q22e12

�
log X C

X
S

.X 1=12e�1q�2/�S log4.eq2/

�
:
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Since 0� �
S
� 11, and recalling that q2 �X , the above is

DO
�
6!.q/q22e12

�
.X 1=12e�1q�2/11 log4.eq2/C log4.eq2/C log X

��
DO

�
e1C"X 11=12C"

C q22e12C"X "
�
:

Let NS4
.q; eIX / be the number of classes in VZ, or equivalently lattice points in

a fundamental domain, corresponding to isomorphism classes of S4-quartic orders,
whose index in their maximal order is divisible by q and whose discriminant is
less than X , and that are maximal and of chosen splitting type at p 2 P . Now, by
inclusion-exclusion, as in the proof of [Belabas et al. 2010, Theorem 4.13], we have
that the number of isomorphism classes of maximal S4-quartic orders splitting as
chosen for p 2 P and having (absolute) discriminant less than X is given byX0

q�1

�.q/NS4
.q; eIX /

where the sum is restricted to square-free q that are relatively prime to e.
Now we compare NS4

.q; eIX / and N 0.q; eIX /. Note that the difference is that
N 0.q; eIX / excludes those lattice points with first coordinate 0, and NS4

.q; eIX /

excludes those lattice points that do not correspond to orders in S4-quartic fields.
So by [Belabas et al. 2010, Lemmas 4.9 and 4.10], we have

jNS4
.q; eIX /�N 0.q; eIX /j DO.X 11=12C"/:

Thus by our previous computation for N 0.q; eIX /,

NS4
.q; eIX /D �.q/�P NS4

.1IX /CO
�
e1C"X 11=12C"

C q22e12C"X "
�
: (4-2)

So for a fixed Q (to be chosen in terms of X; e later), we sum over square-free q

with .q; e/D 1 as in (4-2), obtainingX0

q�1

�.q/NS4
.q; eIX /

D

X0

1�q�Q

�.q/NS4
.q; eIX /C

X0

q>Q

�.q/NS4
.q; eIX /

D

X0

1�q�Q

�.q/�.q/�P NS4
.1IX /CO.E1/CO.E2/

D

X0

q�1

�.q/�.q/�P NS4
.1IX /CO.E1/CO.E2/CO.E3/

D

Y
p

.1� �.p//
Y

p2P

ıpNS4
.1IX /CO.E1/CO.E2/CO.E3/;
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where
E1 D

X0

1�q�Q

�
e1C"X 11=12C"

C q22e12C"X "
�
;

E2 D

X0

q>Q

�.q/NS4
.q; eIX /;

E3 D

X0

q>Q

�.q/�P NS4
.1IX /:

(Note that we handle the terms slightly differently than in [Belabas et al. 2010], so
that E3 above does not correspond to their E3 term.)

We have E1 DO.e1C"QX 11=12C"CQ23e12C"X "/. By [Belabas et al. 2010,
Lemma 4.3], we have NS4

.q; eIX / D O.Xq�2C"/, and so E2 D O.XQ�1C"/:

We have E3 DO.Q�1C"X /, since by [Belabas et al. 2010, Lemma 4.2], we have
NS4

.1IX /DO.X /, and by definition �.q/DO.q�2C"/.
If e �X 1=12, then we take QDX 1=24e�1=2, and we haveX0

q�1

�.q/NS4
.q; eIX /D

Y
p

.1��.p//
Y

p2P

ıpNS4
.1IX /CO.e1=2C"X 23=24C"/:

By [Belabas et al. 2010, Lemma 4.2], we have thatY
p

.1� �.p//NS4
.1IX /D c4X CO.X 23=24C"/;

for some positive constant c4. Thus we conclude that the number of isomorphism
classes of maximal S4-quartic orders with our chosen splitting types at p 2 P and
having (absolute) discriminant less than X is

ıP c4X CO.e1=2C"X 23=24C"/:

If e >X 1=12, then the number of isomorphism classes of maximal S4-quartic
orders with chosen splitting types for p 2 P and having (absolute) discriminant
less than X is O.X / by [Belabas et al. 2010, Lemma 4.2], which we may then also
write as

ıP c4X CO.e1=2C"X 23=24C"/:

There are at most O.X 7=8C"/ quartic extensions with DK < X with Galois
closure having Galois group C4;K4 or A4 [Baily 1980; Wong 1999a]. So we can
conclude Theorem 4.1 holds for unramified splitting types. This argument shows we
can also choose more than one splitting type at each p, and sum the corresponding
densities.

Now, given P and choices for local splitting types some of which may be
ramified, let P1 be the subset of P for which we choose only unramified splitting
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types. We can find zN4.X IP1/ using the result already proven. For any subset
P2 � P nP1, write zN4.X IP1[P2/ for the number of non-D4 quartic fields with
absolute discriminant at most X such that for each p 2 P1 the prime p splits in
one of our chosen spitting type, and for each p 2 P2 the prime p does not split in
one of our chosen splitting types. We can also apply the result already proven to
find zN4.X IP1[P2/. Then using inclusion exclusion, we have

zN4.X IP /D
X

P2�PnP1

.�1/jP2j zN4.X IP1[P2/

D ıP c4X C
X

P2�PnP1

.�1/jP2jO.e1=2C"X 23=24C"/:

Since each set P2 corresponds to a distinct divisor of e there are O.e"/ terms in
the sum and Theorem 4.1 follows.

Remark. On the other hand, the number of D4-quartic fields with DK < X is
� cX with c � 0:052326, as initially indicated (as an order of magnitude) by Baily
[1980] and refined with an explicit constant by Cohen, Diaz y Diaz and Olivier
[Cohen et al. 2002]. It is an interesting open problem to count D4 fields with local
conditions such as certain primes being split completely, and for now we exclude
them from our consideration.

