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A Mordell–Weil theorem for cubic
hypersurfaces of high dimension

Stefanos Papanikolopoulos and Samir Siksek

Let X/Q be a smooth cubic hypersurface of dimension n ≥ 1. It is well-known
that new rational points may be obtained from old ones by secant and tangent
constructions. In view of the Mordell–Weil theorem for n = 1, Manin (1968)
asked if there exists a finite set S from which all other rational points can be
thus obtained. We give an affirmative answer for n ≥ 48, showing in fact that
we can take the generating set S to consist of just one point. Our proof makes
use of a weak approximation theorem due to Skinner, a theorem of Browning,
Dietmann and Heath-Brown on the existence of rational points on the intersection
of a quadric and cubic in large dimension, and some elementary ideas from
differential geometry, algebraic geometry and numerical analysis.

1. Introduction

Let X ⊂Pn+1 be a smooth cubic hypersurface over Q of dimension n. Let `⊂Pn+1

be a line defined over Q. If ` is not contained in X then ` · X = P + Q+ R where
P , Q, R ∈ X . If any two of P , Q, R are rational then so is the third. If S ⊆ X (Q),
we write Span(S) for the subset of X (Q) generated from S by successive secant
and tangent constructions. More formally, we define a sequence

S = S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ X (Q)

by letting Sn+1 be the set of points R ∈ X (Q) such that either R ∈ Sn , or for some
Q-line ` 6⊂ X we have ` ·X = P+Q+ R where P , Q ∈ Sn . Then Span(S) :=

⋃
Sn .

Manin [1974, page 3] (see also [Kanevsky and Manin 2001] and [Manin 1997])
asks if there is some finite subset S ⊂ X (Q) such that Span(S)= X (Q).

Theorem 1. Let X be a smooth cubic hypersurface of dimension n ≥ 48 defined
over Q. Then there exists a point A ∈ X (Q) such that Span(A)= X (Q).
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We are grateful to Tim Browning, Simon Rydin Myerson, Michael Stoll and
Damiano Testa for valuable discussions, and to the referees for useful remarks. We
thank Yuri Manin for drawing our attention to the distinction between weak and
strong Mordell–Weil generation (discussed below).

Some remarks. It appears that the Mordell–Weil problem for cubic surfaces was
first posed by Segre [1943]. In the sixties Manin posed the same question for
cubic hypersurfaces of arbitrary dimension. Prior to Theorem 1, so far as we know,
the only positive result is for cubic surfaces endowed with a skew pair of rational
lines [Siksek 2012, Theorem 1]. More recently, Manin [2012] made a distinction
between “weak Mordell–Weil generation” where both secant and tangent operations
are allowed, and “strong Mordell–Weil generation” where only secant operations
are allowed. On the basis of computational experiments carried out by Vioreanu
[2009], Manin expects that the weak version of the Mordell–Weil property holds
for dimension 2, but that the strong version probably fails. In the language of
[Manin 2012], our Theorem 1 establishes the weak Mordell–Weil property for cubic
hypersurfaces of dimension ≥ 48; tangent operations are crucial to our proofs, and
we are unable to adapt them to prove the strong Mordell–Weil property.

Notation. Throughout X ⊂ Pn+1 is a smooth cubic hypersurface of dimension n
defined over Q (for now n ≥ 2). Thus there is some non-zero homogeneous cubic
polynomial F ∈Q[x0, . . . , xn+1] such that X is given by the equation

X : F(x0, . . . , xn+1)= 0. (1)

For P ∈ X we let TP X denote the tangent plane to X at P:

TP X : ∇F(P) · (x0, . . . , xn+1)= 0.

The Gauss map on X sends P to TP X ∈ Pn+1∗. We let X P := X ∩ TP X . Thus

X P :

{
F(x0, . . . , xn)= 0,

∇F(P) · (x0, . . . , xn)= 0.

In Section 4 we introduce the second fundamental form 5P X , and the Hessian
HF (P). We write G(n+ 1, 1) for the Grassmannian parametrizing lines in Pn+1.
Throughout the terms “open” and “closed” will pertain to the real topology, unless
prefixed by “Zariski”.

