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Let F be a totally real field with ring of integers O and p be an odd prime
unramified in F . Let p be a prime above p. We prove that a mod p Hilbert
modular form associated to F is determined by its restriction to the partial
Serre–Tate deformation space Ĝm ⊗ Op (p-rigidity). Let K/F be an imaginary
quadratic CM extension such that each prime of F above p splits in K and λ a
Hecke character of K . Partly based on p-rigidity, we prove that the µ-invariant
of the anticyclotomic Katz p-adic L-function of λ equals the µ-invariant of the
full anticyclotomic Katz p-adic L-function of λ. An analogue holds for a class of
Rankin–Selberg p-adic L-functions. When λ is self-dual with the root number−1,
we prove that the µ-invariant of the cyclotomic derivatives of the Katz p-adic
L-function of λ equals the µ-invariant of the cyclotomic derivatives of the Katz
p-adic L-function of λ. Based on previous works of the authors and Hsieh, we
consequently obtain a formula for the µ-invariant of these p-adic L-functions
and derivatives. We also prove a p-version of a conjecture of Gillard, namely the
vanishing of the µ-invariant of the Katz p-adic L-function of λ.
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1. Introduction

Zeta values seem to suggest deep phenomena in Mathematics. They seem to
mysteriously encode deep arithmetic information. They also seem to suggest
surprising modular and Iwasawa-theoretic phenomena.
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Sometimes, they are a sum of evaluations of modular forms at CM points.
Such an expression for critical Hecke L-values and conjectural nontriviality of the
corresponding anticyclotomic p-adic L-function, suggested to the second named
author a linear independence of mod p Hilbert modular forms. Based on Chai’s
theory of Hecke-stable subvarieties of a Shimura variety (see [Chai 1995; 2003;
2006]), this guess was proven in [Hida 2010]. Let p be a prime above p (see the
abstract). Recently, the expression and conjectural nontriviality of the corresponding
anticyclotomic p-adic L-function suggested to us a rather surprising rigidity property
of mod p Hilbert modular forms. Partly based on the rigidity, we obtain intriguing
equalities of Iwasawa µ-invariants of seemingly independent p-adic L-functions.

Let F be a totally real field of degree d and O the integers ring. Let p be an odd
prime unramified in F . Let p1, . . . , pr be the primes above p. Fix two embeddings
ι∞ : Q→ C and ιp : Q→ Cp. Let vp be the p-adic valuation of Cp normalised
such that vp(p)= 1. Let F be an algebraic closure of Fp.

Let Sh/F be the Kottwitz model of the prime-to-p Hilbert modular Shimura variety
associated to F . We refer to Section 2B for the definition. Here we only mention
that in the moduli interpretation for Sh/Z(p) , the full prime-to-p level structure
appears. Let x ∈ Sh be a closed ordinary point. From Serre–Tate deformation
theory, a p∞-level structure on x induces a canonical isomorphism

Spf(ÔSh,x)'
∏

i

Ĝm ⊗ Opi . (1-1)

Let p = pi , for some i . Let f be a mod p Hilbert modular form in the sense of
Section 2D. In view of the irreducibility of the connected components of Sh, the
form f is determined by its restriction to Spf(ÔSh,x). In fact, we have the following
rigidity result.

Theorem 1.1 (p-rigidity). Let F/Q be a totally real extension with integer ring O ,
p an odd prime unramified in F and p|p a prime in F. Let f be a nonzero mod p
Hilbert modular form over F as above.

Then, f does not vanish identically on the partial Serre–Tate deformation space
Ĝm ⊗ Op. In particular, a mod p Hilbert modular form is determined by its
restriction to the partial Serre–Tate deformation space Ĝm ⊗ Op.

We now describe the results regarding the Iwasawa µ-invariants.
Let K be a totally imaginary quadratic extension of F . Let h? denote the

class number of ?, for ? = K , F . Let c denote the complex conjugation on C
which induces the unique nontrivial element of Gal(K/F) via ι∞. We assume the
following hypothesis:

(ord ) Every prime of F above p splits in K .
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The condition (ord ) guarantees the existence of a p-adic CM type 6, i.e., 6 is a
CM type of K such that the p-adic places induced by elements in6 via ιp are disjoint
from the ones induced by 6c. We fix such a CM type. We also identify it with the
set of infinite places of F . Let K−

∞
(resp. K+

∞
) be the anticyclotomic Zd

p-extension
(resp. cyclotomic Zp-extension) of K and K−p,∞ ⊂ K−

∞
be the p-anticyclotomic

subextension, i.e., the maximal subextension unramified outside the primes above
p in K . Let Kp,∞ = K−p,∞K+

∞
. Let 0± := Gal(K±

∞
/K ), 0−p := Gal(K−p,∞/K ) and

0p := Gal(Kp,∞/K ).
Let C be a prime-to-p integral ideal of K . Let λ be an arithmetic Hecke character

over K . Suppose that C is the prime-to-p conductor of λ. Associated to this data, a
natural (d + 1)-variable Katz p-adic L-function

L6,λ = LΣ,λ(T1, . . . , Td , S) ∈ Zp[[0]]

is constructed in [Katz 1978; Hida and Tilouine 1993]. Here, the Ti are the
anticyclotomic variables and S is the cyclotomic variable. The Katz p-adic L-
function interpolates critical Hecke L-values L(0, λχ) as χ varies over certain
Hecke characters over K factoring through the Ray class group with conductor Cp∞

(see [Hida and Tilouine 1993, Theorem II]). Let L−6,λ ∈ Zp[[0
−
]] (resp. L−6,λ,p ∈

Zp[[0
−
p ]]) be the anticyclotomic (resp. p-anticyclotomic) projection obtained from

the projection π− : Zp[[0]] � Zp[[0
−
]] (resp. π−p : Zp[[0]] � Zp[[0

−
p ]]). Let

L6,λ,p ∈ Zp[[0p]] be obtained from the projection πp : Zp[[0]] � Zp[[0p]]. We
call L6,λ,p the Katz p-adic L-function to emphasise the consideration of the p-
component. This is a slightly nontraditional terminology as the construction is still
under the same embedding ιp.

For the notion of Iwasawa µ-invariants, we refer to [Hida 2010, §1]. Here we
only mention that the µ-invariant measures nontriviality modulo p. We now state
our results regarding the Iwasawa µ-invariants of p-adic L-functions and derivatives
arising in the context of the Iwasawa theory of an arithmetic Hecke character over
a CM field as above.

The µ-invariant of L−6,λ,p is given by the following theorem.

Theorem 1.2. Let F/Q be a totally real extension, p an odd prime unramified in F
and p|p a prime in F. Let K/F be a p-ordinary CM quadratic extension. Let λ be
an arithmetic Hecke character over K . Let L−6,λ (resp. L−6,λ,p) be the corresponding
anticyclotomic Katz p-adic (resp. anticyclotomic Katz p-adic) L-function as above.
Then, we have

µ(L−6,λ)= µ(L
−

6,λ,p).

In most of the cases, µ(L−6,λ) has been explicitly determined (see [Hida 2010;
Hsieh 2014a]). Thus, we obtain a formula for µ(L−6,λ,p).
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We show a result analogous to Theorem 1.2 for a class of Rankin–Selberg
anticyclotomic p-adic L-functions.

When λ is self-dual with the root number−1, all the Hecke L-values appearing in
the interpolation property of L−6,λ vanish. Accordingly, L−6,λ and L−6,λ,p identically
vanish. The anticyclotomic arithmetic information contained in L−Σ,λ and L−Σ,λ,p
may seem to have disappeared. However, we can look at the cyclotomic derivatives

L ′6,λ =
(
∂

∂S
L6,λ(T1, . . . , Td , S)

)∣∣∣
S=0

(1-2)

and L ′6,λ,p (defined analogously).
The µ-invariant of L ′6,λ,p is given by the following theorem.

Theorem 1.3. Let F/Q be a totally real extension, p an odd prime unramified in
F and p|p a prime in F. Let K/F be a p-ordinary CM quadratic extension. Let λ
be an arithmetic self-dual Hecke character over K with root number −1. Let L ′6,λ
(resp. L ′6,λ,p) be the corresponding cyclotomic derivative of the Katz p-adic (resp.
Katz p-adic) L-function as above.

Suppose that p - h−K , where h−K is the relative class number given by h−K = hK /hF .
Then, we have

µ(L ′6,λ)= µ(L
′

6,λ,p).

In most of the cases, µ(L ′6,λ) has been explicitly determined (see [Burungale
2015]). Thus, we obtain a formula for µ(L ′6,λ,p).

Finally, we consider the p-adic L-function. We have the following p-version
of a conjecture of Gillard [1991, Conjecture (i)] regarding the vanishing of the
µ-invariant of Katz p-adic L-function.

Theorem 1.4. Let F/Q be a totally real extension, p an odd prime unramified in F
and p|p a prime in F. Let K/F be a p-ordinary CM quadratic extension. Let λ be
an arithmetic Hecke character over K . Let L6,λ,p be the corresponding cyclotomic
Katz p-adic L-function as above. Then, we have

µ(L6,λ,p)= 0.

We now describe the strategy of the proof of Theorem 1.1. Some of the notation
used here is not followed in the rest of the article.

We begin with general remarks on rigidity. Here is a geometric reason for this
rigidity, which we refer to as L-rigidity. Let Ŝ be a formal torus over a field which
is the residue field of a mixed characteristic ring. Suppose that we have a rational
structure coming from an algebraic subscheme S over the mixed characteristic
ring whose formal completion at a closed point x ∈ S gives Ŝ. Here S is not
necessarily an algebraic torus. We suppose that there exists a positive dimensional
transcendental linear subvariety L of Ŝ with strictly smaller dimension, i.e., a
nontrivial formal subtorus which does not equal the formal completion along x of
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an algebraic subscheme of S. Transcendence of L implies the “algebraic” Zariski
closure of L in S is the entire S. This may not happen for the formal Zariski closure.
Let A =OS,x and L = Spf(B). Thus, the transcendence of L is equivalent to the
injectivity of the natural morphism A→ B given by φ 7→ φ|L for φ ∈ A and hence
the L-rigidity, i.e., φ is determined by its restriction to the formal subtorus L . The
rigidity remains true for φ ◦ a for any automorphism a of Ŝ. It turns out that often
the rigidity also remains true for

∑
i φi ◦ ai for a well chosen set of automorphisms

ai of Ŝ and φi ∈ 0(S,OS), i.e.,∑
i

φi ◦ ai = 0⇒ φi = 0

for all i . As the notion of well chosen may vary from context to context, we only
mention that {ai }’s typically satisfy a transcendental property which we later specify
in this context. We study the case for the Serre–Tate deformation space Ŝ with
rational structure induced from the Hilbert modular Shimura variety. The formal
subtorus we study is the partial p-deformation subspace of Ŝ. We consider certain
{ai }i such that the differences {ai a−1

j }i 6= j are “transcendental” automorphisms of
the Serre–Tate deformation space (see Section 4A).