5. Asymptotic count of quintic fields

In this section we will prove the following, of which Theorem 2.4 is a special case.

Theorem 5.1. Let P be a finite set of primes. For each prime p 2 P we choose
a splitting type at p and assign a corresponding density as follows (i.d. = inertia
degree):

ıp WD
1

120
.1Cp�1

C2p�2
C2p�3

Cp�4/�1 for p D }1}2}3}4}5;

ıp WD
1

12
.1Cp�1

C2p�2
C2p�3

Cp�4/�1 for p D }1}2}3}4;

ıp WD
1
8
.1Cp�1

C2p�2
C2p�3

Cp�4/�1 for p D }1}2}3 with }2; }3 i.d. 2;

ıp WD
1
6
.1Cp�1

C2p�2
C2p�3

Cp�4/�1 for p D }1}2}3 with }3 i.d. 3;

ıp WD
1
6
.1Cp�1

C2p�2
C2p�3

Cp�4/�1 for p D }1}2 with }2 i.d. 3;

ıp WD
1
4
.1Cp�1

C2p�2
C2p�3

Cp�4/�1 for p D }1}2 with }2 i.d. 4;

ıp WD
1
5
.1Cp�1

C2p�2
C2p�3

Cp�4/�1 for p D }1;

ıp WD
p�1C2p�2C2p�3Cp�4

.1Cp�1C2p�2C2p�3Cp�4/
for p ramified:

Let ıP WD
Q

p2P ıp and let e D
Q

p2P p. Let N5.X IP / be the number of quintic
fields with absolute discriminant at most X such that for each p 2 P , the prime
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p splits in the quartic field in the splitting type chosen for p above. There exists a
constant c5 > 0 such that

N5.X IP /D ıP c5X CO.e1=2C"X 79=80C"
CX 199=200C"/; (5-1)

where the implied constant in the O term is absolute (does not depend on P ).
Moreover, we may choose more than one splitting type at each prime and let ıp be
the sum of the corresponding densities and the result still holds.

Bhargava [2010] gave the first asymptotic count of quintic number fields, and
Shankar and Tsimerman [2014], building on Bhargava’s work, gave the first
power-saving error term. Both proofs fundamentally rely on Bhargava’s [2008]
parametrization of quintic rings. We will follow the outline of the argument of
[Shankar and Tsimerman 2014], additionally requiring our chosen splitting condi-
tions. While the main term for such a restricted count appears in [Bhargava 2010,
Theorem 3] (at least for one prime, and the same argument would work for more
primes), we require a power-saving error term with explicit dependence on the
primes. While such bounds have appeared in at least three recent papers, we will
improve on the exponents in all of them, as well as remove hypotheses that do
not hold in our cases of interest. Lemke Oliver and Thorne [2017, Theorem 2.1]
have shown, assuming that we choose ramification at each prime p 2 P , that
N5.X IP / D ıP c5X CO.eX 199=200C"/. Cho and Kim [2015, Section 6] have
recently proven a bound of the sort we desire; it seems they show N5.X IP / D

ıP c5X CO.e2�"X 399=400C"/. Also, Shankar, Södergren, and Templier [Shankar
et al. 2015] stated the bound N5.X IP /DıP c5XCO.e40X 79=80C"CX 199=200C"/

when P contains a single prime.
Instead of directly counting quintic fields, the method, equivalently, counts

maximal quintic orders. Analogously to the quartic case, we use a parametrization
of quintic rings with their sextic resolvents due to Bhargava [2008]. Let VZ D Z40

denote the space of quadruples of 5 � 5 skew-symmetric matrices with integer
coefficients. Then quintic rings with their sextic resolvents are parametrized by
GL4.Z/� SL5.Z/ orbits on VZ [Bhargava 2008, Theorem 1]. These orbits corre-
spond to lattice points in a fundamental domain for GL4.Z/� SL5.Z/ on R40. As
in [Bhargava 2010, Section 2.2; Shankar and Tsimerman 2014, Section 2.2], we
take a certain random fundamental domain for the action of GL4.Z/� SL5.Z/ on
R40. For a subset S � VZ, let Ndom.S IX / denote the expected number of elements
of S with absolute discriminant less than X and whose associated quintic ring is an
integral domain (i.e., is an order in a quintic field), in a random fundamental domain
(as in [Shankar and Tsimerman 2014, Equation (1)], summed over the implicit i

there). Let N �.S IX / denote the expected number of elements of S with absolute
discriminant less than X , in a random fundamental domain (as in the equation
after (1) in [Shankar and Tsimerman 2014], summed over the implicit i there).
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We first consider the case in which only unramified splitting types are chosen.
Let a12 denote the .1; 2/ coordinate of the first matrix in a quadruple of 5 � 5

skew-symmetric matrices. For a square-free integer q relatively prime to e, let
Wq;e � VZ denote the set of elements corresponding to quintic rings that are not
maximal at each prime dividing q and are maximal and of chosen splitting type at
primes dividing e. Recall from [Bhargava 2008, Section 12] that Wq;e is defined
by congruence conditions modulo q2e (for maximality, an argument analogous
to that in [Bhargava 2004, Lemma 22] is necessary). Let Ue � VZ denote the set
of elements corresponding to quintic rings that are maximal at all primes and of
chosen splitting type at the primes dividing e. Then counting Ndom.UeIX / will
provide us with precisely the count N5.X I e/ we require. We will count lattice
points in Ue by using inclusion-exclusion to reduce to counting lattice points in
the Wq;e.

