
Algebra &
Number
Theory

Volume 11

2017
No. 9

msp



Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Richard E. Borcherds University of California, Berkeley, USA

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad Stanford University, USA

Samit Dasgupta University of California, Santa Cruz, USA

Hélène Esnault Freie Universität Berlin, Germany

Gavril Farkas Humboldt Universität zu Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Kiran S. Kedlaya Univ. of California, San Diego, USA

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Martin Olsson University of California, Berkeley, USA

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Michael Rapoport Universität Bonn, Germany

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Christopher Skinner Princeton University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Pham Huu Tiep University of Arizona, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2017 is US $325/year for the electronic version, and $520/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


msp
ALGEBRA AND NUMBER THEORY 11:9 (2017)

dx.doi.org/10.2140/ant.2017.11.1967

A nonarchimedean Ax–Lindemann theorem
Antoine Chambert-Loir and François Loeser

À Daniel Bertrand, en témoignage d’amitié

Motivated by the André–Oort conjecture, Pila has proved an analogue of the Ax–
Lindemann theorem for the uniformization of classical modular curves. In this
paper, we establish a similar theorem in nonarchimedean geometry. Precisely, we
give a geometric description of subvarieties of a product of hyperbolic Mumford
curves such that the irreducible components of their inverse image by the Schottky
uniformization are algebraic, in some sense. Our proof uses a p-adic analogue of
the Pila–Wilkie theorem due to Cluckers, Comte and Loeser, and requires that
the relevant Schottky groups have algebraic entries.

1. Introduction

1.1. The classical Lindemann–Weierstrass theorem states that if algebraic numbers
α1, . . . , αn are Q-linearly independent, then their exponentials exp(α1), . . . ,exp(αn)

are algebraically independent over Q. More generally, if α1, . . . , αn are any
Q-linearly independent complex numbers, no longer assumed to be algebraic,
Schanuel’s conjecture predicts that the field Q(α1, . . . , αn, exp(α1), . . . , exp(αn))

has transcendence degree at least n over Q. Ax [1971] established power series
and differential field versions of Schanuel’s conjecture. In particular, the part of
Ax’s results corresponding to the Lindemann–Weierstrass theorem can be recast
into geometrical terms as follows:

Theorem 1.2 (exponential Ax–Lindemann). Let exp : Cn
→ (C×)n be the mor-

phism (z1, . . . , zn) 7→ (exp(z1), . . . , exp(zn)). Let V be an irreducible algebraic
subvariety of (C×)n and let W be an irreducible component of a maximal algebraic
subvariety of exp−1(V ). Then W is geodesic, that is, W is defined by a finite family
of equations of the form

∑n
i=1 ai zi = b with a1, . . . , an ∈Q and b ∈ C.

In a breakthrough paper, Pila [2011] succeeded in providing an unconditional
proof of the André–Oort conjecture for products of modular curves. One of his
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main ingredients was to prove a hyperbolic version of the above Ax–Lindemann
theorem, which we now state in a simplified version.

Let h denote the complex upper half-plane and j : h→ C the elliptic modular
function. By an algebraic subvariety of hn , we mean the trace in hn of an algebraic
subvariety of Cn . An algebraic subvariety of hn is said to be geodesic if it can
be defined by equations of the form zi = ci and zk = gk`z`, with ci ∈ C and
gk` ∈ GL(2,Q)+.

Theorem 1.3 (hyperbolic Ax–Lindemann). Let j : hn
→ Cn be the morphism

(z1, . . . , zn) 7→ ( j (z1), . . . , j (zn)). Let V be an irreducible algebraic subvariety
of Cn and let W be an irreducible component of a maximal algebraic subvariety
of j−1(V ). Then W is geodesic.

Pila’s method to prove this Ax–Lindemann theorem is quite different from the
differential approach of Ax. It follows a strategy initiated by Pila and Zannier
[2008] in their new proof of the Manin–Mumford conjecture for abelian varieties;
that approach makes crucial use of the bound on the number of rational points
of bounded height in the transcendental part of sets definable in an o-minimal
structure obtained in [Pila and Wilkie 2006]. Recently, still using the Pila and
Zannier strategy, Klingler, Ullmo and Yafaev [Klingler et al. 2016] have succeeded
in proving a very general form of the hyperbolic Ax–Lindemann theorem valid for
any arithmetic variety; see also [Ullmo and Yafaev 2014] for the compact case.

1.4. In the recent paper [Cluckers et al. 2015], Cluckers, Comte and Loeser estab-
lished a nonarchimedean analogue of the Pila–Wilkie theorem of [Pila and Wilkie
2006] in its block version of [Pila 2009]. The purpose of this paper is to use
this result to prove a version of Ax–Lindemann for products of algebraic curves
admitting a nonarchimedean uniformization and whose corresponding Schottky
group is “arithmetic” and has rank at least 2 (Theorem 2.7). In particular, this
theorem applies for products of Shimura curves admitting a p-adic uniformization
à la Čerednik–Drinfel’d (see Section 3).

The basic strategy we use is strongly inspired by that of [Pila 2011] (see also
[Pila 2015]), though some new ideas are required in order to adapt it to the nonar-
chimedean setting. Similarly as in Pila’s approach one starts by working on some
neighborhood of the boundary of our space (which, instead of a product of Poincaré
upper half-planes, is a product of open subsets of the Berkovich projective line).
Analytic continuation and monodromy arguments are replaced by more algebraic
ones and explicit matrix computations by group theory considerations. We also take
advantage of the fact that Schottky groups are free and of the geometric description of
their fundamental domains. Compared with Pila’s proof, where parabolic elements
are used in a crucial way, one main difficulty of the nonarchimedean situation lies
in the fact that all nontrivial elements of a Schottky groups are hyperbolic.
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To conclude, let us note that there are cases where p-adic analogues of theorems
in transcendental number theory seem to require other methods than those used to
prove their complex counterparts. For instance, it is still an open problem to prove
a p-adic analogue, for values of the p-adic exponential function, of the classical
Lindemann–Weierstrass theorem.

Since his first works (see, for example, [Bertrand 1976]), Daniel Bertrand has
shown deep insight into p-adic transcendental number theory, and disseminated his
vision within the mathematical community. We are pleased to dedicate this paper
to him.

2. Statement of the theorem

2.1. Nonarchimedean analytic spaces. Given a complete nonarchimedean valued
field F , we consider in this paper F-analytic spaces in the sense of Berkovich [1990;
1993]. However, the statements, and essentially the proofs, can be carried on mutatis
mutandis in the rigid analytic setting. In this context, there is a notion of irreducible
component; see [Ducros 2009], or [Conrad 1999] for the rigid analytic version.

If V is an algebraic variety over F , we denote by V an the corresponding F-
analytic space. There is a canonical topological embedding of V (F) in V an, and its
image is closed if F is locally compact.

If F ′ is a complete nonarchimedean extension of F , we denote by X F ′ the
F ′-analytic space deduced from an F-analytic space X by base change to F ′.

2.2. Schottky groups. Let p be a prime number; we denote by Cp the completion
of an algebraic closure of Qp and let F be a finite extension of Qp contained
in Cp. The group PGL(2, F) acts by homographies on the F-analytic projective
line Pan

1 . In the next paragraphs, we recall from [Gerritzen and van der Put 1980] a
few definitions concerning Schottky groups in PGL(2, F), their limit sets and the
associated uniformizations of algebraic curves.

One says that a discrete subgroup 0 of PGL(2, F) is a Schottky group if it is
finitely generated, and if no element ( 6= id) has finite order [Gerritzen and van der
Put 1980, I, (1.6)]. If 0 is a Schottky group, then 0 is free; moreover, any discrete
finitely generated subgroup of PGL(2, F) possesses a normal subgroup of finite
index which is a Schottky group [Gerritzen and van der Put 1980, I, (3.1)].

We say that 0 is arithmetic if its elements can be represented by matrices whose
coefficients lie in a number field. In this case, it follows from the hypothesis that 0 is
finitely generated that there exists a number field K ⊂ F such that 0 ⊂ PGL(2, K ).

2.3. Limit sets. Let 0 be a Schottky subgroup of PGL(2, F). Its limit set is the
set L0 of all points in P1(Cp) of the form limn(γn · x), where (γn) is a sequence of
distinct elements of 0 and x ∈ P1(Cp) [Gerritzen and van der Put 1980, I, (1.3)].
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By [Gerritzen and van der Put 1980, I, (1.6)], the limit set L0 is a compact subset
of P1(F). If the rank of 0 is at least 2, then L0 is a perfect (that is, closed and
without isolated points) subset of P1(F); see [Gerritzen and van der Put 1980, I,
(1.6.3) and (1.7.2)].

Let �0 = (P1)
an L0; it is a 0-invariant open set of Pan

1 . By Lemma 5.4 below,
it is geometrically irreducible.

2.4. Quotients. Let us assume that 0 is a Schottky group and let g be its rank. From
the explicit description of the action of the group 0 given by [Gerritzen and van der
Put 1980, I.4] and recalled in Section 6.5 below (see also [Berkovich 1990, p. 86]),
it follows that the group 0 acts freely on �0 , and the quotient space �0/0 admits
a unique structure of an F-analytic space such that the projection p0 :�0→�0/0

is both a topological covering and a local isomorphism. Moreover, �0/0 is the
F-analytic space associated with a smooth, geometrically connected, projective
F-curve X0 of genus g [Gerritzen and van der Put 1980, III, (2.2); Berkovich 1990,
Theorem 4.4.1, p. 86], canonically determined by the GAGA theorem in this context,
[Berkovich 1990, Theorem 3.4.12, p. 68].

2.5. Let us now consider a finite family (0i )1≤i≤n of Schottky subgroups of
PGL(2, F) of rank ≥ 2. Let us set � =

∏n
i=1�0i and X =

∏n
i=1 X0i , and let

p :�→ X an be the morphism deduced from the morphisms p0i :�0i → X an
0i

.

2.6. Flat subvarieties. Let K be a complete extension of F and let W be a closed
analytic subspace of �K .

The following terminology is borrowed from the analogous notions in the differ-
ential geometry of hermitian symmetric domains.

We say that W is irreducible algebraic if there exists a K -algebraic subvariety Y
of (Pn

1)K such that W is an irreducible component of the analytic space �K ∩ Y an.
In this case, one can take for Y the Zariski closure of W in (Pn

1)K ; it is irreducible
and satisfies dim(Y )= dim(W ); see [Ducros 2009, Proposition 4.22].

We say that W is flat if it can be defined by equations of the following form:

(1) zi = c for some i ∈ {1, . . . , n} and c ∈�0i (K );

(2) z j = g · zi for some pair (i, j) of distinct elements of {1, . . . , n} and some
g ∈ PGL(2, F).

Assume that W is flat and let Y be the subvariety of (Pn
1)K defined by equations of

this form which define W on�K . There exists a subset I of {1, . . . , n} such that the
projection qI : Pn

1→ PI
1 given by the coordinates in I induces an isomorphism of Y

to (PI
1)K . This implies that qI induces an isomorphism from W to

∏
i∈I �i,K . In

particular, W is irreducible, even geometrically irreducible, and hence is irreducible
algebraic. Conversely, we observe that if W is geometrically irreducible and if there
exists a complete extension L of K such that WL is flat, then W is flat.
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We say that W is geodesic if, moreover, the elements g in (2) can be taken such
that g0i g−1 and 0 j are commensurable (i.e., their intersection has finite index in
both of them).

Here is the main result of this paper.

Theorem 2.7 (nonarchimedean Ax–Lindemann theorem). Let F be a finite exten-
sion of Qp and let (0i )1≤i≤n be a finite family of arithmetic Schottky subgroups of
PGL(2, F) of ranks≥ 2. As above, let us set�=

∏n
i=1�0i and X =

∏n
i=1 X0i , and

let p :�→ X an be the morphism deduced from the morphisms p0i :�0i → X an
0i

.
Let V be an irreducible algebraic subvariety of X and let W be an irreducible

algebraic subvariety of �, maximal among those contained in p−1(V an). Then
every irreducible component of WCp is flat.

The proof of this theorem is given in Section 8; it follows the strategy of Pila–
Zannier. In the archimedean setting, this strategy relies crucially on a theorem
of Pila–Wilkie about rational points on definable sets; we recall in Section 4 the
nonarchimedean analogue of this theorem [Cluckers et al. 2015] which is used here.
It is at this point that we need the assumption that the group 0 be arithmetic. This
restriction is inherent to Pila–Zannier’s strategy and we do not know whether it can
be bypassed.

In Section 6, we recall a few more facts on p-adic Schottky groups and p-adic
uniformization, essentially borrowed from [Gerritzen and van der Put 1980].

In a final section, we prove a characterization (Theorem 9.2) of geodesic subvari-
eties of � as the geometrically irreducible algebraic subvarieties whose projection
to X is algebraic (“bialgebraic subvarieties”), in analogy with what happens in the
context of Ax’s theorem or of Shimura varieties.

3. The example of Shimura curves

We begin by recalling the definition of Shimura curves and their p-adic uniformiza-
tion. The literature is unfortunately rather scattered; we refer to [Boutot and Carayol
1992] for more detail, as well as to [Clark 2003, Chapter 0].

3.1. Complex Shimura curves. Let B be a quaternion division algebra with cen-
ter Q; we assume that it is indefinite, namely B ⊗Q R ' M2(R). Let then OB

be a maximal order of B, that is a maximal subring of B which is isomorphic
to Z4 as a Z-module. Let H be the algebraic group of units of OB , modulo
center, considered as a Z-group scheme. For every field R containing Q, one has
H(R)= (B⊗Q R)×/Z((B⊗Q R)×); in particular, the group H(R) is isomorphic
to PGL(2,R), and we fix such an isomorphism. Then the group H(R) acts by
homographies on the double Poincaré upper half-plane

h± = C R.
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Let also 1 be a congruence subgroup of H(Z); recall that this means that there
exists an integer N ≥ 1 such that 1 contains the kernel of the canonical morphism
H(Z)→ H(Z/NZ). We assume that 1 has been chosen small enough so that
the stabilizer of every point of h± is trivial. The quotient h±/1 has a natural
structure of a compact Riemann surface and the projection p : h±→ h±/1 is an
étale covering.

This curve parameterizes triples (V, ι, ν), where V is a complex two-dimensional
abelian variety, ι : OB → End(V ) is a faithful action of OB on V and ν is a level
structure “of type 1” on V . When 1 is the kernel of H(Z) to H(Z/NZ), for some
integer N ≥ 1, such a level structure corresponds to an equivariant isomorphism
of VN , the subgroup of N -torsion of V , with OB/NOB .

By [Shimura 1961], it admits a canonical structure of an algebraic curve S which
can be defined over a number field E in C.

3.2. The p-adic uniformization of Shimura curves. Let p be a prime number at
which B ramifies, which means that B⊗Q Qp is a division algebra. Let also F be
the completion of the field E at a place dividing p; we denote by Cp the p-adic
completion of an algebraic closure of F . We still denote by S the F-curve deduced
from an E-model of the complex curve S.

Let �= (P1)
an
F P1(Qp) be the extension of scalars to F of Drinfel’d’s upper

half-plane. According to the theorem of Čerednik and Drinfel’d [Čerednik 1976;
Drinfel’d 1976] (see also [Boutot and Carayol 1992] for a detailed exposition), and
up to replacing F by a finite unramified extension, the F-analytic curve San admits
a “p-adic uniformization” which takes the form of a surjective analytic morphism

j :�→ San,

identifying San with the quotient of � by the action of a subgroup 0 of PGL(2,Qp).
Up to replacing 1 by a smaller congruence subgroup, which replaces S by a finite
(possibly ramified) covering, we may also assume that 0 is a p-adic Schottky
subgroup acting freely on �, and that j is topologically étale. Then the morphism
j :�→ San is the universal cover of San.

Let us describe this subgroup. Let A be the quaternion division algebra over Q
with the same invariants as B, except for those invariants at p and ∞ which
are switched. In particular, A ⊗Q R is Hamilton’s quaternion algebra, while
A⊗Q Qp 'M2(Qp). Let G be the algebraic group of units of A, modulo center;
in particular, G(Qp)' PGL(2,Qp). As explained in [Boutot and Carayol 1992],
the discrete subgroup 0 is the intersection of G(Q) with a compact open subgroup
of G(Af), the adelic group associated with G where the place at∞ is omitted.

Lemma 3.3. The group 0 is conjugate to an arithmetic Schottky subgroup in
PGL(2,Qp), its rank is at least 2, and its limit set is equal to P1(Qp).
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Proof. The group 0 is a discrete subgroup of PGL(2,Qp), so its limit set L0

is a 0-invariant subset of P1(Qp). In other words, the Drinfeld upper half-plane
�= Pan

1 P1(Qp) is an open subset of �0 = Pan
1 L0 . By the theory of Mumford

curves and Schottky groups (see [Gerritzen and van der Put 1980]), the analytic
curve (Pan

1 L0)/0 is algebraic, and admits the analytic curve San
= �/0 as

an open subset. According to the Čerednik–Drinfel’d theorem, the curve San is
projective. This implies that �= Pan

1 L0, and hence L0 = P1(Qp).
After base change to Qp, the algebraic Q-group G becomes isomorphic to

PGL(2)Qp . Consequently, there exists a finite algebraic extension K of Q, contained
in Qp, such that G K ' PGL(2)K . By such an isomorphism, G(Q) is mapped
into PGL(2, K ); this implies that the group 0 is conjugate to an arithmetic group.

Since 0 is a Schottky group, it is free. Since it is nonabelian, its rank is at
least 2. �

By this lemma, the following result is a special case of our main theorem
(Theorem 2.7).

Theorem 3.4. Let F be a finite extension of Qp, let �= (P1)
an
F P1(Qp) and let

j : �n
→ San be the Čerednik–Drinfel’d uniformization of a product of Shimura

curves. Let V be an irreducible algebraic subvariety of S and let W ⊂ �n be
a maximal irreducible algebraic subvariety of j−1(V an). Then every irreducible
component of WCp is flat.

3.5. By the same arguments, one can show that Theorem 2.7 also applies to the
uniformizations of Shimura curves associated with quaternion division algebras over
totally real fields, as considered by Čerednik [1976] and Boutot and Zink [1995].

3.6. As suggested by J. Pila and explained to us by Y. André, Theorem 3.4 can
also be deduced from its complex analogue, which is a particular case of [Ullmo
and Yafaev 2014]. The crucial ingredient is a deep theorem of André [2003, III,
4.7.4] stating that the p-adic uniformization and the complex uniformization of
Shimura curves satisfy the same nonlinear differential equation. His proof relies on
a delicate description of the Gauss–Manin equation in terms of convergent crystals
and on the tempered fundamental group introduced by him. From that point on, one
can apply Seidenberg’s embedding theorem [1958] in differential algebra to prove
that both the complex and nonarchimedean Ax–Lindemann theorems are equivalent
to a single statement in differential algebra, in the original spirit of [Ax 1971].

4. Definability — a p-adic Pila–Wilkie theorem

4.1. There are two distinct notions of p-adic analytic geometry: one is “naïve”,
and the other rigid analytic. (Regarding rigid analytic geometry, we work in the
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framework defined by Berkovich.) These two notions give rise to three classes of
sets, and we use them all in this paper. Let F be a finite extension of Qp.

a) Semialgebraic and subanalytic subsets of Qn
p are defined by Denef and van

den Dries [1988]; see also [Cluckers et al. 2015, p. 26].
Replacing Qp by a finite extension F , this leads to an analogous notion of

F-semialgebraic, or F-subanalytic, subset of Fn . Considering affine charts,
one then defines F-semialgebraic or F-subanalytic subsets of V (F), for every
(quasiprojective, say) algebraic variety V defined over F .

On the other hand, the Weil restriction functor assigns to V an alge-
braic variety W defined over Qp together with a canonical identification
V (F)→ W (Qp); we say that a subset of V (F) is Qp-semialgebraic or Qp-
subanalytic if its image in W (Qp) is Qp-semialgebraic or Qp-subanalytic,
respectively. Observe that F-semialgebraic subsets of V (F) are Qp-semi-
algebraic, and that F-subanalytic subsets of V (F) are Qp-subanalytic.

Recall that an F-subanalytic subset S is said to be smooth of dimension d
at a point x if it possesses a neighborhood U which is isomorphic to the unit
ball of Fd ; then S is smooth of dimension d at every point of U .

b) Lipshitz [1993] defined a notion of rigid subanalytic subset of Cn
p. We use in

this paper the variant [Lipshitz and Robinson 2000a, Definition 2.1.1] where
the coefficients of all polynomials and power series involved belong to F ; we
call them rigid F-subanalytic. The notion extends to subsets of V (Cp), where
V is an algebraic variety defined over F .

These classes of sets are stable under boolean operations and projections [Lipshitz
and Robinson 2000b, Corollary 4.3], admit cell decompositions [Cluckers et al.
2006, Theorem 7.4], a natural notion of dimension (in fact, they are b-minimal in
the sense of [Cluckers and Loeser 2007]), as well as a natural notion of smoothness.

Lemma 4.2. Let F be a finite extension of Qp contained in Cp and let V be an
algebraic variety over F. Let Z be a rigid F-subanalytic subset of V (Cp). Then
Z(F)= Z ∩ V (F) is an F-subanalytic subset of V (F).

Proof. We may assume that V = An . Then Z can be defined by a quantifier-free
formula of the above-mentioned variant of Lipshitz’s analytic language, and our
claim follows from the very definition of this language. �

4.3. A block in Qn
p is either empty, or a singleton, or a smooth subanalytic subset

of pure dimension d > 0 which is contained in a smooth semialgebraic subset of
dimension d .

A family of blocks in Qn
p×Qs

p is a subanalytic subset W such that there exists an
integer t ≥ 0 and a semialgebraic set Z ⊂Qn

p×Qt
p such that for every σ ∈Qs

p, there
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exists τ ∈Qt
p such that the fibers Wσ and Zτ are smooth of the same dimension,

and Wσ ⊂ Zτ . (In particular, the sets Wσ , for σ ∈Qs
p, are blocks in Qn

p.)
Let F be a finite extension of Qp. Considering Weil restriction, we deduce from

these notions the definition of a block in Fn , or of a family of blocks in Fn
×Qt

p.

4.4. Let H be the standard height function on Q; for x ∈Q, written as a fraction
a/b in lowest terms, one has H(x)=max(|a|, |b|). We also write H for the height
function on Qn defined by H(x1, . . . , xn)=maxi (H(xi )). Viewing GL(d,Q) as a
subspace of Qd2

, it defines a height function on GL(d,Q). There exists a strictly
positive real number c such that H(gg′)≤ cH(g)H(g′) for every g, g′ ∈GL(d,Q),
and H(g−1)� H(g)c for every g ∈GL(d,Q). When d = 2 and g ∈ SL(2,Q), one
even has H(g−1)= H(g).

Consider g ∈ GL(d,Q). If g is diagonal, then H(gn) = H(g)n for every
n ∈ Z. More generally, if g is semisimple, then we have upper and lower bounds
H(g)n � H(gn)� H(g)n for every n ∈ Z.

By abuse of language, if G is a linear algebraic Q-group, we implicitly choose
an embedding in some linear group, which furnishes a height function H on G(Q).

The actual choice of this height function depends on the chosen embedding,
but any other height function H ′ is equivalent, in the sense that there is a strictly
positive real number c such that H(x)1/c� H ′(x)� H(x)c for every x ∈ G(Q).

4.5. Let Z be a subset of Fn and let K be a finite extension of Q contained in F .
We write Z(K )= Z ∩ K n (K -rational points of Z ). For every real number T , we
define Z(K ; T ) = {x ∈ Z(K ) : H(x) ≤ T }; for every integer D, we also define
Z(D; T ) to be the set of points x ∈ Z(F) such that [Q(xi ) : Q] ≤ D for every
i ∈ {1, . . . , n} and H(x)≤ T . These are finite sets.

We say that Z has many K -rational points if there exist strictly positive real
numbers c, α such that

Card(Z(K ; T ))≥ cT α

for all T large enough. This notion only depends on the equivalence class of the
height.

4.6. In [Cluckers et al. 2015], Cluckers, Comte and Loeser established a p-adic
analogue of a theorem of Pila and Wilkie [2006] concerning the rational points
of a definable set. We will use the following variant of [Cluckers et al. 2015,
Theorem 4.2.3].

Theorem 4.7. Let F be a finite extension of Qp and let K be a finite extension
of Q contained in F. Let Z ⊂ Fn be a Qp-subanalytic subset. Let ε > 0. There
exist s ∈ N, c ∈ R and a family of blocks W ⊂ Z ×Qs

p satisfying the following
property: for every T > 1, there exists a subset ST ⊂Qs

p of cardinality < cT ε such
that Z(K ; T )⊂

⋃
σ∈ST

Wσ .
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Proof. Let d=[F :Qp]. By Krasner’s lemma, there exists an algebraic number e∈ F
of degree d such that F = Qp(e). Then the basis (1, e, . . . , ed−1) defines a Qp-
linear bijection ψ : Qd

p
∼
−→ F , (x1, . . . , xd) 7→

∑
xi ei−1. Let ϕ : F ' Qd

p be its
inverse.

By construction, if K is a number field contained in F and x ∈ K d , then
ψ(x) ∈ K (e); in particular, [Q(ψ(x)) : Q] ≤ d[Q(x) : Q]. Conversely, if x ∈ K ,
then the coordinates of ϕ(x) in Qd

p belong to the Galois closure K (e)′ of the
compositum K ·Q(e), hence are algebraic numbers of degrees ≤ D = [K (e)′ :Q].
In other words, ϕ and ψ induce bijections at the level of algebraic points. Since
these maps are linear, there exists a positive real number a> 0 such that a−1 H(x)≤
H(ϕ(x))≤ aH(x) for every x ∈ K .

We deduce from ϕ a Qp-linear isomorphism ϕ : Fn
→ Qnd

p . In particular,
Z ′ = ϕ(Z) is a subanalytic subset of Qnd

p . The morphism ϕ maps algebraic points
of given degree to algebraic points of uniformly bounded degree, and there exists
a positive real number a > 0 such that a−1 H(x) ≤ H(ϕ(x)) ≤ aH(x) for every
x ∈ Z(K ).

The definition of a family of blocks that we have adopted here is slightly stronger
than the one used in Theorem 4.2.3 of [Cluckers et al. 2015]. However, all proofs go
over without any modification, so that there exists a family of blocks W ′ ⊂ Z ′×Qs

p
such that for any T > 1, there exists a subset ST ⊂ Qs

p of cardinality < cT ε

such that Z ′(D; T ) ⊂
⋃
σ∈ST

W ′σ . Let ψ : Fn
× Qs

p → Qnd
p × Qs

p be the map
(x, y) 7→ (ϕ(x), y) and let W =ψ−1(W ′)⊂ Fn

×Qs
p. By definition, W is a family

of blocks in Z . Moreover, for any T > 1, one has

Z(F; T )⊂ ψ−1(Z ′(D; aT ))⊂
⋃
σ∈SaT

ϕ−1(W ′σ )=
⋃
σ∈SaT

Wσ .

Since Card(SaT )≤ caεT ε, the family of blocks W satisfies the requirements of the
theorem. �

5. Zariski closures and analytic functions

5.1. Let F be a complete nonarchimedean valued field. Let V be an F-scheme
of finite type. One says that a subset K of V an is sparse if there exist a set T and
a subset Z of V an

× T such that for every t ∈ T , Z t = {x ∈ V an
: (x, t) ∈ Z} is a

Zariski-closed subset of V an with empty interior, and K =
⋃

t∈T Z t .

Lemma 5.2. A sparse set has empty interior.

Proof. Let us say that a point x ∈ V an is maximally Abhyankar if the rational
rank of the value group of H (x) is equal to dimx(V an). If V is irreducible, then
maximally Abhyankar points are dense in V an; moreover, each of them is Zariski
dense. Let K be a sparse set in V an; write K =

⋃
t Z t as above. Let us argue by
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contradiction and let U be a nonempty subset of V an contained in K . By what
precedes, there exists a maximally Abhyankar point x ∈U . Let t ∈ T be such that
x ∈ Z t . Then Z t contains the Zariski closure of x in V an, so that Z t contains an
irreducible component of V an, contradicting the definition of a sparse set. �

Lemma 5.3. Let F ′ be an algebraically closed complete extension of F and
q : V an

F ′ → V an the base change morphism. Let K be a closed sparse subset of V an

and let K ′ = q−1(K ). Then K ′ is sparse.

Proof. Indeed, if K =
⋃

t∈T Z an
t is a description of the sparse set K , then the

equality K ′ =
⋃

t∈T (Z t)
an
F ′ shows that K ′ is sparse as well. �

Lemma 5.4. Let us assume that K is sparse, and let C ⊂ V be a geometrically
irreducible curve such that Can

6⊂ K . Then Can K is connected.

Proof. Using Lemma 5.3, we reduce to the case where F is algebraically closed;
moreover, we may assume that C is reduced. Let K =

⋃
t∈T Z an

t be a description
of K as above. Up to adding the singular locus of C to K , we may assume that
C is smooth. By assumption, for every t ∈ T , C 6⊂ Z an

t ; consequently, Z an
t ∩Can

consists of rigid points of Can, and hence K ∩Can consists of rigid points of Can.
In the topological description of smooth geometrically irreducible analytic curves
as real graphs [Berkovich 1990, Chapter 4], their rigid points are endpoints, so
Can (K ∩Can) is connected as well. �

Proposition 5.5. Let F be a complete nonarchimedean valued field. Let V be
an F-scheme of finite type which is geometrically connected (resp. geometrically
irreducible) and let K be a closed sparse subset of V an. Then V an K is a
geometrically connected (resp. geometrically irreducible) analytic space.

The particular case K =∅ implies the “GAGA”-type consequence that if V is
geometrically connected (or geometrically irreducible), then so is V an.

Proof. Using Lemma 5.3, we reduce to the case where F is algebraically closed.
By assumption, V is connected. Let us prove that V an K is connected. Let
x, y ∈ V an K . Let F ′ an algebraically closed complete valued field containing
both H (x) and H (y), and view x, y as elements of V (F ′). Let q : V an

F ′ → V an be
the base change morphism and let K ′ = q−1(K ); by Lemma 5.3, this is a sparse
subset of V an

F ′ . By [Mumford 1970, p. 56], there exists an irreducible curve C ⊂ VF ′

which passes through x and y. Then Can is connected. One has C 6⊂ K ′, by
definition of K ′; it follows from Lemma 5.4 that Can (K ′ ∩Can) is connected.
Consequently, x and y belong to the same component of V an

F ′ K ′, and hence their
images in V an K belong to the same connected component. This proves that
V an K is connected.

Let us now assume that V is geometrically irreducible. The normalization
morphism p :W→ V is finite, and W is geometrically connected. Since p−1(K ) is
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a sparse subset of W an, it follows from the first part of the lemma that W an p−1(K )
is geometrically connected. Since W an is the normalization of V an [Ducros 2016,
Lemma 2.7.15], then W an p−1(K )= p−1(V an K ) is the normalization of V an K .
By Theorem 5.17 of [Ducros 2009], this implies that V an K is geometrically
irreducible. �

Corollary 5.6. Let F be a complete valued field, let V be an F-scheme of finite
type and let K be a closed sparse subset of V an. The set of irreducible com-
ponents of V an K is finite. If V is equidimensional, then each of them has
dimension dim(V ).

Proof. We may assume that V is irreducible. Let � = V an K . Let E be the
completion of an algebraic closure of F . By Proposition 5.5,�E∩Z an is irreducible
for every irreducible component Z of VE , and the family of these intersections is
the family of irreducible components of �E . The finiteness statement then follows
from [Ducros 2009, Lemme 4.25], while the one about dimension follows from
[Ducros 2009, Proposition 4.22]. �

Corollary 5.7. Let F be a complete valued field, let V be an irreducible F-scheme
of finite type and let K be a closed sparse subset of V an. Let W be an irreducible
component of V an K . If W is geometrically irreducible, then V is geometrically
irreducible as well, one has W = V an K and W is topologically dense in V an.

Proof. Let E be a complete algebraically closed extension of F , and let V1, . . . , Vn

be the irreducible components of VE . Let L be the preimage of K in VE ; it is a
closed sparse subset of V an

E (Lemma 5.3). Consequently, L j = V an
j ∩ L is a closed

sparse subset of V an
j , for every j . By Proposition 5.5, W j = V an

j L j is geometri-
cally irreducible. The automorphism group Aut(E/F) acts transitively on the set
{V1, . . . , Vn} of irreducible components of VE , hence on the set {W1, . . . ,Wn} of
irreducible components of V an

E L . Since VE is geometrically irreducible, there
exists an index j such that WE =W j ; then Aut(E/F) fixes W j , so that n = 1 and
j = 1. This proves that V is geometrically irreducible. By Proposition 5.5, one has
W = V an K . By Lemma 5.2, W is topologically dense in V an. �

Proposition 5.8. Let F be a finite extension of Qp. Let A be an affine scheme of
finite type over F and let�⊂ Aan be the complement of a closed sparse subset. Let X
be a closed analytic subspace of �. Let V be a Qp-semialgebraic subset of A(F),
contained in X (F), and let W be its Zariski closure in A. Then W an

∩�⊂ X.

Proof. This proof is inspired by that of [Pila and Tsimerman 2013, Lemma 4.1].
We argue by noetherian induction on W , assuming that if W ′ is the Zariski closure

of a Qp-semialgebraic subset V ′ of A(F) contained in X (F), and if W ′ ( W , then
(W ′)an

∩�⊂ X .
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First assume that W is not irreducible. Then any irreducible component W ′ of W
is the Zariski closure in A of V ∩W ′(F), a Qp-semialgebraic subset of A(F); by
induction, (W ′)an

∩�⊂ X , so that W an
∩�⊂ X .

We may thus assume that W is irreducible; since its subset W (F) of F-rational
points contains V , it is Zariski-dense in W , so that W is geometrically irreducible.

Let K = Aan �. By assumption, K is closed and sparse. Let K =
⋃

San
t be

a presentation of K , where for every t , St is a Zariski-closed subset with empty
interior of A. Since W is irreducible and not contained in St , W ∩ St is a strict
Zariski-closed subset of W . Consequently, W an

∩ K is a sparse subset of W an. By
Proposition 5.5, W an

∩� is thus a geometrically irreducible analytic space.
Let R be the Weil restriction functor from F to Qp. By definition, A(F) is

identified with R(A)(Qp) and we write R(V ) for the image of V inside R(A)(Qp).
Let then Z be the Zariski closure of R(V ) inside R(A).

Let Z ′ be an irreducible component of Z . Then Z ′ ∩R(V ) is a semialgebraic
subset of R(A), of the form R(V ′), for a unique Qp-semialgebraic subset V ′ of V .
When Z ′ varies, the corresponding subsets V ′ cover V ; we may thus choose Z ′

such that V ′ is Zariski dense in W . Replacing V by V ′, we may assume that Z
is irreducible; then it is geometrically irreducible, because its set of Qp-points is
Zariski dense.

Since V is Qp-semialgebraic, the subset R(V ) of R(A)(Qp) is semialgebraic;
hence, the dimension of Z coincides with the dimension of V as a Qp-semialgebraic
subset of A(F). Consequently, dimZar(Z)= dim(Z(Qp))= dim(R(V )).

Since W is a Zariski closed subset of A containing V , the subscheme R(W ) is
Zariski closed in R(A) and contains R(V ), so that Z ⊂ R(W ). By Weil restriction,
the inclusion Z→ R(W ) corresponds to a morphism g : Z F →W . Let x ∈ A(F)
and let x̃ ∈R(A)(Qp) be the corresponding point; if x ∈ V , then x̃ ∈R(V )⊂ Z(Qp),
and hence x̃ ∈ Z F (F). By the definition of the Weil restriction functor, one has
g(x̃) = x . In particular, the image of Z F (F) under g contains V . Hence, g is
dominant, by definition of W .

The morphism g induces an analytic morphism gan
: Z an

F → W an
⊂ Aan. The

inverse image of W an
∩� is the complement of a closed sparse subset of Z an

F ; since
Z an

F is geometrically irreducible, Corollary 5.6 implies that (gan)−1(W an
∩�) is

geometrically irreducible, of dimension dim(Z an
F ). Let Y = (gan)−1(W an

∩ X); it is
a Zariski closed analytic subset of (gan)−1(W an

∩�).
Let us admit for a moment that dim(Y ) = dim(Z F ) and let us conclude that

W an
∩�⊂ X . Since dim(Z an

F )= dim(Z F )= dim((gan)−1(W an
∩�)), we see that

Y = (gan)−1(W an
∩ X)= (gan)−1(W an

∩�).

The morphism g : Z F →W being dominant, its image contains a nonempty open
subset W ′ of W . Since W is geometrically irreducible, (W ′)an is dense in W an;
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in particular, the image of gan meets any nonempty open subset of W an. Since
(gan)−1(W an

∩ (� X)) is empty, by the preceding equality, this implies that
W an
∩ (� X) is empty; hence, W an

∩�=W an
∩ X .

It remains to prove the equality dim(Y )= dim(Z F ).
Let us consider a semialgebraic cell decomposition of R(A)(Qp)which is adapted

to R(V ), Z(Qp), Zsing(Qp), and to their singular loci: a finite partition of R(A)(Qp)

into “open cells” such that these Qp-semialgebraic subsets are unions of cells; see
[Denef 1986] and also [Cluckers and Loeser 2007].

Let C̃ be a cell of dimension dim(R(V )) which is contained in R(V ). Since

dim(Zsing(Qp))≤ dim(Zsing) < dim(Z)= dim(R(V )),

the cell C̃ is disjoint from Zsing(Qp). By definition of a cellular decomposition, C̃
is open in R(V ) and in (Z Zsing)(Qp).

Let C be the subset of V corresponding to C̃ . Since the identification of C
with C̃ provided by the Weil restriction functor is a homeomorphism which respects
the singular loci, C is an open subset of V .

Let x be a point of C and let x̃ be the corresponding point of C̃ . By what precedes,
R(V ), Z(Qp) and Z are smooth at x̃ , so that Tx̃(R(V )) = Tx̃(Z(Qp)) = Tx̃(Z).
In particular, these three Qp-vector spaces have the same dimension, equal to
dim(Tx(V ))= dim(V ).

Since g(x̃)= x ∈ X , one has x̃ ∈ Y ; more generally, C̃ ⊂ Y . The tangent space
Tx̃(Y ) of Y at x̃ is an F-vector subspace of Tx̃(Z F ) = (Tx̃(Z))F which contains
Tx̃(C̃) = Tx̃(Z). Consequently, Tx̃(Y ) = Tx̃(Z F ). This implies that the analytic
space Y has dimension dim(Z F ), and concludes the proof. �

6. Complements on p-adic Schottky groups and uniformization

Let F be a finite extension of Qp. Unless specified otherwise, analytic spaces are
F-analytic spaces.

6.1. Let a ∈ F and r ∈ R>0; as usual, we let B(a, r) and E(a, r) be the subsets
of (A1)an of points x such that |T (x)− a| < r and |T (x)− a| ≤ r , respectively.
The subspace B(a, r) is called a bounded open disk; we say that E(a, r) is the
corresponding bounded closed disk. If B is a bounded open disk, we write B+

for the corresponding bounded closed disk. We say that such a disk is strict if its
radius r belongs to |F×|Q.

To these disks, we also add the unbounded open disks Pan
1 E(a, r) and the

unbounded closed disks Pan
1 B(a, r). An unbounded disk is said to be strict if its

complementary disk is strict.
The image by an homography γ ∈ PGL(2, F) of an open (resp. closed, strict)

disk is again an open (resp. closed, strict) disk.
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6.2. We endow P1(Cp) with the distance given by

δ(x, y)=
|x − y|

max(1, |x |)max(1, |y|)

for x, y ∈ Cp — it is invariant under the action of PGL(2,OCp). Moreover, an
elementary calculation shows that every element g ∈ PGL(2,Cp) is Lipschitz for
this distance; see also Theorem 1.1.1 of [Rumely 1989].

6.3. Let 0 be a Schottky group in PGL(2, F), L0 ⊂ P1(F) its limit set and �0 =
Pan

1 L0. For any rigid point x ∈�0, let δ0(x) be the δ-distance of x to L0.
For every γ ∈ PGL(2, F), there exists a real number c ≥ 1 such that c−1δ0(z)≤

δ0(γ · z)≤ cδ0(z) for every rigid point z ∈�0.

Lemma 6.4. Let G be a compact subset of �0 . There exists a strictly positive real
number c such that δ0(x)≥ c for every rigid point x ∈G.

Proof. Arguing by contradiction, we assume that there exists a sequence (xn)

of rigid points of G such that δ0(xn)→ 0. For every n, let ξn ∈ L0 such that
δ0(xn) = δ(xn, ξn); it exists since L0 is compact. Extracting a subsequence if
necessary, we assume that the sequence (ξn) converges to a point ξ of L0. Then
δ(xn, ξ)→ 0. This implies that the sequence (xn) converges to ξ in the Berkovich
space Pan

1 . Since G is compact, one has ξ ∈G, a contradiction. �

6.5. Let 0 be a Schottky subgroup of PGL(2, F). Let us assume that the point at
infinity∞ does not belong to its limit set L0 . Then, by [Gerritzen and van der Put
1980, I, (4.3)], the group 0 admits a basis (γ1, . . . , γg) and a good fundamental
domain F0 with respect to this basis, in the following sense:

(1) There exists a finite family (B1, . . . , Bg,C1, . . . ,Cg) of strict bounded open
disks in Pan

1 such that F0 = Pan
1

(⋃
Bi ∪

⋃
Ci
)
.

(2) The corresponding bounded closed disks B+1 , . . . , B+g ,C+1 , . . . ,C+g are pair-
wise disjoint.

Let then F◦0 = Pan
1

(⋃
B+i ∪

⋃
C+i
)
.

(3) The elements γ1, . . . , γg satisfy γi (Pan
1 Bi )=C+i and γi (Pan

1 B+i )=Ci for
every i ∈ {1, . . . , g}.

With this notation, let W =Pan
1

⋃
Bi ; this is an affinoid domain of Pan

1 containing F,
stable under each γi . Indeed, one has W ⊂Pan

1 Bi . Hence, γi W ⊂γi (Pan
1 Bi )=C+i ,

and hence the claim since C+j is disjoint from each Bi .
Moreover, the following properties are satisfied:

(4) One has
⋃
γ∈0 γ ·F0 = P1 L0.

(5) For γ ∈ 0, one has F0 ∩ γ ·F0 6=∅ if and only if γ ∈ {id, γ±1
1 , . . . , γ±1

g }.
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(6) For every γ ∈ 0 {id}, one has F◦0 ∩ γ ·F0 =∅.

In this context, we identify an element γ of 0 with a reduced word in the letters
{γ±1 , . . . , γ

±
g } and denote its length by `0(γ ).

For every γ ∈ 0 {id}, [Gerritzen and van der Put 1980, I, §4, p. 29] define
a bounded open disk B(γ ), equal either to γ · (Pan

1 B+i ) or to γ · (Pan
1 C+i ),

according to whether the last letter of the reduced word representing γ is γi or γ−1
i ;

in any case, one has γ ·∞ ∈ B(γ ). Moreover, they prove:

(7) B(γ ′)⊂ B(γ ) if and only if γ is an initial subword of γ ′.

(8) For every integer n, one has

Pan
1

⋃
`0(γ )<n

γ ·F=
⋃

`0(γ )=n

B(γ ).

(9) There exists a real number c > 1 such that for every γ , the radius of the
disk B(γ ) is� c−`0(γ ).

(10) The intersection of every decreasing sequence of open disks (B(γn)), where
`0(γn) = n, is reduced to a limit point of 0, and every limit point can be
obtained in this way.

Proposition 6.6. Let 0 be a Schottky group in PGL(2, F) and let G be a compact
analytic domain of �0. There exist positive real numbers a, b such that for every
γ ∈ 0 and every rigid point x ∈ γ ·G, one has

`0(γ )≤ a− b log(δ0(x)).

Proof. To prove this proposition, we may extend the scalars to a finite extension of F
and henceforth assume that the limit set L0 is not equal to P1(F). Placing a point of
P1(F) L0 at infinity, Section 6.5 furnishes a basis (γ1, . . . , γg) and a good funda-
mental domain with respect to this basis of the form F= Pan

1

(⋃g
i=1 Bi ∪

⋃g
i=1 Ci

)
.

Let b and c> 1 be positive real numbers such that the diameter of B(γ ) is bounded
by bc−`0(γ ), for every γ ∈ 0 {id}.

Let x ∈ �0 and let γ ∈ 0 be such that x ∈ γ · F. Let ξ ∈ L0(x) be such that
δ0(x)= δ(x, ξ). As the disk B(γ ) contains both x and ξ , one has δ0(x)≤ bc−`0(γ ),
that is,

`0(γ )≤
1

log(c)
(− log(δ0(x))+ log(b)),

since log(c) > 0. This proves the proposition in the particular case where G= F.
Let us now prove the general case. Let a be a real number such that δγ (x)≥a> 0

for every rigid point of G (Lemma 6.4). The preceding inequality shows that there
exists a finite subset S of 0 such that G meets γ ·F if and only if γ ∈ S. It then
follows from property (8) that G is contained in the finite union

⋃
s∈S s · F. To

conclude the proof, we observe that if x ∈ γ ·G, then there exists s ∈ S such that
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x ∈ γ s ·F. The proposition then follows from the particular case already treated
and from the inequality `0(γ )≤ `0(γ s)+ `0(s). �

Corollary 6.7. Let G and G′ be compact analytic domains of �0 . The set of γ ∈ 0
such that γ ·G∩G′ 6=∅ is finite.

Proof. Let S be this set. For γ ∈ S, the intersection γ ·G∩G′ is a nonempty affinoid
domain of Pan

1 ; hence, it contains a rigid point xγ . With a and b as in the statement
of Proposition 6.6, one has `0(γ ) ≤ a− b log(δ0(xγ )). Since xγ ∈ G′, δ0(xγ ) is
bounded from below by Lemma 6.4. This shows that `0(γ ) is bounded above when
γ runs over S. �

Proposition 6.8. Let 0 be a Schottky group in PGL(2, F) and let g be its rank. Let
ξ ∈L0 and let U be an open neighborhood of ξ in Pan

1 .
There exist an open neighborhood U ′ of ξ , contained in U , a basis γ1, . . . , γg

of 0, an affinoid domain F⊂�0 such that the following properties hold:

(1) One has F⊂U ′.

(2) For every i , one has γi (U ′)⊂U ′.

(3) One has
⋃
γ∈0 γF=�0.

Such an affinoid domain will be called a fundamental set.

Proof. We first treat the case where L0 6= P1(F). Placing a point of P1(F) L0 at
infinity, Section 6.5 furnishes a basis (γ1, . . . , γg) and a good fundamental domain F

with respect to this basis of the form F= Pan
1

(⋃g
i=1 Bi ∪

⋃g
i=1 Ci

)
.

By (10), for every integer n ≥ 1, there is an element γ ∈ 0 of length n such that
ξ ∈ B(γ ); if n is large enough, one has B(γ )+⊂U , because the diameter of B(γ )+

tends to 0 when n = `0(γ ) tends to ∞. Since γ · F ⊂ B(γ )+, this implies that
γ ·F⊂U .

Up to changing the basis (γ1, . . . , γg) into (γ−1
1 , . . . , γ−1

g ), and exchanging Bi

and Ci for every i , we may assume that the last letter of γ is γs , for some
s ∈ {1, . . . , g}. Set W = Pan

1
⋃g

i=1 Bi ; recall that W is an affinoid domain
of Pan

1 containing F and stable under γ1, . . . , γg. By definition, one has

B(γ )+ = γ · (Pan
1 Bs)⊃ γ ·W,

since W ⊂ Pan
1 Bs .

Let us now set F′ = γ ·F, W ′ = γ ·W and γ ′i = γ γiγ
−1 for i ∈ {1, . . . , g}. By

construction, F′ and W ′ are affinoid domains of Pan
1 such that F′⊂W ′⊂ B(γ )+⊂U ,

the translates of F′ under 0 cover �0 , and W ′ is stable under the basis (γ ′1, . . . , γ
′
g)

of 0.
This almost proves (1–3), except that W ′ is affinoid and not open. To conclude

the construction, one sets U ′ to be the interior of W ′ and redoes the construction
starting from U ′ instead of U . The second paragraph of the proof shows that there
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exists γ ′ ∈ 0 such that γ ′ · F′ is contained in U ′. The affinoid γ ′ · F′, the open
subset U ′ and the basis (γ ′1, . . . , γ

′
g) satisfy the requirements of the proposition.

Let us now treat the case where L0 = P1(F). Let F ′ be a finite extension of F
of degree > 1. The preceding construction can be applied starting with a point of
P1(F ′) L0 and furnishes an open neighborhood V ′ of ξ in (Pan

1 )F ′ , contained
in UF ′ , a basis (γ1, . . . , γg) of 0 and an affinoid domain F′ of �0,F ′ satisfying
properties (1–3). The images U ′ of V ′ and F of F′ by the projection (Pan

1 )F ′→ Pan
1

satisfy the required properties. �

Lemma 6.9. Let 0 be an arithmetic Schottky group in PGL(2, F) and let H be
a height function on PGL(2,Q). There exists a positive real number c such that
H(γ )≤ c`0(γ )+1 for every γ ∈ 0.

Proof. Let (γ1, . . . , γg) be a basis of 0 as above. Let c1 be a positive real
number such that H(hh′) ≤ c1 H(h)H(h′) for every h, h′ ∈ PGL(2,Q). Let
c = c1 sup(H(id), H(γ1), . . . , H(γg)). One proves by induction on `0(γ ) that

c1 H(γ )≤ sup(c1 H(γ±1 ), . . . , c1 H(γ±g ))
`0(γ )c1 H(id)≤ c1c`0(γ )+1

for every γ ∈ 0, as was to be shown. �

Lemma 6.10. Let 0 be a Schottky subgroup of PGL(2, F) and let 1 be a subset of
P1(F) of cardinality 2. Let K be a number field contained in F. The stabilizer of 1
inside 0 does not have many K -rational points.

Proof. Let S be this stabilizer; we may assume that S 6= {id}. Let g ∈ S {id}. Then
g is hyperbolic (see [Gerritzen and van der Put 1980, p. 7, line 2]), and hence has
exactly two rational fixed points in P1(F). Up to a change of projective coordinates,
we may thus assume that 1 = {0,∞}. Then every element h of S is of the form
z 7→ λ(h)z, for some unique element λ(h) ∈ K×; moreover, unless h = id, any
such h is hyperbolic and thus is represented by a matrix having two eigenvalues
with distinct absolute values, so that |λ(h)| 6= 1. Let us choose h ∈ S {id} such
that |λ(h)| is > 1 and minimal. By euclidean division, one has S = 〈h〉.

Then S ∩ PGL(2, K ) is generated by an element of the form ha for some a ∈ Z.
Since ha is semisimple, we have H(ha)n � H(han)� H(ha)n , for every n ∈ Z
(see Section 4.4). This shows that S ∩ PGL(2, K ) does not have many rational
points. �

In Section 8, we will need the following lemma.

Lemma 6.11. Let r be a positive real number, f ∈ Cp[[z]] a power series which
converges on the closed disk E(0, r), and L1 and L2 closed subsets of Cp such that
f −1(L2) ⊂ L1. For every x ∈ Cp, let δ(x; L1) and δ(x; L2) be the distances of x
to L1 and L2, respectively. Then there exist real numbers m ≥ 0, c > 0 and s such
that 0< s < r and such that δ( f (x); L2)≥ cδ(x; L1)

m for every x ∈ E(0, s).
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Proof. Write f =
∑

cnzn . We may assume that there exists a ∈C×p such that r =|a|;
composing f with homographies which map E(0, r) to E(0, 1) and f (E(0, r))
into the disk E(0, 1), we assume that r = 1 and that |cn| ≤ 1 for all n. (Recall
from Section 6.2 that homographies are Lipschitz for the distance δ.)

Let us first treat the case where f (0) 6∈ L2. Then there exists a real number s > 0
such that E( f (0), s)∩ L2 = ∅. For every x ∈ E(0, 1) such that |x | < s, one has
| f (x)− f (0)|< s; hence, δ( f (x); L2) > s. It suffices to set m = 0 and c = s.

We now assume that f (0) ∈ L2, and hence 0 ∈ L1. Let m = ord0( f − f (0)).
Since f ′(z)=

∑
n≥m ncnzn−1, there exists a real number s such that 0< s ≤ 1 and

such that | f ′(z)| = |mcm ||z|m−1 provided |z| ≤ s. Moreover, | f (n)(z)/n!| ≤ 1 for
every n ≥ 0 and any z ∈ E(0, 1). Considering the Taylor expansion

f (y)=
∑
n≥0

1
n!

f (n)(x)(y− x)n,

we then see that there exists a real number s ′ such that

f (E(x, u))= E( f (x), | f ′(x)|u)

for every real number u such that 0< u ≤ s ′ and x ∈ E(0, 1) such that 0< |x | ≤ s.
If u < δ(x; L1), then E(x, u) ∩ L1 = ∅; hence, E( f (x), | f ′(x)|u) ∩ L2 = ∅.
Consequently, δ( f (x); L2)≥| f ′(x)| δ(x; L1). Since 0∈ L1, one has |x |≥ δ(x; L1).
Consequently,

δ( f (x); L2)≥ |mcm ||x |m−1δ(x; L1)≥ |mcm | δ(x; L1)
m .

This concludes the proof. �

7. Automorphisms of curves

The following result is already present in [Pila 2013]. For the clarity of exposition,
we isolate it as a lemma.

Lemma 7.1. Let k be an algebraically closed field of characteristic zero, B a
smooth connected projective k-curve and f : B→ P1 a nonconstant morphism. Let
R f ⊂ B be the ramification locus of f (the set of points of B at which f is not étale)
and let 1 f = f (R f ) be its discriminant locus.

Assume that there exist automorphisms g ∈ Aut(P1) and h ∈ Aut(B) such that
f ◦ h = g ◦ f , and that g has infinite order. Then B is isomorphic to P1, and one of
the following cases holds:

• The morphism f is an isomorphism (and 1 f =∅).

• One has Card(R f )= 2 and g(1 f )=1 f .
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Proof. By construction, f induces a finite étale covering of P1 1 f .
Let b ∈ R f . One has d f (b)= 0; hence, d( f ◦h)(b)= d(g◦ f )(b)= 0. Since h is

an automorphism of B, this implies that d f (h(b))= 0; hence, h(b) ∈ R f . We thus
have h(R f )⊂ R f ; hence, h(R f )= R f , because h is an isomorphism. Consequently,
g(1 f ) = 1 f , so that some power of g fixes 1 f pointwise. Since the identity is
the only homography that fixes 3 points and g has infinite order, this implies that
Card(1 f )≤ 2.

If Card(1 f )≤ 1, then P1 1 f is simply connected. Hence, f is an isomorphism
(and 1 f =∅).

Otherwise, one has Card(1 f )= 2. Let n= deg( f ). Up to a change of projective
coordinates in P1, we may assume that 1 f = {0,∞}. Then g is a homothety,
because it leaves 1 f invariant and has infinite order (otherwise, it would be of the
form g(z)= a/z). Since all finite étale coverings of P1 1 f are of Kummer type
(equivalently, π1(P1 1 f )= Z), one has B ' P1 and the morphism f is conjugate
to the morphism z 7→ zn from P1 to itself.

We then remark that h is a homography of infinite order. Indeed, if he
= idB ,

then f = ge
◦ f . Hence, ge

= id since f is surjective. Hence e = 0, since g has
infinite order. As above, the formula h(R f )= R f then implies that Card(R f )≤ 2.
On the other hand, Card(R f )≥ Card(1 f )= 2. Hence, Card(R f )= 2. �

Proposition 7.2. Let k be a field of characteristic zero. Let B be an integral k-
curve in Pn

1 possessing a smooth k-rational point. Let 0B be the stabilizer of B in
(Aut(P1))

n and let 01 ⊂ Aut(P1) be its image under the first projection. Assume
that 01 contains an element of infinite order. Then one of the following cases holds:

(1) The morphism p1|B is constant.

(2) The morphism p1|B is an isomorphism and the components of its inverse are
either constant or homographies.

(3) There is a subset of P1(k̄) of cardinality 2 which is invariant under every
element of 01.

Proof. Assume that p1|B is not constant. Let ν : B ′→ B be the normalization of B
and let p′1= p1◦ν : B ′→P1. Let g= (g1, . . . , gn) be an element of 0B . There exists
a unique automorphism h of B ′ that lifts g, so p′1 ◦ h = g1 ◦ p′1. Since the curve B
has smooth rational points, the curve B ′ is geometrically integral. Choosing g such
that g1 has infinite order, the preceding lemma implies that Card(Rp′1) ∈ {0, 2}.

Let us first assume that Card(Rp′1)= 2. Then Card(1p′1)= 2 as well. Moreover,
the relation p′1 ◦ h = g1 ◦ p′1 implies that g1(1p′1)⊂1p′1 , so that case (3) holds.

Let us now assume that Card(Rp′1)= 0 and fix g such that g1 has infinite order. By
the preceding lemma, p′1 is an isomorphism; this implies that p1|B is an isomorphism
as well. Let f be its inverse and let f1, . . . , fn be its components. Assume that
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case (2) does not hold, that is, for some j , the rational map f j is neither constant,
nor a homography; its ramification locus R j is nonempty. Since g1 has infinite
order, the relation g j ◦ f j = f j ◦ g1 implies that g j has infinite order as well. By
the preceding lemma, one has Card(R j ) = 2. Let then g′ = (g′1, . . . , g′n) be any
element of 0B . The relation g′j ◦ f j = f j ◦ g′1 implies that g′1(R j ) ⊂ R j , so that
case (3) holds. �

8. Proof of Theorem 2.7

We will reduce the proof of Theorem 2.7 to the following variant:

Proposition 8.1. Let F be a finite extension of Qp and let (0i )1≤i≤n be a finite
family of arithmetic Schottky subgroups of PGL(2, F) of ranks ≥ 2. As above, let
us set � =

∏n
i=1�0i and X =

∏n
i=1 X0i , and let p : �→ X an be the morphism

deduced from the morphisms p0i :�0i → X an
0i

.
Let V be an irreducible algebraic subvariety of X and let W be an irreducible

algebraic subvariety of �, maximal among those contained in p−1(V an). If W is
geometrically irreducible, then it is flat.

Lemma 8.2. Proposition 8.1 implies Theorem 2.7.

Proof. Let Y be the Zariski closure of W in Pn
1; by assumption, W is an irre-

ducible component of Y an
∩�. Let W0 be an irreducible component of WCp . By

[Ducros 2009, Théorème 7.16(v)], there exists a finite extension F ′ of F , contained
in Cp, and an irreducible component W ′ of WF ′ such that W0 = W ′Cp

. Then W ′

is geometrically irreducible, as well as its Zariski closure Y ′. By Proposition 5.5,
�∩ Y ′ is geometrically irreducible. The inclusion W ′ ⊂�∩ Y ′ and the inequality
dim(W ′)= dim(W0)= dim(W )= dim(Y )≥ dim(Y ′) imply that W ′ =�∩ Y ′. In
particular, W ′ is irreducible algebraic and is contained in p−1(V an

F ′ ). Let us show
that it is maximal. Let W ′1 ⊂�F ′ be an irreducible algebraic subvariety contained
in p−1(V an

F ′ ) such that W ′ ( W ′1, and let Y ′1 ⊂ (P
n
1)F ′ be the Zariski closure of W ′1.

The image Y1 of Y ′1 in (Pn
1)F is Zariski closed, because F ′ is a finite extension

of F , and Y ′1 ⊂ (Y1)F ′ . Moreover, Y ⊂ Y1. There exists a unique irreducible
component W1 of � ∩ Y1 that contains W , and W ′1 is an irreducible component
of W1,F ′ . Necessarily, W1 is contained in p−1(V an), because W ′1 ⊂ p−1(V an

F ′ ); this
contradicts the maximality of W .

Applying Proposition 8.1 to W ′, we conclude that W ′ is flat. Consequently,
W0 =W ′Cp

is flat, as was to be shown. �

8.3. To prove Proposition 8.1, we argue by induction and assume that it holds if
there are less that n factors. Let W be an irreducible algebraic subvariety of �,
maximal among those contained in p−1(V an) and geometrically irreducible. Let
Y be an irreducible subvariety of Pn

1 such that W is an irreducible component
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of Y an
∩�. By Corollary 5.7, Y is geometrically irreducible, W = Y an

∩� and W
is topologically dense in Y .

The proof that W is flat requires intermediate steps and will be concluded in
Proposition 8.11.

A crucial step will consist in proving that the stabilizer of W inside 0 has many
points of bounded heights (Proposition 8.10). To that aim, we define in Section 8.7
an F-subanalytic subset R of PGL(2, F)n . The definition, close to that of a similar
set in [Pila 2011; 2015], guarantees the following important property (Lemma 8.8):
if B is a small enough subset of R then, for every g ∈ B, the translate (g ·Y an)∩�

is contained in p−1(V an), and is independent of g. At this point, the maximality
of W is invoked.

The existence of such blocks is established by applying the p-adic Pila–Wilkie
theorem of [Cluckers et al. 2015]. We thus prove that R has many rational points
(Lemma 8.9); these points are constructed using the action of the Schottky groups
in a neighborhood of a boundary point ξ , applying material recalled in Section 6.
The construction of such a point ξ , performed in Lemma 8.5, is actually the starting
point of the proof.

The actual statement of Proposition 8.10 furnishes elements in 0 of a precise
form. Using Proposition 7.2, we will finally conclude the proof of Proposition 8.1.

8.4. By assumption, W =Y an
∩�; consequently, the j -th projection q j : (P1)

n
→P1

is constant on Y if and only if it is constant on W, if and only if the j -th projection
from X to X j is constant on V, and in this case, its image is an F-rational point
of P1, because W is geometrically irreducible. Deleting these constant factors, we
thus assume that there does not exist j ∈ {1, . . . , n} such that the j-th projection
q j : (P1)

n
→ P1 is constant on Y . Consequently, q j |Y : Y → P1 is surjective for

every j ; in particular, Y an meets q−1
j (L0 j ).

Let m = dim(Y ); by what precedes, we have m > 0, and Y an
6⊂�.

Lemma 8.5. Up to reordering the coordinates, there exists a smooth rigid point
ξ ∈Y an and a connected open neighborhood U of ξ in (Pn

1)
an such that the following

properties hold:

(1) The first component q1(ξ) of ξ belongs to the limit set L01 of 01.

(2) Letting J = {1, . . . ,m}, the projection qJ : Pn
1 → PJ

1 induces a finite étale
morphism from U ∩ Y an to its image in (PJ

1 )
an.

(3) For every j ∈ {1, . . . , n} and every point y ∈U ∩ Y an such that q j (y) ∈L0 j ,
one has q1(y) ∈L01 .

Proof. For every subset V of Y an, let us define a relation �V on {1, . . . , n} as
follows: i �V j if and only if, for every y ∈ V such that qi (y) ∈ L0i , one has
q j (y)∈L0 j . This is a preordering relation. If U ⊂ V ⊂Y an and i �V j , then i �U j .
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We define a decreasing sequence (V0, V1, . . . , Vn) of nonempty open subsets
of Y an and a sequence ( j0, j1, . . . , jn) of elements of {1, . . . , n}, such that for
every k, q jk (Vk) meets L0 jk

and 1, . . . , k �Vk jk .
We start with V0 = Y an. We have reduced to the case where q j (Y an) = P1 for

every j . In particular, q j (Y an) meets L0 j . We may take j0 = 1.
Let k≥0 be such that V0, V1, . . . , Vk and j0, j1, . . . , jk are defined. If k+1�Vk jk ,

we set Vk+1=Vk and jk+1= jk . Otherwise, one has k+1 6�Vk jk . Hence, there exists
y ∈ Vk such that qk+1(y)∈L0k+1 and q jk (y) 6∈L0 jk

. Let Vk+1= Vk∩(q jk )
−1(�0 jk

);
this is an open neighborhood of y in Vk such that q jk+1(Vk+1) meets L0 jk+1

. By
construction, no element z of Vk+1 satisfies q jk (z) ∈L0 jk

, so that jk �Vk+1 k + 1.
We then set jk+1 = k+ 1.

Let V = Vn and i = jn , and let y ∈ V be such that qi (y)∈L0i . Let Z be the dense
open subscheme of Y consisting of smooth points at which dqi does not vanish.
Then Z an is open and dense in Y an, and V ∩ Z an is open and dense in V ; hence,
qi (V ∩ Z an) is dense in qi (V ). Since L0i has no isolated points, we may assume
that y ∈ Z an. Rigid points are dense in q−1

i (qi (y))∩ V ∩ Z an; there exists a rigid
point ξ in (qi )

−1(qi (y))∩V ∩ Z an. Since qi (y) is a rigid point, the point ξ is a rigid
point of V ∩ Z an (and not only of its fiber of qi ). Moreover, qi (ξ)= qi (y) ∈L0i .

Since dqi does not vanish at ξ , there exists a subset J of {1, . . . , n} containing i
such that the projection qJ from V to (PJ

1 )
an is finite étale at ξ . One has Card(J )=

dim(V ) = m. Consequently, there exists an open neighborhood U of ξ in (Pn
1)

an

such that qJ induces a finite étale morphism from U ∩ Y an to its image in (PJ
1 )

an.
Reordering the coordinates, we may assume that i = 1 and J = {1, . . . ,m},

hence the lemma. �

8.6. Choose ξ , J = {1, . . . ,m} and U as in the previous lemma; we may even
assume that U is of the form U1 × · · · × Un , where, for each i , Ui is an open
neighborhood of qi (ξ) in Pan

1 .
Let F ′ be a finite extension of F such that ξ ∈ Y (F ′). Since W is geometrically

irreducible, WF ′ is an irreducible algebraic subvariety of �. It is also maximal.
Note that the flatness of WF ′ implies the flatness of W . Replacing F by F ′, we
thus may assume that ξ ∈ Y (F); then qJ induces a local isomorphism at ξ .

Let ϕ = (ϕ1, . . . , ϕn) : O→ Y an
∩U be an analytic section of qJ |Y an∩U , defined

on an open neighborhood O of qJ (ξ); we may assume that O =U1× · · ·×Um .
By condition (3) of Lemma 8.5, q1(ϕ

−1
j (L0 j ))⊂L01 for every j ∈ {1, . . . , n}.

8.7. Let G be the Q-algebraic group PGL(2)n , and let G0 be the algebraic subgroup
of G defined by

(g1, . . . , gn) ∈ G0 ⇔ g2 = · · · = gm = 1. (8.7.1)

We denote by q1, . . . , qn the projections of G to PGL(2). For every compact
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analytic domain F of �, we define a subset RF of G0(F) by

g ∈ RF ⇔ dim(g · Y an
∩F∩ p−1(V an))= m. (8.7.2)

Lemma 8.8. Let F be an affinoid domain of �.

(1) The set RF is an F-subanalytic subset of G0(F).

(2) For every g ∈ RF, one has (g · Y an)∩�⊂ p−1(V an).

(3) Let M⊂ RF be a subset whose Zariski closure is irreducible; for every g, h∈M ,
one has g · Y = h · Y .

Proof. (1) The sets V and Y are algebraic over F ; hence, V (Cp) and Y (Cp)

are rigid F-subanalytic. Since F is affinoid, the morphism p|F defines a rigid
F-subanalytic map from F(Cp) to V (Cp), so that (F∩ p−1(V an))(Cp) is a rigid
F-subanalytic set. Consequently, taking Cp-points, (g · Y an

∩ F ∩ p−1(V an))g

furnishes a rigid F-subanalytic family of rigid F-subanalytic subsets of �(Cp),
parameterized by G0(Cp). By b-minimality, the set of points g ∈ G0(Cp) such that
dim(g ·Y an

∩F∩ p−1(V an))=m is a rigid F-subanalytic subset of G0(Cp). It then
follows from Lemma 4.2 that RF is an F-subanalytic subset of G0(F).

(2) Let g ∈ RF and let us prove that (g · Y an) ∩� ⊂ p−1(V an). Since g · Y an is
irreducible and g · Y an

∩ F has dimension m = dim(g · Y an), this intersection is
Zariski dense in g · Y an. Moreover, there exists a finite extension F ′ of F such that
g · Y an

F ′ ∩F(F
′) is Zariski dense in YF ′ (it suffices that g · Y an

∩F admits a smooth
F ′-point), so that the Zariski closure of g ·Y an

∩F(F ′) in (Pn
1)F ′ is equal to g ·YF ′ .

Moreover, g · Y (F ′)∩F(F ′) is F ′-semialgebraic. Hence, Proposition 5.8 implies
that g ·Y an

F ′ ∩�F ′ ⊂ p−1
F ′ (V

an
F ′ ). Since p is defined over F and g ∈G(F), this implies

that (g · Y an)∩�⊂ p−1(V an).

(3) As a subset, (M · Y an)∩� is contained in p−1(V an). By Proposition 5.8, its
Zariski closure Y ′ satisfies (Y ′)an

∩�⊂ p−1(V an) as well. Since Y and the Zariski
closure of M are geometrically irreducible, Y ′ is geometrically irreducible.

Let g ∈M ; then Y an
⊂ g−1 M ·Y an

⊂ g−1
·(Y ′)an, and hence W ⊂ g−1

·(Y ′)an
∩�.

By maximality of W , one has W = g−1
· (Y ′)an

∩�. This implies g ·Y = Y ′. Thus
g · Y = h · Y for every g, h ∈ M . �

We return to the context of Section 8.6. In particular, ξ is a point of Y (F) such
that q1(ξ) ∈L01 , and the restriction to Y of the projection to the first m coordinates
is étale at ξ , with a local analytic section ϕ defined on U1× · · ·×Um .

Lemma 8.9. There exist a real number c > 0, fundamental sets Fi ⊂ �0i and a
subset ϒ of RF ∩0, where F=

∏
Fi , such that the following hold:

(1) For all T large enough, one has Card(ϒT )≥ T c, where ϒT denotes the set of
all γ ∈ ϒ such that H(γ )≤ T .
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(2) The projection q1 is injective on ϒ .

(3) For all j ∈ {1, . . . , n} such that q j (ξ) 6∈L0 j , one has Card(q j (ϒ))= 1.

Recall that there exists a number field K contained in F such that0⊂PGL(2,K )n,
and H is induced by a fixed height function on PGL(2,Q)n . In particular, Lemma 8.9
implies that the subset RF of PGL(2, F)n has many K -rational points, in the sense
of Section 4.5.

Proof. Let q be the genus of X01 ; by Proposition 6.8, there exists a basis α1, . . . , αq

of 01, an open neighborhood U ′1 of q1(ξ) which is contained in U1 and stable under
the action of α1, . . . , αq , and a fundamental set F1 for 01 contained in U ′1. For
simplicity of notation, we now assume that U1 =U ′1.

We have introduced in Section 8.6 a local analytic section

ϕ = (ϕ1, . . . , ϕn) :U1× · · ·×Um→ Y an
∩U1× · · ·×Un

of the projection qJ : Y → PJ
1 , where J = {1, . . . ,m}. Let j ∈ {1, . . . , n} be such

that q j (ξ) 6∈L0 j . Then q j (ξ) has a compact analytic neighborhood U ′j contained
in �0 j . Shrinking U1, . . . ,Um if necessary, we assume that the image of ϕ j is
contained in U ′j for every such j .

Let a′ = (a1, . . . , an) ∈ W be a rigid point that belongs to the image of ϕ and
such that a1 ∈ F1. Let a = (a1, . . . , am); we have a′ = ϕ(a). For j ∈ {2, . . . , n},
we also choose a fundamental set F j that contains a j .

We claim that we can complete any element γ1 ∈ F1 which is a positive word γ1

in α1, . . . , αq to an element γ ∈ 0 such that γ−1
∈ RF and H(γ )� c`01 (γ1), for

some real number c.
Let us now prove the asserted claim. For any positive word γ1 in α1, . . . , αq , one

has γ1 ·a1 ∈U1; in particular, we can consider the point a(γ1)= (γ1 ·a1, a2, . . . , am)

of U1× · · ·×Um and its image ϕ(a(γ1)) under the section ϕ.
By Section 6.3, there exists a real number c1 ≥ 1 such that δ(α j · a1;L01) ≥

c−1
1 δ(a1;L01), uniformly in a1. By induction on the length `01(γ1) of the positive

word γ1, this implies the inequality

δ(γ1 · a1;L01)≥ c
−`01 (γ1)

1 . (8.9.1)

We first set γ2 = · · · = γm = 1.
Let j>m. Letψ j :U1→U j be the analytic map withψ j (x)=ϕ j (x, a2, . . . , am).

By construction (Lemma 8.5), if ψ j (x) = ϕ j (x, a2, . . . , am) ∈ L0 j , one has
x = q1(x, a2, . . . , am) ∈L01 . In other words, one has ψ−1

j (L0 j )⊂L01 . Applying
Lemma 6.11 to ψ j , we obtain an inequality of the form

δ(ϕ j (x, a2, . . . , am);L0 j )� δ(x;L01)
k,
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for some integer k ≥ 0 and all x ∈U1. In particular,

δ(ϕ j (a(γ1));L0 j )� δ(γ1 · a1;L01)
k . (8.9.2)

By Proposition 6.8, there exists γ j ∈ 0 j such that ϕ j (a(γ1)) ∈ γ j · F j . By
Proposition 6.6 and Lemma 6.9, one has

H(γ j )� δ(ϕ j (a(γ1));L0 j )
−κ , (8.9.3)

where κ is a positive real number, independent of γ1. By equations (8.9.1), (8.9.2)
and (8.9.3), we thus have

H(γ j )� δ(γ1 · a1;L0 j )
−kκ
� c

`01 (γ1)kκ
1 . (8.9.4)

Let c = ckκ
1 .

Let γ = (γ1, . . . , γn) ∈ 0. By what precedes, H(γ ) � c`01 (γ1). Moreover,
ϕ j (a(γ1)) ∈ γ j · F j for every j ; this follows from the fact that a j ∈ F j if j ≤ m,
and from the construction of γ j if j > m.

Let us prove γ−1
∈ RF. One has W ⊂ p−1(V an) by assumption; since γ ∈ 0,

this implies γ−1
·W ⊂ p−1(V an). Consequently,

γ−1
· Y an
∩F∩ p−1(V an)⊃ γ−1

·W ∩F∩ p−1(V an)= γ−1
·W ∩F.

