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A nonarchimedean Ax–Lindemann theorem
Antoine Chambert-Loir and François Loeser

À Daniel Bertrand, en témoignage d’amitié

Motivated by the André–Oort conjecture, Pila has proved an analogue of the Ax–
Lindemann theorem for the uniformization of classical modular curves. In this
paper, we establish a similar theorem in nonarchimedean geometry. Precisely, we
give a geometric description of subvarieties of a product of hyperbolic Mumford
curves such that the irreducible components of their inverse image by the Schottky
uniformization are algebraic, in some sense. Our proof uses a p-adic analogue of
the Pila–Wilkie theorem due to Cluckers, Comte and Loeser, and requires that
the relevant Schottky groups have algebraic entries.

1. Introduction

1.1. The classical Lindemann–Weierstrass theorem states that if algebraic numbers
α1, . . . , αn are Q-linearly independent, then their exponentials exp(α1), . . . ,exp(αn)

are algebraically independent over Q. More generally, if α1, . . . , αn are any
Q-linearly independent complex numbers, no longer assumed to be algebraic,
Schanuel’s conjecture predicts that the field Q(α1, . . . , αn, exp(α1), . . . , exp(αn))

has transcendence degree at least n over Q. Ax [1971] established power series
and differential field versions of Schanuel’s conjecture. In particular, the part of
Ax’s results corresponding to the Lindemann–Weierstrass theorem can be recast
into geometrical terms as follows:

Theorem 1.2 (exponential Ax–Lindemann). Let exp : Cn
→ (C×)n be the mor-

phism (z1, . . . , zn) 7→ (exp(z1), . . . , exp(zn)). Let V be an irreducible algebraic
subvariety of (C×)n and let W be an irreducible component of a maximal algebraic
subvariety of exp−1(V ). Then W is geodesic, that is, W is defined by a finite family
of equations of the form

∑n
i=1 ai zi = b with a1, . . . , an ∈Q and b ∈ C.

In a breakthrough paper, Pila [2011] succeeded in providing an unconditional
proof of the André–Oort conjecture for products of modular curves. One of his
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main ingredients was to prove a hyperbolic version of the above Ax–Lindemann
theorem, which we now state in a simplified version.

Let h denote the complex upper half-plane and j : h→ C the elliptic modular
function. By an algebraic subvariety of hn , we mean the trace in hn of an algebraic
subvariety of Cn . An algebraic subvariety of hn is said to be geodesic if it can
be defined by equations of the form zi = ci and zk = gk`z`, with ci ∈ C and
gk` ∈ GL(2,Q)+.

Theorem 1.3 (hyperbolic Ax–Lindemann). Let j : hn
→ Cn be the morphism

(z1, . . . , zn) 7→ ( j (z1), . . . , j (zn)). Let V be an irreducible algebraic subvariety
of Cn and let W be an irreducible component of a maximal algebraic subvariety
of j−1(V ). Then W is geodesic.

Pila’s method to prove this Ax–Lindemann theorem is quite different from the
differential approach of Ax. It follows a strategy initiated by Pila and Zannier
[2008] in their new proof of the Manin–Mumford conjecture for abelian varieties;
that approach makes crucial use of the bound on the number of rational points
of bounded height in the transcendental part of sets definable in an o-minimal
structure obtained in [Pila and Wilkie 2006]. Recently, still using the Pila and
Zannier strategy, Klingler, Ullmo and Yafaev [Klingler et al. 2016] have succeeded
in proving a very general form of the hyperbolic Ax–Lindemann theorem valid for
any arithmetic variety; see also [Ullmo and Yafaev 2014] for the compact case.