A sketch of the proof of Theorem 1. We show in Section 5 that if B ∈ X (Q) is not
an Eckardt point then X B(Q)⊆ Span(B) (the definition of Eckardt points is given
in Section 4). Fix B ∈ X (Q) that is non-Eckardt. Given D ∈ X (Q), we ask if there
is C ∈ X B(Q) such that D ∈ XC(Q)? If so, then provided C is non-Eckardt, we
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have D ∈ Span(C)⊆ Span(B). The answer to this question is positive provided the
variety YB,D ⊂ Pn+1 given by

YB,D :


F(x0, . . . , xn+1)= 0,

∇F(x0, . . . , xn+1) · D = 0,

∇F(B) · (x0, . . . , xn+1)= 0.

(2)

has a rational point. A theorem of Browning, Dietmann and Heath-Brown allows us
to deduce the existence of a rational point under some conditions, the most important
being that n is large, and that YB,D has a smooth real point. By considering the
second fundamental form, and using a theorem on weak approximation for cubic
hypersurfaces due to Skinner, we shall show the existence of a point B ∈ X (Q) and
a non-empty open U ⊆ X (R), so that YB,D has a smooth real point for all D ∈U .
It follows (with a little care) that U ∩ X (Q)⊆ Span(B). Once the existence of such
a set U is established, we use Mordell–Weil operations to enlarge U and quickly
complete the proof of Theorem 1.

2. Some results from analytic number theory

Weak approximation.

Theorem 2 [Skinner 1997]. Suppose n ≥ 15. Then X satisfies weak approximation.

This means that X (Q) is dense in X (AQ)where AQ denotes the adeles. It follows
that X (Q) is dense in X (R); a fact we use repeatedly in the proof of Theorem 1.

Corollary 2.1. Suppose n≥ 15. Let U , V ⊆ X (R) be disjoint open sets. Let A′ ∈U ,
B ′ ∈ V , and let `′ 6⊂ X be an R-line such that `′ · X = 2A′ + B ′. Then there are
A ∈U ∩ X (Q), B ∈ V ∩ X (Q) and a Q-line ` 6⊂ X such that ` · X = 2A+ B.

Proof. The projectivized tangent bundle TX of X parametrizes pairs (P, `) with
P ∈ X and ` a line tangent to X at P . We make use of the fact that TX is locally
trivial; thus there is a Zariski open U containing A′, and a local isomorphism
ϕ : U ×Pn−1

→ TX such that ϕ(P, α)= (P, `P,α) where `P,α is a line tangent to
X at P . Moreover, as A′ is real we take ϕ to be defined over R. Let W = U(R)∩U
which is necessarily an open neighbourhood of A′. Let α∈Pn−1(R) so that `′=`A′,α .
By Theorem 2 we can find {Ai } ⊂W ∩ X (Q) converging to A′. Write `i = `Ai ,α.
Then {`i } converges to `′ in G(n+ 1, 1)(R). In particular, for sufficiently large i ,
the line `i meets V . Let A = Ai ∈U ∩ X (Q) for any such large i . Choosing a line
`/Q tangent to X at A that sufficiently approximates `i completes the proof. �

Intersections of a cubic with a quadric. Let Q, C ∈ Q[x1, . . . , xk] be a pair of
forms of degrees 2 and 3 respectively, such that

Y : C(x1, . . . , xk)= 0, Q(x1, . . . , xk)= 0
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is a complete intersection Y ⊂Pk−1. Using the circle method, Browning, Dietmann
and Heath-Brown establish various sufficient conditions for Y to have a rational
point. We recount one of their theorems [Browning et al. 2015, Theorem 4] which
will be essential to our proof of Theorem 1. Define ordQ(C) as the least non-
negative integer m such that C = L Q+C ′, with linear form L ∈Q[x1, . . . , xk], and
such that there is a matrix T ∈ GLk(Q) with C ′(T (x1, . . . , xk)) ∈Q[x1, . . . , xm].

Theorem 3 (Browning, Dietmann and Heath-Brown). With notation as above,
suppose k ≥ 49 and ordQ(C)≥ 17. If Y has a smooth real point then Y (Q) 6=∅.