The analytic morphism

U1× · · ·×Um→W, (x1, . . . , xm) 7→ ϕ(γ1 · x1, x2, . . . , xm)

is an immersion and maps the point a = (a1, . . . , am) to the point ϕ(a(γ1)) ∈ γ ·F.
Since a is a rigid point, this morphism maps a neighborhood of a into γ ·F, so that
dim(W ∩ γ ·F)≥ m. This proves γ−1

∈ RF.
Applying Lemma 6.9 to estimate H(γ1), we thus have shown the existence of

a positive real number c such that for every positive word γ1 in α1, . . . , αq , there
exists an element γ = (γ1, . . . , γn) completing γ1 such that H(γ )� c`01 (γ1) and
γ−1
∈ RF ∩0.

Let ϒ ′ be the set of all such elements γ−1, where γ1 ranges over positive words
in α1, . . . , αq . It is a subset of RF∩0. By construction, the projection q1 is injective
on ϒ ′. Moreover, since the number of positive words of length ` in α1, . . . , αq

is q`, the cardinality of ϒ ′T is bounded from below by q log(T )/ log(c)
= T log(q)/ log(c),

and the exponent of T is strictly positive, since q ≥ 2. Finally, let j be such
that q j (ξ) 6∈ L0 j . By construction, ϕ j (a(γ1)) ∈ γ jF j ; hence γ jF j meets U ′j . By
Corollary 6.7, the set S j of such elements γ j in 0 j is finite. It follows that there is
a subset ϒ of ϒ ′ that satisfies the conclusion of the proposition. �

Proposition 8.10. Let G ′0 be the subgroup of G0 consisting of elements (g j ) such
that g j = id if q j (ξ) 6∈L0 j . Both the stabilizer of W inside G ′0 ∩0 and its image
in 01 under the first projection have many rational points.
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Proof. Let c, ϒ,Fi ,F=
∏

Fi and R = RF be as given by Lemma 8.9; let T0 > 1
be such that Card(ϒT )≥ T c for T ≥ T0.

Let K be a number field contained in F such that all groups 0 j are contained
in PGL(2, K ); the points of R ∩0 are K -rational points. Recall that for every real
number T , we denote by R(K ; T ) the set of K -rational points of R of height ≤ T .
One has ϒT = ϒ ∩ R(K ; T ).

Since R is F-subanalytic (Lemma 8.8), it is also Qp-subanalytic and we may
apply the p-adic Pila–Wilkie theorem of [Cluckers et al. 2015], as stated in
Theorem 4.7. Thus let s ∈ N, d ∈ R, ε > 0 and B ⊂ R × Qs

p be a family of
blocks such that for every T > 1, there exists a subset 6T ∈ Qs

p of cardinality
< dT ε such that R(K ; T )⊂

⋃
σ∈6T

Bσ . Let also t ∈ N and Z ⊂ G0(F)×Qt
p be

a semialgebraic subset such that for every σ ∈Qs
p, there exists τ ∈Qt

p such that
Bσ ⊂ Zτ and dim(Bσ )= dim(Zτ ). Let finally r be an upper bound for the number
of irreducible components of the Zariski closure of the sets Zτ , for τ ∈Qt

p.
Let T > T0. Since ϒT ⊂ R(K ; T ), by the pigeonhole principle, there exists

σ ∈6T such that

Card(ϒT ∩ Bσ )≥
Card(ϒT )

Card(6T )
≥

1
d

T c−ε.

Moreover, the Zariski closure of Bσ in PGL(2)nF has at most r irreducible com-
ponents. Consequently, we may choose such an irreducible component M whose
trace M on Bσ satisfies

Card(ϒT ∩M)≥
1

dr
T c−ε.

(Observe that M is indeed the Zariski closure of M .)
Let g ∈ϒT ∩M . Since the Zariski closure of M is irreducible and M ⊂ RF, it

follows from Lemma 8.8 that the stabilizer of W inside G0∩0 contains g−1 M ; hence
g−1(ϒT ∩M). By construction, the image of g−1(ϒT ∩M) under the projection
of index j is {id} if q j (ξ) 6∈L0 j . This shows in particular that the stabilizer of W
inside G ′0 ∩ 0 contains g−1(ϒT ∩ M). This set contains ≥ T c−ε/dr points, and
their heights are� T 2; the same holds for its image by the first projection, since
this projection is injective on g−1(ϒ ∩M).

We thus have shown that the stabilizer of W inside G ′0 ∩0 has many rational
points, as well as its image under the first projection, concluding the proof. �

Proposition 8.11. The subvariety W is flat.

Proof. We have constructed in Section 8.6 an analytic map ϕ :U1×· · ·×Um→ Y ,
which is a local section of the projection to the m first coordinates.

Let a ∈
∏m

i=2(�0i ∩Ui ); let us denote by Wa the fiber of W over a under the
projection to

∏m
i=2 Pan

1 , and Ya similarly. When a varies, the number of irreducible
components of Ya is uniformly bounded.
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Let ψa : (U1)H (a)→ Y an
a be the analytic morphism deduced from ϕ. We claim

that the components of ψa are either constant or homographies.
Let g ∈ G0 ∩ 0 be an element such that g ·W = W , g1 6= id and g j = id if

q j (ξ) 6∈ L0 j (Proposition 8.10). Since g · W = W , one has g · Y = Y . Hence
g ·Wa =Wa and g · Ya = Ya . The element g induces a commutative diagram

Ya Ya

(P1)H (a) (P1)H (a)

g

g1

ψa ψa

where the section ψa is analytic and defined over the open subset (U1)H (a) of
(P1)

an
H (a). Let Y ′a be the irreducible component of Ya that contains ψa(ξ1); it is

geometrically irreducible. Recall that g1 has infinite order; replacing g1 and g by
some fixed power, we may thus assume that g · Y ′a = Y ′a .

By Proposition 7.2, either Y ′a→ (P1)H (a) is an isomorphism and the components
of its inverse are constant or homographies, or there exists a subset 1 of P1(H (a))
such that Card(1)= 2 and g1(1)=1 for every element g= (g1, . . . , gn)∈G ′0∩0
such that g ·W =W and g · Y ′a = Y ′a . Let us assume that we are in the latter case.
Using that 01⊂PGL(2, F), we see that1⊂P1(F). By Lemma 6.10, the projection
to 01 of the stabilizer of W inside G ′0 ∩0 has few rational points, contradicting
Proposition 8.10.

We thus have shown that the components of the analytic map ψa are either
constant or given by homographies.

Let j ∈ {m+ 1, . . . , n}.
First assume that q j (ξ)∈�0 j . Then g j = id, whence the relation ψa, j =ψa, j ◦g1.

Since g1 6= id, this implies that ψa, j is constant, i.e., ϕ j does not depend on the
coordinate x1. Since U is reduced, the morphism ϕ j is deduced by pull-back of an
analytic map θ j :

∏m
i=2 Ui → Pan

1 .
Let us then assume that q j (ξ) ∈L0 j . Since the j-th component of ϕ takes the

value q j (ξ), the section ψa, j cannot be constant. It is thus a homography τ j,a .
A priori, one has τ j,a ∈ PGL(2,H (a)) for every a. However, by condition (3)

of Lemma 8.5, one has ϕ−1
j (L0 j )⊂L01 . The limit sets L01 and L0 j are contained

in P1(F) and have no isolated points, so that τ−1
j,a maps an infinite subset of P1(F)

into P1(F); this implies that τ j,a ∈ PGL(2, F).
Observe that for x ∈ U1 ∩ P1(F), one has τ j,a · x = ψa, j (x) = ϕ(x, a). In

particular, the assignment a 7→ τ j,a is induced by an analytic morphism. Since it
takes its values in PGL(2, F), it is constant.

Let J ′ and J ′′ be the set of all j ∈ {m+1, . . . , n} such that q j (ξ) belongs to L0 j

and�0 j , respectively. Let�′=�01×
∏

j∈J ′ �0 j and�′′=
∏m

i=2�0i×
∏

j∈J ′′ �0 j ;
similarly, write X ′= X1×

∏
j∈J ′ X j and X ′′=

∏m
i=2 X i×

∏
j∈J ′′ X j , and decompose
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the projection p :�→ X as (p′, p′′), where p′ :�′→ X ′ and p′′ :�′′→ X ′′ are
the natural projections.

Let Z ′ be the graph in
(
P1 ×

∏
j∈J ′ P1

)an of (τ j ) j∈J ′ and Z ′′ the graph in(∏m
i=2 P1 ×

∏
j∈J ′′ P1

)an of (θ j ) j∈J ′′ . Let Y ′ and Y ′′ be the Zariski closure of
Z ′ and Z ′′, let W ′ and W ′′ be their traces in �′ and �′′, and let V ′ and V ′′ be
the Zariski closures of p′(Z ′) and p′′(Z ′′). It is clear that Y ′ = Z ′ is the curve
in P1×

∏
j∈J ′ P1 (with coordinates x1 and x j for j ∈ J ′) given by the equations

x j = τ j (x1), and W ′ is its trace on �′. In particular, W ′ is flat.
By construction, Z ′× Z ′′ is a subspace of Y an which meets W in a Zariski dense

subset of itself; hence Y = Y ′ × Y ′′ and W = � ∩ Y an
= W ′ ×W ′′. Moreover,

p(W ) = p′(W ′) × p′′(W ′′) ⊂ V ; hence V ′ × V ′′ ⊂ V . Consequently, W ′′ is a
maximal algebraic irreducible subset of (p′′)−1((V ′′)an). By induction, W ′′ is flat.

Consequently, W =W ′×W ′′ is flat, as was to be shown. �

9. A characterization of geodesic subvarieties

9.1. Let F be a finite extension of Qp and let (0i )1≤i≤n be a finite family of
arithmetic Schottky subgroups of ranks ≥ 2 in PGL(2, F) Let us set �=

∏n
i=1�0i ,

X =
∏n

i=1 X0i , and let p :�→ X an be the morphism deduced from the morphisms
p0i :�0i → X an

0i
.

Theorem 9.2. Let W be a Zariski closed subvariety of �, geometrically irreducible.
Then the following properties are equivalent:

(i) The variety W is geodesic.

(ii) Its projection p(W ) is algebraic.

(iii) The dimension of the Zariski closure of p(W ) in X is equal to dim(W ).

Proof. Let us assume that W is geodesic and show that p(W ) is algebraic.
We may assume that no projection p0i is constant on W . Define a relation ∼ on
{1, . . . , n} given by i ∼ j if there exists g ∈ PGL(2, F) (necessarily unique) such
that g0i g−1 and 0 j are commensurable and z j = g · zi for every z ∈W . This is an
equivalence relation. Fix an element j in each equivalence class; for i such that
i ∼ j , we may replace 0i by its conjugate g0i g−1 and assume that z j = zi on W .
This shows that W and � decompose as a product indexed by the set of equivalence
classes of the following particular situation: all the subgroups 0i are commensurable,
and W is the diagonal of �. It thus suffices to treat this particular case.

Let 00=
⋂

i 0i and X0 be the algebraic curve associated with�00/00. Then, for
every i , the morphism fi :W→ X an

i deduced from f = p|W factors as the composi-
tion of the uniformization p0 :�00→ X an

0 and of a finite morphism X an
0 → X an

i . By
GAGA [Berkovich 1990, Corollary 3.5.2; Poineau 2010, Appendix], a finite analytic
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morphism of algebraic curves is algebraic; consequently, there exists a finite mor-
phism qi : X0→ X i such that fi = qan

i ◦ p0. Then p(W ) is the image of X0 by the fi-
nite morphism q= (q1, . . . , qn) : X0→ X , hence is algebraic. This shows that (i) im-
plies (ii). Since it is clear that (ii) implies (iii), it remains to prove that (iii) implies (i).

Let us assume now that the dimension of the Zariski closure V of p(W ) in X is
equal to the dimension of W . By construction, W is a maximal irreducible algebraic
subvariety of p−1(V an). By Proposition 8.1, W is flat. A similar analysis as in the
proof of the first implication shows that there is a partition of the indices {1, . . . , n}
under which W decomposes as a product of flat curves and points. Since it suffices
to prove that each of these curves is geodesic, we may assume that W is a flat curve
of the form

W = {(z, g2 · z, . . . , gn · z)} ∩�,

where g2, . . . , gn ∈ PGL(2, F).
First assume that n= 2. Let then g ∈ PGL(2, F) be such that W = {(z, g ·z)}∩�

and let us prove that 02 and g01g−1 are commensurable, a property which is
equivalent to the finiteness of both orbit sets 02\02g01 and 01\01g−102.

Let us argue by contradiction and assume that 02\02g01 is infinite. (The other
finiteness is analogous, or follows by symmetry.) Fix a rigid point z ∈ �01 . Let
A⊂01 be a set such that g A is a set of representatives of 02\02g01; by assumption,
A is infinite. Since 0\W ⊂ V an, the algebraic variety V contains the infinite set of
points p(a · z, g · az)= (p1(z), p2(ga · z)), for a ∈ A; hence it contains its Zariski
closure {p1(z)}× X2. Since this holds for every z ∈W , we deduce that V contains
X1× X2, contradicting the assumption that dim(W )= 1.

Let us now return to the general case. To prove that W is geodesic, it suffices
to establish that the subgroups 0 j and g j01g−1

j are commensurable for every
j ∈ {2, . . . , n}. Up to renumbering the indices, it suffices to treat the case j = 2. Let
�′=�01×�02 , let p′ :�′→ X ′= X1×X2 be the uniformization map, and denote
by π the projections from� to�′ and from X to X ′. Let W ′=π(W ) and V ′=π(V ).
By Chevalley’s theorem, V ′ is an algebraic curve in X ′. Obviously, W ′ is a flat curve
contained in (p′)−1((V ′)an), and hence is a maximal irreducible algebraic subset of
(p′)−1((V ′)an)∩�′. By the case n = 2, the Schottky groups 02 and g201g−1

2 are
commensurable, as was to be shown. This concludes the proof of Theorem 9.2. �

Corollary 9.3. Let V be an irreducible curve in X. Then every irreducible alge-
braic subvariety of �Cp which is maximal among those contained in p−1(V an

Cp
) is

geodesic.

Proof. Let W0 be an irreducible algebraic subvariety of �Cp , maximal among
those contained in p−1(V an

Cp
); let us prove that W0 is geodesic. We may as-

sume that dim(W0) > 0. Since p is surjective and has discrete fibers, one has
dim(p−1(V an

Cp
))= dim(V an

Cp
), hence dim(W0) = 1, so that W0 is an irreducible
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component of p−1(V an)Cp . By Theorem 7.16 of [Ducros 2009], there exists a
finite extension E of F and an irreducible component W of p−1(V an)E such that
W0 =WCp .

By Theorem 9.2, W is geodesic. Consequently, W0 is geodesic. �

Remark 9.4. This corollary suggests that the main results of the paper extend to
maximal algebraic irreducible subvarieties of p−1(V an)Cp , without assuming that
they are defined over a finite extension of F .
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A modular description of X0(n)
Kęstutis Česnavičius

As we explain, when a positive integer n is not squarefree, even over C the moduli
stack that parametrizes generalized elliptic curves equipped with an ample cyclic
subgroup of order n does not agree at the cusps with the 00(n)-level modular
stack X0(n) defined by Deligne and Rapoport via normalization. Following
a suggestion of Deligne, we present a refined moduli stack of ample cyclic
subgroups of order n that does recover X0(n) over Z for all n. The resulting
modular description enables us to extend the regularity theorem of Katz and
Mazur: X0(n) is also regular at the cusps. We also prove such regularity for X1(n)
and several other modular stacks, some of which have been treated by Conrad
by a different method. For the proofs we introduce a tower of compactifications
E``m of the stack E`` that parametrizes elliptic curves—the ability to vary m in
the tower permits robust reductions of the analysis of Drinfeld level structures on
generalized elliptic curves to elliptic curve cases via congruences.
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Chapter 1. Introduction

1.1. Algebraic stacks that refine X0(n). The study of the compactification X0(n)
of the coarse moduli space of the algebraic stack Y0(n) that parametrizes elliptic
curves equipped with a cyclic subgroup of order n is key for many arithmetic
problems, so one seeks to understand the arithmetic properties of X0(n), especially
over Z. For this, it is desirable to conceptualize the construction of X0(n) by
realizing it as a coarse moduli space of an algebraic stack that compactifies Y0(n).

MSC2010: primary 11G18; secondary 14D22, 14D23, 14G35.
Keywords: Elliptic curve, generalized elliptic curve, level structure, modular curve, moduli stack.
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The sought compactifying stack X0(n) was defined by Deligne and Rapoport
[1973, IV.3.3] via a normalization procedure. However, X0(n) lacks an a priori
moduli interpretation, so instead one often considers the stack X0(n)naive that
parametrizes generalized elliptic curves whose smooth locus is equipped with a
cyclic subgroup of order n that is ample, i.e., meets every irreducible component of
every geometric fiber. Even though X0(n)naive is algebraic, has X0(n) as its coarse
moduli space, and agrees with X0(n) on the elliptic curve locus, it seems to have
been overlooked that

If n is not squarefree, then X0(n) and X0(n)naive are genuinely different,
even over C.

1.2. Pathologies of X0(p2)naive. To explain the difference, we set n := p2 for
some prime p, let X (1) denote the stack that parametrizes those generalized elliptic
curves whose geometric fibers are integral, and consider the structure morphism

c :X0(p2)naive
→X (1)

which in terms of the moduli interpretation forgets the subgroup and contracts the
generalized elliptic curve with respect to the identity section. We claim that the
morphism c is not representable.

To see this, let E be the standard p-gon over C and let ζp2 ∈ C× be a primitive
root of unity of order p2. Then E sm

= Gm ×Z/pZ and each of the µp worth of
automorphisms of E fixing Gm × {0} stabilizes the cyclic subgroup 〈(ζp2, 1)〉 of
order p2. Each such automorphism contracts to the identity, so c is not representable.

In contrast, the morphism

X0(p2)→X (1)

is representable by construction, so the X (1)-stacks X0(p2)naive and X0(p2) are not
isomorphic. The same p-gon example carried out over Fp shows that X0(p2)naive

is not even Deligne–Mumford (whereas X0(p2) is), a pathology that has already
been pointed out in [Edixhoven 1990, 1.1.1.1; Conrad 2007].

1.3. A modular description of X0(n). One of the main goals of this paper is to
refine the definition of X0(n)naive to obtain a moduli interpretation of X0(n) even
when n is not squarefree. The elliptic curve locus needs no refinement, so the
issue is to incorporate the cusps in a way that avoids the nonrepresentability of
c phenomenon. For this, we follow a suggestion of Deligne [2015]. To present
Deligne’s idea, we assume that n = p2 for a prime p and work over Z[1/p].

In vague terms, the idea is to subsume the automorphisms causing the nonrep-
resentability of c into the moduli problem. To make this possible, the data being
parametrized will involve algebraic stacks and not merely schemes. In precise
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terms, the moduli problem that in Chapter 5 will be proved to recover X0(p2)Z[1/p]

assigns to every Z[1/p]-scheme S the groupoid of tuples(
E→ S, G, S(1), S(p), S(p2), G(1), G(p), G(p2)

)
consisting of:

• a generalized elliptic curve E→ S;

• a cyclic subgroup G ⊂ ES−S∞ of order p2 over the elliptic curve locus S−S∞;

• open subschemes S(1), S(p), and S(p2) of S that cover S, have S− S∞ as their
pairwise intersections, and such that the degenerate geometric fibers of ES(1)
and ES(p) are 1-gons and those of ES

(p2)
are p2-gons;

• ample cyclic subgroups G(1) ⊂ E sm
S(1) and G(p2) ⊂ E sm

S
(p2)

of order p2 that recover
G over S− S∞;

• an ample cyclic subgroup G(p) ⊂ Esm
(p) of order p2 of the universal generalized

elliptic curve E(p) whose degenerate geometric fibers are p-gons and whose
contraction is ES(p) , subject to the requirement that G(p) recovers G over S−S∞

(over which E(p) is identified with E).

In essence, the moduli problem parametrizes generalized elliptic curves equipped
with an ample cyclic subgroup of order p2 with the caveat that over the part
of the degeneracy locus prone to the nonrepresentability of c the subgroup has
been upgraded to live inside a suitable universal “decontraction” E(p) (which is
an algebraic stack and not a scheme). The role of the S(pi ) is to remember the
subdivision of the degeneracy locus S∞— without S(1) and S(p) we cannot single
out those 1-gon degenerate geometric fibers of E that were “meant” to be p-gons
but had to be “upgraded” in order to avoid the nonrepresentability of c.

1.4. Incorporating bad characteristics. After the work of Drinfeld and of Katz and
Mazur, the extension of the above modular description of X0(p2)Z[1/p] to X0(p2)

is a matter of technique. However, new difficulties at the cusps in characteristic
p force us to impose an additional coherence requirement on G(p), a requirement
that holds automatically away from p and also on the elliptic curve locus (see
Section 5.5 and Lemma 5.6) and that seems well suited for the analysis of G(p) even
over Z[1/p]. With this proviso, we prove that for any n the analogue of the moduli
problem described in Section 1.3 gives a moduli interpretation for X0(n). We
then use this moduli interpretation to prove the following extension of a regularity
theorem of Katz and Mazur:

Theorem 1.5 (Theorem 5.13(a)). The Deligne–Mumford stack X0(n) is regular.

In fact, X0(n)Z[1/n] is even Z[1/n]-smooth by [Deligne and Rapoport 1973,
IV.6.7], whereas the elliptic curve locus Y0(n) is regular by [Katz and Mazur 1985,
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5.1.1], so Theorem 1.5 was known away from the closed substack of the cusps that
lies in characteristics dividing n.

In the proof of Theorem 1.5, the eventual source of regularity is the combination
of [Deligne and Rapoport 1973, V.4.13] and [Katz and Mazur 1985, 5.1.1] that
proves the regularity of another modular stack X (n). The reduction to X (n) rests
on the moduli interpretation of X0(n) and on the regularity of Y0(n). In particular,
no stage of the argument requires any computations with universal deformation
rings, other than what comes in from [Katz and Mazur 1985, Chapters 5–6] through
our reliance on the regularity of Y (n) and Y0(n).

We use Theorem 1.5 and the moduli interpretation of X0(n) to prove that
the coarse moduli space X0(n) is regular in a neighborhood of the cusps (see
Theorem 6.7). This regularity is not new (see the introduction of Chapter 6) but our
proof seems more conceptual.

1.6. The compactifications E``m . We have been vague about the base of the uni-
versal “decontraction” E(p). For the construction of this base in general (beyond
n = p2), it is natural to fix an m ∈ Z≥1 and to consider the Z-stack E``m that
parametrizes those generalized elliptic curves whose degenerate geometric fibers
are m-gons. We prove in Theorem 3.1.6 that E``m is algebraic, as well as proper
and smooth over Z, albeit is not Deligne–Mumford unless m = 1. Thus, each
E``m compactifies the stack E`` that parametrizes elliptic curves, and E``1 is the
compactification that is sometimes called M1,1.

As we describe in Section 3.2, the compactifications E``m form an infinite tower,
with transition maps given by contractions of generalized elliptic curves. This tower
is the backbone of our study of X0(n) and of several other “classical” modular
curves. For these curves, the most important moduli-theoretic phenomenon that is
not seen on the elliptic curve locus is the fact that “forgetful” contractions change
generalized elliptic curves that underlie level structures. The ability to vary m in the
tower {E``m}m|m′ allows us to isolate the part of this phenomenon that has nothing
to do with level structures. The remaining part that is specific to the level structure
at hand may then be studied via “congruences” that reduce to the elliptic curve
case.

1.7. Other modular curves. To illustrate the utility of E``m , let us consider the
stack X (n)naive that parametrizes pairs consisting of a generalized elliptic curve
E→ S with n-gon degenerate geometric fibers and a Drinfeld (Z/nZ)2-structure
on E sm

[n]. (In the end, X (n)naive agrees with X (n) mentioned earlier and gives
X (n) a moduli interpretation.) Using the work of Katz and Mazur, we prove via
“mod n congruences with elliptic curves” that the forgetful map

X (n)naive
→ E``n
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is representable and finite locally free of rank # GL2(Z/nZ). It follows that
X (n)naive is algebraic, proper and flat over Z, and even Cohen–Macaulay. Other
proofs of these properties of X (n)naive have been given by Conrad [2007]: the proof
of the algebraicity used Hilbert schemes via tricanonical embeddings, whereas the
Cohen–Macaulay property required a detailed analysis of the universal deformation
rings at the cusps (in addition to the work of Katz and Mazur on the elliptic
curve locus).

The relations with E``m together with the “congruence method” that crucially
uses the work of Katz and Mazur allow us to reprove the main results of [Conrad
2007] in Chapter 4. These include the moduli interpretations and the regularity of
the modular stacks X (n) and X1(n) (as well as some variants) and the construction
of Hecke correspondences for X1(n). The latter takes advantage of the theory of
isogenies of generalized elliptic curves developed in Chapter 2. Away from the
level, the moduli interpretations and the regularity have been proved by Deligne and
Rapoport [1973, IV.3.5 and IV.4.14]; away from the cusps, they have been proved
by Katz and Mazur [1985, 5.1.1]. Prior to the work of Conrad, [2007], the moduli
interpretations and the regularity of X (n) and X1(n) (among others) have been
considered in an unfinished manuscript of Edixhoven [2001, especially 2.1.2].

1.8. Reliance on the literature. For what concerns generalized elliptic curves and
Drinfeld level structures on them, we wish to explicate the logical dependence of
our work on the three main references that we use: [Deligne and Rapoport 1973;
Katz and Mazur 1985; Conrad 2007].

• We rely on [Deligne and Rapoport 1973] almost in its entirety; the sections of
[op. cit.] that are logically independent from the work of this paper are II.§3,
V.§2–3, VI.§2–6, and VII.§3–4.

• We make essential use of the results of [Katz and Mazur 1985, Chapters 1–6]
and extend some of them to generalized elliptic curves (see, in particular,
Section 4.2), but have no need for the results of [Katz and Mazur 1985,
Chapters 7–14] (other than for comparison in Proposition 6.3 and Remarks 6.5
and 6.8).

• We use some auxiliary general results from sections 2.1 and 2.2 of [Conrad
2007] but the rest of [op. cit.] is logically independent from our work (as
mentioned in Section 1.7, we give different proofs to the main results of
[Conrad 2007]).

1.9. Notation and conventions. We let E`` denote the Z-stack that, for variable
schemes S, parametrizes elliptic curves E→ S. More precisely, for a scheme S,
the objects (resp. the morphisms) of the groupoid E``(S) are the elliptic curves
E→ S (resp. the isomorphisms between elliptic curves over S) and, for a scheme
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morphism S′→ S, the induced functor E``(S)→ E``(S′) is E 7→ E×S S′. We use
the analogous meaning of “parametrizes” when defining other stacks. Other than
in the introduction, we use the notation X00(n) (resp. X01(n), etc.) introduced in
Section 4.1.2 for stacky modular curves defined via normalization and the notation
X0(n) (resp. X1(n), etc.) for stacks defined in terms of a moduli problem; once
we prove that X00(n) =X0(n) (and similarly in the other cases), we use the two
notations interchangeably.

We use the definition of an fpqc cover for which all Zariski covers are fpqc;
explicitly, S′→ S is an fpqc cover if it is flat and every affine open U ⊂ S is the
union of images of finitely many affine opens of S′. An S-scheme S′ is an fppf
cover (or simply fppf) if S′→ S is faithfully flat and locally of finite presentation.
For a scheme S, we let Sred denote its associated reduced scheme. For an S-group
algebraic space G, we let G0 denote the subsheaf of sections that fiberwise factor
through the identity component. We let X sm and 1X /S denote the smooth locus
and the diagonal of a morphism X → S. For a field k, we let k denote a choice of
its algebraic closure. A geometric point is the spectrum of an algebraically closed
field. For an n ∈ Z≥1, we set φ(n) := #(Z/nZ)×.

For what concerns algebraic stack and algebraic space conventions, we follow [SP
2005–], except that “representable” stands for “representable by algebraic spaces.”
In particular, quasicompactness or separatedness of the diagonal are not part of the
definition, but in practice end up being present (along with even stronger properties).
An algebraic stack is Deligne–Mumford if its diagonal is unramified — for the
equivalence with the étale atlas definition in the presence of quasicompactness
and separatedness of the diagonal, see [Laumon and Moret-Bailly 2000, 8.1]. The
relative dimension (at a point) of a smooth morphism of algebraic stacks is the
difference of the relative dimensions (at a lift of the point) of the morphisms from a
smooth atlas of the source, cf. [Laumon and Moret-Bailly 2000, bottom of p. 98].

Chapter 2. Isogenies of generalized elliptic curves

The main goal of this chapter is to expose a robust theory of isogenies of generalized
elliptic curves. This theory is the subject of Section 2.2 and will be useful on several
occasions, particularly, for algebraizing homomorphisms of formal generalized
elliptic curves in Section 3.4 and for constructing Hecke correspondences for X1(n)
in Section 4.7. In order to prepare for the study of isogenies, in Section 2.1 we review
several basic concepts, such as that of a homomorphism of generalized elliptic
curves, and record some general results that will be useful throughout the paper.

2.1. Homomorphisms between generalized elliptic curves

In this section, we review basic definitions and properties of generalized elliptic
curves, building up to the notion of a homomorphism, which will be studied in
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Section 2.2. We assume that the reviewed concepts are familiar, so we concentrate
on those aspects that will be used later. We begin with the notion of an n-gon,
which is needed in order to define generalized elliptic curves. Informally, an n-gon
is the curve obtained by gluing n-copies of P1 in a cyclic manner: the point 0 of
the i-th copy gets identified with the point∞ of the (i+1)-st copy.

Definition 2.1.1. For an n ∈ Z≥1 and an scheme S, the standard n-gon over S is
the coequalizer of ⊔

Z/nZ S �� //
� � // ⊔

Z/nZ P1
S,

where the top (resp. the bottom) closed immersion includes the i-th copy of S as
the 0 (resp. the∞) section of the i-th (resp. (i+1)-st) copy of P1

S . A Néron n-gon
over S (or an n-gon over S) is an S-scheme isomorphic to the standard n-gon over
S. (We often omit “over S” if the base is implicit.)

Remark 2.1.2. Even though colimits usually do not exist in the category of schemes,
the ones used in Definition 2.1.1 do exist and their formation commutes with base
change in S. To see this, one checks directly (or with the help of [Ferrand 2003,
4.3]) that for n ≥ 2 the sought coequalizer is the base change to S of the gluing of⊔

i∈Z/nZ Spec
(
Z[X i , Yi ]/(X i Yi )

)
obtained by identifying the opens

Spec
(
Z
[
Yi ,

1
Yi

])
and Spec

(
Z
[
X i+1,

1
X i+1

])
via Yi = 1/X i+1 for every i ∈ Z/nZ, and one treats the n = 1 case by realizing the
standard 1-gon as the Z/nZ-quotient of the standard n-gon, cf. [Conrad 2007, top
of p. 215].

We recall the definition of a generalized elliptic curve, which is a central notion
for this paper.

Definition 2.1.3. A generalized elliptic curve over a scheme S is the data of

• a proper, flat, finitely presented morphism E→ S each of whose geometric
fibers is either a smooth connected curve of genus 1 or a Néron n-gon for some
n ≥ 1, and

• an S-morphism E sm
×S E

+
−→ E that restricts to a commutative S-group scheme

structure on E sm for which + becomes an S-group action,

such that via pullback of line bundles the action + induces the trivial action of E sm

on Pic0
E/S .

Remark 2.1.4. Our definition of a generalized elliptic curve is equivalent to the
one given in [Deligne and Rapoport 1973, II.1.12]: the difference is that we have
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imposed the requirement that E sm acts trivially on Pic0
E/S at the outset. In [loc. cit.]

this is replaced with the a priori milder requirement that on degenerate geometric
fibers every translation by a smooth point induces a rotation on the underlying
n-gon, which ends up being equivalent due to [Deligne and Rapoport 1973, II.1.7(ii)
and II.1.13].

The requirement about the triviality of the induced action on Pic0
C/S holds auto-

matically on a large part of E sm, namely, it always holds on the relative identity
component (E sm)0 — to see this, we apply [Deligne and Rapoport 1973, II.1.14]1

to Pic0
E/S ×S E sm to get the openness of the locus of E sm where the induced action

on Pic0
E/S is trivial, note that this locus is closed under the group law of E sm, and

conclude by noting that it contains the zero section. In particular, every elliptic
curve is a generalized elliptic curve, and a generalized elliptic curve E→ S is an
elliptic curve over the open of S over which E is smooth.

Remark 2.1.5. The standard n-gon is canonically a generalized elliptic curve: due
to its description recalled in Remark 2.1.2, its smooth locus is Gm ×Z/nZ and the
translation action of this group scheme on itself extends to an action on the n-gon.
By the previous remark, the triviality of the induced action on Pic0 may be checked
on the geometric fibers using [Deligne and Rapoport 1973, II.1.7(ii)]. For later use,
we now describe the automorphism functor of this generalized elliptic curve.

Lemma 2.1.6. For a fixed n ∈ Z≥1, let E→ Spec Z be the standard n-gon general-
ized elliptic curve. There is the following identification of the automorphism functor
of E :

Aut(E)∼= µn ×Z/2Z,

where the generator of Z/2Z acts as inversion on E sm and, for a scheme S and an
index i ∈ Z/nZ, a section ζ ∈ µn(S) acts on the i-th component of

E sm
S
∼= (Gm)S ×Z/nZ

as scaling by ζ i .

Proof. By [Deligne and Rapoport 1973, II.1.10], we have

Aut(E)∼= µn oZ/2Z

1We could also apply [Conrad 2007, 2.2.1] to avoid using the representability of Pic0
E/S by a

scheme. On the other hand, such representability may be proved as follows: by [Artin 1969, 7.3], the
functor Pic0

E/S is an algebraic space, so [Deligne and Rapoport 1973, II.2.6(i)] proves that the map

(Esm)0→ Pic0
E/S defined by t 7→ OE (t)⊗OE (e)

−1

is an open immersion (where e ∈ E(S) denotes the identity section), and the representability of Pic0
E/S

by a scheme follows from [BLR90 1990, 6.6/2(b)] applied to Pic0
E/S acting on itself by translation

(see also Remark 2.1.16).
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with µn and Z/2Z acting as described above, so we need to argue that Z/2Z is
central in Aut(E). For this, due to the Z-universal schematic density of E sm in E
supplied by [EGA IV3 1966, 11.10.10], it suffices to note that every generalized
elliptic curve automorphism of a base change of E must commute with inversion
on E sm. �

We turn to the closed subschemes E sing
⊂ E and S∞,π ⊂ S that measure the

degeneration of E .

Definition 2.1.7. The subscheme of nonsmoothness of a generalized elliptic curve
E −→π S is the closed subscheme E sing

⊂ E defined by the first Fitting ideal sheaf
Fitt1(�1

E/S) ⊂ OE . The degeneracy locus of E −→π S is the schematic image
S∞,π ⊂ S of E sing.

Remark 2.1.8. The closed subscheme E sing is supported at those points of E at
which π is not smooth and its formation commutes with arbitrary base change
in S, see [SGA 7I 1972, VI, 5.3 and 5.4]. Even though the formation of schematic
images often does not commute with nonflat base change, the formation of S∞,π

does commute with arbitrary base change, see [Conrad 2007, 2.1.12].

Remark 2.1.9. By [Deligne and Rapoport 1973, II.1.15], we have

S∞,π =
⊔

n≥1 S∞,π,n

for closed subschemes S∞,π,n ⊂ S such that only finitely many of the S∞,π,n meet
a given affine open of S and such that ES∞,π,n is fppf locally on S∞,π,n isomorphic
to the standard n-gon (which was discussed in Remark 2.1.5). In particular, every
generalized elliptic curve E −→π S is, Zariski locally on S, projective because, by
[Deligne and Rapoport 1973, II.1.20; Katz and Mazur 1985, 1.2.3], over the open

S−
⊔

n 6=n′ S
∞,π,n

the n′-torsion subscheme E sm
[n′] ⊂ E is a π -ample relative effective Cartier divisor.

We record a basic relationship between E sing and its schematic image S∞,π in
the following lemma:

Lemma 2.1.10. For a generalized elliptic curve E→ S, the map

E sing
→ S∞,π

is finite étale; it has degree n over S∞,π,n .

Proof. The map in question exists by the definition of S∞,π and its formation
commutes with base change in S by Remark 2.1.8. We may therefore assume that
S = S∞,π,n and that E is the standard n-gon. But in this case E sing is a disjoint
union of n copies of S and there is nothing to prove. �
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Degenerate generalized curves possess canonical finite subgroups of multiplica-
tive type and their torsion subgroups are amenable to scrutiny. We make this precise
in the following lemma:

Lemma 2.1.11. For every generalized elliptic curve E −→π S with Sred
= (S∞,π )red

and every d ∈ Z≥1, the d-torsion (E sm)0[d] is a finite locally free S-group scheme
of order d that is étale locally on S isomorphic to µd . The S-group scheme

E sm
[d]/(E sm)0[d]

is étale and if m ∈ Z≥1 divides both d and the number of irreducible components
of each geometric fiber of E , then (E sm

[d]/(E sm)0[d])[m] is étale locally on S
isomorphic to Z/mZ.

Proof. Due to the fibral criterion for flatness [EGA IV3 1966, 11.3.11], the quasifi-
nite, finitely presented, separated S-groups (E sm)0[d] and E sm

[d] are flat. The
fibers of (E sm)0[d] → S have degree d, so, due to [Deligne and Rapoport 1973,
II.1.19], the S-group (E sm)0[d] is finite locally free of rank d . Due to [Conrad 2014,
B.4.1 and B.3.4], the claim about the étale local structure of (E sm)0[d] reduces to
case of geometric fibers.

Thanks to the settled claims about (E sm)0[d], [EGA IV3 1966, 8.11.2] and
[SGA 3 I (new) 2011, V, 4.1] imply that E sm

[d]/(E sm)0[d] is a separated, quasifi-
nite, finitely presented, flat S-scheme. By inspecting geometric fibers we see that
E sm
[d]/(E sm)0[d] is étale. The étale local structure of

(E sm
[d]/(E sm)0[d])[m]

may be seen over the strict Henselizations of S, and hence even on geometric
fibers. �

The focus of Chapter 2 is generalized elliptic curve homomorphisms. We recall
their definition.

Definition 2.1.12. A homomorphism between generalized elliptic curves E→ S
and E ′→ S is an S-morphism

f : E→ E ′ with f (E sm)⊂ E ′sm

that intertwines the group laws of E sm and E ′sm. Its kernel is the S-subscheme
Ker f := E× f, E ′, e′ S of E , where × f, E ′, e′ denotes the base change along f of the
identity section e′ : S→ E ′.

Remark 2.1.13. Due to the S-universal schematic density of E sm in E supplied by
[EGA IV3 1966, 11.10.10] and the separatedness of E ′→ S, a homomorphism f
necessarily also intertwines the group actions E sm

× E→ E and E ′sm
× E ′→ E ′.
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Remark 2.1.14. If a homomorphism f is surjective, then f |E sm is flat and Ker f is
contained in E sm, as may be checked on geometric fibers using the fibral criterion
for flatness [EGA IV3 1966, 11.3.11]. In this case, Ker f is a finite locally free
S-subgroup scheme of E sm.

Example 2.1.15. The constant morphism that factors through e′ is a homomor-
phism, the “zero homomorphism.” Any elliptic curve isogeny is also a homomor-
phism. For a d ∈ Z≥1, the map

P1
S→ P1

S given on homogeneous coordinates by [x : y] 7→ [xd
: yd
]

respects 0 and∞, so it induces an S-morphism from the standard 1-gon over S to
itself. This morphism restricts to the d-th power map on the (Gm)S of the smooth
locus of the 1-gon, so it is a homomorphism with kernel (µd)S .

Remark 2.1.16. Generalized elliptic curves are susceptible to limit arguments
that reduce to a Noetherian base. More precisely, by [EGA IV2 1965, 8.8.2(ii),
8.10.5(xii), 11.2.6(ii)], Zariski locally on S, the underlying relative curve E→ S
is the base change of a proper and flat relative curve E0→ S0 for which S0 is of
finite type over Z. Thus, since the formation of E sm

0 commutes with base change,
E sm is necessarily of finite presentation. Moreover, by [EGA IV2 1965, 8.8.2(i)],
after enlarging S0, the commutative S-group action

E sm
×S E

+
−→ E descends to a commutative S0-group action E sm

0 ×S0 E0
+
−→ E0.

The degenerate geometric fibers of E0→ S0 are Néron n-gons: indeed, [Deligne
and Rapoport 1973, II.1.3] applies because the condition of having only ordinary
double points as singularities is equivalent to the unramifiedness of E sing

0 , whose
formation commutes with base change (see Remark 2.1.8), whereas the triviality of
the relative dualizing sheaf may be descended from an overfield using specialization
techniques. Using Remark 2.1.4 to infer the triviality of the induced action of
E sm

0 on Pic0
E0/S0

, we conclude that E0 → S0 is a generalized elliptic curve that
descends E→ S to a Noetherian base. Similarly, Zariski locally on S, elliptic curve
homomorphisms are defined over a base that is of finite type over Z.

By the limit arguments above, the open immersion S − S∞,π ↪→ S is always
quasicompact.

2.2. Quotients of generalized elliptic curves by finite locally free subgroups

Even though homomorphisms between generalized elliptic curves are useful in
practice, their structural properties are not immediately apparent. Moreover, guided
by the theory of isogenies of elliptic curves, one suspects that for any finite locally
free S-subgroup scheme G ⊂ E sm with E→ S a generalized elliptic curve, there
should be an essentially unique homomorphism E → E ′ with kernel G. If G
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intersects the identity components of the degenerate geometric fibers of E → S
trivially, then the translation action of G on E is free, the fppf sheaf quotient E/G
is a generalized elliptic curve, and

E→ E/G

is the sought “isogeny.” This special case is already useful — for instance, such
isogenies are discussed in [Conrad 2007, 2.1.6] and exploited in several key proofs
of [op. cit.].

The goal of this section is to explain how to make sense of isogenies of generalized
elliptic curves in general. Theorem 2.2.4 and its proof explain how to build the
desired “quotient by G” homomorphism E→ E/G, and we arrive at the concept of
an isogeny in Definition 2.2.8. With Theorem 2.2.4 in hand, structural properties of
arbitrary homomorphisms are susceptible to scrutiny and are detailed in Propositions
2.2.9 and 2.2.10.

We begin with an example that illustrates what E/G should be in a certain
degenerate situation.

Example 2.2.1. Let E be the standard n-gon over Z, and consider the subgroup
µd ⊂ (E sm)0 for some d ∈ Z≥1. We would like to build a generalized elliptic curve
homomorphism

fd : E→ E ′ with kernel µd .

By Remark 2.1.13, any such fd is µd -equivariant, so it factors through the categori-
cal quotient E/µd , which exists because E is projective and µd is finite. We claim
that

E→ E/µd

is already the desired fd : E→ E ′.
This claim follows from the description of E recalled in Remark 2.1.2. More

precisely, if n ≥ 2, then on Spec(Z[X i , Yi ]/(X i Yi )) the action of

µd = Spec(Z[T ]/(T d
− 1))

is determined by
X i 7→ X i ⊗ T and Yi 7→ Yi ⊗ T,

so the ring of invariants is the Z-subalgebra of Z[X i , Yi ]/(X i Yi ) generated by Xd
i

and Y d
i , and hence E/µd is the standard n-gon with the quotient map E→ E/µd

induced by the d-th power map on each P1
Z. The same description holds if n = 1,

as the same computation performed Z/mZ-equivariantly on the m-gon cover for
some m ≥ 2 proves. Thus, the map E→ E/µd is a homomorphism whose kernel
is µd , and it is initial among such homomorphisms, so it is the desired fd .
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Remark 2.2.2. Example 2.2.1 may be carried out over any base scheme S, which
shows that the formation of fd commutes with arbitrary base change. In particular,
the formation of the categorical quotient E/µd commutes with arbitrary (possibly
nonflat) base change.

Remark 2.2.3. For d > 1, the “isogeny” E→ E/µd constructed in Example 2.2.1
is not flat at the singular points, as the formal criterion for flatness [Bourbaki 1965,
III, §5, n◦ 2, Theorem 1] reveals. In contrast, every isogeny between elliptic curves
is flat.

Example 2.2.1 suggests that over an arbitrary base S, the desired quotient of
a generalized elliptic curve E → S by a finite locally free S-subgroup G ⊂ E sm

may simply be the categorical quotient E/G. In Theorem 2.2.4 we prove that this
indeed the case. The main issue that needs to be addressed is that the formation of
categorical quotients does not in general commute with nonflat base change (as in
the special case of forming the ring of invariants under the action of a finite group).
Such phenomena do not occur for generalized elliptic curves because the analysis
of E/G may be reduced to the cases when G is either diagonalizable or acts freely
on E .

Theorem 2.2.4. Let S be a scheme, E −→π S a generalized elliptic curve, and
G ⊂ E sm an S-subgroup scheme that is finite locally free over S. There is an
S-scheme morphism

q : E→ E/G

that is initial among G-equivariant S-morphisms from E to an S-scheme equipped
with the trivial G-action (E is equipped with the translation action of G). Moreover,
q has the following properties.

(i) The formation of q commutes with arbitrary base change in S, and E/G is
S-flat.

(ii) The map q : E→ E/G is surjective, finite, and universally open.

(iii) There is a unique structure of a generalized elliptic curve on

E/G→ S

for which q is a homomorphism. For this structure, q induces an S-group
isomorphism

E sm/G ∼= (E/G)sm,

where E sm/G is the fppf sheaf quotient; in particular, E sm q
−→(E/G)sm is finite

locally free.

(iv) If E is an elliptic curve, then q : E→ E/G is an isogeny with kernel G.
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Proof. Zariski locally on S the map π is projective (see Remark 2.1.9), so every finite
set of points of any π -fiber is contained in an affine open of E (see [EGA II 1961,
4.5.4]). Therefore, by [SGA 3 I (new) 2011, V, 4.1(i)] and its proof, E is covered by
G-invariant affine opens and the initial q is nothing but the categorical quotient that
is glued together from the rings of invariants of such G-invariant affines; moreover,
this q is automatically a quotient map on the underlying topological spaces.

Since G acts freely on E sm, by [SGA 3 I (new) 2011, V, 4.1(iv)], the open S-
subscheme

E sm/G ⊂ E/G

that results from the G-invariance of E sm is identified with the fppf sheaf quotient
of E sm by G, the map E sm q

−→E sm/G is finite locally free, and the formation of
E sm/G commutes with base change.

(i) The formation of E/G commutes with flat base change, so we may first assume
that S is affine and then use Remark 2.1.16 to assume that S = Spec R for some
Noetherian R. Moreover, by the previous paragraph, the claim is clear on the elliptic
curve locus, so we may replace R by its completion along the ideal I ⊂ R that cuts
out the degeneracy locus S∞,π ⊂ S to assume that R is I -adically complete and
separated.

For such R, the intersections

G R/I j ∩ (E sm
R/I j )

0 for j ≥ 1

are finite locally free R/I j -subgroup schemes of G. By Grothendieck’s existence
theorem [Illusie 2005, 8.4.5, 8.4.7], these subgroups algebraize to a finite locally
free R-subgroup

H ⊂ G with H ⊂ (E sm)0.

The R/I -fibers of H are of multiplicative type, so H itself is of multiplicative type.
At the cost of replacing R by a finite locally free cover we may assume that H is
diagonalizable.

By [SGA 3 I (new) 2011, I, 4.7.3], any R-module M equipped with an action of a
diagonalizable H is a direct sum of χ -isotypic submodules for characters χ of H , so
the submodule M H of H -invariants is of formation compatible with arbitrary base
change and is R-flat if M is. In particular, the categorical quotient E/H is R-flat
and of formation compatible with base change. As may be checked on geometric
R-fibers, G/H acts freely on E/H , so the further quotient E/G = (E/H)/(G/H)
is also R-flat and of formation compatible with base change.

(ii) The surjectivity of q follows from the first paragraph of the proof. By [SGA 3 I (new)

2011, V, 4.1(ii)], the morphism q is integral, and hence even finite because it inherits
the property of being of finite type from E → S. In particular, q is universally
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closed, so it is also universally open by [Rydh 2013, 2.4] (which applies due to the
bottom of p. 636 there and [SGA 3 I (new) 2011, V, 4.1(iii)]).

(iii) We begin by arguing that E/G possesses the S-scheme properties required in
Definition 2.1.3.

Due to [Atiyah and Macdonald 1969, 7.8], the morphism E/G → S inherits
finite presentation from E→ S thanks to the finiteness of E→ E/G (and an initial
reduction to Noetherian S based on (i)). By (ii),

E→ E/G, and hence also E ×S E→ E/G×S E/G,

is a finite surjection, so the image of1E/S(E) in E/G×S E/G, i.e.,1(E/G)/S(E/G),
is closed. In other words, the finite type morphism E/G→ S inherits separatedness
from E → S, so it also inherits properness by [EGA II 1961, 5.4.3 (ii)]. Finally,
E/G→ S is flat by (i). For the fibral properties, due to (i), we may assume that S
is a geometric point.

If S is a geometric point and E is an elliptic curve, then E/G is its isogenous
quotient. If S is a geometric point and E is the standard N -gon, then we set

H := G ∩ (E sm)0, so H ∼= µd for some d ≥ 1.

By Example 2.2.1, E→ E/H is a “self-isogeny” of the standard N -gon, and, by
construction, G/H acts freely on E/H . Therefore, E/G, which is identified with
(E/H)/(G/H), is the standard n-gon with n = N/#(G/H). This analysis also
shows that q(E sm)= (E/G)sm.

Due to the paragraph preceding the proof of (i), all that remains to be shown is
that the S-group scheme structure of (E/G)sm∼= E sm/G extends to a unique action
of (E/G)sm on E/G; indeed, the induced action on Pic0

(E/G)/S will automatically
be trivial due to the fibral analysis of the previous paragraph and Remark 2.1.4. The
uniqueness follows from the separatedness of E/G and the universal schematic
density of (E/G)sm in E/G supplied by [EGA IV3 1966, 11.10.10]. For the same
reason, for the existence we only need to produce a morphism

(E/G)sm
×S E/G→ E/G

that extends the group law of (E/G)sm — the relevant diagrams that encode the
property of being a group scheme will automatically commute. To build this
morphism from the one for E , it suffices to prove that

E sm/G×S E/G ∼= (E sm
×S E)/(G×S G),

where the quotients are categorical. For this isomorphism, it suffices to form the
quotient on the right in stages and to note that the formation of E sm/G commutes
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with base change along E→ S whereas the formation of E/G commutes with base
change along E sm/G→ S.

(iv) By (iii), q : E→ E/G is a finite locally free homomorphism between elliptic
curves over S and its kernel is G, i.e., q is an isogeny with kernel G. �

Remark 2.2.5. The categorical quotient E/G may also be analyzed with the tame
stack formalism of Abramovich, Olsson, and Vistoli [AOV08 2008]. For this, the
key point is that the quotient stack [E/G] is tame by [AOV08 2008, Theorem 3.2]
because the automorphism functors of its geometric points are of multiplicative
type. Then, since E/G is the coarse moduli space of [E/G] (see [Conrad 2005,
Theorem 3.1]), E/G is S-flat and of formation compatible with arbitrary base
change by [AOV08 2008, Corollary 3.3].

2.2.6. The quotient notation. In the sequel, whenever E → S is a generalized
elliptic curve and G ⊂ E sm is a finite locally free S-subgroup, we write E/G for the
generalized elliptic curve constructed in Theorem 2.2.4. In the following corollary,
we record some further properties of this quotient construction that follow from
Theorem 2.2.4 and its proof.

Corollary 2.2.7. Let E→ S (resp. E ′→ S) be a fixed (resp. variable) generalized
elliptic curve over a scheme S.

(a) If G⊂ E sm is finite locally free S-subgroup, then the homomorphism E→ E/G
is initial among homomorphisms f : E→ E ′ with G ⊂ Ker f .

(b) If f : E→ E ′ is a surjective homomorphism, then Ker f is a finite locally free
S-subgroup of E sm, and Ker f determines f up to an isomorphism in the sense
that f induces an isomorphism

E/(Ker f )∼= E ′.

(c) If G1 ⊂ G2 ⊂ E sm are finite locally free S-subgroups, then

(E/G1)/(G2/G1)∼= E/G2.

Proof. (a) The map f is G-equivariant for the trivial G-action on E ′, so it uniquely
factors through the categorical quotient E → E/G. It remains to note that the
induced map (E/G)sm

→ (E ′)sm intertwines the group laws, as may be checked
on the fppf cover E sm

→ (E/G)sm.

(b) The first claim was proved in Remark 2.1.14. Due to (a), f induces a homomor-
phism E/(Ker f )→ E ′ that is an isomorphism on the smooth loci. Due to [EGA IV4

1967, 17.9.5] and the S-flatness of E/(Ker f ), checking that E/(Ker f )→ E ′ is an
isomorphism may be done on geometric fibers, where it follows from the fact that
an endomorphism of the standard n-gon that is an automorphism on the smooth
locus must be an automorphism.
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(c) The claim follows from the universal property of E→ E/G2 recorded in (a). �

Corollary 2.2.7(b) and the analogy with elliptic curves justify the following
definition:

Definition 2.2.8. An isogeny between generalized elliptic curves E→ S and E ′→ S
is a surjective homomorphism f : E→ E ′ (so, by Corollary 2.2.7(b), it induces an
isomorphism E ′ ∼= E/(Ker f )). The degree of an isogeny f is the locally constant
function on S given by the order of Ker f .

The principal difference with the elliptic curve case is that an isogeny between
generalized elliptic curves is not necessarily flat (see Remark 2.2.3). As we explain
in Proposition 2.2.9 (whose elliptic curve case is [Katz and Mazur 1985, 2.4.2]), the
structure of an arbitrary homomorphism may be completely understood in terms of
isogenies (in turn, by Corollary 2.2.7(b), the structure of an isogeny is completely
determined by its kernel).

Proposition 2.2.9. Every homomorphism f : E→ E ′ between generalized elliptic
curves E → S and E ′→ S is Zariski locally on S either an isogeny or the zero
homomorphism.

Proof. Limit arguments described in Remark 2.1.16 allow us to reduce to the case
when S is Noetherian, so the claim follows from [MFK94 1994, Proposition 6.1],
which proves that on each connected component of S the map f is either surjective
(i.e., an isogeny) or the zero homomorphism. �

Due to Proposition 2.2.9, the following result describes how homomorphisms
interact with the degeneracy loci of Definition 2.1.7 and the subschemes of nons-
moothness:

Proposition 2.2.10. If f : E→ E ′ is an isogeny between generalized elliptic curves
E −→π S and E ′ −→π

′

S, then f |E sing factors through E ′sing and S∞,π ⊂ S∞,π
′

.

Proof. The second claim follows from the first because S∞,π (resp. S∞,π
′

) is
the schematic image of E sing

→ S (resp. of E ′sing
→ S). Moreover, since the

formation of all the subschemes in question commutes with base change in S (see
Remark 2.1.8), we may use Remark 2.1.9 to assume that S = S∞,π,n and that E is
the standard n-gon.

The intersection G of Ker f with the relative identity component (E sm)0 = Gm

is a finite locally free S-subgroup scheme of both Ker f and Gm . By parts (b) and
(c) of Corollary 2.2.7, f is identified with the composite

E→ E/G→ (E/G)/((Ker f )/G)

of isogenies. Therefore, since the assertion about f |E sing is compatible with compo-
sition, it suffices to treat the cases G = Ker f and G = 0 separately.
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Since Gm has a unique finite locally free S-subgroup of a given order, Zariski
locally on S we have G = µd for some d ∈ Z≥1. Thus, if G = Ker f , then we may
assume that f is the fd described in Example 2.2.1 (see also Remark 2.2.2). For
this fd , the claim is clear:

E sing is identified with
⊔

Z/nZ S used in Definition 2.1.1

and fd is induced by the d-th power map on every P1
S so maps E sing to itself.

If G = 0, then f is étale, so that �1
E/S
∼= f ∗�1

E ′/S . By [SGA 7I 1972, VI, 5.1(a)],
the formation of the closed subscheme cut out by a Fitting ideal of a finite type
quasicoherent module commutes with pullback to another scheme, so this relation
between the sheaves of differentials gives E sing

= f −1(E ′sing). �

The inclusion S∞,π ⊂ S∞,π
′

of Proposition 2.2.10 may be sharpened to a
precise relation between the corresponding ideal sheaves. We record this in
Proposition 2.2.11 and Remark 2.2.12.

Proposition 2.2.11. If f : E→ E ′ is an isogeny between generalized elliptic curves
and if there is a d ∈ Z≥1 such that for every degenerate geometric fiber Es the
intersection (Ker f )s ∩ (E sm

s )0 has rank d, then the ideal sheaves in OS of the
degeneracy loci S∞,π and S∞,π

′

of E and E ′ are related by

IS∞,π ′ =I d
S∞,π .

Remark 2.2.12. For any f , Zariski locally on S there exists a required d . In order
to prove this, we may assume that S = S∞,π and may work fppf locally on S,
so Remark 2.1.9 reduces to the case when E is the standard n-gon. In this case
Ker f ∩ (E sm)0 is an open and closed S-subgroup of Ker f , and the claim follows
from the local constancy of its rank over S.

Proof of Proposition 2.2.11. It suffices to treat the case when S = Spec R for
some Artinian local ring (R,m) that has a separably closed residue field R/m. The
elliptic curve case is clear, so we assume that ER/m is degenerate. Moreover, by
Corollary 2.2.7(c), quotients may be taken in stages, so we assume that either

Ker f ⊂ (E sm)0 or Ker f ∩ (E sm)0 = 0.

We begin with the case Ker f ∩ (E sm)0 = 0, when f is finite étale of rank
#(Ker f ), so that E sing

= f −1(E ′sing) by [SGA 7I 1972, VI, 5.1(a)]. Lemma 2.1.10
then gives the desired S∞,π = S∞,π

′

.
In the remaining case when Ker f ⊂ (E sm)0, we first replace S by a flat cover to be

able to assume that there is a finite étale S-subgroup G ⊂ E sm such that G R/m maps
isomorphically to the component group of E sm

R/m. Due to the settled Ker f ∩(E sm)0=

0 case, passage to E/G and E ′/ f (G) does not affect the degeneracy loci. Therefore,
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we may replace
E by E/G and E ′ by E ′/ f (G)

to reduce to the case when E is irreducible.
In this situation, since S is Artinian local and strictly Henselian, [Deligne and

Rapoport 1973, VII.2.1] ensures that E is a base change of the Tate curve

Tate1→ Spec ZJqK

[loc. cit.] proves that Tate1 realizes Spec ZJqK as an étale double cover of the formal
completion of E``1 along E``∞1 ; in the notation of [loc. cit.], Tate1 = G

q
m/qZ). If,

moreover, Ker f ⊂(E sm)0, then Ker f =µ#(Ker f ) inside (E sm)0 (see Lemma 2.1.11),
so that we are reduced to the case when

E→ S is Tate1→ Spec ZJqK and Ker f = µd .

However, in this case the quotient map2 Tate1→ Tate1/µd is identified with the
map

Tate1→ Tate1(qd) induced by “raising the coordinates to the d-th power,”

as in Example 2.2.1 (compare with [Conrad 2007, 2.5.1]). It remains to recall from
[Deligne and Rapoport 1973, VII.1.11] that the degeneracy locus of Tate1 (resp. of
Tate1(qd)) is cut out by the principal ideal (q)⊂ ZJqK (resp. (qd)⊂ ZJqK). �

Chapter 3. Compactifications of the stack of elliptic curves

Our approach to the study of level structures on generalized elliptic curves makes
essential use of the tower {E``n}n|n′ of compactifications of the stack E`` that
parametrizes elliptic curves. The purpose of this chapter is to construct this tower
and to detail its properties. We begin with the construction of the individual com-
pactifications E``n in Section 3.1, and proceed to expose the transition morphisms
E``nm→ E``n in Section 3.2. Section 3.3 proves that the coarse moduli space of
(E``n)S is the “ j-line” P1

S for every n and every scheme S, whereas Section 3.4
uses the global structure of the stacks E``n to algebraize formal generalized elliptic
curves and their homomorphisms.

3.1. The compactification E``n obtained by allowing n-gons for a fixed n

The goal of this section is to detail algebro-geometric properties of the Z-stack
E``n obtained from the stack of elliptic curves E`` by “adjoining Néron n-gons”
(see Definition 3.1.1). We prove in Theorem 3.1.6 that E``n is a proper and smooth

2In the notation of [Deligne and Rapoport 1973, VII.1.10], we have Tate1(qd )= G
qd

m /(qd )Z over
A = ZJqK.
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compactification of E``. This result has already been proved over Z[1/n] in [Deligne
and Rapoport 1973, IV.2.2], which uses deformation-theoretic methods through
its reliance on [Deligne and Rapoport 1973, III.1.2]. These methods require the
number of the irreducible components of each geometric fiber of the generalized
elliptic curve in question to be prime to the characteristic, so they do not seem
to work without inverting n. A related difficulty is that even though the stack
E``n is algebraic, outside the elliptic curve locus it is not Deligne–Mumford in
characteristics dividing n (see Theorem 3.1.6(b)), so E``n may not possess universal
deformation rings at some of its geometric points. To overcome these difficulties,
we proceed indirectly by exploiting a convenient auxiliary algebraic stack Bn whose
relationship to E``n is described in Proposition 3.1.5.

We begin by defining the stack E``n that we are going to study and later use.

Definition 3.1.1. For an n ∈ Z≥1, let E``n denote the Z-stack parametrizing those
generalized elliptic curves E −→π S whose degenerate geometric fibers are n-gons.
Let E``∞n denote the closed substack of E``n cut out by the degeneracy loci S∞,π

(defined in Definition 2.1.7).

Remark 3.1.2. The effectivity of descent data that is needed for E``n to be a Z-
stack (for the fpqc topology) results from the S-ampleness of the relative effective
Cartier divisor E sm

[n] ⊂ E .

Remark 3.1.3. The well-definedness of the closed substack E``∞n rests on the
compatibility (recalled in Remark 2.1.8) of the formation of the degeneracy locus
S∞,π with base change.

We turn to the auxiliary stack Bn and to its relation to E``n .

3.1.4. The stack Bn . Following [Deligne and Rapoport 1973, V.1.3], for an n ∈
Z≥1 we let Bn be the Z-stack that, for variable schemes S, parametrizes the pairs
(E,G) consisting of a generalized elliptic curve E→ S whose degenerate geometric
fibers are n-gons and a finite étale subgroup G ⊂ E sm that is étale locally on S
isomorphic to Z/nZ and meets every irreducible component of every geometric
fiber of E→ S. If n = 1, then G is the zero subgroup, so B1 = E``1.

Proposition 3.1.5. Fix an n ∈ Z≥1.

(a) The Z-stack Bn is Deligne–Mumford and Z-smooth of relative dimension 1.

(b) The morphism
Bn→ E``n

that forgets G factors through the open substack E``n- ord
n ⊂ E``n obtained by

removing the supersingular elliptic curves in characteristics dividing n. The
induced morphism

Bn→ E``n- ord
n
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is representable by schemes, separated, quasifinite, faithfully flat, and of finite
presentation.

(c) The stack E``n- ord
n is algebraic and Z-smooth of relative dimension 1.

Proof. (a) Both claims follow from [Deligne and Rapoport 1973, V.1.4].

(b) The morphism

q : E``n→ E``1 is well defined by q(E)= E/E sm
[n]

(see Section 2.2.6), and, as in [Deligne and Rapoport 1973, VI.1.1], the j-invariant
gives the morphism j : E``1→ P1

Z. Since E``n- ord
n is the preimage under j ◦ q of

the open subscheme of P1
Z obtained by removing the supersingular j-invariants in

characteristics dividing n, it is indeed an open substack of E``n .
The morphism Bn → E``n factors through E``n- ord

n because a supersingular
elliptic curve over an algebraically closed field of positive characteristic p cannot
have Z/pZ as a subgroup. Therefore, our task is to prove that for any generalized
elliptic curve E→ S whose geometric fibers are n-gons, ordinary elliptic curves in
characteristic dividing n, or arbitrary elliptic curves in characteristic not dividing n,
the functor

F0 : S′ 7→
{

S′-ample subgroups G ⊂ E sm
S′ that are

étale locally on S′ isomorphic to Z/nZ
}

on the category of S-schemes is representable by a separated, quasifinite, faithfully
flat S-scheme B of finite presentation (the S′-ampleness of G as a relative effective
Cartier divisor on ES′ is equivalent to the condition that G meets every irreducible
component of every geometric fiber of ES′ → S′). In fact, it suffices to prove
the same statement with “faithfully flat” replaced by “flat” and for the functor
F ′0 obtained by dropping the S′-ampleness requirement from the definition of F0:
indeed, the surjectivity of B→ S will follow from the imposed fibral assumptions
on E→ S, whereas [EGA IV3 1966, 9.6.4] together with limit arguments ensures
that the inclusion F0 ⊂ F ′0 is representable by quasicompact open immersions.

We analyze F ′0 by studying the related functor

F1 : S′ 7→
{

P ∈ E sm
[n](S′) that define

a closed immersion Z/nZ ↪→ E sm
S′ [n] by 1 7→ P

}
.

The map F1 → F ′0 that sends P to the copy of Z/nZ that P generates is repre-
sentable by schemes and finite étale of rank φ(n). Therefore, once we prove that
F1 is representable by a finitely presented, separated, quasifinite (and hence also
quasiaffine, see [EGA IV3 1966, 8.11.2]), flat S-scheme, the desired claim about
F ′0 will follow from [SGA 3 I (new) 2011, V, 4.1] (combined with [EGA IV2 1965,
2.2.11(iii); EGA IV4 1967, 17.7.5]).
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The S-scheme E sm
[n] represents the functor of S′-homomorphisms

Z/nZ→ E sm
S′ [n].

Such a homomorphism is a closed immersion if and only if its corresponding map
f of finite locally free OS′-algebras is surjective, which is an open condition on
S′ because Coker( f ) is a finitely generated OS′-module. Therefore, the inclusion
F1 ⊂ E sm

[n] is representable by open immersions, and is quasicompact by limit
arguments, so the claims about F1 follow.

(c) Both claims follow from (b). More precisely, if X→Bn is a smooth atlas, then
the composed morphism

X→ E``n- ord
n

is representable by algebraic spaces, faithfully flat, and locally of finite presentation,
so E``n- ord

n is algebraic by [SP 2005–, 06DC] (see also [Laumon and Moret-Bailly
2000, 10.6] for a related result), whereas, due to [EGA IV4 1967, 17.7.7], the Z-
smoothness of E``n- ord

n follows from that of Bn (for the relative dimension aspect,
one may use [EGA IV2 1965, 6.1.2]). �

With Proposition 3.1.5 in hand, we are ready to address algebro-geometric
properties of E``n (see Proposition 3.3.2 for some further properties).

Theorem 3.1.6. Fix an n ∈ Z≥1.

(a) The Z-stack E``n is algebraic with finite diagonal, proper, and smooth of
relative dimension 1.

(b) The largest open substack of E``n that is Deligne–Mumford is

E``n − (E``
∞

n )Z/nZ.

(c) The morphism Spec Z → E``∞n that corresponds to the standard n-gon is
surjective, representable, and finite locally free of rank 2n. In particular, the
proper Z-algebraic stack E``∞n is irreducible, has geometrically irreducible
Z-fibers, and is Z-smooth of relative dimension 0.

(d) The closed substack E``∞n ⊂E``n is a reduced relative effective Cartier divisor
over Spec Z.

Remark 3.1.7. In (b), the largest Deligne–Mumford open substack of the separated
Z-algebraic stack E``n does make sense a priori. Indeed, the proof of [Conrad
2007, 2.2.5(2)] shows that if S is a scheme and X is an S-algebraic stack that is
covered by S-separated open substacks, then there is a unique open substack

U ⊂X

http://stacks.math.columbia.edu/tag/06DC
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containing exactly those geometric points of X that have an unramified auto-
morphism functor. (Equivalently, U contains those S-scheme valued points of
X whose automorphism functors are unramified.) By Nakayama’s lemma (or
simply by [SP 2005–, 02GF (1)⇔(2)]), the diagonal 1U /S is unramified, so U

is Deligne–Mumford, and, by construction, U contains every Deligne–Mumford
open substack of X . Even though we take the unramifiedness of the diagonal as
our definition of being Deligne–Mumford (see Section 1.9), in the case in hand U

inherits separatedness from E``n , so, by [Laumon and Moret-Bailly 2000, 8.1], it
also satisfies the étale atlas definition of a Deligne–Mumford stack.

Proof of Theorem 3.1.6. (a) The stack E``n is a union of open substacks E``

and E``n- ord
n , both of which are algebraic and Z-smooth of relative dimension 1

by Proposition 3.1.5. Therefore, E``n is also algebraic and Z-smooth of relative
dimension 1.

By [Conrad 2007, 3.2.4], the isomorphism functor of two generalized elliptic
curves E → S and E ′ → S whose degenerate geometric fibers are n-gons is
representable by a finite S-scheme,3 so 1E``n/Z

is finite and, in particular, E``n is
separated. The morphism

E``tSpec Z→ E``n

whose restriction to Spec Z corresponds to the standard n-gon is surjective on
underlying topological spaces, so E``n is quasicompact, and hence is of finite
type over Z. Its properness therefore results from the valuative criterion [Laumon
and Moret-Bailly 2000, 7.10], which is satisfied due to the semistable reduction
theorem for elliptic curves (and the availability of contractions, which are reviewed
in Section 3.2.1).

(b) In the view of Remark 3.1.7, we only need to show that

E``n − (E``
∞

n )Z/nZ

contains those geometric points x of E``n whose automorphism functor is un-
ramified. If x lies in E`` = E``n −E``∞n , then Aut(x) is unramified by [Deligne
1975, 5.3(I)] (or by [MFK94 1994, Corollary 6.2]). If x lies in E``∞n , then, by

3 Here is a sketch for a proof of this representability that bypasses blowups used in [Conrad 2007,
3.2.2 and 3.2.4]: as in the proof of [Deligne and Rapoport 1973, III.2.5], one uses Hilbert schemes to
get representability by a quasifinite, separated S-scheme; then, due to the valuative criterion, the key
point is to check that if S is the spectrum of a strictly Henselian discrete valuation ring and E and E ′

are degenerating elliptic curves with identified generic fibers: Eη = E ′η, then E = E ′; for this, the
theory of Néron models (especially, [BLR90 1990, 7.4/3]) identifies (Esm)0 with (E ′sm)0 and, since
the reductions of η-rational points are dense in the special fibers, also Esm with E ′sm; then Zariski’s
main theorem [BLR90 1990, 2.3/2′] produces the graph of the sought identification E = E ′.

http://stacks.math.columbia.edu/tag/02GF
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Lemma 2.1.6, Aut(x) is unramified if and only if x lies in

E``∞n − (E``
∞

n )Z/nZ.

(c) For the asserted properties of the morphism, it suffices to note that for a
generalized elliptic curve E −→π S with S∞,π,n = S, the functor of isomorphisms
between E and the standard n-gon is representable by a finite locally free S-scheme
of rank 2n, as may be checked fppf locally on S with the help of Remark 2.1.9
and Lemma 2.1.6. The asserted properties of E``∞n then follow by using [EGA IV4

1967, 17.7.7; EGA IV2 1965, 6.1.2] for the smoothness aspect.

(d) By (c), the stack E``∞n is Z-smooth, so it is also reduced. For the Cartier divisor
claim, we may work over a smooth finite type scheme cover

X→ E``n, with X∞ ⊂ X being the preimage of E``∞n .

By [Katz and Mazur 1985, 1.1.5.2], we may also base change from Z to an alge-
braically closed field. Then, for a point x ∈ X∞, by (a) and (c), both X and X∞

are smooth at x and

dimx X∞ = dimx X − 1.

Thus, X∞ ⊂ X is a Weil divisor and, since X is regular, also a desired Cartier
divisor. �

For later use we record the following proposition from [Conrad 2007, 3.2.4].

Proposition 3.1.8. Let E −→π S and E ′ −→π
′

S be generalized elliptic curves such
that

S∞,π,n ∩ S∞,π
′,m
=∅ whenever n 6= m.

(a) The fppf sheaf Isom(E, E ′) that parametrizes generalized elliptic curve iso-
morphisms is representable by a finite S-scheme of finite presentation.

(b) If S is integral and normal and η is its generic point, then any η-isomorphism

Eη ' E ′η extends to a unique S-isomorphism E ' E ′.

Proof. Part (a) has essentially been proved in footnote 3. Alternatively, Zariski
locally on S there is an n ∈ Z≥1 such that E and E ′ correspond to objects of
E``n , so (a) is a reformulation of the finiteness of the diagonal of E``n proved
in Theorem 3.1.6(a). To obtain (b) one combines (a) with the following useful
lemma. �

Lemma 3.1.9. If S is an integral normal scheme, η is its generic point, and F is a
finite S-scheme, then the pullback map F(S)→ F(η) is bijective.
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Proof. The injectivity follows from the schematic dominance of η→ S and the
separatedness of F→ S. For the surjectivity, we may work Zariski locally on S
to assume that S = Spec A. Then the schematic image in F of an x ∈ F(η) is
Spec B for some finite A-subalgebra B ⊂ Frac A. Since A is normal, A = B, so
the schematic image is the sought extension of x to an element of F(S). �

3.2. The tower of compactifications

The compactifications E``n introduced in the previous section are related to each
other: they form an infinite tower in which the transition morphisms

E``nm→ E``n

encode contractions of generalized elliptic curves. The goal of this section is to use
the already established results about E``n to prove several basic properties, such as
flatness, of these transition morphisms (see Theorem 3.2.4) and to deduce some
concrete results about the generalized elliptic curves themselves (see Corollaries
3.2.5 and 3.2.6). We begin with a brief review of contractions.

3.2.1. Contraction with respect to a finite locally free subgroup. As is justified
in [Conrad 2007, top of p. 218] (which is based on [Deligne and Rapoport 1973,
IV.1.2]), if E → S is a generalized elliptic curve and G ⊂ E sm is a finite locally
free S-subgroup, then there is a generalized elliptic curve

cG(E)→ S equipped with a surjective S-scheme morphism E→ cG(E)
(3.2.1.1)

such that:

• the image under E→ cG(E) of each disjoint from G irreducible component
of a geometric fiber of E→ S is a single point, and

• the map E → cG(E) restricts to a group isomorphism between the open
complement of the union of such components and (cG(E))sm.

