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We define and construct integral canonical models for automorphic vector bundles
over Shimura varieties of abelian type.

More precisely, we first build on Kisin’s work to construct integral canonical
models over OE [1/N ] for Shimura varieties of abelian type with hyperspecial
level at all primes not dividing N compatible with Kisin’s construction. We
then define a notion of an integral canonical model for the standard principal
bundles lying over Shimura varieties and proceed to construct them in the abelian
type case. With these in hand, one immediately also gets integral models for
automorphic vector bundles.

1. Introduction 1838
2. Integral canonical models for Shimura varieties of abelian type1842

2.1. Extension property 1842
2.2. Main theorem 1843
2.3. Siegel case 1844
2.4. Hodge type case 1845
2.5. Abelian type case 1848

3. Automorphic vector bundles and filtered G-bundles 1855
3.1. Review of characteristic zero 1855
3.2. Moduli of µ-filtrations of G 1859
3.3. Filtered G-bundles 1862

4. Integral Models for the standard principal bundle 1863
4.1. Breuil–Kisin modules and lattices in de Rham cohomology 1863
4.2. Special type case 1866
4.3. Connections on G-bundles 1867
4.4. Definition of canonical models 1869
4.5. Hodge type case 1873
4.6. Some distinguished Shimura data 1877
4.7. Abelian type case 1881
4.8. Automorphic vector bundles 1888

Acknowledgements 1889
References 1889

MSC2010: primary 11G18; secondary 14G35.
Keywords: Shimura varieties, automorphic vector bundles, integral models, Shimura, abelian type.

1837

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2017.11-8
http://dx.doi.org/10.2140/ant.2017.11.1837


1838 Tom Lovering

1. Introduction

Since the introduction of the abstract theory of Shimura varieties and their canonical
models by Deligne [1971; 1979] following Shimura, and given its promise as a
rich generalisation of the classical theory of modular curves, substantial bodies of
literature have arisen whose aim is to extend features of the classical theory to this
wider context.

One such feature is the existence of smooth integral models at primes not dividing
the level, and their subsequent utility for studying the action of Frobenius on the
Galois representations arising from Shimura varieties crucial for the Langlands
programme. Such results have been available in the PEL type case for a long time,
thanks largely to the programme of Kottwitz, but have recently been extended to
the much more general case of abelian type Shimura varieties in work culminating
with the recent papers of Kisin [2010; 2017].

Another feature is the manifestation of certain automorphic forms as algebraic
sections of a vector bundle over a Shimura variety, generalising the classical alge-
braic description of modular forms. The vector bundles playing the role analogous
to the tensor powers of the Hodge bundle in the theory of modular forms are the
automorphic vector bundles, and canonical models were defined and shown to exist
in some cases by Harris [1985] and more generally by Milne [1988; 1990].

In the present paper we start to draw these two threads of the literature together,
working in the case of general1 abelian type Shimura varieties, first filling a gap in
the existing literature and showing that Kisin’s good integral models can be spread
out to smooth models over OE [1/N ], then defining a notion of integral canonical
models for automorphic vector bundles with a uniqueness property, and finally
proving existence in the abelian type case.

More precisely, suppose (G,X) is a Shimura datum, with reflex field E =
E(G,X), N >1 and suppose G admits a reductive2 model G/Z[1/N ]. Take an open
compact K = K N KN ⊂G(A∞) where K N

=
∏

p -N G(Zp) and KN ⊂
∏

p|N G(Qp)

is open compact. Consider the tower

ShK N (G,X) := lim
←−−
KN

ShK N KN (G,X)

of quasiprojective E-schemes, which comes equipped with an algebraic
∏

p|N G(Qp)

action (in fact it carries the action of a slightly larger group as in [Deligne 1979]).
The main result of Kisin’s first integral models paper [2010] tells us that when
(G,X) is of abelian type this tower admits, for every v -N , a smooth integral model

1We do require a small technical restriction: that Z(G)◦ is split by a CM field, but feel it should
be possible to remove this restriction, and that it ought to be harmless for most applications.

2Recall that a (connected) reductive group scheme G→ S is a smooth affine group scheme with
connected reductive geometric fibres.
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SKis,v
K N /OE,v to which the

∏
p|N G(Qp)-action extends. Note that by a “smooth”

model, we mean one which is smooth quasiprojective at any finite level and for
which the maps between different finite levels are finite étale.

It is natural to ask whether these all come from a global model over OE [1/N ].
Moreover, Kisin’s models also enjoy an “extension property” which characterises
them uniquely, so it is natural to ask if furthermore we can find a global model
having this extension property. Our first theorem answers this in the affirmative.

Theorem. With the above setup, suppose (G,X) is of abelian type. Then the tower
ShK N (G,X) admits a smooth integral model SK N (G,X)/OE [1/N ] to which the∏

p|N G(Qp)-action extends and having the extension property.
Moreover, for any v -N a place of E , the model SK N (G,X)⊗OE [1/N ] OE,v is

canonically identified3 with the model SKis,v
K N obtained from Kisin’s theory.

We call these models “integral canonical models” because the extension property
guarantees their uniqueness.

We make some remarks about the proof. The obvious direct “patching” argument
to obtain the result formally from Kisin’s models fails because one cannot auto-
matically get the extension property for the models obtained by spreading out, so
instead we give a direct construction. The proof in the Hodge type case very closely
follows that of [Kisin 2010]. In the abelian type case we need several new ideas.

Firstly, we have no guarantee that
∏

p|N G(Qp) acts transitively on the com-
ponents of ShK N (G,X) so we replace the group theoretic “Deligne-induction”
argument by an argument that uses the extension property to reduce the problem to
constructing models for each component individually over the ring of integers of
the maximal abelian unramified extension of E . Secondly, to prove the analogue of
[Kisin 2010, 3.4.6] without the lemma which follows it, which may not be true in
our context, we show that Kisin’s “twisting abelian varieties” construction can be
carried out using torsors for the centre of Gder rather than G, and since such torsors
are finite, they are simpler to work with. Finally, we believe in fact that unless
Gder
=Gad, the group 1(G,Gad) [ibid.] is not finite, which is necessary to descend

the extension property. Fortunately we are able to prove that the corresponding
group at level K N (our situation) is finite, which perhaps also helps to fill a small
gap in the original argument.

We then turn to automorphic vector bundles, and following [Milne 1990, III],
the heart of the matter is really to define and construct integral canonical models
for the standard principal bundles PK N (G,X)→ ShK N (G,X). Such bundles are
torsors for the quotient

Gc
= G/Znc

3This identification is as an OE,v-scheme with
∏

p|N G(Qp)-action and equivariant identification
ι of its generic fibre with ShK N (G,X).
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by the maximal subtorus Znc ⊂ Z(G)◦ which is R-split but Q-anisotropic. They
come equipped with a flat connection ∇, an equivariant

∏
p|N G(Qp)-action and a

“filtration” which can be written down by giving a map

γ : PK N (G,X)→ Grµ

where Grµ is the flag variety corresponding to a Hodge cocharacter µ : Gm→ G
coming from X. Informally, it is helpful to think of the fibre functors ω attached
to these bundles as giving one the sheaf of de Rham cohomology of a family of
motives over ShK N with its Gauss–Manin connection and Hodge filtration.

Any smooth integral model for PK N (G,X) that is a Gc-torsor would give, for
each representation ρ : Gc

→ GL(VZ[1/N ]), a Z[1/N ] lattice inside ω(V ⊗Q). We
define an integral canonical model to be one where at “crystalline points” this lattice
coincides with a different lattice constructed using Kisin’s theory of S-modules
[2006]. Roughly speaking, working on the generic fibre one has a Galois cover
ShK N p(G,X)→ ShK N (G,X) with Galois group Gc(Zp) so we obtain attached to
ρ a lisse Zp-sheaf

L := ShK N p(G,X)× VZp/G
c(Zp)

on ShK N (G,X). Restricting this to a crystalline point s, the theory of S-modules
gives a lattice D(s∗L)⊂ DdR(s∗L[1/p]). Thus we have defined lattices (at each
prime) inside ω(V ⊗Q), and we say a model

(PK N (G,X), ι : PK N (G,X)⊗OE [1/N ] E −→∼ PK N (G,X))

is canonical if the lattices it generates agree with these lattices coming from p-adic
Hodge theory. We then check that if such a model exists and there are enough
crystalline points (which we check in the abelian type case), it is unique up to
canonical isomorphism. We also reserve the term “canonical” for models for which
the connection, Hecke action and filtration extend, but these seem to be automatic
properties of the models satisfying the lattice condition in the abelian type case
(and we would assume in general).

Of course, with this definition, our main theorem is the following.

Theorem. Let (G,X) be a Shimura datum of abelian type and G/Z[1/N ] a reduc-
tive model for G. Then PK N (G,X) has an integral canonical model (PK N , ι).

We give a quick summary of the proof. For the “special type” case where G is a
torus, we use the theory of CM motives to find lattices in the de Rham cohomology
of abelian varieties. For the Hodge type case, the universal abelian variety has an
integral model so we take as our starting point the sheaf V of its relative de Rham
cohomology, and note that the Hodge tensors of [Kisin 2010, 2.2] sα,dR ∈V⊗E extend
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to V⊗, at which point they may be used to define a functor

PK N := Isomsα (V,V)

which we show is a G-torsor using several ingredients from [Kisin 2010], and is the
required integral canonical model.

For passing from the Hodge type to abelian type case, we need a new idea which
may be more widely applicable. Suppose (G2,X2) is an abelian type Shimura
datum of interest. If we let (G,X) be a Hodge type datum such that there is
an isogeny Gder

→ Gder
2 witnessing that (G2,X2) is of abelian type, we do not

have a map relating G2 to G but only between the derived groups. However, the
torsors PK N (G,X) cannot be reduced to Gder without passing to C, which loses the
information we are interested in.

Our solution, inspired by Deligne [1979, 2.5], is to define for each connected
Shimura datum (Gder,X+) and field E ⊃ E(Gder,X+) := E(Gad,Xad) a new
Shimura datum (B,XB) with the property that any Shimura datum (G,X) whose
reflex field is contained in E and whose connected Shimura datum is (Gder,X+)

admits a canonical map

(B,XB)→ (G,X).

We then pass from Hodge type to abelian type by first giving a direct construction
of a canonical model for PK N

B
(B,XB) given one for PK N (G,X). With this, we are

in business, because if we let (B2,XB,2) be the corresponding pair for (G2,X2)

there is a map

(B,XB)→ (B2,XB,2)→ (G2,X2)

and we are able to descend the torsor through the map on connected components
while pushing out the Bc-action to a Gc

2-action. Finally we translate our results
into results for automorphic vector bundles.

While we do not give applications in this paper, we anticipate this construction
playing a useful role in several places. It is already used to study integrality of
periods in a preprint of Ichino and Prasanna [2016], and we expect it should be
useful in much more general contexts along these lines.

Working at a formal completion at a single place the same construction gives
families of strongly divisible filtered F-crystals. This theory is developed and used
in [Lovering 2017] to establish a new result that the Galois representations formed
by taking the cohomology of the Shimura variety with coefficients in the usual
lisse sheaves are crystalline, and in appropriate situations Fontaine Laffaille. In
particular this gives a new proof of part of local global compatibility at l = p in
certain cases, as well as providing a new tool for studying the p-adic geometry of
Shimura varieties and p-adic automorphic forms.
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2. Integral canonical models for Shimura varieties of abelian type

2.1. Extension property.

2.1.1. We first recall the extension property used to characterise Shimura varieties
at infinite level. Let R be a domain with field of fractions K . We call S/R a test
scheme if it is regular and formally smooth over R.4 Suppose we are given a scheme
X/R. We say X has the extension property if for any test scheme S/R any map
SK → X K extends over R.

The following uniqueness statement is well known.

Lemma 2.1.2. Suppose Y/K is a scheme. Then if X/R is a model for it over R and
is both a test scheme and has the extension property, X is the unique such model up
to canonical isomorphism.

Proof. Let X and X ′ be two such models. Then we are (as part of the data of a
model) given maps

X K −→
∼ Y −→∼ X ′K .

Since X is a test scheme, and since X ′ has the extension property, this isomorphism
extends to an isomorphism X −→∼ X ′ of R-schemes. �

We also record the following useful formal properties.

Lemma 2.1.3. Let R′/R be an étale or indétale (or formally smooth) extension of
domains with fraction field extension K ′/K . Suppose X/R satisfies the extension
property. Then so does X ⊗R R′/R′.

Conversely, if R′/R is also faithfully flat, then if X ⊗R R′/R′ satisfies the exten-
sion property, so does X/R.

Proof. Let S′/R′ be a test scheme. Then S′ is regular, and it is formally smooth over
R since indétale algebras are formally étale. Suppose we are given S′⊗R′ K ′→ X R′ ,
and first compose it with the map X R′→ X . By the extension property for X/R,
S′⊗R′ K ′ = S′⊗R K → X extends to a map S′→ X over R. But since we have a
diagram

S′ −−−→ Xy y
Spec R′ −−−→ Spec R

this map must factor through X ⊗R R′, as required, giving the extension property
for X ⊗R R′/R′.

For the converse, a test scheme S/R gives rise to a test scheme SR′/R′ together
with a descent datum θS for R′/R. Given a map SK → X K we obtain SK ′→ X K ′

4I believe there is still some controversy over the “correct” definition of a test scheme but this
should do for our purposes.
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compatible with the descent data on both sides. By the extension property this map
extends to SR′→ X R′ , and being a map of descent data this descends to the desired
extension S→ X . �

Lemma 2.1.4. Let X/R have the extension property and Y → X be finite or
profinite étale. Then Y/R has the extension property.

Proof. It clearly suffices to do the finite étale case (the profinite one then following
formally). Let K = Frac(R) and suppose we have a test scheme S and a map
SK → YK . Then this map composed with YK → X K extends to a map S→ X .
Pulling this back we get S ×X Y → Y . The map SK → YK gives a section of
(S×X Y )K → SK . But S×X Y → S is finite étale so such sections extend uniquely
and we get the required S→ Y . �

Lemma 2.1.5. Let Y → X be finite étale, and suppose Y/R has the extension
property. Then X/R has the extension property.

Proof. By the theory of the étale fundamental group and Lemma 2.1.4 we may
assume Y → X is Galois. The argument then follows from that of [Moonen 1998,
3.21.4]. �

We remark that the above result fails for pro(finite étale) extensions. Indeed,
Shimura varieties at finite level certainly do not generally have the extension property.
For example, for the modular curve at finite level this would imply all elliptic curves
have good reduction.

2.2. Main theorem. Now, let (G,X) be a Shimura datum of abelian type with
reflex field E .

Fix S a finite nonempty set of finite primes containing all those at which G is
ramified, set N =

∏
p∈S p, a reductive integral model GZ[1/N ] of G (which exists

by taking an arbitrary integral model, observing that it is reductive at all but finitely
many primes and then gluing in models for the remaining primes). We abusively
denote this model by G, and let K N

=
∏

p 6∈S G(Zp).
Consider the tower

ShK N = lim
←−−

KN⊂
∏

p∈S G(Qp)

ShKN K N

of Shimura varieties over E with infinite level at the primes dividing N but hyper-
special level at all other primes.

Recall that in this context a smooth integral model SK N for ShK N over OE [1/N ] is
an integral model on which

∏
p|N G(Qp) acts such that whenever KN⊂

∏
p|N G(Qp)

compact open is sufficiently small that ShKN K N is a scheme, the model SK N /KN

is smooth quasiprojective, and the maps between such finite level schemes induced
by Hecke operators are finite étale.
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In this chapter we prove the following theorem.

Theorem 2.2.1. The tower ShK N has a smooth integral model SK N /OE [1/N ] satis-
fying the extension property. For any v -N the localisation of this model at v agrees
with Kisin’s smooth integral model.

The following together with Lemma 2.1.2 gives us that this model is canonical.

Lemma 2.2.2. If SK N is a smooth integral model in the above sense, then it is
regular and formally smooth (in the usual sense).

Proof. That it is formally smooth follows formally because it is a limit of smooth
schemes with finite étale transition maps. That it is regular follows from the same
argument as [Milne 1992, 2.4]. �

2.2.3. We now set out to prove the theorem, following the outline of Kisin’s
strategy, first using the modular interpretation of Siegel varieties to get going, then
making constructions in the Hodge and abelian cases close enough to his that the
smoothness, extension and comparison properties follow by direct comparison or
in a very similar way.