By [Bhargava 2010, Equation (27)] (see also [Shankar and Tsimerman 2014,
Equation (4)]), if L is a translate of the lattice mVZ and mDO.X 1=40/, then

N �.L\fa12 ¤ 0gIX /D c0m�40X CO.m�39X 39=40/; (5-2)

for some positive absolute constant c0.
Bhargava gives the density of lattice points corresponding to rings maximal at a

given prime [2008, Equation (48)] and the density of lattice points corresponding to
rings maximal and of each splitting type [2008, Lemma 20]. Using these two com-
puted densities, we conclude that of the .q2e/40 quadruples of 5�5 skew-symmetric
matrices mod q2e, we have that Wq;e corresponds to �.q/q80ıP e40

Q
p2P .1��.p//

of them, where

�.p/D

1�
.p�1/8p12.pC1/4.p2C1/2.p2CpC1/2.p4Cp3Cp2CpC1/.p4Cp3C2p2C2pC1/

p40
;

and we extend this to a multiplicative function �.q/ for square-free q. (Here,
�.p/ is the density of lattice points correspond to rings that are nonmaximal at p

from [Bhargava 2008, Equation (48)].) Note that �.p/D p�2CO.p�3/ and thus
�.q/DO.q�2C"/.

We have that ıP � 1 and 1��.p/� 1. So, when q2eDO.X 1=40/, by summing
Equation (5-2) over all the translates of q2eVZ that comprise Wq;e, we find that

N �.Wq;e \fa12 ¤ 0gIX /

D �.q/q80ıP e40
Y

p2P

.1� �.P //c0q�80e�40X

CO.�.q/q80ıP e40
Y

p2P

.1� �.p//q�78e�39X 39=40/
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D �.q/ıP
Y

p2P

.1� �.p//c0X CO.�.q/q2ıP e
Y

p2P

.1� �.p//X 39=40/

D �.q/ıP
Y

p2P

.1� �.p//c0X CO.q"eX 39=40/; (5-3)

where in the last identity we have used the fact that �.q/DO.q�2C"/.
We then, by inclusion-exclusion as in [Shankar and Tsimerman 2014, Section 4],

have for an appropriate Q (to be chosen later in terms of X ),

Ndom.Ue \fa12 ¤ 0gIX /

D

X0

q�1

�.q/Ndom.Wq;e \fa12 ¤ 0gIX /

D

X0

1�q�Q

�.q/Ndom.Wq;e\fa12¤ 0gIX / C
X0

q>Q

�.q/Ndom.Wq;e\fa12¤ 0gIX /

D

X0

1�q�Q

�.q/N �.Wq;e \fa12 ¤ 0gIX /

C

X0

1�q�Q

�.q/
�
Ndom.Wq;e \fa12 ¤ 0gIX /�N �.Wq;e \fa12 ¤ 0gIX /

�
C

X0

q>Q

�.q/Ndom.Wq;e \fa12 ¤ 0gIX /;

where the sums are over square-free q relatively prime to e.
By [Shankar and Tsimerman 2014, Lemma 3], we have Ndom.Wq;eIX / D

O.q�2C"X / and we use this for the sum for q >Q. We will use Equation (5-3)
for the first 1� q �Q sum. For the second 1� q �Q sum, note that each lattice
point corresponding to a nondomain of discriminant D is counted with coefficient

�

X
1�q�Q

qjD

�.q/;

which is O.D"/DO.X "/, and by [Shankar and Tsimerman 2014, Equation (8)]
there are at most O.X 199=200C"/ lattice points corresponding to nondomains. (This
step, or something similar, should be added to the proof in [Shankar and Tsimerman
2014].)

As a result, as long as QDO.X 1=80e�1=2/,

Ndom.Ue \fa12 ¤ 0gIX /

D

X0

q�1

�.q/�.q/ıP
Y

p2P

.1� �.p//c0X CO.E1/CO.E2/CO.E3/;
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where

E1 D

X
1�q�Q

O.q"eX 39=40/; E2 DO.X 199=200C"/;

E3 D

X
q>Q

q�2C"X; E4 D

X
q>Q

�.q/�.q/ıP
Y

p2P

.1� �.p//c0X:

These terms trivially admit the estimates

E1 DO.Q1C"eX 39=40/; E2 DO.X 199=200C"/;

E3 DO.Q�1C"X /; E4 DO.Q�1C"X /;

where in the last estimate we have used the fact that �.q/DO.q�2C"/.
We take QDX 1=80e�1=2, and have

Ndom.Ue \fa12 ¤ 0gIX /

D

X0

q�1

�.q/�.q/ıP
Y

p2P

.1� �.p//c0X CO.e1=2X 79=80C"
CX 199=200C"/

D

Y
p

.1� �.p//ıP c0X CO.e1=2X 79=80C"
CX 199=200C"/:

From [Bhargava 2010, Lemma 11], we have that Ndom.fa12D0gIX /DO.X 39=40/,
and so

Ndom
�
Ue \fa12 D 0gIX

�
DO.X 39=40/:

It follows that

N5.X IP /DNdom.UeIX /

D

Y
p

.1� �.p//ıP c0X CO
�
e1=2X 79=80C"

CX 199=200C"
�
:

We thus conclude Theorem 5.1 holds with, c5 D
Q

p.1� �.p//c0 when we only
choose unramified splitting types. As at the end of Theorem 4.1, we can apply the
result we have just proven and inclusion-exclusion to prove Theorem 5.1 in general.