In particular, if E is an elliptic curve, then E = cG(E).
These conditions ensure that G is identified with an S-subgroup of cG(E)sm

that meets every irreducible component of every geometric fiber of cG(E)→ S.
Due to [Deligne and Rapoport 1973, IV.1.2], they also determine the data (3.2.1.1)
uniquely up to a unique isomorphism. In particular, whenever G ′ ⊂ E sm is another
finite locally free S-subgroup that meets the same irreducible components of the
geometric fibers of E→ S as G, one gets a canonical identification

cG(E)= cG ′(E). (3.2.1.2)

For the same reason, the formation of E→ cG(E) commutes with arbitrary base
change in S.
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We call this cG(E) the contraction of E with respect to G. The compatibility
of the formation of cG(E) with base change shows that for every n,m ∈ Z≥1, the
identity map on E`` extends to the “contraction” Z-morphism

E``nm→ E``n defined by E 7→ cE sm[n](E).

Also, if (E,G) is classified by the stack Bnm of Section 3.1.4, then (cG[n](E),G[n])
is classified by the stack Bn , so there is the “contraction” Z-morphism

Bnm→Bn defined by (E,G) 7→ (cG[n](E),G[n]).

These and similar morphisms will be called contractions or contraction morphisms
in the sequel (a slight abuse of terminology because it is not substacks of E``nm or
Bnm that are getting contracted).

In many situations, we will need a robust criterion for recognizing algebraic
spaces and morphisms that are representable by algebraic spaces. The following
lemma, which paraphrases [Conrad 2007, 2.2.5(1) and 2.2.7] and may be traced
back to [Deligne and Rapoport 1973, IV.2.6], is well suited for this task.

Lemma 3.2.2. Let S be a scheme and let X and Y be S-algebraic stacks whose
diagonals 1X /S and 1Y /S are quasicompact and separated.

(a) The stack X is an algebraic space if and only if for every algebraically
closed field k whose spectrum is equipped with a morphism to S, every object
ξ of X (k), and every Artinian local k-algebra A, the pullback of ξ to the
groupoid X (A) has no nonidentity automorphism; if X is Deligne–Mumford,
then A = k suffices.

(b) An S-morphism
f :X → Y

is representable by algebraic spaces if and only if for every algebraically
closed field k whose spectrum is equipped with a morphism to S, every object ξ
of X (k), and every Artinian local k-algebra A, no nonidentity automorphism
of the pullback of ξ to X (A) is sent to an identity automorphism in Y (A); if
X is Deligne–Mumford, then A = k suffices.

Proof. (a) The necessity is clear. For the sufficiency, due to [Conrad 2007, 2.2.5(1)],
it is enough to argue that the assumed condition implies the triviality of the auto-
morphism functor of every ξ . This functor is a separated k-group algebraic space
G of finite type, so is necessarily a scheme due to [Artin 1969, 4.2], and is even
k-étale if X is Deligne–Mumford. The triviality of G is therefore equivalent to
that of all the G(A), with A = k being sufficient if X is Deligne–Mumford.

(b) The failure of the condition on ξ implies that the groupoid of A-points of some
A-fiber of f has a nonidentity automorphism, and the necessity follows. For the
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sufficiency, due to [Conrad 2007, 2.2.7], it is enough to argue that the assumed
condition implies that each k-fiber X of f is an algebraic space, so it remains to
observe that this condition ensures that X meets the criterion of (a). �

To infer further representability by schemes, we will often use the following
well-known lemma:

Lemma 3.2.3. For stacks X and Y over a scheme S, an S-morphism f :X → Y

that is representable by algebraic spaces, separated, and locally quasifinite is
representable by schemes; if , in addition, f is proper, then f is finite.

Proof. This follows from [Laumon and Moret-Bailly 2000, A.2] (see also [Conrad
2007, 2.2.6]) and [EGA IV4 1967, 18.12.4]. �

We are ready to exploit the relationship between the two contractions introduced
in Section 3.2.1 to extract further information about the stacks E``n .

Theorem 3.2.4. For Bn as in Section 3.1.4 and any n,m ∈ Z≥1, consider the
commutative diagram

Bnm

c′

��

a
// E``nm

c
��

Bn
b
// E``n

in which c and c′ are the contraction morphisms of Section 3.2.1 and a and b forget
the subgroup G.

(a) The contractions c and c′ are flat and of finite presentation. Moreover, c is
proper, with finite diagonal, and surjective, whereas c′ is representable by
schemes, separated, and quasifinite.

(b) The closed substack

E``∞n ×E``n,c E``nm ⊂ E``nm

is a relative effective Cartier divisor over Spec Z that is a positive integer
multiple of E``∞nm .

(c) The multiple needed in (b) is m, i.e.,

[E``∞n ×E``n,c E``nm] = m · [E``∞nm]

as Cartier divisors on E``nm .

Proof. The commutativity of the diagram follows from the identification discussed
in Section 3.2.1.

By Proposition 3.1.5(b), the maps a and b are representable by schemes, separated,
quasifinite, of finite presentation, flat, and faithfully flat onto E``nm-ord

nm and E``n-ord
n ,

respectively.
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(a) By Theorem 3.1.6(a), the stacks E``nm and E``n are Z-proper with finite
diagonal, so c is also proper, with finite diagonal, and of finite presentation. Since
the contraction of the standard nm-gon with respect to its n-torsion is the standard
n-gon, c is surjective. Moreover, c|E`` is the identity, E`` and E``nm-ord

nm cover E``nm ,
and, by Proposition 3.1.5(b), a is faithfully flat onto E``nm-ord

nm , so the flatness of c
will follow once we establish that of c′.

It remains to establish the claims about c′. For the representability of c′ by
algebraic spaces, due to Lemma 3.2.2(b), it suffices to observe that if E is the
standard nm-gon over an algebraically closed field and

G ' Z/nmZ

is a subgroup of E sm that meets every irreducible component of E , then, by
Lemma 2.1.6, no nonidentity automorphism of (E,G) restricts to the identity map
on (E sm)0. The separatedness of c′ follows from the separatedness of b ◦ c′ = c ◦ a
and of b, and similarly for the finite presentation of c′. For the quasifiniteness of c′

it therefore suffices to observe that a generalized elliptic curve over an algebraically
closed field has finitely many subgroups of order nm. The representability of c′ by
schemes follows from Lemma 3.2.3.

Finally, since c′ is a quasifinite map between separated Deligne–Mumford stacks
that are smooth of relative dimension 1 over Z, it is flat by [EGA IV2 1965, 6.1.5].

(b) Since c is flat by (a) and E``∞n ⊂ E``n is a relative effective Cartier divisor over
Spec Z by Theorem 3.1.6(d), the pullback in question is also a relative effective
Cartier divisor over Spec Z. Both

E``∞n ×E``n,c E``nm and E``∞nm

are supported on the same closed subset of the underlying topological space of
E``nm and, by Theorem 3.1.6(c)–(d), this subset is irreducible and has E``∞nm as its
associated reduced closed substack (see [Laumon and Moret-Bailly 2000, 5.6.1(ii)]).
Moreover, E``nm is regular, so on any of its scheme atlases Cartier divisors identify
with Weil divisors. Passage to such an atlas then shows that E``∞n ×E``n,c E``nm is
a positive integer multiple of E``∞nm — the global constancy of the needed factor
across the irreducible components of the pullback of E``∞nm to the atlas follows
from the irreducibility of E``∞nm (to check that the generic points of such irreducible
components map to the generic point of E``∞nm , one uses the fact that generizations
lift along a flat morphism; see [Laumon and Moret-Bailly 2000, 5.8]).

(c) Due to (b) and the moduli interpretation, it suffices to find a single general-
ized elliptic curve E −→π S with nm-gon degenerate geometric fibers such that its
contraction E ′ −→π

′

S with respect to E sm
[n] satisfies the equality

IS∞,π ′ =I d
S∞,π of OS-ideal sheaves for d = m,
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but does not satisfy this equality for any other d ∈Z≥1 (here IS∞,π ⊂OS is the ideal
sheaf that cuts out the degeneracy locus S∞,π ⊂ S, and likewise for IS∞,π ′ ). Tate
curves supply such E , see [Deligne and Rapoport 1973, VII.1.11 and VII.1.14]. �

We now record some concrete consequences of our analysis of the contraction

c : E``nm→ E``n.

Corollary 3.2.5. For a generalized elliptic curve E −→π S, let IS∞,π ⊂ OS be the
ideal sheaf that cuts out the degeneracy locus S∞,π ⊂ S. If the degenerate geometric
fibers of E −→π S are nm-gons and cE sm[n](E)−→π

′

S is the contraction of E −→π S
with respect to E sm

[n], then

IS∞,π ′ =I m
S∞,π .

Proof. This is a reformulation of Theorem 3.2.4(c). �

Corollary 3.2.6. For each n ∈ Z≥1, every generalized elliptic curve E→ S is fppf
locally on S the contraction (with respect to some subgroup) of a generalized elliptic
curve E ′→ S for which the number of irreducible components of each degenerate
geometric fiber is divisible by n. An fppf cover of S over which such an E ′ exists
may be chosen to be locally quasifinite over S.

Proof. We may assume that there is a d ∈ Z≥1 such that the degenerate geometric
fibers of E are d-gons (see Remark 2.1.9). The first claim then follows from flatness,
surjectivity, and finite presentation of E``nd

c
−→ E``d . The second claim follows

from the first and [EGA IV4 1967, 17.16.2]. �

We conclude the section by using Corollary 3.2.6 to analyze the torsion subgroups
of a generalized elliptic curve in a formal neighborhood of the degeneracy locus.
Similar analysis in the case of Tate curves has been carried out in [Deligne and
Rapoport 1973, VII.1.13–VII.1.15].

Proposition 3.2.7. Let E −→π S be a generalized elliptic curve with S = Spec R for
a Noetherian R that is complete and separated with respect to the ideal I ⊂ R that
cuts out S∞,π ⊂ S.

(a) For every n ∈ Z≥1, the S-group (E sm)0 has a unique finite locally free S-
subgroup Bn ⊂ (E sm)0 of order n, and Bn ' µn étale locally on S. If an
m ∈ Z≥1 divides both n and the number of irreducible components of each
degenerate geometric fiber of E , then E sm

[n] has a unique finite locally free
S-subgroup An,m that meets precisely m irreducible components of every
degenerate geometric fiber of E , contains every other finite locally free S-
subgroup of E sm

[n] with this property, is of order nm, and fits into a short
exact sequence

0→ Bn→ An,m→ Cm→ 0
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with Cm isomorphic to Z/mZ étale locally on S.

(b) For every n ∈ Z≥1, over S− S∞,π the group Bn from (a) fits into a short exact
sequence

0→ (Bn)S−S∞,π → ES−S∞,π [n] → C ′n→ 0

with C ′n an (S− S∞,π )-group scheme that is isomorphic to Z/nZ étale locally
on S− S∞,π .

Proof. (a) If S is an infinitesimal thickening of S∞,π , then Lemma 2.1.11 gives the
claim. Therefore, the uniqueness and the existence of Bn and An,m follow from
[EGA III1 1961, 5.1.4 and 5.4.1] (the S-group structure of Bn may be read off
from the action morphism Bn ×S E→ E , so the nonproperness of E sm does not
intervene, and likewise for An,m). The étale local structure of Bn translates into
that of its Cartier dual, so it may be read off on geometric fibers at points in S∞,π ,
and likewise for the étale local structure of Cm .

(b) In the case when n divides the number of irreducible components of each
degenerate geometric fiber of E , the claim follows from (a). In general, C ′n is a
finite locally free (S − S∞,π )-group scheme of order n and it suffices to check
that its geometric fibers are isomorphic to Z/nZ. In order to check this at a point
η ∈ S − S∞,π , we choose a specialization s ∈ S∞,π of η and use [EGA II 1961,
7.1.9] to find an S-scheme T that is the spectrum of a complete discrete valuation
ring whose generic (resp. closed) point maps to η (resp. s). Due to the uniqueness of
Bn , the formation of C ′n commutes with base change of E to T , so we are reduced
to the case when S = Spec R for some complete discrete valuation ring R and
I ⊂ R is a nonzero power of the maximal ideal. In this case, Corollary 3.2.6 and
[EGA IV4 1967, 18.5.11 (a)⇔(c)] supply a finite faithfully flat R-algebra R′ such
that ER′ is the contraction of a generalized elliptic curve E ′→ Spec R′ for which
n divides the number of irreducible components of each degenerate geometric fiber.
Base change to R′ reduces the claim to the settled case of E ′. �

3.3. The coarse moduli space of E``n

We seek to prove in Proposition 3.3.2 that for any scheme S and any n ∈ Z≥1 the
coarse moduli space of (E``n)S is isomorphic to P1

S , the “ j -line.” Of course, this is
hardly surprising, but even in the n = 1 case we are not aware of a reference that
would treat arbitrary S — for n = 1, [Deligne and Rapoport 1973, VI.1.1] settles
the basic case S = Spec Z, whereas [Fulton and Olsson 2010, 2.1] handles general
locally Noetherian S (the formation of the coarse moduli space need not commute
with nonflat base change, so the S = Spec Z case does not automatically imply the
general case). We will build on the above result of Deligne and Rapoport through
the following lemma.
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The existence of all the coarse moduli spaces that we will consider in this section
is guaranteed by [Keel and Mori 1997, 1.3(1)] (see also [Conrad 2005, 1.1; Rydh
2013, 6.12]).

Lemma 3.3.1. Let X be a Deligne–Mumford stack that is separated, flat, and
locally of finite type over Z, and let

f :X → X

be its coarse moduli space map. If fFp : XFp → XFp is the coarse moduli space
map of XFp for every prime p, then fS :XS→ X S is the coarse moduli space map
of XS for every scheme S.

Proof. The formation of the coarse moduli space f : X → X commutes with
flat base change in X , and we may work fppf locally on X S when checking that
fS :XS→ X S is the coarse moduli space of XS . We may therefore assume that
S = Spec R for some ring R and, by [Abramovich and Vistoli 2002, 2.2.3 and its
proof], that

X = Spec A and X = [(Spec B)/G]

for some finite A-algebra B equipped with an action of a finite group G. In this
situation, as is explained in [Conrad 2005, 3.1], we have A= BG , the coarse moduli
space of XS is Spec((B⊗Z R)G), and we seek to prove that the map

jR : BG
⊗Z R→ (B⊗Z R)G

is an isomorphism granted that it is an isomorphism whenever R = Fp for any p.
The Z-flatness of X ensures that B is torsion-free, so the abelian group B/BG

is also torsion-free. Therefore, BG
⊗Z R→ B⊗Z R, and hence also jR , is injective

for every Z-module R. In order to conclude, we will prove that jR is also surjective
for every Z-module R.

By passage to a filtered direct limit, we may assume that the Z-module R is
finitely generated. Thus, since the case R = Z is clear, we may assume that
R = Z/nZ for some n ∈ Z≥1. To then finally reduce to the assumed R = Z/pZ

case by dévissage, it remains to use the commutative diagram

0 // BG
⊗Z R′ //
� _

jR′

��

BG
⊗Z R //
� _

jR

��

BG
⊗Z R′′ //
� _

jR′′

��

0

0 // (B⊗Z R′)G // (B⊗Z R)G // (B⊗Z R′′)G

that is in place whenever one has a short exact sequence 0→ R′→ R→ R′′→ 0
of Z-modules. �
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We are ready for the promised conclusion about the coarse moduli space of
(E``n)S .

Proposition 3.3.2. For any n ∈ Z≥1, the coarse moduli space of E``n (resp. of
the open substack E`` ⊂ E``n) is isomorphic to P1

Z (resp. to A1
Z ⊂ P1

Z, with the
map E``→ A1

Z being given by the j-invariant) and its formation commutes with
base change to an arbitrary scheme S. In particular, E``n is irreducible and has
geometrically irreducible Z-fibers.

Proof. The last assertion follows from the rest because the map to the coarse moduli
space induces a homeomorphism on topological spaces.

We begin with the n = 1 case, for which the base S = Spec Z has been treated in
[Deligne and Rapoport 1973, VI.1.1 and VI.1.3] and we only need to prove that the
formation of the coarse moduli space of E``1 commutes with arbitrary base change.
Let

C ⊂ E``1

be the preimage of the open subscheme of P1
Z obtained by removing the sections

j = 0 and j = 1728. By [Deligne 1975, 5.3(III)], the automorphism functor of every
generalized elliptic curve classified by C is the constant group {±1}. Therefore,
as is explained in [ACV03 2003, §5.1], [Romagny 2005, §5], or [AOV08 2008,
Appendix A], we may “quotient out” this constant group from the automorphism
functors to obtain the algebraic stack C( {±1} that is a “rigidification” of C . By,
for instance, [AOV08 2008, A.1], the rigidification map

C → C( {±1}

induces an isomorphism on coarse moduli spaces. However, by [Laumon and
Moret-Bailly 2000, 8.1.1], the algebraic stack C( {±1} is its own coarse moduli
space. Thus, since the formation of C( {±1} commutes with arbitrary base change,
so does that of the coarse moduli space of C . In particular, for every prime p, the
map from the coarse moduli space of (E``1)Fp to P1

Fp
is an isomorphism on a dense

open subscheme. However, this map is finite locally free due to the normality of
its source inherited from the Fp-smooth (E``1)Fp , so it is an isomorphism globally.
This settles the n = 1 case for S = Spec Fp, and the general n = 1 case then follows
from Lemma 3.3.1.

For general n, we begin by arguing that the coarse moduli space Y of E``n is
Z-flat and that its formation commutes with arbitrary base change. By the settled
n = 1 case, this is true on the elliptic curve locus, so we may focus on the open
substack Cn ⊂ E``n that is the preimage of C . By [Deligne and Rapoport 1973,
II.2.8], every generalized elliptic curve has the automorphism −1 that restricts to
inversion on the smooth locus. In particular, the constant group scheme {±1} is
a canonical subgroup functor of the automorphism functor of every generalized
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elliptic curve classified by Cn , so we may pass to the rigidification Cn( {±1} and
need to argue that its coarse moduli space is Z-flat and of formation compatible
with base change. This follows from [AOV08 2008, 3.3] because the algebraic
stack Cn( {±1} is tame by Lemma 2.1.6 and [Deligne 1975, 5.3(III)].

It remains to prove that the map f : Y → P1
Z between the coarse moduli spaces

of E``n and E``1 is an isomorphism. By [Rydh 2013, 6.12], the coarse moduli
space Y is Z-proper, so the map in question is proper and quasifinite, and hence also
finite by Lemma 3.2.3. Once we prove its flatness, and hence also local freeness,
it will remain to inspect the elliptic curve locus to see that it is an isomorphism.
Due to the Z-flatness of Y and [EGA IV3 1966, 11.3.11], for the remaining flatness
of f we may work Z-fiberwise, and hence conclude with the help of [EGA IV2

1965, 6.1.5] after observing that for every field k, the reducedness of the k-smooth
(E``n)k ensures the reducedness, and hence also the Cohen–Macaulay property, of
its 1-dimensional coarse moduli space Yk . �

3.4. Algebraization of formal generalized elliptic curves and of their
homomorphisms

The goal of this section is to prove that a formal generalized elliptic curve that is
adic over an affine Noetherian formal scheme and whose number of irreducible
components of a degenerate geometric fiber is constant may be uniquely algebraized,
and likewise for generalized elliptic curve homomorphisms — see Theorem 3.4.2
for a precise statement. Such algebraizability does not immediately follow from
Grothendieck’s formal GAGA formalism because the loci of smoothness may not
be proper over the base, but it nevertheless is not surprising: if this formalism
applied to the Z-proper stack E``n as it does in the scheme case, then the pullback
map

E``n(R)→ lim
←−−m E``n(R/I m)

would be an equivalence for every adic Noetherian ring R with an ideal of definition
I , and Theorem 3.4.2(a) would follow. The key difference from the scheme case is
that a section of (E``n)R → Spec R is not a closed immersion. Nevertheless, an
argument that we have extracted from [Olsson 2006, 5.4] proves a suitable formal
GAGA statement recorded in Lemma 3.4.1 (see also [Aoki 2006b, §3.4; Aoki
2006a] for a similar argument).

Lemma 3.4.1. Let R be a Noetherian ring that is complete and separated with
respect to an ideal I ⊂ R. For every proper R-algebraic stack X with finite
diagonal 1X /R (for instance, for every proper Deligne–Mumford R-stack X ), the
functor

X (R)→ lim
←−−m X (R/I m) (3.4.1.1)

is an equivalence of categories.
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Proof. If x, x ′ ∈ X (R), then the isomorphism functor Isom(x, x ′) is a finite R-
scheme, so

Isom(x, x ′)(R)→ lim
←−−m Isom(x, x ′)(R/I m)

is bijective by formal GAGA for schemes [EGA III1 1961, 5.1.6]. In other words,
the functor (3.4.1.1) is fully faithful. For its essential surjectivity, suppose that

{xm ∈X (R/I m)}m≥1

is a compatible sequence of objects. Due to the finiteness of 1X /R , each map

Spec(R/I m)
xm
−→XR/I m

is representable by schemes and finite. Therefore, xm corresponds to a coherent
OXR/I m -algebra Am . By formal GAGA for Artin stacks, i.e., by [Olsson 2006, A.1],
the compatible system {Am}m≥1 comes via base change from a unique coherent
OX -algebra A . It remains to argue that the composition of the finite morphism
X

x
−→ X corresponding to A and the structure morphism X → Spec R is an

isomorphism. By construction, xR/I m = xm for every m ≥ 1, so the claim will
follow from [EGA III1 1961, 5.1.6] once we prove that the proper R-algebraic stack
X is a finite R-scheme.

By [Conrad 2007, 2.2.5(2)], the algebraic space locus of X is open and contains
X R/I , so it must coincide with X . Since the relative dimension of X over R may
be computed étale locally on X , [EGA IV3 1966, 13.1.3] proves that the relative
dimension 0 locus of X is open, and hence must equal X because it contains X R/I .
To conclude that X→ Spec R is finite one then applies Lemma 3.2.3. �

The algebraization Theorem 3.4.2(a) has already been proved in [Conrad 2007,
2.2.4] by a different argument that does not use formal GAGA for Artin stacks
(a similar argument had previously been used in [Deligne and Rapoport 1973,
VII.1.10] to construct Tate curves), but it seems worthwhile to put this result in the
context of Lemma 3.4.1. In contrast, the method of [Conrad 2007, 2.2.4] does not
seem to suffice for the proof of the algebraizability of homomorphisms (beyond the
case of isomorphisms), i.e., for Theorem 3.4.2(b). To algebraize homomorphisms
we exploit their structure detailed in Section 2.2.

Theorem 3.4.2. Let R be a Noetherian ring, complete and separated with respect
to an ideal I ⊂ R.

(a) For each n ∈ Z≥1, every compatible under pullback sequence

{Em→ Spec(R/I m)}m≥1



A modular description of X0(n) 2035

of generalized elliptic curves whose degenerate geometric fibers are n-gons is
isomorphic to the sequence obtained via base change from a unique generalized
elliptic curve E→ Spec R.

(b) For generalized elliptic curves E→ Spec R and E ′→ Spec R, every compati-
ble sequence

{ fm : ER/I m → E ′R/I m }m≥1

of generalized elliptic curve homomorphisms (defined in Definition 2.1.12)
comes via base change from a unique generalized elliptic curve homomorphism

f : E→ E ′.

Proof. (a) Lemma 3.4.1 applied to E``n proves the claim (for the uniqueness,
Remark 2.1.9 ensures that the degenerate geometric fibers of E are n-gons).

(b) We begin with the case when all the fm are isomorphisms (Lemma 3.4.1
does not apply because E need not correspond to an object of E``n for any n).
Due to Remark 2.1.9, there is no geometric point s of Spec R for which Es and
E ′s are both degenerate but have distinct numbers of irreducible components, so
Proposition 3.1.8(a) shows that the isomorphism functor Isom(E, E ′) is a finite
R-scheme. Therefore, by [EGA III1 1961, 5.1.6], the sequence

( fm) ∈ lim
←−−m Isom(E, E ′)(R/I m)

is induced by a desired unique

f ∈ Isom(E, E ′)(R).

In the general case, by [EGA III1 1961, 5.4.1], the fm algebraize to a unique
R-morphism

f : E→ E ′,

and our task is to show that f is a generalized elliptic curve homomorphism. Since
idempotents of R/I lift uniquely to R (see [EGA IV4 1967, 18.5.16(ii)]), we may
use Proposition 2.2.9 to write

R = R′× R′′ and I = I ′× I ′′

in such a way that ( f1)R′/I ′ is the zero homomorphism and ( f1)R′′/I ′′ is an isogeny.
Then R′ (resp. R′′) is complete and separated with respect to I ′ (resp. I ′′) and each
( fm)R′/I ′m (resp. ( fm)R′′/I ′′m ) is the zero homomorphism (resp. an isogeny). Thus,
fR′ must be the zero homomorphism, and we are reduced to the case when all the
fm are isogenies.
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Let Km ⊂ ER/I m be the kernel of the isogeny fm . The group law of Km is the
restriction of the action morphism

Km × ER/I m → ER/I m ,

so [EGA III1 1961, 5.1.4 and 5.4.1] supply a finite locally free R-subgroup K ⊂ E sm

that algebraizes all the Km . Corollary 2.2.7(b) and the settled case when the fm are
isomorphisms then provide the identification E/K ∼= E ′, so f is identified with the
isogeny E→ E/K and hence is a homomorphism. �

Chapter 4. Modular descriptions of modular curves

With the compactifications E``n at our disposal, we are ready to exhibit the moduli
interpretations and the regularity of several classical modular curves, such as X (n)
or X1(n) (see Section 1.7 for an overview of our method and of previous work).
We begin in Section 4.1 by reviewing the construction and the properties of modular
curves of arbitrary congruence level. The moduli interpretations of X (n) and X1(n)
given in Sections 4.3 and 4.4 use Drinfeld structures on generalized elliptic curves,
so in Section 4.2 we extend a number of properties of such structures from the
elliptic curve case studied by Katz and Mazur. In Section 4.5, we synthesize the
arguments used for X (n) and X1(n) in the form of an axiomatic result, which
we use in Section 4.6 to treat further modular curves X̃1(n; n′), X1(n; n′), and
X0(n; n′) for suitable n and n′. The analysis of X1(n; n′) is used in Section 4.7 to
give a modular construction of some Hecke correspondences for X1(n).

4.1. Modular curves of congruence level

The main goal of this section is to review the definition given by Deligne and
Rapoport [1973, IV.3.3] of (stacky) modular curves over Z of congruence level.
The definition is via a normalization procedure, and for general levels there is no
known description of these Z-curves as moduli spaces of generalized elliptic curves
equipped with additional structure (one of the principal goals of this paper is to
give such a description in the case of 00(n) level). The normalization procedure
rests on the case of “no level,” with which we begin.

4.1.1. The case of no additional level. In this case, the modular curve in question
is the Z-stack E``1 that parametrizes generalized elliptic curves with integral geo-
metric fibers (see Definition 3.1.1). In the context of level structures, we will denote
E``1 by XGL2(Ẑ)

, by X0(1), or simply by X (1), and we will denote its elliptic curve
locus E`` by similar notation with X replaced by Y , e.g., by

Y (1)⊂X (1).
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By Theorem 3.1.6(a)–(b) (i.e., by [Deligne and Rapoport 1973, III.2.5(i), III.1.2(iii),
and IV.2.2]), the stack X (1) is Deligne–Mumford and the morphism

X (1)→ Spec Z

is proper and smooth of relative dimension 1.

4.1.2. The case of an arbitrary congruence level H . The level is an open (and
hence finite index) subgroup H of GL2(Ẑ). Its associated modular curve XH

is a Deligne–Mumford Z-stack that, loosely speaking, compactifies the stack
YH [1/level] which represents the “level H moduli problem” on elliptic curves
over schemes on which bad primes that depend on the level are invertible. More
precisely, given H , one fixes an n ∈ Z≥1 for which

Ker(GL2(Ẑ)� GL2(Z/nZ))⊂ H and sets H := Im(H → GL2(Z/nZ)).

One then lets YH [1/n] be the Z[1/n]-stack that, for variable Z[1/n]-schemes S,
parametrizes elliptic curves E → S equipped with an S-point of the finite étale
S-scheme

H \ Isom(E[n], (Z/nZ)2).

Finally, one defines XH to be the Deligne–Mumford X (1)-stack obtained by
normalizing X (1) with respect to the “forgetful” finite étale morphism

YH
[ 1

n

]
→ Y (1)Z[ 1

n ]
.

One lets YH be the preimage of Y (1) in XH . It is proved in [Deligne and Rapoport
1973, IV.3.6] that different choices of n lead to canonically isomorphic XH .

The map
XH →X (1) (4.1.2.1)

is representable, finite, and also surjective because X (1) is irreducible. Moreover,
by [EGA IV2 1965, 6.1.5] (which applies because of “going down” and the normality
of XH ), the map (4.1.2.1) is flat, so it is locally free of rank [GL2(Ẑ) : H ] and
XH is of relative dimension 1 over Z at every point. By [Deligne and Rapoport
1973, IV.6.7], the proper and flat structure morphism XH → Spec Z is even smooth
over Z[1/n]. If H ′ ⊂ H , then the finite étale Y (1)-morphism

YH ′
[ 1

n

]
→ YH

[ 1
n

]
obtained from the S-morphisms

H ′ \ Isom
(
E[n], (Z/nZ)2

)
→ H \ Isom

(
E[n], (Z/nZ)2

)
gives rise to the finite X (1)-morphism

XH ′→XH .
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Thus, due to the following lemma and Proposition 4.3.6, all the XH are schemes
for small enough H .

Lemma 4.1.3. If the modular curve XH has an open substack U ⊂ XH whose
geometric points have no nontrivial automorphisms, then U is a scheme that is
quasiprojective over Spec Z.

Proof. By Lemma 3.2.2(a), U is an algebraic space. Moreover, the coarse moduli
space morphism X (1) → P1

Z is separated and quasifinite, so U → P1
Z is also

separated and quasifinite, and hence U is a scheme by Lemma 3.2.3. Finally, the
morphism U → P1

Z is quasiprojective by [EGA IV3 1966, 8.11.2] or by Zariski’s
main theorem [EGA IV3 1966, 8.12.6], so U → Spec Z is also quasiprojective. �

Remark 4.1.4. Due to Lemma 4.1.3 and [Conrad 2007, 2.2.5(2)], each XH has a
unique largest open subscheme. This subscheme contains exactly those geometric
points of XH whose automorphism functors are trivial.

One suspects that XH is the “correct” modular curve of level H , in part because
there is no other choice granted that one believes that such a modular curve should be
representable and finite over X (1), normal, and agree with YH [1/n] over Y (1)Z[1/n].
One of the bottlenecks limiting practical usefulness of the stacks XH is the lack
of descriptions of their functors of points (without inverting the level) in terms of
generalized elliptic curves equipped with additional data. In the cases where such
descriptions have been found, one has been able to analyze XH more thoroughly,
e.g., to prove that XH is regular (and not just normal). Such regularity is useful
in practice (but is not known in general) — for instance, through [EGA IV2 1965,
6.1.5] it would ensure flatness of the maps XH→XH ′ mentioned above. Similarly,
the proof of the Z[1/n]-smoothness of (XH )Z[1/n] given in [Deligne and Rapoport
1973, IV.6.7] rests on the modular description of (XH )Z[1/n] presented in [loc. cit.]
for any H (however, this description is not explicit enough to a priori recover the
“obvious” candidate descriptions for classical choices of H ).

Modular descriptions of XH are known for most “classical” H , and we will
reprove some of them in Sections 4.3–4.6 below.

4.2. Drinfeld level structures on generalized elliptic curves via congruences

In order to efficiently handle all residue characteristics, the modular descriptions of
various XH that will be discussed in subsequent sections will use Drinfeld level
structures on generalized elliptic curves. In the elliptic curve case, the necessary
properties of such structures follow from the work of Katz and Mazur [1985], and
the goal of this section is to extend them to the generalized elliptic curve case.
Some such extensions have already been obtained in [Conrad 2007], but our method
seems simpler, more direct, and applies in a wider range of situations. The key idea
is to exploit “mod n congruences” with elliptic curves: the properties of various
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“mod n Drinfeld level structures” tend to be fppf local and to depend solely on
the n-torsion E sm

[n], so for many purposes we may first use Corollary 3.2.6 to
reduce to the case when E sm

[n] is finite locally free of rank n2 and then apply the
following lemma to further reduce to the elliptic curve case.

Lemma 4.2.1. For every n ∈ Z≥1 and every generalized elliptic curve E→ S for
which n divides the number of irreducible components of each degenerate geometric
fiber, there is an fppf cover S′→ S and an elliptic curve E ′→ S′ for which

E sm
S′ [n] ' E ′[n].

Proof. We may work étale locally on S, so limit arguments allow us to assume that
S is local and strictly Henselian. We may then also assume that the special fiber
of E is degenerate, so the connected-étale sequence (together with Lemma 2.1.11)
shows that E sm

[n] is an extension of Z/nZ by µn . After passage to an fppf cover
this extension splits and our task reduces to showing that fppf locally on Spec Z

there is an elliptic curve E ′ with E ′[n] ∼= µn ×Z/nZ.
Via limit arguments, it suffices to find such an E ′ over each strict Henselization

(R,m) of Spec Z at every closed point. The conclusion then follows from choosing
an ordinary elliptic curve over R/m, lifting its Weierstrass equation to R, and using
the connected-étale sequence again. �

To make sense of Drinfeld level structures as alluded to above, we recall the
following key definition:

Definition 4.2.2. For a finite abelian group A and a generalized elliptic curve
E→ S, a Drinfeld A-structure on E is a homomorphism α : A→ E sm(S) for which
the relative effective Cartier divisor

Dα :=
∑

a∈A[α(a)] ⊂ E sm

is an S-subgroup scheme. If this S-subgroup G ⊂ E sm is given in advance, then
we say that α is a Drinfeld A-structure on G.

Remark 4.2.3. By [Katz and Mazur 1985, 1.5.3], if #A is invertible on S, then a
Drinfeld A-structure α on E amounts to an isomorphism induced by α between the
constant S-group AS and some S-subgroup of E sm.

Convention 4.2.4. In the sequel we will sometimes deal with Drinfeld Z/nmZ-
or (Z/nmZ)2-structures for fixed n,m ∈ Z≥1 and will want to obtain Z/nZ- or
(Z/nZ)2-structures by restricting to the n-torsion subgroups. To make sense of this
we need to choose noncanonical isomorphisms

Z/nZ' (Z/nmZ)[n] and (Z/nZ)2 ' (Z/nmZ)2[n].

The particular choices will never matter for the results, but for definiteness we
always choose the isomorphisms induced by multiplication by m on Z or on Z2.
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In the results below, the “compare with” references point to the elliptic curve
cases treated by Katz and Mazur. We begin by detailing the properties of restrictions
to subgroups of various Drinfeld structures on generalized elliptic curves. Parts (a)
and (c) of Proposition 4.2.5 have been proved in [Conrad 2007, 2.3.2] by a different
method that also eventually reduces to the elliptic curve case.

Proposition 4.2.5. Let n,m ∈ Z≥1, and let E→ S be a generalized elliptic curve.

(a) (Compare with [Katz and Mazur 1985, 5.5.2(1) and 5.5.7(1)]). If α is a
Drinfeld (Z/nmZ)2-structure on E sm

[nm], then α|(Z/nmZ)2[n] is a Drinfeld
(Z/nZ)2-structure on E sm

[n] and α|Z/nmZ×{0} is a Drinfeld Z/nmZ-structure
on E.

(b) (Compare with [Katz and Mazur 1985, 5.5.8(1)]). If α : (Z/nmZ)2→ E sm(S)
is a group homomorphism, every prime divisor of m divides n, and α|(Z/nmZ)2[n]
is a Drinfeld (Z/nZ)2-structure on E sm

[n], then α is a Drinfeld (Z/nmZ)2-
structure on E sm

[nm] (so, in particular, the number of irreducible components
of each degenerate geometric fiber of E is divisible by nm).

(c) (Compare with [Katz and Mazur 1985, 5.5.7(2)]). If α is a Drinfeld Z/nmZ-
structure on E , then α|(Z/nmZ)[n] is a Drinfeld Z/nZ-structure on E.

(d) (Compare with [Katz and Mazur 1985, 5.5.8(2)]). If α : Z/nmZ→ E sm(S) is
a group homomorphism, every prime divisor of m divides n, and α|(Z/nmZ)[n] is
a Drinfeld Z/nZ-structure on E , then α is a Drinfeld Z/nmZ-structure on E.

(e) (Compare with [Katz and Mazur 1985, 5.5.2(2)]). For brevity, set N := nm. If
α is a Drinfeld (Z/NZ)2-structure on E sm

[N ] and G ⊂ E sm is the subgroup∑
i∈Z/NZ×{0}[α(i)] supplied by (a), then

α|{0}×Z/NZ : {0}×Z/NZ→ (E/G)sm(S)

is a Drinfeld Z/NZ-structure on E sm
[N ]/G ⊂ (E/G)sm.

Proof. It suffices to work fppf locally on S, so we may use Corollary 3.2.6 to
reduce to the case when the number of irreducible components of each degenerate
geometric fiber of E is divisible by nm (in parts (a) and (e) we are in this case at
the outset). We may then apply Lemma 4.2.1 to assume further that there is an
elliptic curve E ′→ S with E ′[nm] ' E sm

[nm]. By [Katz and Mazur 1985, 1.10.6
and 1.10.11], the properties under consideration depend solely on the S-group
scheme E sm

[nm] equipped with the homomorphism α and not on the embedding
of E sm

[nm] into a smooth S-group scheme of relative dimension 1 (such as E sm or
E ′). Thus, the claims result from their elliptic curve cases. �

Cyclic subgroups of generalized elliptic curves will be important for us, so we
recall their definition.
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Definition 4.2.6. For a generalized elliptic curve E → S, a finite locally free S-
subgroup G ⊂ E sm is cyclic of order n if fppf locally on S there is a Drinfeld
Z/nZ-structure on G. For a G that is cyclic of order n, a section g ∈ G(S) is a
generator of G (or generates G) if the homomorphism

α : Z/nZ→ E sm(S)

defined by α(1) = g is a Drinfeld Z/nZ-structure on G. An isogeny of constant
degree n between generalized elliptic curves over S is cyclic if its kernel is cyclic
of order n.

We turn to the properties of cyclic subgroups of generalized elliptic curves. Parts
(a), (d), and (f) of Proposition 4.2.7 have also been reduced to the elliptic curve
case in [Conrad 2007, 2.3.7, 2.3.8, and 2.3.5] by a different method.

Proposition 4.2.7. Let E → S be a generalized elliptic curve, G ⊂ E sm an S-
subgroup that is finite locally free of rank n over S, and G× ⊂ G the S-subsheaf of
generators of G (by [Katz and Mazur 1985, 1.6.5], the S-subsheaf G× is a closed
S-subscheme of G of finite presentation).

(a) (The Katz–Mazur cyclicity criterion; compare with [Katz and Mazur 1985,
6.1.1(1)]). The subgroup G is cyclic of order n if and only if G× is finite locally
free of rank φ(n) over S. In particular, G is cyclic of order n if and only if it
becomes cyclic of order n over an fpqc cover of S. If n is invertible on S and
G is cyclic of order n, then G×→ S is étale.

(b) (Compare with [Katz and Mazur 1985, 6.1.1(2)]). If g ∈ G(S) is a generator
of G, then

G× =
∑

i∈(Z/nZ)×[i · g] as effective Cartier divisors on E sm.

(c) (Compare with [Katz and Mazur 1985, 6.4.1]). There is a finitely presented
closed subscheme T ⊂ S such that the base change GS′ to an S-scheme S′ is
cyclic if and only if S′→ S factors through T .

(d) (Compare with [Katz and Mazur 1985, 6.8.7]). If n is squarefree, then G is
cyclic.

(e) (Compare with [Katz and Mazur 1985, 5.5.4(3)]). If G is cyclic of order n
and the number of irreducible components of each degenerate geometric fiber
of E→ S is divisible by n, then the subgroup E sm

[n]/G of E/G is cyclic of
order n.

(f) (Compare with [Katz and Mazur 1985, 6.7.2]). If G is cyclic and g, g′ ∈ G(S)
are generators of G, then for every positive divisor d of n both n

d · g and n
d · g

′

are generators of the same S-subgroup

Gd ⊂ G
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that is cyclic of order d. In particular, if G is cyclic, then the fppf local on S
subgroup of G defined in this way descends to a canonical cyclic S-subgroup
Gd ⊂ G of order d.

Proof. Cyclicity is an fppf local condition, so we may work fppf locally on S. We
may therefore use Corollary 3.2.6 and Lemma 4.2.1 to assume that the number of
irreducible components of each degenerate geometric fiber of E→ S is divisible by
n and that there is an elliptic curve E ′→ S such that E sm

[n] ' E ′[n]. Thus, since,
by [Katz and Mazur 1985, 1.10.6 and its generalization 1.10.1], the properties under
consideration depend solely on the S-group scheme E sm

[n] and its subgroup G,
the claims follow from their elliptic curve cases (in (a), if n is invertible on S, then
a cyclic G of order n becomes isomorphic to Z/nZ over an étale cover of S, so that
G× becomes isomorphic to the constant subscheme (Z/nZ)× ⊂ Z/nZ). �

Definition 4.2.8. For a generalized elliptic curve E→ S and a cyclic S-subgroup
G ⊂ E sm of order n, the S-subgroup Gd defined in Proposition 4.2.7(f) is the
standard cyclic subgroup of G of order d . Isogenies f1 : E→ E ′ and f2 : E ′→ E ′′

of constant degrees between generalized elliptic curves over S are cyclic in standard
order if Ker( f2 ◦ f1) is cyclic and Ker f1 is its standard cyclic subgroup (so that, in
particular, f1 and f2 are both cyclic by Proposition 4.2.9(e) below).

In Propositions 4.2.9 and 4.2.10 we extend various results of [Katz and Mazur
1985, §6.7] about standard cyclic subgroups and standard order factorizations of
cyclic isogenies to the case of generalized elliptic curves (Chapter 2 provides a
robust extension of the notion of an isogeny). Some of these extensions will be
important for the analysis of X00(n) carried out in Chapter 5.

Proposition 4.2.9. Let E → S be a generalized elliptic curve, let G ⊂ E sm be a
cyclic S-subgroup of order n, let d and d ′ be positive divisors n, and let

Gd ⊂ G

denote the standard cyclic subgroup of order d.

(a) (Compare with [Katz and Mazur 1985, 6.7.4]). If d | d ′, then Gd is identified
with the standard cyclic subgroup of Gd ′ of order d.

(b) Interpreting the intersection as that of fppf subsheaves of G, we have

Gd ∩Gd ′ = Ggcd(d,d ′).

(c) If G meets precisely m irreducible components of every degenerate geometric
fiber of E , then Gd meets precisely m/gcd

(
m, n

d

)
irreducible components of

every degenerate geometric fiber of E.

(d) (Compare with [Katz and Mazur 1985, 6.7.5]). Letting G×d denote the S-
scheme parametrizing the generators of Gd (so that, by Proposition 4.2.7(a),



A modular description of X0(n) 2043

G×d is a closed subscheme of Gd and is finite locally free of rank φ(d) over
S), we have

G =
∑

d|n G×d as effective Cartier divisors on E sm.

(e) (Compare with [Katz and Mazur 1985, 6.7.4]). The quotient

G/Gd ⊂ (E/Gd)
sm

is a cyclic S-subgroup of order n
d , the image of any generator of G generates

G/Gd , and if d | d ′, then the standard cyclic subgroup of G/Gd of order d ′
d is

identified with Gd ′/Gd .

(f) (Compare with [Katz and Mazur 1985, 6.7.11 (2)]). If n and n
d have the same

prime divisors, then g ∈ G(S) generates G if and only if its image generates
G/Gd , and, in particular, g generates G if and only if g+ h generates G for
some (equivalently, for any) h ∈ Gd(S).

Proof. Part (a) follows from the definitions because we may work fppf locally to
assume that G has a generator. Part (b) follows from (a): since Ggcd(d,d ′) lies inside
both Gd and Gd ′ , it suffices to observe that Gd/Ggcd(d,d ′) and Gd ′/Ggcd(d,d ′) have
coprime orders and hence intersect trivially inside G/Ggcd(d,d ′). Part (c) follows
from the definition of Gd . To prove part (d), we pass to an fppf cover of S over
which G admits a generator and apply Proposition 4.2.7(b).

For the remaining (e) and (f), we work fppf locally on S and use Corollary 3.2.6
and Lemma 4.2.1 to assume that G has a generator, that the number of irreducible
components of each degenerate geometric fiber of E is divisible by n, and that there
is an elliptic curve E ′→ S with E sm

[n]' E ′[n]. By [Katz and Mazur 1985, 1.10.6],
the properties under consideration in (e) and (f) depend solely on the S-group G
and not on its embedding into E sm or E ′, so (e) and (f) follow from their elliptic
curve cases. �

Proposition 4.2.10. Let

f1 : E0→ E1, f2 : E1→ E2, and f := f2 ◦ f1 : E0→ E2

be isogenies of constant degrees d1, d2, and d1d2 between generalized elliptic curves
over S.

(a) (Compare with [Katz and Mazur 1985, 6.7.8]). If f is cyclic and Ker f2 is
étale over S, then f1 and f2 are cyclic in standard order.

(b) (Compare with [Katz and Mazur 1985, 6.7.10]). If d1 and d2 are coprime, then
f is cyclic if and only if both f1 and f2 are cyclic, in which case f1 and f2 are
cyclic in standard order.
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(c) (Compare with [Katz and Mazur 1985, 6.7.12]). If f1 and f2 are cyclic, d1

and d2 have the same prime divisors, and g ∈ (Ker f )(S) is such that d2 · g
generates Ker f1 and f1(g) generates Ker f2, then f1 and f2 are cyclic in
standard order and g generates Ker f .

(d) (Compare with [Katz and Mazur 1985, 6.7.15]). If {Ei−1−→
fi Ei }

n
i=3 are further

isogenies of constant degrees di between generalized elliptic curves over S
such that d1, . . . , dn all have the same prime divisors and such that for each
1 ≤ i ≤ n − 1 the isogenies fi and fi+1 are cyclic in standard order, then
Ker( fn ◦ · · · ◦ f1) is cyclic and each Ker( fi ◦ · · · ◦ f1) is its standard cyclic
subgroup.

Proof. For notational convenience, we set n := 2 in (a)–(c). By Corollary 2.2.7 and
[Katz and Mazur 1985, 1.10.6], the properties under consideration may be expressed
in terms of the S-group scheme Ker( fn ◦ . . . ◦ f1) equipped with its S-subgroups
Ker( fi ◦ . . . ◦ f1). Thus, since the claims are fppf local on S, Corollary 3.2.6 and
Lemma 4.2.1 allow us to assume that the number of irreducible components of each
degenerate geometric fiber of E0 is divisible by

∏n
i=1 di and that there is an elliptic

curve E ′→ S with

E sm
0

[∏n
i=1 di

]
' E ′

[∏n
i=1 di

]
.

This reduces to the elliptic curve cases treated by Katz–Mazur in [op. cit.]. �

We wish to prove in Proposition 4.2.11(b) a generalization of the claim of [Conrad
2007, 2.4.5] that is important for the definition of 01(N ; n)-structures given there.
The argument given in [loc. cit.] seems to require further input: the “universal
deformation technique” invoked towards the end of the proof does not seem to apply
directly because it is based on [Deligne and Rapoport 1973, III.1.2(iii)] that requires
the number of irreducible components of the closed fiber to be prime to the residue
characteristic and the Z/NZ-structure P may interfere with this requirement.

Proposition 4.2.11. Let E→ S be a generalized elliptic curve, and let n,m ∈ Z≥1.

(a) If G ⊂ E sm and H ⊂ E sm are S-subgroups that are cyclic of orders n and
m, respectively, and α and β are fppf local on S Drinfeld Z/nZ- and Z/mZ-
structures on G and H , then∑

i∈Z/nZ
j∈Z/mZ

[α(i)+β( j)]

is an effective Cartier divisor on E sm that does not depend on the choices of α
and β and descends to a well-defined relative effective Cartier divisor on E sm

over S denoted by [G+ H ].
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(b) Set d := gcd(n,m) and suppose that the number of irreducible components of
each degenerate geometric fiber of E→ S is divisible by d. If G ⊂ E sm and
H ⊂ E sm are S-subgroups that are cyclic of orders n and m, respectively, and
[Gd + Hd ] = E sm

[d], then [G+ H ] is a finite locally free S-subgroup scheme
of E sm of order nm and killed by lcm(n,m), and any Drinfeld Z/nZ-structure
on G induces a Drinfeld Z/nZ-structure on [G+ H ]/H ⊂ (E/H)sm.

Proof. For (a), the cases when either α or β is fixed suffice, so one only needs to
observe that translation by an S-point is an automorphism of the S-scheme E sm

and hence commutes with the formation of the sum of effective Cartier divisors —
for example, the left hand side of

α(i)+ H =
∑

j∈Z/mZ[α(i)+β( j)]

does not depend on β.
For (b), we work fppf locally on S and use Corollary 3.2.6 to assume that the

number of irreducible components of each degenerate geometric fiber of E→ S is
divisible by nm and that there are Drinfeld Z/nZ- and Z/mZ-structures α and β on
G and H . We then imitate the argument of [Conrad 2007, top of p. 231] given in
the elliptic curve case. Namely, we use [Katz and Mazur 1985, 1.7.2 and 1.10.6] to
“factor into prime powers” to reduce to the case when n = pr and m = ps for some
prime p and r ≤ s (the r ≥ s case of the last aspect of the claim will be argued
separately in the last paragraph of this proof). We assume that r ≥ 1 (otherwise
[G+H ] = H ) and, after replacing S by an fppf cover, we choose a homomorphism
α̃ : Z/psZ→ E(S) with ps−r α̃(1)= α(1). By Proposition 4.2.5(b),

α̃+β : (Z/psZ)2→ E sm(S)

is a Drinfeld (Z/psZ)2-structure on E[ps
], so, by Proposition 4.2.5(e),

α̃ : Z/psZ→ (E/H)sm(S)

is a Drinfeld Z/psZ-structure on E/H . Then, by Proposition 4.2.5(c),

α : Z/pr Z→ (E/H)sm(S)

is a Drinfeld Z/pr Z-structure on a subgroup K ⊂ (E/H)sm. Finally, by [Katz
and Mazur 1985, 1.11.3], the scheme [G + H ] is the preimage of K in E , so is
a subgroup, as desired. Moreover, [G + H ] is killed by ps because the quotient
[G+ H ]/E[pr

] is killed by its order, i.e., by ps−r , whereas E[pr
] is killed by pr .

By construction, α, whose particular choice is irrelevant for the argument, induces
a Drinfeld Z/pr Z-structure on [G+ H ]/H .

It remains to prove that any α also induces a Drinfeld Z/pr Z-structure on
[G + H ]/H ⊂ (E/H)sm when r ≥ s and s ≥ 1. For this, by Proposition 4.2.5(e),
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α|(Z/pr Z)[ps ] induces a Drinfeld Z/psZ-structure on E/H , so, by Proposition 4.2.5(d),
α induces a Drinfeld Z/pr Z-structure on some S-subgroup K ′ ⊂ (E/H)sm, and it
remains to apply [Katz and Mazur 1985, 1.11.3] again to deduce that the preimage
of K ′ in E must equal [G+ H ]. �

One of the cornerstones of our approach to the study of various moduli stacks of
Drinfeld A-structures on generalized elliptic curves is a direct reduction of many
questions to the A = (Z/nZ)2 case. To make reductions of this sort feasible we
will need the following result:

Proposition 4.2.12. Let E→ S be a generalized elliptic curve, let n,m ∈ Z≥1, let
S′ be a variable S-scheme, and recall Convention 4.2.4.

(a) If the number of irreducible components of each degenerate geometric fiber of
E → S is divisible by nm and α is a Drinfeld (Z/nZ)2-structure on E sm

[n],
then the functor

S′ 7→
{
Drinfeld (Z/nmZ)2-structures β on E sm

S′ [nm]

such that β|(Z/nmZ)[n] = αS′
}

is representable by a finite locally free S-scheme of rank

# GL2(Z/nmZ)

# GL2(Z/nZ)

that is étale if nm is invertible on S.

(b) (Compare with [Katz and Mazur 1985, 5.5.3]). If E → S is a generalized
elliptic curve for which n divides the number of irreducible components of each
degenerate geometric fiber and α is a Drinfeld Z/nZ-structure on E , then the
functor

S′ 7→
{
Drinfeld (Z/nZ)2-structures βon E sm

S′ [n]

such that β|Z/nZ×{0} = αS′
}

is representable by a finite locally free S-scheme of rank n ·φ(n).

(c) (Compare with [Katz and Mazur 1985, 5.5.3]). If the number of irreducible
components of each degenerate geometric fiber of E→ S is divisible by n and,
for some S-subgroup G ⊂ E ,

α : Z/nZ→ E sm(S) and β : Z/nZ→ (E/G)sm(S)

are Drinfeld Z/nZ-structures on G and on E sm
[n]/G, respectively, then the

functor

S′ 7→
{
Drinfeld (Z/nZ)2-structures γ on E sm

S′ [n] such that

αS′ = γ |Z/nZ×{0} and βS′ = γ |{0}×Z/nZ : Z/nZ→ (E/G)sm(S′)
}
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is representable by a finite locally free S-scheme of rank n.

(d) Set d := gcd(n,m) and N := lcm(n,m). If the number of irreducible compo-
nents of each degenerate geometric fiber of E→ S is divisible by N and α and
β are, respectively, Drinfeld Z/nZ- and Z/mZ-structures on E such that

α|(Z/nZ)[d]+β|(Z/mZ)[d] : (Z/dZ)2→ E sm(S)

is a Drinfeld (Z/dZ)2-structure on E sm
[d], then the functor

S′ 7→
{
Drinfeld (Z/NZ)2-structures γ on E sm

S′ [N ] such that

αS′ = γ |(Z/NZ×{0})[n] and βS′ = γ |({0}×Z/NZ)[m]
}

is representable by a finite locally free S-scheme of rank N ·φ(N )/(d ·φ(d)).

Proof. All the functors in question are fppf sheaves, so we may work fppf locally
on S. Setting N := nm (resp. N := n) in part (a) (resp. in parts (b) and (c)) for
notational convenience, we may therefore apply Lemma 4.2.1 to assume that there
is an elliptic curve E ′→ S with

E ′[N ] ' E sm
[N ].

By [Katz and Mazur 1985, 1.10.6], all the properties and functors under consider-
ation depend solely on the S-scheme E sm

[N ] (and its subgroup G in (c)), so we
may pass to E ′ to reduce to the elliptic curve case. This already settles (b) and (c),
and in order to also obtain (a) it remains to combine [EGA IV2 1965, 6.1.5] with
[Katz and Mazur 1985, 5.1.1], which ensures that for every ` ∈ Z≥1, the moduli
stack parametrizing Drinfeld (Z/`Z)2-structures on elliptic curves is finite locally
free of rank # GL2(Z/`Z) over E``, étale over E``Z[1/`], and regular.

For the remaining elliptic curve case of (d), we use [Katz and Mazur 1985, 1.7.2]
to “factor into prime powers” and reduce to the case when

n = pr and m = ps for some prime p.

Without loss of generality r ≥ s, so the case s = 0 is settled by (b). In the case
s ≥ 1, by Proposition 4.2.5(b) (i.e., by [Katz and Mazur 1985, 5.5.8(1)]), the
functor in question is identified with the functor parametrizing Q ∈ E(S′) such that
pr−s Q = βS′(1). This functor is an E[pr−s

]-torsor, so it is representable by a finite
locally free S-scheme of rank p2(r−s)

= pr
·φ(pr )/(ps

·φ(ps)). �

When proving the algebraicity of moduli stacks of Drinfeld structures on gen-
eralized elliptic curves we will sometimes rely on the representability of functors
parametrizing various such structures on a fixed curve. The key case of this repre-
sentability is Proposition 4.2.15(a) recorded below — further cases may be deduced
from it with the help of Proposition 4.2.7(a). It will be important to have such
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representability when the structures being parametrized are assumed to be ample,
so we first review the notion of ampleness.

Definition 4.2.13. A finite locally free S-subgroup G⊂ E sm of a generalized elliptic
curve E→ S is ample if G is S-ample as a relative effective Cartier divisor on E ,
equivalently, if G meets every irreducible component of every geometric fiber of
E→ S. For a finite abelian group A, a Drinfeld A-structure α on E is ample if the
S-subgroup Dα :=

∑
a∈A[α(a)] ⊂ E sm is ample.

Remark 4.2.14. The role of ampleness of α in the study of various stacks that
classify Drinfeld A-structures on generalized elliptic curves is twofold: it facilitates
descent considerations (e.g., the ones in the definition of a stack) by endowing
E→ S with a canonical S-ample line bundle OE(Dα), and it also kills undesirable
automorphisms that would hinder the representability of various “forget the level”
contraction morphisms (e.g., if α is ample and S is a geometric point, then one sees
from Lemma 2.1.6 that only the identity automorphism of (E, α) fixes (E sm)0).

Proposition 4.2.15. Let E→ S be a generalized elliptic curve, let S′ be a variable
S-scheme, and recall the notation Gd and [G+ H ] introduced in Definition 4.2.8
and Proposition 4.2.11(a).

(a) Fix n,m ∈ Z≥1, and set d := gcd(n,m) and N := lcm(n,m). The functor

F : S′ 7→
{
cyclic S′-subgroups G, H ⊂ E sm

S′

of orders n and m with[Gd + Hd ] = E sm
S′ [d]

}
(resp. its analogue which, in addition, requires [G + H ] to be ample) is
representable by a finitely presented, separated, quasifinite, flat S-scheme F
that is étale if nm is invertible on S. If N divides the number of irreducible
components of each degenerate geometric fiber of E → S, then F (defined
without the ampleness requirement) is finite locally free of rank

# GL2(Z/NZ) ·
d ·φ(d)

N ·φ(N ) ·φ(n) ·φ(m)
over S.

(b) (Compare with [Katz and Mazur 1985, 6.8.1]). For every n ∈ Z≥1, the functor

I : S′ 7→
{

finite locally free S′-subgroups G ⊂ E sm
S′ of rank n

}
(resp. its analogue which, in addition, requires G to be ample) is representable
by a finitely presented, separated, quasifinite, flat S-scheme I that is étale if n
is invertible on S. If n divides the number of irreducible components of each
degenerate geometric fiber of E→ S, then I (defined without the ampleness
requirement) is finite locally free over S and its rank is constant and equals the
number of subgroups of (Z/nZ)2 of order n.
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Remark 4.2.16. In (a), an important special case is m = 1, when F parametrizes
cyclic subgroups of order n. In (b), due to Corollary 2.2.7(b), I parametrizes
n-isogenies with source E .

Proof of Proposition 4.2.15. Due to [EGA IV3 1966, 9.6.4] and limit arguments
that reduce to a Noetherian base, the additional ampleness requirement cuts out
quasicompact open subfunctors of F and I, so the ampleness variant of the claims
will follow once we establish the rest.

To ease notation, we set N := n in (b). By [EGA IV4 1967, 18.12.12], quasifinite
and separated morphisms are quasiaffine, so effectivity of fppf descent for relatively
quasiaffine schemes enables us to work fppf locally on S. We may therefore apply
Corollary 3.2.6 to assume that E sm is an open S-subgroup of the smooth locus
of another generalized elliptic curve E ′→ S for which N divides the number of
irreducible components of each degenerate geometric fiber. The functor F (resp. I)
is an open subfunctor of the corresponding functor F ′ (resp. I ′) for E ′, and the
open immersion F ⊂ F ′ (resp. I ⊂ I ′) is quasicompact due to limit arguments, so
it suffices to settle the claims for E ′ in place of E . We may then use Lemma 4.2.1
to assume that there is an elliptic curve E ′′→ S with

E ′′[N ] ' E ′sm
[N ].

Since E ′ and E ′′ give isomorphic functors I, this reduces (b) to its elliptic curve
case [Katz and Mazur 1985, 6.8.1].

For (a), we let F ′N denote the functor that parametrizes Drinfeld (Z/NZ)2-
structures α on E ′sm

S′ [N ]. By Proposition 4.2.12(a), F ′N is representable by a finite
locally free S-scheme of rank # GL2(Z/NZ) that is étale if N is invertible on S.
By Proposition 4.2.5(a) and (c), there is a well-defined morphism

F ′N → F ′

that sends α to the pair of subgroups on which α|(Z/NZ×{0})[n] and α|({0}×Z/NZ)[m]

are Drinfeld Z/nZ- and Z/mZ-structures, respectively. By Proposition 4.2.7(a) and
Proposition 4.2.12(d), F ′N → F ′ is representable by schemes and finite locally free
of rank

N ·φ(N ) ·φ(n) ·φ(m)
d ·φ(d)

.

Therefore, the desired claim about F ′ follows from [SGA 3 I (new) 2011, V, 4.1]
(combined with [EGA IV2 1965, 2.2.11(ii); EGA IV4 1967, 17.7.5 and 17.7.7]). �

4.3. A modular description of X0(n)

The main goal of this section is to give a modular description of X0(n), where
n ∈ Z≥1 and

0(n) := Ker(GL2(Ẑ)� GL2(Z/nZ))
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(see Section 4.1.2 for the definition of X0(n); see also Section 1.9). This description
and the proof of its correctness follow already from the results of [Conrad 2007],
which also show the regularity and other properties of X0(n). We reprove both the
description and some of the properties of X0(n) by exploiting a direct relationship
with the compactification E``n studied in Chapter 3. The resulting proofs seem more
direct and more versatile — for instance, we will see in Section 4.4 that virtually
the same strategy also handles the H = 01(n) case, which is significantly more
complex for the methods of [op. cit.]. Another pleasant feature of this approach is
that it eliminates the crutch of analytic uniformizations — for instance, in the proof
of the “ampleness” of X (n)∞ ⊂X (n) given in Proposition 4.3.2(b), the only input
that is needed from the theory over C is the fact that the coarse moduli space of
(E``1)C is P1

C
(this comes in through our reliance on [Deligne and Rapoport 1973,

VI.1.1] in the proof of Proposition 3.3.2).
We begin by giving the definition of the modular stack X (n) that classifies

generalized elliptic curves endowed with an ample level n structure, and proceed to
establish enough of its properties to arrive at the identification X (n)=X0(n).

4.3.1. The stack X (n). This is the Z-stack that, for a fixed n ∈ Z≥1, and for
variable schemes S, parametrizes the pairs(

E −→π S, α : (Z/nZ)2→ E sm(S)
)

consisting of a generalized elliptic curve E −→π S whose degenerate geometric fibers
are n-gons and an (automatically ample) Drinfeld (Z/nZ)2-structure α on E sm

[n].
The notation agrees with that of Section 4.1.1 because X (1)= E``1. We let

X (n)∞ ⊂X (n) and Y (n)⊂X (n)

be the closed substack cut out by the degeneracy loci S∞,π and its open complement
(the elliptic curve locus), respectively. Due to Remark 4.2.3, for variable Z[1/n]-
schemes S, the base change Y (n)Z[1/n] parametrizes elliptic curves E→ S equipped
with an S-isomorphism α : (Z/nZ)2S −→

∼ E[n].
The results of Section 4.2 lead to the following direct relationship between X (n)

and E``n .

Proposition 4.3.2. Consider the Z-morphism f :X (n)→ E``n that forgets α.

(a) The morphism f is representable, finite, and locally free of degree equal
to # GL2(Z/nZ); moreover, f is étale over Z[1/n]. In particular, X (n) is
a Cohen–Macaulay, reduced algebraic Z-stack that is proper, flat, and of
relative dimension 1 over Spec Z at every point; moreover, X (n) is smooth
over Z[1/n].

(b) The closed substack X (n)∞ ⊂X (n) is the preimage of the closed substack
E``∞n ⊂E``n and is a reduced relative effective Cartier divisor over Spec Z that
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meets every irreducible component of every geometric fiber of X (n)→ Spec Z

and is smooth over Z[1/n].

Proof. (a) The asserted properties of f follow from Proposition 4.2.12(a), and
those of X (n), other than the reducedness, then result from Theorem 3.1.6(a)
(and [EGA IV2 1965, 6.4.2] for the Cohen–Macaulay aspect). By [EGA IV2 1965,
5.8.5], the reducedness amounts to the combination of (R0) and (S1). The Cohen–
Macaulay aspect implies (S1), whereas (R0) follows from the Z-flatness and Z[1/n]-
smoothness.

(b) In the given moduli interpretation, the map X (n)→ E``n does not change
the underlying generalized elliptic curves, so an S-point of X (n) factors through
X (n)∞ if and only if its image in E``n factors through E``∞n . In other words,

X (n)∞ =X (n)×E``n
E``∞n ,

as desired. All the remaining claims then follow from (a) and from their coun-
terparts for E``n supplied by Theorem 3.1.6(c)–(d) and Proposition 3.3.2 (for the
reducedness of X (n)∞ one uses the (R0)+(S1) criterion as in the proof of (a)). �

4.3.3. The contraction morphisms. Due to Proposition 4.2.5(a), the contraction
morphism

X (nm)
c
−→X (n) is well defined by (E, α) 7→

(
cE sm[n](E), α|(Z/nmZ)2[n]

)
(see Convention 4.2.4) for every n,m ∈ Z≥1. This morphism is compatible with
its analogue for E``n discussed in Section 3.2.1 in the sense that there is the
commutative diagram

X (nm)

c
��

fnm
// E``nm

��

X (n)
fn
// E``n

whose horizontal maps forget the level structures α.

Proposition 4.3.4. For every n,m ∈ Z≥1, the contraction c :X (nm)→X (n) is
representable, finite, and locally free of rank # GL2(Z/nmZ)/# GL2(Z/nZ). In
particular, each X (n) is Deligne–Mumford.

Proof. Since X (1) is Deligne–Mumford, the last assertion follows from the rest
(applied with n = 1). The representability of c by algebraic spaces follows from
Lemma 3.2.2(b) and Lemma 2.1.6.

The contraction c inherits properness and finite presentation from

X (nm)→ Spec Z,
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and so is quasifinite due to its moduli interpretation. Therefore, by Lemma 3.2.3,
the map c is representable by schemes and finite. It remains to prove that c is flat —
once this is done, the asserted rank may be read off on the elliptic curve locus by
using Proposition 4.3.2(a).

The flatness of the base change

E``nm ×E``n
X (n)

a
−→X (n)

follows from that of E``nm → E``n supplied by Theorem 3.2.4(a). On the other
hand,

E``nm ×E``n
X (n)

parametrizes generalized elliptic curves endowed with a Drinfeld (Z/nZ)2-structure
on E sm

[n] subject to the constraint that the degenerate geometric fibers are nm-gons,
so the map

X (nm)
b
−→ E``nm ×E``n

X (n)

is flat by Proposition 4.2.12(a). In conclusion, the composite c= a◦b is also flat. �

We are ready for the promised identification X (n)=X0(n).

Theorem 4.3.5. The Deligne–Mumford stack X (n) is regular and is identified
with the stack X0(n) of Section 4.1.2 (see the proof for the description of the
identification).

Proof. By [Katz and Mazur 1985, 5.1.1], the open substack Y (n)⊂X (n) is regular.
By combining this with the conclusions of Proposition 4.3.2, we see that X (n)
satisfies both (R1) and (S2), i.e., is normal. Therefore, due to the conclusions of
Proposition 4.3.4, X (n) is identified with the normalization of X (1) in Y (n)Z[1/n].
However, the moduli interpretations of the Y (1)-stacks Y (n)Z[1/n] and Y0(n)[1/n]
coincide (see Sections 4.1.2 and 4.3.1), so X (n) is identified with the normalization
of X (1) in Y0(n)[1/n], i.e., with X0(n). To then extend the regularity of Y (n)
supplied by [Katz and Mazur 1985, 5.1.1] to the regularity of the entire X (n), we
recall that it follows from [Deligne and Rapoport 1973, 4.13] that X0(n) is regular
away from the supersingular points in characteristics dividing n. �

In the sequel we will identify X (n) and X0(n). We conclude the section by
recording all the cases in which X (n) is a scheme (see [Deligne and Rapoport
1973, IV.2.9] for such a result over Z[1/n]).

Proposition 4.3.6. The stack X (n) is a (necessarily projective) scheme over Z

unless n = ps or n = 2ps for some prime p and some s ∈ Z≥1.

Proof. If n = ps or n = 2ps , then every supersingular elliptic curve E over Fp

equipped with a Drinfeld (Z/nZ)2-structure on E[n] has multiplication by −1 as
an automorphism, so X (n) cannot be a scheme. Outside of these cases, n = n′n′′
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for relatively prime n′ ≥ 3 and n′′ ≥ 3, so, due to [Katz and Mazur 1985, 2.7.2(1)]
and Lemma 2.1.6, the geometric points of X (n) have no nontrivial automorphisms,
and hence X (n) is a projective Z-scheme by Lemma 4.1.3. �

4.4. A modular description of X01(n)

The main goal of this section is to give a modular description of X01(n), where
n ∈ Z≥1 and

01(n) :=
{(

a b
c d

)
∈ GL2(Ẑ) such that a ≡ 1 mod n and c ≡ 0 mod n

}
(see Section 4.1.2 for the definition of X01(n); see also Section 1.9). The overall
strategy is similar to the case of 0(n) treated in the previous section: through
relations with the compactifications E``m we infer enough properties of the stack
X1(n) that classifies generalized elliptic curves endowed with an ample Drinfeld
Z/nZ-structure to arrive at the identification X1(n) = X01(n). As in the case of
0(n), this identification and the finer properties of X1(n), such as regularity, follow
already from the results of [Conrad 2007], but the alternative proofs given below
seem simpler. In particular, when proving the regularity of X1(n) we do not use any
computations with schemes of 01(n)-structures on Tate curves or with universal
deformation rings, but instead directly deduce such regularity from the regularity
of X (n).

4.4.1. The stack X1(n). This is the Z-stack that, for a fixed n ∈ Z≥1 and for
variable schemes S, parametrizes the pairs(

E −→π S, α : Z/nZ→ E sm(S)
)

consisting of a generalized elliptic curve E −→π S and an ample Drinfeld Z/nZ-
structure α on E . As before, we let

X1(n)∞ ⊂X1(n) and Y1(n)⊂X1(n)

be the closed substack cut out by the degeneracy loci S∞,π and its open complement
(the elliptic curve locus), respectively.

For a positive divisor m of n, we let

X1(n)(m) ⊂X1(n)

be the open substack that classifies those (E, α) for which the degenerate geometric
fibers of E→ S are m-gons (the openness follows from Remark 2.1.9), and we set

X1(n)∞(m) :=X1(n)(m) ∩X1(n)∞.

When m varies, the open substacks X1(n)(m) cover X1(n), and we will use them
to prove the algebraicity of X1(n).
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Proposition 4.4.2. Let f(m) :X1(n)(m)→ E``m be the Z-morphism that forgets α.

(a) The morphism f(m) is representable by schemes, quasifinite, separated, flat,
and of finite presentation; moreover, f(m) is étale over Z[1/n]. In particular,
X1(n) is an algebraic Z-stack with a quasicompact and separated diagonal
and is flat, of finite presentation, and of relative dimension 1 over Spec Z at
every point; moreover, X1(n) is smooth over Z[1/n].

(b) The closed substack X1(n)∞(m) ⊂ X1(n)(m) is the preimage of E``∞m ⊂ E``m .
In particular, X1(n)∞ ⊂X1(n) is a reduced relative effective Cartier divisor
over Spec Z that is smooth over Z[1/n].

Proof. (a) The asserted properties of f(m) follow from Proposition 4.2.15(a) and
Proposition 4.2.7(a). Since the X1(n)(m) cover X1(n), the asserted properties of
X1(n) follow from those of f(m) and from Theorem 3.1.6(a).

(b) For the first assertion, it suffices to observe that in the given moduli interpretation,
the map f(m) does not change the underlying generalized elliptic curve. The
remaining assertions then follow from the first, (a), and Theorem 3.1.6(c)–(d), using
the (R0)+(S1) criterion together with [EGA IV2 1965, 6.4.2] to establish the claimed
reducedness. �

4.4.3. The relation to X (n). There is a forgetful contraction morphism

g :X1(n)→X (1),

and, due to Proposition 4.2.5(a), also an X (1)-morphism

h :X (n)→X1(n), (E, α) 7→
(
cα|Z/nZ×{0}(E), α|Z/nZ×{0}

)
that contracts E with respect to the unique finite locally free subgroup of E sm on
which α|Z/nZ×{0} is a Drinfeld Z/nZ-structure.

We will extract further information about X1(n) by studying h. The main
difficulty is that h changes E , which makes its key properties, such as flatness, less
transparent. To overcome this, we will further exploit the compactifications E``m .

Theorem 4.4.4. (a) The morphism h :X (n)→X1(n) is representable, finite, and
locally free of rank n ·φ(n). In particular, X1(n)→ Spec Z is proper, X1(n)
is regular, and X1(n)∞ meets every irreducible component of every geometric
Z-fiber of X1(n).

(b) The contraction g :X1(n)→X (1) is representable, finite, and locally free of
rank # GL2(Z/nZ)/(n ·φ(n)).

(c) The stack X1(n) is Deligne–Mumford and is identified with the stack X01(n) of
Section 4.1.2; more precisely, both X1(n) and X01(n) are the normalizations
of X (1) in Y1(n)Z[1/n] ∼= Y01(n)[1/n].
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Proof. (a) The representability of h by algebraic spaces follows from Lemma 3.2.2(b)
and Lemma 2.1.6. Let X (n)(m) ⊂ X (n) be the h-preimage of X1(n)(m), let
h(m) :X (n)(m)→X1(n)(m) be the restriction of h, and let f(m) :X1(n)(m)→ E``m

be the forgetful map studied in Proposition 4.4.2. By (3.2.1.2), the composition
f(m) ◦ h(m) agrees with the composition

X (n)(m)→ E``n
c
−→ E``m

in which the first map forgets the Drinfeld (Z/nZ)2-structure. Therefore, the
universal property of the fiber product gives the commutative diagram

X (n)(m)
h′
//

h(m)
((

X1(n)(m)×E``m
E``n

h′′

��

// E``n

c
��

X1(n)(m)
f(m)

// E``m

in which the square is Cartesian. By Proposition 4.2.12(b), the map h′ is repre-
sentable and finite locally free of rank n · φ(n). By Theorem 3.2.4(a), the base
change h′′ of c is proper, flat, and surjective. The representable map h(m) is therefore
proper, flat, surjective, and, due to its moduli interpretation, also quasifinite. Since
h inherits these properties, we see from Lemma 3.2.3 that h is representable by
schemes and finite locally free. Its rank is determined on the elliptic curve locus,
so equals n ·φ(n).