2.3. Siegel case. For this case we recall the following theorem.

Theorem 2.3.1 [Mumford 1965, 7.9]. If n ≥ 6gd
√

g! then the fine moduli scheme
Ag,d,n of abelian schemes of dimension g together with a polarisation of degree d
and a level n structure exists, and is quasiprojective over Z.

Moreover, for N = lcm(d, n) these moduli schemes are smooth over Z[1/N ].

2.3.2. We may also (since we may take quotients of quasiprojective schemes by
finite free group actions) form moduli Ag,d,KN with GSp2g(Ẑ

N )KN -level structures
for all KN ⊂

∏
p|N GSp2g(Qp) sufficiently small. These are also smooth over

Z[1/N ] by étale descent.

2.3.3. Moreover, recall that for K = KN GSp2g(Ẑ
N )⊂ GSp2g(A

∞), the Shimura
variety ShK (GSp2g, S±) is defined over Q and has a moduli interpretation giving
an embedding ShK (GSp2g, S±) ↪→Ag,d,KN . We define its integral model

SK := ShK (GSp2g, S±)⊂Ag,d,KN .

It is well known that such models are smooth and admit an explicit description as
moduli schemes. In particular, they carry a universal abelian scheme defined over
Z[1/N ]. Moreover the transition maps as we vary KN are finite étale, so we obtain
the desired smooth integral models

SN = lim
←−−
KN

SK /Z
[ 1

N

]
.

We are required to check the following. Note that in preparation for the Hodge
type case we need to observe the following holds in the slightly more general
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context where we assume that K =
∏

K p as above except for some finitely many
p -N , K p is not necessarily hyperspecial but merely maximal compact. Luckily
with this remark made the argument goes through unchanged.

Proposition 2.3.4. The scheme SN satisfies the extension property.

Proof. This follows because the argument of Milne [1992, 2.10] adapts practically
unchanged to our situation. For the reader’s convenience we sketch the argument.
Let S be a test scheme. A map

SQ→ SN

gives the data of a triple (A, λ, η)where A/SQ is an abelian scheme, λ a polarisation
(defined up to a constant) and η an infinite level structure at the primes l|N . Since
N > 1, the set of such primes is nonempty, and we may let l be one of them.

Now, since S is assumed regular, in particular each of its components is integral.
Let S0 be such a component, and denote by η its generic point. The infinite level
structure at l defined over SQ in particular trivialises the l-adic Tate module of Aη.
By the “generalised Neron criterion” [ibid., 2.13] we see that this implies Aη extends
over S0. Since it does so for all components S0 of S and S is normal (so these
components do not meet), we deduce that we have extended A to some A/S.

The polarisation λ also extends by [ibid., 2.14], and the level structures (being
at primes away from the characteristic of the base) also obviously extend. This
suffices to show the extension property. �

2.4. Hodge type case. Suppose we have (G,X) a Shimura datum of Hodge type,
and fix a symplectic embedding

i : (G,X) ↪→ (GSp(VQ, ψ), S±).

Let N be the product of all primes where G is ramified. Recall that we are
fixing an integral model G/Z[1/N ] for G and taking the hyperspecial level K N

=∏
p -N G(Zp) away from N . We begin with some group theoretic preliminaries.

Lemma 2.4.1. Let V/Q be a finite dimensional vector space. Take N ≥ 1 and p -N ,
and suppose we have a Z[1/pN ]-lattice3⊂ V and a Zp-lattice L ⊂ V ⊗Qp. Then
L ∩3 is a Z[1/N ]-lattice in V .

Proof. We first observe that for any Z[1/pN ]-basis e1, . . . , en of 3, for all i =
1, . . . , n and some m sufficiently large pmei ⊂ L . In particular 3 ∩ L contains
Z[1/pN ]-bases for 3. Let us take some such basis e1, . . . , en such that the p-adic
volume is maximal (or equivalently such that the index of its Zp-span in L is
minimal). We claim this basis generates 3′ =3∩ L as a free Z[1/N ]-module.

Since it’s a Z[1/pN ]-basis for 3, its span certainly is a free Z[1/N ]-module.
Suppose it doesn’t generate. Then there is some y ∈3′ not in the span of the ei .
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Since the ei are a Z[1/pN ]-basis we may write y uniquely as

y =
∑

i

λi ei ,

with λi ∈ Z[1/pN ]. After reordering, let us assume λ1 = p−kλ with λ ∈ Z[1/N ]
and k ≥ 1 is the coefficient with the largest p-adic norm amongst the λi . Then we
can take the new basis y, e2, . . . , en and it visibly has strictly larger p-adic volume,
contradicting our original choice of basis and hence the existence of y. �

Proposition 2.4.2. Let G/Q be a reductive group unramified away from N , let
N |M and T be the set of primes dividing M/N. If 2 ∈ T , assume further that any
factors of G of type B have simply connected derived group.

Then given choices of reductive models G M/Z[1/M] and G p/Zp for p ∈ T
for G, we can find a model G/Z[1/N ] isomorphic to each of these.

Moreover, if we have a faithful representation i : G M ↪→ GL(VZ[1/M]) there is a
Z[1/N ]-lattice 3′ ⊂ VZ[1/M] such that i extends to ĩ : G ↪→ GL(3′).

Proof. It obviously suffices to consider the case where M = pN . Let i : G M ↪→

GL(VZ[1/pN ]) be a faithful representation. By [Kisin 2010, 2.3.1], and the remark
of Madapusi Pera [2012, 4.3, footnote] in the 2 ∈ T case, we can find a Zp-lattice
3⊂ V ⊗Qp such that G p(Qp)= G(Qp)= G M

Qp
↪→ GL(VQp) is induced from a

map G p→ GL(3) over Zp.
By Lemma 2.4.1 we obtain a Z[1/N ]-lattice 3′ =3∩ VZ[1/pN ]. Of course we

can canonically identify 3′⊗Z[1/pN ] ∼= VZ[1/pN ], in the context of which we take
G/Z[1/N ] to be the closure of

Im(G M ↪→ GL(VZ[1/pN ]) ↪→ GL(3′)).

We claim this G does the job. It’s evident that G|Z[1/pN ] ∼= G M . Since we have
a canonical isomorphism 3′ ⊗ Zp ∼= 3 and by the other identifications in the
construction we also have G|Zp

∼= G p. We also need it to be reductive (i.e., smooth
affine with connected reductive geometric fibres). Being a closed subgroup of
GL(3′) it’s visibly affine, its geometric fibres are reductive by what we already
know, and smoothness can be checked fpqc locally, whence it also follows by the
identifications we have made.

The second part of the proposition is an immediate consequence of our argument.
�

We also echo the remarks in [Madapusi Pera 2012, 4.3], that in the case of G
coming from a Hodge type Shimura datum, the condition on factors of type B is
always satisfied, by Deligne’s classification of symplectic representations. We shall
also need the following modification of [Kisin 2010, 2.1.2].
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Lemma 2.4.3. Let i : (G1,X1) ↪→ (G2,X2) be an embedding of Shimura data with
K N

2 ⊂
∏
′

p -N G2(Qp)=: G2(A
∞,N ) compact open, and K1 = K N

1 K1,N a compact
open of G1(A

∞) such that K N
1 = K N

2 ∩G1(A
∞,N ). Suppose G1 and G2 both have

centre which is compact modulo its split part.5 Then there exists an open compact
subgroup K2,N ⊂

∏
p|N G2(Qp) such that K2 := K2,N K N

2 ⊃ K1 and the induced
map of E(G1,X1)-schemes

ShK1(G1,X1)→ ShK2(G2,X2)E(G1,X1)

is a closed embedding.

Proof. By the same argument as [Deligne 1971, 1.15] it suffices to check

α : ShK N
1
(C)→ ShK N

2
(C)

is injective.
On the level of complex points (by the assumption on centres, which removes

the technicalities involving units) this map is

α : G1(Q)\X1×G1(A
∞)/K N

1 → G2(Q)\X2×G2(A
∞)/K N

2 .

We prove this is injective by first noting that

G1(Q)\
∏
p|N

G1(Qp)→ G2(Q)\
∏
p|N

G2(Qp)

is injective as in [Deligne 1971, 1.15.3]. Now fix a set of coset representa-
tives of G1(Q) in

∏
p|N G1(Qp) and note that translating by these, the fibres

of G1(Q)\X1 × G1(A
∞)/K N

1 → G1(Q)\
∏

p|N G1(Qp) may be identified with
X1×G1(A

∞,N )/K N
1 . But now since K N

1 = K N
2 ∩G1(A

∞,N ), we have that

X1×G1(A
∞,N )/K N

1 → X2×G2(A
∞,N )/K N

2 ,

is injective, and the lemma follows. �

2.4.4. We now proceed with the construction in the Hodge type case.
Firstly, by finite-presentedness we note that i is in fact defined over Z[1/M] for

some M divisible by N . By Proposition 2.4.2 we can find a lattice VZ[1/N ] ⊂ V
and G/Z[1/N ] a reductive model such that (forgetting the symplectic pairing) i
is obtained from a map G ↪→ GL(VZ[1/N ]) and G(Zp) = G(Zp) for all p -N , in
particular giving K N

=
∏

p -N G(Zp).
Let K ′N be the stabiliser of VZ[1/N ] in

∏
p -N GSp(V ⊗Qp, ψ), noting that K ′N

will be maximal compact but need not be hyperspecial at the primes dividing M/N .
We also fix a Z-lattice VZ ⊂ VZ[1/N ] and note that for all KN ⊂

∏
p|N G(Qp)

sufficiently small K = KN K N fixes V
Ẑ

.

5We expect the argument can be modified slightly as in Deligne to remove this hypothesis.
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2.4.5. Applying the lemma Lemma 2.4.3 in our setting (since G is Hodge type
the hypothesis on the centre holds), and letting E = E(G,X), we obtain a closed
embedding of Shimura varieties

ShK N (G,X) ↪→ ShK ′N (GSp, S±)E ⊂ SN ,OE [1/N ].

Letting ShK N ⊂SN ,OE [1/N ] be the scheme theoretic closure of this map, the extension
property for SN implies the extension property for ShK N . Now let SK N be the
normalisation of ShK N . Since test schemes are regular and a fortiori normal, the
universal property of normalisation implies that SK N also has the extension property.

2.4.6. We need to check smoothness at finite level. It suffices to check smoothness in
a formal neighbourhood of any closed point. When the point has characteristic zero
it is in the generic fibre and smoothness is guaranteed. When it has characteristic p,
we observe that at finite level our construction exactly follows that of Kisin [2010,
2.3] and Kim and Madapusi Pera [2016, 3.5] for the case p= 2, and so in particular
the necessary local rings are smooth. Hence the SK N give the required integral
canonical models in the Hodge type case, compatible with Kisin’s by construction.

2.5. Abelian type case. We begin by making some more observations about the
Hodge type setting. As before we fix connected reductive G/Z[1/N ] belonging to
a Shimura datum (G,X) of Hodge type with reflex field E , and consider the tower

ShK N = lim
←−−
KN

ShKN K N

obtained by fixing K N
= G(ẐN ) and letting the level at p|N go to infinity.

Lemma 2.5.1. The connected component Sh+K N ⊂ ShK N ,E is defined over the maxi-
mal abelian extension EN/E unramified away from N.

Proof. By [Kisin 2010, 2.2.4], and taking a suitable quotient, we see that Sh+K N is
defined over the maximal abelian extension E p/E unramified away from p for all
p -N . By the identification

⋂
p -N E p

= EN inside Eab, we deduce that Sh+K N is
defined over EN . �

2.5.2. Let q -N be a prime, and recall the following groups which are used to
construct Kisin’s integral models, and the following results from [Kisin 2010, 3.3].
We adopt the usual notations where Gad(Q)+ is the intersection of Gad(Q) with
the connected component Gad(R), G(Q)+ the inverse image of Gad(Q)+ in G(Q),
Gad(Z(q))

+
= Gad(Q)+ ∩Gad(Z(q)) and G(Z(q))+ = G(Q)+ ∩G(Z(q))+.

We have

Aq(G) := G(A∞,q)/Z(Z(q)) ∗G(Z(q))+/Z(Z(q)) Gad(Z(q))
+
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which acts on ShKq = lim
←−−K q ShG(Zq )K q , and the subgroup

A◦q(G) := G(Z(q))+/Z(Z(q)) ∗G(Z(q))+/Z(Z(q)) Gad(Z(q))
+

which acts on a connected component Sh+Kq
. It follows from the argument in [Kisin

2010, 3.3.7] that this is precisely the subgroup sending Sh+Kq
into itself.

2.5.3. We make the following new remarks. The construction of twisting abelian
varieties by a Z -torsor from [Kisin 2010, §3] can be carried out by twisting by a
Zder
= Z(Gder)-torsor instead. Indeed, given γ ∈ Gad(Q)+ we may take P to be

the fibre of γ along Gder
→ Gad. It will suffice to check the following.

Proposition 2.5.4. (1) With notation as above, if P′ is the fibre of γ along G→
Gad then P′ = P×Zder

Z.

(2) If V is a Q-vector space with an OZ -comodule action, P and P′ as above, there
is a natural isomorphism

(V ⊗Q OP)
Zder
−→∼ (V ⊗Q OP′)

Z .

Proof. For (1) we can define (using P′ ⊂ G) a map

P×Zder
Z 3 (p, z) 7→ p.z ∈ P′

which is obviously an isomorphism of Z -torsors and proves the claim.
Part (2) can be seen easily by appealing to the general Tannakian framework that

Z -torsors over Spec Q correspond to fibre functors ω : RepQ Z→ VecQ, and that
P×Zder

Z = P′ implies that we can factor ωP′ as

ωP′ : RepQ Z Res
−→RepQ Zder ωP−→VecQ .

Writing out what this statement actually means algebraically (and writing an arbitrary
OZ -comodule as a filtered colimit of finite dimensional ones), we recover (2). �

This has the technical advantage given by the following lemma. We thank
Kestutis Cesnavicius for pointing out to us that the analogous result from [Kisin
2010, 3.4.8] where G = Z is a general group of multiplicative type is false over the
base Z[1/N ] in general.

Lemma 2.5.5. Let R be an integrally closed domain with fraction field K , and
G/R a finite group scheme. Then a torsor T/R for G is trivial if and only if TK is a
trivial G K -torsor.

Proof. Since G/R is finite, it is proper, which as a property stable under fpqc
descent is inherited by T , and so T (R)=

⋂
Rv⊂K T (Rv)= T (K ). In particular the

latter is nonempty if and only if the former is. �
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2.5.6. With these remarks in mind, we can rewrite the action of Aq(G) on the inte-
gral model SKq/OE,v explicitly following [Kisin 2010, 3.4.5]. A point x ∈ SKq (T )
gives rise to a triple (A, λ, εq) where A/T is an abelian scheme up to prime to q-
isogeny, λ a weak polarisation of A and εq a section of 0(T, Isom(VA∞,q , V̂ q(A))).

By [Kisin 2010, 3.4.5] and our previous remarks, if we take (h, γ−1) ∈Aq(G)
and x associated to the triple (A, λ, εq) then the triple associated to x .(h, γ−1) is
isogenous to

(AP, λP, εq,P
◦ γ̃ hγ̃−1)

where P is the torsor for Zder
⊂ Gder given by the fibre of γ , γ̃ is an element of

Gder(F) for some finite Galois extension F/Q mapping to γ under Gder(F)→
Gad(F), and the notations AP, λP, εq,P are the “twists by P” as defined in [Kisin
2010, 3.1.3].

2.5.7. We introduce the notation ZN
:= Z[1/N ], to provide a slight simplification

in situations where the notation quickly becomes messy. Let (where plus notation
denotes intersection with G(R)+,Gad(R)+ as usually defined, and overline notation
denotes closures in

∏
p|N G(Qp))

AN (G) :=

∏
p|N G(Qp)

Z(ZN )
∗G(ZN )+/Z(ZN ) Gad(ZN )+,

AN ,◦(G) :=
G(ZN )+

Z(ZN )
∗G(ZN )+/Z(ZN ) Gad(ZN )+,

and (where here overline notation means closures in G(A∞,q))

ÃN
q (G) :=

∏
p|N G(Qp)×

∏
p -q N G(Zp)

Z(ZN )
∗G(ZN )+/Z(ZN ) Gad(ZN )+ ⊂Aq(G).