Let G = ResO/Z(GL2). The group G(Z(p)) acts on the prime-to-p Hilbert
modular Shimura variety Sh/Z(p). We refer to Section 3B for the action. Here we
only mention that in terms of the moduli interpretation, the action corresponds to
the one on the level structure. Let V be an irreducible component of Sh containing
x . Let Hx(Z(p)) be the stabiliser of x in G(Z(p)). It acts on Spec(OV,x) and thus
on the Serre–Tate deformation space Spf(ÔV,x). In view of the description of the
action on the Serre–Tate coordinates, we observe that the formal subtorus

Ĝm ⊗ Op ⊂ Spf(ÔV,x)

is stable under the action of Hx(Z(p)). Chai and the second named author have
proven that a positive dimensional closed irreducible subvariety of V containing
x and stable under Hx(Z(p)) equals V itself. In this sense, the formal subtorus
Ĝm ⊗ Op is transcendental in the Shimura variety. Recall that the Igusa tower is
étale over V. As a mod p Hilbert modular form is an algebraic function on the
Igusa tower, we prove p-rigidity (Theorem 1.1) based on the transcendence.

We now describe the strategy of the proof of Theorem 1.2. Some of the notation
used here is not followed in the rest of the article.

Let us first recall the second named author’s strategy [2010] to determineµ(L−6,λ).
Let Op = O ⊗Zp. Let

G6,λ ∈ Zp[[T1, . . . , Td ]]
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be the power series expansion of the measure L−6,λ regarded as a p-adic measure
on Op with support in 1+ pOp, given by

G6,λ =

∫
1+pOp

t y d L−6,λ(y)

=

∑
(k1,...,kd )∈(Z≥0)d

(∫
1+pOp

( y
k1, . . . , kd

)
d L−6,λ(y)

)
T k1

1 · · · T
kd

d . (1-3)

The starting point is the observation that there are classical Hilbert modular Eisen-
stein series ( fλ,i )i such that

G6,λ =

∑
i

ai ◦ ( fλ,i (t)), (1-4)

where fλ,i (t) is the t-expansion of fλ,i around a well chosen CM point y with
the CM type (K , 6) on the Hilbert modular Shimura variety Sh and ai is an
automorphism of the Serre–Tate deformation space Spf(ÔSh,y), i.e., ai ∈ Hy(Zp)

(see Section 3B). Based on Chai’s study of Hecke-stable subvarieties of a Shimura
variety, the second named author has proven the linear independence of (ai ◦ fλ,i )i
modulo p. It follows that

µ(L−6,λ)=min
i
µ( fλ,i (t)).

Let GΣ,λ,p∈ Zp[[0
−
p ]] be the analogous power series expansion of the measure L−6,λ,p.

Based on the action of p-adic differential operators on the t-expansion of a p-adic
Hilbert modular form around an ordinary point in terms of the partial Serre–Tate
coordinates, we show that

G6,λ,p =

∑
i

ai,p ◦ ( fλ,i (tp)), (1-5)

where ai,p is the projection of ai to Hy(Zp)p (see Section 3B) and fλ,i (tp) is the
p-adic Serre–Tate expansion of f around y (see Section 6A). Based on p-rigidity
and Chai’s theory of Hecke-stable subvarieties of a Shimura variety, we prove
p-independence, i.e., the linear independence of

(
ai,p ◦ ( fλ,i (tp))

)
i modulo p. It

follows that
µ(L−6,λ,p)=min

i
µ( fλ,i (tp)).

In view of the p-rigidity, we have

µ( fλ,i (t))= µ( fλ,i (tp)).

This concludes the proof of Theorem 1.2.
The strategy of the proof of Theorem 1.3 is similar to the above strategy. It

involves p-adic modular forms f ′λ,i arising from the p-adic derivative of fλN s ,i
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with N being the norm Hecke character. In this sense, the proof involves p-rigidity
for nonclassical p-adic modular forms. Finally, Theorem 1.4 is proven based on
Theorem 1.2 and the proof of results in [Hida 2011; Burungale and Hsieh 2013]. As
in [Hida 2010], we would like to emphasise that Chai’s theory plays an underlying
role in all of the above results.

In this article, we give an elementary construction of p-adic differential operators
on the space of p-adic Hilbert modular forms avoiding the use of Gauss–Manin
connection in Katz’s construction. This is based on the ideas of the second named
author in the early nineties. Based on this construction, we determine the action of
p-adic differential operators on the t-expansion of a p-adic Hilbert modular form
around an ordinary point in terms of the partial Serre–Tate coordinates.

Along with the p-adic Gross–Zagier formula, Theorem 1.2 and Theorem 1.3 have
application towards generic nonvanishing of p-adic heights on CM abelian varieties
(see [Burungale and Disegni ≥ 2017]). This provides evidence for Schneider’s
conjecture on the nonvanishing of p-adic heights in the CM case. In view of
[Burungale 2017], the underlying ideas also have application towards generic
nonvanishing of the p-adic Abel–Jacobi image of generalised Heegner cycles in
the non-CM case. We refer to [Burungale 2016b] for a survey.

Let pi and pj be primes above p as above. Theorem 1.2 implies an intriguing
equality

µ(L−Σ,λ,pi
)= µ(L−Σ,λ,pj

)

of Iwasawa µ-invariants. This is rather surprising as theses µ-invariants could
be nonzero and one in general does not expect any relation between the p-adic
L-functions LΣ,λ,pi . These p-adic L-functions correspond to independent variables
whose number may vary with i . As far as we know, Theorem 1.2 is a first phenomena
possibly suggesting a relation. It would be interesting to see whether an analogue
holds for Iwasawa λ-invariants. One can perhaps first collect experimental data.
In the case of self-duality and the root number being −1, the equality of the µ-
invariants persists even after taking the cyclotomic derivative. It seems tempting to
suppose that a deeper phenomena mediates the relation.

In view of the anticyclotomic main conjectures, Theorem 1.2 would imply an
equality of the corresponding algebraic µ-invariants. Note that the underlying
Selmer groups correspond to rather different local conditions. In many cases, the
anticyclotomic main conjecture has been proven (see [Hida 2006; 2009b]). It would
be interesting to prove the equality of the algebraic µ-invariants directly. This sort
of equality does not seem to be conjectured in the literature.

In [Burungale ≥ 2017], the first named author proves the analogue of p-rigidity
and p-independence for quaternionic modular forms over totally real fields. These
results concern a quaternion algebra which is not totally definite. In the near
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future, he hopes to consider an analogue of Theorem 1.2 for a class of quaternionic
Rankin–Selberg p-adic L-functions. In [Harris et al. 2006], a construction of p-adic
L-functions for unitary Shimura varieties is announced (see [Eischen et al. 2016]).
In such a case, the number of variables of the p-adic L-function is typically less
than the dimension of the Shimura variety. The variables of the p-adic L-function
may correspond to an analogue of the Ĝm⊗Op-variables. In the future, we hope to
consider this question starting with the case of U (n, 1) Shimura varieties.

Formulating a p-rigidity type statement for a PEL Shimura variety may have an
independent interest. In characteristic zero, we hope to explore rigidity based on
the approach in [Burungale and Hida 2016].

The article is organised as follows. In Section 2, we recall basic facts about
the Hilbert modular Shimura variety Sh. In Section 3, we prove Theorem 1.1. In
Sections 3A–3B, we firstly recall some facts about Serre–Tate deformation theory of
an ordinary closed point in Sh. In Section 3C, we prove the theorem. In Section 4,
we prove p-rigidity, i.e., the linear independence of mod p Hilbert modular forms
restricted to the partial Serre–Tate deformation space Ĝm ⊗ Op. In Section 5A, we
give an elementary construction of p-adic differential operators on the space of
p-adic Hilbert modular forms. In Section 5B, we use it to compute the action of
the p-adic differential operators on the t-expansion of a p-adic Hilbert modular
form around an ordinary point in terms of the partial Serre–Tate coordinates. In
Section 6, we consider Iwasawa µ-invariants as in Theorems 1.2–1.4. In Section 6A,
we determine the µ-invariant of certain anticyclotomic p-adic L-functions (see
Theorem 1.2). In Section 6B, we determine the µ-invariant of the cyclotomic
derivative L ′Σ,λ,p of the Katz p-adic L-function, when the branch character λ is
self-dual with the root number −1 (see Theorem 1.3). In Section 6C, we prove a
p-version of a conjecture Gillard regarding the vanishing of the µ-invariant of the
Katz p-adic L-function (see Theorem 1.4).

Notation. We use the following notation unless otherwise stated.
For a number field L , let AL be the adele ring and A f

L the finite adeles of L .
Let hL denote the ideal class number. Let GL be the absolute Galois group of L
and Gab

L the maximal abelian quotient. Let recL : A×L → Gab
L be the geometrically

normalised reciprocity law.

2. Hilbert modular Shimura variety

In this section, we recall basic facts about Hilbert modular Shimura varieties. We
follow [Hida 2004].

2A. Setup. In this subsection, we recall a basic setup regarding Hilbert modular
Shimura varieties.
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Let G =ResF/Q GL2 and h0 :ResC/R Gm→G/R be the morphism of real group
schemes arising from

a+ bi 7→
[

a −b
b a

]
,

where a+ bi ∈ C×. Let X be the set of G(R)-conjugacy classes of h0. We have a
canonical isomorphism X ' (C − R)I , where I is the set of real places of F . The
pair (G,X) satisfies Deligne’s axioms for a Shimura variety. It gives rise to a tower
(ShK = ShK (G,X))K of quasiprojective smooth varieties over Q indexed by open
compact subgroups K of G(A f ). The pro-algebraic variety Sh/Q is the projective
limit of these varieties. The complex points of these varieties are given as follows

ShK (C)= G(Q)\X ×G(A f )/K , Sh(C)= G(Q)\X ×G(A f )/Z(Q). (2-1)

Here, Z(Q) is the closure of the center Z(Q) in G(A f ) under the adélic topology.
From (2-1) and the general theory of Shimura varieties, it follows that Sh/Q is
endowed with an action of G(A f ) (see [Hida 2004, §4.2]). This gives rise to the
Hecke action.