The remaining claims follow from the combination of Proposition 4.3.2, Theorem
4.3.5, and [EGA IV2 1965, 6.5.3(i)], once we establish the Z-separatedness of
X1(n). For this, since the diagonal map 1X1(n)/Z is separated and of finite type by
Proposition 4.4.2(a), its properness follows from the commutative diagram

X (n)

h
��

1X (n)/Z
// X (n)×Z X (n)

h×h
��

X1(n)
1X1(n)/Z

// X1(n)×Z X1(n)

and the properness of (h× h) ◦1X (n)/Z.

(b) Since X1(n)→ Spec Z is proper, g is also proper. Moreover, g is representable
by algebraic spaces and quasifinite due to its moduli interpretation, Lemma 3.2.2(b),
and Lemma 2.1.6. Thus, due to Lemma 3.2.3, g is representable by schemes and
finite. The remaining assertions follow by considering the composite

X (n)
h
−→X1(n)

g
−→X (1)

and combining (a) with Proposition 4.3.4.
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(c) Thanks to (b), the Deligne–Mumford property is inherited from X (1). For
the rest, due to the regularity of X1(n) and the finiteness of X1(n)→X (1), we
need to identify the stack Y1(n)Z[1/n] with the stack Y01(n)[1/n] that, for variable
Z[1/n]-schemes S, parametrizes pairs consisting of an elliptic curve E→ S and
an S-point of the finite étale S-scheme{(

1 ∗
0 ∗

)
⊂ GL2(Z/nZ)

} ∖
Isom

(
E[n], (Z/nZ)2

)
.

The datum of such an S-point amounts to the datum of an isomorphism between
Z/nZ and a subgroup of E , so the sought identification results from Remark 4.2.3.

�

4.5. An axiomatic criterion for recognizing correctness of a modular
description

The arguments of the preceding section that supplied the identification

X1(n)=X01(n)

and proved the regularity of X01(n) illustrate a general method that will similarly
handle more complicated cases in the sequel. Therefore, in order to avoid repeti-
tiveness, we wish to present the following axiomatic result that ensures that for any
open subgroup H ⊂ GL2(Ẑ) any “good enough” candidate stack X ′

H agrees with
the XH defined in Section 4.1.2 and that XH is automatically regular whenever
such a good candidate is present. Of course, the main difficulty of this approach to
the regularity of XH lies in finding a suitable X ′

H . In all the cases presented in the
sequel, the candidate X ′

H will be defined by a modular description of its functor of
points and Theorem 4.5.1 will act as a criterion for recognizing that this modular
description actually yields XH .

Theorem 4.5.1. Let H ⊂ GL2(Ẑ) be an open subgroup, let n ∈ Z≥1 be such that
0(n)⊂ H , and let X ′

H be a Z-stack.

(a) If there is a cover

X ′

H =
⋃

m|n(X
′

H )(m) by open substacks (X ′

H )(m) ⊂X ′

H

each of which admits a representable by algebraic spaces, separated, finite
type morphism

(X ′

H )(m)→ E``d(m)

for some d(m)∈Z≥1, then X ′

H is algebraic, has a quasicompact and separated
diagonal 1X ′

H /Z
, and is of finite type over Z.

(b) If X ′

H is algebraic, has a quasicompact and separated diagonal, is of finite
type over Z, and
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(1) there is a proper, flat, and surjective Z-morphism X (n)
h
−→X ′

H ,

then X ′

H is regular, X ′

H → Spec Z is a proper, flat surjection, and (X ′

H )Z[1/n]

is Z[1/n]-smooth.

(c) If X ′

H is algebraic, Z-proper, and satisfies (1) together with

(2) there is a representable by algebraic spaces Z-morphism X ′

H
g
−→X (1) that

over Z[1/n] is identified with the morphism YH [1/n] → Y (1)Z[1/n] of
Section 4.1.2, and

(3) the composition g ◦ h :X (n)→X (1) is identified with the contraction of
Section 4.3.3,

then X ′

H is Deligne–Mumford and the morphism g induces the identification

XH =X ′

H ;

more precisely, then both XH and X ′

H are the normalizations of X (1) in
YH [1/n].

Remark 4.5.2. The flatness of h is one of the most stringent requirements. For the
X ′

H that we will construct this flatness will be supplied by the results of Katz and
Mazur through congruences with elliptic curves (see Proposition 4.2.12(b) and the
proof of Theorem 4.4.4(a) for an example).

Proof of Theorem 4.5.1. (a) The algebraicity of each (X ′

H )(m) follows from that
of E``d(m) supplied by Theorem 3.1.6(a) (see [Laumon and Moret-Bailly 2000,
4.5(ii)]). This suffices for the algebraicity of X ′

H because the diagonal 1X ′

H /Z

factors as the composition

X ′

H =
⋃

m|n(X
′

H )(m)→
⋃

m|n(X
′

H )(m)×Z (X
′

H )(m) ⊂X ′

H ×Z X ′

H

in which the inclusion is representable by open immersions. Since the inclusion is
also quasicompact and each (X ′

H )(m) is separated over Z, i.e., each 1(X ′

H )(m)/Z
is

proper, it also follows that 1X ′

H /Z
is quasicompact and separated.

(b) In the commutative diagram

X (n)
1X (n)/Z

//

h
��

X (n)×Z X (n)

h×h
��

X ′

H

1X ′
H /Z

// X ′

H ×Z X ′

H

the composite (h×h)◦1X (n)/Z is proper,1X ′

H /Z
is separated and of finite type, and

h is surjective, so 1X ′

H /Z
is proper. In other words, X ′

H → Spec Z is separated, so
X ′

H inherits Z-properness from X (n). Due to the flatness and surjectivity of h, the
flatness, regularity, and smoothness aspects for X ′

H follow from the corresponding
aspects for X (n) supplied by Proposition 4.3.2(a) and Theorem 4.3.5.
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(c) The Deligne–Mumford property follows from the representability of g. The
map g inherits properness from X ′

H → Spec Z and quasifiniteness from g ◦ h,
so g is finite by Lemma 3.2.3. Moreover, X ′

H is normal by (b), so, due to the
requirement (2), g identifies X ′

H with the normalization of X (1) with respect to
YH [1/n]→ Y (1)Z[1/n]. On the other hand, by definition, this normalization is XH

(see Section 4.1.2). �

Example 4.5.3. Theorem 4.5.1 is useful for proving that “obvious” candidate modu-
lar descriptions for various mixtures of standard moduli problems are correct. When
treating “mixture situations,” one cannot simply “reduce to individual constituents”
via fiber products (unlike on the elliptic curve locus): such “reductions” fail already
in situations where no mixtures are involved, for instance,

X (15) 6∼=X (3)×X (1) X (5), even though Y (15)∼= Y (3)×Y (1) Y (5),

as one sees by inspecting the ramification at the cusps(
e.g., CJq

1
15 K 6∼= CJq

1
3 K⊗CJqK CJq

1
5 K
)
.

The concrete example of a “mixture situation” for which we wish to illustrate
Theorem 4.5.1 has

H = 0(d)∩01(`) with coprime d, ` ∈ Z≥1.

For this H , due to the factorizations of Drinfeld structures discussed in [Katz and
Mazur 1985, 1.7.2], the “obvious” candidate X ′

H is the stack that, for variable
schemes S, parametrizes ample Drinfeld ((Z/dZ)2×Z/`Z)-structures α on general-
ized elliptic curves E→ S subject to the requirement that α|(Z/dZ)2×{0} is a Drinfeld
(Z/dZ)2-structure on E sm

[d] (so d divides the number of irreducible components
of each degenerate geometric fiber of E→ S).

For this X ′

H , we let the maps h and g in Theorem 4.5.1 be the forgetful contrac-
tions with n = d` and let

(X ′

H )(m) ⊂X ′

H

be the open substack parametrizing those E → S whose degenerate geometric
fibers are m-gons. The requirements of Theorem 4.5.1(a) are met due to [Katz
and Mazur 1985, 1.7.2] and Propositions 4.2.5(a), 4.2.7(a), and 4.2.15(a) (with
(n,m)= (d`, d) in the latter). The requirement (b)(1) is checked with the help of a
diagram analogous to the one in the proof of Theorem 4.4.4(a), the key point being
that the induced map

X (n)(m)→ (X ′

H )(m)×E``m
E``n

from the h-preimage X (n)(m) of (X ′

H )(m) is finite locally free of rank ` · φ(`)
due to Proposition 4.2.12(b). The requirement (c)(2) is checked as in the proof
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of Theorem 4.4.4(c) by using the fact that the image of H in GL2(Z/nZ) is the
pointwise stabilizer of (Z/dZ)2×Z/`Z in (Z/nZ)2. Finally, the requirement (c)(3)
follows from the definitions of g and h.

In conclusion,
X ′

H =X0(d)∩01(`)

and X0(d)∩01(`) is regular (such regularity at the cusps is not an automatic conse-
quence of the regularity of X0(d) and X01(`)).

4.6. A modular description of X01(n; n′) and X00(n; n′) for suitable n and n′

Let n and n′ be positive integers, and let

01(n; n′)⊂ GL2(Ẑ)

be the preimage of the subgroup of GL2(Z/nn′Z) that stabilizes the subgroup
{0}× (Z/nn′Z)[n′] in (Z/nn′Z)2 and that fixes (Z/nn′Z)[n]× {0} pointwise. Our
goal is to prove that the “obvious” candidate modular description for X01(n;n′)

presented in Section 4.6.1 is correct under the assumption that

ordp(n′)≤ ordp(n)+ 1

for every prime p. The importance of X01(n; n′) stems from its role in defining
Hecke correspondences for X1(n) (see Section 4.7), but there also are the following
reasons for treating H = 01(n; n′).

• The techniques used below to study X01(n; n′) simultaneously expose properties
of the stack X0(n)naive that parametrizes generalized elliptic curves equipped
with an ample cyclic subgroup of order n. Although in general X0(n)naive does
not agree with X00(n), its properties will nevertheless be crucial for the study
of X00(n) in Chapter 5.

• Under the additional assumption that ordp(n′)≤ ordp(n) for all p | gcd(n, n′),
the correctness of the candidate modular description of X01(n; n′) also follows
from the results of [Conrad 2007] but it seems worthwhile to simplify the
proofs of [op. cit.] with the help of the general Theorem 4.5.1. In fact, Conrad
does not assume that ordp(n′)≤ 1 for p - n, but outside this case the forgetful
contraction morphism from the algebraic stack M01(n; n′) that he constructs in
op. cit. to X (1) is not representable (even over C), so M01(n; n′) cannot agree
with X01(n; n′) (a related pathology is that M01(n; n′) is not Deligne–Mumford
in characteristics p - n with p2

| n′).

In order to also recover and generalize the results of [Conrad 2007] in the cases
when ordp(n′) > 1 for some prime p - n, we initially drop all requirements on n and
n′, define a certain stack X1(n; n′) that agrees with the stack M01(n; n′) considered
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in op. cit.(in the cases in which M01(n; n′) was defined), prove that X1(n; n′) is
algebraic, Z-proper, and regular (among other properties), and only then impose
assumptions on n and n′ in order to arrive at the agreement with X01(n; n′).

4.6.1. The stack X1(n; n′). This is the Z-stack that, for fixed n, n′ ∈ Z≥1 with
d := gcd(n, n′) and for variable schemes S, parametrizes the triples(

E −→π S, α : Z/nZ→ E sm(S), H
)

consisting of a generalized elliptic curve E −→π S, a Drinfeld Z/nZ-structure α on
some S-subgroup G ⊂ E sm, and a cyclic S-subgroup H ⊂ E sm of order n′ subject
to the requirements that

[Gd + Hd ] = E sm
[d] and [G+ H ] is ample (4.6.1.1)

(we implicitly use Definition 4.2.8 and Proposition 4.2.11(a) to make sense of
[Gd + Hd ] and [G+ H ]). The effectivity of descent needed for X1(n; n′) to be a
stack is ensured by the ampleness of [G+H ] as in Remark 4.2.14. The requirement
[Gd + Hd ] = E sm

[d] implies that the number of irreducible components of each
degenerate geometric fiber of E is divisible by d , so Proposition 4.2.11(b) ensures
that [G+ H ] is a finite locally free S-subgroup of E sm of rank nn′ that is killed by
lcm(n, n′).

We let

X1(n; n′)∞ ⊂X1(n; n′) and Y1(n; n′)⊂X1(n; n′)

be the closed substack cut out by the degeneracy loci S∞,π and its open complement
(the elliptic curve locus), respectively. Similarly to the case of X1(n) (discussed in
Section 4.4.1), for every positive divisor m of lcm(n, n′), we let

X1(n; n′)(m) ⊂X1(n; n′)

be the open substack over which the degenerate geometric fibers of E are m-gons.

4.6.2. Variants X̃1(n; n′) and X0(n; n′). Slight modifications of the definition of
X1(n; n′) give the following related stacks:

• the stack X̃1(n; n′) obtained by replacing the datum H by the datum of a
Drinfeld Z/n′Z-structure β on some S-subgroup H ⊂ E sm subject to (4.6.1.1);

• the stack X0(n; n′) obtained by replacing the datum α by the datum of a cyclic
S-subgroup G ⊂ E sm of order n subject to (4.6.1.1).

Due to Proposition 4.2.7(a), the forgetful maps

X̃1(n; n′)→X1(n; n′) and X1(n; n′)→X0(n; n′) (4.6.2.1)
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are representable by schemes, finite locally free of ranks φ(n′) and φ(n), respec-
tively, and, over Z[1/n′] and Z[1/n], respectively, étale. As before, for every
positive divisor m of lcm(n, n′) we let

X̃1(n; n′)(m) ⊂ X̃1(n; n′) and X0(n; n′)(m) ⊂X0(n; n′)

be the open substacks over which the degenerate geometric fibers of E are m-gons,
let

X̃1(n; n′)∞ ⊂ X̃1(n; n′) and X0(n; n′)∞ ⊂X0(n; n′)

be the degeneracy loci, and let

Ỹ1(n; n′)⊂ X̃1(n; n′) and Y0(n; n′)⊂X0(n; n′)

be the elliptic curve loci.
For suitably constrained n and n′, the stacks X̃1(n; n′) and X0(n; n′) were also

considered in [Conrad 2007] (in the notation M0̃1(N ; n) and M00(N ; n)). There
X̃1(n; n′) was often used as an intermediary in the proofs of the properties of
X1(n; n′), whereas X0(n; n′) was mentioned on page 273 in relation to modifica-
tions that one needs to make to the method of [op. cit.] to also construct Hecke
correspondences for X0(n). We will see below that the proofs of the properties of
X1(n; n′) will also prove the corresponding properties of X̃1(n; n′) and X0(n; n′).

4.6.3. Contraction maps from X (nn′). There is a forgetful contraction map

X (nn′)→ X̃1(n; n′) (4.6.3.1)

that sends a Drinfeld (Z/nn′Z)2-structure γ to

α := γ |(Z/nn′Z)[n]×{0} and β := γ |{0}×(Z/nn′Z)[n′]

(see Proposition 4.2.5(a) and (c) and Convention 4.2.4) and contracts the underlying
generalized elliptic curve accordingly. Similar forgetful contraction maps

X (nn′)→X1(n; n′) and X (nn′)→X0(n; n′)

are the compositions of (4.6.3.1) with the forgetful maps from (4.6.2.1).
We are ready to address the basic properties of the stack X1(n; n′) and its variants.

Theorem 4.6.4. Fix n, n′ ∈ Z≥1 and let X ∈ {X̃1(n; n′),X1(n; n′),X0(n; n′)}.

(a) The Z-stack X is algebraic, regular, proper, flat, and of relative dimension 1
over Spec Z at every point; moreover, X is smooth over Z

[ 1
nn′
]
. The diagonal

1X /Z is finite.

(b) The forgetful contraction map X (nn′)→X is representable by schemes and
is finite locally free of constant positive rank.
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(c) The closed substack X ∞
⊂X is a reduced relative effective Cartier divisor

over Spec Z that meets every irreducible component of every geometric Z-fiber
of X and is smooth over Z

[ 1
nn′
]
.

Proof. (a) By Proposition 4.2.15(a) and the finiteness of the maps (4.6.2.1), for every
positive divisor m of lcm(n, n′) the forgetful map X(m)→ E``m is representable,
separated, and of finite type, so, by Theorem 4.5.1(a), X is algebraic and has a
quasicompact and separated diagonal.

Except for the relative dimension and the diagonal aspects, the rest of the
claim follows from Theorem 4.5.1(b) once we prove that the forgetful contraction
X (nn′)→ X̃1(n; n′) is proper, flat, and surjective. For this, we first let X (nn′)(m)
for every positive divisor m of lcm(n, n′) be the preimage of X̃1(n; n′)(m). Due to
Theorem 3.2.4(a), it then suffices to note that, by Proposition 4.2.12(a) and (d), the
induced map

X (nn′)(m)→ X̃1(n; n′)(m)×E``m
E``nn′,

both components of which are forgetful, is finite locally free of constant positive
rank.

The relative dimension aspect will follow from the corresponding aspect for
X (nn′) once we prove that the surjective map X (nn′)→ X̃1(n; n′) is finite locally
free. In fact, due to Lemma 3.2.3 and the previous paragraph, representability
by algebraic spaces and quasifiniteness would suffice. The representability is
inherited from X (nn′)→X (1) and the quasifiniteness follows from the moduli
interpretation.

The diagonal 1X /Z is proper due to the Z-separatedness of X and is quasifinite
due to Theorem 3.1.6(a), so its finiteness follows from Lemma 3.2.3.

(b) Due to the proof of (a) and the fact that the forgetful contractions (4.6.2.1)
are representable and finite locally free, only the constancy of the rank requires
attention and we may focus on X0(n; n′). Moreover, since Y0(n; n′) is dense in
X0(n; n′), we may work on the elliptic curve locus. Therefore, since the rank of
Y (nn′)→ Y (1) is constant, the conclusion follows from Proposition 4.2.15(a)
which proves that Y0(n; n′)→ Y (1) is finite locally free of constant positive rank.

(c) The assertion about the geometric fibers follows from the corresponding assertion
for X (nn′)∞⊂X (nn′) supplied by Proposition 4.3.2(b), so it suffices to prove that
for each positive divisor m of lcm(n, n′) the restriction X ∞

(m)⊂X(m) of X ∞
⊂X is

a reduced relative effective Cartier divisor over Spec Z that is smooth over Z
[ 1

nn′
]
. To

do so, it suffices to note that X ∞

(m) is the pullback of E``∞m , to apply Theorem 3.1.6(c)–
(d) and Proposition 4.2.15(a), to use the properties of the forgetful maps (4.6.2.1),
and to use the (R0)+(S1) criterion for reducedness. �
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In principle it is possible to determine the largest Deligne–Mumford open sub-
stacks of X̃1(n; n′), X1(n; n′), and X0(n; n′) (such open substacks make sense a
priori due to Remark 3.1.7): one needs to inspect the defining modular descrip-
tions to determine those geometric points whose automorphism functors are not
étale. To illustrate the procedure, in Proposition 4.6.5 we exhibit large Deligne–
Mumford open substacks of X̃1(n; n′), X1(n; n′), and X0(n; n′) (the actual Deligne–
Mumford loci of X1(n; n′) and X0(n; n′) may be larger). For the stack M01(N ;n)

considered in [Conrad 2007], Proposition 4.6.5(b) improves on [Conrad 2007, 3.1.7]
by proving that the Deligne–Mumford locus includes all the cusps in characteristics
p | N (even when p2

| n).

Proposition 4.6.5. Fix n, n′ ∈ Z≥1 and set d := gcd(n, n′).

(a) The stack X̃1(n; n′) is Deligne–Mumford. In fact, the forgetful contraction
morphism

X̃1(n; n′)→X (1)

is representable by algebraic spaces.

(b) The open substack of X1(n; n′) obtained by removing the closed substacks
X1(n; n′)∞Fp

for the primes p with ordp(n′)≥ ordp(n)+2 is Deligne–Mumford.
If ordp(n′) ≤ ordp(n)+ 1 for every prime p, then the forgetful contraction
morphism

X1(n; n′)→X (1)

is representable by algebraic spaces.

(c) The open substack of X0(n; n′) obtained by removing the closed substacks
X0(n; n′)∞Fp

for the primes p with |ordp(n)−ordp(n′)|≥2 is Deligne–Mumford.
If |ordp(n)− ordp(n′)| ≤ 1 for every prime p, then the forgetful contraction
morphism

X0(n; n′)→X (1)

is representable by algebraic spaces.

Proof. We recall from Lemma 2.1.6 that the automorphism functor of the standard
m-gon generalized elliptic curve is µm × Z/2Z. To test the Deligne–Mumford
property of an open substack of X̃1(n; n′), X1(n; n′), or X0(n; n′), we will use
the criterion of having unramified automorphism functors at geometric points (see
Remark 3.1.7). To test the representability of contraction morphisms, we will use
Lemma 3.2.2(b). These preliminary remarks already settle part (a).

(b) Our task is to show that if p is a prime, E is the standard m-gon with p | m
over an algebraically closed field k, and (E, α, H) is an object of X1(n; n′)(k)
with ordp(n′) ≤ ordp(n)+ 1, then µp ⊂ Aut(E) does not fix both α and H . By
decomposing into primary parts with the help of [Katz and Mazur 1985, 1.7.2] and
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by contracting away from the p-primary part of [G+ H ], we loose no generality
by assuming that n, n′, and m are powers of p and m > 1.

Suppose that µp fixes both α and H . Then α cannot be ample, so H is ample,
H ∩ (E sm)0 contains µp ⊂ (E sm)0, and ordp(n′) ≥ 2. Therefore, the standard
cyclic subgroup Hp ⊂ H of order p is contained in (E sm)0 and hence equals
µp. Moreover, due to the requirement ordp(n′) ≤ ordp(n)+ 1, we have n > 1,
so, by Proposition 4.2.5(a), the requirement [Gd + Hd ] = E sm

[d] implies that
[G p + Hp] = E sm

[p]. The latter forces G p to project isomorphically onto the p-
torsion subgroup of the component group of E sm, so G injects into this component
group. Since H is ample and H ∩ (E sm)0 6= 0, this violates the requirement
ordp(n′) ≤ ordp(n)+ 1 unless G is ample, that is, unless α is ample, which is a
contradiction.

(c) Our task is to show that if p is a prime, E is the standard m-gon with p |m over
an algebraically closed field k, and (E,G, H) is an object of X0(n; n′)(k) with
|ordp(n)− ordp(n′)| ≤ 1, then µp ⊂ Aut(E) does not fix both G and H . As in the
proof of (b), we assume that n, n′, and m are powers of p and m > 1.

Suppose that µp fixes both G and H . By the conclusion of (b), µp cannot fix any
Drinfeld Z/nZ-structure (resp. Z/n′Z-structure) on G (resp. H ), so G and H must
both be ample, and hence must both contain µp ⊂ (E sm)0. Then G p = Hp = µp

inside (E sm)0, which is a contradiction to the requirement [G p + Hp] = E sm
[p]

inherited from [Gd + Hd ] = E sm
[d]. �

With Proposition 4.6.5 in hand, we are ready for identifications with suitable
modular curves XH .

Theorem 4.6.6. Fix n, n′ ∈ Z≥1.

(a) Let 0̃1(n; n′) be the preimage in GL2(Ẑ) of the subgroup of GL2(Z/nn′Z) that
fixes the subgroups (Z/nn′Z)[n] × {0} and {0} × (Z/nn′Z)[n′] pointwise in
(Z/nn′Z)2. The forgetful contraction X̃1(n; n′)→X (1) induces the identifi-
cation

X̃1(n; n′)=X0̃1(n; n′).

(b) Let 01(n; n′) be the preimage in GL2(Ẑ) of the subgroup of GL2(Z/nn′Z) that
fixes the subgroup (Z/nn′Z)[n] × {0} pointwise and stabilizes the subgroup
{0} × (Z/nn′Z)[n′] in (Z/nn′Z)2. If ordp(n′) ≤ ordp(n)+ 1 for every prime
p, then the forgetful contraction X1(n; n′)→X (1) induces the identification

X1(n; n′)=X01(n; n′).

(c) Let 00(n; n′) be the preimage in GL2(Ẑ) of the subgroup of GL2(Z/nn′Z)
that stabilizes the subgroups (Z/nn′Z)[n] × {0} and {0} × (Z/nn′Z)[n′] in
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(Z/nn′Z)2. If |ordp(n′)− ordp(n)| ≤ 1 for every prime p, then the forgetful
contraction X0(n; n′)→X (1) induces the identification

X0(n; n′)=X00(n; n′).

Proof. By Proposition 4.6.5, the imposed assumptions on n and n′ ensure that the
forgetful contraction morphisms to X (1) are representable by algebraic spaces.
Therefore, due to Theorem 4.6.4 and Theorem 4.5.1(c), we only need to show that,
for variable Z

[ 1
nn′
]
-schemes S, the Y (1)Z[ 1

nn′ ]
-stacks

Ỹ1(n; n′)Z[ 1
nn′ ]
, Y1(n; n′)Z[ 1

nn′ ]
, and Y0(n; n′)Z[ 1

nn′ ]

parametrize elliptic curves E→ S equipped with an S-point of

0̃1(n; n′) \ Isom(E[nn′], (Z/nn′Z)2), 01(n; n′) \ Isom(E[nn′], (Z/nn′Z)2),

and 00(n; n′) \ Isom(E[nn′], (Z/nn′Z)2),

respectively, where overlines denote images in GL2(Z/nn′Z). For this, it suffices to
inspect the defining modular descriptions of X̃1(n; n′), X1(n; n′), and X0(n; n′) and
to use the definitions of 0̃1(n; n′), 01(n; n′), and 00(n; n′) given in the statements
of (a), (b), and (c). �

4.7. A modular construction of Hecke correspondences for X1(n)

We wish to explain how the results of Sections 2.2, 4.4, and 4.6 give rise to a Hecke
correspondence

π1, π2 :X01(n; p) ⇒ X01(n)

for every n ∈ Z≥1 and every squarefree p ∈ Z≥1 that may or may not be coprime
with n.

In terms of the moduli interpretations given in Sections 4.4.1 and 4.6.1 and
proved in Theorems 4.4.4(c) and 4.6.6(b), the maps are given by

π1((E, α, H))= (cα(E), α) and π2((E, α, H))= (E/H, α),

and are well defined due to the last aspect of Proposition 4.2.11(b) (we let cα(E)
denote the contraction of E with respect to the unique subgroup on which α is a
Drinfeld Z/nZ-structure). To argue that we have exhibited a correspondence, it
suffices to prove the following lemma:

Lemma 4.7.1. The maps π1 and π2 are representable, finite locally free, and
surjective.

Proof. Since π1 is the X (1)-morphism induced by the inclusion 01(n; p)⊂ 01(n),
its finiteness follows from the finiteness of XH→XH ′ observed in the last paragraph
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of Section 4.1.2. By Theorem 4.4.4(a), X01(n) is regular, so the flatness of π1 follows
from [EGA IV2 1965, 6.1.5]. The surjectivity of π1 may be checked over (Y01(n))Q.

For the representability of π2, due to Lemma 3.2.2(b) and the representability
of X01(n; p)→X (1), it suffices to observe that if E is a generalized elliptic curve
over an algebraically closed field and H ⊂ E sm is a finite subgroup, then every
automorphism i of E that stabilizes H and induces the identity map on E/H
must fix (E sm)0 because the endomorphism idE sm −i |E sm of E sm factors through H .
The properness of π2 follows from the Z-properness of X01(n; p) and X01(n), so
its quasifiniteness may be checked on geometric fibers. Finiteness of π2 is then
supplied by Lemma 3.2.3, and its flatness follows from [EGA IV2 1965, 6.1.5].
Finally, the surjectivity of π2 may be checked over (Y01(n))Q. �

In the case when p is a prime, the Hecke correspondence above has already
been constructed in [Conrad 2007, 4.4.3] by a different method: due to the lack
of the theory of quotients of generalized elliptic curves by arbitrary finite locally
free subgroups, [loc. cit.] first defines π2 by the same formula on the elliptic curve
locus and then argues that the resulting map extends uniquely to the entire X01(n;p).
The construction above seems simpler and more direct, and it also produces the
map ξ of [Conrad 2007, 4.4.3]: if e and e′ are the identity sections of E→ S and
E/H → S, then there is a map

(e′)∗(�1
(E/H)/S)→ e∗(�1

E/S)

whose formation is compatible with base change in S.

Chapter 5. A modular description of X00(n)

For an integer n ∈ Z≥1 and the subgroup

00(n) :=
{(

a b
c d

)
∈ GL2(Ẑ) | c ≡ 0 mod n

}
,

the goal of this chapter is to exhibit the modular curve X00(n) defined via normaliza-
tion (see Section 4.1.2) as a moduli stack parametrizing generalized elliptic curves
equipped with a “00(n)-structure,” which on the elliptic curve locus is the datum
of a subgroup that is cyclic of order n in the sense of Definition 4.2.6. The proof of
the correctness of this moduli interpretation in Theorem 5.13 will simultaneously
deduce the regularity of X00(n) from that of Y00(n) proved by Katz and Mazur. We
begin with a naive modular description that recovers X00(n) only for squarefree n
and then proceed to refine the naive description to a description that works for any n.

Throughout Chapter 5 we fix an integer n ∈ Z≥1.

5.1. The stack X0(n)naive. This is the Z-stack that, for variable schemes S,
parametrizes the pairs

(E −→π S, G)
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consisting of a generalized elliptic curve E −→π S and an ample S-subgroup G⊂ E sm

that is cyclic of order n (in the sense of Definition 4.2.6). We call such a G a naive
00(n)-structure on E .

We let
Y0(n)naive

⊂X0(n)naive

be the open substack that parametrizes those pairs for which E is an elliptic curve.
For each positive divisor m of n, we let

X0(n)naive
(m) ⊂X0(n)naive

be the open substack that parametrizes those pairs for which the degenerate geo-
metric fibers of E are m-gons.

In the notation of Section 4.6.2, one has

X0(n)naive
=X0(n; 1),

so, by Theorem 4.6.4(a), the stack X0(n)naive is algebraic, proper and flat over
Spec Z, and regular with finite diagonal 1X0(n)naive/Z. By Theorem 4.6.4(b) (and its
proof), the morphism

X (n)→X0(n)naive

that sends a Drinfeld (Z/nZ)2-structure α to the subgroup on which α|Z/nZ×{0} is
a Drinfeld Z/nZ-structure and contracts the underlying generalized elliptic curve
with respect to this subgroup is finite locally free of rank n ·φ(n)2.

If n is squarefree, then Theorem 4.6.6(c) proves that the contraction

X0(n)naive
→X (1) is identified with the structure morphism X00(n)→X0(1).

This identification fails when n is divisible by p2 for some prime p: variants of the
example given in Section 1.2 show that for such n the contraction

X0(n)naive
→X (1)

is not representable.

5.2. The notation d(m). For a positive divisor m of n, we set

d(m) :=
m

gcd
(
m, n

m

) ,
so that d(m) depends both on m and on the integer n that is fixed throughout.

To explain the role of the function m 7→ d(m) in the context of 00(n)-structures
on generalized elliptic curves, let E be the standard m-gon over an algebraically
closed field and suppose that E is equipped with an ample cyclic subgroup G⊂ E sm

of order n. Then G ∩ (E sm)0 = µn/m and µm ⊂ Aut(E) is the subgroup of those
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automorphisms that induce the identity map on the contraction of E with respect
to the zero section (see Lemma 2.1.6). The further subgroup of Aut(E) that in
addition stabilizes G is therefore µm ∩µn/m =µgcd(m,n/m) (intersection in (E sm)0),
and this subgroup acts trivially on precisely d(m) of the m irreducible components
of E .

When refining G to a 00(n)-structure on such an E , we will only remember
the contraction cE sm[d(m)](E) that is a d(m)-gon together with the standard cyclic
subgroup G(n/m)·d(m) of order n

m · d(m). In addition, we will require the datum of a
compatible ample cyclic G ′ of order n on every E ′ that contracts to (a base change)
of cE sm[d(m)](E) and that has m-gon degenerate geometric fibers. Different m may
give the same d(m), so there is no way to recover m from cE sm[d(m)](E) alone; to
overcome this, we will incorporate m into the data that comprises a 00(n)-structure.

For the precise definition of a 00(n)-structure given in Section 5.10, we need the
following preparations.

5.3. The stack of “decontractions”. Fix a positive divisor m of n and suppose that
we have a generalized elliptic curve E −→π S and an open subscheme Sπ,(m)⊂ S that
contains the elliptic curve locus S− S∞,π and such that the degenerate geometric
fibers of ESπ,(m) are d(m)-gons. (Such an Sπ,(m) will be part of the data of a 00(n)-
structure on E .) The base change ESπ,(m) determines a map Sπ,(m)→ E``d(m), so
we may consider the fiber product algebraic stack

Sπ,(m)×E``d(m)
E``m,

which parametrizes “decontractions” of ESπ,(m) , or, more precisely, which, for
variable Sπ,(m)-schemes S′, parametrizes the pairs(

E ′ −→π
′

S′, ι′ : ES′ −→
∼ cE ′sm[d(m)](E ′)

)
consisting of a generalized elliptic curve E ′ −→π

′

S′ whose degenerate geometric
fibers are m-gons and a specified S′-isomorphism ι′. We denote the universal object
of Sπ,(m)×E``d(m)

E``m by
(Eπ,(m), ιπ,(m)).

The base change of Sπ,(m)×E``d(m)
E``m (resp. of Eπ,(m)) to S− S∞,π is identified

with S− S∞,π (resp. with ES−S∞,π ), and the same holds over the entire Sπ,(m) if
d(m)= m.

We will endow the universal “decontraction” Eπ,(m) with additional structures.
The algebraic stack Eπ,(m) is typically not a scheme, but there are two ways to think
about such structures concretely:

• As compatible with isomorphisms and base change structures on E ′ for each

(E ′ −→π
′

S′, ι′);
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• As compatible under the pullbacks

Sπ,(m)×E``d(m)
X1 ⇒ Sπ,(m)×E``d(m)

X0

structures on the “decontractions” over the indicated bases, where

X1 ⇒ X0→ E``m

is a once and for all fixed scheme presentation of the algebraic stack E``m , so
that

Sπ,(m)×E``d(m)
X1 ⇒ Sπ,(m)×E``d(m)

X0→ Sπ,(m)×E``d(m)
E``m

is a scheme presentation of the algebraic stack Sπ,(m)×E``d(m)
E``m (by Theorem

3.1.6(a), the algebraic stacks E``m and E``d(m) have finite diagonals, so
X0×E``m

X0 and similar fiber products that would a priori be algebraic spaces
are schemes).

The second way has the advantage of avoiding set-theoretic difficulties that would
need to be addressed in order to make the first way completely rigorous.

The contractions of the generalized elliptic curves parametrized by the stack
Sπ,(m)×E``d(m)

E``m are identified. In particular, the degenerate geometric fibers of
these curves have canonically isomorphic component groups because the identity
component of such a fiber may be used to fix the “direction” of the m-gon. This
observation lies behind the following lemma:

Lemma 5.4. Let E −→π S and E ′ −→π
′

S be generalized elliptic curves whose degen-
erate geometric fibers are m-gons and let ι : c(E)−→∼ c(E ′) be an S-isomorphism
between their contractions with respect to the identity sections.

(a) If S is a geometric point, then there is a unique identification

E sm/(E sm)0 = E ′sm/(E ′sm)0

of the component groups that is induced by any isomorphism E ' E ′ that is
compatible with ι.

(b) If Sred
= (S∞,π )red (so that also Sred

= (S∞,π
′

)red), then there is a unique
S-identification

(E sm)[m]/(E sm)0[m] = (E ′sm)[m]/(E ′sm)0[m]

whose base change to any geometric S-point s is induced by any s-isomorphism
Es ' E ′s compatible with ιs . Any S-isomorphism i : E ' E ′ compatible with ι
induces this identification.



2070 Kęstutis Česnavičius

(c) For g ∈ E sm(S) and g′ ∈ E ′sm(S), the set of s ∈ S for which g and g′ meet the
same (in the sense of (a)) irreducible components of Es and E ′s forms an open
subscheme of S that is also closed if S red

= (S∞,π )red.

Proof. (a) If either E or E ′ is smooth, then ι itself induces the desired identification.
We may therefore assume that both E and E ′ are degenerate. Then, by Remark 2.1.9,
both E and E ′ are isomorphic to the standard m-gon discussed in Remark 2.1.5.
Moreover, any two isomorphisms E ' E ′ that are compatible with ι differ by an
automorphism of E ′ that is the identity map on (E ′sm)0. It remains to observe
that, by Lemma 2.1.6, any automorphism of E ′ that is the identity map on (E ′sm)0

induces the identity map on E ′sm/(E ′sm)0.

(b) If S is a geometric point, then

(E sm)[m]/(E sm)0[m] = E sm/(E sm)0,

and likewise for E ′, so the claim follows from (a). In general, by Lemma 2.1.11,
both

(E sm)[m]/(E sm)0[m] and (E ′sm)[m]/(E ′sm)0[m]

are étale, so we may and do assume that S = Sred. In this case, by Remark 2.1.9, i
exists fppf locally on S. Moreover, any i satisfies the defining property, so we only
need to check that two different i induce the same identification. For this, the case
of a local strictly Henselian S suffices and reduces to the settled case of a geometric
point.

(c) We may assume that S = S∞,π = S∞,π
′

and S is reduced and may work fppf
locally on S. We therefore use Remark 2.1.9 to fix an S-isomorphism i : E −→∼ E ′

that is compatible with ι and to assume that E is the standard m-gon. In this case,
the label of the component of E sm that meets g is locally constant on S, and likewise
for ι−1(g′). �

5.5. Coherence of a cyclic subgroup of the universal “decontraction”. In the
notation of Section 5.3, part of the data of a 00(n)-structure will be an ample cyclic
(Sπ,(m)×E``d(m)

E``m)-subgroup

G(m) ⊂ Esm
π,(m)

of order n, or, in more concrete terms, for every (E ′ −→π
′

S′, ι′) an ample cyclic
S′-subgroup G ′ ⊂ E ′sm of order n that is compatible with base change and with
isomorphisms of pairs (E ′, ι′) (for the notion of cyclicity, see Definition 4.2.6).

In order to isolate a well-behaved class of such G(m), we say that G(m) is coherent
if:
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For every Sπ,(m)-scheme S′ and every pair of objects(
E ′1

π ′1
−→ S′, ι′1

)
and

(
E ′2

π ′2
−→ S′, ι′2

)
of (Sπ,(m) ×E``d(m)

E``m)(S′), the pullbacks G ′1 ⊂ E ′sm
1 and G ′2 ⊂ E ′sm

2
of G(m) fpqc locally on S′ have generators g′1 and g′2 that meet the same
(in the sense of Lemma 5.4(a)) irreducible components of the geometric
fibers of E ′1 and E ′2 and satisfy

(ι′1)
−1
( n

m · g
′

1

)
= (ι′2)

−1
( n

m · g
′

2

)
.(

The last equality takes place in E and makes sense because n
m · g

′

1 lies in the
contraction cE ′sm

1 [d(m)]
(E ′1) by Proposition 4.2.9(c), and likewise for n

m · g
′

2.
)

Equiv-
alently, the coherence of G(m) is a condition of the existence of compatible fpqc
local generators of the pullbacks of G(m) along the two projections

(Sπ,(m)×E``d(m)
E``m)×Sπ,(m) (Sπ,(m)×E``d(m)

E``m)⇒ Sπ,(m)×E``d(m)
E``m,

where compatibility amounts to the conditions imposed on g′1 and g′2 above.
In what follows, the purpose of the coherence condition is to ensure that G(m) is

uniquely determined by its pullback to any (E ′−→π
′

S′, ι′) with S′= Sπ,(m), provided
that such an (E ′, ι′) exists. Lemma 5.7 will justify this, and its aspect (iii) will show
that no generality is lost if one strengthens the coherence condition by fixing an
fpqc local generator g′1 of G ′1 in advance.

Any G(m) is coherent if Sπ,(m)×E``d(m)
E``m = Sπ,(m), and also if n is a unit on

Sπ,(m) as we now show.

Lemma 5.6. If n is invertible on Sπ,(m), then every ample cyclic(Sπ,(m)×E``d(m)
E``m)-

subgroup G(m) ⊂ Esm
π,(m) of order n is coherent.

Proof. We will show that for every pair (E ′1
π ′1
−→S′, ι′1) and (E ′2

π ′2
−→S′, ι′2) as in the

definition of coherence, desired generators g′1 and g′2 of G ′1 and G ′2 exist even étale
locally on S′. For this, due to Lemma 5.4(c), we may assume that S′ is local strictly
Henselian and that the special fibers (E ′1)s′ and (E ′2)s′ are degenerate. Moreover,
since (E ′1)

sm
[n] and (E ′2)

sm
[n] are étale and G ′1 and G ′2 are constant, we may assume

further that S′ is a geometric point. In the case of a geometric point, it suffices to
transport any choice of a g′1 across any S′-isomorphism (E ′1, ι

′

1)' (E
′

2, ι
′

2). �

The following key lemma analyses the coherence condition beyond the case
when n is a unit by exhibiting a universal property satisfied by pullbacks of a
coherent G(m). This property compensates for the loss of a direct reduction to
geometric points that governed the case of an invertible n.

Lemma 5.7. Let m be a positive divisor of n, let d ∈ Z≥1 be a multiple of m, let
E −→π S and E ′ −→π

′

S be generalized elliptic curves whose degenerate geometric
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fibers are d-gons, and let

ι : cE sm[d(m)](E)−→∼ cE ′sm[d(m)](E ′)

be an S-isomorphism. For every cyclic S-subgroup G ⊂ E sm of order n that meets
precisely m irreducible components of every degenerate geometric fiber of E , there
is a unique cyclic S-subgroup G ′ ⊂ E ′sm of order n such that:

(i) Over S− S∞,π = S− S∞,π
′

there is an equality ι(GS−S∞,π )= G ′
S−S∞,π ′

.

(ii) fpqc locally on S there exist generators g of G and g′ of G ′ that meet the same
irreducible components of the geometric fibers of E and E ′ (in the sense of
Lemma 5.4(a)) and satisfy

ι
( n

m · g
)
=

n
m · g

′.

(So G ′ meets precisely m irreducible components of every degenerate geometric
fiber of E ′.)

Moreover, this unique G ′ is such that:

(iii) For every S-scheme T and every generator g̃ of GT , fpqc locally on T there
exists a generator g̃′ of G ′T such that g̃ and g̃′ meet the same irreducible
components of the geometric fibers of E and E ′ and satisfy

ι
( n

m · g̃
)
=

n
m · g̃

′.

(iv) The standard cyclic subgroups G(n/m)·d(m) ⊂ G and G ′(n/m)·d(m) ⊂ G ′ of order
n
m · d(m) satisfy

ι(G(n/m)·d(m))= G ′(n/m)·d(m).

Remark 5.8. Due to Proposition 4.2.9(c), the equalities displayed in (ii)–(iv) make
sense.

Proof of Lemma 5.7. We have broken the argument up into six steps.

Step 1: The claim of (iv) follows from the rest. The subgroups ι(G(n/m)·d(m)) and
G ′(n/m)·d(m) of E ′sm are cyclic of order n

m · d(m), agree with ι((G(n/m)·d(m))S−S∞,π )

over S− S∞,π
′

, and fpqc locally on S have generators ι
( m

d(m) ·g
)

and m
d(m) ·g

′ whose
n
m -multiples equal ι

( n
m ·
( m

d(m) · g
))

. Therefore, ι(G(n/m)·d(m)) and G ′(n/m)·d(m) must
be equal because they satisfy (i) and (ii) when n, m, and G are replaced by n

m ·d(m),
d(m), and G(n/m)·d(m), respectively (G(n/m)·d(m) meets precisely d(m) irreducible
components of every degenerate geometric fiber of E due to Proposition 4.2.9(c)).

Step 2: The claim of (iii). We may assume that T = S and may work fpqc locally
on S, so we fix g, g′, and g̃ over S. In order to find a desired fpqc local g̃′, we
work Zariski locally on S and use limit arguments together with Lemma 5.4(c) to
reduce to the case when S = Spec R for some Noetherian R. Then we pass to an
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fpqc cover to assume that R is complete and separated with respect to the ideal I
that cuts out S∞,π (equivalently, with respect to the ideal that cuts out S∞,π

′

; see
Corollary 3.2.5).

By Proposition 3.2.7(a), E sm
[n] (resp. E ′sm

[n]) has the largest finite locally free
S-subgroup An,m (resp. A′n,m) that meets precisely m irreducible components of
every degenerate geometric fiber of E (resp. E ′), so G ⊂ An,m and G ′ ⊂ A′n,m .
Moreover, Proposition 3.2.7(a) supplies extensions

0 // Bn // An,m // Cm // 0

0 // Bn // A′n,m // Cm // 0

of S-group schemes, where the identification of Bn is via ι and the identification of
Cm is via Lemma 5.4(b) (applied over R/I j for every j ≥ 1 to the contractions of
ER/I j and E ′R/I j with respect to the m-torsion). As may be checked on degenerate
geometric fibers, the generators g ∈G(S) and g′ ∈G ′(S) project to the same section
of Cm that gives an isomorphism Cm ' Z/mZ.

The homomorphism G→ Cm is finite locally free and, by Proposition 4.2.10(a),
its kernel is the standard cyclic subgroup Gn/m ⊂ G of order n

m . By replacing g
and g′ by u ·g and u ·g′ for a suitable u ∈ (Z/nZ)×(S), we reduce to the case when
g and g̃ have the same image in Cm . Then g− g̃ ∈ Gn/m , so n

m · g =
n
m · g̃, which

means that we may choose g̃′ to be g′.

For the rest of the proof, we focus on the remaining claim about the existence
and uniqueness of G ′.

Step 3: Reduction to the case when n is a prime power. The group G, as well
as any candidate G ′, decomposes as a product of its p-primary parts for various
primes p dividing n. By [Katz and Mazur 1985, 1.7.2], cyclicity of G or of G ′ is
equivalent to the cyclicity of the primary factors, and the datum of a generator of G
or of G ′ corresponds to the datum of a generator of each primary factor. Therefore,
for the existence and the uniqueness of the sought G ′ we may assume that n is a
prime power.

For the rest of the proof, we assume that n = pr and m = ps for some prime p
and r, s ∈ Z≥0.

Step 4: The case s = 0. For the existence, ι(G) fulfills the requirements (i)–(ii).
The uniqueness reduces to the case of an Artinian local S and then follows from
Proposition 3.2.7(a).

For the rest of the proof, we assume that s ≥ 1, so that n
m 6= n.
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Step 5: Uniqueness of G ′. Due to the claim concerning (iii) (i.e., due to Step 2),
we may assume that the two candidates G ′1,G ′2 ⊂ E ′sm have generators g′1 and g′2
that meet the same irreducible components of the geometric fibers of E ′ and satisfy
n
m · g

′

1 =
n
m · g

′

2. Furthermore, we may assume that the base S is Noetherian, then
local, then complete, and finally Artinian, and that E ′ is nonsmooth over S. Then,
since g′1− g′2 ∈ (E

′sm)0(S) and n
m · g

′

1 =
n
m · g

′

2, we have

g′2 = g′1+ h for some h ∈ (E ′sm)0
[ n

m

]
(S).

By Lemma 2.1.11 and Proposition 4.2.10(a), the S-group (E ′sm)0[n/m] is the
standard cyclic subgroup of G ′1 of order n

m , so Proposition 4.2.9(f) ensures that
g′1+ h generates G ′1, which means that G ′1 = G ′2.

Step 6: Existence of G ′. Due to the uniqueness of G ′, for its existence we may work
fpqc locally on S, so we fix a generator g of G. Moreover, as in Step 2 we reduce
to the case when S = Spec R for a Noetherian R that is complete and separated
with respect to the ideal I ⊂ R that cuts out S∞,π and use Proposition 3.2.7(a) to
obtain the diagram of extensions displayed in Step 2.

By Proposition 3.2.7(a), E ′sm
[m] ⊂ A′n,m , so E ′sm

[m/d(m)] ⊂ A′n,m , too, and
hence the image of A′n,m under the multiplication by m/d(m) map of E ′sm is a finite
locally free S-subgroup of A′(n/m)·d(m),d(m) of order

( n
m · d(m)

)
· d(m). This image

therefore equals A′(n/m)·d(m),d(m), so, since ι(m/d(m) · g) lies in A′(n/m)·d(m),d(m),
after replacing S by a finite locally free cover we may choose a g′ ∈ A′n,m(S) with

m
d(m)

· g′ = ι
( m

d(m)
· g
)
.

Since E ′sm
[m/d(m)] is an extension of (Cm)[m/d(m)] by (Bn)[m/d(m)], after a

further finite locally free cover of S we may adjust g′ by a lift to (E ′sm
[m/d(m)])(S)

of the difference of the images of g and g′ in Cm to arrange that g and g′ have
the same image in Cm and hence meet the same irreducible components of the
geometric fibers of E and E ′.

By Proposition 4.2.5(d), g′ generates a cyclic S-subgroup G ′ ⊂ E ′sm of order n.
Since (m/d(m)) | (n/m), the group G ′ satisfies (ii). Thus, to complete Step 6, and
hence also the proof of Lemma 5.7, it suffices to show that

ι(GS−S∞,π )= G ′S−S∞,π ′ .

We have G ⊂ An,m and G ′ ⊂ A′n,m with g and g′ projecting to the same section
of Cm . Moreover, by Proposition 3.2.7(b) and the diagram displayed in Step 2, both
ι((An,m)S−S∞,π ′ ) and (A′n,m)S−S∞,π ′ are the preimages in E ′

S−S∞,π ′
[n] of the unique

(S− S∞,π
′

)-subgroup of (E ′sm
[n]/Bn)S−S∞,π ′ of order m, so

ι identifies An,m and A′n,m over S− S∞,π
′

.
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We claim that under this identification via ι, the image of gS−S∞,π in An,m/Bn

agrees with the image of g′
S−S∞,π ′

in A′n,m/Bn . Since A′n,m/Bn is finite étale, it
suffices to check the claimed agreement on the geometric fibers at the points in
S− S∞,π

′

, so the technique used in the proof of Proposition 3.2.7(b) reduces the
proof of the claimed agreement to the case when R is a discrete valuation ring and
E and E ′ have smooth generic fibers but nonsmooth closed fibers. In this case,
by Proposition 3.1.8(b), ι extends to a unique isomorphism E ' E ′, which then
must induce the identification of the groups Cm for E and E ′. Thus, in this case the
claimed agreement follows from the agreement of the images of g and g′ in Cm .

Returning to the proof of ι(GS−S∞,π )= G ′
S−S∞,π ′

, via the above reasoning, we
conclude that g′

S−S∞,π ′
− ι(gS−S∞,π ) lies in Bn . Moreover, since (m/d(m)) | (n/m),

the construction of g′ ensures that

n
m · g

′

S−S∞,π ′
=

n
m · ι(gS−S∞,π ).

Therefore, there is an h ∈ ((Bn)[n/m])(S− S∞,π
′

) such that

g′S−S∞,π ′ = ι(gS−S∞,π )+ h.

By the uniqueness aspect of the first assertion of Proposition 3.2.7(a) and by
Proposition 4.2.9(c), (Bn)[n/m] is the standard cyclic subgroup of G of order n

m , so
ι(gS−S∞,π )+ h generates ι(GS−S∞,π ) by Proposition 4.2.9(f). The sought equality
ι(GS−S∞,π )= G ′

S−S∞,π ′
follows. �

We are ready for the definition of a 00(n)-structure on a generalized elliptic curve.

5.9. 00(n)-structures. For a generalized elliptic curve E −→π S, a 00(n)-structure
on E is a tuple (

G, {Sπ,(m)}m|n, {G(m)}m|n
)

consisting of the following data:

(1) a cyclic (S − S∞,π )-subgroup G ⊂ ES−S∞,π of order n (in the sense of
Definition 4.2.6);

(2) for each positive divisor m of n, an open subscheme Sπ,(m) ⊂ S such that
(2.1) S =

⋃
m Sπ,(m);

(2.2) if m 6= m′, then Sπ,(m) ∩ Sπ,(m′) = S− S∞,π ;
(2.3) the degenerate geometric fibers of ESπ,(m) are d(m)-gons, where

d(m)=
m

gcd
(
m, n

m

) ;
(3) for each positive divisor m of n, in the notation of Section 5.3, an ample cyclic

(Sπ,(m)×E``d(m)
E``m)-subgroup

G(m) ⊂ Esm
π,(m)
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of order n such that

(3.1) on the elliptic curve locus,

(G(m))S−S∞,π = ιπ,(m)(G);

(3.2) the cyclic subgroup G(m) is coherent in the sense of Section 5.5.

Remark 5.9.1. If E→ S is smooth, then the data (2)–(3) are uniquely determined
by (1) and a 00(n)-structure on E is nothing more than a cyclic S-subgroup of
order n.

Remark 5.9.2. If n is invertible on S, then, by Lemma 5.6, the requirement (3.2)
is superfluous.

Remark 5.9.3. If n is squarefree, then d(m) = m for every m, so that Sπ,(m) is
the open subscheme of S obtained by removing all the S∞,π,m

′

with m′ 6= m, the
“decontraction” Eπ,(m) is ESπ,(m) itself, and a 00(n)-structure on E is nothing else
than an ample cyclic S-subgroup of E sm order n.

In general, the datum {Sπ,(m)}m|n of (2) is equivalent to a subdivision

S∞,π =
⊔

m|n S∞π,(m),

subject to the requirement that S∞π,(m) ⊂ S∞,π,d(m) for every m. In this notation,

Sπ,(m) = S−
(⋃

m′ 6=m S∞π,(m′)
)
.

Remark 5.9.4. The subgroup G(m) determines an ample cyclic Sπ,(m)-subgroup

G(m) ⊂ E sm
Sπ,(m)

of order n
m · d(m) such that (G(m))S−S∞,π is a standard cyclic subgroup of G. To

build G(m), we choose an fppf cover S′ of Sπ,(m) for which there is an object
(E ′→ S′, ι′) of Sπ,(m)×E``d(m)

E``m , let G ′ ⊂ E ′sm be the pullback of G(m), and use
Proposition 4.2.9(c) to set

(G(m))S′ := (ι
′)−1(G ′(n/m)·d(m)).

Lemma 5.7(iv) shows the agreement of the two pullbacks of (G(m))S′ to S′×Sπ,(m) S′,
and hence also the effectivity of descent to the sought G(m) over Sπ,(m), as well as
the independence of the resulting G(m) on the choice of S′ and (E ′, ι′).

By construction and Lemma 5.7(iv), ιπ,(m)(G(m)) is a standard cyclic subgroup
of G(m).

The principal reason why the stack X0(n) that we are about to introduce is
practical to work with even when n is not squarefree is Lemma 5.12(a) below.
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5.10. The stack X0(n). In order to construct this Z-stack, we begin by letting S
be a variable scheme and by defining the categories X0(n)(S).

The objects of X0(n)(S) are the tuples(
E −→π S, G, {Sπ,(m)}m|n, {G(m)}m|n

)
consisting of a generalized elliptic curve E −→π S and a 00(n)-structure on E .

In X0(n)(S), a morphism(
E1

π1
−→ S, G1, {Sπ1,(m)}, {G(m),1}

)
→
(
E2

π2
−→ S, G2, {Sπ2,(m)}, {G(m),2}

)
between two tuples such that Sπ1,(m) = Sπ2,(m) for every positive divisor m of n
consists of:

(I) an S-isomorphism iE : E1 −→
∼ E2 of generalized elliptic curves such that

(iE)S−S∞,π1 (G1)= G2;

(II) for each positive divisor m of n, an isomorphisms i(m) of stacks over

Sπ1,(m) = Sπ2,(m)

and an isomorphism iE(m) of generalized elliptic curves that fit into the commu-
tative diagram

Eπ1,(m)
iE(m)

∼
//

��

Eπ2,(m)

��

Sπ1,(m)×E``d(m)
E``m

∼

i(m)

// Sπ2,(m)×E``d(m)
E``m

and such that iE(m) induces the isomorphism (iE)Sπ1,(m)×E``d(m)
E``m

between the
contractions of Eπ1,(m) and Eπ2,(m) with respect to

Esm
π1,(m)[d(m)] and Esm

π2,(m)[d(m)],

respectively, and satisfies

iE(m)(G(m),1)= G(m),2.

There are no morphisms between tuples for which Sπ1,(m) 6= Sπ2,(m) for some m.
In concrete terms, the datum (i(m), iE(m)) of (II) amounts to

(II′) an Sπ1,(m)-isomorphism

i(m) : Sπ1,(m)×E``d(m)
E``m −→

∼ Sπ2,(m)×E``d(m)
E``m
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together with: for every object (E ′1 → S′, ι′1) of Sπ1,(m) ×E``d(m)
E``m with

i(m)-image (E ′2→ S′, ι′2), a generalized elliptic curve isomorphism

iE ′1,E
′

2
: E ′1 −→∼ E ′2

that is compatible with (iE)S′ (via ι′1 and ι′2), brings the pullback of G(m),1 to
the pullback of G(m),2, and whose formation commutes with isomorphisms and
base change of pairs (E ′1, ι

′

1).

A compatible with iE pair of isomorphisms (i(m), iE(m)) always exists (send
(E ′1, ι

′

1) to (E ′1, ι
′

1 ◦ (iE)
−1
S′ )) and, thanks to iE(m) , is unique up to a unique isomor-

phism. However, this unique (i(m), iE(m)) may not automatically respect G(m),1 and
G(m),2. In practice, the uniqueness up to a unique isomorphism means that the lack
of canonicity in the choice of (i(m), iE(m)) does not matter and that the construction
of X0(n) stays in the realm of 2-categories.

The existence of a unique (i(m), iE(m)) compatible with iE ensures that:

• X0(n)(S) is a groupoid; and

• the base change functor X0(n)(S)→X0(n)(S′) along variable scheme mor-
phisms S′ → S turns X0(n) into a Z-stack for the fppf topology (see [SP
2005–, 026F] for stack axioms).

We let
X0(n)∞ ⊂X0(n) and Y0(n)⊂X0(n)

be the closed substack cut out by the degeneracy loci S∞,π and its open complement
(the elliptic curve locus), respectively. By Remark 5.9.1, there is an identification

Y0(n)= Y0(n)naive.

By Remark 5.9.3, if n is squarefree, then X0(n) is identified with X0(n)naive.
For a positive divisor m of n, we let

X0(n)(m) ⊂X0(n)

be the open substack cut out by the subschemes Sπ,(m). For every tuple classified
by X0(n)(m), the degenerate geometric fibers of E are d(m)-gons.

5.11. The contraction X0(n)naive
→X0(n). Let E −→π S be a generalized elliptic

curve equipped with a naive 00(n)-structure, i.e., with an ample cyclic S-subgroup
G ⊂ E sm of order n. To build a 00(n)-structure on a generalized elliptic curve
Ẽ−→̃π S out of (E,G), we first construct Ẽ by letting Sπ̃ ,(m), for a positive divisor m
of n, be the largest open subscheme of S over which the degenerate geometric fibers
of E are m-gons and by letting Ẽ be the gluing of the contractions cE sm[d(m)](ESπ̃ ,(m))

along ES−S∞,π . We endow ẼS−S∞,π̃ with the cyclic subgroup GS−S∞,π of order n.
This produces the data (1) and (2), so it remains to explain how to get (3).

http://stacks.math.columbia.edu/tag/026F
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For a fixed positive divisor m of n, each Sπ̃ ,(m)-scheme S′, and each generalized
elliptic curve E ′→ S′ whose degenerate geometric fibers are m-gons and that is
equipped with an S′-isomorphism

ι′ : ẼS′ = cE sm[d(m)](ES′)−→
∼ cE ′sm[d(m)](E ′),

we endow E ′ with the unique cyclic S′-subgroup G ′ of order n supplied by
Lemma 5.7. Due to the uniqueness, the formation of G ′ commutes with base
change and with isomorphisms of pairs (E ′, ι′). In other words, the subgroups G ′

give rise to a cyclic subgroup G(m) ⊂ Esm
π,(m) of order n, which agrees with G on the

elliptic curve locus due to Lemma 5.7(i), is ample due to Lemma 5.7(ii), and is
coherent due to Lemma 5.7(iii). This gives the sought datum (3).

The construction of Ẽ and of its 00(n)-structure respects isomorphisms and base
change of pairs (E,G), so we obtain the sought contraction morphism

X0(n)naive
→X0(n),

which for each positive divisor m of n restricts to a morphism

X0(n)naive
(m) →X0(n)(m).

The following lemma together with Lemma 5.7 is the driving force of our analysis
of X0(n).

Lemma 5.12. Let m be a positive divisor of n.

(a) The square
X0(n)naive

(m)
//

��

E``m

��

X0(n)(m) // E``d(m)

is Cartesian.

(b) The map X0(n)(m)→ E``d(m) is representable by schemes, of finite presenta-
tion, separated, quasifinite, and flat; moreover, it is étale over Z[1/n].

Proof. (a) For a generalized elliptic curve E −→π S, part of the data of a 00(n)-
structure α on E with Sπ,(m) = S is the datum of a naive 00(n)-structure G ′ on E ′

for every (E ′ −→π
′

S, ι′) classified by Sπ,(m)×E``d(m)
E``m . The assignment of this

naive 00(n)-structure gives the morphism

X0(n)(m)×E``d(m)
E``m→X0(n)naive

(m) ,

which, by construction of the contraction X0(n)naive
(m) →X0(n)(m) in Section 5.11,

is a left inverse to the induced morphism

X0(n)naive
(m) →X0(n)(m)×E``d(m)

E``m .
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To prove that it is also a right inverse, we need to argue that α agrees with the
00(n)-structure on E determined as in Section 5.11 by the naive 00(n)-structure
G ′ on E ′. For this, the key point is the coherence requirement (3.2) on the G(m)
that is part of α: thanks to it and to the uniqueness aspect of Lemma 5.7, for every
(E ′′−→π

′′

S, ι′′) classified by Sπ,(m)×E``d(m)
E``m , the naive 00(n)-structure G ′′ on

E ′′ that is part of α is also the one determined by G ′ through Lemma 5.7, and
likewise over any S-scheme S′.

(b) We prove the asserted properties with the representability by schemes require-
ment replaced by representability by algebraic spaces — due to Lemma 3.2.3, this
loses no generality.

By Proposition 4.2.15(a) (applied with m = 1 there), X0(n)naive
(m) → E``m enjoys

all the properties in question. Moreover, these properties are fppf local on the target
(for the representability by algebraic spaces, see [SP 2005–, 04SK] or [Laumon and
Moret-Bailly 2000, 10.4.2]) and, by Theorem 3.2.4(a), E``m→E``d(m) is surjective,
flat, and of finite presentation. With the help of (a), we therefore conclude that
X0(n)(m)→ E``d(m) inherits the properties in question. �

We are ready for the sought identification X0(n)=X00(n) and for the regularity
of X00(n).

Theorem 5.13. (a) The stack X0(n) is Deligne–Mumford and regular. The map
X0(n)→X (1) that forgets the 00(n)-structure and contracts with respect to
the identity section induces the identification

X0(n)=X00(n);

more precisely, X0(n) and X00(n) are the normalizations of X (1) in

Y0(n)Z[ 1
n ]
∼= Y00(n)

[ 1
n

]
.

(b) The substack X0(n)∞ ⊂X0(n) is a reduced relative effective Cartier divisor
over Spec Z that meets every irreducible component of every geometric fiber
of X0(n)→ Spec Z and is smooth over Z[1/n].

Proof. (a) We will use the axiomatic Theorem 4.5.1. To apply its part (a), and
hence to prove the algebraicity of X0(n) and the quasicompactness and separat-
edness of 1X0(n)/Z, we use the open cover X0(n)=

⋃
m|n X0(n)(m) and appeal to

Lemma 5.12(b). To then apply Theorem 4.5.1(b), and hence to prove the regularity
of X0(n), we let X (n)→X0(n) be the composition of the contractions

X (n)→X0(n)naive and X0(n)naive
→X0(n)

of Sections 5.1 and 5.11 and note that this composition is proper, flat, and surjective
due to Section 5.1, Lemma 5.12(a), and Theorem 3.2.4(a). Finally, in order to prove

http://stacks.math.columbia.edu/tag/04SK
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that X0(n) is Deligne–Mumford and X0(n) = X00(n), by Theorem 4.5.1(c), we
need to prove that the map

X0(n)→X (1)

is representable by algebraic spaces and that its base change to Y (1)Z[1/n] is
identified with

Y00(n)
[ 1

n

]
→ Y (1)Z[ 1

n ]
.

Since Y0(n)=Y0(n)naive, the latter identification results from the fact that the image
of 00(n) in GL2(Z/nZ) is the stabilizer of the subgroup Z/nZ× {0} in (Z/nZ)2

(compare with the proof of Theorem 4.4.4(c)).
Due to Lemma 3.2.2(b), the representability of X0(n)→X (1) will follow once

we prove that, for every Artinian local algebra A over an algebraically closed
field k and every ξ ∈X0(n)(k), no nonidentity automorphism of ξ |A maps to an
identity automorphism in X (1)(A). More concretely, by Lemma 2.1.6, we need to
prove that for every positive divisor d of n and every prime divisor p of d , there is
no 00(n)-structure α on the standard d-gon E over k such that some nonidentity
automorphism i ∈ µp(A) ⊂ Aut(E)(A) fixes the pullback αA of α to A. For the
sake of contradiction, we fix such α and i .

We let m be such that α has Sπ,(m) 6= ∅, so, in particular, d(m) = d. We
let (Ẽ, ι) be the standard m-gon over k equipped with the canonical isomorphism
ι :E−→∼ c

Ẽ sm[d]
(Ẽ). Up to unique isomorphism, the pair of isomorphisms (i(m), iE(m))

that extends i as in Section 5.10 sends (Ẽ A, ιA) to (Ẽ A, ιA ◦ i−1), so the ample
cyclic A-subgroups G̃ ⊂ Ẽ sm

A and G̃ ′ ⊂ Ẽ sm
A of order n that are the pullbacks of

G(m) corresponding to (Ẽ A, ιA) and (Ẽ A, ιA ◦ i−1) must be equal:

G̃ = G̃ ′ inside Ẽ A.

We replace A by an Artinian local fppf cover to assume that the automorphism
ιA ◦ i ◦ ι−1

A of cẼ sm
A [d]

(Ẽ A) is the contraction of an automorphism

ĩ ∈ µm(A)⊂ Aut(Ẽ)(A).

Then ĩ gives an isomorphism (Ẽ A, ιA ◦ i−1)−→∼ (Ẽ A, ιA), so must satisfy

ĩ(G̃ ′)= G̃, i.e., ĩ(G̃)= G̃.

The latter equality means that ĩ also lies in G̃ ∩ (Ẽ sm
A )

0
= (µn/m)A, that is,

ĩ ∈ µgcd(m,n/m)(A).

However, µgcd(m,n/m) acts trivially on cẼ sm[d(m)](Ẽ) by the definition of d(m) (see
Section 5.2), which means that ιA ◦ i ◦ ι−1

A = id and contradicts the assumption that

i 6= id .
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(b) By the proof of (a), X (n) → X0(n) is surjective, so the claim about the
geometric fibers follows from the corresponding claim for X (n)∞ ⊂X (n) proved
in Proposition 4.3.2(b).

For the rest, we may work on X0(n)(m) and may focus on the corresponding
claims for

X0(n)∞(m) :=X0(n)(m) ∩X0(n)∞,

so it suffices to observe that X0(n)∞(m) is the preimage of E``∞d(m) under the map

X0(n)(m)→ E``d(m),

to apply Theorem 3.1.6(c)–(d) and Lemma 5.12(b), and to use the (R0)+(S1)
criterion for reducedness. �

Chapter 6. Implications for coarse moduli spaces

The main goal of this chapter is to take advantage of the moduli interpretation of
X0(n) presented in Chapter 5 to prove that the coarse moduli space X0(n) is regular
at the cusps (and, in fact, regular on a large open subscheme, see Theorem 6.7).
This regularity is not new: [Edixhoven 1990, §1.2] uses the results of Katz and
Mazur to verify via an explicit computation that the completion of X0(n) along
the cusps is regular (such regularity is also a special case of an earlier assertion of
Gross and Zagier [1986, Proposition III.1.4]). In contrast, the proof given below
rests on Theorem 5.13(a), but requires no computation of completions.

We also exploit Lemma 3.3.1 to obtain a base change result for coarse moduli
spaces X H of arbitrary congruence level H (see Proposition 6.4). To prepare for it,
we review general properties of X H .

6.1. The coarse moduli space of XH . For an open subgroup H ⊂ GL2(Ẑ), the
finite type Deligne–Mumford Z-stack XH of Section 4.1.2 is separated, so it has a
coarse moduli space X H (by [Keel and Mori 1997, 1.3(1)], for instance). We let

YH ⊂ X H

be the open that is the coarse moduli space of the “elliptic curve locus”

YH ⊂XH .

We write X (n), Y0(n), etc. for X0(n), Y00(n), etc.
Since X (1) = P1

Z (see Proposition 3.3.2) and X H inherits Z-properness from
XH (see [Rydh 2013, 6.12]), the induced map

X H → X (1)
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is finite, so X H is a projective Z-scheme. Moreover, X H inherits normality from
XH (see [Abramovich and Vistoli 2002, 2.2.3] and compare with the proof of
Lemma 3.3.1), so X H → X (1) is even locally free of constant rank by [EGA IV2

1965, 6.1.5]. In particular, X H is flat and of relative dimension 1 over Spec Z at
every point.

Due to Lemma 4.1.3 (and the sentence preceding it), XH = X H whenever H is
small enough. The analysis of the case of arbitrary H is facilitated by the following
lemma:

Lemma 6.2 [Deligne and Rapoport 1973, IV.3.10(iii)]. For an open subgroup
H ⊂ GL2(Ẑ) and an n ≥ 1, if

0(n)⊂ H and H := Im(H → GL2(Z/nZ)),

then X H is identified with the categorical quotient X (n)/H. �

The coarse moduli spaces YH and X H have been studied extensively in [Katz
and Mazur 1985], albeit with somewhat different terminology, notation, and setup.
In order to put the results below in the context of the work of [Katz and Mazur
1985], we explicate the relationship between the terminology of [op. cit.] and that
of the approach based on the systematic use of the theory of algebraic stacks.

Proposition 6.3. Let H ⊂ GL2(Ẑ) be an open subgroup, let n ∈ Z≥1 be such that
0(n)⊂ H , and let H be the image of H in GL2(Z/nZ).

(a) The “quotient moduli problem” [0(n)]/H (in the sense of [Katz and Mazur
1985, §7.1]) is identified with YH .

(b) The “coarse moduli scheme” M([0(n)]/H) (in the sense of [Katz and Mazur
1985, §8.1]) is identified with YH .

(c) The “compactified coarse moduli scheme” M([0(n)]/H) (in the sense of [Katz
and Mazur 1985, §8.6]) is identified with X H .

Proof. (a) In the case H =0(n), the identification [0(n)]=Y (n) over E`` amounts
to the definitions given in [Katz and Mazur 1985, §5.1 and §3.1] and Section 4.3.1, so
the identification [0(n)] =Y0(n) is part of Theorem 4.3.5. Therefore, in general, the
desired identification over Spec Z[1/n] results by [Katz and Mazur 1985, 7.1.3(2)],
and hence also over all of Spec Z by [Katz and Mazur 1985, 7.1.3 (5)–(6)].

(b) If YH is representable, then the claim follows from (a) and the definition of [Katz
and Mazur 1985, 8.1.1]. Therefore, in general, the claim follows from Lemma 6.2.

(c) By (b), it suffices to observe that X H is the normalization of X (1) in YH , since
M([0(n)]/H) is defined as the normalization of P1

Z = X (1) in M([0(n)]/H). �

Before turning to the case H = 00(n), we record the following general result
that holds for every H . Its part (a) has been proved in [Deligne and Rapoport 1973,
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VI.6.7] by a different method, and the proof given below is in essence due to Katz
and Mazur. Its part (b) complements [Katz and Mazur 1985, 8.5.3].

Proposition 6.4. Let H ⊂ GL2(Ẑ) be an open subgroup, and let n ∈ Z≥1 be such
that 0(n)⊂ H.

(a) The coarse moduli space (X H )Z[1/n] of (XH )Z[1/n] is Z[1/n]-smooth.

(b) For any Z[1/gcd(6, n)]-scheme S, the canonical map from the coarse moduli
space of (XH )S to (X H )S is an isomorphism.

Proof. Let H denote the image of H in GL2(Z/nZ).

(a) The coarse moduli space X (n2) may be covered by GL2(Z/n2Z)-invariant open
subschemes that are affine over Z and are preimages of Z-affine open subschemes of
X (1), so Lemma 6.2 and [Katz and Mazur 1985, Theorem on p. 508 in the section
“Notes on Chapters 8 and 10”] reduce the proof to the case when H = 0(n2).
For this H , the n = 1 case is clear and if n ≥ 2, then the geometric points of
X (n2)Z[1/n] have no nontrivial automorphisms by [Katz and Mazur 1985, 2.7.2(1)]
and Lemma 2.1.6. Thus, if n ≥ 2, then Lemma 3.2.2(a) ensures that

X (n2)Z[1/n] =X (n2)Z[1/n]

and [Deligne and Rapoport 1973, IV.2.5] provides the sought Z[1/n]-smoothness
of X (n2)Z[1/n].