6. Application of the sieve

6A. Summary of the asymptotic inputs to the sieve. We now turn to the appli-
cation of the sieve lemma to degree d field extensions of Q. Note that when
applying the sieve, it is crucial to have error terms with explicit dependence on
local conditions (such as we have derived in Theorems 2.3 and 2.4): without such
an explicit dependence, we would not have quantitative control of the right-hand
side of the key sieve inequality in Lemma 3.1, since we would not have an explicit
bound for Rp in terms of p.
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Let A and Ap (for each rational prime p) be the sets such that #A D Nd .X /

and #Ap D Nd .X Ip/ (or zN4.X /, zN4.X Ip/ in the case of d D 4). With these
definitions, the quantity E

�
A I z; 1

2
M.z/

�
treated in the sieve (Lemma 3.1), which

we will now denote by Ed

�
A I z; 1

2
M.z/

�
, is the number of degree d extensions

K of Q with 0<DK �X (up to isomorphism, and non-D4 when d D 4) such that
there are at most 1

2
M.z/ primes p � z that split completely in K.

We recall the collection Bd .X IY;M / of bad fields, as defined in (2-2). We will
think of Y D z D .X=2/ı0 for ı0 > 0 to be chosen precisely later, and define M.z/

as in (3-1). In particular, the set of bad fields satisfies

#Bd

�
X I .X=2/ı0 ; 1

2
M..X=2/ı0/

�
DEd

�
A I .X=2/ı0 ; 1

2
M..X=2/ı0/

�
:

We will need to apply the sieve separately to fields of each degree, since in
several cases the count for Nd .X Ip/ takes a somewhat different form, but in an
effort to unify the presentation, we restate the asymptotics we will assume in more
general form. We write the results of Lemma 2.2, Theorem C, Theorems 2.3 and 2.4
as follows.

Quadratic fields: for ıe as in (2-10), there is some �2 > 0 and 0 < �2 � 1=2

such that

N2.X /D c2X CO.X �2C"/; N2.X I e/D ıec2X CO.e�2X �2C"/:

Cubic fields: for ıe; ı0e as in (2-13), there is some �3 > 0 and 0< �3 < 5=6 such
that

N3.X /D c3X C c03X 5=6
CO.X �3C"/;

N3.X I e/D ıec3X C ı0ec03X 5=6
CO.e�3X �3C"/:

Non-D4-quartic fields: for ıe as in (2-16), there is some �4 > 0 and 0< �4 < 1

such that

zN4.X /D c4X CO.X �4C"/; zN4.X I e/D ıec4X CO.e�4X �4C"/:

Quintic fields: for ıe as in (2-19), there is some �5 > 0 and 0< �5 < 1 as well
as some 0<  < 1 such that

N5.X /D c5X CO.X C"/; N5.X I e/D ıec5X CO.e�5X �5/CO.X C"/:

The main result of the sieve in this context is the following:

Proposition 6.1. With the notation as above, we have

Ed

�
A I .X=2/ı0 ; 1

2
M..X=2/ı0/

�
�X 1�ı0C";
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for any ı0 such that

ı0 �

8̂̂̂<̂
ˆ̂:

1��d

1C2�d

if d D 2; 4;

min
n

1��d

1C2�d

;
1

4

o
if d D 3;

min
n

1��d

1C2�d

; 1� 
o

if d D 5:

(6-1)

Moreover, for any such ı0 there exist positive real constants c0.d/ < c1.d/ < 1 and
Xd DXd .ı0/� 1 such that for all X �Xd ,

c0.d/
.X=2/ı0

log.X=2/ı0
�M..X=2/ı0/� c1.d/

.X=2/ı0

log.X=2/ı0
: (6-2)

The requirement that X �Xd simply is a quantification of the requirement that
X be sufficiently large, and will be incorporated later simply by enlarging certain
implicit constants.

Proposition 6.1 immediately provides the upper bound we require for the bad set
Bd .X IY;M / defined in (2-2), with an appropriate choice of the parameters Y;M.
As there are �.Y / D Y .log Y /�1CO.Y .log Y /�2/ primes p � Y , we could of
course only expect at most Y .log Y /�1 primes p � Y to split completely in any
given field. Proposition 6.1 shows that, up to a constant factor, this is a reasonable
expectation, in that the mean M..X=2/ı0/ is approximately ��..X=2/ı0/, for
some � 2 Œc0.d/; c1.d/�; moreover Proposition 6.1 provides an upper bound for the
number of fields with DK �X in which at most 1

2
M..X=2/ı0/ primes p� .X=2/ı0

split completely.
We will prove Proposition 6.1 case by case.

6B. Sieve for quadratic fields. For notational convenience, in this section we write
�; � for �2; �2. We compute that for any prime p,

Rp D #Ap � ıp#A DN2.X Ip/� ıpN2.X /DO.p�X �C"/:

Similarly, for distinct primes p; q

Rpq D #Apq � ıpıq#A DN2.X Ipq/� ıpıqN2.X /DO.p�q�X �C"/:

Thus since #A �X ,

1

#A

X
pjP.z/

jRpj � z1C�X ��1C";
1

#A

X
p;qjP.z/

jRpqj � z2C2�X ��1C":

We compute

U.z/D
X

pjP.z/

ıp D
1

2

X
pjP.z/

1

1Cp�1
;
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from which we deduce that

1
3
z.log z/�1

CO.z.log z/�2/� U.z/� 1
2
z.log z/�1

CO.z.log z/�2/: (6-3)

Indeed, letting "p D .1Cp�1/�1, the upper bound follows directly from the prime
number theorem and the fact that 0< "p < 1, while the lower bound only requires
noticing

U.z/�
1

2

X
pjP.z/

"2 D
1

3

X
pjP.z/

1D 1
3
z.log z/�1

CO.z.log z/�2/:

We may compute the mean as in (3-3):

M.z/D U.z/C
1

#A

X
pjP.z/

Rp D U.z/CO.z1C�X ��1C"/:

Recalling (6-3) and that z D .X=2/ı0 for a parameter ı0 to be chosen later, we see
the last error term will be < 1

2
U.z/ for sufficiently large X as long as

ı0 <
1��

�
: (6-4)

Assuming this, for sufficiently large X we have

c0z.log z/�1
�

1
2
U.z/�M.z/� 3

2
U.z/� c1z.log z/�1

for absolute constants 0< c0 < c1 � 1. We apply Lemma 3.1 to see that

E2

�
A I z; 1

2
M.z/

�
�

X 1C"

z2

�
zCz2C2�X ��1

Cz.z1C�X ��1/C.z1C�X ��1/2
�

�X ".Xz�1
Cz2�X � /;

still assuming (6-4). Balancing the terms in the last expression above would set

ı0 D .1� �/=.1C 2�/; (6-5)

which certainly satisfies (6-4); as a consequence, for any ı0 � .1� �/=.1C 2�/,
we obtain

E2

�
A I .X=2/ı0 ; 1

2
M..X=2/ı0/

�
�X 1�ı0C";

which proves Proposition 6.1 in the case of quadratic fields.