Let K N
=
∏

p -N G(Zp), K Nq
=
∏

p -Nq G(Zp) and

1N
= Ker(AN ,◦(G)→AN ,◦(Gad)).

First, a group theoretic lemma following Deligne’s Corvallis paper.

Lemma 2.5.8. (1) The group AN ,◦(G) is canonically the completion of Gad(ZN )+

with respect to the topology generated by the images of congruence sub-
groups of Gder the form KN ×

∏
p -N Gder(Zp) as KN varies. In particular

AN ,◦(Gder) :=AN ,◦(G) canonically depends only on Gder.

(2) We can naturally identify

AN ,◦(Gder)= Gder(ZN )+ ∗Gder(ZN )+ Gad(ZN )+

(where the closure is taken in
∏

p|N Gder(Qp)).



Integral canonical models for automorphic vector bundles of abelian type 1851

Proof. For (1) we have a natural inclusion Gad(ZN )+ ⊂AN ,◦(G), and it is easily
checked that the image is dense. Moreover, a neighbourhood of the identity is
G(ZN )+/Z(ZN ) whose topology is generated by that of the congruence subgroups
of G with fixed hyperspecial level away from N . But by [Deligne 1979, 2.0.13]
this topology is the same as that generated by the congruence subgroups of Gder

with fixed hyperspecial level away from N . Finally this neighbourhood of the
identity is obviously complete, so we are done. From this description (2) follows
immediately. �

Our key result is the following, whose proof follows that of [Kisin 2010, 3.4.6].

Proposition 2.5.9. The group AN (G) acts naturally on the integral canonical
model SK N , and 1N acts freely.

Proof. By the extension property, the first part can be checked on the generic fibre,
where it follows from the self evident isomorphism

Ã
N
q (G)/K Nq

−→∼ AN (G).

This (together with the compatibility with Kisin’s construction) gives us the addi-
tional information that for v | q and q -N , the action on SK N ,v can be described on
the level of triples (A, λ, εq) where εq is now given modulo K Nq .

Take (h, γ−1) ∈1N
⊂ Gder(ZN )+ ∗Gder(ZN )+ Gad(ZN )+, and γ̃ ∈ Gder(F) map-

ping to γ ∈ Gad(F) with F/Q finite Galois. We also let P denote the Zder-
torsor of elements of Gder mapping to γ . Since (h, γ−1) ∈ 1N we see that
hγ̃−1

∈
∏

p|N Zder(Qp⊗ F).
Suppose x ∈ SK N (κ) for some algebraically closed field κ of characteristic q

or 0, that x .(h, γ−1)= x and associated to x is the triple (A, λ, εq/K q N ). We need
to show that (h, γ−1)= 1.

As in the proof of [Kisin 2010, 3.4.6] we can find a unique quasiisogeny α :
A→ AP such that

V ⊗A∞,q ⊗ F
γ̃ hγ̃−1

−−−→ V ⊗A∞,q ⊗ F
γ̃−1

−−−→ V ⊗A∞,q ⊗ F

εq

y εq,P

y εq

y
V̂ q(A)⊗ F −−−→

α∗⊗1
V̂ q(AP)⊗ F −−−→

ιγ̃
V̂ q(A)⊗ F.

commutes. This demonstrates that also hγ̃−1
∈ AutQ(A)⊗ F . But the intersection

of
∏

p|N Zder(Qp⊗F) and AutQ(A)⊗F inside
∏

p|N AutQ(A)(Qp⊗F) is Zder(F),
so we conclude that

hγ̃−1
∈ Zder(F).

As in [Kisin 2010, 3.4.6] this demonstrates that P is trivial as a Zder
Q

-torsor
over Q. But Zder is a finite group, Lemma 2.5.5 implies that PZ[1/N ] (the torsor
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given by the inverse image of γ in Gder
Z[1/N ]) is a trivial Z[1/N ]-torsor, so we can

assume γ̃ ∈ Gder(Z[1/N ])+ and replacing h by hγ̃−1, assume γ = 1. Moreover,
we may take F =Q, and so we deduce h ∈ Zder(Q)= Zder(Z[1/N ]): that is to say,
it is trivial as an element of 1N , as required. �

We also need the following ingredient.6

Lemma 2.5.10. The group 1N is finite.

Proof. Let ρ :Gder
→Gad be the usual finite isogeny. By the discussion in [Deligne

1979, 2.0] there is a diagram with exact rows.

Gder(ZN )+ −−−→ AN ,◦(Gder) −−−→ Gad(ZN )+/ρGder(ZN )+y y y
Gad(ZN )+ −−−→ AN ,◦(Gad) −−−→ 1

Considering the kernels of the vertical maps, this puts 1N in an exact sequence
between a subgroup of Zder(AN ) and the group Gad(ZN )+/ρGder(ZN )+. The
former as a product of finite groups is visibly finite. The latter group is a subgroup
of Gad(ZN )/ρGder(ZN ), which is in turn a subgroup of H 1

fppf(Z
N , Zder), so it

suffices to check that this is finite.
Since Zder is a finite group of multiplicative type, we may find a finite Zariski

cover Ui of Spec Z[1/N ] and finite étale covers Vi → Ui such that Zder
|Vi is iso-

morphic to a product of split finite multiplicative groups µk . By the Čech to derived
functor spectral sequence for this cover, we may reduce our claim to checking that
for L a number field and k,M positive integers, the groups H 1

fppf(OL [1/M], µk)

are finite. But the Kummer exact sequence gives an exact sequence

1→ OL
[ 1

M

]∗
/OL

[ 1
M

]∗k
→ H 1

fppf
(
OL
[ 1

M

]
, µk

)
→ Pic

(
OL
[ 1

M

])
,

and both the outer terms are finite by classical algebraic number theory. �

2.5.11. We now set out to prove the main theorem Theorem 2.2.1 in the abelian
type case. Let (G2,X2) be a Shimura datum of abelian type, with G2/Z[1/N ]
reductive. We first need to relate it to a datum of Hodge type, modifying [Kisin
2010, 3.4.13] slightly.

Lemma 2.5.12. Let (H,Y) be a Shimura datum of abelian type with H adjoint.
Then there exists a central isogeny H ′→ H such that whenever (G,X) is of Hodge
type with (Gad,Xad)∼= (H,Y) then Gder is a quotient of H ′.

6Note that we believe the corresponding result of [Kisin 2010] is not true, so a result like this is
perhaps also needed to deduce the extension property in that case.
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Assume that H is quasisplit and unramified at all p -N. Then there exists a
Shimura datum (G,X) of Hodge type such that (Gad,Xad) ∼= (H,Y), Gder

= H ′

and G is quasisplit and unramified at all p -N.

Proof. Most of this is proved in [Kisin 2010, 3.4.13]; the only thing to check is
that we can arrange for G to be quasisplit and unramified at all p -N . But since H
has this property, clearly H ′ does, and so it suffices to control the centre, whose
ramification is given by the totally imaginary quadratic extension L/F of [Deligne
1979, 2.3.10] which can be chosen arbitrarily. In particular, we may take any prime
q | N , construct L by adjoining a q-th (or 4th if q = 2) root of unity and passing
to a quadratic subfield. Then note that L/F is unramified at all primes v -q, in
particular at places over p -N . �

Lemma 2.5.13. Suppose we are given G and G2, reductive over Q and unramified
away from N , and a central isogeny f : Gder

→ Gder
2 . Suppose we are also given a

reductive model G2/Z[1/N ] of G2.
Then there exists a reductive model G/Z[1/N ] of G such that f extends to

f : Gder
→ Gder

2 .

Proof. We do the usual patching argument. Take any integral model G/Z[1/N ] and
note that there will be some M such that G[1/M] is reductive and Gder

→ Gder
2

extends to Gder
[1/M] → Gder

2 [1/M].
By Proposition 2.4.2 we will be done if for every p |M and p -N we can find

G p/Zp a reductive model such that f extends to Gder
p → Gder

2,Zp
. But this is the case

by the argument of [Kisin 2010, 3.4.14]. �

2.5.14. Now given our (G2,X2) of abelian type, it gives rise to an adjoint Shimura
datum, which by Lemma 2.5.12 is covered by (G,X) of Hodge type and by
Lemma 2.5.13 we may take G/Z[1/N ] reductive and Gder

→Gder
2 a central isogeny

inducing a morphism (Gder,X+)→ (Gder
2 ,X+2 ) of connected Shimura data. Let

E = E(G,X) ⊂ Q. Since for every p -N , G and G2 split over an unramified
extension of p, we deduce that E/Q is unramified at all p -N , and by Lemma 2.5.1
we see their connected Shimura varieties at levels K N

:=G(ẐN ) and K N
2 :=G2(Ẑ

N )

are defined over EN/E , the maximal abelian extension of E unramified away
from N . Let ON be its ring of integers, and note that ON [1/N ]/Z[1/N ] is indétale.

Now, comparing our description (2.5.8(1)) of AN ,◦(Gder) with Deligne’s descrip-
tion [1979, 2.1.6] of the group acting on a connected Shimura variety, it is clear
that AN ,◦(G) acts on Sh+K N (G,X)EN , and considering the subgroup

1N (G,G2) := Ker(AN ,◦(Gder)→AN ,◦(Gder
2 ))⊂1N ,

that the morphism Sh+K N (G,X)EN → Sh+
K N

2
(G2,X2)EN is given by taking the quo-

tient by 1N (G,G2). Moreover, by the previous section we have an integral model
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S+K N (G,X)ON [1/N ] for Sh+K N (G,X)EN satisfying the extension property, with a
free Proposition 2.5.9 action of the finite Lemma 2.5.10 group 1N . We may
therefore form the quotient by the finite subgroup 1N (G,G2) and obtain a model
S+

K N
2
(G2,X2)ON [1/N ] for Sh+

K N
2
(G2,X2)EN over ON [1/N ]. By Lemma 2.1.5 this

model enjoys the extension property, and passing to finite levels we see it is smooth.

2.5.15. Unlike at infinite or K p-level, we do not know whether
∏

p|N G2(Qp) acts
transitively on π0(ShK N (G2,X2)Q), so to conclude our proof we need an alternative
to the usual “Deligne induction.” Noting that our argument up to this point holds
for any model G2/Z[1/N ] for G2, the following lemma is enough to conclude our
argument.

We will need the Shimura variety

Sh(G,X)= lim
←−−

K
ShK (G,X)

at full infinite level, together with the usual fixed connected component Sh+
Q
⊂

Sh(G,X)Q containing the complex point [x, 1] for x ∈ X+.

Lemma 2.5.16. Let (G,X) be any Shimura datum unramified away from N , E ⊃
E(G,X), K N

=
∏

p -N G(Zp) for some choice of integral model for G, and EN/E
the maximal abelian extension unramified away from N.

(1) Let X+K N be any component of ShK N (G,X)Q. Then X+K N is defined over EN ,
and given for every choice of hyperspecial levels of the form U N

=
∏

p -N G(Zp)

for G/Z[1/N ] a reductive model for G a smooth integral model S+U N /ON [1/N ]
for Sh+U N ,EN

with the extension property, we can construct a smooth integral
model for X+K N ,EN

with the extension property.

(2) Given any smooth integral model for every X+K N ,EN
with the extension property,

their disjoint union gives a smooth integral canonical model for ShK N ,EN which
descends to OE [1/N ] and to which the AN (G) action extends.

Proof. For (1), let π : Sh(G,X)Q → ShK N (G,X)Q be the canonical projection,
and take a ∈ G(A∞) such that π(Sh+ .a)= X+K N . Note that this a descends to an
identification

ShK N (G,X)Q −→
∼ Sha−1 K N a(G,X)Q

defined over E and under which X+K N is identified with Sh+
a−1 K N a,Q

. Since the
latter is defined over EN by Lemma 2.5.1, the former must be also. Moreover,
since ap ∈ G(Zp) for all but finitely many p, and in all other cases we are taking
the conjugate of a hyperspecial subgroup, which are always hyperspecial and so
have local reductive models, by Proposition 2.4.2 there exists a reductive model
G/Z[1/N ] for G giving rise to the level a−1K N a. Hence by hypothesis we have a
smooth integral model for Sh+a−1 K N a,EN

with the extension property. Composing
with the isomorphism induced by a gives the required model for X+K N ,EN

.
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For (2), we assume we are given for each X+K N ,EN
some smooth integral model

X+K N with the extension property. Letting SK N ,ON [1/N ] together with

ι : SK N ,ON [1/N ]⊗ON [1/N ] EN −→
∼ ShK N ,EN

be their disjoint union, note that it still has the extension property. In particular
the Gal(EN/E)-action on ShK N ,EN extends to SK N ,ON [1/N ], and since EN/E is
unramified away from N this gives an étale descent datum from ON [1/N ] to
OE [1/N ]. Thus we may descend our model to SK N /OE [1/N ] and by Lemma 2.1.3
this model still has the extension property. The AN (G)-action also extends to
SK N ,ON [1/N ] by the extension property, and commutes with the Gal(EN/E)-action,
so it descends, and for any KN ⊂

∏
p|N G(Qp) we have that (SK N /KN )⊗ON [1/N ]

is smooth, which is a property stable by fpqc descent and allows us to see that SK N

is a smooth canonical model. �

3. Automorphic vector bundles and filtered G-bundles

3.1. Review of characteristic zero. We sketch the main results of [Milne 1990,
III], on which our results will build.

3.1.1. Let (G,X) be a Shimura datum with reflex field E , and µ : Gm,E → GE a
Hodge cocharacter of X. Then we can form the compact dual Grµ which represents
the following functor. Fix a faithful representation G ↪→GL(V ) and tensors sα ∈V⊗

such that G is exactly the subgroup fixing these tensors, and note that µ induces a
filtration Fil•⊂V⊗E . For π : S→Spec Q we let VS :=π

∗V be the constant vector
bundle, which also carries tensors sα,S = π∗sα. Then as a functor on E-schemes

Grµ(S)=
{
filtrations F• of VS such that (Vs,Fil•s, sα)∼= (VS,s,F•s, sα,S)

for each geometric point s ∈ S
}
.

This depends only on the conjugacy class of µ and is representable as an E-
scheme. Moreover by construction it carries an algebraic action of GE , which we
write as a right action

Grµ(S)×G(S) 3 (F•, g) 7→ g−1(F•) ∈ Grµ(S).

3.1.2. Let Znc ⊂ Z(G) be the largest subtorus of Z(G) split over R but with no
subtorus split over Q, and Gc

=G/Znc. Then there is a Gc-torsor P= P(G,X) over
Sh(G,X) with an equivariant G(A∞)-action,7 which can be easily defined analyti-
cally over C and by [Milne 1990, III,4.3] admits a canonical model (in Milne’s sense)
over E , together with an integrable connection with regular singularities at infinity.

7It is natural to ask whether this extends to an equivariant action of Deligne’s extension
G(A∞)/Z(Q)∗G(Q)+/Z(Q)Gad(Q)+: in fact this group does act but not quite in a way that commutes
with the algebraic Gc-action, as we shall later see.
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Moreover P(G,X) has a G-action, via G→ Gc, and there is a G-equivariant
map [Milne 1990, III,4.6] γ : P(G,X)→Grµ which complex analytically is given
by the Hodge filtration coming from X, but is algebraic and descends to E .

To begin discussing any functoriality of this construction we need a lemma.

Lemma 3.1.3. Let f : (G1,X1)→ (G2,X2) be a morphism of Shimura data. Then
there is an induced map

Gc
1→ Gc

2.

Proof. This comes down to showing that f (Z(G1)nc) ⊂ Z(G2). Suppose for
contradiction we have R∗ ∼=9 ⊂ Z(G1)(R) with f (9) intersecting trivially with
Z(G2)(R). Let h ∈ X1, and recall that ad f (h(i)) is a Cartan involution acting on
Gad

2 , so the real group

H = {g ∈ Gad
2 (C) : f (h(i))g f (h(i))−1

= g}

is compact. On the other hand for any ψ ∈9 we have

h(i)ψh(i)−1
= ψ = ψ

since ψ is central in G1, h(i)∈G1(R), and ψ is real. Hence, we have an embedding
of 9 ∼= R∗ into the compact group H(R), which is absurd. �

Note that there is no such functoriality for general group morphisms. For example
letting F be a totally real field of degree d acting on itself by multiplication we get
a morphism

F× ↪→ GLd

failing to have the required property for all d > 1.