(b) We work locally on Z[1/gcd(6, n)], so we assume that S is either a Z
[ 1

6

]
-scheme

or a Z[1/n]-scheme.
Since XH→X (1) is representable, the automorphism group of every geometric

point of XH is of order dividing 24. Therefore, by [Olsson 2006, 2.12], étale locally
on its coarse moduli space, XH is the quotient of an affine scheme Spec A by an
action of a finite group G whose order divides 24. Thus, the case when S is a
Z
[ 1

6

]
-scheme follows from the fact that the formation of the ring of invariants AG

commutes with arbitrary base change if #G is invertible in A.
For the remainder of the proof we assume that S is a Z[1/n]-scheme, so applying

Lemma 3.3.1 with X = (XH )Z[1/n] reduces the proof to the case when S= Spec Fp

with p - n. We therefore let X ′ be the coarse moduli space of (XH )Fp and seek to
prove that the finite map

f : X ′→ (X H )Fp

is an isomorphism. The source and the target curves of f are Fp-smooth (equiva-
lently, normal): the target due to (a) and the source due to the Fp-smoothness of
(XH )Fp ensured by [Deligne and Rapoport 1973, IV.6.7]. Therefore, f is locally
free by [EGA IV2 1965, 6.1.5]. To conclude that its rank is 1, it suffices to exhibit
a fiberwise dense open substack U ⊂ YH [1/n] whose coarse moduli space is of
formation compatible with base change to Fp.
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We choose U to be the preimage of the complement of j = 0 and j = 1728 in
A1

Z[1/n], let E→ U denote the universal elliptic curve, and let

F := H \ Isom(E[n], (Z/nZ)2)

be the finite étale U -stack of level H structures on E (compare with Section 4.1.2).
The universal level H -structure is a section α of F → U , as is [−1]∗E(α). Since
F→U is finite étale, the substack V ⊂U over which α = [−1]∗E(α) is both open
and closed. By [Deligne 1975, 5.3(III)], the automorphism stack of E is the constant
{±1}U , so the open complement U \V is its own coarse moduli space, whereas the
coarse moduli space of V is the rigidification V( {±1} (in the notation of [AOV08
2008, Appendix]). Since the formation of V( {±1} commutes with arbitrary base
change, so does the formation of the coarse moduli space of U . �

Remark 6.5. For a version of Proposition 6.4(a) in residue characteristics dividing
n and suitable H , see [Katz and Mazur 1985, 10.10.3(5)].

Remark 6.6. In Proposition 6.4(b), for some subgroups H one cannot remove the
requirement that gcd(6, n) be invertible on S. For instance, by [Česnavičius 2017,
Theorem 3.2], the canonical map from the coarse moduli space of (X01(4))F2 to
(X01(4))F2 is not an isomorphism.

We are ready for the promised regularity of X0(n) at the cusps. Similar techniques
may be used to prove analogous regularity results for X (n) or X1(n) (or even for
X̃1(n; n′), X1(n; n′), or X0(n; n′) with n and n′ as in Theorem 4.6.6), but we do
not explicate them because in many cases X (n)=X (n) and X1(n)=X1(n) (see
Proposition 4.3.6 and Lemma 4.1.3), and in these cases the entire X (n) or X1(n) is
regular by Theorem 4.3.5 or Theorem 4.4.4(a).

Theorem 6.7. For an n ∈ Z≥1, the open subscheme U ⊂ X0(n) obtained by remov-
ing the closed points corresponding to j = 0 or j = 1728 in residue characteristics
dividing n is regular.

Proof. The regularity of X0(n)Z[1/n] follows from Proposition 6.4(a), so it suffices
to prove the regularity of the coarse moduli space of the preimage

U ⊂X0(n)

of the open subscheme of P1
Z obtained by removing the sections j = 0 and j = 1728.

By the moduli interpretation of X0(n) given in Section 5.10 and Theorem 5.13(a),
the constant group {±1}U is a subgroup of the automorphism group of the universal
object of U . In fact, due to [Deligne 1975, 5.3(III)] and the representability of
U →X (1), this automorphism group equals {±1}U . Therefore, the coarse moduli
space of U is the rigidification U( {±1}. By [AOV08 2008, A.1], the map

U � U( {±1}
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is étale, and, by Theorem 5.13(a), the stack U is regular, so U( {±1} is also regular,
as desired. �

Remark 6.8. One may use the structure of the fibers X0(n)Fp with p | n to sharpen
Theorem 6.7. For instance, if n is squarefree, then, due to Proposition 6.4 and [Katz
and Mazur 1985, 13.5.6 and Theorem on p. 508], in Theorem 6.7 one may require
that the removed points are in addition supersingular (and likewise for general n
and those removed points that lie on the reduced components of X0(n)Fp ). For a
more thorough analysis of the coarse space X0(n), see [Edixhoven 1990].

We end by proving that X0(n)naive yields the same coarse moduli space X0(n),
and hence suffices for many purposes (however, the proof of Theorem 6.7 does rely
on the finer X0(n) through the representability of X0(n)→X0(1)).

Proposition 6.9. For every n ∈ Z≥1, the contraction morphism

X0(n)naive
→X0(n)

defined in Section 5.11 induces an isomorphism on coarse moduli spaces.

Proof. The coarse moduli space X0(n)′ of X0(n)naive exists due to the finiteness of
the diagonal of X0(n)naive supplied by Theorem 4.6.4(a) (see [Rydh 2013, 6.12]).
As in Section 6.1, the map

X0(n)′→ P1
Z

is finite, so, since Y0(n)naive
= Y0(n), it suffices to prove that X0(n)′ is normal.

For the normality, we work Zariski locally on X0(n)′ and note that each open
substack

U ⊂X0(n)naive

that has an affine coarse moduli space Spec A satisfies A = 0(U ,OU ) by the
universal property for maps to A1

Z. To then see that 0(U ,OU ) is integrally closed
in its total ring of fractions it suffices to use the normality of U supplied by
Theorem 4.6.4(a) and the fact that generizations lift along smooth morphisms from
algebraic spaces to U (see [Laumon and Moret-Bailly 2000, 5.7.1]). �

Remark 6.10. The same proof shows that, in the notation of Section 4.6, for every
n, n′ ∈ Z≥1 the coarse moduli spaces of X1(n; n′) and X0(n; n′) agree with those
of X01(n;n′) and X00(n;n′).
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[Česnavičius 2017] K. Česnavičius, “Coarse base change fails for some modular curves”, Algebr.
Geom. 4:4 (2017), 444–451. MR

[Conrad 2005] B. Conrad, “The Keel–Mori theorem via stacks”, preprint, Stanford, 2005, http://
math.stanford.edu/~conrad/papers/coarsespace.pdf.

[Conrad 2007] B. Conrad, “Arithmetic moduli of generalized elliptic curves”, J. Inst. Math. Jussieu
6:2 (2007), 209–278. MR Zbl

[Conrad 2014] B. Conrad, “Reductive group schemes”, pp. 93–444 in Autour des schémas en
groupes, I, Panor. Synthèses 42/43, Soc. Math. France, Paris, 2014. MR Zbl

[Deligne 1975] P. Deligne, “Courbes elliptiques: formulaire d’après J. Tate”, pp. 53–73 in Modular
functions of one variable, IV (Antwerp, 1972), edited by B. J. Birch and W. Kuyk, Lecture Notes in
Math. 476, Springer, 1975. MR Zbl
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Elementary equivalence
versus isomorphism, II

Florian Pop

In this note we give sentences ϑK in the language of fields which describe the
isomorphy type of K among finitely generated fields, provided the Kronecker
dimension dim(K ) satisfies dim(K ) < 3. This extends results by Rumely (1980)
concerning global fields; see also Scanlon (2008).

1. Introduction

We begin by recalling Rumely’s result [1980] showing that for every global field
k there exists a sentence ϑRu

k which characterizes the isomorphy type of k among
global fields, i.e., if l is any global field, then ϑRu

k holds in l if and only if l ∼= k as
fields.

It is one of the main open questions in the first-order theory of finitely generated
fields whether a fact similar to Rumely’s result mentioned above holds for all
finitely generated fields K . We notice that the question above is related to, but much
stronger than, the still open elementary equivalence versus isomorphism problem,
which asks whether the isomorphism type of every finitely generated field K is
encoded in the whole first-order theory Th(K ) of K ; see, e.g., [Pop 2003] for
details and literature about this, as well as [Scanlon 2008].1

In the present note we show that the answer to the above question is positive for
finitely generated fields K having Kronecker dimension dim(K ) < 3, which are
precisely the finite fields, the global fields, and the function fields of (algebraic)
curves over global fields.

Supported by the John Templeton Foundation Grant ID 13394 and the NSF grant DMS-1265290.
MSC2010: primary 11G30, 14H25; secondary 03C62, 11G99, 12F20, 12G10, 12L12, 13F30.
Keywords: elementary equivalence versus isomorphism, first-order definability, finitely generated

fields, Milnor K -groups, Galois étale cohomology, Kato’s higher local-global principles.
1To the best of my knowledge, Bjorn Poonen was among the first to ask whether Rumely’s result

[1980] might hold in higher dimensions. It was claimed in [Scanlon 2008] that the answer to this
question is positive for all finitely generated fields. Unfortunately, the proof has a gap (see Erratum,
J. Amer. Math. Soc. 24:3 (2011), p. 917). Nevertheless, Scanlon’s work appears to reduce the problem
to “definability of valuations”.
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Main Result. For every finitely generated field K having dim(K ) < 3, there exists
a first-order sentence in the language of fields ϑK such that for finitely generated
fields L , the sentence ϑK holds in L if and only if L ∼= K as fields.

The more precise form of the result is as follows: Recall that by one of the main
results in [Pop 2002], for every d ≥ 0, there exists a sentence ϕd (in the language
of fields) such that for all finitely generated fields K , ϕd holds in K if and only if
dim(K )= d. In particular, if K is any finitely generated field, then ϕ0 holds in K
if and only if K is a finite field, ϕ1 holds in K if and only if K is a global field, and
finally ϕ2 holds in K if and only if dim(K )= 2.

In particular, given a global field K , consider the sentence ϑK given by ϕ1∧ϑRu
K .

Then if ϑK holds in a finitely generated field L , one has the following: First,
dim(L)= 1, because ϕ1 holds in L , and hence L is a global field. Second, L ∼= K
because ϑRu

K holds in the global field L .
In the case dim(K )= 2, let k0 = K abs be the constant subfield of K , i.e., the set

of elements of K which are algebraic over the prime field of K . Then k0 is finite if
and only if char(K ) > 0, and if so, K is the function field of a projective smooth
geometrically integral surface over k0. Letting (t0, t1) be a separable transcendence
basis of K , there exists t2 ∈ K such that K = k0(t0, t1, t2), with t0, t1, t2 satisfying an
absolutely irreducible polynomial f (T0, T1, T2) over k0. And if char(K )= 0, then
K is the function field of a projective smooth k0-curve, and for every nonconstant
t1∈K there exists t2∈K such that K = k0(t1, t2), with t1, t2 satisfying an irreducible
polynomial f (T1, T2) ∈ k0[T1, T2]. The precise result proven will be the following;
see Section 5 for proofs.

Theorem 1.1. Let K be a finitely generated field. The following hold:

(1) For every finite field k0 and absolutely irreducible polynomial f = f (T0, T1, T2)

over k0, there exists a formula ψk0, f (t0, t1, t2) with free variables t0, t1, t2 such
that the following are equivalent:

(i) The sentence ϑK defined by ∃t0, t1, t2 ψk0, f (t0, t1, t2) holds in K.
(ii) There exist t0, t1, t2 ∈ K such that K = k0(t0, t1, t2) and f (t0, t1, t2)= 0.

(∗) In particular, suppose that ϑK holds in K. Then for all finitely gener-
ated fields L , ϑK holds in L if and only if L ∼= K as abstract fields.

(2) For every number field k0 and absolutely irreducible polynomial f = f (T1, T2)

over k0, there exists a formula ψk0, f (t1, t2) with free variables t1, t2 such that
the following are equivalent:

(i) The sentence ϑK defined by ∃t1, t2 ψk0, f (t1, t2) holds in K.
(ii) There exist t1, t2 ∈ K such that K = k0(t1, t2) and f (t1, t2)= 0.

(∗) In particular, suppose that ϑK holds in K. Then for all finitely gener-
ated fields L , ϑK holds in L if and only if L ∼= K as abstract fields.
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The result above is based on and uses in an essential way, among other things, pre-
vious results by Rumely, Poonen, and Pop. First, the above-mentioned sentences ϕd

single out the finite fields, the global fields, and the fields of curves over global fields
among all finitely generated fields K . Second, Poonen [2007] showed that there ex-
ists a predicate, i.e., formula ψabs(x) with one free variable x such that for all finitely
generated fields K , one has k0 := K abs

= {x ∈ K | ψabs(x) is true in K }. Further,
techniques developed in [Poonen 2007] (using [Pop 2002] as well) give formulas
ψr (x1, . . . , xr , xr+1) with r + 1 free variables such that for x1, . . . , xr+1 ∈ K , one
has that ψr (x1, . . . , xr , xr+1) holds in K if and only if x1, . . . , xr are algebraically
independent over k0, but x1, . . . , xr , xr+1 are not. Hence, for x1, . . . , xr ∈ K
algebraically independent over k0, the relative algebraic closure of k0(x1, . . . , xr ) in
K is given by L := {xr+1 ∈ K | ψr (x1, . . . , xr , xr+1) holds in K }. Finally, Poonen
[2007] showed that there exists a sentence ψ0 which holds in a finitely generated
field K if and only if char(K )= 0.

Hence, in the case dim(K ) = 2, one has the following: First, k0 = K abs is
finite if and only if char(K ) > 0 if and only if ψ0 does not hold in K . If so, K
is the function field of a projective smooth surface over k0. Therefore, there exist
separable transcendence bases t0, t1 of K |k0 satisfying that the relative algebraic
closure k ⊂ K of k0(t0) in K is a global function field, and furthermore that K |k is
the function field of a (projective smooth) geometrically integral k-curve X . Thus
K = k(t1, t2) for a properly chosen t2. Second, if K has characteristic zero, then
k := k0 = K abs is a number field, and K is the function field of a projective smooth
geometrically integral k-curve X . So for t1 ∈ K \k, and properly chosen t2 ∈ K , one
has K = k(t1, t2). Hence, one can deduce Theorem 1.1 above from the following
theorem; see Section 5 for detailed proofs.

Theorem 1.2. The k-valuations of function fields K = k(X) of projective smooth
geometrically integral k-curves X over global fields k are uniformly first-order
definable. In particular, there exist formulas degN (t), ψ

R(t,t′), ψ0(t,t′), with free
variables t, t′, such that for every K |k as above and t ∈ K \ k, the following hold:

(a) degN (t) is true in K if and only if t has degree N as a function of K |k, i.e.,
[K : k(t)] = N.

(b) R := { t ′ ∈ K | ψ R(t, t ′) is true in K } is the integral closure of k[t] in K.

(c) k[t] = { t ′ ∈ K | ψ0(t, t ′) is true in K }.

We mention that the formulas degN (t), ψ
R(t,t′), ψ0(t,t′) are quite explicit; see

Section 5. In particular, so is Theorem 5.3, which is slightly more general than
Theorem 1.2 above. The main technical tool in the proof is one of Kato’s higher
Hasse local-global principles (LGPs) for H3; see Theorem 2.1 below. If similar
LGPs would be available in higher dimensions, it would be possible to extend the
methods of this paper to higher dimensions.
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2. Reviewing well known facts

2A. The Hasse–Brauer–Noether local-global principle. We recall briefly the fa-
mous Hasse–Brauer–Noether LGP for the Brauer group of a global field k. Let P(k)
be the set of nontrivial places of k. For v ∈ P(k), we denote by kv the completion
of k with respect to v. Then kv is a locally compact (nondiscrete) field, and the
Brauer group Br(kv) of kv admits a canonical embedding invv : Br(kv)→ Q/Z,
called the invariant (isomorphism), satisfying the following:

(a) If kv = C, then Br(kv)= 0 and invv is the trivial map.

(b) If kv = R, then invv : Br(kv)→ 1
2 Z/Z⊂Q/Z is an isomorphism.

(c) In the remaining cases, invv : Br(kv)→Q/Z is an isomorphism.

The Hasse–Brauer–Noether LGP asserts that the canonical sequence

0→ Br(k)→
⊕
v

Br(kv)→Q/Z→ 0

is exact. Here, the first map is the direct sum of all the canonical restriction maps
Br(k)→ Br(kv); thus implicitly, for every division algebra D over k there exist
only finitely many v such that D⊗k kv is not a matrix algebra. And the second map
is the sum of the invariant morphisms.

Moreover, if n( ) denotes the n-torsion, then identifying the n-torsion in Q/Z

canonically with Z/n, the above exact sequence gives rise canonically to an exact
sequence

0→ nBr(k)→
⊕
v

nBr(kv)→ Z/n→ 0.

2B. Hasse higher LGPs (after Kato). It is a fundamental observation by Kato
[1986] that the above local-global principle has higher dimensional variants as
follows: First, following [Kato 1986], for every positive integer n, say n = mpr

with p the characteristic, and an integer twist i , one sets Z/n(0)=Z/n, and defines
in general Z/n(i) := µ⊗i

m ⊕Wr�
i
log[−i], where Wr�log is the logarithmic part of

the de Rham–Witt complex on the étale site; see [Illusie 1979] for details. In this
notation, for every (finitely generated) field K one has

H1(K,Z/n)= Homcont(GK ,Z/n), H2(K,Z/n(1))= nBr(K ),

where GK is the absolute Galois group of K . Hence, the cohomology groups
Hi+1(K,Z/n(i)) have a particular arithmetical significance for i = 0, 1. Further,
in this notation, the Hasse–Brauer–Noether LGP is a local-global principle for
the cohomology group H2(K,Z/n(1)), and note that global fields have Kronecker
dimension d = dim(K )= 1.

This led Kato to the fundamental idea that for finitely generated fields K of
Kronecker dimension d there should exist similar LGPs for Hd+1(K,Z/n(d)). And
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Kato [1986] proved that such higher dimension LGPs do indeed hold for d = 2,
i.e., for H3(K,Z/n(2)), where K is the function field of an integral curve over
some global field, or equivalently the function field of an integral two dimensional
scheme of finite type.

We describe below one of Kato’s local-global principles for H3(K,Z/n(2)), and
will use that LGP in the cases n = 2, char(K ) 6= 2 as well as n = 3, char(K )= 2.
The situation is as follows. Let k be a global field, and K |k be the function field
of a complete smooth geometrically integral k-curve X . Let S be the arithmetical
complete normal curve with function field κ(S)= k; hence S = SpecOk if k is a
number field, and S is the unique projective smooth curve with function field k if
k is a global field of positive characteristic. Then by Abhyankar’s regularization
theorems of surfaces [1965], X→ Spec k is the generic fiber of a proper morphism
X → S of regular schemes (and having further properties, e.g., having NCD on X
as reduced fibers, etc.). For i ≥ 0, we denote by Xi ⊂ X the points of dimension i
in X . Then for x ∈ X one has:

(a) x ∈ X0 ⇔ Ox is a two dimensional local ring ⇔ κ(x) is a finite field.

(b) x ∈ X1 ⇔ Ox is a discrete valuation ring ⇔ κ(x) is a global field.

For s ∈ S0 we denote by vs the canonical valuation of Os and by ks the completion
of k at s. For x1 ∈ X1 we denote by vx1 the canonical valuation of Ox1 , and by Kx1

the completion of K at x1. Notice that x1 7→ s under X→ S if and only if Os ≺Ox1 ,
that is, the local ring Os is dominated by the local ring Ox1 under k ↪→ K .

Next let L be an arbitrary field, and recall the canonical isomorphism (gener-
alizing the classical Kummer theory isomorphism) h1

: L×/n→ H1(L ,Z/n(1)).2

As explained in [Kato 1986, §1], the isomorphism h1 gives rise canonically for all
q 6= 0 to morphisms3

hq
: K M

q (L)/n→ Hq(L ,Z/n(q)),

{a1, . . . , aq}/n 7→ h1(a1)∪ · · · ∪ h1(aq)=: a1 ∪ · · · ∪ aq .

Let v be a discrete valuation of L . Then for every uniformizing parameter π ∈ L
at v, one defines the boundary homomorphism

∂v : Hq+1(L ,Z/n(q + 1))→ Hq(λ,Z/n(q))

by π∪a1 · · ·∪aq 7→a1∪· · ·∪aq and a0∪a1 · · ·∪aq 7→0, provided all a0, a1, . . . , aq

are v-units. We notice that in general, this homomorphism depends on the uni-
formizing parameter π . Further, if the Galois action on Z/n(1) is trivial, then

2Recall that for every abelian group A, we denote A/n := A/(n A).
3By the (now proven) Milnor–Bloch–Kato conjecture, hq are isomorphisms. Nevertheless, that

fact in its full generality is not needed here, because one could work as well with the subgroup
generated by symbols Hq

∪
(L ,Z/n(q))⊆ Hq (L ,Z/n(q)).



2096 Florian Pop

all Galois modules Z/n(q) are actually isomorphic to Z/n, and ∂v gives rise to
morphisms

∂v : Hq+2(L ,Z/n(q + 1))→ Hq+1(λ,Z/n(q)).

We will use two instances of these homomorphisms for q ≤ 2 and L a finitely
generated field of Kronecker dimension equal to q containing µ2n (thus having no
orderings).4 First, let k be a global field, K |k be the function field of a complete
smooth k-curve X , and X→ S, etc., be as introduced above. For x1∈X1, let v :=vx1

be the corresponding discrete valuation of K . The boundary homomorphisms we
will consider are

∂x1 : H
3(K,Z/n(2))→ H2(κ(x1),Z/n(1)).

For later use we notice that for f, g, h ∈ K such that g, h are vx1-units, one has

∂x1( f ∪ g ∪ h)= vx1( f ) · ḡ ∪ h̄ in H2(κ(x1),Z/n(1)),

where u 7→ ū is the residue map Ox1 → κ(x1). In particular, if the vx1-values of
f, g, h ∈ K are all divisible by n (for instance, if f, g, h are all vx1-units), then
∂x1( f ∪ g ∪ h)= 0.

For q = 1, L = κ(x1) is the residue field of K at some x1 ∈ X1 and v is some
finite place p0 of κ(x1). Thus the boundary homomorphisms we will consider are

∂p0 : H
2(κ(x1),Z/n(1))→ H1(κ(p0),Z/n(0))= Z/n.

Notice that ∂p0 is nothing but the local component of the Hasse–Brauer–Noether
LGP for the global field κ(x1) defined by the place p0.

Following [Kato 1986, §1], for all x1 ∈ X1, x0 ∈ X0, one defines boundary
homomorphisms

∂x1x0 : H
2(κ(x1),Z/n(1))→ H1(κ(x0),Z/n)

as follows. First, if x0 6∈ {x1}, set ∂x1x0 = 0. Second, if x0 ∈ {x1}, proceed as follows:
Recall that Ox0 is a two dimensional regular local ring, and set Xx0 :=SpecOx0 ↪→X .
Then x0 ∈ {x1} if and only if x1 ∈ Xx0 . If so, then Ox1 is some localization of Ox0

and the image Ox0 ⊂ κ(x1) of Ox0 under the projection Ox1→ κ(x1) is a local
Noetherian ring of Krull dimension one. Thus its integral closure Õx0 in κ(x1) is a
Dedekind domain with finitely many maximal ideals pi , and thus a principal ideal
domain. Further, every completion κ(x1)pi is a localization of the global field κ(x1)

and the residue fields κ(pi )|κ(x0) are finite fields. Kato defined ∂x1x0 as follows,
where the last map is the sum of the corestriction maps:

∂x1x0 : H
2(κ(x1),Z/n(1))→

⊕
pi

H1(κ(pi ),Z/n)→ H1(κ(x0),Z/n).

4Recall that in these cases, the equality H3
∪
= H3 has been known for a while already.



Elementary equivalence versus isomorphism, II 2097

Finally, one of the local-global principles Kato gives — which is essential for
the methods of this paper — is the following; see [Kato 1986, p. 145, Corollary].

Theorem 2.1. With the above notation, suppose that K has no orderings, e.g.,
µ2n ⊂ K. Then via the obvious direct sums of the above boundary homomorphisms
one gets a long exact sequence of the following form, where the last map is given by
the sum:

0→H3(K,Z/n(2))→
⊕

x1∈X1

H2(κ(x1),Z/n(1))→
⊕

x0∈X0

H1(κ(x0),Z/n)→Z/n→0.

In particular, recalling that Xx0 is the set of all the x1 ∈ X1 such that x0 ∈ {x1},
the map H3(K,Z/n(2))→

⊕
x1∈Xx0

H2(κ(x1),Z/n(1))→ H1(κ(x0),Z/n) is triv-
ial for each x0 ∈ X0.

2C. An arithmetical application/interpretation. In the following discussion, sup-
pose that the Galois action on Z/n(1) is trivial, so that Z/n(q) are isomorphic to
Z/n as Galois modules.

(1) Recall nBr(L)=H 2(L ,Z/n(2)) and H 3(L ,Z/n(3)) are generated by symbols
a ∪ b and a ∪ b∪ c, respectively, with a, b, c ∈ L×.

(2) Now suppose that n is a prime number. For a, b ∈ L× consider the field exten-
sion La |L defined by h1(a) ∈ H1(L ,Z/n(1)), the norm map Na : L×a → L×,
and the cyclic algebra Aa,b with [Aa,b] = a ∪ b ∈ H2(L ,Z/n(1)). Then
a ∪ b ∈ H2(L ,Z/n(1)) is trivial if and only if b ∈ Na(L×a ). Furthermore, if
Aa,b is a division algebra, let Na,b : A×a,b→ L× be the reduced norm of Aa,b.
Then by [Merkurjev and Suslin 1982], Na,b represents c ∈ L× if and only if
a ∪ b∪ c ∈ H 3(L ,Z/n(3)) is trivial.

Therefore, since the conditions b ∈ im(Na) and/or c ∈ im(Na,b) are first-
order expressible, we conclude that a ∪ b and/or a ∪ b∪ c being (non)trivial
are first-order expressible. Hence, the following hold:
(∗) The subsets 62 ⊂ L×× L× and 63 ⊂ L×× L×× L× defined by

62 := {(a, b) | a ∪ b is nontrivial},

63 := {(a, b, c) | a ∪ b∪ c is nontrivial}

are first-order definable subsets.

(3) Let K |k be a function field in one variable over a global field k as above. Let
k̃ |k be a finite extension with µn ⊂ k̃, and K̃ := K k̃. Then K̃ | k̃ is the function
field of the complete smooth geometrically integral k̃-curve X̃ := X ×k k̃. As
in the case of K |k, we consider proper regular models X̃ → S̃ of X̃→ Spec k̃,
and the sets X̃ i ⊂ X̃ for i = 0, 1, 2. In particular, for every x̃1 ∈ X̃ 1, the
local rings Ox̃1 are discrete valuation rings of K̃ , and we denote by K̃ x̃1 the
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corresponding completions of K̃ . Then if Aa,b is a division algebra as in (2)
above, the following holds:

Na,b represents c ∈ K̃× over K̃ if and only if Na,b represents c over
K̃ x̃1 for all x̃1 ∈ X̃ 1.

3. Consequences of Kato’s local-global principles

3A. General facts. Let K be a finitely generated field of Kronecker dimension
dim(K )= 2, and k0 = K abs be its absolute subfield. If char(K )= 0, then k := k0

is a number field, and S = SpecOk is the “canonical global curve” with function
field k. Further, K is the function field of a projective regular S-surface X → S,
having as a generic fiber a smooth projective geometrically integral k-curve X . If
char(K ) = p > 0, there exist (many) global function subfields k ⊂ K of K with
k = k̄ ∩ K such that letting S be the unique projective smooth k0-curve, there exist
projective smooth S-surfaces X → S having as generic fiber a projective smooth
k-curve X .

In the above notation, we denote by Si ⊂ S, X i ⊂ X , Xi ⊂ X the points of
dimension i in the corresponding schemes. In particular, one has the following:

• S0 ⊂ S, X0 ⊂ X , X0 ⊂ X are the closed points in the corresponding schemes.

• S = S0 ∪ {η} and X = X0 ∪ {ηX }, where η ∈ S, ηX ∈ X are the generic points.

• X = X0 ∪X1 ∪ {ηX }, and ηX = ηX , X0 ⊂ X1 under the canonical inclusion
X ↪→ X1.

Notation/Remarks 3.1. Let n be a fixed prime number such that the group of roots
of unity µ2n of order 2n is contained in K . We notice/define the following:

(1) The local rings Os at the closed points s ∈ S0 of S are exactly the valuation
rings of the nonarchimedean places of k. Further, for x ∈ X one has x 7→ s if and
only if the corresponding local rings dominate each other: Os ≺Ox under k ↪→ K .

(2) For x1 ∈X1, let Cx1 ={x1}⊂X be the schematic closure of x1 in X . Then Cx1 is
an arithmetic curve on X with generic point x1 ∈X1. For s ∈ S, let Xs→ κ(s) be the
fiber of X → S at s. Then Xs is a projective (maybe nonreduced) one dimensional
κ(v)-scheme of finite type. In the above notation, one has the following:

(a) x1 7→ η ∈ S if and only if x1 ∈ X0 if and only if Cx1 → S is finite dominant.
If so, Cx1 is called a horizontal curve on X , and we denote

X1,η := {x1 ∈ X1 | Cx1 is a horizontal curve}.

(b) x1 7→ s ∈ S0 if and only if Cx1 is a reduced irreducible component of Xs→ κ(s).
If so, Cx1 is called a vertical curve on X , and we denote

X1,0 := {x1 ∈ X1 | Cx1 is a vertical curve}.
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(3) One obviously has X1 = X1,η ∪X1,0 , and the map X1,0→ S0 has finite fibers.

(4) Since the generic fiber X→ k of X → S is a projective smooth geometrically
integral k-curve, there exists a (unique) nonempty maximal open subset U =UX
of S such that XU := X ×S U→ U is a family of projective smooth curves with
geometrically integral fibers. For s ∈ U0 := U ∩ S0, letting xs ∈ Xs ⊂ X be the
generic point, one has:

(a) xs is the unique preimage of s in X1, so xs ∈ X1,0 and Cxs = Xs .

(b) κ(s) is relatively algebraically closed in κ(xs).

(5) For f ∈ K×, let |div( f )| := {P ∈ X0 | vP( f ) 6= 0} ⊂ X0 be the support of the
divisor ( f ) of f viewed as a function on X→ k. Then CP = {P} with P ∈ |div( f )|
are distinct horizontal curves and

⋃
P∈|div( f )| CP is the closure of |div( f )| in X .

Therefore, there exists a unique maximal open subset Uf =UX f ⊂U satisfying:

(a)
⋃

P∈|div( f )| CP→ S is étale above Uf . Hence, CP ∩Xs ∩CP ′ =∅ for P ′ 6= P .

(b) For s ∈Uf and its unique preimage xs ∈ X1,0 under X1,0→ S, the following
hold:
• n is invertible in κ(s).
• f is a vxs-unit, and its residue f̄ ∈ κ(xs) nonconstant: f̄ ∈ κ(xs) \ κ(s).

(6) Finally, we notice that Uf ⊆U0 has the following permanence property: Let
k̃ |k be a finite extension, and set K̃ := K k̃. Let S̃→ S be the normalization of S
in k ↪→ k̃, and X̃ → S̃ be a minimal proper regular model of K̃ | k̃ which dominates
X → S. In particular, the generic fiber X̃ → k̃ of X̃ → S̃ is the normalization
X̃ → X of X in K ↪→ K̃ . Let UX̃ ⊂ S̃ be the maximal open subset such that
X̃UX̃ := X̃ ×S̃ UX̃ →UX̃ is smooth and has reduced geometrically integral fibers,
and define the subsets UX̃ f ⊆UX̃ for the model X̃ → S̃ of K̃ |k̃ and f ∈ K̃ in the
way the subsets UX f ⊆UX of S were defined above for the model X → S of K |k
and f ∈ K . Then one has:

Lemma 3.2. In the above notation, let ŨX f ⊆ ŨX be the preimages of UX f ⊆UX
under the map S̃→ S. Then X̃ ×S̃ ŨX → ŨX is smooth, whence ŨX ⊆ UX̃ and
X̃ ×S̃ ŨX = X ×S ŨX . Further, ŨX f ⊆ UX̃ f , and the morphism X̃ → X is finite
above X ×S UX .

Proof. For the first inclusion, let X n
→ S̃ denote the normalization of X → S in

the field extension K ↪→ K̃ . Then X̃ being regular, it is also normal. Thus X̃ → S̃
dominates X n

→ S̃. Moreover, since the base change X ×S S̃→ S̃ is dominant and
finite over X → S, it follows that X n

→ S̃ dominates X ×S S̃→ S̃. Thus finally
X̃ → S̃ dominates X ×S S̃→ S̃. To simplify notation, set U :=UX and Ũ := ŨX .
Since XU := X ×S U→U is smooth and has reduced geometrically integral fibers,
so is the base change XU ×S Ũ → Ũ , and in particular XU ×S Ũ is regular. Hence,
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by the minimality of X̃ → S̃, one has X̃ ×S̃ Ũ = X n
×S̃ Ũ = XU ×S Ũ . Therefore,

X̃ Ũ := X̃ ×S̃ Ũ → XU is finite because X n
→ X is. Since X̃ Ũ = X ×S Ũ → Ũ is

also smooth, one has ŨX ⊆UX̃ by the maximality of the latter. The other inclusion
follows immediately from the fact that being étale is preserved under base change,
and the fact that X̃ ×S̃ ŨX = X ×S ŨX . �

3B. A local-global principle for H3(X , f ). We work in the context and the nota-
tion of the previous subsection. Let X1 f ⊂X1 be the preimage of Uf under X1→ S.
We notice that X1 \X1 f is the finite closed subset of X1,0 consisting of all x1 ∈ X1

which map into the (finite) closed set S0 \Uf .

Notation. Let H3(X , f )⊂H3(K,Z/n(2)) denote the set of all the symbols f ∪a∪b
with a, b ∈ k× which are nontrivial over some completion Kx1 with x1 ∈ X1 f .

Lemma 3.3. Let Df ⊆|div( f )| be the set of all P such that vP( f ) is not divisible by
n in vP(K ). Suppose that K has no orderings. Then for every f ∪a∪b ∈H3(X , f )
there exists P ∈ Df such that f ∪ a ∪ b is nontrivial over KP .

Proof. Let z1∈X1 be a given point. Then by the concrete description of the boundary
homomorphism ∂̂z1 as given before Theorem 2.1, one has that if vz1( f ), vz1(a), vz1(b)
are all divisible by n, then f ∪ a ∪ b is trivial over the completion Kz1 at vz1 . In
particular, if z1 ∈ X1,η, then a, b ∈ k× are vz1-units. Thus vz1(a)= 0= vz1(b) are
divisible by n. Hence, if vz1( f ) is divisible by n, then f ∪ a ∪ b is trivial over Kz1 .

Returning to the proof of the lemma, let f ∪a∪b ∈H3(X , f ) be a given element,
and let x1 ∈ X1 f ⊂ X1 be such that f ∪ a ∪ b is nontrivial over the completion Kx1 .

Case 1. x1 ∈ X1,η = X0. Then vx1 is trivial on k, so vx1(a) = 0 = vx1(b). Hence,
since f ∪a∪b∈H3(X , f ) is nontrivial over the completion Kx1 , it follows by the dis-
cussion above that vx1( f ) is not divisible by n. Thus P := x1 ∈ Df , and we are done.

Case 2. x1 ∈ X1,0. Let s ∈Uf be the image of x1 under X1 f →Uf ⊂ S. Then by
the definition of X1 f , one has that xs := x1 is the unique preimage of s in X1, and
the following hold:

• Xs is a projective smooth geometrically integral κ(s)-curve, and Cxs = Xs .

• For all P 6= P ′ in |div( f )|, if x0 ∈ Xs ∩CP , then x0 6∈ Xs ∩CP ′ .

• n is invertible in κ(s).

• f is a vxs-unit, and its residue f̄ ∈ κ(xs) is nonconstant, i.e., f̄ ∈ κ(xs) \ κ(s).

From this we reason as follows. Let x0 ∈ X0 be a closed point with x0 7→ s ∈Uf ,
and let z1 ∈X1 satisfy that x0 ∈Cz1 and not all vz1(a), vz1(b), vz1( f ) are zero. Then
we have:

(a) If z1 ∈ X1,0, i.e., z1 maps to some s ′ ∈ S0, then Cz1 is a vertical curve; and
since Cz1 3 x0 7→ s, we must have Cz1 = Xs , so that z1 = x1, etc.
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(b) If P := z1 ∈X1,η = X0, then a, b are vP -units, and therefore vP( f ) 6= 0. Thus
P ∈ |div( f )|, and x0 ∈ Xs ∩CP . Moreover, P is the unique point in |div( f )|
with the property x0 ∈ CP ∩Xs .

From this we can conclude the following. Let x0 ∈ X be a closed point above the
point s ∈ Uf . Then there exist at most two points z1 ∈ X1, each satisfying that
x0 ∈ Cz1 and at least one of the values vz1(a), vz1(b), vz1( f ) is nonzero. Further,
the two (potential) points are

• the given point xs = x1 ∈X1,0 — note that vxs( f )= 0, f̄ ∈ κ(xs) is nonconstant,
etc.;

• the unique P0 ∈ |div( f )| such that x0 ∈CP0 ∩Xs — note that a, b are vP0-units.

Therefore, the image of f ∪a∪b ∈H3(K,Z/n(2)) in
⊕

x1∈Xx0
H2(κ(x1),Z/n(1))

under the homomorphism of Theorem 2.1 actually lies in

H2(κ(P0),Z/n(1))⊕H2(κ(xs),Z/n(1)).

Let us compute ∂xs( f ∪a∪b). First, since s∈Uf , we have f ∈O×xs
and f̄ ∈κ(xs) is

nonconstant. Second, every uniformizing parameter π ∈ k at s is also a uniformizing
parameter π at xs , because Xs is reduced by the fact that s ∈Uf . For such a π , set
a = πqa′ and b = πr b′ with a′, b′ ∈O×s . Then setting c = a′ r/ b′q ∈O×s , it follows
by the definition of ∂xs that we have 0 6= ∂xs( f ∪a∪b)= f̄ ∪ c̄ ∈H2(κ(xs),Z/n(1)).

Next, recall that since s ∈Uf , the special fiber Xs→ κ(s) is a complete smooth
geometrically integral model of the global function field κ(xs)|κ(s). Since f̄ ∪ c̄ is
nontrivial in H2(κ(xs),Z/n(1)), by the Hasse–Brauer–Noether LGP, there exists
a closed point x0 ∈ Xs,0 ⊂ X0 such that f̄ ∪ c̄ is nontrivial over the completion
κ(xs)x0 . Equivalently, the boundary homomorphism

∂x0 : H
2(κ(xs),Z/n(1))→ H1(κ(x0),Z/n)

maps f̄ ∪ γ̄ to some nontrivial element in H1(κ(x0),Z/n).
Let Ox0 be the local ring of x0 ∈ X viewed as a closed point of X , and let

Ox0 ⊂ κ(xs) be the image of Ox0 under the canonical projection Oxs→ κ(xs). Then
by scheme-theoretical nonsense, it follows that Ox0 is the local ring of the point
x0 ∈ Xs,0 viewed as a closed point of Xs . Hence, since the latter is a smooth curve
over κ(s), and thus regular, it follows that Ox0 =OXs ,x0 is regular. Therefore, by the
definition of ∂xs ,x0 as described before Theorem 2.1, it follows that ∂xs x0( f̄ ∪ c̄)=
∂x0( f̄ ∪ c̄). Hence we conclude that ∂xs x0( f̄ ∪ c̄) ∈ H1(κ(x0),Z/n) is nontrivial.
Viewing x0 as a closed point of X , we conclude that the image of f ∪ a ∪ b under
H3(K,Z/n(2))→ H2(κ(xs),Z/n(1))→ H1(κ(x0),Z/n) is nontrivial.

On the other hand, the image of f ∪ a ∪ b in
⊕

x1∈Xx0
H2(κ(x1),Z/n(1)) lies in

H2(κ(P0),Z/n(1))⊕H2(κ(xs),Z/n(1)), by the discussion above.
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For a contradiction, suppose that the image of f ∪ a ∪ b in H2(κ(P0),Z/n(1))
is trivial. Then the image of f ∪ a ∪ b in

⊕
x1∈Xx0

H2(κ(x1),Z/n(1)) lies in
H2(κ(xs),Z/n(1)), and this image is f̄ ∪ c̄. Thus, the image of f ∪a∪b under the
canonical map

H3(K,Z/n(2))→
⊕

x1∈Xx0

H2(κ(x1),Z/n(1))→ H1(κ(x0),Z/n)

is nontrivial. This contradicts Theorem 2.1.
Therefore, the image of f ∪a∪b in H2(κ(P0),Z/n(1))must be nontrivial. Since

that image is vP0( f ) · a ∪ b, we conclude, first, that vP0( f ) is not divisible by n, so
that P0 ∈ Df , and second, that f ∪ a ∪ b is nontrivial over K P0 . �

3C. The Chebotarev density theorem and the size of H3(X , f ). Let λ|k be a
finite extension with µ2n ⊂ λ. Consider α ∈ k which is not an n-th power in λ, or
equivalently, λ̃ := λ[ n

√
α ] is a cyclic extension of degree n of λ. Let further λ̂|k

be some finite Galois extension of k containing λ̃, and let T̂ → T̃ → T → S be
the normalizations of S in the field extensions k ↪→ λ ↪→ λ̃ ↪→ λ̂. For a generator
σ ∈Gal(λ̃|λ), consider a preimage τ ∈Gal(λ̂|λ)⊆Gal(λ̂|λ). Let T̂α→ Sα be the
sets of all the points ẑ 7→ s such that α is a vs-unit and τ is the Frobenius κ(ẑ)|κ(s).
Notice that by the Chebotarev density theorem, Sα has a positive Dirichlet density,
and that for ẑ ∈ T̂α and its image s ∈ Sα one has κ(ẑ)= κ(s)[γ̂ ] with γ̂ m

= ᾱ and
m the order of τ .

Finally, let z̃α→ zα be the images of ẑα in T̃ → T . Then for S̃α 3 z̃ 7→ z ∈ Tα,
one has that z̃ |z is unramified and has σ as Frobenius automorphism: κ(z)= κ(s)
and κ(z̃)= κ(s)[γ ], where γ n

= ᾱ. Thus we have showed the following:

Fact 3.4. Let λ|k be a finite extension of global fields, µ2n ⊂ λ, and α ∈ k not an
n-th power in λ. Let T → S be the normalization of S in k ↪→ λ. There exist subsets
Sα ⊂ S of positive Dirichlet density and Tα ⊂ T mapping onto Sα such that for all
Tα 3 z 7→ s ∈ Sα one has ks = λz , and α and n are vs-units, and α is not an n-th
power in ks = λz .

Notation/Remarks 3.5. For α, δ ∈ k× and Vδ := {s ∈ S | vs(δ)= 0} ⊂ S open and
nonempty, and the subgroup Hδ = {β ∈ k× | vs(β − 1) > 2vs(2n) if s 6∈ Vδ} ⊂ k×,
consider/define

(1) Hδα := α ∪Hδ ⊂ H2(k,Z/n(1)),

(2) H f δα := f ∪α ∪Hδ = f ∪Hδα ⊂ H3(K,Z/n(2)).

Notice that by Hensel’s lemma we have that if β ∈Hδ then β is an n-th power in ks

for all s 6∈ Vδ.

Lemma 3.6. Suppose that Vδ ⊆ Uf and that H f δα 6= 0. Then every nonzero
f ∪α∪β ∈H f δα lies in H3(X , f ), and for every such f ∪α∪β the following hold:
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(1) There exists P ∈ X such that f ∪α ∪β is nontrivial over KP . Hence, P ∈ Df

and α is not an n-th power in KP nor in the residue field κ(P).

(2) H f δ∗α is nontrivial over KP for all P as in (1) above and all δ∗ ∈ k×.

Proof. We first prove that every nonzero f ∪α∪β ∈H f δα actually lies in H3(X , f ).
Indeed, by Theorem 2.1, there exists some x1 ∈ X1 such that f ∪α∪β is nontrivial
over the completion Kx1 . Let x1 7→ s ∈ S be the image of x1 in S. We claim that
s ∈ Vδ . By contradiction suppose that s 6∈ Vδ . Then by Notation/Remarks 3.5, β is
an n-th power in ks and in particular, α∪β is trivial over ks . Further, since x1 7→ s,
we have ks ⊆ Kx1 . Hence f ∪α∪β is trivial over K̃ x̃1 , a contradiction! Thus finally
s ∈ Vδ, and since Vδ ⊆Uf we have s ∈Uf .

By (1), since f ∪ α ∪ β ∈ H3(X , f ), by Lemma 3.3 it follows that there exists
P ∈ Df such that f ∪ α ∪ β is nontrivial over KP . In particular, α is not an n-th
power in KP , etc.

For (2), by the discussion above, α is not an n-th power in λ := κ(P). In the
notation from Fact 3.4, for some fixed s∗ ∈ Vδ∗ ∩ Sα, let β∗ be a uniformizing
parameter at s∗ such that β∗ is an n-th power in ks for all s 6∈ Vδ∗ . Then α ∪ β∗

satisfies first, β∗ ∈ Hδ∗ , so α ∪β∗ ∈ Hδ∗α and f ∪α ∪β∗ ∈ H f δ∗α . Second, α ∪β∗

is trivial over all ks with s 6∈ Vδ∗ , because β∗ is an n-th power in ks . On the
other hand, α ∪ β∗ is not trivial over λz for z 7→ s∗ because β∗ is a uniformizing
parameter at s∗ and at all z 7→ s∗. Hence α ∪β∗ is not trivial over κ(P)⊂ κ(P)z .
But then, since ∂̂P : H3(KP ,Z/n(2))→ H2(κ(P),Z/n(1)) is an isomorphism and
∂̂P( f ∪α∪β∗)= vP( f )·α∪β∗ 6= 0, we get that f ∪α∪β∗ is nontrivial over KP . �

4. Detecting the k-valuations of K | k

In this section we work in the context/notation of the previous sections: n 6= char(K )
is a prime number and µ2n⊂ K . So if n= 2, then µ4⊂ K , and if n 6= 2, then µn⊂ K .

4A. The sets U•.

Notation/Remarks 4.1. In the usual context we have the following:

(1) For u ∈ K and α, c ∈ k, set uα,c = 1− c(1− u)+ αcn(1− u)n , and further
define uc := u0,c = 1+ c(u− 1) and uα := uα,1 = u+α(1− u)n .

(2) For u ∈ K× and c ∈ k× we set Ku,α,c := K [ n
√

uc, n
√

uα,c ], and notice that
Ku,α,c |K is a Z/n-elementary abelian extension of degree 1, n, or n2.

(3) In Notation/Remarks 3.5, suppose that H f δα 6=0. Thus H f δ∗α 6=0 for all δ∗∈k×.
We set U fα := {u ∈ K× | H f δ∗α is nontrivial over Ku,α,c for all c, δ∗ ∈ k×}.

(4) For u, α, c as above, set Du,α,c := {P ∈ Df | uc, uα,c ∈O×P }.
(5) Finally, let Dfα := {P ∈ Df | α is not an n-th power in κ(P)}. Note that by

Lemma 3.6, if H f δα is nontrivial then Dfα is nonempty.
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Lemma 4.2. Let Y → X , Q 7→ P , be the normalization of X in K ↪→ L := Ku,α,c

and suppose that n
√
α 6∈ L Q . Then uc, uα,c ∈O×P and hence P ∈ Du,α,c .

Proof. Let us analyze what happens if either uc or uα,c is not a vP -unit. We first
claim that u is vP -integral. Indeed, by contradiction, suppose that vP(u) < 0. Then
vP(1/u) > 0, and uα,c = ηα(−cu)n , where η is a principal vP -unit. But then η
is a principal vQ-unit too, and hence η is an n-th power in L Q . Conclude that

n
√
α ∈ L Q : contradiction! Thus finally u must be vP -integral. Further, if u is a

principal vP -unit, then so are uc, uα,c, and thus uc, uα,c ∈O×P . Hence, it is left to
analyze what happens if vP(u)≥ 0 and u is not a principal vP -unit. First we remark
that 1− u is a vP -unit, and hence so is αcn(1− u)n . Second, both uc and uα,c are
vP -integral. Therefore, since uα,c = uc+αcn(1− u)n , it follows that at least one
of the elements uc and uα,c is a vP -unit. By contradiction, suppose that either uc or
uα,c is not a vP -unit. Then either vP(uc)= 0 and vP(uα,c) > 0, or vice versa.

Case 1. vP(uc)= 0 and vP(uα,c) > 0.

Then α = −uc(1− uα,c/uc)/cn(1− u)n . Since µ2n ⊂ K , it follows that −1 is
an n-th power in K , and since 1−uα,c/uc is a principal vP -unit, it is an n-th power
in L Q . Hence all the factors on the right-hand side are n-th powers in L Q . Thus

n
√
α ∈ L Q : contradiction!

Case 2. vP(uα,c)= 0 and vP(uc) > 0.

Then α= uα,c(1−uc/uα,c)/cn(1−u)n with 1−uc/uα,c a principal vP -unit. But
then all the factors on the right-hand side are n-th powers in KP ⊂ L Q . Hence

n
√
α ∈ KP ⊆ L Q : contradiction!
We thus conclude that uc, uα,c ∈O×P , as claimed. �

Lemma 4.3. Suppose that Vδ ⊆ Uf and H f δα is nontrivial. Then the following
hold:

(1) If u ∈ U fα then uc ∈ U fα for all c ∈ k. And if c 6= 0 and uc ∈ U fα , then u ∈ U fα .

(2) 1+
⋃

P∈Dfα
mP ⊆ U fα.

(3) For every u ∈ U fα and each resulting uc, uα,c the following hold:

(a) There exists P ∈ Dfα with uc, uα,c ∈ O×P and H f δ∗α nontrivial over
KP Ku,α,c for all δ∗.

(b) There exists δ∗ such that if H f δ∗α is nontrivial over KP Ku,α,c, then
uc, uα,c ∈O×P and P ∈ Dfα.

Proof. (1): For all a, c, c′∈ k, (uc)a,c′=1−cc′(1−u)+a(cc′)n(1−u)n=ua,cc′ , and
therefore (uc)c′ = ucc′ and (uc)α,c′ = uα,cc′ . Hence {(uc)c′, (uc)α,c′} = {ucc′, uα,cc′}.
Now suppose that u ∈ U fα. Then by the definition of U fα it follows that H f δ∗α

is nontrivial over Ku,α,c′′ for all c′′ ∈ k and all δ∗ ∈ k×. In particular, setting
c′′ := cc′, it follows that H f δ∗α is nontrivial over Kuc,α,c′ , etc. The converse is
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clear, because given c′ and uc, by the discussion above one has that {uc′, uα,c′} =
{(uc)c′/c, (uc)α,c′/c}, etc.

For the proof of assertions (2) and (3) we first set up notation as follows: For
u ∈ K× and c ∈ k, set as usual L := Ku,α,c, and further, l := L ∩ k̄. Let T → S be
the normalization of S in k ↪→ l, and Y→ T be the minimal proper regular model
of L |l which dominates X → S. In particular, the generic fiber Y → l of Y→ T
is the normalization Y → X of X in the field extension K ↪→ L .

(2): Let u ∈ 1+mP be a principal unit at some P ∈ Dfα . Since P ∈ Dfα , we have
by definition that α is not an n-th power in κ(P) nor in KP , and H f δ∗α is nontrivial
over KP for all δ∗ ∈ k× by Lemma 3.6. On the other hand, since u is a principal
vP -unit, uc, uα,c are principal vP -units too (by mere definitions). Therefore, P is
totally split in the field extension L |K , and thus for every Q 7→ P one has L Q = KP .
Hence, H f δ∗α is nontrivial over L Q = L P (because it was nontrivial over KP ). But
then H f δ∗α is nontrivial over L ⊂ L Q too.

(3): For the proper regular model Y→ T of L |l and f ∈ L , we define the open
nonempty subsets UY f ⊆ UY of T , as we defined the sets Uf ⊆ UX of S for the
proper regular model X → S of K |k and f ∈ K at Notation/Remarks 3.1(5). For
both assertions (a) and (b), we consider δ∗ which satisfy Vδ∗ ⊆Uf , and the preimage
of Vδ∗ under T → S is contained in UY f . For such a δ∗ ∈ k× let f ∪α∪β∗ ∈H f δ∗α

be nontrivial over L .

Claim. The image of f ∪α ∪β∗ in H3(L ,Z/n(2)) lies in H3(Y, f ).

Indeed, since f ∪α∪β∗ is nontrivial over L , by Theorem 2.1, there exists some
y1 ∈ Y1 such that f ∪α∪β∗ is nontrivial over L y1 . Let y1 7→ z 7→ s∗ be the images
of y1 in T → S. We claim that s ∈ Vδ∗ , and thus z ∈ UY f by the definition of δ∗.
Indeed, by contradiction, suppose that s∗ 6∈ Vδ∗ . Then reasoning as in the proof
of Lemma 3.6, taking into account that β∗ is an n-th power in ks for s 6∈ Vδ∗ , we
conclude that α ∪ β∗ is trivial over ks∗ because β∗ is in ks∗ . Hence f ∪ α ∪ β∗ is
trivial over L y1 , because ks∗ ⊂ L y1 . Contradiction! The claim is proved.

(a): For u ∈ U fα and f ∪α∪β∗ ∈H f δ∗α , which is nontrivial over L , by Lemma 3.3
applied to f ∪ α ∪ β∗ ∈ H3(Y, f ), one found that there exists some Q ∈ Y such
that vQ( f ) is not divisible by n in vQ(L), and α is not an n-th power in L Q , nor
in κ(Q). Further, H f δ∗α is nontrivial over L Q = KP Ku,α,c for all δ∗ ∈ k×. Let
Q 7→ P ∈ X be the image of Q in X , and consider the canonical embeddings
KP ↪→ L Q , κ(P) ↪→ κ(Q), and recall that vQ = e(Q |P)vP , where e(Q |P) is the
ramification index of vQ |vP . Hence the following hold:

• Since vQ( f ) 6∈ n · vQ(L), one has that vP( f ) 6∈ n · vP(K ). Therefore, P ∈ Df .

• Since n
√
α 6∈ κ(Q), one has that n

√
α 6∈ κ(P). Therefore, P ∈ Dfα.
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Hence H f δ∗α is nontrivial over KP Ku,α,c, and P ∈ Dfα and uc, uα,c ∈ O×P by
Lemma 4.2.

(b): Clear from the discussion above. �

4B. The k-rings R• and R•. In the above notation and context, we introduce
the ring stabilizer R fα of U fα, which will play an essential role in describing
k-valuations of K |k.

Notation/Remarks 4.4. (1) Let A,+, · be a commutative ring with 1A, and if
k ⊂ A is a subfield in A having identity equal to 1A, we consider A as a k-algebra.
It seems that the following are well known facts to (a nonempty set of) experts:

Let X ⊂ A satisfy X =−X and 0A ∈ X , and set X0 := {x ∈ A | x+X ⊆ X}.
Then X0 ⊆ X , and RX := {a ∈ X0 | a · X0 ⊆ X0} is a subring of R, which
contains 1A if and only if 1A ∈ X0 . Moreover, if A is a k-algebra, and X
is stable under multiplication with k, then RX is a k vector subspace.

(2) Given a commutative ring A,+, · with 1A as above, let ∗ and ◦ be the transport
of the usual addition and multiplication, respectively, on the underlying set A via
a 7→ a+1A. Hence a ∗b= a+b−1R and a ◦b= ab−a−b+2, and A endowed
with ∗, ◦ is an isomorphic copy of A,+, · which we denote A.

If X ⊂ A is a nonempty subset as in (1) above, we let RX ⊂ A, or simply R if
no confusion is possible, be the corresponding subring of A.

(3) In the context and notation of the previous subsection, recall the nonempty set
X := U fα of K . We notice that in Lemma 4.3(1) one has uc ∈ U fα if (and only if)
u ∈U fα (provided c 6= 0). On the other hand, c◦u= u◦c= (c−1)(u−1)+1= uc−1.
Hence for u ∈ K , c ∈ k, one has c◦u ∈ U fα if (and only if) u ∈ U fα (provided c 6= 1).

In particular, X := U fα is closed with respect to multiplication ◦ by elements
of k, and therefore, X is symmetric with respect to the addition ∗.

(4) For X := U fα , we denote by R fα :=RU fα the corresponding subring of K, ∗, ◦
(the latter being an isomorphic copy of the field K,+, · as mentioned above).

Hence Rfα :=R fα − 1 is a subring of the field K,+, · with the usual addition
and multiplication.

Lemma 4.5. The ring R fα, ∗ is a k, ∗, ◦ vector space. Thus Rfα is a k-subspace
of K,+ .

Proof. Clear by the discussion at (1) and (3) above. �

Lemma 4.6. In the above notation, let X := U fα . Then one has X0 ⊆
⋂

P∈Dfα
O×P .

Proof. Indeed, by contradiction, suppose that there exists u0 ∈ X0 such that
vP0(u0) 6= 0 for some P0 ∈ Dfα. Then using the weak approximation lemma,
we can choose t ∈ K such that vP0(t − 1) > 0, i.e., t is a principal vP0-unit,
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and vP ′(u0 + t − 1) < 0 for all P ′ 6= P0, P ′ ∈ Dfα. Then vP ′′(u0 + t − 1) 6= 0
for all P ′′ ∈ Dfα. On the other hand, since u is a vP0 principal unit, it follows by
Lemma 4.3(2) that t ∈U fα= X . Hence, since u0 ∈ X0, we must have t∗u0 ∈U fα (by
the definition of X0), i.e, u := t ∗u0= u0+ t−1∈ U fα . But then by Lemma 4.3(3a),
it follows that for every c, there must exist some P ∈ Dfα such that uc, uα,c ∈O×P .
Hence, for c= 1, one gets u0+t−1= u= uc ∈O×P for some P ∈ Dfα , contradicting
the fact that vP ′′(u0+ t − 1) 6= 0 for all P ′′ ∈ Dfα. �

Key Lemma 4.7. One has R fα=1+
⋂

P∈Dfα
mP , and therefore, Rfα=

⋂
P∈Dfα

mP .

Proof. Let X = U fα and X0 ⊂ X as in Notation/Remarks 4.4.
For the inclusion “⊆”, consider the partition Dfα = D2

∪ D1
∪ D0, where

• P ∈ D2 if and only if vP(R fα) 6= 0,

• P ∈ D1 if and only if vP(R fα)= 0 and R fα is not contained in 1+mP ,

• P ∈ D0 if and only if R fα ⊆ 1+mP .

Clearly, in order to show that R fα ⊆ 1+
⋂

P∈Dfα
mP , we have to show that D2

and D1 are empty. By contradiction, suppose that at least one of the sets D2, D1 is
nonempty.

Case 1. D2 is nonempty.

Let P ∈ D2 and t ∈R fα be such that vP(t) 6= 0. Using the weak approximation
lemma, choose any principal vP -unit u′ such that vP ′(t+u′−1) > 0 for all P ′ 6= P
from Dfα. Since u′ ∈ 1 + mP , it follows by Lemma 4.3 that u′ ∈ U fα. Since
t ∈R fα ⊆ X0 , and u′ ∈ X = U fα , we get (by the definition of X0) that t ∗ u′ ∈ U fα .
On the other hand, one has u := t ∗u′ = t+u′−1, and therefore vP ′′(u) 6= 0 for all
P ′′ ∈ Dfα, thus contradicting Lemma 4.3(3).

Case 2. D2 is empty, and D1 nonempty.

For P ∈ D1 we have R fα ⊂O×P and R fα not contained in 1+mP . In particular,
the image R fα of Rfα under the residue map OP → κ(P) is a nontrivial k-subring
of κ(P). Since κ(P) is a finite field extension of k, it follows that R fα is a k-
subfield of κ(P). Hence there exists t ∈ R fα whose image in κ(P) is the given
element α ∈ k. In order to conclude, using the weak approximation lemma, choose
u′ ∈ 1+mP ⊆ U fα such that vP(t + u′ − 1− α) > 0 for all P ′ 6= P from Dfα.
Then reasoning as above, it follows that t ∗ u′ ∈ U fα = X . On the other hand,
as above, u := t ∗ u′ = u + u′ − 1 has the property that vP ′′(u − α) > 0 for all
P ′′ ∈ Dfα . Therefore, u is a vP ′′-unit with residue ū = α in κ(P ′′) for all P ′′ ∈ Dfα .
Recalling that u = t ∗ u′ ∈ U fα, for c = 1 one has {uc, uα,c} = {u, u+ α(1− u)n},
and α = ū ∈ κ(P) for all P ∈ Dfα. Thus α is an n-th power in KP Ku,α,c for all
P ∈ Dfα, contradicting Lemma 4.3(3).
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For the converse inclusion “⊇”, we have to show that for every u1 = 1+ ũ ∈
1+

⋂
P∈Dfα

mP with ũ ∈
⋂

P∈Dfα
mP , the following hold:

(a) u1 ∈ X0, or equivalently, u1 ∗ u ∈ X for all u ∈ X .

(b) u1 ◦ X0 ⊆ X0, or equivalently, u1 ◦ u0 ∗ u ∈ X for all u0 ∈ X0, u ∈ X .

For (a), we show that u1∗u∈ X for all u∈ X . Indeed, t :=u1∗u=u1+u−1=u+ũ.
Since u ∈ X , by Lemma 4.3(3), there exists P ∈ Dfα such that uc, uα,c ⊂O×P , and
for all δ∗ one has that H f δ∗α is nontrivial over KP Ku,α,c. We now claim that
KP Ku,α,c = KP Kt,α,c. Indeed, since t = u + ũ, vP(ũ) > 0, and uc, uα,c ∈ O×P , it
follows that tc, tα,c ∈OP and t̄c = ūc and t̄α,c = ūα,c in κ(P)×. Hence, by Hensel’s
lemma it follows that n

√
uc, n
√

uα,c and n
√

tc, n
√

tα,c generate the same extension
of KP . Therefore, if f ∪ α ∪ β∗ ∈ H f δ∗α is nontrivial over L Q = KP Ku,α,c, it is
nontrivial over KP Ku,α,c = KP Kt,α,c, and thus also over Kt,α,c ⊂ KP Kt,α,c, etc.

For (b), we show that u0 ∗ u ∈ X for all u ∈ X implies that (u1 ◦ u0) ∗ u ∈ X for
all u ∈ X . First, recall that by Notation/Remarks 4.4(4), it follows that u0 ∈O×P for
all P ∈ Dfα. Hence one gets

t := u1 ◦ u0 ∗ u = ((u1− 1)(u0− 1)+ 1)+ u− 1= ũ(u0− 1)+ u = u+ ũ′,

where ũ′= ũ(u0−1)∈
⋂

P∈Dfα
mP since u0 ∈

⋂
P∈Dfα

O×P and ũ ∈
⋂

P∈Dfα
mP . On

the other hand, u ∈U fα and P ∈ Dfα are such that H f δ∗α is nontrivial over KP Ku,α,c.
Hence KP Ku,α,c = KP Kt,α,c, by the fact that ū = t̄ in κ(P)× (and Hensel’s lemma).
Finally it follows that t ∈ U fα = X , as claimed.

This concludes the proof of Key Lemma 4.7. �

5. Proof of Theorems 1.1 and 1.2

5A. Defining the k-valuation rings. In the notation and hypotheses of the previ-
ous sections, let K |k be a smooth fibration of a finitely generated field K with
dim(K )= 2, and X the complete smooth k-curve with K = k(X). By Riemann–
Roch, if P ∈ X is a closed point and m � 0, there exist functions f ∈ K such
that ( f )∞ = m P , and letting m be prime to n, we have P ∈ Df . Further, setting
λ := κ(P), there exist “many” α ∈ k× such that α is not an n-th power in κ(P).
Hence there exists α such that Dfα is nonempty. Thus by Key Lemma 4.7, it follows
that R fα = 1+

⋂
P∈Dfα

mP .
For f and α as above, we set g := f + 1, and notice that (g)∞ = m P, etc. We

repeat the constructions above and we get Rgα = 1+
⋂

Q∈Dgα
mQ .

Since |div( f )| ∩ |div(g)| = {P}, by the weak approximation lemma one has(
1+

⋂
P∈Dfα

mP

)
·

(
1+

⋂
Q∈Dgα

mQ

)
= 1+mP .
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Therefore, one can recover OP ,mP from R fα and Rgα as follows:

mP =R fα ·Rgα − 1 and OP = {t ∈ K | tmP ⊆mP}.

We thus have a first-order recipe to define all the k-valuation rings of K |k:

Recipe 5.1. Let K = k(X) with X a complete smooth k-curve X . Suppose that a
predicateψ(x) is given which defines k inside K , i.e., k={x ∈K |ψ(x) holds in K }.
Let n 6= char(K ) be a prime number, and notice that describing the k-valuation rings
of K |k is equivalent to describing the k[µ2n]-valuation rings of K [µ2n]. Supposing
that µ2n ⊂ K , consider the following steps:

(1) For every δ ∈ k× let Hδ = {β ∈ k× | vs(β − 1) > 2vs(2n) if s 6∈ Vδ} ⊂ k×.
Note that Hδ is a definable subset of K , provided a predicate ψ(x) is given

which defines k inside K . Indeed, given the global field k, the valuation rings
Os,ms of k are definable inside k by Rumely’s recipe [1980] mentioned in
Section 1. Thus, one has

β ∈ Hδ if and only if ∀Os,ms (δ 6∈Os⇒ β − 1 ∈ 4n2
·ms).

(2) For every f ∈ K and α ∈ k×, set H f δα := f ∪α ∪Hδ ⊂ H3(K,Z/n(2)).

(3) Let U fα := {u ∈ K× | H f δα is nontrivial over Ku,α,c for all c ∈ k, δ ∈ k×},
where Ku,α,c :=K [ n

√
uc, n
√

uα,c ] and uc :=1−c(1−u), uα,c=:uc+αcn(1−u)n.
Note that the fact that H f δα is nontrivial over Ku,α,c is first-order expressible

as follows (see Section 2C): f ∪α is nontrivial and there exists β ∈ Hδ such
that the reduced norm N f,α of the division algebra A f,α does not represent β
over Ku,α,c.

(4) Let R fα := {u ∈ U fα | u+U fα − 1⊆ U fα, (u− 1)(U fα − 1)+ 1⊆ U fα}.

(5) Repeat the process above for g := f + 1.

(6) Set m :=R fα ·Rgα − 1 and O := {t ∈ K | tm⊆m}.

Conclusion 5.2. The k-valuation rings OP ,mP of K |k are among the definable
sets O,m. Precisely, for every OP ,mP there exist f and α such that O =OP , and
1/ f ∈m=mP .

5B. Concluding the proof of Theorem 1.2. First, the above Recipe 5.1 is a uniform
first-order description of the k-valuation rings of function fields of complete smooth
k-curves.

In order to give the formula degN (t), we first recall that k is a Hilbertian field.
Hence, for every nonconstant function t ∈ K there exist (infinitely many) special-
izations t 7→ a ∈ k such that the point P ∈ X with t̄ = a in κ(P) is unique. Hence
[κ(P) : k] = [K : k(t)] is the degree of t . Thus, one possibility for the formula
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defN (t) would be

(∀O,m : t ∈ k+m⇒ [O/m : k] ≤ N )& (∃O,m : t ∈ k+m & [O/m : k] = N ).

For the formula ψ R(t, t′), let R ⊂ K be the integral closure of k[t] in K . Then
for any k-valuation ring O, one has t ∈ O if and only if k[t] ⊂ O if and only if
R ⊂ O. Further, R is actually the intersection of all the O which contain k[t], or
equivalently, which contain t . Thus the formula ψ R(t, t′) could be

∀O,m (t ∈O ⇒ t′ ∈O).

Finally, for the formula ψ0(t, t′), let R ⊂ K be the integral closure of k[t] in K .
Recall that t ′ ∈ K lies in k[t] if and only if t ′ ∈ R and for all O,m one has that if
the residue t̄ ∈O/m lies in k ⊂O/m, then the residue t̄ ′ ∈O/m lies in k ⊂O/m.
(Indeed, this follows again from the fact that k is Hilbertian.) Thus one possibility
for the formula ψ0(t, t′) could be

∀O,m ((t ∈O ⇒ t′ ∈O)& (t ∈m+ k ⇒ t′ ∈m+ k)).

This completes the proof of Theorem 1.2.

5C. Proof of Theorem 1.1. In order to prove Theorem 1.1, we recall that by the
main results of [Pop 2002] combined with the description of the absolute constants
in [Poonen 2007], one has the following:

(1) For every finitely generated field K over a number field k with d := tr.deg(K |k),
there exists a formula with d free variables ϕ0

K (t1, . . . , td) such that the sen-
tence

∃t1, . . . , td ϕ0
K (t1, . . . , td)

is true in K . Moreover, if L is any other finitely generated field such that
ϕ0

K (u1, . . . , ud) is true in L for some choice of u1, . . . , ud ∈ L , then the map
(t1, . . . , td) 7→ (u1, . . . , ud) extends to an embedding of fields K ↪→ L .

(2) Now suppose that d = 1. Then using the above degN (t) we have proved the
following theorem.

Theorem 5.3. Let ϑK be the sentence ∃t (ϕ0
K (t)& degN (t)). Then the following

hold:

(1) The sentence ϑK is true in K if and only if there exists some t ∈ K such that
ϕ0

K (t) is true in K , and t has degree N in K.

(2) Suppose that ϑK is true in K. Then for every finitely generated field L , the
sentence ϑK is true in L if and only if K and L are isomorphic as fields.
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On the algebraic structure
of iterated integrals of quasimodular forms

Nils Matthes

We study the algebra IQM of iterated integrals of quasimodular forms for SL2.Z/,
which is the smallest extension of the algebra QM� of quasimodular forms
which is closed under integration. We prove that IQM is a polynomial algebra
in infinitely many variables, given by Lyndon words on certain monomials in
Eisenstein series. We also prove an analogous result for the M�-subalgebra IM

of IQM of iterated integrals of modular forms.

1. Introduction

Quasimodular forms, a generalization of modular forms, were first introduced in
[Kaneko and Zagier 1995] in a context motivated by mathematical physics. The
C-algebra QM� of quasimodular forms for the full modular group SL2.Z/ can be
defined, in a slightly ad hoc fashion, as the polynomial ring CŒE2;E4;E6� , where
E2k denotes the normalized Eisenstein series of weight 2k:

E2k.�/D 1�
4k

B2k

1X
nD1

n2k�1 qn

1� qn
; q D e2�i� ;

where B2k are the Bernoulli numbers. In particular, QM� contains the algebra of
modular forms M� Š CŒE4;E6� .

The derivative of a quasimodular form (of weight k) is again a quasimodular
form (of weight k C 2); this was essentially already known to Ramanujan (see
[Zagier 2008, Proposition 15]). On the other hand, the integral of a quasimodular
form is in general not quasimodular. For example, a primitive of E2 would have to
be of weight zero, but every quasimodular form of weight zero is constant.

The goal of this paper is to study the smallest algebra extension of QM� which
is closed under integration. For this, the idea is to iteratively adjoin primitives

MSC2010: primary 11F11; secondary 11F67.
Keywords: quasimodular forms, iterated integrals.
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to QM�, which eventually leads to adjoining all (indefinite) iterated integrals

I.f1; : : : ; fnI �/D .2� i/n
Z
� � �

Z
���1������n�i1

f1.�1/ � � � fn.�n/ d�1 � � � d�n; (1-1)

where f1; : : : ; fn are quasimodular forms (a precise definition will be given in
Definition 2.6). The integrals (1-1) were first studied by Manin [2006], and later by
Brown [2016] and Hain [2016], in the case where all the fi are modular forms.1 In
all of these treatments, the focus lies rather on arithmetic aspects of these iterated
integrals, for example their special values at cusps of the upper half-plane. By
contrast, we study them solely as holomorphic functions of � . It is also worth noting
that even in the modular case, the iterated integrals we study in the present paper
are slightly more general than the ones introduced in [Manin 2006; Brown 2016;
Hain 2016]. For example, if f .�/ is a modular form of weight k, then the integralR i1
� f .�1/�

n
1

d�1 is an iterated integral of modular forms in the sense of the present
paper for every n� 0, while [Manin 2006; Brown 2016; Hain 2016] also require
n� k � 2.

Now let IQM be the QM�-algebra generated by all the integrals (1-1), which
is the smallest algebra extension of QM� closed under integration. It turns out
that IQM is not finitely generated, but still has a manageable structure, which is
captured by the notion of shuffle algebra (which is just the graded dual of the tensor
algebra with a certain commutative multiplication, the so-called shuffle product)
[Reutenauer 1993]. More precisely, let V D C �E2˚M� be the C-vector space
spanned by all modular forms and the Eisenstein series E2, and let ChV i be the
shuffle algebra on V . Our main result is the following.

Theorem (Theorem 4.3). The QM�-linear morphism

'QM
W QM�˝C ChV i ! IQM; Œf1 j � � � j fn� 7! I.f1; : : : ; fnI �/

is an isomorphism of QM�-algebras.

A similar result holds for the M�-subalgebra IM of IQM of iterated integrals
of modular forms (see Theorem 4.5).2 The surjectivity of 'QM can be reduced to
the fact that every quasimodular form can be written uniquely as a polynomial in
n-th derivatives of modular forms and the Eisenstein series E2; see [Zagier 2008,
Proposition 20]. The proof of injectivity is more elaborate and amounts to showing
that iterated integrals of modular forms and the Eisenstein series E2 are linearly

1More precisely, Manin only defined iterated integrals of cusp forms, and the extension to all
modular forms is due to Brown.

2After this paper was submitted for publication, the author learned that, in the case of iterated
integrals of modular forms, a very similar result has also been proved by Brown [2017, Proposition 4.4]
using a slightly different method.
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independent over QM�. It extends results of [Lochak et al. 2017], which dealt with
iterated integrals of Eisenstein series. In both cases, the key is to use a general result
on linear independence of iterated integrals [Deneufchâtel et al. 2011]. It would be in-
teresting to prove similar results for quasimodular forms for congruence subgroups.

The Milnor–Moore theorem [Milnor and Moore 1965] states that if k has charac-
teristic zero, then khV i is isomorphic to a polynomial algebra (usually in infinitely
many variables). Fixing a (totally ordered) basis B of V , Radford [1979] has given
explicit generators of khV i in terms of Lyndon words on B (see Section 4). Using
this, we get the following theorem.

Theorem (Theorem 4.9). Let B be a basis of C �E2 ˚M�. We have a natural
isomorphism

IQM
Š QM�ŒLyn.B�/�; (1-2)

where the right-hand side is the polynomial QM�-algebra on the set Lyn.B�/ of
Lyndon words of B.

Again, a similar result holds for IM. Since QM� has an explicit basis given by
monomials in the Eisenstein series E2, E4 and E6, the isomorphism (1-2) can be
made completely explicit, and may be viewed as an analog of the isomorphism
QM� Š CŒE2;E4;E6� [Kaneko and Zagier 1995].

Finally, we note that classically, integrals of modular forms play an important
role in Eichler–Shimura theory, where they give rise to group-cocycles (say for
SL2.Z/ or more generally for some congruence subgroup thereof) with values
in homogeneous polynomials. This has been generalized by Manin [2006], and
later by Brown [2016] and Hain [2016], who attach certain nonabelian cocycles to
iterated integrals of modular forms. Although it is not the main focus of this article,
in the Appendix we show how one can attach cocycles to quasimodular forms (for
SL2.Z/), partly since we found no mention of this in the literature. On the other
hand, we leave the definition and study of cocycles attached to iterated integrals of
quasimodular forms for future investigation.