6C. Sieve for cubic fields. For notational convenience, in this section we write
�; � for �3; �3. We compute that

RpD#Ap�ıp#A Dc03.ı
0
p�ıp/X

5=6
CO.p�X �C"/DO.p�1=3X 5=6

Cp�X �C"/:
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For distinct primes p; q,

Rpq D c03.ı
0
pı
0
q � ıpıq/X

5=6
CO.p�q�X �C"/

DO.p�1=3X 5=6
C q�1=3X 5=6

Cp�q�X �C"/:

Since #A �X , we may compute that

1

#A

X
pjP.z/

jRpj � z2=3X�1=6
C z1C�X ��1C";

1

#A

X
p;qjP.z/

jRp;qj � z5=3X�1=6
C z2C2�X ��1C":

Next, we note that

U.z/D
X

pjP.z/

ıp D
1

6

X
pjP.z/

1

1Cp�1Cp�2
D

1

6

X
pjP.z/

ep;

say. From this we can deduce (as in the case of quadratic fields) that

2
21

z.log z/�1
CO.z.log z/�2/� U.z/� 1

6
z.log z/�1

CO.z.log z/�2/: (6-6)

Finally, we compute the mean

M.z/D U.z/C
1

#A

X
pjP.z/

Rp D U.z/CO
�
z2=3X�1=6

C z1C�X ��1C"
�
:

Recalling (6-6) and that z D .X=2/ı0 for a parameter ı0 to be chosen later, we see
the last error term will be < 1

2
U.z/ for sufficiently large X as long as the analogue

of (6-4) holds, in which case

c0z.log z/�1
�

1
2
U.z/�M.z/� 3

2
U.z/� c1z.log z/�1:

for absolute constants 0< c0 < c1 � 1.
We now apply Lemma 3.1, which shows that

E3

�
A I z; 1

2
M.z/

�
�

X 1C"

z2

�
zC

�
z5=3X�1=6

C z2C2�X ��1
�

Cz
�
z2=3X�1=6

C z1C�X ��1
�
C
�
z2=3X�1=6

C z1C�X ��1
�2�

:

As long as ı0 � 1=4, we have z5=3X�1=6� z; after further simplification and still
assuming the analogue of (6-4), we see that

E3

�
A I z; 1

2
M.z/

�
�X ".Xz�1

C z2�X � /:



On `-torsion in class groups of number fields 1767

This is optimized by choosing ı0 as in (6-5) as before, which satisfies (6-4). In
particular, for any ı0 �minf1=4; .1� �/=.1C 2�/g, we obtain

E3

�
A I .X=2/ı0 ; 1

2
M..X=2/ı0/

�
�X 1�ı0C";

which proves Proposition 6.1 in the case of cubic fields.

6D. Sieve for non-D4-quartic fields. The case of non-D4-quartic fields is very
similar to that for real quadratic fields, thus we only mention the highlights, with
�; � denoting �4; �4. We have

Rp D #Ap � ıp#A DO.p�X �C"/;

Rpq D #Apq � ıpıq#A DO.p�q�X �C"/;

U.z/D
X

pjP.z/

ıp D
1

24

X
pjP.z/

1

1Cp�1C2p�2Cp�3
:

We deduce that

1

3�17
z.log z/�1

CO.z.log z/�2/�U.z/�
1

24
z.log z/�1

CO.z.log z/�2/: (6-7)

Next we compute the mean

M.z/D U.z/C
1

#A

X
pjP.z/

Rp D U.z/CO.z1C�X ��1C"/:

Recalling (6-7) and that zD .X=2/ı0 , we see that as long as the analogous condition
to (6-4) holds and X is sufficiently large,

c0z.log z/�1
�

1
2
U.z/�M.z/� 3

2
U.z/� c1z.log z/�1

for absolute constants 0< c0 < c1 � 1.
We apply Lemma 3.1 to see that under the assumption (6-4)

E4

�
A I z; 1

2
M.z/

�
�

X 1C"

z2

�
zCz2C2�X ��1

Cz.z1C�X ��1/C.z1C�X ��1/2
�

�X ".Xz�1
Cz2�X � /;

so that

E4

�
A I .X=2/ı0 ; 1

2
M..X=2/ı0/

�
�X 1�ı0C"

for any ı0 � .1� �/=.1C 2�/.
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6E. Sieve for quintic fields. Finally, we apply the sieve to quintic fields, denoting
�5; �5 by �; � . We compute that for any p DO.X �/,

Rp D #Ap � ıp#A DO.X ".p�X �
CX  //:

For distinct primes p; q,

Rpq D #Apq � ıpıq#A DO.X ".p�q�X �
CX  //:

We compute

U.z/D
X

pjP.z/

ıp D
1

120

X
pjP.z/

1

1Cp�1C2p�2C2p�3Cp�4
;

from which we deduce that
2

15�37
z.log z/�1

CO.z.log z/�2/� U.z/�
1

120
z.log z/�1

CO.z.log z/�2/:

The mean may be expressed as

M.z/D U.z/C
1

#A

X
pjP.z/

Rp D U.z/CO
�
X ".z1C�X ��1

C zX �1C"/
�
:

The last term will be < 1
2
U.z/ for sufficiently large X as long as  < 1 and the

analogous condition to (6-4) holds. Assuming this, we have

c0z.log z/�1
�

1
2
U.z/�M.z/� 3

2
U.z/� c1z.log z/�1

for absolute constants 0< c0 < c1 � 1.
We apply Lemma 3.1 to see that under the assumptions �;  < 1 and (6-4),