2B. p-integral model. In this subsection, we briefly recall a canonical p-integral
smooth model Sh(p)/Z(p) of the Shimura variety Sh/G(Zp)/Q .

Hilbert modular Shimura variety Sh/Q represents a functor F classifying abelian
schemes having multiplication by O along with additional structure, where O
is the ring of integers of F (see [Hida 2004, §4.2; Shimura 1963]). As in the
introduction, let p be an odd prime unramified in F . Under this hypothesis, a p-
integral interpretation F (p) of F leads to a p-integral smooth model of Sh/G(Zp)/Q .

The functor F (p) is given by

F (p)
: SCH/Z(p)→ SETS,

S 7→ {(A, ι, λ̄, η(p))/S}/∼ . (2-2)

Here,

(PM1) A is abelian scheme over S of dimension of d .

(PM2) ι : O ↪→ EndS A is an algebra embedding.

(PM3) λ̄ is the polarisation class of a homogeneous polarisation λ up to scalar
multiplication by ι(O×(p),+), where O(p),+ := {a ∈ O(p) | σ(a) > 0, ∀σ ∈ I }.
Also, the Rosati involution of EndS A takes ι(l) to ι(l∗), for l ∈ O .

(PM4) Let T (p)(A) be the prime-to-p Tate module lim
←−−p-N A[N ]. Then η(p) is a

prime-to-p level structure given by an O-linear isomorphism

η(p) : O2
⊗Z Ẑ(p)

' T (p)(A),

where Ẑ(p)
=
∏

l 6=p Zl .
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(PM5) Let LieS(A) be the relative Lie algebra of A. There exists an O⊗ZOS-
module isomorphism

LieS(A)' O ⊗Z OS,

locally under the Zariski topology of S.

The notation ∼ denotes up to a prime-to-p isogeny.

Theorem 2.1 (Kottwitz). Let the notation and assumptions be as above. Then, the
functor F (p) is represented by a pro-algebraic scheme Sh(p)(G,X)/Z(p) . Moreover,
there exists an isomorphism given by

Sh(p)×Q ' Sh /G(Zp)/Q.

(see [Hida 2004, §4.2.1]).

The pro-algebraic scheme Sh(p)(G,X)/Z(p) is usually referred as the Kottwitz
model. In what follows, we let Sh(p)/Z(p) denote Sh(p)(G,X)/Z(p) for simplicity of
notation.

2C. Igusa tower. In this subsection, we briefly recall the notion of p-ordinary
Igusa tower over the p-integral model (see Section 2B).

Let Q be an algebraic closure of Q and Q p be an algebraic closure of Q p. We
fix a complex embedding ι∞ : Q ↪→ C and a p-adic embedding ιp : Q ↪→ Q p.

Let W be the strict Henselisation inside Q of the local ring of Z(p) corresponding
to ιp. Let F be the residue field of W . Note that F is an algebraic closure of Fp.

Let Sh(p)/W = Sh(p)×Z(p)W and Sh(p)/F = Sh(p)/W ×WF.
From now, let Sh denote Sh(p)/F . Let A be the universal abelian scheme over Sh.
Let Shord be the subscheme of Sh on which the Hasse-invariant does not vanish.

It is an open dense subscheme. Over Shord, the connected part A[pm
]
◦ of A[pm

] is
étale-locally isomorphic to µpm ⊗Zp O∗ as an Op-module, where O∗ = O−1d−1

F ,
dF is the different of F/Q and Op = O ⊗ Zp.

We now define the Igusa tower. For m ∈ N, the m-th layer of the Igusa tower
over Shord is defined by

Igm = IsomOp(µpm ⊗Zp O∗,A[pm
]
◦). (2-3)

Note that the projection πm : Igm→ Shord is finite and étale. The full Igusa tower
over Shord is defined by

Ig= Ig∞ = lim
←−−

Igm = IsomOp(µp∞ ⊗Zp O∗,A[p∞]◦). (2-4)

(Ét) Note that the projection π : Ig→ Shord is étale.

Let x be a closed ordinary point in Sh. We have the following description of the
level p∞-structure on the corresponding p-divisible group Ax [p∞].
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(PL) Let η◦p be a level p∞-structure on Ax [p∞]◦. For the primes p in O dividing p,
it is a collection of level p∞ structures η◦p, given by isomorphisms

η◦p : O
∗

p ' Ax [p
∞
]
◦,

where O∗p = O∗⊗ Op. The Cartier duality and the polarisation λ̄x induces an
isomorphism

ηét
p : Op ' Ax [p

∞
]
ét.

Thus, we get a level p∞-structure ηét
p on Ax [p∞]ét from η◦p.

Let V be an irreducible component of Sh and V ord be V ∩ Shord. Let I be the
inverse image of V ord under π . In [Hida 2004, Chapter 8; 2009a], it has been shown
that

(Ir) I is an irreducible component of Ig.

2D. Mod p modular forms. In this subsection, we briefly recall the notion of mod
p modular forms on an irreducible component of the Hilbert modular Shimura
variety (see Section 2B).

Let V and I be as in Section 2C. Let B be an F-algebra. The space of mod p
modular forms on V over B is defined by

M(V, B)= H 0(I/B,OI/B ), (2-5)

where I/B := I ×F B. In view of Sections 2B–2C, we have the following geometric
interpretation of mod p modular forms.

A mod p modular form is a function f of isomorphism classes of x̃ = (x, η◦p)/B ′ ,
where B ′ is a B-algebra, x = (A, ι, λ̄, η(p))/B ′ ∈ F (p)(B ′) and

η◦p : µp∞ ⊗Zp O∗ ' A[p∞]◦

is an Op-linear isomorphism, such that the following conditions are satisfied.

(G1) f (x̃) ∈ B ′.

(G2) If x̃' x̃ ′, then f (x̃)= f (x̃ ′), where x̃' x̃ ′ means x' x ′ and the corresponding
isomorphism between A and A′ induces an isomorphism between η◦p and η′◦p .

(G3) f (x̃ ×B ′ B ′′)= h( f (x̃)) for any B-algebra homomorphism h : B ′→ B ′′.

We also have the key notion of q-expansion and q-expansion principle for mod
p modular forms (see [Hida 2004, Theorem 4.21]).
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2E. p-adic modular forms. In this subsection, we briefly recall the notion of p-
adic modular forms on an irreducible component of the Hilbert modular Shimura
variety (see Section 2B).

Let W denote the Witt ring W(F). The construction of the Igusa tower in
Section 2C is well defined for the base W . Let I/W be the irreducible component
of the Igusa tower Ig/W over an irreducible component V/W of the Shimura variety
Sh/W . Let C be a p-adically complete local W-algebra with maximal ideal mC .
The space of p-adic modular forms on V over C is defined by

M(V,C)= H 0(I/C ,OI/C ), (2-6)

where I/C := I/W ×/W C .
By definition, a p-adic modular form over C modulo mC is a mod p modular

form.
We have an analogous moduli interpretation as in Section 2D and also the

q-expansion principle, for p-adic modular forms (see [Hida 2010, §4.1]).

3. p-rigidity

In this section, we prove the rigidity of mod p modular forms (see Theorem 1.1). In
Sections 3A–3B, we firstly recall basic facts about Serre–Tate deformation theory
of an ordinary closed point on the Hilbert modular variety (see Section 2B). In
Section 3C, we prove the rigidity.

3A. Serre–Tate deformation theory. In this subsection, we briefly recall Serre–
Tate deformation theory of an ordinary closed point on the Hilbert modular variety
(see Section 2B). We follow [Hida 2004, §8.2; 2010, §2; 2013b, §1].

Let the notation and assumptions be as in Section 2. Let x be a closed point
in Shord carrying (Ax , ιx , λ̄x , η

(p)
x )/F. Let V be the irreducible component of Sh

containing x .
Let CLW be the category of complete local W-algebras with residue field F. Let

D/W be the fiber category over CLW of deformations of x/F defined as follows. Let
R ∈CLW . The objects of D/W over R consist of x ′∗ = (x ′, ιx ′), where x ′ ∈F (p)(R)
and

ιx ′ : x ′×R F' x .

Let x ′∗ and x ′′∗ be in D/W over R. By definition, a morphism φ between x ′∗ and
x ′′∗ is a morphism (still denoted by) φ between x ′ and x ′′ satisfying [Hida 2004,
(7.3)] and the following condition.

(M) Let φ0 be the special fiber of φ. The automorphism ιx ′′ ◦φ0 ◦ ι
−1
x ′ of x equals

the identity.
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Let F̂x be the deformation functor given by

F̂x : CL/W → SETS,

R 7→ {x ′∗/R ∈ D}/' .
(3-1)

The notation ' denotes up to an isomorphism.
Recall, R ∈ CLW . As R is a projective limit of local W-algebras with nilpotent

maximal ideal, we can (and do) suppose that R is a local Artinian W-algebra with
nilpotent maximal ideal mR . Let x ′∗/R ∈D and A denote Ax ′ . By Drinfeld’s theorem
(see [Hida 2004, §8.2.1]), A[p∞]◦(R) is killed by pn0 for sufficiently large n0. Let
y ∈ A(F) and ỹ ∈ A(R) such that ỹ0 = y, where ỹ0 denotes the special fiber of ỹ
(as A/R is smooth, such a lift always exists). By definition, ỹ is determined modulo
ker(A(R)→ A(F))= A[p∞]◦(R). Thus, for n≥ n0, “pn”y0 := pn ỹ is well defined.
From now, we suppose that n ≥ n0. If y ∈ A[pn

](F), then “pn”y ∈ A[p∞]◦(R).
Strictly speaking, we apply the idempotent ep corresponding to p so that ep“pn”y ∈
A[p∞]◦(R). We let “pn”y denote ep“pn”y for simplicity of notation.

Thus, we have a homomorphism

“pn” : A[pn
](F)→ A[p∞]◦(R). (3-2)

We also have the commutative diagram

A[pn+1
]
ét(R) '

//

p
��

A[pn+1
](F)

“pn+1”
//

p

��

A[p∞]◦(R)

=

��

A[pn
]
ét(R) '

// A[pn
](F)

“pn”
// A[p∞]◦(R).