Corollary 2.2. Let f , q, l ∈Q[x0, . . . , xn+1], be forms of degree 3, 2, 1. Write

Z : f (x0, . . . , xn+1)= q(x0, . . . , xn+1)= l(x0, . . . , xn+1)= 0

for their common locus of zeros in Pn+1. Suppose that

(i) the cubic hypersurface in Pn+1 defined by f is smooth;

(ii) Z has a smooth real point;

(iii) n ≥ 48.

Then Z has a rational point.

Proof. By a non-singular change of variable, we may suppose that l = x0. Let

f ′(x1, . . . , xn+1)= f (0, x1, . . . , xn+1), q ′(x1, . . . , xn+1)= q(0, x1, . . . , xn+1).

We may therefore consider Z as being given in Pn as the common locus of f ′ =
q ′ = 0. Suppose ordq ′( f ′)≤ 16. Then a further non-singular change of variables
allows us to write

f = x0q0+ l ′q ′+ h(x1, . . . , x16).

where q0 is a quadratic form, l ′ is a linear form, and h is a cubic form. Now as
n ≥ 48, there is a common zero in Pn+1 to

x0 = x1 = · · · = x16 = l ′ = q0 = q ′ = 0.

This gives a singular point on the cubic hypersurface f = 0 in Pn+1 contradicting
(i). We may thus suppose that ordq ′( f ′) ≥ 17. A similar argument shows that
f ′ = q ′ = 0 defines a complete intersection in Pn . By (ii) this intersection has a
smooth real point. Applying Theorem 3 with k = n+ 1 completes the proof. �

3. A numerical stability criterion

Newton–Raphson. We need a rigorous version of the multivariate Newton–Raphson
method. The following result is part of Theorem 5.3.2 of [Stoer and Bulirsch 1980].
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Here ‖·‖ denotes the usual Euclidean norm (both for vectors and for matrices). For
differentiable f = ( f1, . . . , fn) : Rn

→ Rn , denote the Jacobian matrix by J f :

J f :=

(
∂ fi

∂x j

)
i, j=1,...,n

.

Theorem 4. Let C⊆Rn be open, C0 be convex such that C0⊆C, and let f : Rn
→Rn

be differentiable for all x ∈ C0 and continuous for all x ∈ C.
For x0 ∈ C0 let r , α, β, γ , h be given positive numbers with the following

properties:

Br (x0) := { x : ‖x− x0‖< r} ⊆ C0, h := αβγ/2< 1, r := α/(1− h),

and let f satisfy:

(i) ‖J f (x)− J f ( y)‖ ≤ γ ‖x− y‖ for all x, y ∈ C0;

(ii) J f (x)−1 exists and satisfies ‖J f (x)−1
‖ ≤ β for all x ∈ C0;

(iii) ‖ f (x0) · J f (x0)
−1
‖ ≤ α.

Then beginning at x0 each point

xk+1 = xk − f (xk) · J f (xk)
−1 , k = 0, 1, 2, . . .

is well-defined and belongs to Br (x0). Moreover the limit limk→∞ xk = ξ exists,
belongs to Br (x0) and satisfies f (ξ)= 0.

Stability. For f ∈ R[x1, . . . , xn] we shall let ‖ f ‖c denote the maximum of the
absolute values of the coefficients of f .

Lemma 3.1. Let g1, . . . , gm ∈R[x1, . . . , xn] be polynomials with m≤n. Let ζ ∈Rn

be a common zero of g1, . . . , gm , such that ∇g1(ζ ), . . . ,∇gm(ζ ) are linearly inde-
pendent. Let ε > 0 be given. There is δ > 0 such that if f1, . . . , fm ∈ R[x1, . . . , xn]

satisfy ‖ fi − gi‖c < δ, then there is ξ ∈ Rn such that

(a) ξ is a common zero to f1, . . . , fm ;

(b) ∇ f1(ξ), . . . ,∇ fm(ξ) are linearly independent;

(c) ‖ξ − ζ‖< ε.

Proof. Choose vm+1, . . . , vn ∈ Rn so that ∇g1(ζ ), . . . ,∇gm(ζ ), vm+1, . . . , vn is a
basis. Let

gi (x)= vi · (x− ζ ), i = m+ 1, . . . , n.