E5

�
A I z; 1

2
M.z/

�
�

X 1C"

z2

�
zCz2X�1.z2�X �

CX  /CzX�1.z�X �
CX  /

Cz2X�2.z�X �
CX  /2

�
:

After simplification, this shows

E5

�
A I z; 1

2
M.z/

�
�

X 1C"

z2
.zC z2X �1

C z2C2�X ��1/

�X ".Xz�1
CX 

C z2�X � /:

Assuming z D .X=2/ı0 , we may conclude that for any

ı0 �min
˚
.1� �/=.1C 2�/; 1� 

	
;

we have
E5

�
A I .X=2/ı0 ; 1

2
M..X=2/ı0/

�
�X 1�ı0C":

This completes the proof of Proposition 6.1.
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7. Proof of the main theorem and corollaries

7A. Proof of Theorem 2.1. We now derive Theorem 2.1 from Proposition 6.1. By
definition, if M1 �M2 then Bd .X IY;M1/�Bd .X IY;M2/. If X is sufficiently
large that (6-2) holds, say X �Xd .ı/, we may apply (6-2) to write

#Bd

�
X I .X=2/ı;

1

2
c0.d/

.X=2/ı

log.X=2/ı

�
� #Bd

�
X I .X=2/ı; 1

2
M..X=2/ı/

�
DEd

�
A I .X=2/ı; 1

2
M..X=2/ı/

�
:

We then apply Proposition 6.1 and deduce that for X �Xd .ı/,

#Bd

�
X I .X=2/ı;

1

2
c0.d/

.X=2/ı

log.X=2/ı

�
�X 1�ıC"

for every " > 0, and for ı constrained by (6-1). When we make the constraints
in (6-1) precise by applying the results of Lemma 2.2, Theorem C, Theorems 2.3
and 2.4, we obtain the parameters defined in (2-5). For any ı satisfying (2-5), we
may remove the explicit assumption that X �Xd .ı/ by including an appropriate
implicit constant, so that

#Bd

�
X I .X=2/ı;

1

2
c0.d/

.X=2/ı

log.X=2/ı

�
�d;ı;" X 1�ıC" (7-1)

for every X � 1 and every " > 0.

7B. Proof of Theorem 1.1. To derive Theorem 1.1 from Theorem 2.1, we proceed
via a standard dyadic argument, which we now make precise. Let " > 0 be fixed
and for this ", let the implied constant in Theorem A be denoted by C0 D C0.d; "/,
so that (1-8) becomes

jClK Œ`�j � C0D
1
2
C"

K
M�1: (7-2)

Fix any ı < 1
2`.d�1/

. Then if K is a degree d extension of Q with DK 2 .X; 2X �

that is not in the bad set B0
d

�
X IX ı; 1

2
c0.d/X

ı= log X ı
�
, we see from (7-2) that

jClK Œ`�j � C0

�
1
2
c0.d/

��1
D

1
2
C"

K
X�ı log.X ı/� C 00D

1
2
�ıC"

K
log.Dı

K /;

where it suffices to take C 0
0
D C021Cı

�
1
2
c0.d/

��1. Now we assume that X is
sufficiently large, say X � C.d; `; "/, so that for all ı < 1

2`.d�1/
, and for all

DK 2 .X; 2X �, we have log.Dı
K
/�D"

K
. Under this assumption we have

jClK Œ`�j � C 00D
1
2
�ıC2"

K
(7-3)

for all these fields not in B0
d

�
X IX ı; 1

2
c0.d/X

ı= log X ı
�
.
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Let F0
d;`
.X I ı; "/ denote the collection of fields K=Q of degree d with X <

DK � 2X that fail the bound (7-3); we may conclude that for any ı < 1
2`.d�1/

and
for all X � C.d; `; "/,

F0
d;`.X I ı; "/�B0

d

�
X;X ı; 1

2
c0.d/X

ı= log X ı
�
: (7-4)

Now let Fd;`.X I ı; "/ denote the collection of fields K=Q of degree d with 0 <

DK �X that fail the bound (7-3); then

Fd;`.X I ı; "/�
[

0�j�dlog2 X e

F0
d .2

j
I ı; "/:

Set j0 to be the smallest j such that 2j0 �C.d; `; "/. Then for j � j0, we apply
the trivial bound, #F0

d;`
.2j ; ı; "/� 2j . (This bound is only “trivial” in the sense

that we know by (1-11) how to count fields of degree d with 0 < DK � X , for
d � 5.) For j > j0 we apply (7-4) to write[

j0<j�dlog2 X e

F0
d;`.2

j
I ı; "/�

[
j0<j�dlog2 X e

B0
d

�
2j ; 2jı; 1

2
c0.d/2

jı= log 2jı
�
:

Trivially enlarging each of the last sets to the nondyadic version

Bd

�
2jC1; 2jı; 1

2
c0.d/2

jı= log 2jı
�

and applying the result of Theorem 2.1 to each such set, we obtain

#Fd;`.X I ı; "/�C.d; `; "/C
X

j0<j�dlog2 X e

2j.1�ıC"0/
�c;d;`;";"0 X

1�ıC"0; (7-5)

which now holds (with a sufficiently large implicit constant) for all X � 1, for all
"0 > 0 arbitrarily small, and for all ı <min

˚
1

2`.d�1/
; ı0.d/

	
where ı0.d/ is defined

as in (2-5) in Theorem 2.1. For sufficiently large `, the first constraint on ı is a
stronger constraint than the second.