3.1.4. Automorphic vector bundles are typically parametrised by complex repre-
sentations of the parabolic subgroup Pµ associated with the Hodge cocharacter µ in
the usual fashion (for example one may define Pµ ⊂GC as the subgroup preserving
the filtrations µ induces on Rep GC). By a complex analytic interpretation of the
Grassmannian it is easy to show these are in correspondence with GC-equivariant
vector bundles on Grµ,C. We therefore take as our input data a G-equivariant vector
bundle J on Grµ defined over L/E some number field, and we assume the G-action
factors through Gc.8

Given this data, we can pull it back along γ to get a G(A∞)×Gc-equivariant
vector bundle on P(G,X)L and therefore a G(A∞)-equivariant vector bundle V(J)

on Sh(G,X)L . This is the construction of canonical models for automorphic vector
bundles we seek to perform integrally.

8This is a reasonable condition to impose since Z ⊂ Pµ acts trivially on Grµ.
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3.1.5. We need a basic functoriality property for which we could not find a direct
reference but which follows easily from Milne’s definition together with the map on
complex points induced by X×G(A∞)×Gc(C)→X′×G ′(A∞)×G ′c(C) which
we note relies on Lemma 3.1.3.

Lemma 3.1.6. Let f : (G,X)→ (G ′,X′) be a morphism of Shimura data, µ and µ′

Hodge cocharacters of X and X′, respectively. Then there is a diagram

Sh(G,X) ←−−− P(G,X) −−−→ Grµy y y
Sh(G ′,X′) ←−−− P(G ′,X′) −−−→ Grµ′

defined over E(G,X) which is G-equivariant and G(A∞)-equivariant in the obvi-
ous senses.

3.1.7. In the case where G= T a torus we also need the following, the main content
of which is due to Blasius. Let p be a prime containing a place v of E ⊃ E(T, h),
ωet the usual fibre functor giving étale local systems on the Shimura variety, and
fix Ev an algebraic closure of Ev letting 0Ev := Gal(Ev/Ev). Consider the fibre
functor coming from p-adic Hodge theory

ωv,dR : RepQp
(T c) 3 V 7→ (ωet(V )⊗Qp BdR)

0Ev ∈ VecEv .

Proposition 3.1.8. Suppose T is split by a CM field, and let X = Spec E ⊂
ShU (T, h) be a component of the Shimura variety for U ⊂ T (A∞) open compact.
There is a natural isomorphism between ωP,X,v : V 7→ (V ×T c

PU (T, h)|X )⊗E Ev
and ωv,dR.

Proof. By Lemma 3.1.6 it suffices to do the case T = T c. We observe that
any cocharacter µ : Gm,E → T c

E has weight defined over Q. Indeed, by definition
X∗(T c)Q is the summand of X∗(T )Q on which either Galois acts trivially or complex
conjugation acts via −1, so for any µ ∈ X∗(T c), µ+µc lands in the summand on
which Galois acts trivially.

Combining this with fact that T hence T c is split by a CM field, the induced
Shimura datum (T c, hc) is of CM type, and thus admits a characterisation as a
moduli space of CM motives M , which we take as those for which the Betti fibre
functor ωB = HB(M(ρ)) : RepQ T → VecQ is trivial.

Therefore a point x ∈ X (Q) has attached to it a T -valued CM motive M :
RepQ(T )→ (C M/Q), and the fibre functor attached to x∗PU (T, h) is given by
ωP(ρ) := HdR(M(ρ)/Q) Noting that for σ ∈ Gal(Q/E) we have a canonical
isomorphism

HdR(Mσ (ρ)/Q)∼= HdR(M(ρ)/Q)⊗σ Q,
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we see that ωP carries a canonical descent datum to X = Spec E which defines
PU (T, h)|X . We may also use the reciprocity law to canonically identify the p-adic
étale cohomology fibre functors

Het ◦M = ωet : RepQp
(TQp)→ VecQp ,

which in particular have an equivariant 0E -action coming from ωet.
Now fix an embedding Q ↪→ Ev, and a faithful representation T ↪→ GL(V ),

and sα cycles on V⊗ fixed precisely by T . For any M ∈ X (Q), these give rise
to absolute Hodge cycles on HB(M(V ))⊗, which in turn give rise to de Rham
cycles sα,dR ∈ HdR(M(V ))⊗ via the Betti–de Rham comparison, and étale cycles
sα,et ∈ ωet(V )⊗. These sα,et are 0E -invariant because the action factors

0E →Up ⊂ T (Qp)→ GL(ωet(V ))

by construction, and as in [Kisin 2010, 2.2.1] this implies the sα,dR ∈ ωP,X,v(V )⊗

because an absolute Hodge cycle is determined by either component.
Let us fix Y/L with Q ⊃ L a finite Galois extension of E such that M(V ) is

realised in the cohomology of Y , and a place w|v of L determining Lw ⊂ Ev. By
Blasius’ theorem on de Rham cycles [1994], the p-adic Hodge theoretic compari-
son map

Het(M(V ),Qp)
⊗
⊗Qp BdR −→

∼ HdR(M(V )Lw/Lw)⊗⊗Lw BdR

identifies sα,et with sα,dR. Unravelling the definitions, we see that

PU (T, h)L = Isomsα (VL , HdR(M(V ))L)

and
Pωv,dR ⊗ Lw = Isomsα (VLw , (ωet(V )⊗Lw BdR)

0Lw ).

Thus putting it all together we get a canonical9 identification

ωP,X,v ⊗ Lw ∼= ωv,dR⊗ Lw.

We conclude by checking that this descends to Ev . Indeed, 0Ev acts canonically
on both sides of the p-adic comparison map compatibly, so we have an isomorphism
of Gal(Lw/Ev)-modules

(ωet(V )⊗Qp BdR)
0Lw −→∼ HdR(M(V )Lw/Lw)= ωP,X,v(V )⊗Ev Lw

and taking Gal(Lw/Ev)-invariants therefore ωv,dR(V ) = ωP,X,v(V ). Finally, we
have already observed that the sα,et and sα,dR are Galois invariant, so these too
descend to Ev. �

9The choice of sα does not affect the identification. To see this note that it does not change under
adding more tensors so given two sets of choices one can just compare both with the union.
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3.2. Moduli of µ-filtrations of G. In §3.2 and §3.3 we make a brief digression
from the theory of Shimura varieties to discuss Grassmannians and filtrations more
generally. Let R be a domain with fraction field K of characteristic zero, R′/R an
étale cover, and G/R a connected reductive group.

3.2.1. Suppose we are given a cocharacter µ :Gm,R′→G R′ . This cocharacter gives
us a parabolic subgroup Pµ ⊂ G R′ , which we can view as a point xµ ∈ ParG/R(R′),
where we recall [Conrad 2014, 5.2.9] that ParG/R , the functor assigning to each
R′/R the set of parabolic subgroups of G R′ defined over R′, is a proper smooth
scheme over R.

After making a base change R ⊂ K → K we get a well-known finite decompo-
sition

ParG/R ⊗R K = ParG K /K =
∐

i

G K /Pi

where the Pi are representatives of the finitely many K conjugacy classes of para-
bolic subgroups of G K .

For Pµ ⊂ G R′ a parabolic subgroup, we denote its conjugacy class by [Pµ], in
a precise sense we will soon make clear. Let us say that [Pµ] is defined over R if
there is a component10 Zµ ⊂ ParG/R defined over R such that xµ ∈ Zµ(R′) and
Zµ,K is connected.

This definition in a sense is saying that “being étale locally conjugate to Pµ” is a
notion that is defined over R, even if Pµ itself is not. More precisely, we have the
following.

Lemma 3.2.2. Let µ be a cocharacter as above defined over R′ such that [Pµ] is
defined over R. For S an R-algebra, and P ⊂ GS a parabolic subgroup, P is étale
locally conjugate to Pµ if and only if xP ∈ ParG/R(S) factors through Zµ.

Proof. The statement may be checked étale locally, so we may work over R′, at which
point by the construction of ParG/R , G R′/Pµ ⊂ Zµ,R′ is a union of components.
Working over R′⊗R K using the fact that the fibres of Zµ over each generic point
are connected, we see that in fact G R′/Pµ= Zµ,R′ , so the desired statement follows
immediately from [Conrad 2014, 5.2.8]. �

For us an important context where the above holds will be the following.

Proposition 3.2.3. Assume R is a Dedekind domain with K = Frac R of char-
acteristic zero, G/R connected reductive and L/K a finite extension. Suppose
µ : Gm,L → GL is a cocharacter whose conjugacy class is defined over K .

10Here and in much of what follows we use “component” in the relative sense of a “component”
of a morphism X→ Y being a Y -subscheme X ′ ⊂ X such that the preimage of any connected open
subscheme U ⊂ Y is connected.
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Then there exists an étale cover R′/R and a cocharacter µ′ :Gm,R′→ G R′ such
that if we write R′⊗R K ∼=

∏
i L i , there are embeddings L ↪→ L i such that µ′⊗R K

is G(R′⊗R K )-conjugate to µ⊗L
∏

i L i .
Furthermore, thisµ′ has the property that [Pµ′] is defined over R and independent

of the choice of µ′.

Proof. For existence, take R′/R an étale cover which splits G and whose generic
points contain L , and fix embeddings L ↪→ L i . Let T ⊂ G R′ be a split maximal
torus and let Tµ ⊂ G R′⊗R K be a maximal torus containing the image of µ which
perhaps after enlarging R′ we may assume is also split. Then there exists g ∈
G
(∏

i L i
)
=
∏

i G(L i ) such that gTK g−1
= Tµ and so

µ′ = g−1µg ∈ HomR′⊗R K (Gm, TK )= HomR′(Gm, T )

is a cocharacter with the desired property.
Let us next show that [Pµ′] is defined over R. By definition we see that xµ and

xµ′ lie on the same component of ParG/R ⊗(R′⊗R K ), whence certainly on that
of ParG/R ⊗R′. But since the conjugacy class of µ is defined over K , xµ lies on a
component Zµ,K ⊂ ParG K /K which is geometrically connected. Letting Zµ be its
closure in (i.e., the corresponding component of) ParG/R , we obtain our witness to
the fact that xµ′ is a defined over R. Also since Zµ is determined by µ, in particular
it does not depend on µ′. �

3.2.4. Let S/R be a scheme. We let VecS denote the category of vector bundles
(projective finitely generated modules) on S, and RepR(G) the category of algebraic
representations G→ Aut(V ) for V ∈ VecR = VecSpec R .

A filtered bundle over S is a vector bundle M/S together with a decreasing
complete exhaustive filtration F • ⊂ M by flat submodules such that gr•F M :=⊕

p F p/F p+1 is flat over S. These form an exact category FilS , allowing us to
define a filtered G-bundle over S to be a faithful exact tensor functor

F : RepR(G)→ FilS .

We say that F is a filtration of G over S (or just “filtration of G” if no confusion
will arise) if its composite with the forgetful functor FilS → VecS is naturally
isomorphic to the usual forgetful functor RepR(G)→ VecR

⊗OS−−−→VecS .
Let µ : Gm,R′→ G R′ be a cocharacter defined over some étale cover R′/R such

that [Pµ] is defined over R. It induces a grading on each V ∈ RepR(G)⊗ R′, each
of which in turn gives such V the structure of a filtered bundle, so we can define a
canonical filtration of G associated with µ

Fµ : RepR(G)
Fil ◦µ∗−−−→FilR(G)⊗ R′.
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3.2.5. Let us say that a filtration F of G over S is a µ-filtration if étale locally on S
we have F∼= Fµ. We make the necessary remark that of course given f : S′→ S,
whenever F is a µ-filtration of G over S, we may take an étale cover {Uα→ S}
witnessing that F is a µ filtration and pulling it back along f it will give an étale
cover of S′ witnessing that f ∗ ◦F is a µ-filtration of G over S′.

Thus we have a natural functor on R′-schemes

Grµ,R′(S)= {µ-filtrations of G over S}.

Proposition 3.2.6. This has the following properties:

(1) The functor Grµ,R′ is representable by a smooth proper R′-scheme which in
fact canonically descends to Grµ /R.

(2) The scheme Grµ /R comes equipped with a natural G-action.

(3) If R is a field, this agrees with the construction of Section 3.1.1.

Proof. In the usual fashion µ determines a parabolic Pµ ⊂ G R′ , and we claim that
Grµ,R′ ∼= G/Pµ which in turn is smooth and projective by [Conrad 2014, 5.2.8],
and canonically descends by the definition of [Pµ] being defined over R.

In [ibid.] it is also shown that G/Pµ represents the functor of subgroups of G
which are étale locally conjugate to Pµ, so it suffices to check this coincides with
our functor. Given a µ-filtration F over S we can define the subgroup PF ⊂ G of
elements which preserve F (if you like, acting on all representations). Since F is a
µ-filtration, étale locally there is an identification of F with Fµ, which conjugates
PF onto Pµ. Thus F 7→ PF gives a map Grµ(S)→ G/Pµ(S).

Let us construct an inverse. Given P/S étale locally conjugate to Pµ,S , after
passing to an étale cover S′→ S there exists g ∈ G(S′) such that PS′ = g Pµ,S′g−1.
In particular PS′ is a parabolic subgroup of GS′ , and letting µP := g ◦µ we see that
PS′ preserves the filtration FP defined by µP of G over S′. We must now check
this filtration is independent of the choice of g and so in particular is canonical and
descends to S.

Suppose we take h ∈ G(S′) such that h Pµ,S′h−1
= g Pµ,S′g−1

= PS′ . Then

hg−1 PS′gh−1
= h Pµ,S′h−1

= PS′

so hg−1
∈ NG(P)(S′)= P(S′), where the final equality is again by [Conrad 2014,

5.2.8]. It follows that gµ and hµ induce the same filtration.
Part (2) is now obvious, since G acts by conjugation on G/Pµ, and part (3) is

immediate from [Conrad 2014, 5.2.7 (1)] and an easy verification shows that the
G-actions agree. �

3.2.7. In the context of Proposition 3.2.3 where we are given a conjugacy class of
cocharacters µ : Gm,L → GL defined over K = Frac(R) and deduce the existence
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of a µ′ defined over an étale cover of R inducing a conjugacy class of parabolics
defined over R and hence a Grµ′ /R we use the notation GRµ := Grµ′ noting the
canonical identification

GRµ⊗R K ∼= Grµ .

Lemma 3.2.8. Suppose G1 → G2 is a map of connected reductive groups over
R and µ1 : Gm → G1,R′ giving a conjugacy class defined over R and inducing
µ2 : Gm→ G1,R′→ G2,R′ . There is a natural map

Grµ1 → Grµ2 .

Proof. Given S/R and F ∈ Grµ1(S), recall that F is specified by a fibre functor

RepR(G1)→ FilS .

Composing with the restriction map RepR(G2)→ RepR(G1), we get a new fibre
functor from RepR(G2) which it is easy to check gives an element of Grµ2(S),
defining the map required. �

3.3. Filtered G-bundles. Fix G, µ as above and suppose we have X/R a scheme
and P → X a G-bundle on X . A µ-filtration of P is a G-equivariant map of
R-schemes

γ : P→ Grµ .

Lemma 3.3.1. To give a µ-filtration γ on P is to give a fibre functor

ω
γ

P : RepR(G)→ FilX

which étale locally is isomorphic to Fµ and such that the composite with the
forgetful functor

RepR(G)
ω
γ

P−→ FilX → VecX

is equal to the fibre functor ωP defined by P.

Proof. Suppose we are given a µ-filtration γ : P → Grµ of P . Pulling back the
universal µ-filtration of G, we obtain a G-equivariant µ-filtration of G over P ,
which descends to a µ-filtration of G over X , i.e., we obtain a fibre functor

ω
γ

P : RepR(G)→ FilX .

Since it comes from a G-equivariant µ-filtration of G over P , whose forgetful
functor to VecP by definition is the canonical one from RepR(G) which descends
to ωP , we see that it satisfies the condition in the lemma.

Conversely, if we are given ωγP satisfying the condition, we can pull it back
along P→ X to obtain a G-equivariant µ-filtration on P , which is the same as a
G-equivariant map γ : P→ Grµ. �
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We also need the following criterion for extending µ-filtrations over K to µ-
filtrations over R.

Lemma 3.3.2. Suppose we are given µ : Gm,L → GL for L/K = Frac(R) a finite
extension whose conjugacy class is defined over K , X/R a scheme and P→ X a
G-bundle. A µ-filtration

γ : PK → Grµ
extends to a G-equivariant

P→ GRµ

if for ρ : G ↪→GL(V ) a faithful representation on V/R finite projective, the bundle
V := V ×G P/X carries a filtration V• (making V into a filtered bundle in the above
sense) extending that of VK = ω

γ

PK
(V ).