Then ζ is a common zero to g1, . . . , gn and ∇g1(ζ ), . . . ,∇gn(ζ ) are linearly in-
dependent. Let g = (g1, . . . , gn). Then Jg(ζ ) is invertible. We shall fix fi = gi

for i = m + 1, . . . , n, and let f = ( f1, . . . , fn). We will apply Theorem 4 with
x0 = ζ . There is some δ0 > 0 such that if ‖ fi − gi‖c < δ0 then J f (x0) is invertible.
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Choose 0< r0 ≤ ε so that condition (ii) of the theorem is satisfied for some β > 0,
with C0 = Br0(x0). Condition (i) holds for some γ > 0 by the multivariate Taylor
Theorem. Let α = ‖ f (x0) · J f (x0)

−1
‖, which depends on f . Now g(x0)= 0, so

clearly if δ→ 0, then α→ 0. Therefore for sufficiently small δ < δ0, we have
h := αβγ/2< 1 and r := α/(1−h) < r0. By the theorem, there is ξ ∈ Br (x0) such
that f (ξ)= 0. By construction ξ satisfies (a), (b), (c). �

Smooth real points on the varieties YB,D.

Lemma 3.2. Let B, D′ be points belonging to X (R) such that the variety YB,D′ ⊂

X ⊂ Pn+1 given by (2) has a smooth real point C ′. Let V ⊆ X (R) be an open
neighbourhood of C ′. Then there is an open neighbourhood U ⊆ X (R) of D′, such
that for every D ∈U , the variety YB,D has a smooth real point C ∈ V .

Proof. We may suppose that B, C ′, D′ are contained in the affine patch x0 = 1.
Let G1, G2, G3 be the three polynomials defining YB,D′ in (2) and let g1, g2,
g3 ∈ R[x1, . . . , xn+1] be their dehomogenizations by x0 = 1. Write f1, f2, f3 for
the corresponding polynomials in R[x1, . . . , xn+1] defining YB,D ∩ {x0 = 1} with
D ∈ X (R)∩ {x0 = 1}. Of course f1 = g1, f3 = g3, and moreover

‖ f2− g2‖c ≤ µ · ‖D− D′‖∞

where µ > 0 is a constant and ‖·‖∞ denotes the infinity norm in the affine patch
x0 = 1 (which we identify with Rn+1). Now C ′ ∈ Rn+1 is a common zero for
g1, g2, g3 with ∇g1(C ′), ∇g2(C ′), ∇g3(C ′) linearly independent (as C ′ is now a
smooth point on the affine patch YB,D′ ∩ {x0 = 1}). Let ε > 0 be sufficiently small
so that Bε(C ′)∩ X (R) is contained in V . Applying Lemma 3.1, we know that if
‖D− D′‖∞ is sufficiently small then there is a non-zero vector C ∈ Bε(C ′) that is
a common zero for f1, f2, f3 with ∇ f1(C), ∇ f2(C), ∇ f3(C) linearly independent.
This completes the proof. �

Lemma 3.3. Suppose n ≥ 48. Let B ∈ X (Q). Suppose D′ ∈ X (R) such that YB,D′

has a smooth real point C ′. Then there is a non-empty open U ⊆ X (R) such that if
D ∈U ∩ X (Q), then YB,D(Q) 6=∅.

Proof. Let U be as in Lemma 3.2. Then YB,D is defined over Q and has a smooth
real point for every D ∈U ∩ X (Q). Now the lemma follows from Corollary 2.2. �

4. A little geometry

Lines on X.

Lemma 4.1. Let ` be a line contained in X and P ∈ `. Then `⊂ TP X.

This is well-known; for a proof, see [Siksek 2012, Lemma 2.1].
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The second fundamental form. Let P ∈ X . Associated to P is a quadratic form
(well-defined up to multiplication by a non-zero scalar) known as the second
fundamental form which we denote by5P X , and which is defined as the differential
of the Gauss map (e.g., [Griffiths and Harris 1979; Harris 1992, Chapter 17]. For
our purpose the following explicit recipe given in [Griffiths and Harris 1979, pages
369–370] is useful. By carrying out a non-singular change of coordinates we may
suppose P is (1 : 0 : . . . : 0), and the tangent plane TP X to X at P given by xn+1= 0.
Then X has the equation F = 0 with

F = x2
0 xn+1+ x0q(x1, . . . , xn+1)+ c(x1, . . . , xn+1) (3)

where q and c are homogeneous of degree 2 and 3 respectively. Write z1 =

x1/x0, . . . , zn+1 = xn+1/x0. We can take z1, . . . , zn as local coordinates for X at
P , and then X is given by the local equation

zn+1 = q ′(z1, . . . , zn)+ (higher order terms).