To be precise, we now break down into cases depending on d . For d D 2,
Theorem 1.1 is implied in the case `D 2 by Gauss genus theory, and in the case
`D 3 by the known asymptotic (1-5). For integers `� 4, Theorem 1.1 follows from
(7-5), since 1

2`
Dmin

˚
1
6
; 1

2`

	
for `� 4. (Of course, for primes `� 5 and imaginary

quadratic fields, Theorem 1.1 is implied by the stronger result (1-10), or indeed by
an earlier result of Soundararajan [2000] that at most one imaginary quadratic field
K with DK 2 ŒX; 2X � can have jClK Œ`�j � D

1
2
� 1

2`
C"

K
; see also Corollary 2.2 of

[Heath-Brown and Pierce 2014].) For d D 3, Theorem 1.1 is implied for `D 2 by
the known asymptotic (1-6), and for `D 3 by the stronger known result (1-3). The
cases ` � 4 are implied by (7-5), since 1

4`
D min

˚
2

25
; 1

4`

	
for ` � 4. For d D 4,

Theorem 1.1 follows from (7-5) since 1
6`
Dmin

˚
1

48
; 1

6`

	
for `� 8; the remaining

cases of ` � 7 follow from the choice ı0 D 1
48

. Finally, for d D 5, Theorem 1.1
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similarly follows from (7-5) since 1
8`
D min

˚
1

200
; 1

8`

	
for ` � 25; the remaining

cases of `� 24 follow from the choice ı0D 1
200

.
Corollaries 1.1.1 and 1.1.2 now follow from Theorem 1.1, or can be derived

directly from Theorem 2.1, as already demonstrated in Section 2A.

Appendix: Counting quadratic fields

In this appendix we prove the following result, from which Lemma 2.2 may be
deduced immediately.

Proposition A.1. Let P be a finite set of primes. For each prime p 2 P we choose
a splitting type at p and assign a corresponding density as follows:

ıp WD

8̂<̂
:

1
2
.1Cp�1/�1 for p D p1p2;

1
2
.1Cp�1/�1 for p D p1;

.pC 1/�1 for p ramified.

Let e D
Q

p2P p and ıe D
Q

p2P ıp. Let N˙
2
.X IP / denote the number of real

(respectively imaginary) quadratic extensions of Q with fundamental discriminant
jDK j �X such that for each p 2 P , the prime p splits in the quadratic field with
splitting type chosen for p above. Then

N˙2 .X IP /D ıe

�
1

3
C

1

6

�
1

�.2/
X CO.e

p
X /: (A-1)

We remark that in (A-1), the first term is contributed by fundamental discriminants
� 1 .mod 4/ and the second by fundamental discriminants � 0 .mod 4/. We prove
the proposition explicitly for NC

2
.X IP /, and omit the analogous argument for

N�
2
.X IP /. Upon combining the counts for real and imaginary fields, this implies

Lemma 2.2 as a special case.
The proof is a simple elaboration on the classical method for counting square-free

integers �X . Recall that, for a fundamental discriminant D, a prime p is ramified
in Q.

p
D/ precisely when p jD; otherwise a prime p−D splits in Q.

p
D/ if the

Kronecker symbol
�

D
p

�
evaluates as C1, and is nonsplit if

�
D
p

�
D �1 (see, e.g.,

[Hua 1982, Theorem 10.3, Chapter 16]). Thus for each unramified p 2P we assign
"p 2 f�1;C1g according to the specified splitting type of p. Let P0 be the set of
ramified primes in P and set P 0 D P nP0; define

e0 D

Y
p2P0

p and e0 D
Y

p2P 0

p:

Then we may write

NC
2
.X IP /D #

˚
fundamental discriminants 1� n�X W e0jn;

�
n
p

�
D "p;8p 2P 0

	
:
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We will find a count for this by sieving for fundamental discriminants (that is,
elements that are free of odd squares) in the following two sets:

A.1/ D
˚
1� n�X W n� 1 .mod 4/; e0jn;

�
n
p

�
D "p;8p 2 P 0

	
;

A.0/ D
˚
1� n�X W n� 8; 12 .mod 16/; e0jn;

�
n
p

�
D "p;8p 2 P 0

	
:

More generally, fix a power g and define for any b .mod 2g/ the set

AD
˚
1� n�X W n� b .mod 2g/; e0jn;

�
n
p

�
D "p;8p 2 P 0

	
:

For each odd prime q let Aq D fn 2A W q2jng. Note that certainly Aq is empty as
soon as q >

p
X ; we let M be the index of the greatest prime qM �

p
X . We will

denote by Aq the complement A nAq . We will deduce Proposition A.1 from the
following lemma:

Lemma A.2. Let A be as above, with P D P0[P 0 a set of odd primes. Then\
q odd

Aq D
X

3�2g�2�.2/

Y
p2P 0

ıp
Y

p2P0

ıpCO.e
p

X /;

with ıp as defined in Proposition A.1.

If the set P specified in Proposition A.1 is a set of odd primes, then the proposition
follows immediately from this lemma, by applying it to A.1/ with gD 2, bD 1 and
then partitioning A.0/ into two disjoint sets with gD 4 and bD 8 or 12, respectively,
and applying the lemma to each.