Proof. Let R′/R be an étale cover and µ : Gm,R′→ G R′ a cocharacter conjugate
to µ as in Proposition 3.2.3. We let GrG

µ′ and GrGL(V )
µ′ be the two Grassmannians

formed from considering µ′ : Gm→ G and µ′ : Gm→ G ρ
−→GL(V ) respectively,

both defined over R.
By Lemma 3.2.8 we obtain a map

ρ∗ : GrG
µ′→ GrGL(V )

µ′ .

We claim this map is a closed immersion, and this suffices to prove the lemma be-
cause we are assuming that ρ∗(γ )∈GrGL(V )

µ′ ⊗R K extends to a map γ̃ : P→GrGL(V )
µ′ ,

and since GrGL(V )
µ′ is flat that the ideal sheaf of GrG

µ′ is killed by γ̃ ∗ may be checked
on the generic fibre.

Since it is clearly proper (as both the source and target are proper), it suffices to
show it is a monomorphism, for which it suffices to check the functor of points is
injective. But this is obvious: given two µ′-filtrations of GT for a test scheme T ,
if they induce the same filtration on VT then they are equal, since any other repre-
sentation of GT can be embedded in a tensor construction on VT and will have to
receive the induced filtration. �

4. Integral Models for the standard principal bundle

4.1. Breuil–Kisin modules and lattices in de Rham cohomology. We consider the
following adaptation of the results of [Kisin 2006], as packaged in [Kisin 2010, 1.2].
Fix F =

∏s
i=1 Fi some finite étale algebra over Qp, and let κi be the residue field

of Fi , and Ei (u) the monic minimal polynomial of a uniformiser $i for Fi over
W (κi ). Consider the ring S=SF :=

∏
i W (κi )[[u]] and E(u)= (E1(u), . . . , Es(u)).

We equip S with the Frobenius ϕ raising u 7→ u p and the canonical Frobenius on
each W (κi ).
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Define the category Lissecrys
Zp
(F) to be that of crystalline constant rank lisse

Zp-sheaves on Spec F , i.e., Galois-stable Zp-lattices in tuples of crystalline p-
adic representations (σi : Gal(Fi/Fi )→ GLn(Qp)). Define the category ModϕS of
S-modules to consist of finite free S-modules M together with a ϕ-semilinear
isomorphism

1⊗ϕ : ϕ∗(M)[1/E(u)] −→∼ M[1/E(u)].

Theorem 4.1.1. There is a fully faithful tensor functor

M : Lissecrys
Zp
(F)→ModϕSF

compatible with the formation of symmetric and exterior powers, unramified base
change F→ F ′ of finite étale algebras over Qp, and with the property that

D(L) := ϕ∗M(L)⊗SF OF ⊂ DdR(L ⊗Qp)

obtained by tensoring along the map u 7→($i) is a natural OF -lattice in DdR(L⊗Qp).
Moreover, if A is an abelian variety over OF , and L = Tp(AF )

∗, then this lattice is
identified with integral de Rham cohomology

H 1
dR(A/OF )

⊂
−−−→ H 1

dR(AF/F)∥∥∥ yo
D(L)

⊂
−−−→ DdR(L ⊗Qp).

Proof. The first part is just [Kisin 2010, 1.2.1] and the second follows perhaps
most quickly from [Bhatt et al. 2016, 1.8 (ii)] (although since we are in the case of
abelian varieties the theorem probably also can be deduced directly from the theory
of Breuil and Kisin). �

4.1.2. For our application to integral models of Shimura varieties over OE [1/N ],
we also need the following abstract lemmas. We thank one of the anonymous
referees for pointing out the ideas for the argument for Lemma 4.1.3 in [Maulik
2014, 6.15].

Lemma 4.1.3. (1) Let A be a Dedekind domain with fraction field K , X/A a
smooth scheme and suppose we are given two vector bundles L1 and L2 over
X together with an identification

θ : L1⊗A K −→∼ L2⊗A K .

Suppose further that θ extends as an isomorphism to the formal completion of
X at all maximal ideals of A. Then θ extends over X.
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(2) Let W = W (k) for k a perfect field with fraction field K . Suppose X/W is a
smooth scheme, with p-adic completion X̂ , and special fibre X0, and suppose
we are given vector bundles L1 and L2 over X̂ together with an identification

θ : L1
[ 1

p

]
−→∼ L2

[ 1
p

]
.

Suppose further that there is a Zariski dense subset U0⊂ X0 of the special fibre
such that each x0 ∈U0 admits a lift x̃0 ∈ X̂(W (κ(x0))) with the property that
x̃∗0 (θ) extends to an isomorphism x̃∗0 (L1)−→

∼ x̃∗0 (L2). Then θ extends over X̂ .

Proof. Note that in both cases the claim may be checked locally on X , so we may
assume L1,L2 are both free and that X = Spec R is affine, and by picking bases
and considering the matrices of both θ and θ−1 the question can be reduced to a
question about the matrix coefficients.

For (1), we wish to show matrix values lying in R⊗A K in fact lie in R. The
matrix values all lie in R[1/D] for some D ∈ A, since R is of finite type over A,
and the Li of finite rank. But by the hypothesis for each maximal ideal p containing
D, we know θ and θ−1 extend over X̂/p, implying that the matrix values also lie in
R⊗A Ap, hence they lie in R as required.

For (2), letting R̂ be the p-adic completion of R, we are required to show that a
matrix coefficient f ∈ R̂[1/p] in fact lies in R̂. Suppose for contradiction it does
not, and let r > 0 be minimal such that F = pr f ∈ R̂. The hypothesis tells us
that for any x0 ∈U0 and some lift x̃0 we have that x̃∗0 ( f ) ∈ W (κ(x0)). Therefore
x̃∗0 (F) ∈ pr W (κ(x0)) and in particular x∗0 (F)= 0, or F ∈mx0 ⊂ R⊗W k. Since the
set of such x0 is dense, and R⊗W k a reduced algebra of finite type over a field, we
deduce that the F = 0 restricted to the special fibre. I.e. F = pF ′ for some F ′ ∈ R̂.
But then pr−1 f = F ′ ∈ R giving the required contradiction. �

Lemma 4.1.4. Let R be a PID with fraction field K , X/R a flat scheme, G/R a
flat affine group scheme of finite type, and P/X K a G K -torsor. Suppose we have
two pairs (Pi , ιi ) i = 1, 2 where Pi is a G-torsor over X and ιi : Pi ⊗R K −→∼ P
an isomorphism of G K -torsors over X K .

Then the map ι−1
2 ι1 : P1⊗ K −→∼ P2⊗ K extends over R if and only if for every

representation G→ GL(V ) with V/R finite free the composite isomorphism

ωP1(V )⊗ K ι1∗−→ωP(VK )
ι−1
2∗−→ωP2(V )⊗ K

identifies the lattices ωP1(V ) and ωP2(V ).

Proof. Recall the natural equivalence [Broshi 2013, 1.2] under our hypotheses
between the groupoid of G X -torsors and the groupoid of fibre functors Rep(G)→
Vec(X), and that it is functorial in X/R. In particular, ι−1

2 ◦ ι1 extends over R if
and only if the composite induced map ωP1 ⊗R K −→∼ ωP2 ⊗R K on fibre functors
extends over R, and this is the case if and only if the condition on lattices holds. �
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4.2. Special type case.

4.2.1. Let (T, h) be the Shimura datum defined by a torus split by a CM field,
ET := E(T, h). Then Sh(T, h)/ET is a product of algebraic field extensions, and
we recall that its integral canonical model S(T, h) is that obtained by taking integral
closures. In particular, recall that if T is unramified at all p -N , we get a unique
integral model (also abusively written) T/Z[1/N ] and letting K N

=
∏

p -N T (Zp)we
get SK N (T, h) indétale over OET [1/N ]with a natural

∏
p|N T (Qp) action extending

that on the generic fibre.
Recall that we also have PK N (T, h)→ ShK N (T, h) the standard principal T c-

bundle, defined over ET . Our aim here is to construct for it a canonical integral
model. We assume henceforth that T is unramified at p -N .

4.2.2. Suppose P/SK N (T, h) together with ι :PET −→
∼ PK N (T, h) is such a model.

We can study the associated fibre functor

ωP : RepZ[1/N ](T
c) 3W 7→W ×T c

P ∈ Vec(SK N (T, h)).

The identification ι realises the image of such as lattices

ωP(W )⊂ ωPK N (T,h)(W ⊗Q)

in the “de Rham sheaves” defined by PK N (T, h).
On the other hand, for each prime q -N , and v|q a place of ET we can let K Nq

=∏
p -Nq T (Zp) and it is immediate from the setup and class field theory that the pro-

étale T c(Zq)-cover ShK Nq (T, h)→ ShK N gives rise to, for each representation Wq

of T c(Zq), a crystalline lisse Zq -sheaf ωet(Wq) on ShK N . By Theorem 4.1.1 we have
associated to such a datum a canonical lattice D(ωet(Wq))⊂ DdR(ωet(Wq)⊗Zq Qq).

Finally recall Proposition 3.1.8 which gives a natural identification

θ : ωPK N (T,h)(W ⊗Q)⊗ET ET,v −→
∼ DdR(ωet(Wq)⊗Zq Qq).

We say that the model P is canonical if for every q -N and W ∈RepZ[1/N ](T ) the
two lattices ωP(W )⊗OET [1/N ] OET ,v and D(ωet(Wq)) constructed above are, under
the map θ , identified.

Proposition 4.2.3. With (T, h) as above, there exists a unique integral canonical
model for PK N (T, h).

Proof. We first remark that uniqueness follows directly from (4.1.3 (1)) and
Lemma 4.1.4.

For existence, let us first remark that we have the map of Shimura data (T, h)→
(T c, hc) giving rise to a map of integral canonical models for the Shimura varieties
i : SK N (T, h)→ SK cN (T c, hc). Suppose Pc is an integral canonical model for
PK cN (T c, hc). Then i∗Pc is an integral canonical model for PK N (T, h) because
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i∗ωet,(T c,hc) = ωet,(T,h). Since any h : S→ T c
R has weight defined over Q, we are

therefore reduced to the case where (T, h) is a CM pair (i.e., where T is split by a
CM field and the weight of h is defined over Q).

Let T → GL(W ) be a representation of T/Z[1/N ]. Since (T, h) is a CM
pair, ShK N (T, h), a union of copies of Spec E for some field E , can be inter-
preted as a moduli space of CM motives with level structures. Let PK N (T, h)0→
ShK N (T, h)0 −→∼ Spec E be any single component together with the restriction
of PK N (T, h) over it. There exists a finite extension F/E and a CM abelian
variety A/F for such that ωPK N (T,h)0(W ⊗Q)⊗E F ⊂ H 1

dR(A/F)⊗ and ωet(W )=

H 1
et(A,Zp)

⊗
∩ωet(W )⊗Qp for all p -N ′ some N ′ divisible by N . Let A/OF be the

Neron model of A, and notice that it is an abelian variety over OF [1/M] for some
M which we may assume is divisible by N ′. Thus we construct an OE [1/M]-lattice

3′ := ωPK N (T,h)0(W ⊗Q)∩ H 1
dR
(
A/OF

[ 1
M

])⊗
⊂ ωPK N (T,h)0(W ⊗Q).

The second part of Theorem 4.1.1 assures us that at all p -M this lattice agrees with
that obtained via first taking the dual Tate module and applying Breuil–Kisin theory.

Moreover, using the construction of Theorem 4.1.1 together with Lemma 2.4.1
for the finitely many p which divide M but do not divide N , we are able to extend3′

to a lattice 3 over OF [1/N ]. This 3 (applying the construction for all components)
gives us the lattice in ωPK N (T,h)(W ⊗Q) we require to prove existence. Note that
since we already have uniqueness, we may observe that the construction does not
depend on the choices of F and A/F . �

4.3. Connections on G-bundles. It will help to collect some basic facts about
connections on G-bundles. Let S be a scheme and G/S a flat affine group scheme
of finite type.

Suppose X/S a scheme, and let12(1)=12
X/S(1) be the first order neighbourhood

of the diagonal in X×S X , δ : X ↪→1(1) and p1, p2 :1(1)→ X the two projection
maps. We also will need 13(1), the first order neighbourhood of the diagonal in
X ×S X ×S X and its three projections p12, p23, p13 :1

3(1)→12(1).

4.3.1. Recall that if we have a vector bundle V on X a connection on V/X (relative
to S) is given by an isomorphism

∇ : p∗1V−→∼ p∗2V

such that δ∗∇ = id (under the canonical identification (δ ◦ pi )
∗V = id∗V ∼= V).

Such a connection is said to be flat if

p∗13(∇)= p∗23(∇) ◦ p∗12(∇).

It is well known that these definitions are equivalent to the more usual definitions
from differential geometry.
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4.3.2. Let P→ X be a G X -torsor. A connection on P is an isomorphism

∇ : p∗1 P −→∼ p∗2 P

such that δ∗∇ = idP , and ∇ is said to be flat, again if

p∗13(∇)= p∗23(∇) ◦ p∗12(∇).

Lemma 4.3.3. Let X/S be a scheme, and assume S is Dedekind. Let P→ X be a
G-bundle, with associated fibre functor ωP . To give the following pieces of data are
equivalent:

(1) A (flat) connection on P→ X.

(2) For each representation V ∈ RepS(G) a (flat) connection on ωP(V ) in such a
way that the isomorphisms

ωP(V ⊗W )∼= ωP(V )⊗ωP(W )

and

ωP(V∨)∼= ωP(V )∨

are isomorphisms of bundles with connection.

(3) Given a faithful representation G ↪→ GLS(V ) and tensors sα ∈ V⊗ such that
G = GLS,sα (V ), a (flat) connection on ωP(V ) with the property that each
ωP(sαOS)⊂ ωP(V⊗)= ωP(V )⊗ receives the trivial connection.

Proof. The equivalence of (1) and (2) is formal given Broshi’s Tannakian formalism
over a Dedekind scheme [Broshi 2013, 1.2]. Indeed the conditions in (2) are
exactly those needed to say that the connections ∇ωP (V ) define an isomorphism of
tensor functors p∗1ωP −→

∼ p∗2ωP , which is the same as an isomorphism of torsors
p∗1 P −→∼ p∗2 P , and one easily verifies that the conditions translate across.

It is obvious how to pass from (1) to (3). For going from (3) to (1), we note that
P can be canonically identified with the frame bundle

P ∼= Isomsα (V ⊗OX , P ×G V ),

(via p 7→ (v 7→ (p, v))). Let V=ωP(V )= P×G V and sα,1 = (1, sα) ∈V⊗. If we
are given a connection ∇ : p∗1V−→∼ p∗2V, which is trivial on each line containing
sα,1, that is to say ∇(p∗1sα,1)= p∗2sα,1, we obtain a well-defined isomorphism

∇P : p∗1 P 3 φ 7→ ∇ ◦φ ∈ p∗2 P,

giving the desired connection on P . Again it is easy to check that if ∇ is flat then
so is ∇P . �
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4.4. Definition of canonical models. Let (G,X) be a Shimura datum with reflex
E = E(G,X), and for what follows assume it admits an integral canonical model
over OE [1/N ] at any level hyperspecial away from N .

4.4.1. We shall need the mild assumption that Z(G)◦ is split by a CM field, which
we impose for the rest of the paper. This can be removed if the arguments relying
on CM motives in proving Proposition 3.1.8 and Proposition 4.2.3 can be replaced
by arguments that work with greater generality.

4.4.2. Recall Section 3.1.2 that the Shimura variety Sh(G,X) is equipped with
a standard principal bundle P(G,X), which is a G(A∞)-equivariant Gc-torsor
defined over E , with a flat connection ∇ and a G-equivariant map γ : P(G,X)→
Grµ. Suppose also G is quasisplit and unramified away from N , fix G = GZ[1/N ] a
reductive model, K N

=
∏

p -N G(Zp) and for µ the Hodge cocharacter note that
over an integral model one has the canonical inclusion Grµ ⊂ GRµ.

We also let
ωet : RepZp

(Gc)→ LisseZp(ShK (G,X))

denote the standard étale Zp-sheaves coming from the tower at p, and ωet,η :

RepQp
(Gc)→ LisseQp(ShK (G,X)) the corresponding lisse Qp-sheaves.