The plan of the paper is as follows. In Section 2, we collect the necessary
background on quasimodular forms and their iterated integrals. In Section 3, we
prove a linear independence result for iterated integrals of quasimodular forms.
This result is then put to use in Section 4, where the main results are proved.
In the Appendix, we discuss the above-mentioned generalization of the classical
Eichler–Shimura theory to quasimodular forms for SL2.Z/.

2. Preliminaries

Throughout the paper, all modular and quasimodular forms will be for SL2.Z/. We
fix some notation. Let HDfz2C j Im.z/>0g be the upper half-plane with canonical
coordinate � . For every k 2 Z, we have a group action of SL2.Z/ on the set of all
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functions f W H! C (not necessarily holomorphic), defined by .
; f / 7! f jk 
 ,
where

.f jk 
 /.�/ WD .c� C d/�kf
�

a�Cb

c�Cd

�
:

For fixed � 2H, we also define a map X W SL2.Z/!C by X.
 /D 1
2� i

c
c�Cd

. Note
that X has infinite, and thus Zariski dense, image.

Recap of modular forms. Denote by Mk the space of modular forms of weight
k 2 Z. By definition, these are the holomorphic functions f WH!C, which satisfy
f jk 
 D f for all 
 2 SL2.Z/, and which are “holomorphic at the cusp”. The latter
condition means that in the Fourier expansion f .�/D

P
n2Z anqn (which exists

since for 
 D
�

1
0

1
1

�
2 SL2.Z/, the condition f jk 
 D f is just f .� C 1/D f .�/

for all � ), an D 0 for all n< 0. Examples of modular forms include the Eisenstein
series

E2k.�/D 1�
4k

B2k

1X
nD1

n2k�1 qn

1� qn
D 1�

4k

B2k

1X
nD1

�X
d jn

d2k�1

�
qn;

which is a modular form of weight 2k, for k � 2 (the B2k are Bernoulli numbers).
The C-vector space of all modular forms M� is a graded (for the weight) C-algebra
M�D

L
k2Z Mk , which is well-known to be isomorphic to the polynomial algebra

CŒE4;E6� . Proofs of all these facts and much more on modular forms can be found,
for example, in [Zagier 2008].

Quasimodular forms. Quasimodular forms are a generalization of modular forms
which was first introduced in [Kaneko and Zagier 1995]; see also [Bloch and
Okounkov 2000, §3; Zagier 2008, §5.3]. The definition we give here is due to
W. Nahm3 and is also used for example in [Martin and Royer 2005].

Definition 2.1. Let k;p 2 Z with p � 0. A quasimodular form of weight k and
depth � p is a function f W H ! C with the following property: there exist
holomorphic functions fr W H! C, for 0� r � p, which have Fourier expansionsP1

nD0 anqn such that

.f jk 
 /.�/D

pX
rD0

fr .�/X.
 /
r ; for all 
 2 SL2.Z/: (2-1)

We denote by QM�p

k
the C-vector space of quasimodular forms of weight k and

depth � p, and set

QMk WD

[
p�0

QM�p

k
; QM� WD

M
k2Z

QMk :

3See [Zagier 2008, §5.3].
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Remark 2.2. (i) It is clear from the definition that, if f1 2QM�p1

k1
, f2 2QM�p2

k2
,

then f1f2 2 QM�p1Cp2

k1Ck2
. In other words, QM� is a graded (for the weight)

and filtered (for the depth) C-algebra.

(ii) Using the fact that X is Zariski dense, it is easy to see that the functions fr .�/

are uniquely determined by f .�/. Also, applying (2-1) with 
 D
�

1
0

0
1

�
, we

see that f0.�/D f .�/. In particular, every quasimodular form is holomorphic
on H and at the cusp.

Every modular form is a quasimodular form of depth zero; more precisely,
Mk D QM�0

k
. An example of a quasimodular form which is not modular is the

Eisenstein series of weight two E2.�/D 1� 24
P1

nD1 n qn

1�qn ; which transforms as

.E2 j2 
 /.�/DE2.�/C 12X.
 /DE2.�/�
6i

�

c

c�Cd
(2-2)

for all 
 2 SL2.Z/. In particular, E2 2 QM�1
2
nM2.

The following proposition recalls basic properties of QM� that will be of use later.

Proposition 2.3. (i) The C-algebra QM� is closed under the differential operator
D WD 1

2� i
d

d�
D q d

dq
. More precisely, for f quasimodular of weight k and

depth � p, we have

.D.f /jkC2 
 /.�/D

pC1X
rD0

.D.fr /.�/C .k � r C 1/fr�1.�//X.
 /
r :

In particular, D.QM�p

k
/� QM�pC1

kC2
for all k;p 2 Z.

(ii) We have

QMk D

8<:
f0g if k < 0,
C �E2 if k D 2,
D.QMk�2/˚Mk else.

In particular, QM� D C �E2˚D.QM�/˚M�, and

QM� Š CŒE2;E4;E6�

as graded C-algebras.

Proof. For (i), simply apply D to both sides of (2-1). The first equality in (ii) follows
from [Zagier 2008, Proposition 20(iii)], and the isomorphism QM�ŠCŒE2;E4;E6�

is essentially a consequence of this, but can also be proved independently (see
[Bloch and Okounkov 2000, Proposition 3.5(ii)]). �
Remark 2.4. Relaxing the condition in the definition of quasimodular forms that
every fr be a holomorphic function, one can define the notion of weakly quasi-
modular form of weight k and depth � p as a meromorphic function f W H! C

satisfying (2-1), but where the functions fr .�/ are only required to be meromorphic
on H and have Fourier series of the form

P1
nD�M anqn (fr is “meromorphic
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at the cusp”). As in the case of quasimodular forms, one shows easily that the
functions fr .�/ are uniquely determined by f .�/ (see Remark 2.2). Moreover,
Proposition 2.3(i) generalizes straightforwardly to weakly quasimodular forms.

We end this subsection with a short lemma, for which we couldn’t find a suitable
reference. Denote by �D 1

1728
.E3

4
�E2

6
/ Ramanujan’s cusp form of weight 12.

Lemma 2.5. Let g 2 QM� n f0g and ˛ 2 C be such that

D.g/D .˛E2/ �g: (2-3)

Then ˛ is a nonnegative integer, and g D ˇ�˛ for some ˇ 2 C n f0g.

Proof. Let gD
P1

nD0 anqn, so that D.g/D
P1

nD0 nanqn. Comparing coefficients
on both sides of (2-3) yields that ˛ equals the smallest integer m�0 such that am¤0.
On the other hand, D.�/=�DE2 [Zagier 2008, proof of Proposition 7], and from
the chain rule, D.�˛/=�˛ D ˛E2, which gives the result. �

Iterated integrals on the upper half-plane. Iterated integrals of modular forms
were first considered by Manin [2006] (for cusp forms), and later by Brown [2016]
(in general). They are generalizations of the classical Eichler integralsZ i1

�

f .z/zm dz; mD 0; : : : ; k � 2; (2-4)

where f is a cusp form of weight k [Eichler 1957; Lang 1976]. Extending (2-4) to
a general modular form poses the problem of logarithmic divergences, which arise
from the constant term in the Fourier series of f . A procedure for regularizing
such integrals is described in [Brown 2016], and we borrow it to define iterated
integrals of quasimodular forms. Since it is perhaps not so well-known, we give
some details for the convenience of the reader.

Let W �O.H/ be the C-subalgebra of holomorphic functions f WH!C, which
have an everywhere convergent Fourier series f .�/D

P1
nD0 anqn with q D e2� i�.

Note that QM� �W . For f .�/ 2W , let f1 D a0, and f 0.�/D f .�/� f1 DP1
nD1 anqn. Let ChW i (sometimes denoted by T c.W /) be the shuffle algebra

[Reutenauer 1993], i.e., the graded dual of the tensor algebra T .W /D
L

k�0 W ˝n

on W , where the grading is by the length of tensors. Elements of .W ˝n/_ will be
written using bar notation Œf1 j f2 j � � � j fn� , and a general element of ChW i is a
C-linear combination of those. The product on ChW i is the shuffle product ,
which is defined on the basic elements by

Œf1 j � � � j fr � ŒfrC1 j � � � j frCs �D
X
�2†r;s

Œf�.1/ j � � � j f�.rCs/�; (2-5)

where †r;s denotes the set of all the permutations on the set f1; : : : ; r C sg such
that ��1.1/ < � � �< ��1.r/ and ��1.r C 1/ < � � �< ��1.r C s/.
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Define a C-linear map R W ChW i ! ChW i by the formula

RŒf1 j � � � j fn�D

nX
iD0

.�1/n�i Œf1 j � � � j fi � Œf1n j � � � j f
1

iC1�:

Following [Brown 2016, §4], we make the following definition.

Definition 2.6. For f1; : : : ; fn 2W , define their regularized iterated integral

I.f1; : : : ; fnI �/

WD .2� i/n
nX

iD0

.�1/n�i

Z i1

�

RŒf1 j � � � j fi �

Z �

0

Œf1n j � � � j f
1

iC1�; (2-6)

whereZ b

a

Œf1 j � � � j fn� WD

Z
0�t1�����tn�1

.
 b
a /
�.f1.�1/ d�1/ � � � .


b
a /
�.fn.�n/ d�n/

denotes the usual iterated integral along the straight line path 
 b
a from a to b.

Remark 2.7. Using the change of variables � 7! q D e2�i� , it is easy to see that
I.f1; : : : ; fnI �/ 2 W Œlog.q/� , where log.q/ WD 2� i� . By the same token, if all
of the fi have rational Fourier coefficients, then I.f1; : : : ; fnI �/ will also have
rational coefficients, as a series in q and log.q/.

Proposition 2.8. The functions I.f1; : : : ; fnI �/ satisfy the following properties.

(i) The product of any two of them is given by the shuffle product

I.f1; : : : ; fr I �/I.frC1; : : : ; frCsI �/D
X
�2†r;s

I.f�.1/; : : : ; f�.rCs/I �/: (2-7)

(ii) They satisfy the differential equation

1

2� i

d

d�

ˇ̌̌
�D�0

I.f1; : : : ; fnI �/D�f1.�0/I.f2; : : : ; fnI �0/: (2-8)

(iii) We have the integration by parts formulas

I.f1; : : : ; fi ;D.g/; fiC1; : : : ; fnI �/

D I.f1; : : : ; fi ;gfiC1; : : : ; fnI �/� I.f1; : : : ; fig; fiC1; : : : ; fnI �/; (2-9)

as well as

I.D.g/; f2; : : : ; fnI �/D I.gf2; f3; : : : ; fnI �/�g.�/I.f2; : : : ; fnI �/;

and

I.f1; : : : ; fn�1;D.g/I �/D g.i1/I.f1; : : : ; fn�1I �/� I.f1; : : : ; fn�1gI �/:

Proof. Using the definition (2-6), all of these follow from the analogous properties
for usual iterated integrals; see, e.g., [Hain 1987]. �
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A criterion for linear independence of iterated integrals. Let Frac.W / be the field
of fractions of the C-algebra W introduced in the last subsection. By the quotient
rule, it is easy to see that Frac.W / is closed under D D 1

2�i
d

d�
.

The following theorem is a special case of the main result of [Deneufchâtel et al.
2011].

Theorem 2.9. Let F D .fi/i2I be a family of elements of W , and let C � Frac.W /

be a subfield which is closed under D and contains F . The following are equivalent:

(i) The family of iterated integrals .I.f1; : : : ; fnI �/ jfi 2 I; n � 0/ is linearly
independent over C.

(ii) The family F is linearly independent over C, and we have

D.C/\SpanC.F/D f0g:

Proof. This is the special case of Theorem 2.1 in [Deneufchâtel et al. 2011], with the
notation kDC, .A; d/D .Frac.O.H//;D/, X DfAfi

jfi 2Fg, M D�
P

i2I fiAfi

and S D
P

n�0

P
fi1
;:::;fin2S I.f1; : : : ; fnI �/ �Af1

� � �Afn
. Note that it follows

from (2-8) that
D.S/DM �S;

as required in [loc. cit.]. �

Remark 2.10. Variants of Theorem 2.9 have been known before; see [Brown 2009,
Lemma 3.6].

3. Linear independence of iterated integrals of quasimodular forms

In this section, we apply Theorem 2.9 to deduce linear independence of a large
family of iterated integrals of quasimodular forms. More precisely, our main result
is the following theorem.

Theorem 3.1. Let B be a C-linearly independent family of elements of C �E2˚M�.
Then the family of iterated integrals

.I.f1; : : : ; fnI �/ j fi 2 B/

is linearly independent over Frac.QM�/Š C.E2;E4;E6/.

Two auxiliary lemmas. For the proof of Theorem 3.1, we need two lemmas.

Lemma 3.2. Let f;g 2 CŒE2;E4;E6� be such that g ¤ 0 and such that f and
g are coprime. Assume that D.f=g/ 2 CŒE2;E4;E6� . Then g D ˇ�˛ for some
˛ 2 Z�0 and some ˇ 2 C n f0g, where � WD 1

1728
.E3

4
�E2

6
/ is Ramanujan’s cusp

form of weight 12.
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Proof. By the quotient rule, we have

D
�f

g

�
D

D.f /g�fD.g/

g2
D

D.f /�fD.g/=g

g
:

The left-hand side is contained in CŒE2;E4;E6� by assumption, and since also
D.f / and g are in CŒE2;E4;E6� , we have fD.g/=g 2 CŒE2;E4;E6� . But
then, as f and g have no common factor, g must divide D.g/, i.e., there exists
h 2 CŒE2;E4;E6� such that

D.g/D gh:

Since D W QM�! QM� is homogeneous of weight 2 (see Proposition 2.3(i)), we
have h 2 QM2, i.e., hD ˛E2 with ˛ 2 C. In other words, g solves the differential
equation D.g/D .˛E2/ �g. But by Lemma 2.5, ˛ must be a nonnegative integer
and g D ˇ�˛ for some ˇ 2 C n f0g. �
Lemma 3.3. Let f be a weakly quasimodular form such that its derivative D.f /

is a quasimodular form. Then f is a quasimodular form.

Proof. It is no loss of generality to assume that f is of weight k 2 Z and depth � p,
where p� 0. By the definition of weakly quasimodular forms (see also Remark 2.2),
there exist uniquely determined meromorphic functions fr .�/, for 0� r � p, such
that

.f jk 
 /.�/D

pX
rD0

fr .�/X.
 /
r

for all 
 2SL2.Z/. Therefore, we only need to show that every fr .�/ is holomorphic,
including at the cusp.

To this end, by Proposition 2.3(i), we know that

.D.f /jkC2
 /.�/D

pC1X
rD0

.D.fr /.�/C .k � r C 1/fr�1.�//X.
 /
r ; (3-1)

and since D.f / is a quasimodular form by assumption, every coefficient of (3-1)
is holomorphic, including at the cusp.

The constant term, with respect to X.
 /, in (3-1) equals D.f0/.�/, which is
holomorphic by assumption. But a meromorphic function whose derivative is
holomorphic everywhere is itself holomorphic everywhere. An easy induction
argument, using the fact that the coefficients of (3-1) are holomorphic, now shows
that in fact every fr .�/ is holomorphic. �

Proof of Theorem 3.1. We use the criterion of Theorem 2.9 in the case where
C D Frac.QM�/ and F D B. Since B is linearly independent over C by assumption,
it is enough to prove that if h 2 Frac.QM�/ then

D.h/D
X
f 2B

f̨ f and f̨ 2 C ) f̨ D 0; for all f 2 B:
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Also, since B spans a subspace of C �E2˚M�, it clearly suffices to prove that
D.h/ 2 C �E2 ˚M� implies that D.h/ D 0, or equivalently, that h is constant.
Thus, the following proposition completes the proof of Theorem 3.1.

Proposition 3.4. Suppose that h 2 Frac.QM�/ Š C.E2;E4;E6/ is such that
D.h/ 2 C �E2˚M�. Then h is constant.

Proof. Write hD f=g with f;g 2 CŒE2;E4;E6� such that g¤ 0 and f and g are
coprime. Writing f as a C-linear combination of its homogeneous components, it
is enough to show the proposition for f homogeneous of weight kf .

First, we know from Lemma 3.2 that gDˇ�˛ for some ˛ 2Z�0 and ˇ 2Cnf0g,
where � is Ramanujan’s cusp form of weight 12. In particular, g is a cusp form of
weight kg D 12˛.

Since f is quasimodular of weight kf and depth � p, there exist holomorphic
(including at the cusp) functions fr .�/, for 0� r � p, such that

.f jkf

 /.�/D

pX
rD0

fr .�/X.
 /
r

for all 
 2 SL2.Z/. Setting hr .�/ WD
fr

g
.�/, we also have, for k WD kf � kg,

.hjk 
 /.�/D

pX
rD0

hr .�/X.
 /
r :

Moreover, the functions hr .�/ are meromorphic; thus, h is a weakly quasimodular
form (of weight k and depth � p). By assumption, D.h/ is a quasimodular form
(necessarily of weight kC2 and depth �pC1), and using Lemma 3.3, this implies
that h 2 QM�p

k
. Therefore, every hr .�/ is holomorphic, including at the cusp.

Summarizing, we have seen that h 2 Frac.QM�/ such that D.h/ 2QM� implies
that h2QM�. But we even have D.h/2C �E2˚M� by assumption, and therefore
Proposition 2.3(ii) now implies that h is constant, as was to be shown. �

4. Iterated integrals of quasimodular forms and shuffle algebras

We describe the QM�-algebra of iterated integrals of quasimodular forms, which is
the smallest algebra which contains QM� and is closed under integration. Using the
results of the last section, we show that it is canonically isomorphic to an explicit
shuffle algebra. A similar result holds for the M�-subalgebra of iterated integrals
of modular forms.

The algebra of iterated integrals of quasimodular forms.

Definition 4.1. Define IQM to be the QM�-module generated by all iterated inte-
grals of quasimodular forms:
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IQM
D SpanQM�fI.f1; : : : ; fnI �/ j fi 2 QM�g:

We also denote by IQM
n the QM�-linear submodule, which is spanned by all of the

I.f1; : : : ; fr I �/ with r � n.

The subspaces IQM
n define an ascending filtration IQM

�
on IQM, called the length

filtration (in analogy with the length filtration on iterated integrals [Hain 1987]). It
follows from (2-7) that IQM is a filtered QM�-algebra. However, the length is not
a grading, as shown by the next result.

Proposition 4.2. Let f1; : : : ; fn be quasimodular forms. Then

I.f1; : : : ; fi�1;D.fi/; fiC1; : : : ; fnI �/ 2 IQM
n�1

:

Proof. This follows immediately from the integration by parts formula (2-9). �

IQM as a shuffle algebra. We let V be the C-vector space C�E2˚M�, and denote
by ChV i the shuffle algebra on V (see Section 2). Recall that this is the graded
dual of the tensor algebra T .V /, whose grading is given by the length of tensors.
Elements of ChV i are C-linear combination of the basic elements Œf1 j � � � j fn� ,
and the product on ChV i is the shuffle product (2-5).

The following theorem is the main result of this paper.

Theorem 4.3. The QM�-linear map

'QM
W QM�˝C ChV i ! IQM; Œf1 j � � � j fn� 7! I.f1; : : : ; fnI �/ (4-1)

is an isomorphism of QM�-algebras.

Proof. Let B be a basis of V , so that the family .Œf1 j � � � j fn� j fi 2 B/ is a basis
of ChV i. The injectivity of 'QM follows from the Frac.QM�/-linear independence
of the family

F D .I.f1; : : : ; fnI �/ j fi 2 B/; (4-2)

which is a consequence of Theorem 3.1.
To obtain the surjectivity, we need to prove that the family (4-2) generates IQM.

To this end, we prove inductively that for every n� 0, we have IQM
n � SpanQM� F .

The case n D 0 is trivial. Now let n � 1 and assume that for every r � n � 1,
we have IQM

r � SpanQM� F . Given quasimodular forms f1; : : : ; fn, we can write
fi D giCD.hi/, where gi 2C �E2˚M� and hi 2D.QM�/ by Proposition 2.3(ii).
Then by linearity,

I.f1; : : : ; fnI �/D I.g1; : : : ;gnI �/

C

nX
iD1

I.g1; : : : ;gi�1;D.hi/;giC1; : : : ;gn/C � � � ; (4-3)
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where the � � � above signifies iterated integrals which have at least two D.hi/ as inte-
grands. The first term on the right is contained in SpanQM�F , since gi 2C�E2˚M�
for every i and B is a basis. On the other hand, all other terms in the sum (4-3)
are iterated integrals which contain at least one D.hi/. By Proposition 4.2, it thus
follows that

I.f1; : : : ; fnI �/� I.g1; : : : ;gnI �/ mod IQM
n�1

;

and we conclude using the induction hypothesis. Finally, it is clear that 'QM is a
homomorphism of algebras, since both sides of (4-1) are endowed with the shuffle
product. �

The algebra of iterated integrals of modular forms. In this section, we study the
subalgebra IM of IQM, generated by iterated integrals of modular forms.

Definition 4.4. Define IM to be the M�-module generated by all iterated integrals
of modular forms:

IM
D SpanM�

fI.f1; : : : ; fnI �/ j fi 2M�g:

As in the case of IQM, the length of iterated integrals defines the length filtration
IM
�

on IM, and IM is a filtered M�-subalgebra of IQM. We let ChM�i be the
shuffle algebra on the C-vector space M�.

Theorem 4.5. The M�-linear map

'M
WM�˝C ChM�i ! IM ; Œf1 j � � � j fn� 7! I.f1; : : : ; fnI �/

is an isomorphism of M�-algebras.

Proof. The morphism 'M is surjective by definition. It is also injective, since for a
basis BM of M�, the iterated integrals I.f1; : : : ; fnI �/ with fi 2 BM are linearly
independent over M� by Theorem 3.1, as M� � Frac.QM�/. �

A polynomial basis for IQM. Recall from Proposition 2.3(ii) that QM� is isomor-
phic to the polynomial algebra CŒE2;E4;E6� . A similar, but slightly more involved
statement holds for the QM�-algebra IQM of iterated integrals of quasimodular
forms. Namely, IQM is a polynomial algebra over QM� in infinitely many variables,
which are given by certain Lyndon words.

In the following, if .S; </ is a totally ordered set, we will endow the free monoid
S� on S with the lexicographical order induced by <. Also, the length of w is
simply the number of letters of w.

Definition 4.6. A Lyndon word on S� is a nontrivial word w 2 S� n f1g such that
for all factorizations wD uv with u; v¤ 1, we have w < v. We denote by Lyn.S�/
the set of all Lyndon words on S�.
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Example 4.7. Let S D fa; bg with total order a < b. Then the Lyndon words on
S� of length at most four are

a; b; ab; aab; abb; aaab; aabb; abbb:

Now for a field k and any set S , define khSi to be the shuffle algebra on the free k-
vector space generated by S . If k is of characteristic zero, then by the Milnor–Moore
theorem [Milnor and Moore 1965], khSi is isomorphic to a polynomial algebra
(in possibly infinitely many variables). The following refinement is due to Radford.

Theorem 4.8 [Radford 1979]. If k has characteristic zero, then khSi is freely
generated, as a k-algebra, by the set of Lyndon words Lyn.S�/. Equivalently,
khSi Š kŒLyn.S�/� , the polynomial algebra on Lyn.S�/.

Returning to quasimodular forms, consider again the C-vector space

V D C �E2˚M�;

and let B D
S

k�0 Bk be the homogeneous basis of V given by Bk D fE
a
4
Eb

6
j

4aC 6b D kg for k ¤ 2, and B2 D fE2g. The basis B can be ordered for the
lexicographical order as follows: if Ea

4
Eb

6
;Ea0

4
Eb0

6
2 Bk , then

Ea
4Eb

6 <Ea0

4 Eb0

6 W, a< a0; or aD a0 and b < b0;

and if f 2 Bk , g 2 Bk0 with k < k 0, then f < g.
Now, since for f1; : : : ; fn 2B, the iterated integrals I.f1; : : : ; fnI �/ are linearly

independent over QM� (by Theorem 3.1), we can canonically identify the set of
all I.f1; : : : ; fnI �/ with the free monoid B� and order B� for the lexicographical
ordering induced from the order on B above. The next result is a formal consequence
of Theorems 4.3, 4.5 and 4.8.

Theorem 4.9. The elements of Lyn.B�/ are algebraically independent over QM�
and we have a natural isomorphism of QM�-algebras

QM�ŒLyn.B�/�Š IQM;

which is filtered for the length, where the left-hand side is the polynomial QM�-
algebra on Lyn.B�/. Explicitly, the isomorphism maps an element

w D f1 � � � fn 2 Lyn.B�/

to the iterated integral I.f1; : : : ; fnI �/. Similarly, we have a natural isomorphism
of M�-algebras

M�ŒLyn.B�M /�Š IM ;

where BM D B n fE2g.
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Example 4.10. The following table gives all elements of Lyn.B�/ involving iterated
integrals of length at most two of quasimodular forms of total weight at most 12.
For ease of notation, we have dropped the � from I.f1; : : : ; fnI �/.

Length

Weight 0 1 2

0 — I.1/ —

2 — I.E2/ —

4 — I.E4/ I.1;E4/

6 — I.E6/ I.1;E6/, I.E2;E4/

8 — I.E2
4
/ I.1;E2

4
/, I.E2;E6/

10 — I.E4E6/ I.1;E4E6/, I.E2;E
2
4
/, I.E4;E6/

12 — I.E3
4/, I.E2

6/ I.1;E3
4/, I.1;E2

6/, I.E2;E4E6/, I.E4;E
2
4/

Also, the list of all elements of Lyn.B�/ consisting of iterated integrals of length
at most three of quasimodular forms of total weight 12 is given by

fI.E3
4/; I.E2

6/; I.1;E3
4/; I.1;E2

6/; I.E2;E4E6/; I.E4;E
2
4/;

I.1; 1;E3
4/; I.1; 1;E2

6/; I.1;E2;E4E6/; I.1;E4;E
2
4/; I.1;E6;E6/;

I.1;E2
4 ;E4/; I.1;E4E6;E2/; I.E2;E2;E

2
4/; I.E2;E4;E6/; I.E2;E6;E4/g:

Appendix: Eichler–Shimura for quasimodular forms

In this appendix, we show how one can attach one-cocycles to quasimodular forms.
This extends the classical Eichler–Shimura theory of the cocycles attached to
modular forms, and is probably well-known to the experts, but the author does not
know of a suitable reference for the precise statements.

Throughout this appendix, we will freely use some elementary concepts from
the cohomology of groups, for which we refer to [Weibel 1994, Chapter 6].

Cocycles attached to modular forms. We first briefly recall how modular forms
give rise to cocycles for SL2.Z/. A standard reference is [Lang 1976, Chapter VI].

For d � 0, let QŒX;Y �d be the Q-vector space of homogeneous polynomials in
X and Y of degree d . It is a right SL2.Z/-module by defining

P .X;Y /j
 DP .aXCbY; cXCdY / for 
 D
�

a b

c d

�
2SL2.Z/; P 2QŒX;Y �d :

With this action, given a modular form f of weight k � 2, it is straightforward to
verify that the holomorphic differential one-form

f .�/ WD .2� i/k�1f .�/.X � �Y /k�2 d� 2�1.H/˝Q QŒX;Y �k�2
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is SL2.Z/-invariant, where SL2.Z/ acts on H in the usual way via fractional linear
transformations. Fixing a base point �0 of H (possibly i1), it follows from the
SL2.Z/-invariance that the function

rf;�0
W SL2.Z/! CŒX;Y �k�2; 
 7!

Z �0

�

f .�/�

�Z �0


:�

f .�/

�ˇ̌̌̌



(regularized as in Section 2 if �0 D i1) is a one-cocycle, i.e., it satisfies

rf;�0
.
1
2/D rf;�0

.
1/j
2
C rf;�0

.
2/

for all 
1; 
2 2 SL2.Z/. Its cohomology class does not depend on �0, and we denote
this class simply by Œrf � .

The same construction can also be applied to the complex conjugate

f .�/ WD .�2� i/k�1f .�/.X � �Y /k�2 d�

of the one-form f .�/, and we denote by Œr
f
� the resulting cohomology class.

Theorem A.1 (Eichler–Shimura). For every k � 2, the morphism

Mk ˚Sk !H 1.SL2.Z/;QŒX;Y �k�2/˝Q C; .f;g/ 7! Œrf �C Œrg�

is an isomorphism of C-vector spaces. Here, Sk denotes the complex conjugate of
the C-vector space of cusp forms of weight k.

Cocycles for the braid group. The fact that rf is a cocycle hinges on the modularity
of f . In order to incorporate quasimodular forms into the picture, we need to
consider instead of SL2.Z/ the braid group B3 D h�1; �2 W �1�2�1 D �2�1�2i on
three strands. It is a central extension

1! Z! B3! SL2.Z/! 1; (A-1)

and also the fundamental group of the quotient of C� �H by the SL2.Z/-action


:.z; �/D ..c� C d/z; 
:�/ for 
 D
�

a b

c d

�
2 SL2.Z/;

where SL2.Z/ acts on H as before. We refer to [Hain 2011, §8] for more details
and further equivalent descriptions of B3.

Next, we compute the cohomology groups H 1.B3;QŒX;Y �d /, where B3 acts
on QŒX;Y �d via the projection B3! SL2.Z/.

Proposition A.2. We have canonical isomorphisms

H 1.B3;QŒX;Y �d /Š

�
H 1.SL2.Z/;QŒX;Y �d / for d � 1;

Q for d D 0:
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Proof. The Hochschild–Serre spectral sequence (see [Weibel 1994, §6.8.3]) associ-
ated to the extension (A-1) yields an exact sequence

0!H 1.SL2.Z/;QŒX;Y �d /!H 1.B3;QŒX;Y �d /!H 1.Z;QŒX;Y �d /
SL2.Z/! 0;

where we have used the fact that H 2.SL2.Z/;QŒX;Y �d / D f0g, as SL2.Z/ has
virtual cohomological dimension equal to one. The proposition now follows easily
from this. �

Quasimodular forms and braid group cocycles. In light of Theorem A.1, the iso-
morphisms of Proposition A.2 suggest attaching a one-cocycle B3 ! C to the
Eisenstein series E2. Indeed, this can be done as follows.

First, the modular transformation property of E2 (2-2) implies that the differential
one-form

2� iE2.�/ d� � 12
dz

z
2�1.C� �H/ (A-2)

is SL2.Z/-invariant, i.e., it descends to the quotient SL2.Z/n.C
� �H/. Denote by

E2.�; �/ WD '
�
�
2� iE2.�/ d� � 12

dz

z

�
D 2� iE2.�/ d� � 12 d� 2�1.C�H/

the pull-back of (A-2) along the universal covering map ' WC�H!SL2.Z/n.C
��H/.

Clearly, E2.�; �/ is B3-invariant and it follows that for any base point .�0; �0/ (for
example, .�0; �0/D .0; i1/), the function

rE2;.�0;�0/ W B3! C; 
 7!

Z .�0;�0/

.�;�/

E2.�; �/�

�Z .�0;�0/


:.�;�/

E2.�; �/

�ˇ̌̌̌



is a well-defined cocycle (again, regularization is needed if �0 D i1).

Remark A.3. The integral I.E2I �/ introduced in Section 2 is actually equal toR i1
� E2.�; �/, where we embed H into C�H by � 7! .0; �/. However, that em-

bedding is not B3-equivariant, and indeed the integral I.E2I �/ does not give rise
to a cocycle for B3; for this, one really needs to lift the form 2� iE2.�/ d� to the
form E2.�; �/.

Now, since the cocycle rE2;.�0;�0/ is nonzero, its cohomology class (which is
again independent of the choice of base point .�0; �0/) is nontrivial. The Eichler–
Shimura theorem (Theorem A.1) together with Proposition A.2 then implies the
next result.

Corollary A.4. For every k � 2, the morphism

Vk ˚Sk !H 1.B3;QŒX;Y �k�2/˝Q C; .f;g/ 7! Œrf �C Œrg� ;

where V WDM�˚C �E2, is an isomorphism of C-vector spaces.
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One can also attach a cocycle rf;�0
to a general quasimodular form f 2 QMk of

weight k as follows. By Proposition 2.3(ii), we know that f can be written uniquely
as a C-linear combination of derivatives of modular forms and of derivatives of E2.
Thus, we can write

f D
X

�g �D
pg.g/; �g 2 C; pg � 0;

where either g is a modular form of weight k�2pg or gDE2. Therefore, we may
define rf;�0

W B3! CŒX;Y ��k�2 WD
L

0�d�k�2 CŒX;Y �d by

rf;�0
WD

X
�g � rg;�0

:

Using this definition, one sees in particular that the cocycles of quasimodular forms
can be expressed in terms of the cocycles attached to modular forms and to E2.
This is of course in line with Corollary A.4.

Remark A.5. In [Manin 2006; Brown 2016; Hain 2016], certain nonabelian
SL2.Z/-cocycles given in terms of iterated integrals of modular forms are studied.
It would be natural to try and extend this theory to nonabelian B3-cocycles attached
to iterated integrals of quasimodular forms (perhaps along the lines suggested in
[Hain 2016, §14]), but this is beyond the scope of the present paper.
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On the density of zeros
of linear combinations of
Euler products for σ > 1

Mattia Righetti

It has been conjectured by Bombieri and Ghosh that the real parts of the zeros of
a linear combination of two or more L-functions should be dense in the interval
[1, σ ∗], where σ ∗ is the least upper bound of the real parts of such zeros. In this
paper we show that this is not true in general. Moreover, we describe the optimal
configuration of the zeros of linear combinations of orthogonal Euler products
by showing that the real parts of such zeros are dense in subintervals of [1, σ ∗]
whenever σ ∗ > 1.

1. Introduction

Let L(s) be a Dirichlet series and let σ ∗=σ ∗(L) be the least upper bound of the real
parts of the zeros of L(s). It is well known that σ ∗ is finite (see, e.g., Titchmarsh
[1975, §9.41]). For the Riemann zeta function we know that σ ∗ ≤ 1, and it is
expected that the Riemann hypothesis holds, i.e., σ ∗ = 1

2 . A similar situation is
expected for many Euler products (see, e.g., Selberg [1992]).

On the other hand, we have recently proved [Righetti 2016a], for a large class of
L-functions with a polynomial Euler product, that nontrivial linear combinations
have zeros for σ > 1. This is not surprising since many examples of such linear
combinations were already known to have zeros for σ > 1 from work of Davenport
and Heilbronn [1936a; 1936b] on the Hurwitz and Epstein zeta functions. We also
refer to later important works of Cassels [1961], Conrey and Ghosh [1994], Saias
and Weingartner [2009], and Booker and Thorne [2014].

Since for this type of Dirichlet series we know that there are zeros in the region
of absolute convergence, which we may always suppose to be σ > 1, it is of
interest to know the distribution of such zeros in this half-plane. With respect to the
distribution of the imaginary parts the problem was completely solved by Jessen
and Tornehave [1945]. Indeed it is known that the number of zeros in any rectangle
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[σ1, σ2] × [T1, T2], with 1 < σ1 < σ2, satisfies (cf. Theorem 31 of [Jessen and
Tornehave 1945])

N (σ1, σ2, T1, T2)= c(T2− T1)+ o(|T2− T1|), when |T2− T1| →∞, (1-1)

for some nonnegative constant c = c(σ1, σ2). Note that by a classical application
of the Bohr almost periodicity of Dirichlet series and Rouché’s theorem we easily
have that c > 0 whenever N (σ1, σ2, T1, T2) > 0.

On the other hand the situation regarding the distribution of the real parts of the
zeros is much more complicated. In fact some Epstein zeta functions studied by
Bombieri and Mueller [2008] are known to have the property that the real parts
of their zeros are dense in the interval [1, σ ∗]. Note that these functions may be
written as a linear combination of two Hecke L-functions. Other examples of linear
combinations with this property may be found in Bombieri and Ghosh [2011],
although not explicitly stated. Moreover, we remarked in [Righetti 2016a] that, as
a consequence of the technique used to prove the main result there, the real parts of
the zeros of nontrivial combinations of orthogonal L-functions are dense in a small
interval [1, 1+ η], for some η > 0 (cf. Corollary 1 of [Righetti 2016a]). Hence
one might expect, as conjectured by Bombieri and Ghosh [2011, p. 230], that the
real parts of the zeros of linear combinations of two or more L-functions should be
dense in the whole interval [1, σ ∗]. However this is too much to hope for as one
can see from the following general counterexample.

Theorem 1.1. Let N ≥ 2 be an integer and let Fj (s) =
∑
∞

n=1 a j (n)n−s be dis-
tinct nonidentically zero Dirichlet series absolutely convergent for σ > 1, j =
1, . . . , N , with

∑N
j=1 |a j (1)| 6= 0. Then, for any x = (x1, . . . , xN ) ∈ CN such that∑N

j=1 x j a j (1)= 0 but the Dirichlet series L x(s)=
∑N

j=1 x j Fj (s) is not identically
zero, there exist infinitely many projectively inequivalent vectors c ∈ CN such that
L c(s) has no zeros in some vertical strip σ1 < σ < σ2 with 1< σ1 < σ2 < σ

∗(L c).

Remark. The above statement is very general, but in particular may be applied to
linear combinations of linearly independent L-functions. Moreover, it is easy to
show that the same argument works also for a-values with a 6= 0.

This has to be compared with what happens for 1
2 <σ < 1. There it is known that

joint universality of L-functions implies that the real parts of the zeros of any linear
combination of these L-functions are dense in

[1
2 , 1

]
(see, e.g., [Bombieri and Gosh

2011, p. 230]). Furthermore joint universality is known to hold for many families
of L-functions and recently Lee, Nakamura and Pańkowski [Lee et al. 2017] have
shown that this property holds in an axiomatic setting such as the Selberg class
under a strong Selberg orthonormality conjecture.

We can actually prove more, i.e., it is in general possible to construct Dirichlet
series, given by a linear combination of L-functions, which have many distinct
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vertical strips without zeros, i.e., such that between every two vertical strips without
zeros there is at least one zero.

Theorem 1.2. Let k ≥ 1 be an integer and, for j = 1, . . . , k + 1, let Fj (s) =∑
∞

n=1 a j (n)n−s be a Dirichlet series absolutely convergent for σ > 1 with a j (1) 6= 0.
Suppose that

det


a1(1) a1(2) · · · a1(k+ 1)
a2(1) a2(2) · · · a2(k+ 1)
...

...
. . .

...

ak+1(1) ak+1(2) · · · ak+1(k+ 1)

 6= 0. (1-2)

Then there exists at least one c ∈ Ck+1 such that the Dirichlet series L c(s) =∑k+1
j=1 c j Fj (s) has at least k distinct vertical strips without zeros in the region

1< σ < σ ∗(L c).

Remark. Note that trivially every nonzero scalar multiple of a vector c of Theorems
1.1 or 1.2 has the same property. On the other hand, in Theorem 1.1, for every x the
vectors c are given by the intersection of a ball and a hyperplane in CN , hence there
are clearly infinitely many projectively inequivalent such vectors; see Section 6 for
details. Besides, the proof of Theorem 1.2 seems to suggest that there may actually
be infinitely many projectively inequivalent vectors c with the same property in this
case too.

The proof of Theorem 1.2 is actually constructive and may be used to explicitly
obtain coefficients c. As a concrete example we apply it to ζ(s), L(s, χ1) and
L(s, χ1), where χ1 is the unique Dirichlet character mod 5 such that χ1(2) = i ,
which satisfy the hypotheses of Theorem 1.2. We thus obtain the Dirichlet series

L(s)= c1L(s, χ1)+ c2L(s, χ1)+ c3ζ(s),

where

c1 =−
1

L(8, χ1)

L(16, χ1)ζ(8)− L(8, χ1)ζ(16)
L(16, χ1)ζ(8)− L(8, χ1)ζ(16)

=−0.08260584 . . .− i0.99658995 . . . ,

c2 =
1

L(8, χ1)
= 1.00000059 . . .+ i0.00375400 . . . ,

c3 =
1

L(8, χ1)

L(8, χ1)L(16, χ1)− L(8, χ1)L(16, χ1)

ζ(8)L(16, χ1)− L(8, χ1)ζ(16)
=−0.91739597 . . .+ i0.99283727 . . . .

In Figure 1 we see part of two distinct vertical strips without zeros of L(s) within
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Figure 1. Approximate plot of

min
t

∣∣c1L(σ + i t, χ1)+ c2L(σ + i t, χ1)+ c3ζ(σ + i t)
∣∣

for σ ∈ [7, 22] and t ∈ [0, 2000] with step 0.01.

the vertical strip 1 < σ < σ ∗. We recall that, by [Saias and Weingartner 2009],
there are zeros in the vertical strip 1< σ < 1+ η for some η > 0.

Actually Figure 1 shows that another interesting phenomenon happens for linear
combinations of orthogonal (see (1-3)) L-functions: it looks like that whenever
there is one zero then there should be a small closed interval, either around or beside
its real part, where the real parts of the zeros are dense. The bulk of this paper is
devoted to showing that this is indeed true.

We first recall that, as a consequence of the work of Jessen and Tornehave [1945]
on the asymptotic number of zeros mentioned above, we have the following general
result. We denote by σu(L) the abscissa of uniform convergence of L(s).

Theorem 1.3. Suppose L(s)=
∑
∞

n=n0
a(n)/ns has a(n0) 6= 0 and σ ∗(L) > σu(L).

Then in any vertical strip σu(L) < α ≤ σ ≤ σ ∗(L), L(s) has only a finite number
of zero-free vertical strips and a finite number of isolated vertical lines containing
zeros. In particular, if ρ0 = β0+ iγ0 is a zero of L(s) with β0 > σu(L), then either
σ = β0 is an isolated vertical line as above or there exist σ1≤ β0≤ σ2, with σ1<σ2,
such that the set {

β ∈ [σ1, σ2] | ∃γ ∈ R such that L(β + iγ )= 0
}

is dense in [σ1, σ2].

The first part of Theorem 1.3 is a reinterpretation of Theorem 31 of [Jessen and
Tornehave 1945] in view of Theorem 8 of the same paper. The second part follows
from the first one by a simple set-theoretic argument.
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Therefore we just need to prove that a linear combination of orthogonal Euler
products has no isolated vertical lines containing zeros. As in [Righetti 2016a] we
work in an axiomatic setting, and at the end of the introduction we briefly mention
some important families of L-functions satisfying the required properties. Given a
complex function F(s) we consider the following properties:

(I) F(s)=
∑
∞

n=1 aF (n)/ns is absolutely convergent for σ > 1;

(II) log F(s) =
∑

p
∑
∞

k=1 bF (pk)/pks is absolutely convergent for σ > 1, with
|bF (pk)| � pkθ for every prime p and every k ≥ 1, for some θ < 1

2 ;

(III) for any ε > 0, |aF (n)| � nε for every n ≥ 1.

Definition. For any integer N ≥ 1, we say that F1(s), . . . , FN (s) satisfying (I) and
(II) are orthogonal if∑

p≤x

aFi (p)aFj (p)
p

= (mi, j + o(1)) log log x, x→∞, (1-3)

with mi,i > 0 and mi, j = 0 if i 6= j .

Remark. There are some differences between the axioms that in [Righetti 2016a]
define the class E and the above axioms (I)–(III), so that in principle we cannot say
that the results that we obtained in [Righetti 2016a] may be applied here or vice
versa. However most of the known families of L-functions satisfy, or are supposed
to satisfy, both the axioms of E and (I)–(III).

We can now state the main theorems. We consider separately the cases N = 2 and
N ≥ 3 since they are handled in different ways and yield different results, although
the underling idea is the same.

Theorem 1.4. Let F1(s), F2(s) be orthogonal functions satisfying (I) and (II),
c1, c2 ∈ C \ {0}, and L(s)= c1 F1(s)+ c2 F2(s). Then L(s) has no isolated vertical
lines containing zeros in the half-plane σ > 1.

Theorem 1.5. Suppose N ≥ 3 is an integer, c1, . . . , cN ∈ C \ {0}, c ∈ C, and
F1(s), . . . , FN (s) are orthogonal functions satisfying (I)–(III). If we write L(s)=∑N

j=1 c j Fj (s)− c, then L(s) has no isolated vertical lines containing zeros in the
half-plane σ > 1.

Theorems 1.4 and 1.5 are obtained by suitably adapting the works of Bohr and
Jessen [1930; 1932], Jessen and Wintner [1935], Jessen and Tornehave [1945],
Borchsenius and Jessen [1948], and Lee [2014] on the value distribution of Dirichlet
series. Note that, however, most of these papers refer to results on particular Dirichlet
series in the strip 1

2 < σ < 1, while we work in the half-plane σ > 1 with far more
general Dirichlet series. Hence, although the ideas are similar, the results are quite
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different in nature and technical difficulty. The proofs will be given in Sections 4
and 5 respectively.

Remark. Note that orthogonality is necessary in Theorems 1.4 and 1.5 as is shown
by the following simple example

(1− 2−s)ζ(s)− 3
4ζ(s)=

(1
4
−

1
2s

)
ζ(s),

which clearly vanishes, in the half-plane of absolute convergence σ > 1, only on
the vertical line σ = 2. We mention here that in the proof of Theorems 1.4 and 1.5,
roughly speaking, orthogonality is just used to bound particular oscillatory integrals
(see the end of Section 2) and therefore to show that certain distribution functions
behave “nicely” (see Section 3).

From Theorems 1.4 and 1.5 we obtain the following interesting consequence,
which should be compared with Corollary 1 of [Righetti 2016a].

Corollary 1.6. Let L(s) be as in Theorems 1.4 or 1.5. If σ ∗(L) > 1, then there
exists η > 0 such that the set{

β ∈ [σ ∗(L)− η, σ ∗(L)] | ∃γ such that L(β + iγ )= 0
}

is dense in [σ ∗(L)− η, σ ∗(L)].

Proof. If σ ∗ = σ ∗(L) is itself the real part of a zero, the result follows immediately
from the second part of Theorem 1.3 and Theorems 1.4 and 1.5, choosing η =
σ ∗− σ1 > 0 and σ2 = σ

∗. Suppose otherwise that σ ∗ is not the real part of a zero.
Then by definition σ ∗ is the limit point of the real part of certain zeros of L(s).
Note that in general if L(σ + i t) 6= 0, then either for any ε > 0 there exist βε with
|σ −βε|< ε and γε ∈ R such that L(βε + iγε)= 0, i.e., σ is the limit point of the
real part of certain zeros of L(s), or there exists an open interval (σ − δ, σ + δ), for
some δ > 0, which does not contain any real part of the zeros. Since by Theorem 1.3
the number of zero-free vertical strips in σ ∗− ε < σ < σ ∗ is finite for every small
ε > 0, we can take η = ε small enough so that there are none. �

By Theorems 1.1 and 1.2 we see that Theorems 1.4 and 1.5 are optimal, in the
sense that without conditions on the coefficients c we cannot expect stronger results
on the density of the real parts of the zeros. On the other hand it may be true that
one could provide necessary and sufficient conditions on the coefficients of a linear
combination of L-functions to guarantee Bombieri and Ghosh’s conjecture to hold,
but this seems out of reach at the moment. Here we just mention the following
example with the Davenport–Heilbronn type L-functions studied by Bombieri and
Ghosh [2011]. As we already remarked, Bombieri and Ghosh do not say whether
these functions do have the property that the real parts of their zeros are dense
in [1, σ ∗]. However, in our Ph.D. thesis [Righetti 2016b] we gave necessary and
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Figure 2. Approximate plot of

f (σ )=min
t

∣∣∣∣L(σ + i t, χ1)

L(σ + i t, χ1)
+

1+ iτ
1− iτ

∣∣∣∣,
g(σ )=min

t

∣∣∣∣L(σ + i t, χ1)

L(σ + i t, χ1)
−

L(8, χ1)

L(8, χ1)

∣∣∣∣,
where σ ∈ [1.01, 16.01] and t ∈ [0, 2000] with step 0.01.

sufficient conditions on the coefficients of these Dirichlet series for this to happen,
namely:

Theorem 1.7. Let ξ ∈ R, χ1 be the unique Dirichlet character mod 5 such that
χ1(2)= i , q be a positive integer and χ0 be the principal character mod q. Then
there exists ξmax(q), such that the real parts of the zeros for σ > 1 of

f (s, ξ, q)= 1
2

[
(1− iξ)L(s, χ1χ0)+ (1+ iξ)L(s, χ1χ0)

]
are dense in the interval [1, σ ∗(ξ, q)] if and only if |ξ | ≤ ξmax(q). In particular, if
6 - q it is sufficient to take |ξ | ≤ 6.5851599.

Proof. The proof is a continuation of the proof of Theorem 7 of [Bombieri and Gosh
2011] using results of Kershner [1936, Theorems II–III] on the support function
of the inner border of the sum of convex curves. We refer to Theorem 4.1.3 of
[Righetti 2016b] for details. �

As an example we see in Figure 2 that the real parts of the zeros of Davenport–
Heilbronn type L-function

f (s, τ )= 1
2

[
(1−iτ)L(s, χ1)+(1+iτ)L(s, χ1)

]
, τ=−

1+
√

5
2
−

√
1+
(1+
√

5
2

)2
,
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are dense up to σ ∗ = 2.3822861089 . . . . On the other hand, we see that the real
parts of the zeros of L(s, χ1)− cL(s, χ1), where

c =
L(8, χ1)

L(8, χ1)
= 0.99997181 . . .+ i0.00750790 . . . ,

are dense close to σ = 1 (cf. Corollary 1 of [Righetti 2016a]), there are no zeros
with real part in the interval [2, 7], but s = 8 is clearly a zero.

Note that in the previous results we don’t ask for a functional equation or
meromorphic continuation to the whole complex plane. However, in many concrete
cases these are known to hold, so one might ask what happens if one adds these
conditions. On account of this we show that Theorem 1.1 may be modified so
that the resulting Dirichlet series is an L-function with functional equation and, of
course, without Euler product. We therefore consider functions F(s) satisfying (I)
and

(IV) (s− 1)m F(s) is an analytic continuation as an entire function of finite order
for some m ≥ 0,

(V) F(s) satisfies a functional equations of the form 8(s) = ω8(1− s̄), where
|ω| = 1 and

8(s)= Qs
r∏

j=1

0(λ j s+µ j )F(s)= γ (s)F(s),

say, with r ≥ 0, Q > 0, λ j > 0 and Reµ j ≥ 0,

although such requirements can actually be relaxed.

Theorem 1.8. Let N ≥ 3 be an integer, (r, Q,λ,µ) fixed parameters, and let
F1(s), . . . , FN (s) be functions satisfying (I), (II), (IV) and (V) for some |ω j | = 1,
j = 1, . . . , N. Suppose furthermore that ωh 6= ωk for some h, k ∈ {1, . . . , N }. Then
there exist infinitely many c ∈ CN such that L c(s) =

∑N
j=1 c j Fj (s) satisfies (IV),

(V) and has no zeros in some vertical strip σ1 < σ < σ2 with 1< σ1 < σ2 < σ
∗(L c).

To give a concrete example of the above result, we fix an integer q≥7, square-free,
(q, 6)=1 and q 6≡2 (mod 4), and consider the Dirichlet L-functions associated with
primitive characters χ (mod q). Their number is ϕ∗(q)=

∏
p|q(p− 2) and at least

half of them have the same parity. We denote by W(q) the set of such characters
and we have that |W(q)| ≥ 3. As a consequence of Theorem 1 of Kaczorowski,
Molteni and Perelli [Kaczorowski et al. 2010], we have that ωχ1

6= ωχ2
if χ1 6= χ2

for χ1, χ2 ∈ W(q), so we may apply Theorem 1.8 to the Dirichlet L-functions
associated with distinct characters of W(q).

On the other hand, we mention that Bombieri and Hejhal [1995] have shown
that, under the generalized Riemann hypothesis and a weak pair correlation of the
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zeros, linear combinations with real coefficients of Euler products with the same
functional equation have asymptotically almost all of their zeros on the line σ = 1

2 .

As concrete examples of families of L-functions satisfying the properties required
by Theorems 1.4 and 1.5 we refer to [Righetti 2016a] for Artin L-functions, automor-
phic L-functions and the Selberg class. Here we only recall that the relevant analytic
properties of the automorphic L-functions and their orthogonality can be found in
the papers of Rudnick and Sarnak [1996], Iwaniec and Sarnak [2000], Bombieri
and Hejhal [1995], Kaczorowski and Perelli [2000], Kaczorowski, Molteni and
Perelli [Kaczorowski et al. 2007], Liu and Ye [2005], and Avdispahić and Smajlović
[2010]. Moreover, we refer to Selberg [1992] and the surveys of Kaczorowski
[2006], Kaczorowski and Perelli [1999], and Perelli [2005] for a thorough discussion
on the Selberg class.

For the computations we have used the software packages PARI/GP [2016] and
MATLABr. These were made by truncating the Dirichlet series to the first 70 000
terms, which guarantees accuracy to eight decimal places for the values given above.

2. Radii of convexity of power series

Let F(s) be a function satisfying (I) and (II). Then we can write F(s) as an
absolutely convergent Euler product F(s)=

∏
p Fp(s) for σ > 1, where the local

factor Fp(s) is determined by log Fp(s)=
∑
∞

k=1 bF (pk)p−ks. Then, in most of the
results on the value distribution of F(s) for some fixed σ, a fundamental ingredient
is the convexity of the curves log Fp(σ + i t), t ∈ R, at least for infinitely many
primes p. In this section we collect and prove some results on this matter which
will be needed later.

Let A be the class of functions f (z) = z+
∑
∞

n=2 b(n)zn which are regular on
D = {|z|< 1}. Let F be any subclass of A, then we write rc(F) for the largest r ,
with 0< r ≤ 1, such that f ({|z|< r}) is convex.

Proposition 2.1 [Yamashita 1982, Theorem 2]. Let B={ f ∈A | |b(n)| ≤ n, n≥ 2}.
Then rc(B)≥ R1, where R1 is the smallest root in (0, 1) of 2(1−X)4= 1+4X+X2.
Let K > 0 and G(K ) = { f ∈ A | |b(n)| ≤ K , n ≥ 2}. Then rc(G(K )) ≥ R2(K ),
where R2(K ) is the smallest root in (0, 1) of X3

− 3X2
+ 4X = (1− X)3/K .

The proof of the above proposition is actually a simple consequence of the
following result of Alexander and Remak (see Theorem 1 of [Goodman 1957]).

Theorem 2.2 (Alexander–Remak). If f (z)= z+
∑
∞

n=2 b(n)zn
∈A and

∞∑
n=2

n2
|b(n)| ≤ 1,

then f (D) is convex.
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Adapting Yamashita’s proof [1982, §2] we obtain the following:

Proposition 2.3. Let K > 0 and H(K ) = { f ∈ A | |b(n)| ≤ K n2, n ≥ 2}. Then
rc(H(K ))≥ R3(K ), where R3(K ) is the smallest root in (0, 1) of

X5
− 5X4

+ 11X3
+ X2

+ 16X = (1− X)5/K .

Remark 2.4. Note that R3(K ) is a strictly decreasing function of K , with

sup
K>0

R3(K )= lim
K→0+

R3(K )= 1 and inf
K>0

R3(K )= lim
K→+∞

R3(K )= 0.

Moreover, for any K > 0 we have R3(K )≤ R2(K ).

Proof of Proposition 2.3. For f (z)= z+
∑
∞

n=2 b(n)zn
∈H(K ) and any r ≤ R3 =

R3(K ) we have

∞∑
n=2

n2
|b(n)|rn−1

≤ K
∞∑

n=2

n4 Rn−1
3 = K

R5
3 − 5R4

3 + 11R3
3 + R2

3 + 16R3

(1− R3)5
= 1,

where the last equality follows from the fact that R3 is chosen as the smallest real
root in (0, 1) of X5

− 5X4
+ 11X3

+ X2
+ 16X = (1− X)5/K . Therefore we can

apply Theorem 2.2 to h(z) = r−1 f (r z), which is thus convex on |z| < 1. Hence
f ({|z|< r}) is convex for any r ≤ R3 and thus R3 ≤ rc(H(K )). �

From this we obtain an explicit version of Theorem 13 of [Jessen and Wintner
1935] and Lemma 2.5 of [Lee 2014].

Proposition 2.5. Let N be a fixed positive integer,

G j (z)=
∞∑

n=1

a j (n)zn, j = 1, . . . , N ,

and suppose there exist positive real numbers ρj and K j such that |a(n)| ≤ K jρ
1−n
j

for every n ≥ 2. For any y = (y1, . . . , yJ ) ∈ CN , define

g(r, θ, y)=
N∑

j=1

Re
(
G j (re2π iθ )yj

)
,

where 0 < r < min j ρj and θ ∈ [0, 1]. If
∑N

j=1 yj a j (1) 6= 0, then there exists a
positive constant C such that for any δ > 0 we have∣∣∣∣∫ 1

0
eig(r,θ, y) dθ

∣∣∣∣≤ 24
√

Cδr‖ y‖
(2-1)

for every 0<r≤ R3
( 1
δ

√∑
j |K j |

2
)

min j ρj and every y such that
∣∣∑N

j=1 yj a j (1)
∣∣≥

δ‖ y‖> 0.
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Proof. The proof is a combination of Theorems 12 and 13 of [Jessen and Wintner
1935] and Lemma 2.5 of [Lee 2014], and we use the aforementioned results to
obtain explicit constants. Consider the power series

f (z)=
∞∑

n=1

( N∑
j=1

yj a j (n)
)

zn and h(z)=
∞∑

n=1

n2
( N∑

j=1

yj a j (n)
)

zn.

Since, by hypothesis and the Cauchy–Schwarz inequality, we have∣∣∣∣ N∑
j=1

yj a j (n)
∣∣∣∣≤ ‖ y‖

√∑
j |K j |

2

(min j ρj )n−1 ∀n ≥ 2, (2-2)

f (z) and h(z) are both holomorphic for |z|<min j ρj and, by definition, we have

g(r, θ, y)=Re f (re2π iθ ) and g′′(r, θ, y)= ∂2

∂θ2 g(r, θ, y)=−4π2 Re h(re2π iθ ).

By Proposition 2.1 we have that f (re2π iθ ) is a parametric representation of a convex
curve if

r ≤ R2

(
‖ y‖
√∑

j |K j |
2∣∣∑N

j=1 yj a j (1)
∣∣
)

min
j
ρj .

Indeed, substituting w = z/min j ρj , we have

f̃ (w)=
f (z/min j ρj )

(min j ρj )
(∑N

j=1 yj a j (1)
) = w+ ∞∑

n=2

(min
j
ρj )

n−1
(∑N

j=1 yj a j (n)∑J
j=1 yj a j (1)

)
wn

and, by (2-2),

f̃ (w) ∈ G
(
‖ y‖
√∑

j |K j |
2∣∣∑J

j=1 yj a j (1)
∣∣
)
.

Analogously, by Proposition 2.3 we have that h(re2π iθ ) is a parametric representa-
tion of a convex curve if

r ≤ R3

(
‖ y‖
√∑

j |K j |
2∣∣∑N

j=1 yj a j (1)
∣∣
)

min
j
ρj . (2-3)

Therefore, by Remark 2.4, both f (re2π iθ ) and h(re2π iθ ) are parametric represen-
tations of convex curves for any fixed r satisfying (2-3). This implies that both
g(r, θ, y) and g′′(r, θ, y) have exactly two zeros mod 1. By the mean value theorem,
we have that also g′(r, θ, y) has exactly two zeros mod 1, which separate those of
g′′(r, θ, y). Note that the zeros of g′(r, θ, y) and g′′(r, θ, y) depend continuously on
r and y since g′(r, θ, y) and g′′(r, θ, y) are continuous functions in each variable.
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We now consider the midpoints of the four arcs mod 1 determined by the zeros
of g′(r, θ, y) and g′′(r, θ, y). These midpoints clearly depend continuously on r
and y, and divide [0, 1] into four arcs, namely I1, I2, I3 and I4, such that I1 and
I3 each contain one zero of g′(r, θ, y), while I2 and I4 each contain one zero of
g′′(r, θ, y). By van der Corput’s lemma for oscillatory integrals (see [Titchmarsh
1986, Lemmas 4.2 and 4.4]) we have∣∣∣∣∫

I2∪I4

eig(r,θ, y)dθ
∣∣∣∣≤ 8

min
I2∪I4
|g′(r, θ, y)|

and ∣∣∣∣∫
I1∪I3

eig(r,θ, y)dθ
∣∣∣∣≤ 16√

min
I1∪I3
|g′′(r, θ, y)|

.

Writing

g(r, θ, y)= r
∣∣∣∣ N∑

j=1

yj a j (1)
∣∣∣∣ cos(2π(θ − ξ))+ r2O(‖ y‖)

for some ξ , we see that by continuity there exists a positive constant C such that

g′(r, θ, y)
r
∣∣∑N

j=1 yj a j (1)
∣∣ ≥ C on I2 and I4, and

g′′(r, θ, y)
r
∣∣∑N

j=1 yj a j (1)
∣∣ ≥ C on I1 and I3

for every r satisfying (2-3) and y ∈ CN .
We fix δ > 0, y 6= 0 such that∣∣∣∣ J∑

j=1

yj a j (1)
∣∣∣∣≥ δ‖ y‖, r ≤ R3

(
1
δ

√∑
j

|K j |
2
)

min
j
ρj ,

and we obtain ∣∣∣∣∫ 1

0
eig(r,θ, y)dθ

∣∣∣∣≤ 8
Cδr‖ y‖

+
16

√
Cδr‖ y‖

.

Since 1/(Cδr‖ y‖)≤ 1/
√

Cδr‖ y‖ when Cδr‖ y‖ ≥ 1,∣∣∣∣∫ 1

0
eig(r,θ, y)dθ

∣∣∣∣≤ 24
√

Cδr‖ y‖
for ‖ y‖ ≥

1
Cδr

.

On the other hand, we clearly have that
∣∣∫ 1

0 eig(r,θ, y)dθ
∣∣ ≤ 1, hence (2-1) holds

whenever the RHS is ≥ 1. Therefore the result follows from the simple fact that the
RHS of (2-1) is > 24 when 0< ‖ y‖< 1/(Cδr). �
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Theorem 2.6. Let F1(s), . . . , FN (s) be orthogonal functions satisfying (I) and (II).
Then there exists a positive constant A and infinitely many primes p such that∣∣∣∣∫ 1

0
exp

(
i

N∑
j=1

Re
(

yj log F j,p

(
σ + i 2πθ

log p

)))
dθ
∣∣∣∣≤ A
√
‖ y‖

pσ/2 (2-4)

for every σ ≥ 1 and every y = (y1, . . . , yN ) ∈ CN
\ {0}.

Proof. We want to apply Proposition 2.5 to

G j (z)=
∞∑

n=1

bFj (p
n)

√m j, j
zn, j = 1, . . . , N ,

where the m j, j are as in (1-3). By (II) there exist KFj and θ j <
1
2 such that for every

prime p and every n≥2 we have |bFj (p
n)|≤KFj pnθ j ≤KFj p2(n−1)θ j , j=1, . . . , N .

Thus, for j = 1, . . . , N and every prime p we may take K j = KFj /
√m j, j and

ρj = p−2θ j .
On the other hand, by orthogonality we have that for any y 6= 0

∑
p≤x

∣∣∣∣ y1bF1(p)
√

m1,1
+ · · ·+

yN bFN (p)
√

m N ,N

∣∣∣∣2/p ∼ ‖ y‖2 log log x, as x→∞.

In particular this implies that there are infinitely many primes p such that∣∣∣∣ y1bF1(p)
√

m1,1
+ · · ·+

yN bFN (p)
√

m N ,N

∣∣∣∣≥ ‖ y‖
4

for every y 6= 0. For each such prime p we take r = p−σ and δ = 1
4 . Then

Proposition 2.5 yields∣∣∣∣∫ 1

0
exp

(
i

N∑
j=1

Re
(

yj
√m j, j

log F j,p

(
σ + i

2πθ
log p

)))
dθ
∣∣∣∣≤ 48
√

C‖ y‖
pσ/2 (2-5)

when

p−σ ≤ R3

(
4

√∑
j

|KFj |
2

m j, j

)
p−2 max j θ j (2-6)

and y 6= 0. Note that (2-6) holds for every σ ≥ 1 if p is sufficiently large since
max j θ j <

1
2 . Now, substituting

y′
= (y′1, . . . , y′N )=

(
y1
√

m1,1
, . . . ,

yN
√

m N ,N

)
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in (2-5) we obtain that there are infinitely many primes p such that∣∣∣∣∫ 1

0
exp

(
i

N∑
j=1

Re
(

y′j log F j,p

(
σ + i

2πθ
log p

)))
dθ
∣∣∣∣

≤
48

√
C 4
√

m1,1|y′1|
2+ · · ·+m N ,N |y′N |2

pσ/2

for every σ ≥ 1 and every y′
∈ CN

\ {0}. Since clearly there exists a positive
constant D such that

√

m1,1|y′1|
2
+ · · ·+m N ,N |y′N |

2
≥ D‖ y′

‖, the result follows
immediately with A = 48/

√
DC . �

Remark 2.7. From the proof we have that (2-4) holds for σ ≥1 because max j θ j <
1
2

by (II). Therefore if we had that max j θ j <
κ
2 for some 0 < κ < 1, we would

immediately have that (2-4) holds for every σ ≥ κ .

3. On some distribution functions

This section is an adaptation of Chapter II of [Borchsenius and Jessen 1948]. We will
also use Theorem 2.6 similarly to how Borchsenius and Jessen use Theorem 13 of
[Jessen and Wintner 1935]. The particular distribution functions under investigation
in this section may be found in [Lee 2014] and they will be used in Sections
4 and 5 for the proofs of Theorems 1.4 and 1.5. We refer to [Lee 2014] for a
brief introduction to the theory developed by Jessen and Tornehave [1945] and
Borchsenius and Jessen [1948] and how it may be applied to linear combinations
of Euler products.

Given a function F(s) satisfying (I) and (II), and a positive integer n we write

Fn(s)=
n∏

m=1

Fpm (s) and Fn(σ, θ)= Fn(σ, θ1, . . . , θn)=

n∏
m=1

Fpm

(
σ+i

2πθm

log pm

)
,

where pm is the m-th prime and Fp(s) is determined by

log Fp(s)=
∞∑

k=1

bF (pk)p−ks .

Remark 3.1. For any n ≥ 1, Fn(s) is well defined as a Dirichlet series (and Euler
product) absolutely convergent for σ > θ = θF by (II). Moreover, Fn(s) and
log Fn(s) converge uniformly for σ ≥ σ0 > 1 to F(s) and log F(s), respectively.

Let F1(s), . . . , FN (s) be orthogonal functions satisfying (I) and (II). For θ∈[0,1]n,
we define

Fn(σ, θ)=
(
F1,n(σ, θ), . . . , FN ,n(σ, θ)

)
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and
log Fn(σ, θ)=

(
log F1,n(σ, θ), . . . , log FN ,n(σ, θ)

)
.

To these functions we attach some distribution functions, namely for any Borel set
E ⊆ CN , j, l ∈ {1, . . . , N }, j 6= l and σ > 1, we set

λσ,n; j (E)=
∫

Wlog Fn (σ,E)

∣∣∣∣F ′j,n
F j,n

(σ, θ)

∣∣∣∣2 dθ (3-1)

and

λσ,n; j,l;τ (E)=
∫

Wlog Fn (σ,E)

∣∣∣∣F ′j,n
F j,n

(σ, θ)+ τ
F ′l,n
Fl,n

(σ, θ)

∣∣∣∣2 dθ , (3-2)

where Wlog Fn (σ, E)= {θ ∈ [0, 1)n | log Fn(σ, θ) ∈ E}, and τ =±1,±i .
A distribution function µ on Cn is absolutely continuous (with respect to the

Lebesgue measure, meas) if for every Borel set E ⊆ Cn , meas(E) = 0 implies
µ(E)= 0 (cf. [Bogachev 2007, Definition 3.2.1]). By the Radon–Nikodym theorem
(see, e.g., Theorem 3.2.2 in [Bogachev 2007]) this holds if and only if there exists
a Lebesgue integrable function Gµ : C

n
→ R≥0 such that

µ(E)=
∫

E
Gµ(x) dx

for any Borel set E ⊆ Cn; Gµ(x) is the density of µ.
As a sufficient condition for absolute continuity we recall here the following

result (cf. [Borchsenius and Jessen 1948, §6; Bogachev 2007, §3.8]).

Lemma 3.2. Let µ be a distribution function on Cn and let µ̂ be its Fourier trans-
form. If

∫
Cn‖ y‖q |µ̂( y)| dy < ∞ for some integer q ≥ 0, then µ is absolutely

continuous with density Gµ(x) ∈ Cq(Cn) determined by the Fourier inversion
formula

Gµ(x)=
1

(2π)2n

∫
Cn

e−i〈x, y〉µ̂( y) dy.

We have the following result on the distribution functions defined above.

Theorem 3.3. Let F1(s), . . . , FN (s) be orthogonal functions satisfying (I) and (II).
Then there exists n0 ≥ 1 such that the distribution functions λσ,n; j and λσ,n; j,l;τ
are absolutely continuous with continuous densities Gσ,n; j (x) and Gσ,n; j,l;τ (x) for
every n ≥ n0, σ ≥ 1, j, l ∈ {1, . . . , N }, j 6= l and τ =±1,±i . More generally for
any k ≥ 0 there exists nk ≥ 1 such that Gσ,n; j (x), Gσ,n; j,l;τ (x) ∈ Ck(CN ) for every
n ≥ nk , σ ≥ 1.
Moreover, λσ,n; j and λσ,n; j,l;τ converge weakly to some distribution functions
λσ ; j and λσ ; j,l;τ as n → ∞, which are absolutely continuous with densities
Gσ ; j (x), Gσ ; j,l;τ (x) ∈ C∞(CN ) for every σ ≥ 1, j, l ∈ {1, . . . , N }, j 6= l and
τ =±1,±i . The functions Gσ,n; j (x) and Gσ,n; j,l;τ (x) and their partial derivatives
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converge uniformly for x ∈Cn and 1≤ σ ≤M to Gσ ; j (x) and Gσ ; j,l;τ (x) and their
partial derivatives as n→∞ for every M > 1.

Proof. The proof is an adaptation of Theorem 5 of Borchsenius and Jessen [1948]
(see also [Lee 2014, pp. 1827–1830]). We prove it just for λσ,n; j since the proof
for the other distributions is completely similar.

We compute the Fourier transform of the functions λσ,n; j and get

λ̂σ,n; j ( y)=
∫
[0,1]n

exp
(

i
N∑

h=1

Re(log Fh,n(σ, θ)yh)

)∣∣∣∣F ′j,n
F j,n

(σ, θ)

∣∣∣∣2 dθ , (3-3)

for any y= (y1, . . . , yN )∈CN . By Lemma 3.2, to prove the first part it is sufficient
to show that for every k ≥ 0 there exists nk such that, for any M > 1, ‖ y‖k λ̂σ,n; j ( y)
is Lebesgue integrable for every n ≥ nk and 1≤ σ ≤ M . We recall that by (II) there
exist KFj and θFj <

1
2 such that

|bFj (p
n)| ≤ KFj pnθFj

for every prime p and k ≥ 1, j = 1, . . . , N . Then we have

|λ̂σ,n; j ( y)| ≤ sup
σ>1

∣∣∣∣F ′j,n
F j,n

(σ, θ)

∣∣∣∣2 ≤ n∑
m=1

log2 pm

∞∑
k=1

|bFj (p
k
m)|

2

p2kσ
m

≤ K 2
Fj

∑
p

log2 p

p2(σ−θFj )
<∞ (3-4)

for every n ≥ 1 and σ ≥ 1. Hence it is sufficient to show that there exist constants
Ck > 0 and nk ≥ 1 such that for any M > 1 we have

|λ̂σ,n; j ( y)| ≤ Ck‖ y‖−
5
2−k as ‖ y‖→∞

for every n ≥ nk and 1 ≤ σ ≤ M . To prove this, note that we can write (cf.
[Borchsenius and Jessen 1948, (47); Lee 2014, (3.24)])

λ̂σ,n; j ( y)=
n∑

m=1

K2, j (pm, y)
n∏
`=1
6̀=m

K0, j (p`, y)

+

n∑
m,k=1
m 6=k

K1, j (pm, y)K1, j (pk,− y)
n∏
`=1
`6=m,k

K0, j (p`, y), (3-5)
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where, for any prime p and j ∈ {1, . . . , N }, we take

K0, j (p, y)=
∫ 1

0
exp

(
i

N∑
h=1

Re
(

log Fh,p

(
σ + i

2πθ
log p

)
yh

))
dθ,

K1, j (p, y)

=

∫ 1

0
exp

(
i

N∑
h=1

Re
(

log Fh,p

(
σ + i

2πθ
log p

)
yh

))F ′j,p
F j,p

(
σ + i

2πθ
log p

)
dθ,

K2, j (p, y)

=

∫ 1

0
exp

(
i

N∑
h=1

Re
(

log Fh,p

(
σ + i

2πθ
log p

)
yh

))∣∣∣∣F ′j,p
F j,p

(
σ + i

2πθ
log p

)∣∣∣∣2 dθ.