Here q ′(z1, . . . , zn) = −q(z1, . . . , zn, 0). The second fundamental form 5P X is
the quadratic form q ′(dz1, . . . , dzn) (up to scaling). We shall only be concerned
with the rank and signature of 5P X , which are precisely the rank and signature of
q(x1, . . . , xn, 0) and so we will take this as the second fundamental form. We may
therefore view it as the restriction of q to TP X . The following follows easily from
the above description and the implicit function theorem.

Lemma 4.2. Suppose 5P X has full rank n.

(i) If 5P X is definite then there is an open neighbourhood U ⊆ X (R) such that
U ∩ X P(R)= {P}.

(ii) If 5P X is indefinite then for every open neighbourhood U ⊆ X (R) of P the
intersection contains a real manifold of dimension n− 1.

Lemma 4.3. There is a non-empty subset U1 ⊆ X (R), open in the real topology,
such that for P ∈U1 the second fundamental form 5P X is indefinite of full rank.

Proof. A theorem of Landsberg [1994, Theorem 6.1] asserts that at a general point
on smooth hypersurface of degree ≥ 2, the second fundamental form has full rank.
Thus there is a Zariski open U ⊂ X such that 5P X has full rank for P ∈ U .

A straightforward application of Bertini’s Theorem shows the existence of a real
3-dimensional linear subvariety 3⊂ Pn+1 such that X ′ =3∩ X is a smooth real
cubic surface. A classical theorem of Schläfli asserts that the number of real lines
on smooth real cubic surface is either 3, 7, 15 or 27. Let `⊂3∩ X be a real line.
Recall that a point on a smooth real surface is called hyperbolic if the Gaussian
curvature at the point is negative. By [Siksek 2012, Lemma 2.2] all but at most two
points of `(R) are hyperbolic for X ′. Let Q ∈ `(R) be a hyperbolic point for X ′.
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The determinant of the second fundamental form 5Q X ′ is the Gaussian curvature
of X ′ at Q, which is negative. It follows that the binary quadratic form 5Q X ′ is
indefinite. Now 5Q X ′ is the restriction of 5Q X to TQ X ′ and so 5Q X is indefinite.
Thus there is a neighbourhood V ⊆ X (R) of Q, open in the real topology, such
that 5P X is indefinite for P ∈ V . Now V is necessarily Zariski-dense in X . Thus
V ∩U(R) is non-empty (as well as being open in the real topology). The proof is
complete upon letting U1 = V ∩U(R). �

The Hessian. Given P ∈ X , the Hessian of F evaluated at P is given by the
(n+ 2)× (n+ 2) matrix

HF (P)=
(
∂2 F
∂xi∂x j

(P)
)

i, j=0,...,n+1
.

Of course the Hessian is well-defined up to multiplication by a non-zero scalar.

Lemma 4.4. Let P ∈ X and suppose 5P(X) has full rank n. Then HF (P) has full
rank n+ 2.

Proof. Starting from (3), an easy computation shows that the determinant of the
Hessian at P is (up to sign) the determinant of q(x1, . . . , xn, 0). �

Eckardt points. We call P ∈ X an Eckardt point if X P := X ∩ TP X is a cone with
vertex at P . Note that if n = 2 and P is an Eckardt point then X P consists of three
lines meeting at P; in this case 5P X vanishes identically.

For a proof of the following classical theorem see [Coskun and Starr 2009,
Section 2].

Theorem 5. The set of Eckardt points on X is finite.

Components of a real cubic hypersurface. We summarize some well-known facts
about components of real cubic hypersurfaces. Everything we need is actually
contained in [Viro 1998, Section 4.3]. A smooth real cubic hypersurface has
either one or two connected components. If it has two connected components then
one of these is two-sided, and homeomorphic to Sn , and the other is one-sided
and homeomorphic to RPn . If a line intersects the two-sided component then it
intersects it in two points, and intersects the odd-sided component in one point.