Passing to the projective limit, this gives rise to a homomorphism

“p∞” : A[p∞](F)→ A[p∞]◦(R). (3-3)

(CC) For lim
←−−

yn ∈ lim
←−−

A[pn
](F), let

y = lim
←−−

yn ∈ A[p∞](F)' Ax [p
∞
]
ét.

The isomorphism is induced by ιx ′ .

Let qn,p(yn)= “pn”yn and qp(y)= lim qn,p(yn). By definition,

qp(y) ∈ A[p∞]◦(R)' Hom(A∨x [p
∞
]
ét, Ĝm(R)),

where A∨x is the dual of the abelian variety Ax . Let qA,p be the pairing given by

qA,p : Ax [p
∞
]
ét
× A∨x [p

∞
]
ét
→ Ĝm(R),

qA,p(y, z)= qp(y)(z).
(3-4)

We have the following fundamental result.
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Theorem 3.1 (Serre–Tate). (1) There exists a canonical isomorphism

F̂x(R)'
∏
p

HomZp

(
Ax [p

∞
]
ét
× A∨x [p

∞
]
ét, Ĝm(R)

)
(3-5)

given by x ′∗ 7→ qA :=
∏

p qAx ′ ,p.

(2) The deformation functor F̂x is represented by the formal scheme Ŝ/W :=

Spf(ÔV,x). A level p∞-structure as in (PL), gives rise to a canonical isomor-
phism of the deformation space Ŝ/W with the formal torus

∏
p Ĝm⊗Zp Op (see

[Hida 2013b, Proposition 1.2]).

Let xST be the universal deformation of the closed ordinary point x .
We now recall key underlying notions.

Definition 3.2. Let x be a closed ordinary point on the Hilbert modular variety as
above. Recall that a level p∞-structure on x (see (PL)) gives rise to a canonical
isomorphism of the deformation space Ŝ/W with the formal torus

∏
p Ĝm ⊗Zp Op

(see part (2) of Theorem 3.1). Under this identification, let

t = (tp)p

be the coordinates of the deformation space Ŝ/W , where tp is the coordinate
of Ĝm ⊗Zp Op. We call t = (tp)p the Serre–Tate coordinates of the deformation
space Ŝ/W .

We have Ŝ = Spf(Ŵ [O]), where S = Gm ⊗ O∗, W [O] =W [X (S)] and Ŵ [O]
is the completion at the augmentation ideal. Here, X (S) is the character group of S.
Note that W [O] is the ring consisting of formal finite sums

∑
ξ∈O a(ξ)tξ , where

a(ξ) ∈W and t is the coordinate of Gm . Here, tξ is the character given by

tξ (t ⊗ u)= tTrF/Q(ξu)

for u ∈ O∗.

Definition 3.3. Let f be a mod p modular form over F (see Section 2D). A level
p∞-structure η◦p of x gives rise to a canonical level p∞-structure η◦p,ST of the
universal deformation xST. We denote by

f ((xST, η
◦

p,ST)) ∈ F̂[O]

the t-expansion of f around x .

We have the following t-expansion principle.

(t-expansion principle) The above t-expansion of a mod p modular form f around
a closed ordinary point determines f uniquely (see (Ir)).

We have an analogous t-expansion principle for p-adic modular forms (see [Hida
2010, §4.1]).
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3B. Reciprocity law for the deformation space. In this subsection, we recall the
action of the local algebraic stabiliser of a closed ordinary point x on the Serre–Tate
coordinates of the deformation space of x . This can be considered as an infinitesimal
analogue of Shimura’s reciprocity law.

Let g ∈ G(Z(p)) act on Sh through the right multiplication on the prime-to-p
level structure, i.e.,

(A, ι, λ̄, η(p))/S 7→ (A, ι, λ̄, η(p) ◦ g)/S

(see Section 2B).
Recall that x is a closed ordinary point in Sh with a p∞-level structure ηord

p .
Let (Kx , 6x) be the CM-type of x . We suppose that ι : O ↪→ End(A) extends
to ιx : O ↪→ End(A), where O is the ring of integers of Kx . Let Hx(Z(p)) be the
stabiliser of x in G(Z(p)). Note that

Hx(Z(p))= (ResO(p)/Z(p) Gm)(Z(p))=O×
(p), (3-6)

where O(p) =O⊗ Z(p) (see [Hida 2010, §3.2; Shimura 1998]). We call Hx(Z(p))

the local algebraic stabiliser of x .
Let cx be the complex conjugation of Kx .
As x is ordinary, 6x is a p-ordinary CM type. When considered as a p-adic

CM type, we denote it by 6x,p. Let p=
∏
v∈6x,p

pv, for the primes pv associated
to the valuation v ∈6x,p. Note that Op = Op =

∏
p Op and Op =Op×Opcx . Let

Hx(Zp)p be the p-component O×p of Hx(Zp)=O×p . We have a natural inclusion
O(p) ⊂Op. Thus, we regard Hx(Z(p))⊂ Hx(Zp). Let Hx(Z(p))p be the projection
of Hx(Z(p)) to Hx(Zp)p. Note that we have an isomorphism Hx(Z(p))' Hx(Z(p))p.
Let α ∈ Hx(Z(p)). Let αp be the projection of α to the p-component O×p of O×p . As
Hx(Z(p)) stabilises x , it follows that α acts on Spec(OV,x) and thus on Spf(ÔV,x).
In particular, it acts on the Serre–Tate coordinates (see Definition 3.2). The action
is given by the following lemma.

Lemma 3.4 [Hida 2010, Lemma 3.3]. The endomorphism α acts on the Serre–Tate
coordinates t = (tp)p by

t 7→ tα
1−cx

for tα
1−cx
= (t

α
1−cx
p

p )p.

We have the following immediate corollary.

Corollary 3.5. The partial Serre–Tate deformation space Ĝm ⊗Op ⊂ Spf(ÔV,x) is
stable under the action of the local algebraic stabiliser Hx(Z(p)).

This simple corollary is crucial for p-rigidity. It may lead to rigidity-style
phenomena with different flavour.
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3C. p-rigidity. In this subsection, we prove the rigidity of mod p modular forms
(see Theorem 1.1).

Recall that x is a closed ordinary point in V with p∞-level structure η◦p and
V = lim

←−−
VK , where VK is the projection of V to ShK = Sh/K for K small and

maximal at p. This gives rise to a closed point x̃ = (x, η◦p) in the Igusa tower I
over x . In view of (Ét), there exists a canonical isomorphism

ÔV,x ' Ô I,x̃ .

Thus, a mod p modular form can be considered as a function on Spec(OV,x).
Let f be a nonzero mod p modular form. We suppose that f is a nonunit

in OV,x . Let b ⊂ OV,x be the zero ideal of f , i.e., b = ( f ) ∩OV,x . As f is an
algebraic function on I , it follows that V (b) is nonempty not only in Spf(ÔV,x)

but also in Spec(OV,x). In particular, we have b 6= 0. Let X be the Zariski closure
of Spec(OV,x/b) in V. Note that X ⊂ V is a closed irreducible pro-subscheme
containing x and X = lim

←−−
X K , where X K is the projection of X to VK .

We start with a preparatory lemma.

Lemma 3.6. Let Yi be a family of closed subschemes of an irreducible noetherian
scheme Y such that there exists a closed point y ∈ Yi , for all i , i.e., y ∈

⋂
i Yi .

Suppose that the intersection of the Spf(ÔYi ,y) (viewed inside Spf(ÔY,y)) is positive
dimensional. Then, the intersection of the Yi is positive dimensional.

Proof. It suffices to consider the affine case.
Let A be a noetherian integral domain and Ri = A/ai , for ideals ai . Take nonunits

t1, . . . , tr in A and let (t)= (t1, . . . , tr ). Suppose that

V (t)= Spec(R/(t))⊂ Vi = Spec(R/ai ), for all i.

This implies ai ⊂ (t). In particular,
∑

i ai ⊂ (t).
If A is local noetherian with maximal ideal m, by faithful flatness of Â =

lim
←−−

A/mn over A, ∑̂
i

ai =
∑

i

âi .

So, the above argument can be applied to (t) ∈ m̂, Â and (̂A/ai ).
This finishes the proof as

dim
(⋂

i

Spec(A/ai )

)
= dim

(
Spec

(
A
/∑

i

ai

))
= dim

(
Spec

(
Â
/∑

i

âi

))
= dim

(⋂
i

Spec( Â/âi )

)
≥ dim( Â/(t)). �

We are now ready to prove the rigidity.
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Theorem 3.7 (p-rigidity). Let the notation and assumptions be as above. The par-
tial Serre–Tate deformation space Ĝm⊗Op is not a formal subscheme of Spf(ÔX,x)

(viewed inside Spf(ÔV,x)).

Proof. Suppose that it is a formal subscheme.
We now consider Z =

⋂
α∈Hx (Z(p))

α(X) (viewed inside V ). As above, recall that
Z = lim

←−−
Z K .

Note that Spf(Ôα(X),x) = α(Spf(ÔX,x)) (viewed inside Spf(ÔX,x)). It follows
that if Ĝm ⊗ Op ⊂ Spf(ÔX,x), then Ĝm ⊗ Op ⊂ Spf(Ôα(X),x) (see Corollary 3.5).
In particular, we have Ĝm ⊗ Op ⊂ Spf(Ôα(X)K ,x). In the last equality, α(X)K is
the projection of α(X) to VK . By Lemma 3.6, Z K is positive dimensional. As the
projection πK : V → VK is étale, we conclude that Z itself is positive dimensional.

Thus, Z is a closed irreducible pro-subscheme of V containing x and stable
under Hx(Z(p)). We conclude that Z = V (see [Hida 2010, Proposition 3.8]). It
follows that b = 0. This is a contradiction for f being nonzero as noted in the
paragraph before Lemma 3.6. �

In particular, Theorem 1.1 holds. The following consequence is immediate.

Corollary 3.8. Let g be a p-adic modular form. Then,

µ(g)= µ(g|Ĝm⊗Op
).

Proof. Let g be nonzero and defined over a p-adically complete local W-algebra C .
If g is a unit in OV,x , the corollary follows instantly. We thus suppose that g is a

nonunit in OV,x .
In view of the t-expansion principle, we have

µ(g)= µ(g|∏
p Ĝm⊗Zp Op

).