(3-6)

Hence, we just need to estimate the functions defined in (3-6).
For all primes p and j ∈ {1, . . . , N } we clearly have

|K0, j (p, y)| ≤ 1. (3-7)

On the other hand, by the hypotheses on F1(s), . . . , FN (s)we can apply Theorem 2.6
and obtain a positive constant A and infinitely many primes p such that

|K0, j (p, y)| ≤
A
√
‖ y‖

pσ/2 (3-8)

for every σ ≥ 1, y 6= 0 and j ∈ {1, . . . , N }. Thus, putting together (3-7) and (3-8)
we obtain that for any fixed integer q ≥ 1 there exists mq such that

n∏
`=1
6̀=m,k

|K0, j (p`, y)| ≤
[

A
√
‖ y‖

pσ/2mq

]q

(3-9)

for every m, k ≤ n, n ≥mq , σ ≥ 1, y 6= 0 and j ∈ {1, . . . , N }. Since we shall need
it later, we also note that from the fact that |ei t

− 1− i t | ≤ t2/2 and by (II), for
every prime p we get (cf. [Borchsenius and Jessen 1948, (50); Lee 2014, p. 1830])

|K0, j (p, y)− 1| ≤
‖ y‖2

2

( N∑
h=1

K 2
Fj

)
1

p2(σ−maxh θFh )
. (3-10)

For K1, j (p, y), using the fact that |ei t
−1| ≤ |t | and (II), we obtain for any σ ≥ 1

and any prime p (cf. [Borchsenius and Jessen 1948, (52); Lee 2014, (3.27)])

|K1, j (p, y)| ≤ ‖ y‖KFj

√
N∑

h=1

K 2
Fh

log p

p2(σ−maxh θFh )
. (3-11)
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Finally, for any prime p, σ ≥ 1 and j ∈ {1, . . . , N }, we simply have (cf. [Borch-
senius and Jessen 1948, (53); Lee 2014, (3.26)])

|K2, j (p, y)| ≤
∫ 1

0

∣∣∣∣F ′j,p
F j,p

(
σ + i

2πθ
log p

)∣∣∣∣2 dθ
(II)
≤ K 2

Fj

log2 p

p2(σ−θFj )
. (3-12)

Putting (3-7), (3-9), (3-11) and (3-12) into (3-5), for any fixed M > 1, j ∈
{1, . . . , N } and q ≥ 0, we get

|λ̂σ,n; j ( y)| ≤ K 2
Fj

Aq
‖ y‖−q/2 pqσ/2

mq

n∑
m=1

log2 pm

p
2(σ−θFj )

m

+ K 2
Fj

( N∑
h=1

K 2
Fh

)
Aq
‖ y‖2−q/2 pqσ/2

mq

( n∑
m=1

log pm

p
2(σ−maxh θFh )
m

)2

for any n ≥ mq , σ ≥ 1 and y 6= 0. Choosing q = 9+ 2k, nk = m9+2k and

Ck =

( N∑
h=1

K 2
Fh

)
A9+2k p(9+2k)M/2

nk

(
1+

( N∑
h=1

K 2
Fh

)2∑
p

log p

p2(σ−maxh θFh )

)
×

∑
p

log p

p2(σ−maxh θFh )

we have
|λ̂σ,n; j ( y)| ≤ Ck‖ y‖−

5
2−k when ‖ y‖ ≥ 1, (3-13)

for every n≥nk =m9+2k , 1≤σ ≤M and j ∈{1, . . . , N }. Therefore, by Lemma 3.2,
since nk doesn’t depend on M and since M is arbitrary, it follows that λσ,n; j ,
j = 1, . . . , N , are absolutely continuous with continuous density for every n ≥ n0

and every σ ≥ 1, while Gσ,n; j (x) ∈ Ck(CN ) for every j ∈ {1, . . . , N }, n ≥ nk and
σ ≥ 1.

On the other hand, by (3-4), (3-5), (3-7), (3-10), (3-11), and (3-12), we have (cf.
[Borchsenius and Jessen 1948, (60); Lee 2014, p. 1830])

|λ̂σ,n+1; j ( y)− λ̂σ,n; j ( y)| � ‖ y‖2
log pn+1

p
2(σ−maxh θFh )

n+1

for every n ≥ 1, σ ≥ 1 and j ∈ {1, . . . , N }. By the triangle inequality we thus get

|λ̂σ,n+k; j ( y)− λ̂σ,n; j ( y)| � ‖ y‖2
n+k∑

m=n+1

log pm

p
2(σ−maxh θFh )
m

≤ ‖ y‖2
∞∑

m=n+1

log pm

p
2(σ−maxh θFh )
m

(3-14)
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for every n, k ≥ 1 and σ ≥ 1. Hence, by Cauchy’s criterion, there exist the limit
functions

λ̂σ ; j ( y)= lim
n→∞

λ̂σ,n; j ( y), j = 1, . . . , N ,

and by (3-14) it is clear that the convergence is uniform in ‖ y‖ ≤ a, for every
a > 0. Therefore, by Lévy’s convergence theorem (see, e.g., Theorem 8.8.1 in
[Bogachev 2007]), we have that λ̂σ ; j ( y) is the Fourier transform of some distribution
function λσ ; j and λσ,n; j → λσ ; j weakly as n→∞, for j = 1, . . . , N . Moreover
by (3-13) we have that we may apply the dominated convergence theorem and thus
λσ ; j are absolutely continuous for every σ ≥ 1 and j ∈ {1, . . . , N }, with density
Gσ ; j (x) ∈ C∞(C) (for the arbitrariness of M and k). Moreover, since Gσ,n; j (x)
and Gσ ; j (x) are determined by the inverse Fourier transform (see Lemma 3.2), the
dominated convergence theorem yields that Gσ,n; j (x) and their partial derivatives
converge uniformly for x ∈ Cn and 1 ≤ σ ≤ M toward Gσ ; j (x) and their partial
derivatives for every j ∈ {1, . . . , N }. �

Theorem 3.4. For any α > 0 and q ≥ 0 the densities Gσ ; j (x) and Gσ,n; j (x),
n ≥ nq , together with their partial derivatives of order ≤ q , have a majorant of the
form Kqe−α‖x‖

2
for every σ ≥ 1, j, l ∈ {1, . . . , N }, j 6= l and τ =±1,±i .

Proof. This is a straightforward adaptation of Theorems 6 and 9 of [Borchsenius
and Jessen 1948]. �

Theorem 3.5. The distribution functions λσ ; j , λσ ; j,l;τ , λσ,n; j and λσ,n; j,l;τ , for
n≥n0, depend continuously on σ , and their densities Gσ ; j (x), Gσ ; j,l;τ (x), Gσ,n; j (x)
and Gσ,n; j,l;τ (x), together with their partial derivatives of order ≤ q if n ≥ nq , are
continuous in σ for every σ ≥ 1, j, l ∈ {1, . . . , N }, j 6= l and τ =±1,±i .

Proof. As in Theorem 9 of [Borchsenius and Jessen 1948] the result follows from
(3-13), (3-14) and the Fourier inversion formula. �

Remark 3.6. As for Remark 2.7, note that Theorems 3.3, 3.4 and 3.5 hold for
σ > 1 because max j θFj <

1
2 by (II). Therefore if we had that max j θFj < κ/2 for

some 0< κ < 1 we would immediately have that (2-4) holds for every σ > κ .

4. Zeros of sums of two Euler products

Let F1(s) and F2(s) be functions satisfying (I) and (II), and c1, c2 ∈ C \ {0}. We
then set

L(s)= c1 F1(s)+ c2 F2(s).

To study the distribution of the zeros of L(s) for σ > 1, we note that, since
F1(s)F2(s) 6= 0 for σ > 1,

L(s)= 0 ⇔ log
(

F1(s)
F2(s)

)
= log

(
−

c2

c1

)
.
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This idea was used by Gonek [1981], and later by Bombieri and Mueller [2008] and
Bombieri and Ghosh [2011]. Moreover, if F1(s) and F2(s) are orthogonal, then it
is easy to show that F1

F2
(s) satisfies (I), (II) and, if we write F1

F2
(s)=

∑
∞

n=1 a(n)n−s ,

∑
p≤x

|a(p)|2

p
= (κ + o(1)) log log x, x→∞, (4-1)

for some constant κ > 0. Therefore Theorem 1.4 follows immediately from the
following more general result on the value distribution of the logarithm of an Euler
product.

Theorem 4.1. Let F(s) be a function satisfying (I), (II) and (4-1), and c ∈ C. Then
the Dirichlet series log F(s)− c has no isolated vertical lines containing zeros in
the half-plane σ > 1.

Proof. The first part of the proof is similar to Borchsenius and Jessen’s application
[1948, Theorems 11 and 13] of their Theorems 5–9 to the Riemann zeta function.

For every n ≥ 1 consider the Dirichlet series log Fn(s), which are absolutely
convergent for σ > θF by Remark 3.1. Let νσ,n be, for every σ > θF , the asymptotic
distribution function of log Fn(s) with respect to |(F ′n/Fn)(s)|2, defined for any
Borel set E ⊆ C by (cf. [Borchsenius and Jessen 1948, §7])

νσ,n(E)= lim
T2−T1→∞

1
T2− T1

∫
Vlog Fn (σ,T1,T2,E)

∣∣∣∣F ′n
Fn
(s)
∣∣∣∣2 dt,

where Vlog Fn (σ, T1, T2, E) = {t ∈ (T1, T2) | log Fn(σ + i t) ∈ E}. For σ ≥ 1, we
compute its Fourier transform and, by the Kronecker–Weyl theorem (see, e.g.,
[Karatsuba and Voronin 1992, §A.8]) we get (cf. [Borchsenius and Jessen 1948, p.
160] or [Lee 2014, p. 1819])

ν̂σ,n(y)=
∫
[0,1]n

exp
(
i Re(log Fn(σ, θ)y)

)∣∣∣∣F ′n
Fn
(σ, θ)

∣∣∣∣2dθ
(3-3)
= λ̂σ,n;1(y),

with N = 1. For simplicity we write λσ,n = λσ,n;1. By the uniqueness of the Fourier
transform (see, e.g., Proposition 3.8.6 in [Bogachev 2007]) we have that νσ,n = λσ,n
as distribution functions for every σ ≥ 1 and n ≥ 1.

By Theorem 3.3 we know that νσ,n=λσ,n is absolutely continuous for n≥n0 with
density Gσ,n(x) which is a continuous function of both σ and x (see Theorem 3.5).
Hence for any n≥n0, x ∈C and σ >θF we have that the Jensen function ϕlog Fn−x(σ )

(see, e.g., Theorem 5 of [Jessen and Tornehave 1945]) is twice differentiable with
continuous second derivative (cf. [Borchsenius and Jessen 1948, §9])

ϕ′′log Fn−x(σ )= 2πGσ,n(x). (4-2)
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Note that in order to apply Theorems 3.3 and 3.5 we have implicitly made use of
the orthogonality hypothesis.

On the other hand, for any 1<σ1 <σ2, by the uniform convergence of log Fn(s)
of Remark 3.1 and by Theorem 6 of [Jessen and Tornehave 1945], we have that

ϕlog Fn−x(σ )→ ϕlog F−x(σ ) as n→∞ (4-3)

uniformly for σ1≤σ ≤σ2. Moreover, by Theorem 3.3, Gσ,n(x) converges uniformly
for σ1≤ σ ≤ σ2 toward Gσ (x), which is continuous in both σ and x . Then, by (4-2),
(4-3), the convexity of ϕlog Fn−x and Theorem 7.17 in [Rudin 1976] we obtain that
for any x ∈C the Jensen function ϕlog F−x(σ ) is twice differentiable with continuous
second derivative

ϕ′′log F−x(σ )= 2πGσ (x).

We fix an arbitrary c∈C and we note the following: Suppose that ϕ′′log F−c(σ0)>0
for some σ0 > 1. Then, by continuity, there exists ε0 > 0 such that ϕ′′log F−c(σ ) > 0
for every σ ∈ (σ0−ε0, σ0+ε0). Then, for any 0<ε<ε0, by Theorem 31 of [Jessen
and Tornehave 1945] and the mean value theorem, we have

lim
T2−T1→∞

Nlog F−c(σ0− ε, σ0+ ε, T1, T2)

T2− T1

=
1

2π
(
ϕ′log F−c(σ0+ ε)−ϕ

′

log F−c(σ0− ε)
)
=

ε

2π
ϕ′′log F−c(σε) > 0,

for some σε ∈ (σ0− ε, σ0+ ε), i.e., there are infinitely many zeros with real part
σ ∈ (σ0− ε, σ0+ ε). This means, by letting ε→ 0+, that σ0 is the limit point of
the real parts of some zeros of log F(s)− c (or σ0 is itself a zero).

Now, suppose there exists ρ0 = β0+ iγ0 with β0 > 1 such that log F(ρ0)−c= 0.
If we suppose that ϕ′′log F−c(β0) > 0, then σ = β0 cannot be an isolated vertical
line containing zeros since β0 is the limit point of the real parts of some zeros.
Suppose otherwise that ϕ′′log F−c(σ̃ )= 0, and for any δ > 0 consider the intervals
I+δ = (σ̃ , σ̃ + δ) and I−δ = (σ̃ − δ, σ̃ ). Note that in general, if ϕ′′log F−c(σ ) = 0
for every σ ∈ (σ1, σ2), for some 1 < σ1 < σ2, then Theorem 31 of [Jessen and
Tornehave 1945] and the mean value theorem imply that log F(s)− c has no zeros
for σ1 < σ < σ2. Therefore, in at least one of I+δ or I−δ there are infinitely many σ
such that ϕ′′log F−c(σ )> 0, for any δ > 0, by almost periodicity. Hence, letting δ→ 0,
we see that there exists a sequence {σδ}δ such that ϕ′′log F−c(σδ) > 0 and σδ→ β0.
Since every σδ is the limit point of the real parts of some zeros, we conclude that
also β0 is the limit point of the real parts of some zeros. �

5. c-values of sums of at least three Euler products

We first state the following simple result which is a generalization of Lemma 2.4 of
[Lee 2014].
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Lemma 5.1. Let F(s) be a function satisfying (I), (II) and (III), σ0 >
1
2 and k be a

fixed positive integer. Then there exists a positive constant Ak(σ0) such that∫
[0,1]n
|Fn(σ, θ)|

2k dθ ≤ Ak(σ0) and
∫
[0,1]n
|F ′n(σ, θ)|

2k dθ ≤ Ak(σ0)

for every n ≥ 1 and σ ≥ σ0.

Proof. As in Lemma 2.4 of [Lee 2014] the proof follows from a bound of

Jk(z1, . . . , zn, w1, . . . , wn)=

∫
[0,1]n

k∏
j=1

Fn(σ + z j , θ)Fn(σ +w j , θ) dθ

and Cauchy’s integral formula on polydiscs. This bound may be obtained with the
same computations as in Lemma 2.5 of [Lee 2014] by replacing the Ramanujan
bound |a(n)| ≤ 1 with the weaker Ramanujan conjecture |a(n)| �ε nε, where we
take 0< ε < (2σ0− 1)/4. �

Proof of Theorem 1.5. To handle this case we follow an idea of Lee [2014, §3.2]
and we use the distribution functions studied in Section 3, similarly to what we
have done in the previous section for N = 2. We give only a sketch of the proof.

For every n ≥ 1 we write

Ln(s)=
N∑

j=1

c j F j,n(s),

Ln(σ, θ)= Ln(σ, θ1, . . . , θn)=

N∑
j=1

c j F j,n(s, θ1, . . . , θn).

Let νσ,n be the asymptotic distribution function of Ln(s) with respect to |L ′n(s)|
2

defined for any Borel set E ⊆ C by (cf. [Borchsenius and Jessen 1948, §7])

νσ,n(E)= lim
T2−T1→∞

1
T2− T1

∫
VLn (σ,T1,T2,E)

|L ′n(s)|
2 dt,

where VLn (σ, T1, T2, E)= {t ∈ (T1, T2) | Ln(σ + i t) ∈ E}. As in Theorem 4.1, by
the Kronecker–Weyl theorem and the uniqueness of the Fourier transform, we have
that νσ,n = λσ,n , for any n ≥ 1 and σ ≥ 1, where λσ,n is the distribution function of
Ln(s, θ) with respect to |L ′n(s, θ)|

2, defined for every Borel set E ⊆ C by

λσ,n(E)=
∫

WLn (σ,E)
|L ′n(σ, θ)|

2 dθ ,

with WLn (σ, E) = {θ = (θ1, . . . , θn) ∈ [0, 1)n | Ln(σ, θ) ∈ E}. We want to show
that there exists ñ ≥ 1 such that λσ,n , and hence νσ,n , is absolutely continuous with
continuous density, which we call Hσ,n(x), for every n ≥ ñ and σ ≥ 1.
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As in [Lee 2014, pp. 1830–1831], we compute the Fourier transform of λσ,n
and, for σ ≥ 1 and n ≥ n0, we get

λ̂σ,n(y)

=

N∑
j,l=1

c j cl(2π)N
∫

RN
+

∫
RN

exp
(

i
N∑

h=1

|ch y|rh sin(2π(θh −αh))− 2π iθ j + 2π iθl

)

×r jrl Gσ,n; j,l(r)
dr1

r1
· · ·

drN

rN
dθ1 · · · dθN ,

where r = (log r1+2π iθ1, . . . , log rN +2π iθN ), αh is determined by the argument
of ch y, for h = 1, . . . , N , and

Gσ,n; j,l(x)=
{

Gσ,n; j (x), j = l,∑
τ=±1,±i τGσ,n; j,l;τ (x), j 6= l

is defined from the densities of the distribution functions λσ,n; j and λσ,n; j,l;τ of
Section 3.

For any h ∈ {1, . . . , N } and any ε > 0 let

Ah,ε =
{
θ ∈ R | |θ −αh −mπ |< ε for some m ∈ Z

}
.

Then we note that integrating by parts with respect to rh , h=1, . . . , N , and using the
majorant KN exp

(
−
[∑N

h=1 log2 rh+ θ
2
h

])
of Theorem 3.4 for the partial derivatives

up to order N of the density Gσ,n; j,l(r), for n ≥ nN and σ ≥ 1, we obtain (cf. [Lee
2014, p. 1832])∫

R\A1,ε

· · ·

∫
R\AN ,ε

∫
RN
+

exp
(

i Re
( N∑

h=1

rhch ye2π iθh

)
− 2π iθ j + 2π iθl

)
×r jrl Gσ,n; j,l(r)

dr1

r1
· · ·

drN

rN
dθ1 · · · dθN

�

N∏
h=1

∫
R\Ah,ε

1
|ch y| sin(2π(θh −αh))

e−θ
2
h dθh

�
1

(ε|y|)N (5-1)

for every n≥ nN , σ ≥ 1 and y 6= 0. Analogously, integrating by parts with respect to
θh , h = 1, . . . , N , using van der Corput’s lemma for oscillatory integrals (see, e.g.,
Lemma 4.2 in [Titchmarsh 1986]) on each interval [αh+mh/2−ε, αh+mh/2+ε]
with ε < 1

2 , and the majorant KN exp
(
−
[∑N

h=1 log2 rh + θ
2
h

])
of Theorem 3.4 for

the partial derivatives up to order N of the density Gσ,n; j,l(r), n ≥ nN and σ ≥ 1,
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we obtain (cf. [Lee 2014, p. 1832])∫
RN
+

∫
A1,ε

· · ·

∫
AN ,ε

exp
(

i Re
( N∑

h=1

rhch ye2π iθh

)
− 2π iθ j + 2π iθl

)
×r jrl Gσ,n; j,l(r)

dr1

r1
· · ·

drN

rN
dθ1 · · · dθN

�

N∏
h=1

∫
R+

1
|ch y|

e− log2 rh drh

�
1
|y|N

, (5-2)

for every n ≥ nN , σ ≥ 1, |y| ≥maxh 1/|ch| and ε > 0 sufficiently small. Note that
to apply Theorem 3.4 we have implicitly made use of the orthogonality hypothesis.
Fixing ε > 0 sufficiently small so that (5-2) holds and putting together (5-1) and
(5-2), we obtain

|ν̂σ,n(y)| = |λ̂σ,n(y)| � |y|−N
� |y|−3 (5-3)

since N ≥ 3, for every n≥ nN , σ ≥ 1 and |y|≥max(1,maxh |ch|
−1). By Lemma 3.2

we have thus proved that νσ,n is absolutely continuous for every n ≥ ñ = nN and
σ ≥ 1. Moreover, since νσ,n depends continuously on σ (cf. [Borchsenius and
Jessen 1948, §7]), we have that ν̂σ,n is continuous in σ . Therefore (5-3) and the
Fourier inversion formula imply that Hσ,n(x) is continuous in both σ and x . Note
that all implied constants in (5-3) are independent of n.

Now we prove that the absolutely continuous distribution functions λσ,n converge
weakly as n→∞ toward the absolutely continuous distribution function λσ with
density Hσ (x) which is continuous in both σ and x . Moreover, we want to show
that, for any 1 < σ1 < σ2, Hσ,n(x) converges uniformly for σ1 ≤ σ ≤ σ2 toward
Hσ (x) as n→∞.

For this, note that

Ln+1(σ, θ , θn+1)

=

N∑
j=1

c j F j,n(σ, θ)F j,pn+1

(
σ + i

2πθn+1

log pn+1

)
(III)
=

N∑
j=1

c j F j,n(σ, θ)

(
1+

aFj (pn+1)

pσn+1
e2π iθn+1 + Oε

(
1

p2(σ−ε)
n+1

))

= Ln(σ, θ)+
e2π iθn+1

pσn+1

N∑
j=1

c j aFj (pn+1)F j,n(σ, θ)+ Oε

(∑
j |F j,n|

p2(σ−ε)
n+1

)
(5-4)
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for every σ ≥ 1 and 0< ε < 1
2 . Similarly

L ′n+1(σ, θ , θn+1)

= L ′n(σ, θ)+
e2π iθn+1

pσn+1

N∑
j=1

c j aFj (pn+1)
[
F ′j,n(σ, θ)− log pn+1 F j,n(σ, θ)

]
+ Oε

( log pn+1
∑

j |F j,n| + |F ′j,n|

p2(σ−ε)
n+1

)
for every σ ≥ 1 and 0< ε < 1

2 . Hence we have (cf. [Lee 2014, (3.20)])

λ̂σ,n+1(y)− λ̂σ,n(y)

=

∫
[0,1]n+1

[
ei Re(Ln+1(σ,θ ,θn+1)y)− ei Re(Ln(σ,θ)y)

]
|L ′n(σ, θ)|

2 dθ dθn+1

+
2

pσn+1

∫
[0,1]n+1

ei Re(Ln+1(σ,θ ,θn+1)y) Re
(

L ′n(σ, θ)e
2π iθn+1

×

N∑
j=1

c j aFj (pn+1)
(
F ′j,n(σ, θ)− log pn+1 F j,n(σ, θ)

))
× dθ dθn+1

+ Oε

(
log pn+1

p2(σ−ε)
n+1

∫
[0,1]n+1

(
1+

∑
j

|F ′j,n|
)(∑

j

|F j,n| + |F ′j,n|
)

dθ dθn+1

)

+ Oε

(
log2 pn+1

p4(σ−ε)
n+1

∫
[0,1]n+1

(∑
j

|F j,n| + |F ′j,n|
)2

dθ dθn+1

)
. (5-5)

for every σ ≥ 1 and 0< ε < 1
2 .

For the first term, using again |ei t
− 1− i t | ≤ t2/2, we obtain (cf. [Lee 2014,

(3.22)])∣∣∣∣∫ 1

0

[
ei Re(Ln+1(σ,θ ,θn+1)y)− ei Re(Ln(σ,θ)y)

]
dθn+1

∣∣∣∣�ε,a

∑
j |F j,n| + |F j,n|

2

p2(σ−ε)
n+1

for |y| ≤ a, a > 0, σ ≥ 1 and 0< ε < 1
2 . For the second term we get directly from

(5-4) and |ei t
− 1| ≤ |t | that∣∣∣∣∫ 1

0
ei Re(Ln+1(σ,θ ,θn+1)y)e±2π iθn+1 dθn+1

∣∣∣∣�ε,a

∑
j |F j,n|

p(σ−ε)n+1

for |y| ≤ a, a > 0, σ ≥ 1 and 0 < ε < 1
2 . We fix 0 < ε < 1

2 , then putting these
together, by triangle inequality and Lemma 5.1 with σ0 = 1, we get (cf. [Lee 2014,
p. 1826])

|λ̂σ,n+1(y)− λ̂σ,n(y)| �a,ε
log pn+1

p2(σ−ε)
n+1
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uniformly for |y| ≤ a, a > 0, and for every σ ≥ 1. It follows that for any k > 0

|λ̂σ,n+k(y)− λ̂σ,n(y)| �a,ε

n+k∑
m=n+1

log pm

p2(σ−ε)
m

≤

∞∑
m=n+1

log pm

p
2(σ−maxh θFh )
m

(5-6)

for every n, k ≥ 1 and σ ≥ 1, uniformly for |y| ≤ a, a > 0. Hence, by Cauchy’s
criterion, there exists the limit function

λ̂σ (y)= lim
n→∞

λ̂σ,n(y)

and by (3-14) the convergence is uniform in |y| ≤ a for every a > 0. Therefore, by
Lévy’s convergence theorem, we have that λ̂σ (y) is the Fourier transform of some
distribution function λσ , and λσ,n→ λσ weakly as n→∞. Moreover, since the
constants in (5-3) are independent of n, we may apply the dominated convergence
theorem and thus λσ is absolutely continuous for every σ ≥ 1, with continuous (both
in σ and x) density Hσ (x). Furthermore, since Hσ,n(x) and Hσ (x) are determined
by the Fourier inversion formula (see Lemma 3.2), the uniform convergence of
λ̂σ,n(y)→ λ̂σ (y) and (5-3) imply that Hσ,n(x) converges, uniformly with respect
to both 1≤ σ ≤ M , M > 1, and x ∈ C, toward Hσ (x).

Now, similarly to Theorem 4.1, for n ≥ ñ and c ∈ C we have that the Jensen
function ϕLn−c(σ ) is twice differentiable with continuous second derivative (cf.
[Borchsenius and Jessen 1948, §9])

ϕ′′Ln−c(σ )= 2πHσ,n(c). (5-7)

On the other hand, for any 1 < σ1 < σ2, by the uniform convergence of F j,n(s),
j = 1, . . . , N , of Remark 3.1 and by Theorem 6 of [Jessen and Tornehave 1945],
we have that

ϕLn−c(σ )→ ϕL−c(σ ) as n→∞ (5-8)

uniformly for σ1 ≤ σ ≤ σ2. By (5-7), (5-8), the convexity of ϕLn−c(σ ) and The-
orem 7.17 in [Rudin 1976] we obtain that the Jensen function ϕL(σ ) is twice
differentiable with continuous second derivative

ϕ′′L−c(σ )= 2πHσ (c).

At this point, the same final argument of Theorem 4.1 yields the result. �

6. Dirichlet series with vertical strips without zeros

In this section we collect the proofs of Theorems 1.1, 1.2 and 1.8.
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Proof of Theorem 1.1. Since L x(s) is not identically zero, then σ ∗(L x) < +∞

and hence we fix

σ2 > σ1 >max
(
σ ∗(L x), max

1≤ j≤N
σ ∗(Fj )

)
.

Then, by definition of σ ∗(L x) and Theorem 8 of [Jessen and Tornehave 1945],
there exists ε > 0 such that |L x(s)| > ε for σ1 ≤ σ ≤ σ2. Moreover, there exists
M > 0 such that |Fj (s)| ≤ M for σ1 ≤ σ ≤ σ2. On the other hand, if we consider
the hyperplanes H(σ )= {z ∈ CN

| L z(σ )= 0} we have

lim
σ→+∞

dist(x, H(σ ))= lim
σ→+∞

|L x(σ )|√∑
j |Fj (σ )|2

= 0.

Therefore there exists β > σ2 such that dist(x, H(β)) < ε/(4
√

N M). Then for
any 0 6= c ∈ Bε/(2

√
N M)(x) ∩ H(β) we have L c(β) = 0 and, by the triangle and

Cauchy–Schwartz inequalities,

|L c(s)| ≥ |L x(s)| − |L c−x(s)|> ε−
ε

2
=
ε

2
for 1 ≤ σ ∗(L x) < σ1 ≤ σ ≤ σ2 < β ≤ σ ∗(L c). This concludes the proof since
Bε/(2

√
N M)(x) ∩ H(β) clearly contains infinitely many projectively inequivalent

vectors c.

Proof of Theorem 1.2. We write N = k+ 1≥ 2. If N = 2 then the result follows
from Theorem 1.1; so we suppose that N ≥ 3.
Note that x ∈ CN is such that L x(σ ) = 0 for some σ > 1 if and only if x =
(x1, . . . , xN ) belongs to the hyperplane

F1(σ )x1+ · · ·+ FN (σ )xN = 0. (6-1)

If σ >max1≤ j≤N σ ∗(Fj )= σ̃0, then the space of solutions of (6-1) has dimension
N − 1≥ 2 and is generated by

v
(1)
j (σ )=

(
−

1
F1(σ )

, 0, . . . ,
1

Fj (σ )
, . . . , 0

)
, j = 2, . . . , N .

Moreover we define inductively for h = 2, . . . , N − 1 the vectors

v
(h)
j (σ1, . . . , σh)

= v
(h−1)
j (σ1, . . . , σh−1)−

L
v
(h−1)
j (σ1,...,σh−1)

(σh)

L
v
(h−1)
h (σ1,...,σh−1)

(σh)
v
(h−1)
h (σ1, . . . , σh−1),

j = h+ 1, . . . , N . Note that these are well defined linear combinations of v(1)j (σ1),
j = 2, . . . , N , hence solutions of (6-1), if σ1 > σ̃0 and σh > σ

∗(L
v
(h−1)
h (σ1,...,σh−1)

),
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h = 2, . . . , N − 1. Actually, by definition it is clear that, under these conditions,
v
(h)
j (σ1, . . . , σh) is a solution of

F1(σ1)x1+ · · ·+ FN (σ1)xN = 0,
...

F1(σh)x1+ · · ·+ FN (σh)xN = 0.

Moreover, for any 1≤ m ≤ N − 1 we consider the vector

vm(σ1, . . . , σm−1,∞, . . . ,∞)= lim
σm→∞

· · · lim
σN−1→∞

v
(N−1)
N (σ1, . . . , σN−1) (6-2)

and for simplicity we write vN (σ1, . . . , σN−1)= v
(N−1)
N (σ1, . . . , σN−1). Note that

there exists a finite set of explicit conditions on σ1, . . . , σN−1 for which these limits
exist, i.e., there exist σ̃ j , j =1, . . . , N−1, which depend only on the Dirichlet series
F1, . . . , FN , such that vm(σ1, . . . , σm−1,∞, . . . ,∞) exists for every 1≤m≤ N−1
if σl >σ̃l for every l=1, . . . , N−1. These conditions actually correspond to the fact
that the vector vm(σ1, . . . , σm−1,∞, . . . ,∞) is a generator of the one-dimensional
vector space (by (1-2), reordering the functions if needed) defined by the system

F1(σ1)x1+ · · ·+ FN (σ1)xN = 0,
...

F1(σm−1)x1+ · · ·+ FN (σm−1)xN = 0,

a1(1)x1+ · · ·+ aN (1)xN = 0,
...

a1(N −m)x1+ · · ·+ aN (N −m)xN = 0.

Hence, in particular, this implies that the definition of vm(σ1, . . . , σm−1,∞, . . . ,∞)

is independent from the order of the limits and that Lvm(σ1,...,σm−1,∞,...,∞)(σl)= 0,
l = 1, . . . ,m− 1.

We work by induction on h ∈ [1, N − 2]. For h = 1 we fix

σ1,2 > σ1,1 >max
(
σ ∗(Lv1(∞,...,∞)), σ̃0

)
,

and take

ε1 = min
σ1,1≤σ≤σ1,2,t∈R

|Lv1(∞,...,∞)(σ + i t)|> 0

and

M1 = max
1≤ j≤N

max
σ1,1≤σ≤σ1,2,t∈R

|Fj (σ + i t)|<∞.
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Note that M1 > 0 by the choice of σ1,1 and σ1,2. By (6-2), we can choose β1 > σ1,2

such that ∥∥v1(∞, . . . ,∞)− v2(β1,∞, . . . ,∞)
∥∥< ε1

2
√

N M1
.

Then, since v2(β1,∞, . . . ,∞) is a solution of (6-1) with σ = β1, we have that
Lv2(β1,∞,...,∞)(β1)= 0. Moreover for σ1,1 ≤ σ ≤ σ1,2 we have, by the triangle and
Cauchy–Schwartz inequalities,

|Lv2(β1,∞,...,∞)(s)| ≥ |Lv1(∞,...,∞)(s)| − |Lv1(∞,...,∞)−v2(β1,∞,...,∞)(s)|

≥ ε1−
ε1
2
=
ε1
2
= δ1 > 0.

By induction we suppose that for any fixed 1< h ≤ N − 2 there exist

σ1,1 < σ1,2 < β1 < · · ·< σh,1 < σh,2 < βh

and δh > 0 such that

min
1≤l≤h

min
σl,1<σ<σl,2,t∈R

|Lvh+1(β1,...,βh ,∞,...,∞)(σ + i t)|> δh .

These hypotheses mean that the Dirichlet series Lvh+1(β1,...,βh ,∞,...,∞)(s), which
vanishes for s = β1, . . . , βh , has at least h distinct vertical strips without zeros in
the region 1< σ < σ ∗(Lvh+1(β1,...,βh ,∞,...,∞)).

For the inductive step h 7→ h+ 1, we take

σh+1,2>σh+1,1>max
(
σ ∗(Lvh+1(β1,...,βh ,∞,...,∞)), max

h+1≤ j≤N
σ ∗(L

v
(h)
j (β1,...,βh)

), σ̃h

)
,

εh+1 =min
(
δh, min

σh+1,1≤σ≤σh+1,2,t∈R
|Lvh+1(β1,...,βh ,∞,...,∞)(σ + i t)|

)
> 0

and

Mh+1 = max
1≤ j≤N

max
σ1,1≤σ≤σh+1,2,t∈R

|Fj (σ + i t)|<∞.

Note that since σh+1,1 > σ1,2 we have Mh+1 > 0. Then we choose βh+1 > σh+1,2

such that∥∥vh+1(β1, . . . , βh,∞, . . . ,∞)− vh+2(β1, . . . , βh, βh+1,∞, . . . ,∞)
∥∥

<
εh+1

2
√

N Mh+1
,



2160 Mattia Righetti

which exists by definition. Moreover, by the triangle and Cauchy–Schwartz inequal-
ities, we have that∣∣Lvh+2(β1,...,βh+1,∞,...,∞)(s)

∣∣
≥
∣∣Lvh+1(β1,...,βh ,∞,...,∞)(s)

∣∣− ∣∣Lvh+2(β1,...,βh+1,∞,...,∞)−vh+2(β1,...,βh+1,∞,...,∞)(s)
∣∣

≥ δh −
εh+1

2
≥
εh+1

2
= δh+1

for any σl,1 ≤ σ ≤ σl,2, l = 1, . . . , h+ 1.
When h+ 1= N − 2+ 1= N − 1 we have just one vector

c= vN (β1, . . . , βN−1) ∈ CN
\ {0}

and the corresponding Dirichlet series L c(s) has, as noted above, at least N − 1
distinct vertical strips without zeros in the region 1< σ < σ ∗(L c).

Proof of Theorem 1.8. For any j=1, . . . , N , let αj be a square root of ω j . Without
loss of generality we may suppose that h = 1 and k = 2. Note that, since |ω j | = 1
and ω1 6=ω2 then α1 6= ±α2 and we may suppose α1 /∈R. It follows that the system
of equations

Re(α1)x1+ · · ·+Re(αN )xN = 0,

Im(α1)x1+ · · ·+ Im(αN )xN = 0
(6-3)

defines a real vector space V∞ of dimension N − 2≥ 1 which may be written as

V∞ =

{( ∞∑
j=3

(
Im(α2) Im(α1αj )

Im(α1) Im(α1α2)
−

Im(αj )

Im(α1)

)
t j ,−

∞∑
j=3

Im(α1αj )

Im(α1α2)
t j , t3, . . . , tN

)
∣∣∣∣ t3, . . . , tN ∈ R

}
.

Let v∞∈V∞ be the vector corresponding to a fixed choice (τ1, . . . , τN )∈RN−2
\{0}

and c0 = (α1v∞,1, . . . , αNv∞,N ). We take σ2 > σ1 > max(σ ∗(L c0)), then, by
Theorem 8 of [Jessen and Tornehave 1945], there exists ε > 0 such that |L c0(s)|>ε
for σ1≤σ ≤σ2. Moreover, there exists M>0 such that |Fj (s)|≤M for σ1≤σ ≤σ2.
On the other hand, for any fixed σ > σ2, the system of equations

Re(α1 F1(σ ))x1+ · · ·+Re(αN FN (σ ))xN = 0,

Im(α1 F1(σ ))x1+ · · ·+ Im(αN FN (σ ))xN = 0
(6-4)

defines a real vector space Vσ of dimension at least N−2. However, since Fj (σ )→

a j (1) = 1 as σ →∞, j = 1, 2, there exists σ0 > σ2 such that Vσ has dimension



On the density of zeros of linear combinations of Euler products for σ > 1 2161

N − 2 for every σ > σ0 and

Vσ =

{(
∞∑
j=3

(
Im(α2 F2(σ )) Im(α1αj F1(σ )Fj (σ ))

Im(α1 F1(σ )) Im(α1α2 F1(σ )F2(σ ))
−

Im(αj )Fj (σ )

Im(α1)F1(σ )

)
t j ,

−

∞∑
j=3

Im(α1αj F1(σ )Fj (σ ))

Im(α1α2 F1(σ )F2(σ ))
t j , t3, . . . , tN

) ∣∣∣∣ t3, . . . , tN ∈ R

}
.

Let vσ ∈ Vσ be the vector corresponding to (τ1, . . . , τN ), then ‖v∞− vσ‖→ 0 as
σ →∞. Therefore there exists β > σ0 such that, taking c= (α1vβ,1, . . . , αNvβ,N ),
we have ‖c0− c‖ < ε/(2

√
N M). Then by (6-4) we have that L c(β) = 0 and, by

the triangle and Cauchy–Schwartz inequalities, that

|L c(s)| ≥ |L c0(s)| − |L c−c0(s)|> ε−
ε

2
=
ε

2
for 1≤ σ ∗(L c0) < σ1 ≤ σ ≤ σ2 < σ0 < β ≤ σ

∗(L c). Moreover

8(s)=
N∑

j=1

αjvβ, j8 j (s)=
N∑

j=1

αjvβ, jω j8 j (1− s̄)

=

N∑
j=1

αjvβ, j8 j (1− s̄)=8(1− s̄).
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Adams operations on matrix factorizations
Michael K. Brown, Claudia Miller, Peder Thompson and Mark E. Walker

We define Adams operations on matrix factorizations, and we show these op-
erations enjoy analogues of several key properties of the Adams operations on
perfect complexes with support developed by Gillet and Soulé. As an application,
we give a proof of a conjecture of Dao and Kurano concerning the vanishing of
Hochster’s θ pairing.

1. Introduction

We establish a theory of Adams operations on the Grothendieck group of matrix
factorizations and use these operations to prove a conjecture of Dao and Kurano
[2014, Conjecture 3.1(2)] concerning the vanishing of Hochster’s θ pairing for a
pair of modules defined on an isolated hypersurface singularity.

Let Q be a commutative Noetherian ring and let f ∈ Q. A matrix factorization
of f in Q is a Z/2-graded, finitely generated projective Q-module P = P0⊕ P1,
equipped with an odd degree Q-linear endomorphism d satisfying d2

= f idP . In
other words, a matrix factorization is a pair of maps of finitely generated projective
Q-modules, (α : P1→ P0, β : P0→ P1), satisfying αβ = f idP0 and βα = f idP1 .

When f = 0, a matrix factorization of f is the same thing as a Z/2-graded
complex of finitely generated projective Q-modules. In this case, we have the
evident Z/2-graded analogues of chain maps and homotopies of such. These, in fact,
generalize to an arbitrary f . The matrix factorizations of f ∈ Q form the objects of
a category mf(Q, f ), in which a morphism between objects P and P ′ of mf(Q, f )
is a degree zero Q-linear map g : P→ P ′ such that dP ′◦g= g◦dP . In other words, a
morphism is a pair of maps g0 : P0→ P ′0 and g1 : P1→ P ′1 causing the evident pair of
squares to commute. A homotopy joining morphisms g1, g2 : P→ P ′ in mf(Q, f )
is a Q-linear map h : P → P ′ of odd degree such that dP ′h + hdP = g1 − g2.
The homotopy category of mf(Q, f ) is the category [mf(Q, f )] obtained from
mf(Q, f ) by identifying homotopic morphisms. It is well-known that, when Q is
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regular and f is not a zero divisor, [mf(Q, f )] may be equipped with a canonical
triangulated structure (see, for instance, [Orlov 2004] Section 3.1).

Much of the interest in matrix factorizations arises from the following result. For
a Noetherian ring R, let Db(R) denote the bounded derived category of R. Objects
of Db(R) are bounded complexes of finitely generated R-modules, and morphisms
are obtained from chain maps by inverting the collection of quasiisomorphisms. Let
Perf(R) denote the full triangulated subcategory of Db(R) consisting of bounded
complexes of finitely generated and projective R-modules, and let Dsing(R) denote
the Verdier quotient Db(R)/Perf(R), called the singularity category of R. The
following theorem is essentially due to work of Buchweitz [1986] and Eisenbud
[1980]; this particular formulation of the result is proven by Orlov.

Theorem 1 [Orlov 2004, Theorem 3.9] . If Q is regular and f is not a zero divisor,
there is an equivalence of triangulated categories

[mf(Q, f )] −→∼ Dsing(Q/( f ))

determined by sending a matrix factorization (α : P1→ P0, β : P0→ P1) to coker(α).

Remark 1.1. In [Orlov 2004], Orlov assumes Q contains a field and has finite
Krull dimension, but these assumptions are in fact not needed for this theorem
to hold.

Let R := Q/( f ). Under the assumptions of Theorem 1, the Grothendieck group
K0(mf(Q, f )) of the triangulated category [mf(Q, f )] is isomorphic to the quotient
G0(R)/(im(K0(R)→ G0(R))). So, defining a notion of Adams operations on
K0(mf(Q, f )), in this setting, amounts to defining such operations on this quotient.

For a closed subset Z of Spec(Q), define PZ (Q) to be the category of bounded
complexes of finitely generated and projective Q-modules whose homology is sup-
ported on Z . Gillet–Soulé define lambda and Adams operations on the Grothendieck
group K Z

0 (Q) := K0(P
Z (Q)) [Gillet and Soulé 1987, Sections 3 and 4]. It is

tempting to mimic their approach to define Adams operations on K0(mf(Q, f )),
since mf(Q, f ) is somewhat analogous to PV ( f )(Q). But their construction relies on
the Dold–Kan correspondence relating N-graded complexes to simplicial modules;
since matrix factorizations are Z/2-graded, such an approach is not available for
K0(mf(Q, f )).

Instead, we model our approach after the construction of the cyclic Adams
operations ψ p

cyc on K Z
0 (Q) developed by the authors in [BMTW 2017] (see also

[Atiyah 1966; Haution 2009; Köck 1997]). Let us give a brief summary of the
construction of the operations ψ p

cyc and some of their properties.
Fix a prime p. We assume that p is invertible in Q and that Q contains all p-th

roots of unity (when Q is local, the case of primary interest to us, we can find such
a prime p, at least after passing to a faithfully flat extension of Q). For a perfect
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complex of Q-modules X , let T p(X) denote the p-th tensor power of X , which
comes equipped with a canonical left action by the symmetric group 6p. For a
p-th root of unity w ∈ Q, set T p(X)(w) to be the eigenspace of eigenvalue w for
the action of the p-cycle (1 2 · · · p) on T p(X). We define

ψ p
cyc(X)= [T

p(X)(1)] − [T p(X)(ζ )]

where ζ is a primitive p-th root of unity.
In Sections 2 and 3 of [BMTW 2017], it is established that this formula induces

a well-defined operation on K Z
0 (Q) (see also [Haution 2009]). In fact, by Corollary

6.14 of [BMTW 2017], if p! is invertible in Q, then ψ p
cyc agrees with the p-th

Adams operation on K Z
0 (Q) defined by Gillet–Soulé. More generally, we have:

Theorem 2 [BMTW 2017, Theorem 3.7] . If p is a prime, and Q contains 1/p
and all the p-th roots of unity, then the action of ψ p

cyc on K Z
0 (Q) satisfies the four

Gillet–Soulé axioms defining a degree p Adams operation.

We refer the reader to Theorem 3.7 of [BMTW 2017] for a precise statement of
the four Gillet–Soulé axioms. A consequence of Theorem 2 is that the action of ψ p

cyc

on K Z
0 (Q)Q := K Z

0 (Q)⊗Q is diagonalizable: there is a “weight decomposition”

K Z
0 (Q)Q =

d⊕
i=c

K Z
0 (Q)

(i)
Q
,

where K Z
0 (Q)

(i)
Q

is the eigenspace ofψ p
cyc of eigenvalue pi , and c is the codimension

of Z [loc. cit., Corollary 3.12].
In Section 2, we use the operations ψ p

cyc as a model to construct cyclic Adams
operations ψ p

cyc on the Grothendieck group K0(mf(Q, f )), as well as more general
versions for matrix factorizations with a support condition. In Theorem 2.10 and
Proposition 2.13, we prove:

Theorem 3. If p is prime, and Q contains 1/p and all the p-th roots of unity,
the operator ψ p

cyc on K0(mf(Q, f )) satisfies the evident analogues of the four
Gillet–Soulé axioms for a p-th Adams operation.

Moreover, if Q is regular and f ∈Q is not a zero divisor, the canonical surjection

K V ( f )
0 (Q)� K0(mf(Q, f ))

is compatible with the action of ψ p
cyc.

For Q regular, f not a zero divisor, and R = Q/( f ), given a finitely generated
R-module M , let [M]stable ∈ K0(mf(Q, f )) denote the image of [M] ∈G0(R) under
the canonical surjection G0(R)� K0(mf(Q, f )) given by Theorem 1.
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Corollary 4. Assume Q is a regular ring containing 1/p and all the p-th roots of
unity for some prime p, and suppose f ∈ Q is not a zero divisor. The action of ψ p

cyc

induces an eigenspace decomposition

K0(mf(Q, f ))Q =
d⊕

i=1

K0(mf(Q, f ))(i)
Q
.

Moreover, if M is a finitely generated R-module, then

[M]stable ∈

d⊕
i=codimR M+1

K0(mf(Q, f ))(i)
Q
.

In Section 3, we give an application of the above results. For the rest of this
introduction, assume Q is a regular local ring with maximal ideal m, and assume f
is a nonzero element of m. Assume also that R = Q/( f ) is an isolated singularity;
that is, Rp is regular for all p∈Spec(R)\{m}. Then for any pair of finitely generated
R-modules (M, N ), we have

TorR
i (M, N )∼= TorR

i+2(M, N ) and length TorR
i (M, N ) <∞

for i � 0. This motivates the following definition.

Definition 1.2. With Q, f, R as above, for a pair of finitely generated R-modules
(M, N ), set

θR(M, N )= length(TorR
2i (M, N ))− length(TorR

2i+1(M, N ))

for i � 0.

The pairing θR(− ,− ) is called Hochster’s theta pairing, since it first appeared
in work of Hochster [1981]. The theta pairing should be regarded as the analogue,
for the singularity category Dsing(R), of the intersection multiplicity pairing that
occurs, for example, in Serre’s multiplicity conjectures. There has been much
recent work on better understanding the theta pairing, including when it vanishes
and how it relates to more classical invariants. Buchweitz and van Straten [2012]
show that, for complex isolated hypersurface singularities, the theta pairing can be
recovered from the linking form on the link of an isolated singularity. In the same
setting, Polishchuk and Vaintrob [2012] relate it to the classical residue pairing
using the boundary bulk map. It was conjectured by Dao that θ vanishes for all
isolated hypersurface singularities R such that dim(R) is even, and this has now
been proven in almost all cases; see [Moore et al. 2011; Buchweitz and Van Straten
2012; Polishchuk and Vaintrob 2012; Walker 2017]. We refer the reader to Section 3
of [Dao and Kurano 2014] for additional history of the theta pairing and a list of
several other conjectures.
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One such conjecture, [Dao and Kurano 2014, Conjecture 3.1(2)], is an analogue
of Serre’s vanishing conjecture (see the remark on page 111 of [Serre 2000]). This
conjecture was proven by Dao in the case where R is excellent and contains a
field, using a geometric approach [Dao 2013, Theorem 3.5]. As an application of
the properties of Adams operations on matrix factorizations that we establish in
Section 2, we prove this conjecture in full generality:

Theorem 5 (see Theorem 3.19). Let (Q,m) be a regular local ring and f ∈m with
f 6= 0. Suppose that R = Q/( f ) is an isolated singularity. If M and N are finitely
generated R-modules such that

dim M + dim N ≤ dim R

then θR(M, N )= 0.

We close this introduction with a sketch of our proof of Theorem 5. We easily
reduce to the case where there is a prime p such that Q contains 1/p and all p-th
roots of unity. Given a matrix factorization P = (α : P1→ P0, β : P0→ P1) of f ,
one may obtain a matrix factorization P◦ of − f by negating β. In Proposition 3.18,
we show

θR(M, N )= χ([M]stable ∪ [N ]◦stable),

where −∪− is the pairing induced by tensor product of matrix factorizations, and
χ denotes the Euler characteristic. The assumptions ensure that [M]stable∪[N ]◦stable
is a class in K0(mfm(Q, 0)), the Grothendieck group of Z/2-graded complexes of
finitely generated projective Q-modules with finite length homology, so that χ is
well-defined. By Corollary 4 and the linearity of χ , we may assume that the classes
[M]stable and [N ]stable lie in eigenspaces K0(mf(Q, 0))(i)

Q
and K0(mf(Q, 0))( j)

Q
, re-

spectively, where i+ j>d=dim Q. By properties of the operationsψ p
cyc established

in Theorem 3, [M]stable ∪ [N ]◦stable ∈ K0(mfm(Q, 0))(i+ j)
Q

.
At this point, one would like to argue that K0(mfm(Q, 0))Q= K0(mfm(Q, 0))(d)

Q
,

which would force [M]stable∪[N ]◦stable=0. Indeed, one might expect K0(mfm(Q, 0))
to be generated by the Z/2-folding of the class of the Koszul complex on a regular
sequence of generators of m, which lies in K0(mfm(Q, 0))(d) by the axioms in
Theorem 3; this would be parallel to what occurs for bounded Z-graded complexes.
The proof of Theorem 5 sketched here would then be almost exactly the same as
Gillet and Soulé’s proof of Serre’s vanishing conjecture.

We are not able to prove K0(mfm(Q, 0)) is generated by the Koszul complex, and
indeed we have come to suspect this might be false (see Example 3.6). Fortunately,
for the proof of Dao and Kurano’s conjecture, one needs only the weaker property
that there is an equality of maps χ ◦ψ p

cyc = pdχ from K0(mfm(Q, 0)) to Z; we
prove this in Theorem 3.8.
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2. Adams operations on matrix factorizations

In this section, we define cyclic Adams operations on matrix factorizations, closely
following the construction of cyclic Adams operations on perfect complexes with
support found in Sections 2 and 3 of [BMTW 2017]. We prove these operations
enjoy analogues of many of the key properties of the operations on perfect complexes
with support constructed in [loc. cit.].

2A. Construction. Let Q be a Noetherian commutative ring, f ∈ Q any element
(including possibly f = 0), and G a finite group. Let mf(Q, f ;G) be the category
of G-equivariant matrix factorizations. When G is the trivial group, this is the
category described in the introduction. More generally, an object of mf(Q, f ;G)
is an object P of mf(Q, f ) equipped with a G-action (i.e., a group homomorphism
G → Autmf(Q, f )(P)), and a morphism is a G-equivariant morphism of matrix
factorizations.

The category mf(Q, f ;G) is an exact category, with the notion of exactness
given degree-wise in the evident manner.

Remark 2.1. We could equivalently define an object of mf(Q, f ;G) to consist
of a pair of Q[G]-modules P0 and P1 that are finitely generated and projective as
Q-modules, together with a pair of morphisms of Q[G]-modules, (α : P1→ P0, β :

P0→ P1), such that αβ and βα are each multiplication by f (which is central in
Q[G]). Moreover, if |G| is invertible in Q, we have mf(Q, f ;G)=mf(Q[G], f ).

Example 2.2. If f = 0 (and G is trivial), mf(Q, 0) is the category of Z/2-graded
complexes of finitely generated projective Q-modules, with morphisms being
chain maps.

A homotopy joining morphisms g1, g2 : P→ P ′ in mf(Q, f ;G) is defined just as
in the introduction, with the added condition that it be G-equivariant. In detail, it is a
Q-linear, G-equivariant map h : P→ P ′ of degree 1 such that dP ′h+hdP = g1−g2.
The homotopy category of mf(Q, f ;G) is the category [mf(Q, f ;G)] obtained
from mf(Q, f ;G) by identifying homotopic morphisms.

Given a ring homomorphism Q→ Q′ sending f to f ′, there is an evident functor
mf(Q, f ;G)→mf(Q′, f ′;G) given by extension of scalars along Q→ Q′. When
Q′ = Qp for p ∈ Spec(Q), we write this functor as P 7→ Pp.

For an object P ∈mf(Q, f ;G), define the support of P to be

supp(P)= {p ∈ Spec(Q) | Pp is not homotopy equivalent to 0 in mf(Qp, f ;G)}.

Given a closed subset Z of Spec(Q), define mf Z (Q, f ;G) to be the full subcat-
egory of mf(Q, f ) consisting of objects P satisfying supp(P) ⊆ Z . Note that
mf Z (Q, f ;G) is a full, exact subcategory of mf(Q, f ;G), and [mf Z (Q, f ;G)] is
a full subcategory of [mf(Q, f ;G)].



Adams operations on matrix factorizations 2171

We will mainly use the notion of supports for matrix factorizations when f = 0
and G is trivial, in which case objects of mf(Q, 0) are (Z/2-graded) complexes.
One must be careful in this situation not to conflate the notion of being homotopy
equivalent to 0 with being acyclic. The former implies the latter, but the latter does
not imply the former in general. These conditions are equivalent, however, in the
following case:

Lemma 2.3. If Q is a regular ring, an object P ∈mf(Q, 0) is contractible if and
only if H0(P)= H1(P)= 0.

Proof. Suppose P = (α0 : P0→ P1, α1 : P1→ P0) is acyclic, and set M = ker(α1)=

im(α0) and N =ker(α0)= im(α1). We claim that M and N are projective. It suffices
to prove Mp and Np are free for all primes p. Since

0→ Mp→ (P1)p→ (P0)p→ (P1)p→ · · ·

is exact, we see that, for any d, Mp is a d-th syzygy of some other Qp-module.
Taking d > dim(Qp) gives that Mp is free. Similarly, N is projective.

Choose splittings π0 : P0→ N and π1 : P1→ M of the inclusions N ↪→ P0 and
M ↪→ P1. Define A : P0 → N ⊕ M and B : P1 → N ⊕ M to be given by

(
π0
α0

)
and

(
α1
π1

)
, respectively. Set E :=

( 0
0

0
1

)
and F :=

(1
0

0
0

)
.

We have the following isomorphism of matrix factorizations

P0
α0

//

A
��

P1

B
��

α1
// P0

A
��

N ⊕M E
// N ⊕M F

// N ⊕M

and the bottom matrix factorization is clearly contractible. �

Remark 2.4. When Q is regular, f is not a zero divisor, and G is trivial, the
support of any object of mf(Q, f ) is a subset of

Sing(R) := {p ∈ Spec(R) | Rp is not regular}

where R = Q/( f ), and where we identify Spec R with its image in Spec Q. Thus,
in this case, we have

mf(Q, f )=mfSing(R)(Q, f ).

Eventually, we will be making the additional assumption that R is an isolated
singularity, meaning Q, and hence R, is local, and Sing(R)= {m}.

Define the Grothendieck group K0(mf Z (Q, f ;G)) to be the abelian monoid
given by isomorphism classes of objects of mf Z (Q, f ;G) under the operation of
direct sum, modulo the relations [P] = [P ′] + [P ′′] if there exists a short exact
sequence 0→ P ′ → P → P ′′ → 0 and [P] = [P ′] if P and P ′ are homotopy
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equivalent. As with the K -theory of complexes, K0(mf Z (Q, f ;G)) is an abelian
group, since [P] + [6(P)] = 0, where 6(P) denotes the suspension of P .

For P ∈mf(Q, f ;G) and P ′ ∈mf(Q, f ′;G ′), the tensor product P⊗Q P ′ is the
usual tensor product of Q-modules, with grading determined by |p⊗ p′|= |p|+|p′|
and differential ∂(p⊗ p′)=dP(p)⊗ p′+(−1)|p| p⊗dP ′(p′). The group G×G ′ acts
in the evident manner, and the resulting object belongs to mf(Q, f + f ′;G×G ′),
since ∂2 is multiplication by f + f ′. Note, in particular, that the n-th tensor power
of an object of mf(Q, f ) belongs to mf(Q, n f ).

We proceed to define cyclic Adams operations on K0(mf Z (Q, f )). The con-
struction is closely parallel to that for K Z

0 (Q) given in [BMTW 2017], with one
minor exception: the need to “divide by p”.

For an integer n ≥ 1, we define a functor

T n
:mf Z (Q, f )→mf Z (Q, n f ;6n)

given, on objects, by sending P ∈mf Z (Q, f ) to the matrix factorization

T n(P)=

n times︷ ︸︸ ︷
P ⊗Q · · · ⊗Q P

equipped with the left action of 6n given by

σ(p1⊗ · · ·⊗ pn)=±pσ−1(1)⊗ · · ·⊗ pσ−1(n).

The sign is uniquely determined by the following rule: if σ is the transposition
(i i + 1) for some 1 ≤ i ≤ n− 1 and p1, . . . , pn are homogenous elements of P ,
then

σ(p1⊗ · · ·⊗ pn)= (−1)|pi ||pi+1|kp1⊗ · · · pi−1⊗ pi+1⊗ pi ⊗ pi+2⊗ · · ·⊗ pn.

The rule for morphisms is the evident one.
Following Section 2 of [BMTW 2017], for any i and j , let 6i, j be the image of

the canonical homomorphism 6i ×6 j ↪→6i+ j , and define a pairing

?i, j : K0(mf Z (Q, i f );6i )×K0(mf Z (Q, j f );6 j )→ K0(mf Z (Q, (i+ j) f );6i+ j )

induced by the bifunctor (P, P ′) 7→ Q[6i+ j ] ⊗Q[6i, j ] P ⊗Q P ′. This pairing is
well-defined, commutative, and associative, by an argument identical to the proof
of Lemma 2.4 in [loc. cit.].

The proof of Theorem 2.2 in [loc. cit.] also holds nearly verbatim for matrix
factorizations and leads to a proof of:

Theorem 2.5. For a commutative Noetherian ring Q, closed subset Z of Spec(Q),
element f ∈ Q, and integer n ≥ 1, there is a function

tn
6 : K0(mf Z (Q, f ))→ K0(mf Z (Q, n f ;6n))
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such that, for an object P ∈mf Z (Q, f ), we have

tn
6([P])= [T

n(P)].

Remark 2.6. As in [BMTW 2017, §5], if k is a positive integer such that k! is
invertible in Q, then one can use Theorem 2.5 to establish an operation λk on
K0(mf Z (Q, f )) that is induced from the k-th exterior power functor. Since we
won’t use such operations in this paper, we omit the details.

We now assume p is a prime that is invertible in Q, and we define C p to be the
subgroup of 6p generated by the p-cycle (1 2 · · · p). For any p-th root of unity
ζ belonging to Q (including the case ζ = 1), let Qζ denote the Q[C p]-module Q
equipped with the C p-action σq = ζq . For P ∈mf Z (Q, p f ;C p), we define

P (ζ ) := HomQ[C p](Qζ , P)= ker(σ − ζ : P→ P).

Since p is invertible and ζ belongs to Q, the module Qζ is a direct summand of
Q[C p], and so P 7→ P (ζ ) is an exact functor. It therefore induces a map

φ
p
ζ : K0(mf Z (Q, p f ;C p))

[P]7→[P(ζ )]
−−−−−−→ K0(mf Z (Q, p f )),

and so we may form the composition

K0(mf Z (Q, f ))
t p
6
−→ K0(mf Z (Q, p f ;6p))

res
−→K0(mf Z (Q, p f ;C p))

φ
p
ζ
−→ K0(mf Z (Q, p f )).

We come upon the need to “divide by p”. In general, if u ∈ Q is a unit, we define
an autoequivalence

multu :mf Z (Q, f )→mf Z (Q, u f )

by sending a matrix factorization (α, β) to (α, uβ). (Its inverse is given by multu−1 .)
For example, in Section 3C, we will employ the functor mult−1, which we will write
as mult−1(P)= P◦. Here, we use mult1/p, and we define t p

ζ to be the composition

K0(mf Z (Q, f ))
φ

p
ζ ◦res ◦t p

6
−−−−−−→ K0(mf Z (Q, p f ))

mult1/p
−−−→ K0(mf Z (Q, f )).

Let Ap denote the subring of C given by Z[1/p, e2π i/p
].

Definition 2.7. Assume p is a prime, Q is a (commutative, Noetherian) Ap-algebra,
f is any element of Q, and Z is a closed subset of Spec(Q). Define

ψ p
cyc =

∑
ζ

ζ t p
ζ : K0(mf Z (Q, f ))→ K0(mf Z (Q, f )),

where the sum ranges over all p-th roots of unity. (In this formula, the ζ occurring
as a coefficient is interpreted as belonging to Z[e2π i/p

] whereas the ζ occurring as
a subscript denotes its image in Q under the map Ap→ Q.)
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Remark 2.8. The image of ψ p
cyc is contained in the group K0(mf Z (Q, f )) ⊗Z

Z[e2π i/p
]. But, by an argument identical to the proof of Corollary 3.5 in [BMTW

2017], we have ∑
ζ

ζ t p
ζ = t p

1 − t p
ζ ′

for any fixed primitive p-th root of unity ζ ′, and thus the image of ψ p
cyc can be

taken to be K0(mf Z (Q, f )).

Remark 2.9. Setting φ p
=
∑

ζ ζφ
p
ζ , one gets another formulation

ψ p
cyc =mult1/p ◦φ

p
◦ res ◦t p

6.

2B. Axioms for Adams operations on matrix factorizations à la Gillet–Soulé. In
this subsection, we show the operations ψ p

cyc satisfy the following analogues of the
axioms of Gillet and Soulé (see Theorem 3.7 in [BMTW 2017]).

Theorem 2.10. Assume p is a prime, Q is a (commutative, Noetherian) Ap-algebra,
f, f1, f2 are any elements of Q, and Z is a closed subset of Spec(Q):

(1) ψ p
cyc is a group endomorphism of K0(mf Z (Q, f )).

(2) For α ∈ K0(mf Z (Q, f1)) and β ∈ K0(mfW (Q, f2)),

ψ p
cyc(α ∪β)= ψ

p
cyc(α)∪ψ

p
cyc(β) ∈ K0(mfZ∩W (Q, f1+ f2)),

where ∪ is the multiplication rule on Grothendieck groups induced by tensor
product. The three operators ψ p

cyc in the equation are, from left to right, acting
on K0(mfZ∩W (Q, f1+ f2)), K0(mf Z (Q, f1)), and K0(mfW (Q, f2)).

(3) ψ p
cyc is functorial in the following sense: Suppose ρ : Q → Q′ is map of

Ap-algebras, f ′ = ρ( f ), and ρ̃−1(Z) ⊆ Z ′ where ρ̃ : Spec Q′→ Spec Q is
the induced map on spectra. Then extension of scalars along ρ induces a map
K0(mf Z (Q, f ))→ K0(mfZ ′(Q′, f ′)) that commutes with the actions of ψ p

cyc.

(4) If f = gh, so that (g, h) := (Q g
−→Q, Q h

−→Q) is an object of mfV (g,h)(Q, f ),
we have

ψ p
cyc[(g, h)] = p[(g, h)].

Proof. The proofs of (1)–(3) are essentially identical to the proofs of parts (1)–(3) of
Theorem 3.7 in [BMTW 2017]. As for (4), let (0, 0) denote the matrix factorization
(Q 0
−→ Q, Q 0

−→ Q) of 0, and let X denote the tensor product

(g, ph)⊗Q (0, 0)⊗Q · · · ⊗Q (0, 0).

Set ζ := e2π i/p and σ := (1 2 · · · p) ∈ C p. We equip X with a C p action by
letting σ act on the i-th factor of X in the following way: If x has odd degree,
σ · x = ζ i−1x . If x has even degree, σ · x = x .
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We claim that there is an isomorphism

T p([g, h])∼= (g, ph)⊗Q (0, 0)⊗Q · · · ⊗Q (0, 0)

in mfV (g,h)(Q, p f ;C p). To prove the claim, let V be a free Q-module of rank p with
a fixed basis {e0, . . . , ep−1}. We identify the underlying Q-modules of T p((g, h))
and X with the exterior algebra

∧
V of V ; under this identification, the action of

C p on T p((g, h)) is given by

σ(ei1 ∧ · · · ∧ ein )= eσ−1(i1) ∧ · · · ∧ eσ−1(in),

and the action of C p on X is given by

σ(ei1 ∧ · · · ∧ ein )= ζ
i1+···+in ei1 ∧ · · · ∧ ein .

For 0≤ i≤ p−1, define vi :=1/p
∑

j ζ
i j e j . Then v0, . . . , vp−1 form a basis of V .

Let α :
∧

V →
∧

V denote the Q-algebra automorphism given by ei 7→ vi . Then
α yields an isomorphism T p((g, h))−→∼ X of C p-equivariant matrix factorizations;
this proves the claim.

(In checking the details here, it is useful to note the following: The “differential”
on T p((g, h)) is given by s0+s1, where s0 is left-multiplication by h(e0+· · ·+ep−1),
and s1 is given by the Koszul differential on the sequence (g, g, . . . , g). Similarly,
the “differential” on X is given by t0+ t1, where t0 is left-multiplication by phe0

and t1 is given by the Koszul differential on the sequence (g, 0, . . . , 0).)
By Remark 2.9, and the result analogous to Lemma 3.11 of [BMTW 2017] for

matrix factorizations (with essentially the same proof), we have

ψ p
cyc([(g, h)])=mult1/p

(
φ p([(g, ph)])∪φ p([(0, 0)])∪ · · · ∪φ p([(0, 0)])

)
.

Here, φ p acts as the identity on the first factor, which is equipped with the trivial
action of C p. Furthermore, direct calculation on the (i+1)-st factor yields

φ p([(0, 0])= [I ] + ζ i
[6 I ] = (1− ζ i )[I ]

where I denotes the unit matrix factorization (0 0
−→Q, Q 0

−→0). Thus, one obtains

ψ p
cyc([(g, h)])=mult1/p([(g, ph)] ∪ [I ] ∪ · · · ∪ [I ])

p−1∏
i=1

(1− ζ i )= p[(g, h)],

since
∏p−1

i=1 (1− ζ
i )= p. �

Corollary 2.11. If a = (a1, . . . , an) is a sequence of elements in an Ap-algebra Q
and K (a) is the associated Z/2-folded Koszul complex, regarded as an object of
mfV (a1,...,an)(Q, 0), then

ψ p
cyc([K (a)])= pn

[K (a)] ∈ K0(mfV (a1,...,an)(Q, 0)).
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Proof. This follows from parts (2) and (4) of the theorem, because K (a) is the
tensor product of the matrix factorizations (ai , 0) and Z/2-folding commutes with
tensor product. �

2C. Diagonalizability. Suppose Q is a regular ring and f ∈ Q is a not a zero
divisor. Recall, from the introduction, that PV ( f )(Q) denotes the category of
bounded complexes of finitely generated and projective Q-modules whose homology
is supported on V ( f ), and K V ( f )

0 (Q) denotes its Grothendieck group. In this
subsection, we construct a surjection

ρ f : K
V ( f )
0 (Q)� K0(mf(Q, f ))

that commutes with the actions of ψ p
cyc. Using this, and Corollary 3.12 of [BMTW

2017] (the proof of which is really due to Gillet–Soulé), we deduce that the action
of ψ p

cyc on K0(mf(Q, f ))Q decomposes the latter into eigenspaces of the expected
weights.

Let K f denote the Koszul dga associated to f , so that, as a Q-algebra, K f =

Q[ε]/(ε2) with |ε| = 1, and it is equipped with the Q-linear differential d satisfying
d(ε) = f . Let P(K f /Q) denote the full subcategory of the category of dg-K f -
modules consisting of those that are finitely generated and projective as Q-modules.
An object of P(K f /Q) is thus a bounded complex P of finitely generated projective
Q-modules equipped with a degree one Q-linear map s : P· → P·+1 satisfying
dPs+sdP = f and s2

= 0. (The map s is given by multiplication by ε.) A morphism
from (P, dP , s) to (P ′, dP ′, s ′) is a chain map g such that gs = s ′g. A homotopy
from g1 to g2 is a degree one map h such that dP ′h+ hdP = g1− g2 and hs = s ′h.

There are functors

PV ( f )(Q) F
←− P(K f /Q) Fold

−−−→mf(Q, f ),

where F is the forgetful functor that sends (P, dP , s) to (P, dP), and Fold sends
(P, d, s) to the following matrix factorization: the even degree part is

⊕
i P2i , the

odd degree part is
⊕

i P2i+1 and the degree one endomorphism is ∂ := d + s.
Define K0(P(K f /Q)) to be the Grothendieck group of objects modulo relations

coming from short exact sequences and homotopy equivalences as usual.

Lemma 2.12. If f is not a zero divisorin a regular ring Q, the functor F induces
an isomorphism

K0(P(K f /Q))−→∼ K V ( f )
0 (Q).

Proof. Let R = Q/( f ). One has an evident quasiisomorphism K f −→
∼ R of dga’s,

and hence an equivalence of triangulated categories Db(R)−→∼ Db(K f ) induced
by restriction of scalars. Thus, one has an isomorphism

G0(R)= K0(Db(R))−→∼ K0(Db(K f )).
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We may model Db(K f ) by semiprojective K f -modules with finitely generated
homology. Since Q is regular, the good truncation of such a complex in sufficiently
high degree is a complex of projective Q-modules. It thus follows from Quillen’s
resolution theorem that the inclusion map determines an isomorphism

K0(P(K f /Q))−→∼ K0(Db(K f )).

We thus obtain an isomorphism G0(R)−→∼ K0(P(K f /Q)), which we can describe
explicitly as follows: If M is a finitely generated R-module, form a (possibly
infinite) K f -semiprojective resolution P −→∼ M of M . Then the map sends [M] to
[P ′] where P ′ is a good truncation of P in sufficiently high degree.

We also have the more classical isomorphism G0(R)−→∼ K V ( f )
0 (Q), sending [M]

to the class of a Q-projective resolution of M . Since the complex P ′ constructed
above is an example of such a resolution, it is clear that the triangle

K0(P(K f /Q)) F
// K V ( f )

0 (Q)

G0(R)

∼=

ff

∼=

99

commutes. �

The functor Fold induces a map from K0(P(K f /Q)) to K0(mf(Q, f )), and
thus, using the lemma, we obtain the desired map ρ f : K

V ( f )
0 (Q)→ K0(mf(Q, f )).

Explicitly, the construction shows that if an object P ∈ PV ( f )(Q) admits a degree
one map s satisfying ds+ sd = f and s2

= 0, then ρ f ([P])= [Fold(P, d, s)]. In
particular, the map ρ f is surjective, since for a matrix factorization (α : P1→ P0, β :

P0→ P1) ∈mf(Q, f ), we have (α, β)= Fold(P, α, β).
Since there exists an isomorphism G0(Q/( f ))−→∼ K V ( f )

0 (Q) which sends the
class of a finitely generated Q/( f )-module to the class of a chosen Q-projective
resolution of it, we obtain a surjective map

G0(Q/( f ))� K0(mf(Q, f )).

Note that this surjection agrees with the one induced by the inverse of the equivalence
[mf(Q, f )] −→∼ Dsing(Q/( f )) from Theorem 1 of the introduction.

Given a finitely generated Q/( f )-module M , let [M]stable ∈ K0(mf(Q, f )) de-
note the image of [M] under the above surjection G0(Q/( f ))� K0(mf(Q, f )).
Explicitly, for such an M , one may find a Q-projective resolution (P, d) of it for
which there exists a degree one endomorphism s of P satisfying ds+ sd = f and
s2
= 0 (by taking, for instance as above, a good truncation in sufficiently high degree

of a K f -semiprojective resolution P −→∼ M). Then [M]stable = [Fold(P, d, s)].
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We will use the following result to deduce the diagonalizability of ψ p
cyc on the

Grothendieck group of matrix factorizations from the corresponding result for
complexes.

Proposition 2.13. Assume Q is a regular Ap-algebra and f ∈ Q is a not a zero
divisor. The map ρ f commutes with the Adams operations ψ p

cyc.

Proof. We need to show the diagram

K V ( f )
0 (Q)

ρ f
//

ψ
p
cyc
��

K0(mf(Q, f ))

[Y ]7→[T p(Y )(1)]−[T p(Y )(ζ )]
��

K V ( f )
0 (Q)

ρp f
//

=

��

K0(mf(Q, p f ))

mult1/p

��

K V ( f )
0 (Q)

ρ f
// K0(mf(Q, f ))

commutes.
It suffices to check the commutativity of the top square on classes [P] for which

there exists an s with ds+ sd = f and s2
= 0. Recall that the induced differential

T p(d) on T p(P) is given by

T p(d)(x1⊗ · · ·⊗ x p)=

p∑
i=1

(−1)|x1|+···+|xi−1|x1⊗ · · ·⊗ d(xi )⊗ · · ·⊗ x p,

and we define T p(s) to be the degree one map given by the same formula with s in
place of d. Then T p(d)T p(s)+ T p(s)T p(d)= p f and T p(s)2 = 0. Moreover, it
follows from the definitions that there is a canonical isomorphism

T p(Fold(P, d, s))∼= Fold(T p(P), T p(d), T p(s)) ∈mf(Q, p f ),

and this isomorphism is equivariant for the action of 6p. The commutativity of the
top square in the diagram follows.

The bottom square commutes by the more general lemma below. �

Lemma 2.14. If Q is a regular, f ∈ Q is not a zero divisor, and u ∈ Q is a unit,
the triangle

K0(mf(Q, f ))

multu

��

K V ( f )
0 (Q)

ρ f 33 33

ρu f

++ ++

K0(mf(Q, u f ))

commutes.
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Proof. Again, it suffices to check the commutativity of the diagram on classes
[P] such that P is a complex with differential d for which there exists an s with
ds+ sd = f and s2

= 0. If [P] is such a class, ρ f ([P])= [Fold(P, d, s)].
Before applying ρu f , first replace (P, d) by the isomorphic complex (P ′, d ′)

with P ′i = Pi for all i and with d ′i = di for i odd and d ′i = udi for i even. Defining
s ′ as s ′i = si for i odd and s ′i = usi for i even, one has d ′s ′ + s ′d ′ = u f . Then
ρu f ([P])= [Fold(P,′ d ′, s ′)] =multu([Fold(P, d, s)])= (multu ◦ρ f )([P]). �

Theorem 2.15. Assume Q is a regular Ap-algebra of dimension d and f ∈ Q is
not a zero divisor. There is a decomposition

K0(mf(Q, f ))Q =
d⊕

i=1

K0(mf(Q, f ))(i)
Q
,

which is independent of p, such that ψ p
cyc acts on K0(mf(Q, f ))(i)

Q
as multiplication

by pi . Moreover, for a finitely generated Q/( f )-module M , we have

[M]stable ∈

d⊕
i=codimQ/( f ) M+1

K0(mf(Q, f ))(i)
Q
.