4.4.3. We will say that a (G,X) has enough crystalline points if for every prime p

of E with p|p -N , and every KN ⊂
∏

q|N G(Qq) compact open, K = KN K N , there
is a dense subset U0 of the special fibre of SKN K N /p with the property that for each
x0 ∈U0 there is a lift x̃0 ∈ SKN K N (W (κ(x0)) such that x̃0[1/p]∗ωet,η takes values
in crystalline representations of 0W (κ(x0))[1/p].

We say (G,X) has all the crystalline points if for every W (k)-valued point
x ∈ SKN K N for k a finite field of characteristic p -N , x[1/p]∗ωet,η takes values
in crystalline representations of 0W (k)[1/p]. Clearly in the present context where
the base is smooth and so every k-point admits a W (k)-lift, if you have all the
crystalline points you have enough crystalline points.

Moreover, we note that when (G,X) is of Hodge type or special type it has
all the crystalline points. In the Hodge type case, this is because the relevant
Galois representations live inside H 1

et(Ax [1/p],Qp)
⊗, where Ax is the fibre of the

universal abelian scheme at x , and since Ax/W (κ(x)) is an abelian scheme, this
representation is crystalline. In the special type case it follows from the explicit
reciprocity law computation as in Section 4.2.2. We shall later use the methods of
§4.6 to establish that (G,X) of abelian type also has all the crystalline points.

In what follows, a crystalline point is understood to be, for some KN and some
finite field k of characteristic p -N , a point of SKN K N (W (k)) such that x[1/p]∗ωet,η

takes values in crystalline representations, and any p, KN , k, K0 = W (k)[1/p]
appearing will be understood to be part of this data.
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4.4.4. We will also say that to give (G,X) a de Rham structure is to give for every
crystalline point x ∈ SKN K N (W (k)), an identification

DdR ◦ x
[ 1

p

]∗
ωet,η −→

∼ x
[ 1

p

]∗
ωPKN K N (G,X) : RepQp

(Gc)→ VecK0 .

In the case where (G,X) is of abelian type (and we expect in general), there is
a canonical de Rham structure. This follows using functoriality and the morphism
(G,X)→ (Gc,Xc) to reduce to the case where the weight is defined over Q. Here
we may use Milne’s moduli interpretation [1994] in such a situation to interpret
x[1/p] as an abelian motive, and get the required identification by the same argument
as Proposition 3.1.8. It is also straightforward to check that these canonical de Rham
structures are compatible under morphisms of Shimura varieties induced by maps of
Shimura data. In what follows, we will usually assume (G,X) is of abelian type in
which case we are always working with reference to the canonical de Rham structure.

4.4.5. Let (G,X) be a Shimura datum as above equipped with a de Rham structure.
An integral canonical model P= PK N (G,X) for PK N (G,X) is a Gc-torsor over
the integral canonical model SK N (G,X) for ShK N (G,X) with an identification

ι : PK N (G,X)⊗OE [1/N ] E −→∼ PK N (G,X)

and equivariant
∏

p|N G(Qp)-action such that we have the lattice property given
below for any crystalline point x ∈ SKN K N (W (k)).

Consider

ωdR,x : DdR ◦ x
[ 1

p

]∗
ωet,η : RepQp

(Gc)→ VecK0 .

This functor comes with two canonical lattices. First, there is the lattice given
by ωPK N K N coming via ι and the de Rham structure. Second, there is the lattice
D ◦ x[1/p]∗ωet coming from the theory Theorem 4.1.1 of S-modules. The lattice
property requires that these lattices are equal. Note that since everything is Hecke
equivariant, it suffices to check the lattice property at infinite level, an observation
of which we shall make liberal use.

We will also insist that for PK N to qualify as a canonical model the connection
∇ and the µ-filtration γ extend to P, although we shall see that in the abelian type
situation these additional properties are automatic given the condition on crystalline
points.

4.4.6. We remark that this definition is compatible with Section 4.2.2. We also
remark that one can make definitions of integral canonical models defined over
any unramified-away-from-N extension F/E , and for any such F containing the
abelian extension over which ShK N (G,X) splits into its geometrically connected
components we may also define integral canonical models for PK N (G,X)+F . These
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definitions are made in exactly the same way and such models enjoy the properties
we are about to note for the same reasons.

Lemma 4.4.7. Suppose (G,X) has enough crystalline points. An integral canonical
model (P, ι), if it exists, is unique up to canonical isomorphism.

This is true without assuming ∇ or γ extend.

Proof. Suppose we have (P, ι) and (P′, ι′), two integral canonical models for
PK N (G,X). We will aim to show that ι′−1

◦ ι : P⊗ E −→∼ P′ ⊗ E extends over
OE [1/N ]. By Lemma 4.1.4 it suffices to check that for any representation of Gc

Z[1/N ]

on a finite free module V that the composite (ι′−1
◦ ι)∗ :ωP(V )⊗E −→∼ ωP′(V )⊗E

identifies the OE [1/N ]-lattice ωP(V ) with ωP′(V ).
By Hecke equivariance we may reduce to checking this at every finite level

KN K N . Noting that SKN K N is smooth, we may invoke our lattice Lemma 4.1.3 to
reduce the statement first (4.1.3(1)) to checking equality of lattices over the formal
completion of SKN K N at each (maximal) prime p of OE [1/N ], and then (4.1.3 (2))
to checking equality of lattices on lifts of a dense subset of the special fibre at p.
But since (G,X) has enough crystalline points, and by the lattice condition we have
the necessary equality at these points, we get the desired identification.

Note that the connection and µ-filtration are extended from the generic fibre and
that they extend is a property, so they have no impact on the uniqueness statement.

�

The following functoriality properties can now be read off.

Proposition 4.4.8. Let f : (G1,X1)→ (G2,X2) be a morphism of Shimura data
with enough crystalline points and compatible de Rham structures induced by a map
G1,Z[1/N ]→ G2,Z[1/N ] of reductive groups over Z[1/N ], and K N

i =
∏

p -N Gi (Zp)

and (Pi , ιi ) an integral canonical model for PK N
i
(Gi ,Xi ), i = 1, 2.

(1) We can canonically identify

P1×
Gc

1 Gc
2 −→
∼ f ∗P2.

(2) The induced diagram
P1

γ1
−−−→ GRµ1y y

P2
γ2
−−−→ GRµ2

commutes.

Proof. Let E = E(G1,X1). Note that by Lemma 3.1.6 we have a natural identifica-
tion

θ : PK N
1
(G1,X1)×

Gc
1 Gc

2 −→
∼ f ∗PK N

2
(G2,X2)
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and so as in the previous lemma it will suffice to check that

f ∗(ι−1
2 ) ◦ θ ◦ ι1 : (P1×

Gc
1 Gc

2)⊗OE [1/N ] E −→∼ ( f ∗P2)⊗OE [1/N ] E

exchanges the natural lattices when taken on the level of fibre functors

ω : RepZ[1/N ] G
c
2→ Vec(SK N

1
(G1,X1)).

As in the previous lemma, we may reduce to working at finite level and checking
equality at crystalline points. But this is then immediate from the lattice condition,
the compatibility of the étale fibre functors on both Shimura varieties, together
with the (consequent) observation that the image of a crystalline point is always a
crystalline point. This completes the proof of (1). Now (2) follows directly from
the fact that after taking ⊗OE [1/N ]E the diagram commutes by Lemma 3.1.6. Note
that the right hand vertical map is that given by Lemma 3.2.8. �

Lemma 4.4.9. Suppose F/E = E(G,X) a Galois extension unramified away from
N , and (P′/OF [1/N ], ι′) an integral canonical model for PK N (G,X)F .

Then the descent data

Gal(F/E) 3 σ 7→ θσ : σ
∗PK N (G,X)F −→

∼ PK N (G,X)F

extend to P′, and the pair (P, ι) obtained by étale descent is an integral canonical
model for PK N (G,X) over OE [1/N ].

Proof. Take σ ∈ Gal(F/E). We claim that σ ∗P′K N together with the composite

σ ∗P′K N ⊗ F σ ∗ι
−→ σ ∗PK N (G,X)F

σ
−→ PK N (G,X)F

is an integral canonical model. From this claim it is immediate that the descent data
extend and in its turn P′K N descends to an integral canonical model over OE [1/N ],
because being a crystalline point and the lattices coming from S-modules are stable
under finite unramified base change.

We may pull back the Hecke action, so it remains to check the lattice condition on
crystalline points at finite level. Let x ∈SKN K N (G,X)(W (κ)) be a crystalline point
and v the corresponding place of F , and σ ∗(x) its pullback along σ : SKN K N −→∼

SKN K N . Let ωet,x and ωet,σ ∗(x) be the Zp-linear étale fibre functors coming from
the Shimura variety at infinite level at p and restricting to the fibres at x[1/p] and
σ ∗(x)[1/p] respectively, viewing both as taking values in 0K0-representations. Note
that by construction (since Sh(G,X) is defined over E) there is an isomorphism
ωet,σ ∗(x) −→

∼ ωet,x covering σ : σ ∗x −→∼ x . In particular, σ ∗(x) is also crystalline.
For V ∈ RepZp

(Gc) it is necessary to check an equality of two lattices in
DdR(ωet,x(V )[1/p]). The first is the usual D(ωet,x(V )) coming straight from S-
modules, the second obtained as the composite

D(ωet,σ ∗(x)(V ))⊂ DdR
(
ωet,σ ∗(x)(V )

[ 1
p

])
−→∼ DdR

(
ωet,x(V )

[ 1
p

])
.



Integral canonical models for automorphic vector bundles of abelian type 1873

Having thus spelt it out, we see that it follows immediately from functoriality of the
D construction. Moreover, the Gc-action, connection and filtration are all defined
over E on the generic fibre and it can be checked they extend to OE [1/N ] étale
locally, so the fact they do over F immediately gives them all. �

4.5. Hodge type case. We turn our attention to existence.

Theorem 4.5.1. Let (G,X) be a Shimura variety of Hodge type with G unrami-
fied away from N and K N

=
∏

p -N G(Zp). Then PK N (G,X) admits an integral
canonical model.

We let E = E(G,X) throughout this paragraph, and unless otherwise specified
all Shimura varieties ShK ,SK or bundles PK or PK will be understood to be those
attached to the Shimura datum (G,X). We also note that (G,X) being of Hodge
type implies G = Gc.

4.5.2. First some more algebraic preliminaries. Let R be a ring, M a finite free R-
module, and M⊗ the direct sum of all R-modules formed from M by the operations
of taking duals, tensor products, symmetric powers and exterior powers. If sα ∈M⊗

is a collection of tensors, we say that they define a subgroup G ⊂ GL(M) if it is
precisely the group which acts trivially on all the sα.

We need the following version of [Kisin 2010, 1.3.2], whose proof is basically
identical.

Proposition 4.5.3. Let R be a PID with field of fractions K , M a finite free R-
module, and G ⊂ GL(M) a closed subgroup, flat over R with reductive generic
fibre. Then it is defined by a finite collection of tensors sα.

Proof. Exactly as in [Kisin 2010, 1.3.2] we can reduce to showing that it suffices
to find tensors defining G in some representation of GL(M) on a finite projective
R-module, and we take I ⊂ OGL(M) the ideal of G in the Hopf algebra of GL(M),
which has scheme-theoretic stabiliser precisely G.

By [Waterhouse 1979, 3.3] there is a finite dimensional GL(M)K -stable subspace
Wη ⊂ OGL(M) ⊗ K containing a finite set of generators for I as an ideal. Let
W = Wη ∩ OGL(M), which is visibly GL(M)-stable, and it is finitely generated
because OGL(M) is a free R-module and letting e1, . . . , en be a basis for Wη, writing
them as elements of OGL(M)⊗ K we see they lie in W̃ ⊗ K for some W̃ ⊂ OGL(M)

a finite free R-submodule, and such that W ⊂ W̃ . But R is a PID, so we deduce W
is finite free.

Now we see that G is the stabiliser of W ∩ I ⊂ W , and the argument can be
concluded exactly as in [Kisin 2010, 1.3.2]. �

4.5.4. Now recall Section 2.4.4 that for (G,X) our Shimura datum of Hodge type
with G unramified away from Z[1/N ] (taking GZ[1/N ] = G from the discussion in
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Section 2.4.4) we may choose a symplectic embedding i : (G,X) ↪→ (GSp2g, S±)
extending to a closed immersion

i : GZ[1/N ] ↪→ GL(VZ[1/N ]).

Henceforth view V as a Z[1/N ]-module, and G as a reductive group over Z[1/N ].
By the above proposition we can find sα ∈ V⊗ such that G = Autsα (V ).

4.5.5. The map i defines (pulling back the universal abelian variety) an abelian
variety π : AK N→SK N , and we can study its sheaf of relative de Rham cohomology
V=H1

dR(AK N /SK N ) with Gauss–Manin connection ∇.
By the absolute Hodge cycles argument of [Kisin 2010, 2.2.2] we obtain ∇-

horizontal
∏

p|N G(Qp)-invariant tensors sα,dR ∈V⊗⊗Z[1/N ]Q, and by [ibid., 2.3.9]
for any v -N a finite place of E these sections extend over OE,(v), which is enough
to conclude they in fact lie in V⊗.

Let us therefore define the sheaf on (SK N )fppf

PK N := Isomsα (V,V)

whose sections over u :U→SK N are those trivialisations θ : V ⊗Z[1/N ]OU −→
∼ u∗V

such that (after applying (−)⊗ to both sides) each sα is identified with sα,dR. Note
that since

∏
p|N G(Qp) acts equivariantly on V and fixes sα,dR we may freely pass

between infinite and finite level.

Proposition 4.5.6. The sheaf PK N is a G-torsor over SK N .

Proof. It obviously suffices to check at finite level K = KN K N for some sufficiently
small KN . We claim it also suffices to check in the formal neighbourhood of any
closed point x ∈ SK .

First we may directly verify that PK is representable because passing to a Zariski
cover making V free, and then choosing arbitrary identifications V ∼=V, PK can be
constructed as a closed (hence affine) subvariety of GL(V ). Now suppose we know
it is a G-torsor in a formal neighbourhood of every closed point. Then since G is
faithfully flat, PK is faithfully flat over the formal neighbourhood of every closed
point, which is enough to prove that PK /SK is faithfully flat. It remains to show
that the natural map

PK ×SK GSK 3 (p, g) 7→ (p, pg) ∈ PK ×SK PK

is an isomorphism, but this also is the case if and only if it is the case over a formal
neighbourhood of each closed point, where again it follows from our assumption.

Thus we are reduced to the study of P̂x := PK | ˆSK ,x
for closed points x ∈ SK .

If char(x) = 0, the Betti–de Rham comparison theorem gives an identification
V ˆSK ,x

⊗C−→∼ V̂x ⊗C, giving a fpqc-local section. This suffices because it shows
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P̂x is smooth by fpqc descent, and so P̂x admits a section étale locally, which is
enough to see it is a G-torsor.

If char(x)= p, we may follow the proof of [Kisin 2010, 2.3.5] to study Nx :=

O ˆSK ,x
together with the p-divisible group G = AK | ˆSK ,x

[p∞] over the formally
smooth ring Nx .

First note that x determines a place v of E above p and since E is unramified at
p we may identify OE,v =W (κ(x))=:W , over which Nx is canonically an algebra.
The crystalline-de Rham comparison gives an identification VNx = D(G)(Nx). We
let G0 denote the restriction of G to x .

Taking x̃ : Nx → W a lift, we may follow the argument of [ibid., 2.3.5] to
obtain from the Tate module of x̃∗G tensors sα,0 ∈D(G0)(W )⊗ defining a reductive
subgroup G(x̃)⊂GL(D(G0)(W )), which gives rise to an explicit versal deformation
ring RG(x̃) of G(x̃)-adapted deformations of G0. This then has the property that we
may identify RG(x̃) −→

∼ Nx in such a way that induces an identification of G with
the explicit versal deformation (let’s also call it G) one constructs over RG(x̃), so in
particular we have

VNx = D(G)(RG(x̃)).