Let c ∈ C such that µ(g/c)= 0. By definition, g/c modulo the maximal ideal mC

is a nonzero mod p modular form. In view of Theorem 3.7, it thus follows that

µ(g/c|Ĝm⊗Op
)= 0. �

4. p-independence

In this section, we consider p-independence, i.e., a linear independence of mod p
modular forms restricted to the partial Serre–Tate deformation space Ĝm ⊗ Op (see
Section 3A). In Section 4A, we first state the formulation and in Section 4B, we
prove the independence.

4A. Formulation. In this subsection, we give a formulation of the linear indepen-
dence of mod p modular forms restricted to the partial Serre–Tate deformation
space Ĝm ⊗ Op (Section 3A).
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Let the notation and assumptions be as in Section 3. Recall that x is a closed
ordinary point in V with p∞-level structure η◦p. This gives rise to a closed point
x̃ = (x, η◦p) in the Igusa tower I over x and a canonical isomorphism

Spf(ÔV,x)'
∏
p

Ĝm ⊗Zp Op (4-1)

(see Theorem 3.1).
Recall that we have a canonical isomorphism ÔV,x ' Ô I,x̃ (see (Ét)). Thus, the

p-completed stabiliser Hx(Zp) acts on Ô I,x̃ .
Let f be a mod p modular form and a ∈ Hx(Zp). Note that

(a( f ))|Ĝm⊗Op
= ap( f |Ĝm⊗Op

)

(see Corollary 3.5). Here ap is as in Section 3B.
To provide context for the following independence, note that there exists a ∈

Hx(Zp) such that api ∈ Hx(Z(p))pi and apj /∈ Hx(Z(p))pj , for j 6= i . Indeed,

Hx(Zp)= O×p =
∏
p

O×p

and we may choose a to be nonidentity precisely at the pi -th component.
Let n be a positive integer. For 1≤ i ≤ n, let ai ∈ Hx(Zp) such that (ai a−1

j )p /∈

Hx(Z(p))p for all i 6= j (see Section 3B). Let f1, . . . , fn be n nonconstant mod p
modular forms on V (see Section 2D).

Our formulation of the linear independence is the following.

Theorem 4.1 (p-independence). Let the notation and assumptions be as above, and
suppose that (ai a−1

j )p /∈ Hx(Z(p))p for all i 6= j . Then, the (ai,p ◦ ( fi |Ĝm⊗Op
))i are

linearly independent in the partial Serre–Tate deformation space Ĝm ⊗ Op.

Note that ai,p ◦ ( fi |Ĝm⊗Op
) is not necessarily the restriction of a mod p modular

form to Ĝm ⊗ Op.
The above independence is p-analogue of the linear independence in [Hida 2010,

§3.5]. As expounded in Section 4B, the approach in [Hida 2010, §3] is fundamental
to the p-independence.

4B. p-independence. In this subsection, we prove the linear independence of
mod p modular forms restricted to the partial Serre–Tate deformation space Ĝm⊗Op

(see Section 4A).
The approach is based on p-rigidity and Chai’s theory of Hecke-stable subvarieties

of a mod p Shimura variety adopted for local algebraic stabilisers in [Hida 2010,
§3]. For a detailed treatment of the latter, we refer to [Chai 1995; 2003; 2006; Hida
2010].

Let n be a positive integer. In this subsection, any tensor product is taken n-times.
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We consider an F-algebra homomorphism

φI :OI,x̃ ⊗F · · · ⊗F OI,x̃ → Ĝm ⊗ Op (4-2)

given by

f1⊗ · · ·⊗ fn 7→

i=n∏
i=1

ai,p ◦ ( fi |Ĝm⊗Op
). (4-3)

As we are interested in the linear independence of (ai,p( fi |Ĝm⊗Op
))i , we consider

bI := ker(φI ).
Similarly, we consider an F-algebra homomorphism

φ = φV :OV,x ⊗F · · · ⊗F OV,x → Ĝm ⊗ Op (4-4)

given by

h1⊗ · · ·⊗ hn 7→

i=n∏
i=1

ai,p ◦ (hi |Ĝm⊗Op
). (4-5)

In view of Theorem 3.7, it follows that φI and φV are both nontrivial.

(EQ) We note that φ is equivariant with the Hx(Z(p))-action.

Let bI = ker(φV ) and b= ker(φV ).

Lemma 4.2. bI = 0 if and only if b= 0.

Proof. In view of (Ét), we have an étale morphism

πm
:OV,x ⊗F · · · ⊗F OV,x →OI,x̃ ⊗F · · · ⊗F OI,x̃ .

Note that bI is the unique prime ideal of OI,x̃ ⊗F · · · ⊗F OI,x̃ over b. �

As φ is equivariant with the Hx(Z(p))-action (see (EQ)), it follows that b is a
prime ideal of OV,x ⊗F · · · ⊗F OV,x stable under the diagonal action of Hx(Z(p)).
Let Y be the Zariski closure of Spec(OV,x ⊗F · · · ⊗F OV,x/b) in V n. Thus, Y is a
closed irreducible subscheme of V n containing xn stable under the diagonal action
of Hx(Z(p)). We also have an analogue of the commutative diagram [Hida 2010,
(3.22)] with ÔS replaced by Ĝm ⊗ Op. For n ≥ 2, the subscheme Y thus satisfies
the hypothesis in [Hida 2010, Corollary 3.19].

Theorem 4.3. The subscheme Y equals V n.

Proof. When n = 1, this is nothing but [Hida 2010, Proposition 3.8].
We thus suppose that n ≥ 2. From [Hida 2010, Corollary 3.19], we have two

possibilities, namely Y = V n−2
×1α,β (up to a permutation of the factors) for some

α, β ∈ Hx(Z(p)), or Y = V n. The skewed diagonal 1α,β is given by

1α,β = {(α(v), β(v)) | v ∈ V }.
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Suppose that Y = V n−2
×1α,β (up to a permutation of the factors). Let (t, t ′) be

the Serre–Tate coordinates of the last two factors 1α,β at (x, x), respectively. It
follows that

tβ
1−cx
= t ′α

1−cx
.

On the other hand, from the definition of Y it follows that

tan,p
p = t ′an−1,p

p .

Thus, (ana−1
n−1)p = (βα

−1)
1−cx
p ∈ Hx(Z(p))p. This contradicts the hypothesis on

the ai . We conclude that Y = V n . �

We have the following immediate consequence.

Corollary 4.4. Theorem 4.1 holds.

Proof. In view of Theorem 4.3, it follows that b= 0. Thus, bI = 0 (see Lemma 4.2).
�

5. p-adic differential operators

In this section, we consider p-adic operators on the space of p-adic Hilbert modular
forms. This is a p-adic analogue of the Maass–Shimura differential operators on
complex Hilbert modular forms. In Section 5A, we give an elementary construction
of these operators. In Section 5B, we compute their action on the t-expansion of
a p-adic Hilbert modular form around an ordinary point in terms of the partial
Serre–Tate coordinates. For a more detailed account in the elliptic modular case,
we refer to [Hida 2013a, §1.3.6]. In Section 6, we will use these results to compute
the power series expansion of anticyclotomic Katz p-adic L-functions and variants
(see Section 1).

5A. Elementary construction. In this subsection, we give an elementary construc-
tion of p-adic differential operators on the space of p-adic Hilbert modular forms.

Let the notation and assumptions be as in Section 2. For the geometric definition
of classical and p-adic modular forms on the Hilbert modular Shimura variety, we
refer to [Hida 2004, §4.2; 2010, §4.1].

Recall that F denotes an algebraic closure of Fp, W the Witt ring W(F), ιp :
Q ↪→ Cp a p-adic embedding and ι∞ : Q ↪→ C a complex embedding. Let W
denote ι−1

p (W ). Possibly enlarging W , we suppose that τ(O)⊂W , for all τ ∈6.
In this subsection, we suppose the prime-to-p level of classical or p-adic Hilbert

modular forms is one. This is only to simplify the notation.
Let Gκ(01(pm),W) be the space of classical Hilbert modular forms of weight κ

and level 01(pm) over W , where κ ∈ Z≥0[6] and m is a nonnegative integer. Let
f ∈ Gκ(01(pm),W). Via ι∞, we regard f as a Hilbert modular form over C . Let



p-rigidity and Iwasawa µ-invariants 1941

z = (zτ )τ∈6 be the complex variables of the Hilbert modular Shimura variety or
those of HΣ , where H is the upper half plane (see [Hida 2010, §4.1]). Let (a, b) be
a pair giving rise to a cusp of the Hilbert modular Shimura variety (see [Hida 2010,
§4.1]). The Fourier expansion of f at the cusp corresponding to (a, b) is given by

f (z)=
∑
ξ∈O

a(ξ)eF (ξ z)

for eF (ξ z)= exp
(
2π i

∑
τ∈6 τ(ξ)zτ

)
.

Let φ : O/prO → W be an arbitrary function with the normalised Fourier
transform φ∗ given by

φ∗(y)= 1
prd/2

∑
u∈O/pr O

φ(u)eF (yu/pr ), (5-1)

where y ∈ O/prO and eF (w)= exp(2π i TrF/Q(w)) for w ∈ F .
Let f |φ be the classical Hilbert modular form given by

f |φ(z)=
∑

u′=(σ1(u),...,σd (u)),u∈O/prO

φ∗(−u) f (z+ u′/pr ), (5-2)

where z+ u′/pr
= (zτ + τ(u)/pr )τ .

Note that f |φ ∈ Gκ(01(ps),W), where s =max(m, 2r). In view of the Fourier
inversion formula, it follow that the Fourier expansion of f |φ at the cusp corre-
sponding to (a, b) is given by

f |φ(z)=
∑
ξ∈O

φ(ξ)a(ξ)eF (ξ z). (5-3)

Let (φσn : O/pnO→W)n be a sequence of functions such that

φσn (ξ)≡ σ(ξ) (mod pnW).

In view of the q-expansion principle, it follow that the sequence ( f |φσn )n of classical
Hilbert modular forms converges p-adically to a p-adic Hilbert modular form dσ f
whose formal Fourier expansion at the cusp corresponding to (a, b) is given by

dσ f (z)=
∑
ξ∈O

σ(ξ)a(ξ)eF (ξ z). (5-4)

In other words, the operator dσ equals the Maass–Shimura differential operator

δσ0 =
1

2π i
∂

∂zσ
on Gκ(01(pm),W).