Lemma 4.5. Suppose X (R) has two connected components. Then 5P X is definite
of full rank for all P belonging to the two-sided component.

Proof. Let P be a point on the two-sided component. Suppose 5P X is indefinite
or not of full rank. Then there is a real line `⊂ TP X (along which 5P X vanishes)
that meets X with multiplicity ≥ 3 at P . As this is impossible for points on the
two-sided component, we have a contradiction. �
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5. Mordell–Weil generation: first steps

Proposition 5.1. Let P ∈ X (Q) be a non-Eckardt point. Then the set X P(Q)

(considered as a subset of X (Q)) is contained in Span(P).

The following lemma follows from the definitions.

Lemma 5.2. Let P ∈ X (Q) and let Q ∈ X P(Q) be distinct from P. Suppose the
line ` joining P to Q is not contained in X. Then Q ∈ Span(P).

For the proof of Proposition 5.1 it remains to show that Q ∈ Span(P) in the
case ` ⊂ X . For n = 2 this is [Siksek 2012, Lemma 3.2], so we suppose for the
remainder of this section that n ≥ 3.

Lemma 5.3. Any hyperplane section of X is absolutely irreducible.

Proof. Let L = 0 be a hyperplane such that X ∩ {L = 0} is absolutely reducible.
Then we can write F = L Q+ L ′Q′ where L , L ′ are homogeneous linear, and Q,
Q′ are homogeneous quadratic. As n ≥ 3, the variety L = L ′ = Q = Q′ = 0 has a
point R ∈ Pn+1. It follows that R is a singular on X giving a contradiction. �

Lemma 5.4. Let P ∈ X (Q) be a non-Eckardt point. Let Q ∈ X P(Q) with TQ X 6=
TP X. Then Q ∈ Span(P).

Proof. Let W ⊆ X P be the subvariety consisting of lines through P contained in X P .
As P is a non-Eckardt point, W is a proper subvariety. Moreover, by Lemma 5.3,
the tangent plane section X P is irreducible, and so dim(W) < dim(X P). Let
U = X P −W which is Zariski dense in X P .

Let V := X P \ (X P ∩ TQ). As TQ 6= TP , this is a dense open subset of X P . Let
ι : V→ V be the involution given as follows. If R ∈ V we join R to Q by the line
`R,Q and we let ι(R) be the third point of intersection of this line with X . We note
that `R,Q 6⊂ X , since otherwise it will be contained in TQ X by Lemma 4.1. Now
(V ∩U)∩ ι(V ∩U) is a Zariski dense subset of the rational variety X P . This dense
subset must contain a rational point R. Then R, ι(R) /∈W and so R, ι(R)∈Span(P)
by Lemma 5.2. Finally the line joining R with ι(R) passes through Q and is not
contained in X . Thus Q ∈ Span(R). �

Proof of Proposition 5.1. Let Q ∈ X P(Q). We would like to show that Q ∈Span(P).
Thanks to Lemmas 5.2 and 5.4, we may suppose there is a Q-line `⊂ X containing
P , Q, and TQ X = TP X . Now the line ` contains at most finitely many Eckardt
points by Theorem 5. Moreover, the Gauss map on a smooth hypersurface has
finite fibres [Harris 1992, Lecture 15]. Thus there is a non-Eckardt R ∈ `(Q) with
TR X 6= TP X . It follows that R ∈ Span(P). Moreover, Q ∈ `⊂ TR by Lemma 4.1
and so Q ∈ Span(R) (again by Lemma 5.4). This completes the proof. �
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Lemma 5.5. Suppose n ≥ 48. Let B ∈ X (Q) so that X B does not contain points
that are Eckardt for X. Suppose D′ ∈ X (R) such that YB,D′ has a smooth real point
C ′. Then there is a non-empty open U ⊆ X (R) such that U ∩ X (Q)⊆ Span(B).