If 2 belongs to the set P specified in Proposition A.1, then we consider separately
the case when 2 is specified to be ramified or unramified. If 2 2 P0 then A.1/ is
empty. We already have 2 j n for every n 2 A.0/, so we set P00 D P0 n f2g and
apply Lemma A.2 to A.0/ with P D P00[P 0 (as before, separating A.0/ into two
disjoint sets and applying the lemma to each). We obtain\

q odd

Aq D 2 �
X

3�4�.2/

Y
p2P 0

ıp
Y

p2P00

ıpCO.e
p

X /

D ı2 �
X

2�.2/

Y
p2P 0

ıp
Y

p2P00

ıpCO.e
p

X /;

with ı2 D 1
3

, as claimed.
If 2 2 P 0 then A.0/ is empty. We recall that for p D 2 and n� 1 .mod 4/, the

Kronecker symbol
�

n
2

�
DC1 if n� 1 .mod 8/ and �1 if n� 5 .mod 8/. Thus if

2 2 P 0, we set P 00 D P 0 n f2g and A.1/ becomes

A.1/ D
˚
1� n�X W n� b .mod 8/; e0jn;

�
n
p

�
D "p;8p 2 P 00

	
;
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with bD 1 if the original specification was "2DC1 and bD 5 if "2D�1. Applying
Lemma A.2, we see that\

q odd

Aq D
X

3�2�.2/

Y
p2P 00

ıp
Y

p2P0

ıpCO.e
p

X /

D ı2 �
X

2�.2/

Y
p2P 00

ıp
Y

p2P0

ıpCO.e
p

X /;

with ı2 D 1
3

, again as claimed. This proves Proposition A.1.
We now prove Lemma A.2. By the inclusion-exclusion principle,

\
q odd

Aq D

MX
mD0

.�1/m
X

q1<���<qm

jAq1
\ � � � \Aqm

j; (A-2)

in which for the mD 0 term we sum the full set jAj. A priori, any fixed term in
(A-2) can be written as

jAq1
\ � � � \Aqm

j

D #
˚
n�X W q2

1 � � � q
2
mjn; n� b .mod 2g/; e0jn;

�
n
p

�
D "p;8p 2 P 0

	
:

Denote the set on the right-hand side by S , and let Q WD fq1; : : : ; qmg. We first
observe that if any p 2 P 0 belongs to Q then the set S must be empty. Thus we
may reduce to considering the case in which P 0 and Q are disjoint, in which case
we will prove that

#S D
1

2g

X

q2
1
� � � q2

m

gcd.q1 � � � qm; e0/

e0

Y
p2P 0

1

2

�
p�1

p

�
CO.e0/: (A-3)

First note that if a prime p in P0 belongs to Q as well, then the condition q2
1
� � � q2

mjn

already specifies that p is ramified. Thus upon defining e00 D
Q

p2P0nQ
p, we

may deduce that

S D
n
k �X.q2

1 � � � q
2
me00/

�1
W

k � b.q2
1 � � � q

2
me00/

�1 .mod 2g/;
�

k
p

�
D "0p;8p 2 P 0

o
; (A-4)

where for each p 2 P 0 we have defined "0p D "p
�

e00

p

�
.

We note that for any integer K � 1 and any residue class b modulo 2g, the
quantity

#
˚
k �K W k � b .mod 2g/;

�
k
p

�
D "0p;8p 2 P 0
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may be expressed asX
a .mod e0/
.a;e0/D1

� Y
p2P 0

1
2

�
1C "0p

�
a
p

��� X
k�K

k�a .mod e0/
k�b .mod 2g/

1

D
1

2jP
0j

X
a .mod e0/
.a;e0/D1

Y
p2P 0

�
1C "0p

�
a
p

��� K

2ge0
CO.1/

�

D

� Y
p2P 0

p�1

p

�
K

2gCjP 0j
C 0CO.e0/I

all the intermediate terms vanish by orthogonality of characters. Applying this to S

in (A-4), we obtain

#S D
X

q2
1
� � � q2

me00

1

2gCjP 0j

Y
p2P 0

�
p�1

p

�
CO.e0/;

proving (A-3).
Applying (A-3) to the inclusion-exclusion in (A-2) shows that\

q odd

Aq D

X
d�
p

X
.d;2e0/D1

�.d/

�
X

2gd2

gcd.d; e0/

e0

Y
p2P 0

1

2

�
p�1

p

�
CO.e0/

�
:

The error term contributes O.e
p

X /, while the main term contributes

X
1

2g

� Y
p2P 0

1

2

�
p�1

p

�� 1X
dD1

.d;2e0/D1

�.d/

d2

gcd.d; e0/

e0
CO

�
X
X

d>
p

X

1

d2

�
:

Here the error term is O.
p

X /, with an implied constant which may be taken to be
independent of P .

We now simplify the main term. We note that since P consists of odd primes
and .e0; e

0/D 1, upon setting d D ıf with ı D gcd.d; e0/, we have

1X
dD1

.d;2e0/D1

�.d/

d2

gcd.d; e0/

e0
D

X
ıje0

1X
fD1

.ıf;2e0/D.f;e0/D1

�.ıf /

ı2f 2

ı

e0

D
1

e0

�X
ıje0

�.ı/

ı

�� 1X
fD1

.f;2e0e0/D1

�.f /

f 2

�
:
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The sum over ıje0 is a multiplicative function with respect to e0. For p prime we
have X

ıjp

�.ı/

ı
D 1�

1

p

and thus for e0 square-free we may compute by multiplicativity that

1

e0

X
ıje0

�.ı/

ı
D

Y
p2P0

p� 1

p2
:

We next recall that for any <.s/ > 1 and any distinct primes q1; : : : ; qr ,� rY
iD1

�
1�

1

qs
i

�
�.s/

��1

D

Y
p 62fq1;:::;qr g

�
1�

1

ps

�
D

1X
dD1

.d;
Q

qi /D1

�.d/

d s
:

Thus
1X
fD1

.f;2e0e0/D1

�.f /

f 2
D

�
1�

1

22

��1 Y
p2P

�
1�

1

p2

��1 1

�.2/
:

Assembling this all together, we see that\
q odd

Aq

D
X

2g

�
1�

1

22

��1 1

�.2/

Y
p2P 0

�
p�1

2p

1

1� 1
p2

� Y
p2P0

�
p�1

p2

1

1� 1
p2

�
CO.e

p
X /:

This reduces to\
q odd

Aq D
X

3�2g�2�.2/

Y
p2P 0

1

2

1

.1Cp�1/

Y
p2P0

1

1Cp
CO.e

p
X /;

proving Lemma A.2, with ıp as in Proposition A.1.
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