This construction extends to the space of p-adic Hilbert modular forms over W
as follows. Let V(W ) be the space of p-adic Hilbert modular forms of prime-to-p
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level one over W. Via ιp, we can regard Gκ(01(pm),W) as a subspace of V(W )

(see [Hida 2004, §8.1]). The space Gκ(01(p∞),W) =
⋃

m Gκ(01(pm),W) is
p-adically dense in V(W ) (see [Hida 2004, §8.1]). Thus, the differential operator
dσ extends to V(W ).

Remark. In [Katz 1978, Chapter II], the operator dσ is constructed based on the
Gauss–Manin connection of the universal abelian scheme over the Shimura variety.
The above approach can be generalised for a class of PEL Shimura varieties.

5B. Action on the t-expansion. In this subsection, we compute the action of the
differential operator on the t-expansion of a p-adic Hilbert modular form around a
p-ordinary point in terms of the partial Serre–Tate coordinates.

Let (ζpn = exp(2π i/pn))n ∈ Q be a compatible system of p-power roots of
unity. Via ιp, we regard it as a compatible system in Cp.

Let p be the prime corresponding to σ via ιp and 6p be the set of places above
p in F . For q ∈6p, let 6q ⊂6 be the subset giving rise to q under ιp.

Let Wn =W [µpn ] and mn be the maximal ideal. We have

(Ĝm ⊗ O∗p )(Wn)= (1+mn)⊗ O∗p (5-5)

and
Ĝm ⊗ O∗q =

∏
τ∈6q

Ĝm . (5-6)

Let u ∈ O and α(u/pm) ∈ G(A f ) such that

α(u/pm)p =

[
1 u/pm

0 1

]
and α(u/pm)l = 1, for l 6= p.

Let us recall some notation. Let π : Ig→ Sh be the Igusa tower over W. Let
x ∈ Shord

/F be a closed point and x̃ be a point above it in Sh. Let Ŝ/W be the
deformation space of x̃ . For q ∈6p, recall tq = t⊗1q ∈ Ĝm⊗Oq is the Serre–Tate
coordinate of the partial deformation space Ĝm ⊗ Oq (see Section 3A). We regard
1⊗ u ∈ Ĝm ⊗ Oq via the image u ∈ Oq.

We start with a preparatory lemma.

Lemma 5.1. The isogeny action of α(u/pm) on the Igusa tower π : Ig→ Sh/Wm

preserves the deformation space Ŝ and induces tp 7→ ζpm t ⊗ u (see (5-5)) and
tp′ 7→ tp′ , for p′ 6= p.

Proof. Let xST = (Ax , · ) be the universal deformation and x0 = (A0, · ) be the
origin of the deformation space Ŝ. In particular, we have

A0[p
m
] = µpm ⊗ O∗p ⊕ Op/p

mOp. (5-7)
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By the universal level structure, we have an exact sequence

0 // µpm ⊗ O∗p // Ax [p
m
]

h
// Op/p

mOp
// 0.

A section of the morphism h determines an Op-cyclic subgroup Cu isomorphic to
Op/p

mOp defined over Wm , which specialises at the origin A0 to a cyclic subgroup
generated by (ζpm ⊗ u, γ0) in A0[p

m
] (see (5-7)). Here γ0 denotes the image of 1

under the identification A0[p
m
]
ét
= Op/p

mOp.
The isogeny action α(u/pm) corresponds to the isogeny Ax →Ax,u :=Ax/Cu .

By an argument similar to the proof of [Brakočević 2011, Lemmas 7.1, 7.2], it
follows that the p-Serre–Tate coordinates of Ax,u is given by ζpm t ⊗ u. For p′ 6= p,
in view of the construction of the Serre–Tate coordinates (see Section 3A), it follows
that the p′-Serre–Tate coordinate is given by tp′ . �

For τ ∈6q, let tτq be the τ -component of tq (see (5-6)).

Proposition 5.2. The action of the p-adic differential operator dσ on the deforma-
tion space Ŝ is given by

tσp
∂

∂tσp
.

Proof. As a p-adic Hilbert modular form is a p-adic limit of classical Hilbert
modular forms, it suffices to verify the proposition for classical Hilbert modular
forms.

Let f ∈ Gκ(01(pm),W) and the t-expansion of f around x be given by

f (t)=
∑
ω

a(ω)
∏
q∈6p

tωq
q . (5-8)

Here by tωq
q , we mean the character tωq (see Section 3A) and the summation is over

ω ∈ O (see [Hida 2010, pp. 106–107]). To emphasise the notion of t-expansion
around a point, we use the indexing notation ω instead of the traditional notation ξ
for q-expansion around a cusp.

We have
f |φ =

∑
u∈O/prO

φ∗(−u) f |α(u/pr ),

as α(u/pm) acts on H6 by z 7→ z+ u′/pr (see (5-2)).
In view of Lemma 5.1, it follows that

f |φσn (t)=
∑
ω

a(ω)
( ∑

u∈O/pn O

(φσn )
∗(−u)ζTrF/Q(uωp)

pn

)
tωp
p

∏
p′ 6=p

t
ωp′

p′

=

∑
ω

φσn (ωp)a(ω)
∏
q∈6p

tωq
q . (5-9)
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The last equality follows from the Fourier inversion formula.
Thus, we have

dσ f (t)= lim
n

f |φσn (t)=
∑
ω

σ(ωp)a(ω)
∏
q∈6p

tωq
q = tp,σ

∂ f
∂tp,σ

. �

We have the following immediate consequence.

Corollary 5.3. The p-adic differential operator dσ is Ŝ-invariant.

Remark. The above corollary is proven in [Katz 1981, §4.3] based on the compu-
tation of the Gauss–Manin connection in terms of the Serre–Tate coordinates. The
above approach can be generalised for a class of PEL Shimura varieties.

6. Iwasawa µ-invariants

In this section, we consider Iwasawa µ-invariants as in Theorems 1.2–1.4. In
Section 6A, we determine the µ-invariant of certain anticyclotomic p-adic L-
functions (see Theorem 1.2). In Section 6B, we determine the µ-invariant of
the cyclotomic derivative L ′Σ,λ,p of the Katz p-adic L-function, when the branch
character λ is self-dual with the root number −1 (see Theorem 1.3). In Section 6C,
we prove a p-version of a conjecture Gillard regarding the vanishing of the µ-
invariant of Katz p-adic L-function (see Theorem 1.4).

6A. µ-invariant of anticyclotomic p-adic L-functions. In this subsection, we first
obtain a formula for the µ-invariant anticyclotomic Katz p-adic L-function (see
Theorem 1.2). Towards the end, we comment on a similar formula for a class of
Rankin–Selberg anticyclotomic p-adic L-functions.

Let the notation and assumptions be as in the introduction. Let C be a prime-to-p
ideal of K . Let Z(C) be the Ray class group of K modulo Cp∞. Let Z(C)− be the
anticyclotomic quotient. The reciprocity law recK : (A

f
K )
×
→ Z(C)− induces the

isomorphism

recK : lim←−−
n

K×(A f
F )
×
\(A f

K )
×/UK (Cpn)−→∼ Z(C)−

for UK = (OK ⊗ Ẑ)× and

UK (Cpn)= {u ∈UK | u ≡ 1 (mod Cpn)}.

Let 0− be the maximal Zp-free quotient of Z(C)− and 0−p be the p-part of 0− (see
Section 1).

Let 0′ and 0′p be the open subgroups of 0− generated by the images via recK of

O×p ×
∏

v|DK/F

K×v and O×p ×
∏

v|DK/F

K×v ,
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respectively. Let Σp be the places above p in K induced by the p-ordinary CM
type Σ . The reciprocity law recK at Σp induces an injective map

recΣp : 1+ pOp ↪→ O×p =
⊕
w∈Σp

O×Kw

recK
−−→ Z(C)−

with finite cokernel as p - DF . It induces isomorphisms recΣp : 1+ pOp −→
∼ 0′

and recΣp : 1+ pOp −→
∼ 0′p. Via these isomorphisms, we identify 0′ (resp. 0′p)

with the subgroup recΣp(1+ pOp) (resp. recΣp(1+ pOp)) of the anticyclotomic
quotient Z(C)−.

In [Katz 1978; Hida and Tilouine 1993], a Zp-valued p-adic measure LC,Σ on
Z(C) is constructed. It interpolates a class of critical Hecke L-values corresponding
to Hecke characters over K with prime-to-p conductor C (see [Katz 1978; Hida
and Tilouine 1993; Burungale 2016a]). Let λ be an arithmetic Hecke character over
K with prime-to-p conductor C. Let L−Σ,λ (resp. L−Σ,λ,p) be the p-adic measure on
0− (resp. 0−p ) obtained by the push-forward of LC,Σ along λ.

Recall that the µ-invariant µ(ϕ) of a Zp-valued p-adic measure ϕ on a p-adic
group H is defined by

µ(ϕ)= inf
U⊂H open

vp(ϕ(U )).

The µ-invariants of the above measures are related by the following theorem.

Theorem 6.1. Let the notation and assumptions be as above. Then, we have

µ(L−Σ,λ)= µ(L
−

6,λ,p).

Proof. Let L−Σ,λ (resp. L−Σ,λ,p) be the power series of the measure L−Σ,λ (resp. L−Σ,λ,p)
in the sense of (1-3).

We first suppose that p - h−K , where h−K is the relative class number given by
h−K = hK /hF and h? is the class number of ?, for ?= F, K . We thus have

Z(C)− ' 0−.

We now describe the approach of the second named author to determine µ(L−6,λ)
(see [Hida 2010]).

Under the hypothesis, there exist a finite number of classical Hilbert modular
Eisenstein series ( fλ,i )i such that

L−6,λ =
∑

i

ai ◦ ( fλ,i (t)) (6-1)

up to an automorphism of Zp[[0
−
]]. Here fλ,i (t) is the t-expansion of fλ,i around a

well chosen CM point x with the CM type (K , 6) on the Hilbert modular Shimura
variety Sh and ai is an automorphism of the deformation space of x in Sh for each i
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(see [Hida 2010, Theorem 5.1; Hsieh 2014a, §5.2]). Moreover, the ai satisfy the
hypothesis in Theorem 4.1.