Proof. This follows from Corollary 3.12 of [BMTW 2017] and Proposition 2.13 by
defining K0(mf(Q, f ))(i)

Q
to be the image of K V ( f )

0 (Q)(i)
Q

under ρ f ⊗Q. �

We close this subsection with a technical result needed below.

Corollary 2.16. If Q is a regular Ap-algebra for a prime p, f ∈ Q is not a zero
divisor, and u ∈ Q is a unit, we have an equality of maps ψ p

cyc◦multu =multu ◦ψ
p
cyc

from K0(mf(Q, f )) to K0(mf(Q, u f )).

Proof. By Proposition 2.13, the diagonal maps in the commutative diagram of
Lemma 2.14 commute with the action of ψ p

cyc, and these maps are surjective. �

3. Dao and Kurano’s Conjecture

In this section, we apply the results of Section 2 to give a proof of Theorem 5 from
the introduction.

3A. Some properties of Z/2-graded complexes. We will need some general re-
sults about Z/2-graded complexes. Much of what we need holds in great generality,
and so we start by working over a Noetherian commutative ring B.

Let LF(B, 0) denote the abelian category of all Z/2-graded complexes of B-
modules (“LF” stands for “linear factorization”), and let lf(B, 0) denote the full
subcategory of LF(B, 0) consisting of complexes whose components are finitely
generated B-modules. An object of LF(B, 0) consists of a pair of B-modules,
M0 and M1, together with maps d0

: M0
→ M1 and d1

: M1
→ M0 such that
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d1
◦ d0
= 0= d0

◦ d1. Morphisms are given by the evident Z/2-graded analogues
of chain maps. We also have the evident Z/2-versions of quasiisomorphisms
and homotopies of chain maps. For objects X, Y ∈ LF(B, 0), let HomLF(X, Y )
denote the Z/2-analogue of the mapping complex construction. So HomLF(X, Y )∈
LF(B, 0) with HomLF(X, Y )ε =

⊕
ε′+ε′′=ε HomB(X ε′, Y ε

′′

). Note that the zero
cycles in HomLF(X, Y ) are, by definition, the set of morphisms from X to Y in
LF(B, 0), and H 0 HomLF(X, Y ) is the set of morphisms modulo homotopy.

We write X ⊗LF Y ∈ LF(B, 0) for the evident Z/2-graded analogue of the tensor
product of complexes, so that

(X ⊗LF Y )ε =
⊕

ε=ε′+ε′′

X ε′
⊗B Y ε

′′

.

We will also need the notion of the totalization Tot(X ·) of a bounded complex

X · := (0→ Xm→ · · · → X0→ 0)

of objects of LF(B, 0), defined in a manner similar to the Z-graded setting. In more
detail, we have

Tot(X ·)ε =
m⊕

i=0

X i+ε
i ,

with superscripts taken modulo 2. Moreover, if

0→ Xm→ · · · → X0→ M→ 0

is an exact sequence in LF(B, 0), then there is a natural quasiisomorphism

Tot(X ·)−→∼ M

in LF(B, 0).
For M ∈ LF(B, 0), define Z(M) to be the Z/2-graded module consisting of

the kernels of the two maps comprising the complex M , and define B(M) to be
the Z/2-graded module given by the images of the two maps comprising M . Let
H(M) denote the Z/2-graded module consisting of the homology modules of M .
Each of B, Z , and H can be interpreted as a functor from LF(B, 0) to itself, and
they restrict to functors from lf(B, 0) to itself. Note that B(M) ⊆ Z(M) and
H(M)= Z(M)/B(M).

Recall that mf(B, 0) is the full subcategory of lf(B, 0) consisting of complexes
whose components are projective B-modules.

Definition 3.1. An object X ∈mf(B, 0) is called proper if Z(X), B(X) and H(X)
are all projective R-modules.

For M ∈ lf(B, 0), an exact sequence of the form

· · · → Xm→ · · · → X1→ X0→ M→ 0
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such that X i ∈mf(B, 0) is proper for all i and each of the induced sequences

· · · → B(Xm)→ · · · → B(X1)→ B(X0)→ B(M)→ 0,

· · · → Z(Xm)→ · · · → Z(X1)→ Z(X0)→ Z(M)→ 0,

· · · → H(Xm)→ · · · → H(X1)→ H(X0)→ H(M)→ 0

is also exact is called a Cartan–Eilenberg resolution of M . Such a resolution is
bounded if X j = 0 for all j � 0.

Lemma 3.2. If B is a Noetherian commutative ring, and at least one of X, Y ∈
mf(B, 0) is proper, then there is a natural isomorphism

H(X)⊗LF H(Y )−→∼ H(X ⊗LF Y ).

Proof. The proof is the same as for the classical Künneth Theorem. �

Lemma 3.3. If B is a Noetherian commutative ring, then every M ∈ lf(B, 0) admits
a Cartan–Eilenberg resolution. If B is regular, every M ∈ lf(B, 0) admits a bounded
Cartan–Eilenberg resolution.

Proof. Choose projective resolutions of B0(M), B1(M), H0(M) and H1(M), and
make repeated use of the horseshoe lemma, just as in the proof of the classical
version of this result. If B is regular, all of the chosen projective resolutions in the
proof may be chosen to be bounded. �

Recall that [mf(B, 0)] denotes the category with the same objects as mf(B, 0)
and with morphism sets given by Hom[mf(B,0)](X, Y ) := H 0(HomLF(X, Y )). We
write D(lf(B, 0)) for the category obtained from lf(B, 0) by inverting all quasiiso-
morphisms.

Proposition 3.4. If B is regular, the canonical functor

[mf(B, 0)] −→∼ D(lf(B, 0))

is an equivalence.

Proof. Let M be an object in D(lf(B, 0)). Applying Lemma 3.3, choose a bounded
Cartan–Eilenberg resolution X · of M . Then the canonical map Tot(X ·)→ M is
a quasiisomorphism, and Tot(X ·) is an object of mf(B, 0); thus, the functor is
essentially surjective. It is fully faithful by Lemma 2.3. �

We are especially interested in complexes with finite length homology. Let
lf fl(B, 0) and mf fl(B, 0) denote the full subcategories of lf(B, 0) and mf(B, 0)
consisting of those complexes M such that H 0(M) and H 1(M) are finite length
B-modules. Since this condition is preserved by quasiisomorphism, we may form
[mf fl(B, 0)] and D(lf fl(B, 0)), and they may be identified as full subcategories of
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[mf(B, 0)] and D(lf(B, 0)). Moreover, it follows from Proposition 3.4 that the
canonical functor induces an equivalence

[mf fl(B, 0)] −→∼ D(lf fl(B, 0)),

provided B is regular.
It will be convenient to give an alternative description of the category LF(B, 0)

and of the constructions just described. Fix a degree two indeterminate t and form
the Z-graded algebra B̃ := B[t, t−1

], which we regard as a dg-ring with trivial
differential. Recall that a dg-B̃-module is a graded B̃-module M equipped with a
degree one B̃-linear map d : M → M such that d2

= 0. Since t is a degree two
invertible element, a dg-B̃-module is the same things as a Z-graded complex of
B-modules M together with a specified isomorphism t : M −→∼ M[2] of complexes.
A morphism between two such pairs, say from (M, t) to (M ′, t ′), is a chain map
from M to M ′ that commutes with t and t ′. There is an evident equivalence of
abelian categories

dg -B̃- Mod−→∼ LF(B, 0)

that sends a dg-B̃-module M to the object

(M0 d
−→M1 t−1d

−−−→M0)

of LF(B, 0). Moreover, the notions of mapping complex, tensor product, quasi-
isomorphism, homotopy equivalence and totalization defined above for LF(B, 0)
correspond to the standard notions for dg-modules. This equivalence thus allows us
to employ standard results from differential graded algebra.

3B. Adams operations on Z/2-graded complexes with finite length homology.
Let Q be a regular local ring with maximal ideal m. Recall that mfm(Q, 0) is the
category of Z/2-graded complexes of finite rank free Q-modules whose homology
has support in {m}; notice that mfm(Q, 0)=mf fl(Q, 0), where the right-hand side
is as defined in Section 3A.

Recall that Km
0 (Q) is the Grothendieck group of the category of bounded Z-

graded complexes of projective Q-modules whose homology has support in {m}. It
is easy to prove that Km

0 (Q) is a free abelian group of rank one, generated by the
class of the Koszul complex on a regular system of generators of m. One might
thus expect the answer to the following question to be positive:

Question 3.5. For a regular local ring (Q,m), is K0(mfm(Q, 0)) a free abelian
group of rank one, generated by the Z/2-folded Koszul complex?

We know the answer to be “yes” if dim(Q)≤ 2, but the general situation remains
unknown. The following example illustrates the difficulty:
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Example 3.6. Let (Q,m) be a regular local ring of dimension three, and suppose
x, y, z form a regular sequence of generators for the maximal ideal m. Let

0→ Q i
−→ Q3 A

−→ Q3 p
−→ Q→ 0

be the usual Koszul complex on x, y, z (so that, for example, p is given by the row
matrix (x, y, z)). The Z/2-folding of this Koszul complex,

K :=

(
Q3
⊕ Q

[
A
0

0
0

]
−−−→ Q3

⊕ Q

[
0
p

i
0

]
−−−→ Q3

⊕ Q

)
,

determines a class [K ] in K0(mfm(Q, 0)).
Now define B : Q3

→ Q3 to be the map i ◦ p. Then AB = 0 = B A, so that
X = (Q3 A

−→ Q3 B
−→ Q3) is a Z/2-graded complex. Moreover, ker(B) = im(A)

and ker(A)/ im(B)∼= Q/m, so that X ∈mfm(Q, 0). We do not know whether [X ]
is a multiple of [K ] in K0(mfm(Q, 0)).

To explain the relevance of Question 3.5, let us define the Euler characteristic
of an object X ∈mfm(Q, 0) to be

χ(X)= length H 0(X)− length H 1(X).

Then χ determines a group homomorphism

χ : K0(mfm(Q, 0))→ Z.

For example, if K is the Z/2-folded Koszul complex on a regular system of genera-
tors for m, then χ(K )= 1. Assume now that Q is a regular local Ap-algebra for a
prime p (that is, assume p is invertible in Q and that Q contains a primitive p-th
root of unity), so that the cyclic Adams operation ψ p

cyc acts on K0(mfm(Q, 0)). We
have ψ p

cyc([K ])= pd
[K ], where d = dim(Q), by Corollary 2.11. If the answer to

Question 3.5 were affirmative, we would obtain as an immediate consequence the
identity

χ ◦ψ p
cyc = pdχ (3.7)

of maps from K0(mfm(Q, 0)) to Z. Moreover, this equation plays a key role in the
proof of Theorem 5.

Although we are unable to answer Question 3.5, we are nevertheless able to
prove an analogue to [Gillet and Soulé 1987, Proposition 7.1].

Theorem 3.8. For a regular local ring Q of dimension d that is an Ap-algebra for
some prime p, (3.7) holds.

The proof of this theorem occupies the remainder of this subsection.
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Fix a prime p, and let B be a commutative Noetherian Ap-algebra. Recall the
functor t p

ζ defined on mf(B, 0) that sends X to T p(X)(ζ ), where ζ is a p-th root of
unity. It will be useful to interpret this functor as a composition

mf(B, 0) T p
−→mf(B ′, 0) Y 7→Y (ζ )

−−−→mf(B, 0)

where we set B ′ = B[C p] = B[σ ]/(σ p
− 1). Since B is an Ap-algebra, B ′ is

isomorphic to a product of p copies of B equipped with an action of C p. So, an
object of mf(B ′, 0) is the same thing as an object of mf(B, 0) equipped with an
action of C p, and if B is regular, then so is B ′.

The functors above preserve the condition that homology has finite length, and
they send homotopic maps to homotopic maps, so that we have an induced functor

t p
ζ : [mf fl(B, 0)] → [mf fl(B, 0)]

given as the composition of functors

[mf fl(B, 0)] T p
−→[mf fl(B ′, 0)] Y 7→Y (ζ )

−−−→[mf fl(B, 0)].

We will need a “derived” version of the functor t p
ζ . When B is regular, then we

may use the equivalence of Proposition 3.4 to obtain a functor

tp
ζ : D(lf

fl(B, 0))→ [mf fl(B, 0)].

Explicitly, for M ∈ lf fl(B, 0), tp
ζ (M)= t p

ζ (P) where P is any object of mf fl(B, 0)
for which there exists a quasiisomorphism P −→∼ M .

Given M ∈ lf(B, 0), recall that H(M) denotes the object of lf(B, 0) given by
the Z/2-graded B-module with components H 0(M) and H 1(M), regarded as a
complex with trivial differential. In terms of the dg-ring B̃, H(M) corresponds to
the homology of a dg-B̃-module, which is naturally a dg-B̃-module with trivial
differential (since B̃ has trivial differential). If M ∈ lf fl(B, 0), we define its Euler
characteristic by

χ(M) := length H 0(M)− length H 1(M),

as above.

Lemma 3.9. If B is a regular Ap-algebra, then for any M ∈ lf fl(B, 0) and any p-th
root of unity ζ , we have

χ(tp
ζ (M))= χ(t

p
ζ (H(M))).

Theorem 3.8 is a relatively easy consequence of Lemma 3.9. Before proving
Lemma 3.9, we must introduce the following notation and establish one more
preliminary result. For a bounded complex

X · = (0→ Xm→ Xm−1→ · · · → X1→ X0→ 0)
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of objects of LF(B, 0), we write Hq(X ·) ∈ LF(B, 0) for its homology taken in the
abelian category LF(B, 0); that is,

Hq(X ·)= ker(Xq → Xq−1)/ im(Xq+1→ Xq).

We write H(X ·) for the complex of objects of LF(B, 0) obtained by applying H
term-wise

H(X ·) := (0→ H(Xd)→ · · · → H(X0)→ 0).

Note that H(X ·) is a complex of Z/2-graded modules, and we regard it as another
complex of objects in LF(B, 0).

Lemma 3.10. For a Noetherian commutative ring B, assume

Y· := (0→ Ym→ · · · → Y0→ 0)

is a complex in lf(B, 0) such that both Hq H(Y·) and H Hq(Y·) have finite length for
all q. Then Tot(Y·) belongs to lf fl(B, 0), and we have

χ(Tot(Y·))=
∑

q∈Z,ε∈Z/2

(−1)q+ε length Hq(Hε(Y·))

=

∑
q∈Z,ε∈Z/2

(−1)q+ε length Hε(Hq(Y·)).

Proof. Our proof uses spectral sequences and is similar to the proof of the analogous
fact concerning Z-graded bicomplexes, but some care is needed to deal with the
Z/2-grading.

We find it most convenient to work in the setting of dg-B̃-modules. Recall
that a dg-B̃-module is the same thing as pair consisting of a Z-graded complex of
B-modules and a degree 2 automorphism. A graded B̃-module is a dg-B̃-module
with trivial differential.

Let us say that a graded B̃-module H has finite length if H i has finite length as
a B-module for each i ∈ Z (or, equivalently, for i = 0, 1). In this case, we define

χ̃(H)= lengthB(H
0)− lengthB(H

1).

(Note that χ̃(H)= lengthB(H
2m)− lengthB(H

2n+1) for any m, n ∈ Z.) It is clear
that if Y ∈ lf fl(B, 0), then

χ(Y )= χ̃(H̃(Y ))

where χ is as defined before, and H̃(Y ) denotes the homology of Y regarded in the
canonical way as a graded B̃-module.

We will need the following fact. If (M, d) is a dg-B̃-module such that the under-
lying graded B̃-module M has finite length, then H(M, d) also has finite length,
and χ̃(H(M, d))= χ̃(M). This is seen to hold by a straightforward calculation.
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We view Y· as a bicomplex Y ·
·

with m+1 rows, whose m-th row, for 0≤ j ≤m, is

· · · → Y−1
j → Y 0

j → Y 1
j → · · · ,

along with a degree (2, 0) isomorphism of bicomplexes t : Y ·
·
−→∼ Y ·+2

·
. Since this

bicomplex is uniformly bounded in the vertical direction, we have two strongly
convergent spectral sequences of the form

′E p,−q
2 = Hq(H p(Y ·

·
))H⇒ H p−q(Tot(Y ·

·
)) and

′′E p,−q
2 = H p(Hq(Y ·· ))H⇒ H p−q(Tot(Y ·

·
)).

Let E∗,∗r , for r ≥ 2, refer to either of these two spectral sequences. The isomor-
phism t : Y ·

·
−→∼ Y ·+2

·
induces isomorphisms

t : E p,−q
r −→∼ E p+2,−q

r

for each r ≥ 2, and similarly on the underlying Dr -terms, and these isomorphisms
commute with all the maps of the exact couple.

For any r , define a Z-graded B-module Tot(Er ) by

Tot(Er )
n
:=

⊕
p+q=n

E p,q
r .

The isomorphism t induces an isomorphism of degree 2 on Tot(Er ) making it into
a graded B̃-module. For each r , the differential dr on the Er ’s induces a degree one
map (which we will also write as dr ) on Tot(Er ), and since this map commutes
with t , we have that (Tot(Er ), dr ) is a dg-B̃-module. Finally, we have an identity

Tot(Er+1)= H(Tot(Er ), dr )

of graded B̃-modules.
Returning to the two specific instances of this spectral sequence, the assumptions

give that each of Tot(′E2) and Tot(′′E2) has finite length, and that we have

χ̃(Tot(′E2))=
∑

q∈Z,ε∈Z/2

(−1)q+ε length Hq(Hε(Y·))

χ̃(Tot(′′E2))=
∑

q∈Z,ε∈Z/2

(−1)q+ε length Hε(Hq(Y·)).
(3.11)

By the general fact mentioned above, we get that each of Tot(E3),Tot(E4), . . . also
has finite length, and, moreover,

χ̃(Tot(E2))= χ̃(Tot(E3))= · · · = χ̃(Tot(E∞)).

(Note that the spectral sequence degenerates after at most m + 2 steps, so that
Em+2 = Em+3 = · · · = E∞.)
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Now, for ε = 0, 1, the B-module H ε Tot(Y ) admits a filtration by B-submodules
whose subquotients are Eε,0

∞
, Eε−1,1
∞

, . . . , Eε−m,m
∞

, and hence

χ(Tot(Y ))= χ̃(H(Tot(Y ))

=

∑
q

length E−q,q
∞
−

∑
q

length E1−q,q
∞

= χ̃(Tot(E∞))= χ̃(Tot(E2)).

By (3.11), the proof is complete. �

Proof of Lemma 3.9. We may assume, without loss of generality, that M = P
belongs to mf fl(B, 0). Let

· · · → 0→ Xm→ Xm−1→ · · · → X1→ X0→ P→ 0

be a bounded Cartan–Eilenberg resolution of P . Since P is an object of mf(B, 0),
the induced quasiisomorphism Tot(X ·) −→∼ P is a homotopy equivalence, a fact
that will be used below.

Recall that X i is proper. In particular, H(X i ) is projective for all i , and the
induced complex

· · · → 0→ H(Xm)→ H(Xm−1)→ · · · → H(X1)→ H(X0)→ H(P)→ 0

is also exact. The latter gives, by definition,

tp
ζ (H(P))= t p

ζ (Tot(H(X ·)))= T p(Tot(H(X ·)))(ζ ). (3.12)

For any bounded complex Y· of objects of mf(B, 0), write T p(Y·) for the complex
of objects in mf(B, 0) that, in degree j , is

T p(Y·) j =
⊕

i1+···+i p= j

Yi1 ⊗LF · · · ⊗LF Yi p .

For example, if p = 2, then T 2(Y·) is the complex

· · · → (Y2⊗ Y0⊕ Y1⊗ Y1⊕ Y0⊗ Y2)→ (Y1⊗ Y0⊕ Y0⊗ Y1)→ Y0⊗ Y0→ 0.

Each term of the complex T p(Y ) admits an evident signed action by C p, and the
maps of this complex respect these actions, so that we may regard T p(Y·) as a
complex in mf(B ′, 0), where B ′ := B[C p]. We have an identity

T p(Tot(Y·))= Tot(T p(Y·)) (3.13)

of objects of mf(B ′, 0).
Since B is an Ap-algebra, (−)(ζ ) is an exact functor from lf(B ′, 0) to lf(B, 0).

In fact, B ′ is a product of copies of B, and this functor is given by extension of
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scalars along one of the canonical projections B ′� B. In particular, we have

Tot(Y
·
)(ζ ) = Tot(Y (ζ )

·
) (3.14)

for any bounded complex Y· of objects of lf(B ′, 0), and

H(Y )(ζ ) = H(Y (ζ )) (3.15)

for any object Y ∈ lf(B ′, 0).
Since each X i is proper, Lemma 3.2 implies that we have canonical isomorphisms

H(X i1)⊗LF · · · ⊗LF H(X i p)−→
∼ H(X i1 ⊗LF · · · ⊗LF X i p)

which combine to give an isomorphism

T p(H(X ·))−→∼ H(T p(X ·)) (3.16)

of complexes of objects of mf(B ′, 0).
Combining these facts gives

tp
ζ (H(P))= T p(Tot(H(X ·)))(ζ ), by (3.12),

= (Tot(T p(H(X ·))))(ζ ), by (3.13),

= Tot(T p(H(X ·))(ζ )), by (3.14),

= Tot(H(T p(X ·))(ζ )), by (3.16),

= Tot(H(T p(X ·)(ζ ))), by (3.15).

We now apply Lemma 3.10 to the complex Y· :=T p(X ·)(ζ ) of objects in mf(B, 0),
which gives∑

q,ε

(−1)q+ε length Hq(Hε(Y·))=
∑
q,ε

(−1)q+ε length Hε(Hq(Y·)). (3.17)

Since we have shown that Tot(H(Y·)) ∼= tp
ζ (H(P)), the left-hand side of (3.17) is

χ(tp
ζ (H(P))).

Recall that, since P belongs to mf(B, 0), the quasiisomorphism Tot(X ·)−→∼ P
is a homotopy equivalence. It follows that the map

Tot(Y·)∼= T p(Tot(X ·))(ζ )→ T p(P)(ζ ).

is also a homotopy equivalence. We get

Hε(Hq(Y·))∼=
{

Hε(t p
ζ (P)) if q = 0,

0 otherwise,

which shows that the right-hand side of (3.17) is χ(t p
ζ (P)). �
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Proof of Theorem 3.8. Let P ∈mfm(Q, 0)=mf fl(Q, 0). By definition,

χ(ψ p
cyc([P]))=

∑
ζ

ζχ(t p
ζ (P)).

By Lemma 3.9, the value of the right-hand side of this equation coincides with∑
ζ ζχ(t

p
ζ (H(P))). Since H(P) has trivial differential, the class

[H(P)] ∈ K0(D(lf fl(Q, 0)))∼= K0(mfm(Q, 0))

is an integer multiple of the class of the residue field k = Q/m, which in turn
coincides with the class of the folded Koszul complex K ∈mfm(Q, 0). This proves
that the equation of Theorem 3.8 holds in general provided it holds for the class
[K ], and that special case is known to hold by Corollary 2.11. �

3C. Proof of the conjecture. Throughout this section, we assume (Q,m) is a
regular local ring and f is a nonzero element of m, and we set R = Q/( f ). We
also assume R is an isolated singularity; that is, we assume Rp is regular for all
p ∈ Spec(R) \ {m}. Recall from the introduction that these conditions lead to a
well-defined invariant for a pair (M, N ) of finitely generated R-modules:

θR(M, N )= length(TorR
2n(M, N ))− length(TorR

2n+1(M, N ))

for n� 0.
For a finitely generated R-module M , [M]stable denotes its associated class

in K0(mf(Q, f )), given by the surjection G0(R)� K0(mf(Q, f )) described in
Section 2C. Recall that [M]stable = [Fold(P, d, s)], where P is a Q-projective
resolution of M admitting a degree one endomorphism s that satisfies ds+ sd = f
and s2

= 0, that is, a Koszul resolution.
For a matrix factorization X ∈mf(Q, f ), write X◦ for mult−1 X ∈mf(Q,− f ).

That is, if X = (α : P1→ P0, β : P0→ P1), then X◦= (α,−β). We also use the no-
tation (−)◦ to denote the induced isomorphism K0(mf(Q, f ))−→∼ K0(mf(Q,− f )).
For a finitely generated R-module N , the class [N ]◦stable is the image of [N ] under
G0(R)� K0(mf(Q,− f )), using that Q/( f )= Q/(− f ).

Proposition 3.18. For Q,m, f, R,M and N as in Definition 1.2,

θR(M, N )= χ([M]stable ∪ [N ]◦stable).

Proof. First note that, since f is an isolated singularity, one has

K0(mf(Q,± f ))= K0(mfm(Q,± f ))

and hence

[M]stable ∪ [N ]◦stable ∈ K0(mfm(Q, f + (− f )))= K0(mfm(Q, 0)).
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Choose matrix factorizations X = (d1 : X1→ X0, d0 : X0→ X1) and Y = (d ′1 :
Y1 → Y0, d ′0 : Y0 → Y1) such that [X ] = [M]stable and [Y ] = [N ]◦stable. Assume,
without loss of generality, that N is maximal Cohen–Macaulay, and N = coker(d ′1).

Let Z denote the object (0→ N , N→ 0) of lf(Q,− f ); here, 0 is in odd degree
and N is in even degree. Let α : Y → Z be the morphism in lf(Q,− f ) given by
the canonical surjection in even degree and, of course, the zero map in odd degree.
Since θ(M, N ) clearly coincides with the Euler characteristic of X ⊗ Z , it suffices
to show that the morphism

id⊗α : X ⊗ Y → X ⊗ Z

in lf(Q, 0) is a quasiisomorphism. The map id⊗α is clearly surjective, so it suffices
to show that its kernel is acyclic. An easy calculation shows that ker(id⊗α)∼= X⊗T ,
where T is the object (Y1

id
−→ Y1, Y1

− f
−→ Y1) ∈ lf(Q,− f ). Since T is contractible,

X ⊗ T is contractible; thus, id⊗α is a quasiisomorphism. �

We now prove the conjecture of Dao and Kurano:

Theorem 3.19. Let (Q,m) be a regular local ring and f ∈m a nonzero element,
and assume R :=Q/( f ) is an isolated singularity. If M and N are finitely generated
R-modules such that

dim M + dim N ≤ dim R

then θR(M, N )= 0.

Proof. Let p be any prime that is invertible in Q. We start by reducing to the case
where Q contains a primitive p-th root of unity. If not, we form the faithfully flat
extension Q ⊆ Q′ where Q′ is the localization of Q[x]/(x p

− 1) at any one of the
maximal ideals lying over m, and set R′ = Q′/ f ∼= R⊗Q Q′. Note that R ⊆ R′ is
also faithfully flat, and thus

TorR
i (M, N )⊗R R′ ∼= TorR′

i (M ⊗R R′, N ⊗R R′).

It follows that

θR′(M ⊗R R′, N ⊗R R′)= [R′/m′ : R/m] · θR(M, N ),

and so we may replace Q with Q′.
Set d = dim Q, cM = codimQ M and cN = codimQ N . The hypothesis that

dim M + dim N ≤ dim R = d − 1 yields cM + cN ≥ d + 1. By Theorem 2.15, the
classes [M]stable, [N ]stable ∈ K0(mf(Q, f ))⊗Q decompose uniquely as

[M]stable =

d∑
i=cM

X i and [N ]stable =

d∑
j=cN

Y j ,
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where X i and Y j are such that ψ p
cyc(X i )= pi X i and ψ p

cyc(Y j )= p j Y j . Then

[N ]◦stable =

d∑
j=cN

Y ◦j

and, by Corollary 2.16, ψ p
cyc(Y ◦j )= p j Y ◦j for all j .

By Proposition 3.18, we have

θR(M, N )= χ([M]stable ∪ [N ]◦stable)=
∑
i, j

χ(X i ∪ Y ◦j ),

and so it suffices to prove χ(X i ∪ Y ◦j )= 0 for all i and j . For any i and j ,

pdχ(X i ∪ Y ◦j )= χ(ψ
p
cyc(X i ∪ Y ◦j ))

= χ(ψ p
cyc(X i )∪ψ

p
cyc(Y

◦

j ))

= χ(pi X i ∪ p j Y ◦j )

= pi+ jχ(X i ∪ Y ◦j ),

where the first equality is by Theorem 3.8, the second is by Theorem 2.10, and
the third is by definition of X i and Y j . Since Theorem 2.15 yields that i + j ≥
cM + cN > d, we conclude that χ(X i ∪ Y ◦j )= 0. �
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Rationality does not specialize
among terminal fourfolds

Alexander Perry

We show that rationality does not specialize in flat projective families of complex
fourfolds with terminal singularities. This answers a question of Totaro, who
established the corresponding result in dimensions greater than 4.

1. Introduction

Rationality behaves subtly in families of complex algebraic varieties. In general,
given a flat projective family, the locus of rational fibers forms a countable union
of locally closed subsets of the base [de Fernex and Fusi 2013, Proposition 2.3].
Recently, Hassett, Pirutka, and Tschinkel [2016] produced a smooth projective
family of fourfolds where none of these locally closed subsets is dense, but their
union is dense (even in the Euclidean topology). In particular, rationality is neither
an open nor closed condition in smooth families.

This paper concerns the question of whether the locally closed subsets parametriz-
ing the rational fibers of a family are actually closed, i.e., whether rationality
specializes.

Question 1. Given a flat projective family of complex varieties, does geometric
rationality of the generic fiber imply the same of every fiber?

Without further restrictions, the answer is negative: specializations of rational
varieties need not even be rationally connected, as shown by a family of smooth
cubic surfaces degenerating to a cone over a smooth cubic curve. However, if the
fibers of the family are required to be smooth of dimension at most 3, Timmerscheidt
[1982] proved the answer is positive. In fact, as Totaro observed, it follows from
the results of de Fernex and Fusi [2013] and Hacon and Mckernan [2007] that the
answer remains positive if the fibers are allowed to have log terminal singularities
and dimension at most 3.

In higher dimensions, however, Totaro [2016b] showed that rationality does not
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specialize among varieties with mild singularities. Namely, specialization fails
in every dimension greater than 4 if terminal singularities (the mildest type of
singularity arising from the minimal model program) are allowed, and in dimension
4 if canonical singularities (the second mildest type of singularity) are allowed.
This left open the possibility that rationality specializes among terminal fourfolds.
The purpose of this paper is to show that this fails too.

Theorem 2. There is a flat projective family of fourfolds over a Zariski open
neighborhood U of the origin 0 ∈ A1 in the complex affine line such that:

(1) All the fibers have terminal singularities.

(2) The fibers over U \ {0} are rational.

(3) The fiber over 0 is stably irrational.

Our proof of Theorem 2 closely follows [Totaro 2016b]. There, starting from a
stably irrational smooth quartic fourfold Y ⊂P5 (known to exist by [Totaro 2016a]),
Totaro constructs a family of fivefolds satisfying conditions (1)–(3) in Theorem 2
by deforming the cone over Y to rational fivefolds. More generally, starting from
any smooth hypersurface Y ⊂Pn which is Fano of index at least 2, his construction
produces a family of n-folds satisfying (1) and (2), whose fiber over 0 is birational
to Y ×P1. It is thus tempting to take Y ⊂ P4. However, then the only potential
candidate for Y is a cubic threefold such that Y ×P1 is irrational, the existence of
which is a difficult open problem.

Our idea is to instead take Y to be a quartic double solid. Then Y is a Fano three-
fold of index 2, and can be chosen to be stably irrational by Voisin’s seminal work
[2015]. Although Y is not a hypersurface in projective space, it is a hypersurface in
a weighted projective space, which we show is enough to run Totaro’s argument.

The natural question left open by this paper is whether rationality specializes
among smooth varieties of dimension greater than 3.

Conventions. We work over the field of complex numbers C. For positive inte-
gers a0, . . . , an , we denote by P(a0, . . . , an) the weighted projective space with
weights ai . We use superscripts to denote that a weight is repeated with multiplicity,
e.g., P(14, 2)=P(1, 1, 1, 1, 2). For a vector bundle E on a scheme S, the associated
projective bundle is P(E)= ProjS(Sym(E∨)).

2. Proof of Theorem 2

Let Y → P3 be a quartic double solid, i.e., a double cover of P3 branched along a
smooth quartic surface. We regard Y as a hypersurface in the weighted projective
space P(14, 2), cut out by a polynomial of the form

f4(x0, . . . , x4)= x2
4 − h4(x0, . . . , x3),
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where h4(x0, . . . , x3) is a quartic. Let X ⊂ P(14, 2, 1) be the cone over Y defined
by the same polynomial f4(x0, . . . , x4) in the bigger weighted projective space
P(14, 2, 1). For a stably irrational choice of Y , the variety X will form the central
fiber in the promised family of fourfolds.

Lemma 3. X is birational to Y ×P1, and has terminal singularities.

Proof. This can be deduced from a general result on cones (see [Kollár 2013, §3.1]),
but we give a direct argument. Let H denote the pullback of the hyperplane class
on P3 to Y . Define

π : X̃ = P(OY (−H)⊕OY )→ Y.

There is a natural morphism X̃ → P(14, 2, 1) given as follows. Let ζ denote the
divisor corresponding to the relative O(1) line bundle on X̃ . Then

π∗(OX̃ (ζ ))= OY (H)⊕OY and π∗(OX̃ (2ζ ))= OY (2H)⊕OY (H)⊕OY .

Hence H0(X̃ ,OX̃ (ζ ))
∼=C4
⊕C, and H0(X̃ ,OX̃ (2ζ )) has a canonical 1-dimensional

subspace corresponding to the canonical section of OY (2H). This data specifies the
morphism X̃→ P(14, 2, 1). In fact, this morphism factors through X ⊂P(14, 2, 1)
and gives a resolution of singularities f : X̃→ X with a single exceptional divisor

E = P(OY )⊂ X̃ ,

which is contracted to [0, 0, 0, 0, 0, 1] ∈ X . Thus the first claim of the lemma holds.
Note that X is normal with Q-Cartier canonical divisor. We show that the discrep-

ancy of the exceptional divisor E above is 1, so that X has terminal singularities,
completing the proof. Write K X̃ = f ∗(K X )+ aE . Then by adjunction

KE = (K X̃ + E)|E = (a+ 1)E |E .

Observe that E ∼= Y , so KE = −2H , and E = ζ − π∗H , so E |E = −H . We
conclude a = 1. �

Next, choose a nonzero polynomial g3(x0, . . . , x4) ∈ H0(P(14, 2),O(3)) of
weighted degree 3. We consider the flat family X → A1 over the affine line
whose fiber Xt ⊂ P(14, 2, 1) over t ∈ A1 is given by

f4(x0, . . . , x4)+ tg3(x0, . . . , x4)x5 = 0.

Note that X = X0.

Lemma 4. There is a Zariski open neighborhood U of 0 ∈ A1 such that:

(1) Xt has terminal singularities for all t ∈U.

(2) Xt is rational for t ∈U \ {0}.
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Proof. The fiber X0 has terminal singularities by Lemma 3. Since this condition is
Zariski open in families [Nakayama 2004, Corollary VI.5.3], there is a Zariski open
neighborhood U of 0 ∈ A1 such that all fibers of XU → U are terminal. Further,
observe that for t 6= 0, projection away from the x5-coordinate gives a birational
map from Xt to P(14, 2). Indeed, this map is an isomorphism over the locus where
g3(x0, . . . x4) 6= 0 in P(14, 2). Hence Xt is rational for t 6= 0. �

Now we can prove Theorem 2. By [Voisin 2015, Theorem 1.1], a very general
quartic double solid is stably irrational. Taking such a Y in the above construction
and combining Lemmas 3 and 4, we conclude that XU→U is a family of fourfolds
satisfying all of the required conditions. �
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Topological noetherianity
for cubic polynomials

Harm Derksen, Rob H. Eggermont and Andrew Snowden

Let P3(k∞) be the space of cubic polynomials in infinitely many variables over
the algebraically closed field k (of characteristic 6= 2, 3). We show that this space
is GL∞-noetherian, meaning that any GL∞-stable Zariski closed subset is cut out
by finitely many orbits of equations. Our method relies on a careful analysis of an
invariant of cubics we introduce called q-rank. This result is motivated by recent
work in representation stability, especially the theory of twisted commutative
algebras. It is also connected to uniformity problems in commutative algebra in
the vein of Stillman’s conjecture.

1. Introduction

Let Pd(kn) be the space of degree d polynomials in n variables over an algebraically
closed field k of characteristic 6= 2, 3. Let Pd(k∞) be the inverse limit of the Pd(kn),
equipped with the Zariski topology and its natural GL∞ action (see Section 1G).
This paper is concerned with the following question:

Question 1.1. Is the space Pd(k∞) noetherian with respect to the GL∞ action?
That is, can every Zariski closed GL∞-stable subspace be defined by finitely many
orbits of equations?

This question may seem somewhat esoteric, but it is motivated by recent work in
the field of representation stability, in particular the theory of twisted commutative
algebras; see Section 1C. It is also connected to certain uniformity questions in
commutative algebra in the spirit of (the now resolved) Stillman’s conjecture; see
Section 1B.

For d ≤ 2 the question is easy since one can explicitly determine the GL∞ orbits
on Pd(k∞). For d ≥ 3 this is not possible, and the problem is much harder. The
purpose of this paper is to settle the d = 3 case.

Derksen was supported by NSF grant DMS-1601229. Snowden was supported by NSF grants
DMS-1303082 and DMS-1453893 and a Sloan Fellowship.
MSC2010: primary 13A50; secondary 13E05.
Keywords: noetherian, cubic, twisted commutative algebra.
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Theorem 1.2. Question 1.1 has an affirmative answer for d = 3.

In fact, we prove a quantitative result in finitely many variables that implies the
theorem in the limit. This may be of independent interest; see Section 1A for details.

1A. Overview of the proof. The key concept in the proof, and the focus of most
of this paper, is the following notion of rank for cubic forms.

Definition 1.3. Let f ∈ P3(kn) with n ≤∞. We define the q-rank1 of f , denoted
qrk( f ), to be the minimal nonnegative integer r for which there is an expression
f =

∑r
i=1 `i qi with `i ∈ P1(kn) and qi ∈ P2(kn), or∞ if no such r exists (which

can only happen if n =∞).

Example 1.4. For n ≤∞, the cubic

x1 y1z1+ x2 y2z2+ · · ·+ xn ynzn =

n∑
i=1

xi yi zi

has q-rank n. This is proved in Section 4. In particular, infinite q-rank is possible
when n =∞.

Example 1.5. The cubic x3
+ y3 has q-rank 1, as follows from the identity

x3
+ y3
= (x + y)(x2

− xy+ y2).

The cubic
∑2n

i=1 x3
i therefore has q-rank at most n, and we expect it is exactly n.

Remark 1.6. The notion of q-rank is similar to some other invariants in the litera-
ture:

(a) Ananyan and Hochster [2016] defined a homogeneous polynomial to have
strength ≥ k if it does not belong to an ideal generated by k forms of strictly
lower degree. For cubics, q-rank is equal to strength plus one.

(b) A definition similar to strength also appears in [Kazhdan and Ziegler 2017].

(c) Davenport and Lewis [1964] defined an invariant h of cubics that is exactly
q-rank.

(d) Inspired by Tao’s blog post [2016], [Blasiak et al. 2017] introduced the notion
of slice rank for tensors. Q-rank is basically a symmetric version of this.

Let P3(k∞)≤r be the locus of forms f with qrk( f )≤ r . This is the image of the
map

P2(k∞)r × P1(k∞)r → P3(k∞), (q1, . . . , qr , `1, . . . , `r ) 7→

r∑
i=1

`i qi .

The main theorem of [Eggermont 2015] implies that the domain of the above map
is GL∞-noetherian, and so, by standard facts (see [Draisma 2010, §3]), its image

1The q here is meant to indicate the presence of quadrics in the expression for f .
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P3(k∞)≤r is as well. It follows that any GL∞-stable closed subset of P3(k∞) of
bounded q-rank is cut out by finitely many orbits of equations. Theorem 1.2 then
follows from the following result:

Theorem 1.7. Any GL∞-stable subset of P3(k∞) containing forms of arbitrarily
high q-rank is Zariski dense.

To prove this theorem, one must show that if f1, f2, . . . is a sequence in P3(k∞)
of unbounded q-rank then for any d there is a k such that the orbit closure of fk

projects surjectively onto P3(kd). We prove a quantitative version of this statement:

Theorem 1.8. Let f ∈ P3(kn) have q-rank r � 0 (in fact, r > exp(240) suffices),
and suppose d < 1

3 log(r). Then the orbit closure of f surjects onto P3(kd).

The proof of this theorem is really the heart of the paper. The idea is as follows.
Suppose that f =

∑m
i=1 `i qi has large q-rank. We establish two key facts. First,

after possibly degenerating f (i.e., passing to a form in the orbit closure) one can
assume that the `i and the qi are in separate sets of variables, while maintaining the
assumption that f has large q-rank. This is useful when studying the orbit closure,
as it allows us to move the `i and the qi independently. Second, we show that the
qi have large rank in a very strong sense: namely, that within the linear span of the
qi there is a large-dimensional subspace such that every nonzero element of it has
large rank. The results of [Eggermont 2015] then imply that the orbit closure of
(q1, . . . , qm; `1, . . . , `m) in P2(kn)m × P1(kn)m surjects onto P2(kd)m × P1(kd)m ,
and this yields the theorem.

1B. Uniformity in commutative algebra. We now explain one source of motiva-
tion for Question 1.1. An ideal invariant is a rule that assigns to each homogeneous
ideal I in each standard-graded polynomial k-algebra A (in finitely many variables)
a quantity νA(I )∈Z∪{∞}, such that νA(I ) only depends on the pair (A, I ) up to iso-
morphism. We say that ν is cone-stable if νA[x](I [x])= νA(I ), i.e., adjoining a new
variable does not affect ν. The main theorem of [Erman et al. ≥ 2017] is (in part):

Theorem 1.9 [Erman et al. ≥ 2017]. The following are equivalent:

(a) Let ν be a cone-stable ideal invariant that is upper semicontinuous in flat
families, and let d = (d1, . . . , dr ) be a tuple of nonnegative integers. Then
there exists an integer B such that νA(I ) is either infinite or at most B whenever
I is an ideal generated by r elements of degrees d1, . . . , dr . (Crucially, B does
not depend on A.)

(b) For every d as above, the space

Pd1(k
∞)× · · ·× Pdr (k

∞)

is GL-noetherian.
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Remark 1.10. Define an ideal invariant ν by taking νA(I ) to be the projective
dimension of I as an A-module. This is cone-stable and upper semicontinuous in
flat families. The boundedness in Theorem 1.9(a) for this ν is exactly Stillman’s
conjecture, proved in [Ananyan and Hochster 2016].

Theorem 1.9 shows that Question 1.1 is intimately connected to uniformity
questions in commutative algebra in the style of Stillman’s conjecture. The results
of [Erman et al. ≥ 2017] are actually more precise: if (b) holds for a single d then
(a) holds for the corresponding d. Thus, combined with Theorem 1.2, we obtain:

Theorem 1.11. Let ν be a cone-stable ideal invariant that is upper semicontinuous
in flat families. Then there exists an integer B such that ν(I ) is either infinite or at
most B, whenever I is generated by a single cubic form.

The following two consequences of Theorem 1.11 are taken from [Erman et al.
≥ 2017].

Corollary 1.12. Given a positive integer c there is an integer B such that the
following holds: if Y ⊂ Pn−1 is a cubic hypersurface containing finitely many
codimension c linear subspaces then it contains at most B such subspaces.

Corollary 1.13. Given a positive integer c there is an integer B such that the
following holds: if Y ⊂ Pn−1 is a cubic hypersurface whose singular locus has
codimension c then its singular locus has degree at most B.

It would be interesting if these results could be proved by means of classical
algebraic geometry. It would also be interesting to determine the bound B for some
small values of c.

1C. Twisted commutative algebras. In this section we put k=C. Our original mo-
tivation for considering Question 1.1 came from the theory of twisted commutative
algebras. Recall that a twisted commutative algebra (tca) over the complex numbers
is a commutative unital associative C-algebra A equipped with a polynomial action
of GL∞; see [Sam and Snowden 2012] for background. The easiest examples of
tca’s come by taking the symmetric algebra on a polynomial representation of GL∞,
for example Sym(C∞) or Sym(Sym2(C∞)).

In recent years, tca’s have appeared in several applications, for instance:

• Modules over the tca Sym(C∞) are equivalent to FI-modules, as studied in
[Church et al. 2015]. The structure of the module category was worked out in
great detail in [Sam and Snowden 2016].

• Finite length modules over the tca Sym(Sym2(C∞)) are equivalent to algebraic
representations of the infinite orthogonal group [Sam and Snowden 2015].

• Modules over tca’s generated in degree 1 were used to study 1-modules in
[Snowden 2013], with applications to syzygies of Segre embeddings.
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A tca A is noetherian if its module category is locally noetherian; explicitly, this
means that any submodule of a finitely generated A-module is finitely generated. A
major open question in the theory, first raised in [Snowden 2013], is as follows:

Question 1.14. Is every finitely generated tca noetherian?

So far, our knowledge on this question is extremely limited. For tca’s generated
in degrees ≤ 1 (or more generally, “bounded” tca’s), noetherianity was proved in
[Snowden 2013]. (It was later reproved in the special case of FI-modules in [Church
et al. 2015].) For the tca’s Sym(Sym2(C∞)) and Sym

(∧2
(C∞)

)
, noetherianity

was proved in [Nagpal et al. 2016]. No other cases are known. We remark that
these known cases of noetherianity, limited though they are, have been crucial in
applications.

Since noetherianity is such a difficult property to study, it is useful to consider
a weaker notion. A tca A is topologically noetherian if every radical ideal is the
radical of a finitely generated ideal. The results of [Eggermont 2015] show that tca’s
generated in degrees ≤ 2 are topologically noetherian. Topological noetherianity
of the tca Sym(Symd(C∞)) is equivalent to the noetherianity of the space Pd(C

∞)

appearing in Question 1.1. Thus Theorem 1.2 can be restated as follows:

Theorem 1.15. The tca Sym(Sym3(C∞)) is topologically noetherian.

This is the first noetherianity result for an unbounded tca generated in degrees≥3.

1D. A result for tensors. Using similar methods, we can prove the following result:

Theorem 1.16. The space P1(k∞) ⊗̂ P1(k∞) ⊗̂ P1(k∞) is noetherian with respect
to the action of the group GL∞×GL∞×GL∞, where ⊗̂ denotes the completed
tensor product.

We plan to write a short note containing the proof.

1E. Draisma’s theorem. After this paper appeared, Draisma [2017] answered
Question 1.1 affirmatively for all d; in fact, he proved topological noetherianity
of all polynomial representations, not just symmetric powers. While this result
subsumes our Theorem 1.2, his proof does not give the more precise results found
in Theorems 1.7 and 1.8. We believe these more precise results should hold in
greater generality, and that they could be quite useful. We plan to pursue this matter
in future work.

1F. Outline of paper. In Section 2 we establish a number of basic facts about
q-rank. In Section 3 we use these facts to prove the main theorem. Finally, in
Section 4, we compute the q-rank of the cubic in Example 1.4. This example is not
used in the proof of the main theorem, but we thought it worthwhile to include one
nontrivial computation of our fundamental invariant.
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1G. Notation and terminology. Throughout we let k be an algebraically closed
field of characteristic 6= 2, 3. The symbols E , V , and W always denote k-vector
spaces, perhaps infinite dimensional. We write Pd(V )= Symd(V )∗ for the space
of degree d polynomials on V equipped with the Zariski topology. Precisely, we
identify Pd(V ) with the k-points of the spectrum of the ring Sym(Symd(V )). When
V is infinite dimensional the elements of Pd(V ) are certain infinite series and the
functions on Pd(V ) are polynomials in coefficients. Whenever we speak of the
orbit of an element of Pd(V ), we mean its GL(V ) orbit.

2. Basic properties of q-rank

In this section, we establish a number of basic facts about q-rank. Throughout, V
denotes a vector space and f a cubic in P3(V ). Initially we allow V to be infinite
dimensional, but following Proposition 2.5 it will be finite dimensional (though this
is often not necessary).

Our first result is immediate, but worthwhile to write out explicitly.

Proposition 2.1 (subadditivity). Suppose f, g ∈ P3(V ). Then

qrk( f + g)≤ qrk( f )+ qrk(g).

We defined q-rank from an algebraic point of view (number of terms in a certain
sum). We now give a geometric characterization of q-rank that can, at times, be
more useful.

Proposition 2.2. We have qrk( f )≤ r if and only if there exists a linear subspace
W of V of codimension at most r such that f |W = 0.

Proof. First suppose qrk( f ) ≤ r , and write f =
∑r

i=1 `i qi . Then we can take
W =

⋂r
i=1 ker(`i ). This clearly has the requisite properties.

Now suppose W of codimension r is given. Let vr+1, vr+2, . . . be a basis for W,
and complete it to a basis of V be adding vectors v1, . . . , vr . Let xi ∈ P1(V ) be
dual to vi . We can then write f = g+ h, where every term in g uses one of the
variables x1, . . . , xr , and these variables do not appear in h. Since f |W = 0 by
assumption and g|W = 0 by its definition, we find h|W = 0. But h only uses the
variables xr+1, xr+2, . . . , and these are coordinates on W, so we must have h = 0.
Thus every term of f has one of the variables {x1, . . . , xr } in it, and so we can
write f =

∑r
i=1 xi qi for appropriate qi ∈ P2(V ), which shows qrk( f )≤ r . �

Remark 2.3. In the above proposition, f |W = 0 means that the image of f in
P3(W ) is 0. It is equivalent to ask that f (w)= 0 for all w ∈W.

The next result shows that one does not lose too much q-rank when passing to
subspaces.
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Proposition 2.4. Suppose W ⊂ V has codimension d. Then for f ∈ P3(V ) we have

qrk( f )− d ≤ qrk( f |W )≤ qrk( f ).

Proof. If f =
∑r

i=1 `i qi then we obtain a similar expression for f |W , which shows
that qrk( f |W ) ≤ qrk( f ). Suppose now that qrk( f |W ) = r , and let W ′ ⊂ W be
a codimension r subspace such that f |W ′ = 0 (Proposition 2.2). Then W ′ has
codimension r + d in V , and so qrk( f )≤ r + d (Proposition 2.2 again). �

Our next result shows that if V is infinite dimensional, then the q-rank of
f ∈ P3(V ) can be approximated by the q-rank of f |W for a large finite dimensional
subspace W of V . This will be used at a key juncture to move from an infinite
dimensional space down to a finite dimensional one.

Proposition 2.5. Suppose V =
⋃

i∈I Vi (directed union). Then

qrk( f )= sup
i∈I

qrk( f |Vi ).

We first give two lemmas. In what follows, for a finite dimensional vector space
W we write Grr (W ) for the Grassmannian of codimension r subspaces of W. For
a k-point x of Grr (W ), we write Ex for the corresponding subspace of W. By
“variety” we mean a reduced scheme of finite type over k.

Lemma 2.6. Let W ⊂ V be finite dimensional vector spaces, and let Z ⊂ Grr (V )
be a closed subvariety. Suppose that for every k-point z of Z , the space Ez ∩W has
codimension r in W. Then there is a unique map of varieties Z→ Grr (W ) that on
k-points is given by the formula E 7→ E ∩W.

Proof. Let Hom(V, kr ) be the scheme of all linear maps V→ kr, and let Surj(V, kr )

be the open subscheme of surjective linear maps. We identify Grr (V ) with the
quotient of Surj(V, kr ) by the group GLr . The quotient map Surj(V, kr )→Grr (V )
sends a surjection to its kernel. Let Z̃⊂Surj(V, kr ) be the inverse image of Z . There
is a natural map Hom(V, kr )→ Hom(W, kr ) given by restricting. By assumption,
every closed point of Z̃ maps into Surj(W, kr ) under this map. Since Surj(W, kr )

is open, it follows that the map Z̃→ Hom(W, kr ) factors through a unique map of
schemes Z̃→ Surj(W, kr ). Since this map is GLr -equivariant, it descends to the
desired map Z → Grr (W ). If z is a k-point of Z then it lifts to a k-point z̃ of Z̃ ,
and the corresponding map ϕ : V → kr has ker(ϕ)= Ez . The image of z in Grr (W )

is ker(ϕ|W )= Ez ∩W, which establishes the stated formula for our map. �

Lemma 2.7. Let {Zi }i∈I be an inverse system of nonempty proper varieties over k.
Then lim

←−−
Zi (k) is nonempty.

Proof. If k = C then Zi (C) is a nonempty compact Hausdorff space, and the result
follows from the well-known (and easy) fact that an inverse limit of nonempty
compact Hausdorff spaces is nonempty.
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For a general field k, we argue as follows. (We thank Bhargav Bhatt for this
argument.) Let |Zi | be the Zariski topological space underlying the scheme Zi ,
and let Z be the inverse limit of the |Zi |. Since each |Zi | is a nonempty spectral
space and the transition maps |Zi | → |Z j | are spectral (being induced from a map
of varieties), Z is also a nonempty spectral space [Stacks 2005–, Lemmas 5.24.2
and 5.24.5]. It therefore has some closed point z. Let zi be the image of z in |Zi |.

We claim that zi is closed for all i . Suppose not, and let 0∈ I be such that z0 is not
closed. Passing to a cofinal set in I , we may as well assume 0 is the unique minimal
element. Let k(zi ) be the residue field of zi , and let K be the direct limit of the k(zi ).
The point zi is then the image of a canonical map of schemes ai : Spec(K )→ Zi .
Since z0 is not closed, it admits some specialization, so we may choose a valuation
ring R in K and a nonconstant map of schemes b0 : Spec(R)→ Z0 extending a0.
Since Zi is proper, the map ai extends uniquely to a map bi : Spec(R) → Zi .
By uniqueness, the bi are compatible with the transition maps, and so we get an
induced map b : |Spec(R)|→ Z extending the map a : |Spec(K )|→ Z . Since |b0|

is induced from b, it follows that b is nonconstant. The image of the closed point in
Spec(R) under b is then a specialization of z, contradicting the fact that z is closed.
This completes the claim that zi is closed.

Since zi is closed, it is the image of a unique map Spec(k)→ Zi of k-schemes.
By uniqueness, these maps are compatible, and so give an element of lim

←−−
Zi (k). �

Proof of Proposition 2.5. First suppose that Vi is finite dimensional for all i . For i≤ j
we have qrk( f |Vi )≤ qrk( f |V j ) by Proposition 2.4, and so either qrk( f |Vi )→∞ or
qrk( f |Vi ) stabilizes. If qrk( f |Vi )→∞ then qrk( f )=∞ by Proposition 2.4 and we
are done. Thus suppose qrk( f |Vi ) stabilizes. Replacing I with a cofinal subset, we
may as well assume qrk( f |Vi ) is constant, say equal to r , for all i . We must show
qrk( f )= r . Proposition 2.4 shows that r ≤ qrk( f ), so it suffices to show qrk( f )≤ r .

Let Zi ⊂ Grr (Vi ) be the closed subvariety consisting of all codimension r
subspaces E ⊂ Vi such that f |E = 0. This is nonempty by Proposition 2.2 since
f |Vi has q-rank r . Suppose i ≤ j and z is a k-point of Z j , that is, Ez is a codimension
r subspace of V j on which f vanishes. Of course, f then vanishes on Vi ∩ Ez ,
which has codimension at most r in Vi . Since f |Vi has q-rank exactly r , it cannot
vanish on a subspace of codimension less than r (Proposition 2.2), and so Vi ∩ Ez

must have codimension exactly r . Thus by Lemma 2.6, intersecting with Vi defines
a map of varieties Z j → Grr (Vi ). This maps into Zi , and so for i ≤ j we have a
map Z j → Zi . These maps clearly define an inverse system.

Appealing to Lemma 2.7 we see that lim
←−−

Zi (k) is nonempty. Let {zi }i∈I be a
point in this inverse limit, and put Ei = Ezi . Thus Ei is a codimension r subspace
of Vi on which f vanishes, and for i ≤ j we have E j ∩ Vi = Ei . It follows that
E =

⋃
i∈I Ei is a codimension r subspace of V on which f vanishes, which shows

qrk( f )≤ r (Proposition 2.2).
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We now treat the general case, where the Vi may not be finite dimensional. Write
Vi =

⋃
j∈Ji

W j with W j finite dimensional. Then V =
⋃

i∈I
⋃

j∈Ji
W j , so

qrk( f )= sup
i∈I

sup
j∈Ji

qrk( f |W j )= sup
i∈I

qrk( f |Vi ).

This completes the proof. �

For the remainder of this section we assume that V is finite dimensional. If V is
d-dimensional then the q-rank of any cubic in P3(V ) is obviously bounded above
by d . The next result gives an improved bound, and will be crucial in what follows.

Proposition 2.8. Suppose dim(V )= d. Then qrk( f )≤ d − ξ(d), where

ξ(d)=
⌊√

8d + 17− 3
2

⌋
.

Note that ξ(d)≈
√

2d.

Proof. Let k be the largest integer such that
(k+1

2

)
+k−1≤ d . Then the hypersurface

f = 0 contains a linear subspace of dimension at least k by [Harris et al. 1998,
Lemma 3.9]. It follows from Proposition 2.2 that qrk( f ) ≤ d − k. Some simple
algebra shows that k = ξ(d). �

Suppose that f =
∑n

i=1 `i qi is a cubic. Eventually, we want to show that if f has
large q-rank then its orbit under GL(V ) is large. For studying the orbit, it would be
convenient if the `i and the qi were in separate sets of variables, as then they could
be moved independently under the group. This motivates the following definition.

Definition 2.9. We say that a cubic f ∈ P3(V ) is separable2 if there is a direct sum
decomposition V = V1⊕ V2 and an expression f =

∑n
i=1 `i qi with `i ∈ P1(V1)

and qi ∈ P2(V2).

Now, if we have a cubic f of high q-rank we cannot conclude, simply based on
its high q-rank, that it is separable. Fortunately, the following result shows that if
we are willing to degenerate f a bit (which is fine for our ultimate applications),
then we can make it separable while retaining high q-rank.

Proposition 2.10. Suppose that f ∈ P3(V ) has q-rank r . Then the orbit closure of
f contains a separable cubic g satisfying 1

2ξ(r)≤ qrk(g).

Proof. Let {xi } be a basis for P1(V ). After possibly making a linear change of
variables, we can write f =

∑r
i=1 xi qi . Write f = f1 + f2 + f3, where fi is

homogeneous of degree i in the variables {x1, . . . , xr }. Since f3 has degree 3 in the
variables {x1, . . . , xr }, it can contain no other variables, and can thus be regarded as
an element of P3(kr ). Therefore, by Proposition 2.8, we have qrk( f3)≤ r − ξ(r).

2This notion of separable is unrelated to the notion of separability of univariate polynomials. We
do not expect this to cause confusion.
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After possibly making a linear change of variables in {x1, . . . , xr }, we can write
f3 =

∑r
i=ξ(r)+1 xi q ′i for some q ′i . Let f ′ and f ′j be the result of setting xi = 0 in f

and f j , respectively, for ξ(r) < i ≤ r . We have qrk( f ′)≥ ξ(r) by Proposition 2.4.
Of course, f ′3 = 0, so f ′ = f ′1+ f ′2. By subadditivity (Proposition 2.1), at least one
of f ′1 or f ′2 has q-rank ≥ 1

2ξ(r).
We have f1 =

∑r
i=1 xi q ′′i , where q ′′i is a quadratic form in the variables xi with

i > r . Thus f1 and f ′1 are separable. We have f2 =
∑

1≤i≤ j≤r xi x j`i, j , where `i, j

is a linear form in the variables xi with i > r . Thus f2 and f ′2 are separable.
To complete the proof, it suffices to show that f ′1 and f ′2 belong to the orbit

closure of f , as we can then take g = f ′1 or g = f ′2. It is clear that f ′ is in the orbit
closure of f , so it suffices to show that f ′1 and f ′2 are in the orbit closure of f ′.
Consider the element γt of GLn defined by

γt(xi )=

{
t2xi , 1≤ i ≤ r,
t−1xi , r < i ≤ n.

Then γt( f ′1)= f ′1 and γt( f ′2)= t3 f ′2. Thus limt→0 γt( f ′)= f ′1. A similar construc-
tion shows that f ′2 is in the orbit closure of f ′. �

Suppose that f =
∑n

i=1 `i qi is a cubic of high q-rank. One would like to be able
to conclude that the qi then have high ranks as well. We now prove two results along
this line. For a linear subspace Q ⊂ P2(V ), we let maxrank(Q) be the maximum
of the ranks of elements of Q, and we let minrank(Q) be the minimum of the ranks
of the nonzero elements of Q (or 0 if Q = 0).

Proposition 2.11. Suppose f =
∑n

i=1 `i qi has q-rank r , and let Q ⊂ P2(V ) be the
span of the qi . Then for every subspace Q′ of Q we have

codim(Q : Q′)+maxrank(Q′)≥ r.

Proof. We may as well assume that `i and qi are linearly independent. Thus
dim(Q) = n. Let Q′ be a subspace of dimension n − d. After making a linear
change of variables in the qi and `i , we may as well assume that Q′ is the span
of q1, . . . , qn−d . Let t =maxrank(Q′). We must show that d + t ≥ r . Let q ′ ∈ Q′

have rank t . Choose a basis {xi } of P1(V ) so that q ′ = x2
1 + · · · + x2

t . If some
qi for 1 ≤ i ≤ n − d had a term of the form x j xk with j, k > t then some linear
combination of qi and q ′ would have rank> t , a contradiction. Thus every term of qi ,
for 1≤ i ≤ n−d , has a variable of index ≤ t , and so we can write qi =

∑t
j=1 x j mi, j ,

where mi, j ∈ P1(V ). But now

f =
n−d∑
i=1

`i qi +

n∑
i=n−d+1

`i qi =

t∑
j=1

x j q ′j +
n∑

i=n−d+1

`i qi ,

where q ′j =
∑n−d

i=1 `i mi, j . This shows r = qrk( f )≤ t+d , completing the proof. �
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In our eventual application, it is actually minrank that is more important than
maxrank. Fortunately, the above result on maxrank automatically gives a result for
minrank, thanks to the following general proposition.

Proposition 2.12. Let Q ⊂ P2(V ) be a linear subspace and let r be a positive
integer. Suppose that

codim(Q : Q′)+maxrank(Q′)≥ r

holds for all linear subspaces Q′ ⊂ Q. Let k and s be positive integers satisfying

(2k
− 1)(s− 1)+ k ≤ r. (2.13)

Then there exists a k-dimensional linear subspace Q′ ⊂ Q with minrank(Q′)≥ s.

Lemma 2.14. Let q1, . . . , qn ∈ P2(V ) be quadratic forms of rank < s. Suppose
there is a linear combination of the qi that has rank at least t . Then there is a linear
combination q ′ of the qi satisfying t ≤ rank(q ′)≤ t + s− 2.

Proof. Let q ′ =
∑k

i=1 ai qi be a linear combination of the qi with rank ≥ t and k
minimal. Since rank(qk)≤ s−1, it follows that rank(q ′−akqk)≥ rank(q ′)−(s−1).
Thus if rank(q ′)≥ t+ s−1 then

∑k−1
i=1 ai qi would have rank ≥ t , contradicting the

minimality of k. Therefore rank(q ′)≤ t + s− 2. �

Proof of Proposition 2.12. Suppose that q1, . . . , qn forms a basis for Q such that
(rank(q1), . . . , rank(qn)) is lexicographically minimal. In particular, this implies
that rank(q1) ≤ · · · ≤ rank(qn). If rank(qn−k+1) ≥ s, then lexicographic minimal-
ity ensures that any nontrivial linear combination of qn−k+1, . . . , qn has rank at
least s, and so we can take Q′ to be the span of these forms. Thus suppose that
rank(qn−k+1) < s. In what follows, we put mi = (2i

− 1)(s − 1)+ 1. Note that
mk ≤ r . In fact, n− r +mk ≤ n− k+ 1, and so rank(qn−r+mk ) < s.

For 1≤ `≤ k, consider the following statement:

(S`) There exist linearly independent p1, . . . , p` such that: (i) pi is a linear combi-
nation of q1, . . . , qn−r+mi ; (ii) mi ≤ rank(pi )≤ mi + s− 2; and (iii) the span
of p1, . . . , p` has minrank at least s.

We prove (S`) by induction on `. Of course, (Sk) implies the proposition.
First consider the case `=1. The statement (S1) asserts that there exists a nonzero

linear combination p of q1, . . . , qn−r+s such that s ≤ rank(p)≤ 2s− 2. Since the
span of q1, . . . , qn−r+s has codimension r− s in Q, our assumption guarantees that
some linear combination p of these forms has rank at least s. Since each form has
rank < s, Lemma 2.14 ensures we can find p with rank(p)≤ s+ (s− 2).

We now prove (S`) assuming (S`−1). Let (p1, . . . , p`−1) be the tuple given by
(S`−1). The span of q1, . . . , qn−r+m`

has codimension r −m` in Q, and so our
assumption guarantees that some linear combination p` has rank at least m`. By
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Lemma 2.14, we can ensure that this p` has rank at most m`+ s− 2. Thus (i) and
(ii) in (S`) are established.

We now show that any nontrivial linear combination
∑`

i=1 λi pi has rank at
least s, which will show that the pi are linearly independent and establish (iii)
in (S`). If λ` = 0 then the rank is at least s by the assumption on (p1, . . . , p`−1).
Thus assume λ` 6= 0. We have

rank
( `−1∑

i=1

λi pi

)
≤

`−1∑
i=1

rank(pi )≤

`−1∑
i=1

(mi + s− 2)= m`− s.

Since rank(p`)≥m`, we thus see that
∑`

i=1 λi pi has rank at least s, which completes
the proof. �

Remark 2.15. Proposition 2.12 is not specific to ranks of quadratic forms; it applies
to any subadditive invariant on a vector space.

Combining the Propositions 2.11 and 2.12, we obtain:

Corollary 2.16. Suppose f =
∑n

i=1 `i qi has q-rank r , let Q be the span of the qi ,
and let k and s be positive integers such that (2.13) holds. Then there exists a
k-dimensional linear subspace Q′ ⊂ Q with minrank(Q′)≥ s.

3. Proof of Theorem 1.2

We now prove the main theorems of the paper. We require the following result; see
[Eggermont 2015, Proposition 3.3] and its proof.

Theorem 3.1. Let x be a point in P2(V )n × P1(V )m , with V finite dimensional.
Write x as (q1, . . . , qn; `1, . . . , `m), and let Q ⊂ P2(V ) be the span of the qi .
Let W be a d-dimensional subspace of V. Suppose that `1, . . . , `m are linearly
independent and that minrank(Q)≥ dn2n

+ 2(n+ 1)m. Then the orbit closure of x
surjects onto P2(W )n × P1(W )m .

We begin by proving an analog of the above theorem for P3(V ).

Theorem 3.2. Suppose V is finite dimensional. Let f ∈ P3(V ) have q-rank r and
let W be a d-dimensional subspace of V with

(2d
− 1)(d22d

+ 2(d + 1)d − 1)+ d ≤ 1
2ξ(r).

Then the orbit closure of f surjects onto P3(W ).

Proof. Applying Proposition 2.10, let g be a separable cubic in the orbit closure
of f satisfying 1

2ξ(r) ≤ qrk(g). Write g =
∑n

i=1 `i qi , where `i ∈ P1(V1) and
qi ∈ P2(V2), with V = V1⊕ V2, and the `i and qi are linearly independent. Let Q
be the span of the qi . Put s = d22d

+ 2(d + 1)d and k = d. Note that

(2k
− 1)(s− 1)+ k ≤ 1

2ξ(r).
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By Corollary 2.16 we can therefore find a k = d dimensional subspace Q′ of Q
with minrank(Q′)≥ s. Making a linear change of variables, we can assume Q′ is
the span of q1, . . . , qd . Let g′ =

∑d
i=1 `i qi . This is in the orbit closure of g (and

thus f ) since it is obtained by setting `i = 0 for i > d . It is crucial here that the qi

and the `i are in different sets of variables, so that setting some of the `i to 0 does
not change the qi . By Theorem 3.1, the orbit closure of (q1, . . . , qd; `1, . . . , `d)

in P2(V )d × P1(V )d surjects onto P2(W )d × P1(W )d . Now let h ∈ P3(W ). Since
dim(W )= d we can write h =

∑d
i=1 `

′

i q
′

i with `′i ∈ P1(W ) and q ′i ∈ P2(W ). Pick
γt ∈ GL(V ) such that (q ′1, . . . , q ′d; `

′

1, . . . , `
′

d) is in the image of

lim
t→0

γt · (q1, . . . , qd; `1 . . . , `d).

Then h is the image of limt→0 γt · g′, which completes the proof. �

Corollary 3.3 (Theorem 1.8). Suppose that f ∈ P3(V ) has q-rank r > exp(240)
and let W be a subspace of V of dimension d with d < 1

3 log r . Then the orbit
closure of f surjects onto P3(W ).

Proof. By definition of ξ , we have a ≤ ξ(r) (for an integer a) if and only if(a+1
2

)
+a−1≤ r . So the condition in Theorem 3.2 is equivalent to

(D+1
2

)
+D−1≤ r ,

where
D = 2(2d

− 1)(d22d
+ 2(d + 1)d − 1)+ 2d

is twice the left side of the inequality in Theorem 3.2. Now,
(D+1

2

)
+ D− 1 is equal

to 4 · d4
· 16d plus lower order terms, and is therefore less than 20d for d � 0;

in fact, d > 80 is sufficient. Thus for d > 80 it is enough that d < log r/log 20;
since log(20) < 3, it is enough that d < 1

3 log(r). Thus for 80< d < 1
3 log(r), the

orbit closure of f surjects onto P3(W ). But it obviously then surjects onto smaller
subspaces as well, so we only need to assume 80< 1

3 log(r). �

Theorem 3.4 (Theorem 1.7). Let V be infinite dimensional. Suppose Z ⊂ P3(V )
is Zariski closed, GL(V )-stable, and contains elements of arbitrarily high q-rank.
Then Z = P3(V ).

Proof. It suffices to show that Z surjects onto P3(W ) for all finite dimensional
W ⊂ V . Thus let W of dimension d be given. Let r be sufficiently large so that
the inequality in Theorem 3.2 is satisfied and let f ∈ Z have q-rank at least r . By
Proposition 2.5, there exists a finite dimensional subspace V ′ of V containing W
such that f |V ′ has q-rank at least r . Theorem 3.2 implies that the orbit closure of
f |V ′ surjects onto P3(W ). Since Z surjects onto the orbit closure of f |V ′ , the result
follows. �

It was explained in the introduction how this implies Theorem 1.2, so the proof
is now complete.
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4. A computation of q-rank

Fix a positive integer n, and consider the cubic

f = x1 y1z1+ · · ·+ xn ynzn

in the polynomial ring k[xi , yi , zi ]1≤i≤n introduced in Example 1.4. We now show:

Proposition 4.1. The above cubic f has q-rank n.

It is clear that qrk( f ) ≤ n. To prove equality, it suffices by Proposition 2.2 to
show that f |V 6= 0 if V is a codimension n− 1 subspace of k3n . This is exactly the
content of the following proposition.

Proposition 4.2. Let V be a vector space of dimension 2n+ 1 and (xi , yi , zi )1≤i≤n

a collection of elements that span P1(V ). Then f = x1 y1z1+· · ·+ xn ynzn ∈ P3(V )
is nonzero.

Proof. Arrange the given elements in a matrix as follows:x1 y1 z1
...

...
...

xn yn zn

.
Note that we are free to permute the rows and apply permutations within a row
without changing the value of f , e.g., we can switch the values of x1 and y1, or
switch (x1, y1, z1) with (x2, y2, z2), without changing f . We now proceed to find a
basis for V among the elements in the matrix according to the following three-phase
procedure.

Phase 1. Find a nonzero element of the matrix, and move it (using the permutations
mentioned above) to the x1 position. Now in rows 2, . . . , n find an element that is
not in the span of x1 (if one exists) and move it to the x2 position. Now in rows
3, . . . , n find an element that is not in the span of x1 and x2 (if one exists) and move
it to the x3 position. Continue in this manner until it is no longer possible; suppose
we go r steps. At this point, x1, . . . , xr are linearly independent, and xi , yi , and zi ,
for r < i all belong to their span.

Phase 2. From rows 1, . . . , r find an element in the second or third column not in
the span of x1, . . . , xr and move it (using permutations that fix the set {x1, . . . , xr })
to the y1 position. Next, from rows 2, . . . , r find an element in the second or third
column not in the span of x1, . . . , xr , y1 and move it to the y2 position. Continue
in this manner until it is no longer possible; suppose we go s steps. At this point,
x1, . . . , xr , y1, . . . , ys form a linearly independent set, and the elements yi , zi for
s < i ≤ r belong to their span. The conclusion from Phase 1 still holds as well.
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Phase 3. Now carry out the same procedure in the third column. That is, from rows
1, . . . , s find an element in the third column not in the span of x1, . . . , xr , y1, . . . , ys

and move it (by permuting rows) to the z1 position. Then from rows 2, . . . , s find an
element in the third column not in the span of x1, . . . , xr , y1, . . . , ys, z1 and move
it to the z2 position. Continue in this manner until it is no longer possible; suppose
we go t steps. At this point, x1, . . . , xr , y1, . . . , ys, z1, . . . , zt forms a basis of V .
The conclusions from Phases 1 and 2 still hold.

For clarity, we write X1, . . . , Xr , Y1, . . . , Ys, Z1, . . . , Z t for our basis. We note
that because dim(V ) > 2n we must have t ≥ 1. The ring Sym(V ∗) is identified with
the polynomial ring in the X , Y , Z variables. We now determine the coefficient of
X1Y1 Z1 in mi = xi yi zi . If i > r then mi has degree 3 in the X variables, and so the
coefficient is 0. If s < i ≤ r then mi has degree 0 in the Z variables, and so again
the coefficient is 0. Finally, suppose that i ≤ s. Then mi = X i Yi zi . The only way
this can contain X1Y1 Z1 is if i = 1. We thus see that the coefficient of X1Y1 Z1 in
mi is 0 except for i = 1, in which case it is 1, and so f =

∑n
i=1 mi is nonzero. �

Remark 4.3. It follows from the above results and Proposition 2.5 that the cubic∑
∞

i=1 xi yi zi has infinite q-rank.
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