Proof. Take U to be as in Lemma 3.3. Let D ∈U ∩ X (Q). By the conclusion of
Lemma 3.3 we see that YB,D has a rational point C . From the equations defining
YB,D in (2) we have that C ∈ X B(Q) and D ∈ XC(Q). Moreover, neither B nor
C (both contained in X B) are Eckardt points. Applying Proposition 5.1, we have
C ∈ Span(B) and D ∈ Span(C) completing the proof. �

6. A smoothness criterion

Lemma 6.1. Let B ∈ X , Let C ′ ∈ X B and D′ ∈ XC ′ . Suppose

(i) TC ′X 6= TB X ;

(ii) HF (C ′) has full rank, where HF is the Hessian matrix;

(iii) D′ does not belong to the line

{ (λ∇F(B)+µ∇F(C ′)) · HF (C ′)−1
: (λ : µ) ∈ P1

} . (4)

Then C ′ is a smooth point on the variety YB,D′ ⊂ Pn+1 given by (2).

Proof. As C ′ ∈ X B and D′ ∈ XC ′ we see that C ′ ∈ YB,D′ . We need to show that C ′

is a smooth point on YB,D′ . Write

f (x0, . . . , xn+1)=∇F(x0, . . . , xn+1) · D′, g =∇F(B) · (x0, . . . , xn+1).

To show that C ′ is smooth on YB,D′ it is enough to show that ∇F(C ′), ∇ f (C ′) and
∇g(C ′) are linearly independent. A straightforward computation shows that

∇ f (C ′)= D′ · HF (C ′), ∇g(C ′)=∇F(B).

Suppose
εD′ · HF (C ′)+ λ∇F(B)+µ∇F(C ′)= 0.

By assumptions (ii) and (iii) we see that ε = 0. However, ∇F(B) and ∇F(C ′) are
linearly independent by assumption (i), and so λ= µ= 0. �

7. Proof of Theorem 1

In this section n ≥ 48.

Lemma 7.1. There is A ∈ X (Q) and a non-empty open U ⊆ X (R) such that:

(i) U ∩ X (Q)⊆ Span(A);

(ii) Span(A) contains at least one point in every connected component of X (R).
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Proof. Suppose first that X (R) is connected. Let U1⊆ X (R) be the non-empty open
subset whose existence is guaranteed by Lemma 4.3: for every P ∈U1, the second
fundamental form 5P X is indefinite of full rank. It follows from Theorem 5 that
the set of points P with X P containing an Eckardt point is a proper subset of X
that is closed in the Zariski topology. Thus we may replace U1 by a non-empty
open set U2 ⊆U1 such that for every P ∈U2, the subvariety X P does not contain
points that are Eckardt for X . Fix B ∈U2 ∩ X (Q) whose existence is guaranteed
by Theorem 2. The hypersurface X is smooth of degree 3, and so the Gauss map
X → X∗ has finite fibres [Harris 1992, Lecture 15]. We can therefore take an
open neighbourhood U3 ⊆ U2 of B such that for all C ′ ∈ U3 with C ′ 6= B, we
have TB X 6= TC ′X . By Lemma 4.2, the intersection U3 ∩ X B(R) contains a real
manifold of dimension n−1; choose C ′ ∈U3∩ X B(R) with C ′ 6= B. As the second
fundamental form has full rank on U3, we see from Lemma 4.4 that HF (C ′) is of
full rank n+ 2. Now again by Lemma 4.2, the intersection U3 ∩ XC ′(R) contains a
manifold of real dimension n−1, and so we can find D′ ∈U3∩ XC ′(R) that avoids
the line (4). The points B, C ′, D′ satisfy the conditions of Lemma 6.1. Thus C ′ is
a smooth point on YB,D′ . By Lemma 5.5, there is a non-empty open U such that
U ∩ X (Q) ⊆ Span(B). We simply take A = B, and the proof is complete in the
case when X (R) is connected.

Now suppose X (R) has two connected components. Let U2 ⊆ X (R) be as above.
From Lemma 4.5 we know that U2 is contained in the one-sided component. Let
B ′ ∈ U2. Let `′ be a real line passing through B ′ and tangent to the two-sided
component at a point A′. By Corollary 2.1, there is a point A ∈ X (Q) belonging
to the two-sided component and a line ` defined over Q such that ` · X = 2A+ B
where B ∈U2 ∩ X (Q). Now B ∈ Span(A) and Span(A) contains points belonging
to both components of X (R). From the above argument there is a non-empty open
U ⊆ X (R) such that U ∩ X (Q)⊆ Span(B)⊆ Span(A). �

Lemma 7.2. Let A ∈ X (Q) be as in Lemma 7.1. Then there is an open W ⊆ X (R)
such that W ∩ X (Q)= Span(A).