For κ ∈ Z≥0[Σ], let νκ be the p-adic character of 0′ such that

νκ(recΣp(y))= yκ

for y ∈ 1+ pOp. Let dκ be the p-adic differential operator corresponding to κ (see
Section 5A). From (6-1), we thus conclude(

dκ
∑

i

ai ◦ ( fλ,i (t))
)∣∣∣∣

t=1
=

∫
0−
νκ dL−Σ,λ. (6-2)

In view of the linear independence of (ai ◦( fλ,i ))i (see [Hida 2010, Theorem 3.20]),
it follows that

µ(L−6,λ)=min
i
µ( fλ,i (t))=min

i
µ( fλ,i ). (6-3)

We now turn towards the anticyclotomic Katz p-adic L-function.
For a p-adic Hilbert modular form f , let f (tp) be obtained from f (t) by substi-

tuting tp′ = 1, for all p′ 6= p.
Let

f −6,λ,p =
∑

i

ai,p ◦ ( fλ,i (tp)). (6-4)

Recall that 6p ⊂Σ denotes the subset of infinite places of F corresponding to p,
via ιp. For σ ∈6p, let dσ

′

be the formal differential operator given by

f (tp) 7→ tσp
∂ f
∂tσp

.

In view of Proposition 5.2, it follows that

dσ
′

( f (tp))= (dσ f )(tp). (6-5)

From now on, let κ ∈ Z≥0[Σp]. Let dκ
′

be the corresponding formal differential
operator.

We now have

dκ
′

( f −6,λ,p)|tp=1 = (dκL−6,λ)|t=1 =

∫
0−
νκ dL−Σ,λ =

∫
0−p

νκ dL−Σ,λ,p. (6-6)

The first two equalities follow from (6-5) and (6-2), respectively. The last equality
follows from the fact that for κ ∈ Z≥0[Σp], the character νκ factors through 0−p .

In other words, dκ
′

( f −6,λ,p)|tp=1 interpolates the κ-th moment of the measure L−Σ,λ,p.
Thus,

f −6,λ,p = L−Σ,λ,p

up to an automorphism of Zp[[0
−
p ]].
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In view of the linear independence of (ai,p ◦ ( fλ,i |Ĝm⊗Op
))i (see Theorem 4.1),

it follows that

µ(L−6,λ,p)=min
i
µ( fλ,i (tp))=min

i
µ( fλ,i |Ĝm⊗Op

)). (6-7)

In view of Corollary 3.8, this finishes the proof of the theorem for the case p - h−K .
When p | h−K , the power series L−6,λ restricted to an explicit finite open cover of

0− is still of the form (5-1) (see [Hsieh 2014a, §5.2]). Thus, a similar argument
proves the Theorem. �

In most of the cases, µ(L−6,λ) has been explicitly determined [Hida 2010; Hsieh
2014a]. Thus, we obtain a formula for µ(L−6,λ,p).

Remark. A class of Rankin–Selberg anticyclotomic p-adic L-functions for Hilbert
modular forms is constructed in [Hsieh 2014b]. It also satisfies a property analo-
gous to (6-1) [Hsieh 2014b, §6.2]. Thus, by an argument similar to the proof of
Theorem 6.1, we get an analogue of Theorem 6.1. In the near future, the first named
author hopes to consider Rankin–Selberg anticyclotomic p-adic L-functions for
quaternionic modular forms. In these situations, the underlying Shimura variety
turns out to be a quaternionic Shimura variety arising from a quaternion algebra
over a totally real field which is not totally definite.

6B. µ-invariant of the cyclotomic derivative of the Katz p-adic L-function. In
this subsection, we determine the µ-invariant of the cyclotomic derivative of the
Katz p-adic L-function, when the branch character λ is self-dual with the root
number −1 (see Theorem 1.3).

Let K+
∞

be the cyclotomic Zp-extension of K and Kp,∞ = K−p,∞K+
∞

. Let
0 = Gal(K−

∞
K+
∞
/K ) and 0p = Gal(Kp,∞/K ). Let λ be an arithmetic Hecke

character over K . Let LΣ,λ (resp. LΣ,λ,p) be the p-adic measure on 0 (resp. 0p)
obtained by the pull-back of LC,Σ (see Section 6A) along λ. We call LΣ,λ,p the Katz
p-adic L-function with branch character λ. Let L6,λ(T1, T2, . . . , Td , S) ∈ Zp[[0]]

(resp. L6,λ,p( · , S) ∈ Zp[[0p]]) be the power series of LΣ,λ (resp. LΣ,λ,p). Here,
T1, . . . , Td are the anticyclotomic variables and S is the cyclotomic variable.

In this subsection, we now suppose that λ is self-dual, i.e.,

λ|A×F
= τK/F | · |AF ,

where τK/F is the quadratic character associated to K/F and | · |AF is the adelic
norm. In particular, the global root number of λ is±1. Now, suppose that the global
root number is −1. In view of the functional equation of the Hecke L-function, this
root number condition forces all the Hecke L-values appearing in the interpolation
property of L−6,λ to vanish. Accordingly, we have L−6,λ = 0. This also follows from
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the functional equation of L6,λ [Hida and Tilouine 1993, §5]. In particular, we
have L−6,λ,p = 0.

We can consider the cyclotomic derivatives

L ′6,λ =
(
∂

∂S
L6,λ(T1, . . . , Td , S)

)∣∣∣
S=0

(6-8)

and L ′6,λ,p (defined analogously).
The µ-invariants of these derivatives are related by the following theorem.

Theorem 6.2. Let the notation and assumptions be as above. In addition, suppose
that p - h−K , where h−K is the relative class number given by h−K = hK /hF . Then,

µ(L ′6,λ)= µ(L
′

6,λ,p).

Proof. We follow the notation in the proof of Theorem 6.1.
In the proof of [Burungale 2015, Theorem 3.2], it is shown there are p-adic

Hilbert modular forms ( f ′λ,i )i such that

L ′6,λ =
1

logp(1+ p)

∑
i

ai ◦ ( f ′λ,i (t)), (6-9)

up to an automorphism of Zp[[0
−
]]. More precisely, f ′λ,i is the p-adic derivative of

fλN s ,i at s = 0 for N the norm Hecke character over K . Being a p-adic limit of
classical Hilbert modular forms, it is a p-adic Hilbert modular form. We refer to
the proof of [Burungale 2015, Theorem 3.2] for details.

In view of (6-4), (6-6) and by a similar argument as in the proof of [Burungale
2015, Theorem 3.2], it follows that

L ′6,λ,p =
1

logp(1+ p)

∑
i

ai,p ◦ ( f ′i,λ(tp)), (6-10)

up to an automorphism of Zp[[0
−
p ]].

We finish the proof in the same way as in Theorem 6.1. �

In most of the cases, µ(L ′6,λ) has been explicitly determined [Burungale 2015,
Theorem A]. Thus, we obtain a formula for µ(L ′6,λ,p).

Remark. When p | h−K , we do not know an expression for LΣ,λ in terms of the
t-expansion of certain Hilbert modular forms. Such an expression seems to be
essential in the above approach.

6C. p-version of a conjecture of Gillard. In this subsection, we prove a p-version
of a conjecture Gillard regarding the vanishing of the µ-invariant of Katz p-adic
L-function (see Theorem 1.4).

Let λ be an arithmetic Hecke character over K. Recall that we have the Katz p-
adic L-function L6,λ,p∈ Zp[[0p]] (see Section 6B). As a consequence of Theorem 6.1
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and the results of [Hida 2011; Burungale and Hsieh 2013], we prove a p-version
of a conjecture of Gillard [1991, Conjecture (i)] regarding the vanishing of the
µ-invariant of the Katz p-adic L-function. The conjecture was originally formulated
for the (d + 1)-variable Katz p-adic L-function.

Theorem 6.3. Let the notation and assumptions be as above. Then, we have

µ(L6,λ,p)= 0.

Proof. Let X+ be the set consisting of finite order characters ε : 0+→ µp∞ . For
every ε ∈ X+, we regard ε as a Hecke character.

In [Hida 2011; Burungale and Hsieh 2013], it has been shown that

lim inf
ε∈X+

µ(L−6,λε)= 0. (6-11)

In view of Theorem 6.1, this finishes the proof:

0≤ µ(L6,λ,p)≤ lim inf
ε

µ(L−6,λε). �

The theorem evidently implies the main results of [Hida 2011; Burungale and
Hsieh 2013].
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[Brakočević 2011] M. Brakočević, “Anticyclotomic p-adic L-function of central critical Rankin–
Selberg L-value”, Int. Math. Res. Not. 2011:21 (2011), 4967–5018. MR Zbl

[Burungale 2015] A. A. Burungale, “On the µ-invariant of the cyclotomic derivative of a Katz p-adic
L-function”, J. Inst. Math. Jussieu 14:1 (2015), 131–148. MR Zbl

[Burungale 2016a] A. A. Burungale, “An l 6= p-interpolation of genuine p-adic L-functions”, Res.
Math. Sci. 3 (2016), Paper No. 16, 26. MR Zbl

[Burungale 2016b] A. A. Burungale, “Non-triviality of generalised Heegner cycles over anticyclo-
tomic towers: a survey”, pp. 279–306 in p-adic aspects of modular forms, edited by B. Balasubra-
manyam et al., World Sci., Hackensack, NJ, 2016. MR Zbl

[Burungale 2017] A. A. Burungale, “On the non-triviality of the p-adic Abel–Jacobi image of
generalised Heegner cycles modulo p, II: Shimura curves”, J. Inst. Math. Jussieu 16:1 (2017),
189–222. MR Zbl

http://dx.doi.org/10.1093/imrn/rnq275
http://dx.doi.org/10.1093/imrn/rnq275
http://msp.org/idx/mr/2852303
http://msp.org/idx/zbl/1267.11069
http://dx.doi.org/10.1017/S1474748013000388
http://dx.doi.org/10.1017/S1474748013000388
http://msp.org/idx/mr/3284481
http://msp.org/idx/zbl/1323.11087
http://dx.doi.org/10.1186/s40687-016-0060-2
http://msp.org/idx/mr/3518730
http://msp.org/idx/zbl/06608153
http://msp.org/idx/mr/3587960
http://msp.org/idx/zbl/06649413
http://dx.doi.org/10.1017/S147474801500016X
http://dx.doi.org/10.1017/S147474801500016X
http://msp.org/idx/mr/3591965
http://msp.org/idx/zbl/06710203


1950 Ashay A. Burungale and Haruzo Hida

[Burungale ≥ 2017] A. Burungale, “p-rigidity and p-independence of quaternionic modular forms
modulo p”, preprint.

[Burungale and Disegni ≥ 2017] A. Burungale and D. Disegni, “On the non-vanishing of p-adic
heights for CM abelian varieties, and the arithmetic of Katz p-adic L-functions”, preprint.

