Vol. 11, No. 8, 2017

Download this article
Download this article For screen
For printing
Recent Issues

Volume 13
Issue 8, 1765–1981
Issue 7, 1509–1763
Issue 6, 1243–1507
Issue 5, 995–1242
Issue 4, 749–993
Issue 3, 531–747
Issue 2, 251–530
Issue 1, 1–249

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the Journal
Editorial Board
Editors' Interests
Submission Guidelines
Submission Form
Editorial Login
Ethics Statement
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Author Index
To Appear
Other MSP Journals
A Mordell–Weil theorem for cubic hypersurfaces of high dimension

Stefanos Papanikolopoulos and Samir Siksek

Vol. 11 (2017), No. 8, 1953–1965

Let X be a smooth cubic hypersurface of dimension n 1. It is well-known that new rational points may be obtained from old ones by secant and tangent constructions. In view of the Mordell–Weil theorem for n = 1, Manin (1968) asked if there exists a finite set S from which all other rational points can be thus obtained. We give an affirmative answer for n 48, showing in fact that we can take the generating set S to consist of just one point. Our proof makes use of a weak approximation theorem due to Skinner, a theorem of Browning, Dietmann and Heath-Brown on the existence of rational points on the intersection of a quadric and cubic in large dimension, and some elementary ideas from differential geometry, algebraic geometry and numerical analysis.

cubic hypersurfaces, rational points, Mordell–Weil problem
Mathematical Subject Classification 2010
Primary: 14G05
Secondary: 11G35
Received: 10 October 2016
Revised: 13 July 2017
Accepted: 11 August 2017
Published: 15 October 2017
Stefanos Papanikolopoulos
Mathematics Institute
University of Warwick
United Kingdom
Samir Siksek
Mathematics Institute
University of Warwick
United Kingdom