As in [ibid., 2.3.9] one has by an explicit construction lifts s̃α,0 to D(G)(RG(x̃))
⊗ of

sα,0 which are identified with sα,dR ∈ V⊗Nx
. This explicit construction comes about

in [ibid., §1.5] by defining D(G)(RG(x̃))= D(G0)(W )⊗W RG(x̃) as a module and
taking the lift s̃α,0 = sα,0⊗ 1. Finally let us note that by [ibid., 1.4.3] (since G is
connected) there exists a W -linear isomorphism

VW −→
∼ D(G0)(W )

identifying sα with sα,0. In particular this identifies GW −→
∼ G(x̃) uniquely up to

inner automorphisms and the composite

VW ⊗W RG(x̃) −→
∼ D(G0)(W )⊗W RG(x̃) −→

∼ D(G)(RG(x̃))= VNx

gives a section of P̂x as required. �

4.5.7. We would now like to show it is the desired canonical model for PK N (G,X).
Firstly we must check that the additional structures extend.

We have already noted that the
∏

p|N G(Qp)-action extends. By Lemma 4.3.3,
the connection ∇ on PK N extends to PK N because the Gauss–Manin connection
extends to (i.e., can be constructed directly on) V=H1

dR(AK N /SK N ) and by the
construction of sα,dR in [Kisin 2010, 2.2] it is clear they are parallel sections. It
is also immediate the µ-filtration extends, by Lemma 3.3.2 and that the Hodge
filtration is naturally defined on the integral de Rham cohomology V.

Finally, we need to verify that it is indeed a canonical model, and as usual we
check the lattice condition at a crystalline point x . But in our situation this is very
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straightforward: we just use the facts that, taking Ax to be the pullback of the uni-
versal abelian scheme to x , that Theorem 4.1.1 D(H 1

et(Ax ,Zp))= H 1
dR(Ax/W (k))

and that by compatibility of D with the p-adic comparison theorems, D(x∗sα,et)=

x∗sα,dR.

4.5.8. For making the transition from Hodge to abelian type, we will need to
extend the equivariant Gc

×
∏

p|N G(Qp)-action to an equivariant action of the
ZN
= Z[1/N ]-group scheme

AN
P (G)=

(
Gc
×

∏
p|N G(Qp)

Z(ZN )

)
∗G(ZN )+/Z(ZN ) Gad(ZN )+

which sits in an exact sequence

1→ Gc
→AN

P (G)→AN (G)→ 1.

To do this it suffices to give the Gad(ZN )+-action and then check it is compatible,
for which we imitate the approach taken in [Kisin 2010, 3.2] and [Kissin and
Pappas 2015, 4.5], with our modifications from Section 2.5.6 and further slight
modifications.

To be precise, recall that a point x ∈ PK N (T ) gives the data of an quadruple
(A, λ, εet, εdR) where A/T is an abelian scheme up to an isogeny whose degree is
supported on N , λ a weak polarisation of A, εdR a section of Isomsα (VT ,VT ), and
εet ∈ 0(T, Isomsα (V

∏
p|N Qp ,

∏
p|N V̂p(A))).

Given γ ∈Gad(ZN )+, we may form the Zder-torsor P={g∈Gder
|π(g)=γ }. We

may take F/Q Galois such that P(OF [1/N ]) is nonempty, and take γ̃ ∈P(OF [1/N ]).
This can be used to define an action just as in [Kisin 2010, 3.2]. Indeed we can define

AP(T )= (A(T )⊗Z[1/N ] OP)
Zder

and specialise the map

AP
⊗Z[1/N ] OP −→

∼ A⊗Z[1/N ] OP

at γ̃ to obtain

ιγ̃ : AP
⊗Z[1/N ] OF

[ 1
N

]
−→∼ A⊗Z[1/N ] OF

[ 1
N

]
.

These allow one to give the action of γ as taking

(A, λ, εet, εdR) 7→ (AP, λP, εP
et , ε

P
dR),

where all but the last of these are as defined by Kisin. For the action on the de Rham
component, we need the following modification of [Kisin 2010, 3.2.5].
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Lemma 4.5.9. With notation as above, the composite

VT ⊗ZN ON
F
γ̃−1

−→ VT ⊗ZN ON
F
εdR−→ H 1

dR(A/T )⊗ZN ON
F

ι−1
γ̃
−→ H 1

dR(A
P/T )⊗ZN ON

F

is Gal(F/Q)-invariant, hence induces a section

εP
dR : VT −→

∼ H 1
dR(A

P/T )

which takes sα to sα,dR.

Proof. The cocycle computation argument of [ibid., 3.2.5] goes through unchanged.
For the claim about tensors, the only nonobvious point is that ι−1

γ̃
preserves the

tensors, which one checks directly by working over C, using the comparison with
Betti cohomology as in [ibid., 3.2.6]. �

It is also clear that this action is compatible with the Gc
×
∏

p|N G(Qp)/Z(ZN )-
action in the sense that if we are given g ∈ Gc(ZN )+ we may take F = Q and
γ̃ =γ =g−1 and postcompose the whole quadruple by the quasiisogeny ιγ to identify

(A, λ, εet ◦ g, εdR ◦ g)= (AP, λP, εP
et , ε

P
dR).

4.6. Some distinguished Shimura data. In this section we digress a little. To get
from the Hodge type to the abelian type case we would like to follow Deligne
[1979] and pass via connected components, but unfortunately a straightforward
reduction of P to the derived group is not possible to carry out over OE [1/N ]
(roughly speaking because carrying out such a construction requires “trivialising the
Gab part of the motivic structure”, which can only be done canonically over C using
Betti–de Rham comparison). We address this by constructing some distinguished
Shimura data B(Gder,X+, E) which are in some sense initial among Shimura data
whose connected Shimura datum is (Gder,X+) and whose reflex field is contained
in E . Pulling back our torsors from the Hodge type case we may then reduce along
B→ G while leaving all motivic structures intact.

4.6.1. Let (G,X) be a Shimura datum, and E its reflex field. Our goal is to construct
a new Shimura datum (B,XB)→ (G,X) with Bder

= Gder and reflex field E and
show it depends only on these data and X+ and not on G.

Since E is the reflex field, we obtain a well-defined

µE : Gm,E → Gab
E

taking the “determinant” (composite with G → Gab) of any Hodge cocharacter.
Taking Weil restriction along E/Q and the norm map, we get a composite

r : E∗ := ResE/Q Gm,E → ResE/Q Gab
E → Gab.

Define B = G ×Gab E∗, where the first map is the natural δ : G → Gab. It is
straightforward to check the following.
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Lemma 4.6.2. The scheme B is a reductive group scheme over Q, sitting in a short
exact sequence of Q-group schemes

0→ Gder
→B→ E∗→ 0.

Suppose now that (G,X) induces a connected Shimura datum (Gder,X+) with re-
flex field E(Gder,X+) := E(Gad,Xad)⊂ E . We could make the above construction
varying over all Shimura data with connected datum (Gder,X+) and reflex field con-
tained in E . The following is an adaptation of the argument in [Deligne 1979, 2.5].

Proposition 4.6.3. The extension

0→ Gder
→B→ E∗→ 0

depends only on the connected Shimura datum (Gder,X+) and the field E.

Proof. Let (G,X) and (G ′,X′) be two Shimura data whose reflex fields are both
contained in E and which give rise to the same connected Shimura datum. By
[Deligne 1979, 2.5.6] we can find a third such Shimura datum (G ′′,X′′) which
admits maps

(G,X)← (G ′′,X′′)→ (G ′,X′).

It will therefore suffice to show for any morphism α : (G,X, E)→ (G2,X2, E2)

of Shimura data with a field of definition (where E→ E2 represents an inclusion
E2 ⊂ E) that we have an induced natural morphism of extensions

0 −−−→ Gder
−−−→ B −−−→ E∗ −−−→ 0y y y

0 −−−→ Gder
2 −−−→ B2 −−−→ E∗2 −−−→ 0

where the outer maps are the natural ones induced by α : G → G2 and NE/E2 :

E∗→ E∗2 . Since in the above special case both these maps are isomorphisms, we
will get a canonical identification

B←−∼ B′′ −→∼ B′

of extensions, proving the proposition.
Let us verify the claim. Recall that to give a map B→ B2 is to give maps

f :B→G2 and k :B→ E∗2 that agree when extended to Gab
2 . Write Nµ : E∗→Gab

and δ : G→ Gab and Nµ2 and δ2 for the analogues for G2. Let us take f to be the
natural composite

f :B prG
−→G→ G2

and k to be
k :B prE∗
−→ E∗ NE/E2−−−→ E∗2 .
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We must check that whenever δ(g)= Nµ(e), we have

δ2(α(g))= Nµ2(NE/E2(e)).

But by functoriality of (−)ab

δ2(α(g))= αab(δ(g))= αab(Nµ(e))= Nµ2(NE/E2(e)),

where the final equality holds because since α is a morphism of Shimura data
we have in particular that αabµ = µ2 : Gm,C→ Gab

2,C, from which it follows that
αab
◦ Nµ= Nµ2 ◦ NE/E2 by functoriality of the norm map between tori. Thus we

have a map B→B2, and it is clear from its definition that it fits into the diagram
described. �

4.6.4. Our next task is to define a Shimura datum. Take any hG ∈ X+, and we
define a canonical map

hE : C
∗
→ E∗(R)

as follows. Let τ : E ↪→ C be the canonical inclusion of the reflex field E into C,
and write E∗(R)= E∗τ ×

∏
τ ′ 6=τ E∗τ ′ . If τ is real, set

hE(z)= (zz; 1, 1, . . . , 1).

If τ is complex,
hE(z)= (z; 1, . . . , 1)

(i.e., the entries away from the place τ are all trivial in both cases).

Proposition 4.6.5. These give a map hG × hE : S→BR which defines a Shimura
datum with a natural map (B,XB)→ (G,X). Moreover, it is independent of the
choice of hG , has reflex field E , and only depends on E and the connected Shimura
datum (Gder,X+) up to canonical isomorphism.

Proof. We must check it is defined, which amounts to proving that rR(hE(z)) =
δ(hG(z)). First we note that

δ(hG(z))= µE(z)µE(z)= µE(z)µE(z)

where we viewµE as a character Gm,C→Gab
C

using the canonical embedding τ of E .
On the other hand recall that

rR = (NE/Q ◦µE)R : E∗R→ Gab
E⊗QR→ Gab

R .

If τ is real then we have

(zz, 1, 1, . . . , 1) 7→ (µE(zz), 1, . . . , 1) 7→ µE(zz)= µE(z)µE(z)
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and if τ is complex then

(z, 1, 1, 1, 1) 7→ (µE(z), 1, . . . , 1) 7→ µE(z)µE(z),

where again all occurrences of µE are viewed over C via τ .
In particular we have checked the necessary equality.
It defines a Shimura datum because after projecting along B→ Gad, hG × hE

agrees with hG . This is independent of the choice of hG because in general X is
a union of copies of X+ so every other choice for hG ∈ X

+ must be obtained. For
the statement about the reflex field, we note that it is immediate from the general
fact that E(B,X)= E(Bad,Xad

B )E(B
ab, h)= E .

To show it only depends on (Gder,X+) and E we just return to the argument above
for B being independent. Given (G,X) and (G ′,X′) Shimura data with reflex fields
contained in E and the same connected Shimura datum, we can again apply [Deligne
1979, 2.5.6] and find (G ′′,X′′) mapping to both. Since the construction of (B,XB)

is functorial in (G,X), choosing h ∈ X+ immediately gives a commuting diagram

S S Sy y y
BR

∼
←−−− B′′R

∼
−−−→ B′R.

From this it is clear that (B,XB) depends only on (Gder,X) and E . �

We would like to check the obvious functorialities for the pair (B,XB).

Lemma 4.6.6. The above construction is functorial in the following senses:

(1) Let u : (G1,X
+

1 )→ (G2,X
+

2 ) be a map of connected Shimura data: that is, a
central isogeny G1→ G2 of semisimple groups such that X+,ad

1 = X+,ad
2 , and

E ⊃ E(G1,X
+

1 ). Let (B1,X1) and (B2,X2) be the Shimura data associated to
the triples (G1,X

+

1 , E) and (G2,X
+

2 , E) by the above procedure. Then there
is a canonical morphism

u∗ : (B1,X1)→ (B2,X2)

of Shimura data also induced by a natural central isogeny B1→B2.

(2) Let (Gder,X+) be a connected Shimura datum, E(Gder,X+) ⊂ F ⊂ E two
fields, and (BF ,XF ) and (BE ,XE) the associated data. Then the norm map
induces a canonical morphism of Shimura data

NE/F : (BE ,XE)→ (BF ,XF ).

Proof. For (1), let 11 ⊂ G1 ⊂B1 be the kernel of G1→ G2 viewed as a subgroup
of the centre of B1. Then (B1/11,X1/11) is a Shimura datum with connected
Shimura datum (G2,X

+

2 ) and reflex field contained in E . It therefore receives a
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natural map (B2,X2)→ (B1/11,X1/11) which we claim is an isomorphism. It
will suffice to check B2→B1/11 is an isomorphism, which is immediate because
it is a pullback of the identity map on E∗. Thus we obtain the canonical map

(B1,X1)→ (B1/11,X1/11)←−
∼ (B2,X2)

required.
For (2), for any Shimura datum (G,X)with connected Shimura datum (Gder,X+)

and reflex field contained in F , one obviously has a canonical map BE = G×Gab

E∗→G×Gab F∗=BF induced by the norm morphism11 NE/F : E∗→ F∗. Visibly
hF = NE/F ◦ hE , so this induces the map of Shimura data claimed. �

4.7. Abelian type case. We now return to integral canonical models of standard
principal bundles. Fix (G2,X2) a Shimura datum of abelian type unramified away
from N , G2/Z[1/N ] a reductive integral model and K N

2 =
∏

p -N G2(Zp). The
goal of this section is to prove the following.

Theorem 4.7.1. There exists an integral canonical model for PK N
2
(G2,X2).

4.7.2. As in Section 2.5.14 we may find (G,X) of Hodge type with G unramified
away from N with j : Gder

→ Gder
2 a central isogeny inducing a morphism of

connected Shimura data (Gder,X+)→ (Gder
2 ,X+2 ). By Lemma 2.5.13 we may take

G/Z[1/N ] reductive such that j is defined over Z[1/N ].
By the construction of the previous section, we may obtain a diagram of Shimura

data
(B,XB) −−−→ (G,X)y
(B2,XB,2) −−−→ (G2,X2).

The plan has three stages. We first combine our constructions in the special and
Hodge type cases to construct a canonical integral model of P(B,XB). We next
pass to connected components and take a quotient to transfer this bundle from a
Bc-bundle on Sh(B,XB)

+ to a Gc
2-bundle on Sh(G2,X2)

+ defined over the field
EN over which the connected components split off. We finally then assemble
over the whole Shimura variety and descend these models making liberal use of
the uniqueness statement for canonical models in place of the extension property
from §2.5. We believe this framework could be useful in other contexts where one
wants to extend a “G-valued” construction over Hodge type Shimura varieties to
abelian type Shimura varieties.

11Recall that the norm map NE/F may be defined for example as the composite of Q-group maps

E∗ ↪→ ResF/Q GLF (E)
det
−→ F∗.
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4.7.3. We start out by checking this picture respects the integral structures on G
and G2. Since E := E(G,X) is absolutely unramified at p -N and E2 ⊂ E (hence
E∗2 and E∗ are smooth tori over Z[1/N ]) we have a diagram defined over Z[1/N ]

G←B= G×Gab E∗→B2 = G2×Gab
2

E∗2 → G2.

We remark that the middle map is a composite of Lemma 4.6.6(1) and (2), the first
of which involves a change of derived group (and by construction Gder

→ Gder
2 is

defined over Z[1/N ]), and the second of which is a norm map NE/E2 : E
∗
→ E∗2

which clearly respects integral structures. We let K N , K N
2 and K N

B denote the
obvious corresponding hyperspecial prime to N level structures and note there is a
corresponding diagram of integral models of Shimura varieties

SK N (G,X)← SK N
B
(B,XB)→ SK N

2
(G2,X2).

Let us, now this diagram is in place, check the following condition Section 4.4.3,
which we recall is important in guaranteeing the uniqueness of canonical models.

Proposition 4.7.4. With notation as above, SK N
B
(B,XB) and SK N

2
(G2,X2) both

have all the crystalline points.