[Burungale and Hida 2016] A. A. Burungale and H. Hida, “André–Oort conjecture and nonvanishing
of central L-values over Hilbert class fields”, Forum Math. Sigma 4 (2016), e20, 26. MR Zbl

[Burungale and Hsieh 2013] A. Burungale and M.-L. Hsieh, “The vanishing of µ-invariant of p-adic
Hecke L-functions for CM fields”, Int. Math. Res. Not. 2013:5 (2013), 1014–1027. MR Zbl

[Chai 1995] C.-L. Chai, “Every ordinary symplectic isogeny class in positive characteristic is dense
in the moduli”, Invent. Math. 121:3 (1995), 439–479. MR Zbl

[Chai 2003] C.-L. Chai, “Families of ordinary abelian varieties: canonical coordinates, p-adic
monodromy,Tate-linear subvarieties and Hecke orbits”, preprint, 2003, http://www.math.upenn.edu/
~chai/papers_pdf/fam_ord_av.pdf.

[Chai 2006] C.-L. Chai, “Hecke orbits as Shimura varieties in positive characteristic”, pp. 295–312 in
International Congress of Mathematicians, II, Eur. Math. Soc., Zürich, 2006. MR Zbl

[Eischen et al. 2016] E. Eischen, M. Harris, J. Li, and C. Skinner, “p-adic L-functions for unitary
groups”, preprint, 2016. arXiv

[Gillard 1991] R. Gillard, “Remarques sur l’invariant mu d’Iwasawa dans le cas CM”, J. Théor.
Nombres Bordeaux (2) 3:1 (1991), 13–26. MR Zbl

[Harris et al. 2006] M. Harris, J.-S. Li, and C. M. Skinner, “p-adic L-functions for unitary Shimura
varieties, I: Construction of the Eisenstein measure”, Doc. Math. Extra Vol. (2006), 393–464. MR
Zbl

[Hida 2004] H. Hida, p-adic automorphic forms on Shimura varieties, Springer, 2004. MR Zbl

[Hida 2006] H. Hida, “Anticyclotomic main conjectures”, Doc. Math. Extra Vol. (2006), 465–532.
MR Zbl

[Hida 2009a] H. Hida, “Irreducibility of the Igusa tower”, Acta Math. Sin. (Engl. Ser.) 25:1 (2009),
1–20. MR Zbl

[Hida 2009b] H. Hida, “Quadratic exercises in Iwasawa theory”, Int. Math. Res. Not. 2009:5 (2009),
912–952. MR Zbl

[Hida 2010] H. Hida, “The Iwasawa µ-invariant of p-adic Hecke L-functions”, Ann. of Math. (2)
172:1 (2010), 41–137. MR Zbl

[Hida 2011] H. Hida, “Vanishing of the µ-invariant of p-adic Hecke L-functions”, Compos. Math.
147:4 (2011), 1151–1178. MR Zbl

[Hida 2013a] H. Hida, Elliptic curves and arithmetic invariants, Springer, 2013. MR Zbl

[Hida 2013b] H. Hida, “Local indecomposability of Tate modules of non-CM abelian varieties with
real multiplication”, J. Amer. Math. Soc. 26:3 (2013), 853–877. MR Zbl

[Hida and Tilouine 1993] H. Hida and J. Tilouine, “Anti-cyclotomic Katz p-adic L-functions and
congruence modules”, Ann. Sci. École Norm. Sup. (4) 26:2 (1993), 189–259. MR Zbl

[Hsieh 2014a] M.-L. Hsieh, “On the µ-invariant of anticyclotomic p-adic L-functions for CM fields”,
J. Reine Angew. Math. 688 (2014), 67–100. MR Zbl

[Hsieh 2014b] M.-L. Hsieh, “Special values of anticyclotomic Rankin–Selberg L-functions”, Doc.
Math. 19 (2014), 709–767. MR Zbl

[Katz 1978] N. M. Katz, “p-adic L-functions for CM fields”, Invent. Math. 49:3 (1978), 199–297.
MR Zbl

http://dx.doi.org/10.1017/fms.2015.30
http://dx.doi.org/10.1017/fms.2015.30
http://msp.org/idx/mr/3523339
http://msp.org/idx/zbl/06700134
http://msp.org/idx/mr/3031825
http://msp.org/idx/zbl/1358.11121
http://dx.doi.org/10.1007/BF01884309
http://dx.doi.org/10.1007/BF01884309
http://msp.org/idx/mr/1353306
http://msp.org/idx/zbl/0990.11039
http://www.math.upenn.edu/~chai/papers_pdf/fam_ord_av.pdf
http://www.math.upenn.edu/~chai/papers_pdf/fam_ord_av.pdf
http://msp.org/idx/mr/2275599
http://msp.org/idx/zbl/1096.14039
http://msp.org/idx/arx/1602.01776
http://dx.doi.org/10.5802/jtnb.39
http://msp.org/idx/mr/1116098
http://msp.org/idx/zbl/0732.11060
http://msp.org/idx/mr/2290594
http://msp.org/idx/zbl/1143.11019
http://dx.doi.org/10.1007/978-1-4684-9390-0
http://msp.org/idx/mr/2055355
http://msp.org/idx/zbl/1055.11032
http://msp.org/idx/mr/2290595
http://msp.org/idx/zbl/1200.11082
http://dx.doi.org/10.1007/s10114-008-6490-z
http://msp.org/idx/mr/2465518
http://msp.org/idx/zbl/1235.11055
http://dx.doi.org/10.1093/imrn/rnn151
http://msp.org/idx/mr/2482130
http://msp.org/idx/zbl/1193.11103
http://dx.doi.org/10.4007/annals.2010.172.41
http://msp.org/idx/mr/2680417
http://msp.org/idx/zbl/1223.11131
http://dx.doi.org/10.1112/S0010437X10005257
http://msp.org/idx/mr/2822865
http://msp.org/idx/zbl/1239.11120
http://dx.doi.org/10.1007/978-1-4614-6657-4
http://msp.org/idx/mr/3098991
http://msp.org/idx/zbl/1284.11001
http://dx.doi.org/10.1090/S0894-0347-2013-00762-6
http://dx.doi.org/10.1090/S0894-0347-2013-00762-6
http://msp.org/idx/mr/3037789
http://msp.org/idx/zbl/1284.14033
http://dx.doi.org/10.24033/asens.1671
http://dx.doi.org/10.24033/asens.1671
http://msp.org/idx/mr/1209708
http://msp.org/idx/zbl/0778.11061
http://dx.doi.org/10.1515/crelle-2012-0056
http://msp.org/idx/mr/3176616
http://msp.org/idx/zbl/1294.11195
http://msp.org/idx/mr/3247801
http://msp.org/idx/zbl/1314.11034
http://dx.doi.org/10.1007/BF01390187
http://msp.org/idx/mr/513095
http://msp.org/idx/zbl/0417.12003


p-rigidity and Iwasawa µ-invariants 1951

[Katz 1981] N. Katz, “Serre–Tate local moduli”, pp. 138–202 in Algebraic surfaces (Orsay, France,
1976–78), Lecture Notes in Math. 868, Springer, 1981. MR Zbl

[Shimura 1963] G. Shimura, “On analytic families of polarized abelian varieties and automorphic
functions”, Ann. of Math. (2) 78 (1963), 149–192. MR Zbl

[Shimura 1998] G. Shimura, Abelian varieties with complex multiplication and modular functions,
Princeton Mathematical Series 46, Princeton University Press, 1998. MR Zbl

Communicated by John Henry Coates
Received 2016-09-26 Revised 2016-11-21 Accepted 2017-02-06

ashayburungale@gmail.com Département de Mathématiques, LAGA, Institute Galilée,
Université Paris 13, 93430 Villetaneuse, France

hhida@ucla.edu Department of Mathematics, UCLA,
Los Angeles, CA 90095-1555, United States

mathematical sciences publishers msp

http://msp.org/idx/mr/638600
http://msp.org/idx/zbl/0477.14007
http://dx.doi.org/10.2307/1970507
http://dx.doi.org/10.2307/1970507
http://msp.org/idx/mr/0156001
http://msp.org/idx/zbl/0142.05402
http://dx.doi.org/10.1515/9781400883943
http://msp.org/idx/mr/1492449
http://msp.org/idx/zbl/0908.11023
mailto:ashayburungale@gmail.com
mailto:hhida@ucla.edu
http://msp.org




Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Richard E. Borcherds University of California, Berkeley, USA

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad Stanford University, USA

Samit Dasgupta University of California, Santa Cruz, USA

Hélène Esnault Freie Universität Berlin, Germany

Gavril Farkas Humboldt Universität zu Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Kiran S. Kedlaya Univ. of California, San Diego, USA

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Martin Olsson University of California, Berkeley, USA

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Michael Rapoport Universität Bonn, Germany

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Christopher Skinner Princeton University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Pham Huu Tiep University of Arizona, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2017 is US $325/year for the electronic version, and $520/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 11 No. 8 2017

1739On `-torsion in class groups of number fields
JORDAN ELLENBERG, LILLIAN B. PIERCE and MELANIE MATCHETT WOOD

1779Torsion orders of complete intersections
ANDRE CHATZISTAMATIOU and MARC LEVINE

1837Integral canonical models for automorphic vector bundles of abelian type
TOM LOVERING

1891Quasi-Galois theory in symmetric monoidal categories
BREGJE PAUWELS

1921p-rigidity and Iwasawa µ-invariants
ASHAY A. BURUNGALE and HARUZO HIDA

1953A Mordell–Weil theorem for cubic hypersurfaces of high dimension
STEFANOS PAPANIKOLOPOULOS and SAMIR SIKSEK

1937-0652(2017)11:8;1-D

A
lgebra

&
N

um
ber

Theory
2017

Vol.11,
N

o.8


	1. Introduction
	2. Hilbert modular Shimura variety
	2A. Setup
	2B. p-integral model
	2C. Igusa tower
	2D. Mod p modular forms
	2E. p-adic modular forms

	3. p-rigidity
	3A. Serre–Tate deformation theory
	3B. Reciprocity law for the deformation space
	3C. p-rigidity

	4. p-independence
	4A. Formulation
	4B. p-independence

	5. p-adic differential operators
	5A. Elementary construction
	5B. Action on the t-expansion

	6. Iwasawa -invariants
	6A. -invariant of anticyclotomic p-adic L-functions
	6B. -invariant of the cyclotomic derivative of the Katz p-adic L-function
	6C. p-version of a conjecture of Gillard

	Acknowledgements
	References
	
	