Proof. Let U be as in Lemma 7.1. We may suppose Span(A) 6⊂ U , otherwise
we simply take W = U and there is nothing to prove. Let P ∈ Span(A) that
does not belong to U . By Theorem 2, there is some P ′ ∈ U ∩ X (Q) such that
P ′ /∈ TP X . Let ` be the line joining P to P ′. The line ` is not contained in TP X
and so, by Lemma 4.1, not contained in X . Let P ′′ ∈ X (Q) be the third point of
intersection of ` with X . Since P ∈ Span(A) and P ′ ∈U ∩ X (Q)⊆ Span(A), we
have P ′′ ∈ Span(A). Observe that ` is not contained in the tangent plane of P ′′ (for
otherwise ` would be contained in X ). Now there is some non-empty open U ′ ⊂U
containing P ′ that is disjoint from the tangent plane of P ′′. For a point R ∈U ′, let
ϕ(R) denote the third point of intersection of the (real) line joining R to P ′′. Then
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the map ϕ : U ′→ X (R) is continuous and injective. By the invariance of domain
theorem [Bredon 1993, Corollary IV.19.9], the image ϕ(U ′) is open. We shall let
WP = ϕ(U ′). Clearly P ∈ WP and WP ∩ X (Q) ⊆ Span(A). The lemma follows
on taking

W =U ∪
⋃

P∈Span(A)\U

WP . �

Lemma 7.3. Let W be as in Lemma 7.2, and write W for its closure. Then W is
closed under secant operations: if P , Q ∈W are distinct, and if the line ` joining
them is not contained in X , then R ∈W where ` · X = P + Q+ R.

Proof. By Theorem 2 there exist {Pk}, {Qk} ⊂ W ∩ X (Q), with Pk 6= Qk , that
converge respectively to P , Q. Write F ⊂ G(n + 1, 1) for the Fano scheme of
lines on X . Then the real points of F are closed in G(n+ 1, 1)(R). As ` /∈ F(R),
we see for large enough k that the line `k/Q joining Pk , Qk is not contained
in X . Let `k · X = Pk + Qk + Rk . Then {Rk} converges to R. Moreover, Pk ,
Qk ∈W ∩ X (Q)⊆ Span(A). Hence Rk ∈ Span(A)⊂W and so R ∈W . �

Lemma 7.4. Let A, W be as above. Then W = X (R).

Proof. We claim that W is open. From that it follows that W is a union of connected
components of X (R). As Span(A)⊂W contains points from every component, the
lemma follows from the claim.

To prove the claim we mimic the argument in the proof of Lemma 7.2. Let
P ∈W . Let P ′ ∈W such that P ′ /∈ TP X , and let ` be the line joining P to P ′. As W
is closed under secant operations, P ′′ ∈W where ` · X = P + P ′+ P ′′. Now there
is some non-empty open W ′ ⊂ W containing P ′ that is disjoint from the tangent
plane of P ′′. For a point R ∈ W ′, let ϕ(R) denote the third point of intersection
of the (real) line joining R to P ′′. Then the map ϕ : W ′→ X (R) is continuous
and injective, and thus the image ϕ(W ′) is open. Clearly ϕ(W ′) contains P and is
contained in W (as the latter is closed under secant operations). �

Proof of Theorem 1. Let A, W be as above. In particular, Span(A) = W ∩ X (Q)
and W = X (R). We write ∂W = X (R) \W . We note that ∂W is the complement
of an open dense set, and therefore nowhere dense.

We want to show that X (Q)= Span(A). Let P ∈ X (Q). Then there is a Zariski
open U ⊂ X and an involution ι : U→ U that sends R ∈ U to the third point of the
line joining R to P . Choose R ∈ U(R)∩ X (Q) such that R /∈ ∂W ∪ ι(∂W ). Then
R, ι(R) ∈ Span A and so P ∈ Span(A). �
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