Proof. Let x ∈ SK N
B
(B,XB)(W (k)) and K0 =W (k)[1/p]. Also let W (k)ur be the

ring of integers of the maximal unramified (algebraic) extension K ur
0 /K0. Note

that its images in SK N (G,X) and S ˆE∗,N (E
∗, hE) are both crystalline (since these

Shimura data have all the crystalline points). To check x is crystalline, it will suffice
to check ωet,x(V ) is crystalline for V a faithful representation of B. Let us take
G ↪→ GL(V1) and E∗ ↪→ GL(V2) and consider the representation

B⊂ G× E∗ ↪→ GL(V1)×GL(V2)⊂ GL(V1⊕ V2).

Considering the diagram of Shimura varieties and towers at infinite level at p, it is
clear that 0K0 → GL(ωet(V1⊕ V2)) acts via 0K0 → GL(ωet(V1))×GL(ωet(V2)),
each projection of which is crystalline, and this is enough to give the first part of
our proposition.

We turn our attention to SK N
2
(G2,X2). First, since it receives a map from

the Shimura variety SK N
B
(B,XB) and we observe that the image of a crystalline

point is crystalline, and moreover at finite level these maps are finite étale, we
deduce that in particular all W (k)ur points on the geometric connected component
SK N

2

+(G2,X2)W (k)ur are crystalline.
To show that any point x ∈SK N

2 K2,N
(W (k)) is crystalline, recall that Kisin’s inte-

gral model at level K2,p := G2(Zp) over W (k), SK2,p(G2,X2)W (k) has a G(A∞,p)-
action that acts transitively on geometric connected components and acts equiv-
ariantly with regard to the tower at p on the generic fibre. Therefore, taking a lift
x̃ of x to level K2,p, which we may assume is a W (k)ur point since SK2,p,W (k)→
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SK2,p K p,W (k) is formally étale, and taking a translate x̃ .a by a Hecke operator
a∈G(A∞,p) such that x̃ .a lies in the connected component, we may deduce that x is
crystalline from the fact that all points on the connected component are, and that the
crystalline property can be checked after restricting a 0K0 representation to 0K ur

0
. �

We now proceed with constructing the canonical models. The content of the
next step can be extracted as a lemma.

Lemma 4.7.5. Let S be a scheme, and G � 1 ← H a diagram of S-groups,
B= G×1 H the fibre product group. Let X be an S-scheme and suppose we are
given PG a G-torsor and PH an H-torsor on X with the property that there is an
isomorphism of 1-torsors θ : PH ×

H 1−→∼ PG ×
G 1.

Then there is a unique (up to canonical isomorphism) B-torsor PB together with
torsor isomorphisms θG : PB×

B G −→∼ PG and θH : PB×
B H −→∼ PH such that

the induced isomorphism

θH ◦ θ
−1
G : PG ×

G 1−→∼ PB×
B1−→∼ PH ×

H 1

is equal to θ , and it is given by

PB = PG ×θ PH ,

with θG and θH the natural projections.

We use the notation X ×θ Y in a situation where we are given maps X → Z X

and Y → ZY and an isomorphism θ : Z X −→
∼ ZY between two schemes to mean

the limit of the diagram

Yy
X −−−→ Z X

θ
−−−→
∼

ZY .

Proof. Let us first show that PB = PG ×θ PH is indeed a B-torsor. We define the
B= G×1 H -action

(pG, pH ).(g, h)=: (pG .g, pH .h)

which is visibly an action. Passing to an étale cover X ′→ X over which PG and PH

admit sections pG and pH . Since G surjects onto 1 these may be chosen (perhaps
at the cost of passing to a finer étale cover) such that if πG : PG→ PG ×

G 1 and
πH : PH → PH ×

H 1 are the projection maps, we have θ(πG(pG)) = πH (pH ),
giving a section (pG, pH ) ∈ PB(X ′), from which we may see immediately that it
is a B-torsor. It is also obvious that it has the required property.

Uniqueness is essentially formal, but we give the argument. Suppose we are
given P ′B together with θ ′G : P

′

B×
B G −→∼ PG and θ ′H : P

′

B×
B H −→∼ PH satisfying
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the compatibility given. Then by the universal property of PB = PG ×θ PH there
exists a unique map α : P ′B→ PB making everything commute. It is easy to check
α is a map of B-torsors, whence it is automatically an isomorphism. �

4.7.6. Let us apply this in the context of our standard principal bundles. If T is a
torus unramified away from N we introduce the notation T̂ N

=
∏

p -N T (Zp).
Consider the diagram (whose arrows we have named for convenience)

SK N
B
(B,XB) −−−→

δ′
SÊ∗,N (E

∗, hE)

π

y yNµ

SK N (G,X) −−−→
δ

SĜab,N (Gab, hab).

By Theorem 4.5.1 we have PK N over SK N (G,X) an integral canonical model for
PK N (G,X), and by Proposition 4.2.3 we have PÊ∗,N and PĜab,N canonical models
over the right hand side of the diagram also. By Proposition 4.4.8 there are natural
isomorphisms of Gab torsors

Nµ∗PĜab,N
∼= PÊ∗,N ×

E∗c Gab and δ∗PĜab,N
∼= PK N ×

G Gab.

Pulling these back further and using that the diagram commutes and so we have
canonical identifications π∗δ∗ ∼= (δπ)∗ = (Nµδ′)∗ ∼= δ′∗(Nµ)∗, we obtain a natural
isomorphism

θ : π∗(PK N ×
G Gab)−→∼ δ′∗(PÊ∗,N ×

E∗c Gab).

Note further that any integral canonical model PK N
B

for PK N
B
(B,XB) will by

Proposition 4.4.8 be required to satisfy the conditions of Lemma 4.7.5 with respect
to this isomorphism θ . Therefore by Lemma 4.7.5 if it exists it is given by

PK N
B
:= π∗PK N ×θ δ

′∗PÊ∗,N ,

together with the identification

ιB : PK N
B
⊗OE [1/N ] E = (π∗PK N ×θ δ

′∗PÊ∗,N )⊗OE [1/N ] E
(ιG ,ιE∗ )
−−−→π∗PK N (G,X)×θ⊗E δ

′∗PÊ∗,N (E
∗, hE)= PK N

B
(B,XB).

Proposition 4.7.7. As defined above, (PK N
B
, ιB) is an integral canonical model for

PK N
B
(B,XB) with equivariant AN

P (B)-action.12

Proof. Our task is to show the connection, filtration and AN
P (B)-actions extend,

and check the lattice property.

12Recall we defined this group in Section 4.5.8.
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We first study the connection. Let pi , i = 1, 2 be the projections from a first
order neighbourhood of the diagonal, abusively retaining the same notation for
morphisms of schemes and their first order thickenings. Then13

p∗i PK N
B
= p∗i (π

∗PK N ×θ δ
′∗PÊ∗,N )

∼= π
∗ p∗i PK N ×p∗i (θ) δ

′∗ p∗i PÊ∗,N ,

and in these coordinates, ∇B = (π
∗
∇G, δ

′∗ id) is the connection required so we see
directly that it extends.

For the filtrations, it is easy to check using [Conrad 2014, 5.3.4] that in fact we
may naturally identify

GRµ = G/Pµ = Gder/(Pµ ∩Gder)=B/PµB = GRµB

with G and B-actions factoring through Gad, so actually the composite

γB : PK N
B
→ PK N

γ
−→GRµ = GRµB

does the job.
We also note that we already have a natural extension of the Hecke action via∏

p|N

B(Qp)⊂

(∏
p|N

G(Qp)

)
×

(∏
p|N

E∗(Qp)

)
which acts via its two projections on π∗PK N ×θ δ

′∗PÊ∗,N .
For the lattice property, we borrow the trick from the first part of the proof

of Proposition 4.7.4, taking a faithful representation V = V1⊕ V2 of B, formed
as a sum of faithful representations of G and E∗. It is easy to check from the
construction that

ωPK N
B

(V )= ωπ∗PK N (V1)⊕ωδ′∗PÊ∗,N
(V2)

whence the lattice property follows immediately from that already known for the
two terms on the right hand side together with the fact that the image of a crystalline
point is always crystalline. Now we know the lattice property, we get a uniqueness
statement, and the AN

P (B)-action extends formally. �

4.7.8. We now pass to a connected component

Sh+
K N

B

(B,XB)= Sh+K N (G,X),

recalling Lemma 2.5.1 that it is defined over an extension EN/E unramified away
from N and letting O :=OEN [1/N ]. We may therefore extend the above identification
to

S+
K N

B

(B,XB)O = S+K N (G,X)O,

13We also abuse notation here and confuse π and δ′ with their induced maps on first order
neighbourhoods of the diagonal.
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and restrict PK N
B

to get the Bc-torsor

P+B := PK N
B
×SK N

B
(B,XB)O S+K N (G,X)O→ S+K N (G,X)O.

Recall the group

1N (G,G2)= Ker(AN ,◦(Gder)→AN ,◦(Gder
2 ))

with the property that

S+K N (G,X)O/1N (G,G2)= S+
K N

2
(G2,X2)O.

Let us also recall the extension of group schemes over Z[1/N ]

1→Bc
→AN

P (B)→AN (B)→ 1.

Forming the pullback along AN ,◦(Gder)=AN ,◦(B)⊂AN (B) we get an extension

1→Bc
→AN ,◦

P (B)→AN ,◦(Gder)→ 1

which acts on P+B equivariantly in the obvious fashion.

Lemma 4.7.9. These group schemes have the following additional properties:

(1) The group 4 := Ker(Bc
→ Gc

2)⊂Bc is a normal subgroup of AN ,◦
P (B).

(2) The kernel 1N
P (B,G2) := Ker(AN ,◦

P (B)→ AN ,◦
P (G2)) is canonically an ex-

tension
1→4→1N

P (B,G2)→1N (G,G2)→ 1

which acts freely on P+B.

Proof. We first remark that (1) is obvious because 4 ⊂ Z(Bc) which commutes
with the whole of AN ,◦

P (B).
For (2), that 4 is a subgroup is clear and normality follows by (1). Existence of

the maps and exactness in the middle follow in the usual way. That the final map is a
surjection follows because for any (g, γ−1) ∈1N (G,G2), it is hit by (1, g, γ−1) ∈

1N
P (B,G). Finally the action on P+B→ S+K N (G,X)O is free because 4 acts freely

on each fibre, and 1N (G,G2) acts freely on S+K N (G,X)O by Proposition 2.5.9. �

4.7.10. Equipped with this lemma we may construct a Gc
2-bundle

P+2 := (P
+

B/1
N
P (B,G2))×

Bc/4 Gc
2→ S+

K N
2
(G2,X2)O

with equivariant AN ,◦
P (G2)-action. Moreover we have

ι2 : P
+

2 ⊗O EN = (P
+

B⊗O EN/1
N
P (B,G2))×

Bc/4 Gc
2

ιB
−→(P+

K N
B ,EN

/1N
P (B,G2))×

Bc/4 Gc
2 = P+

K N
2 ,EN

,
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where the final equality follows by working over C and the argument of [Milne
1988, 7.2].

Proposition 4.7.11. The pair (P+2 , ι2) is an integral canonical model for the bundle
P+

K N
2 ,EN

(G2,X2).

Proof. The Hecke action extends by construction. Let us check that the connection
extends. We know (from direct observation over C) that the 1N

P (B,G2) action
is horizontal, so the flat connection ∇ : p∗1P+B −→

∼ p∗2P+B descends (and then can
obviously be pushed out along Bc/4→ Gc

2) to a flat connection

∇ : p∗1P+2 −→
∼ p∗2P+2 .

Since a similar relationship also relates the connections on the generic fibre we
have shown that this ∇ extends over O the connection on PK N

2 ,EN
.

To check the lattice condition at a crystalline point x , note the commutative
diagram of EN -schemes, letting K N p

B and K N p
2 be the obvious full level structures

at all primes except N and p

ShK N p
B
(B,XB)|Sh+

K N
B

(B,XB)
−−−→ ShK N p

2
(G2,X2)|Sh+

K N
2
(G2,X2)y y

Sh+
K N

B

(B,XB) −−−→ Sh+
K N

2
(G2,X2).

Taking a lift x̃ of x to S+
K N

B

(B,XB)O, which is crystalline since the map

S+
K N

B

(B,XB)O→ S+
K N

2
(G2,X2)O

is finite étale and its source has all the crystalline points, the diagram gives an
identification

ωet,x̃ ◦Res
Gc

2(Zp)

Bc(Zp)
= ωet,x : RepZp

(Gc
2)→ RepZp

(0Qur
p
).

But now the lattice condition is immediate, since equality of lattices can be checked
after passing to a finite étale cover, and P+2,x pulls back to P+B,x̃ ×

Bc
Gc

2 which as a
canonical model already has the required property that ωP+B,x̃

=D◦ωet,x̃ by its own
lattice condition.

It remains to check the filtration γB :P
+

B→ GRµB descends to γ2 :P
+

2 → GRµ2 ,
which amounts to showing that the composite

P+B→ GRµB → GRµ2

is1N
P (B,G2)-invariant. But this is clear; since4=Ker(Bc

→Gc
2)⊂ Z(Bc) it acts

trivially on GRµ2 and 1N (G,G2) acts trivially because Hecke operators always
act trivially on any Grµ. �
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4.7.12. With this in hand, we are finally able to construct an integral canonical
model P2 for PK N

2
(G2,X2) in the spirit of Lemma 2.5.16, but with the uniqueness

of canonical models used in place of the extension property, because it may be used
to canonically extend any isomorphism.

Indeed, let us decompose SK N
2 ,O
=
∐

c∈π0
Sc into components each of which

is geometrically integral. By the argument of Lemma 2.5.16(1) we can find for
each c ∈ π0 some Gc/Z[1/N ] a model for G2 such that we may identify Sc ∼=

S∏
p -N Gc(Zp),O

+ via a Hecke operator. For each c we may make such a choice and
invoking Proposition 4.7.11 for G= Gc and using the Hecke equivariance of PK N

we obtain a canonical model P+c for PK N
2 ,EN

(G2,X2)|Sc⊗O EN . Taking the disjoint
union of these we obtain

P2,O :=
∐
c∈π0

P+c ,

an integral canonical model minus a full Hecke action. But by the uniqueness of
canonical models (Lemma 4.4.7) it is formal to extend the Hecke operators acting be-
tween components. Finally by Lemma 4.4.9 it descends to P2/OE2[1/N ], an integral
canonical model for PK N

2
(G2,X2)/E2. Thus our main theorem has been proved.

4.8. Automorphic vector bundles. With our integral canonical models PK N (G,X)
constructed in the abelian type case, we should discuss the construction of automor-
phic vector bundles (recall the discussion Section 3.1.4) in this setting, although it
requires no new ideas.

Theorem 4.8.1. Let (G,X) be a Shimura datum of abelian type, G/Z[1/N ] a
reductive model for G, K N

=
∏

p -N G(Zp) and for µ a Hodge cocharacter of
(G,X), and L/E = E(G,X) a finite extension.

Then we have a canonical functor J 7→ V(J) from GOL [1/N ]-equivariant vector
bundles on GRµ,OL [1/N ] to vector bundles on SK N which on the generic fibre is
identified naturally with that of [Milne 1990, III 5.1].

Proof. Recall that we have the picture

SK N ← PK N
γ
−→GRµ.

The functor J 7→V(J) is given by pulling back J 7→ γ ∗J and then using the usual
equivalence between G-equivariant vector bundles on PK N and vector bundles on
SK N . This is obviously a functor, and the compatibility with the usual construction
[Milne 1990, III 5.1] follows because PK N comes with a canonical identification

ι : PK N ⊗ E −→∼ PK N (G,X)

under which γ is an extension of the G-filtration on the RHS. �



Integral canonical models for automorphic vector bundles of abelian type 1889

It is also easy to deduce from our construction the following additional functori-
ality property.

Proposition 4.8.2. We are given a morphism f : (G1,X1,G1)→ (G2,X2,G2) of
Shimura data of abelian type together with reductive models for Gi over Z[1/N ],
L/E(G1,X1) finite, and µ1 and µ2 Hodge cocharacters for X1 and X2 respectively.
Suppose we are also given J2 a G2-equivariant vector bundle on GRµ2,OL [1/N ].
Pulling back J2 along

GRµ1,OL [1/N ]→ GRµ2,OL [1/N ]

and restricting the G2 action to G1 we obtain a G1-equivariant vector bundle J1.
There is a canonical identification of vector bundles over S∏

p -N G1(Zp)(G1,X1)

V(J1)∼= f ∗V(J2).

Proof. This is immediate from the construction of V(−) and Proposition 4.4.8. �
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