1.4. In the recent paper [Cluckers et al. 2015], Cluckers, Comte and Loeser estab-
lished a nonarchimedean analogue of the Pila–Wilkie theorem of [Pila and Wilkie
2006] in its block version of [Pila 2009]. The purpose of this paper is to use
this result to prove a version of Ax–Lindemann for products of algebraic curves
admitting a nonarchimedean uniformization and whose corresponding Schottky
group is “arithmetic” and has rank at least 2 (Theorem 2.7). In particular, this
theorem applies for products of Shimura curves admitting a p-adic uniformization
à la Čerednik–Drinfel’d (see Section 3).

The basic strategy we use is strongly inspired by that of [Pila 2011] (see also
[Pila 2015]), though some new ideas are required in order to adapt it to the nonar-
chimedean setting. Similarly as in Pila’s approach one starts by working on some
neighborhood of the boundary of our space (which, instead of a product of Poincaré
upper half-planes, is a product of open subsets of the Berkovich projective line).
Analytic continuation and monodromy arguments are replaced by more algebraic
ones and explicit matrix computations by group theory considerations. We also take
advantage of the fact that Schottky groups are free and of the geometric description of
their fundamental domains. Compared with Pila’s proof, where parabolic elements
are used in a crucial way, one main difficulty of the nonarchimedean situation lies
in the fact that all nontrivial elements of a Schottky groups are hyperbolic.
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To conclude, let us note that there are cases where p-adic analogues of theorems
in transcendental number theory seem to require other methods than those used to
prove their complex counterparts. For instance, it is still an open problem to prove
a p-adic analogue, for values of the p-adic exponential function, of the classical
Lindemann–Weierstrass theorem.

Since his first works (see, for example, [Bertrand 1976]), Daniel Bertrand has
shown deep insight into p-adic transcendental number theory, and disseminated his
vision within the mathematical community. We are pleased to dedicate this paper
to him.

2. Statement of the theorem

2.1. Nonarchimedean analytic spaces. Given a complete nonarchimedean valued
field F , we consider in this paper F-analytic spaces in the sense of Berkovich [1990;
1993]. However, the statements, and essentially the proofs, can be carried on mutatis
mutandis in the rigid analytic setting. In this context, there is a notion of irreducible
component; see [Ducros 2009], or [Conrad 1999] for the rigid analytic version.

If V is an algebraic variety over F , we denote by V an the corresponding F-
analytic space. There is a canonical topological embedding of V (F) in V an, and its
image is closed if F is locally compact.

If F ′ is a complete nonarchimedean extension of F , we denote by X F ′ the
F ′-analytic space deduced from an F-analytic space X by base change to F ′.

2.2. Schottky groups. Let p be a prime number; we denote by Cp the completion
of an algebraic closure of Qp and let F be a finite extension of Qp contained
in Cp. The group PGL(2, F) acts by homographies on the F-analytic projective
line Pan

1 . In the next paragraphs, we recall from [Gerritzen and van der Put 1980] a
few definitions concerning Schottky groups in PGL(2, F), their limit sets and the
associated uniformizations of algebraic curves.

One says that a discrete subgroup 0 of PGL(2, F) is a Schottky group if it is
finitely generated, and if no element ( 6= id) has finite order [Gerritzen and van der
Put 1980, I, (1.6)]. If 0 is a Schottky group, then 0 is free; moreover, any discrete
finitely generated subgroup of PGL(2, F) possesses a normal subgroup of finite
index which is a Schottky group [Gerritzen and van der Put 1980, I, (3.1)].

We say that 0 is arithmetic if its elements can be represented by matrices whose
coefficients lie in a number field. In this case, it follows from the hypothesis that 0 is
finitely generated that there exists a number field K ⊂ F such that 0 ⊂ PGL(2, K ).

2.3. Limit sets. Let 0 be a Schottky subgroup of PGL(2, F). Its limit set is the
set L0 of all points in P1(Cp) of the form limn(γn · x), where (γn) is a sequence of
distinct elements of 0 and x ∈ P1(Cp) [Gerritzen and van der Put 1980, I, (1.3)].
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By [Gerritzen and van der Put 1980, I, (1.6)], the limit set L0 is a compact subset
of P1(F). If the rank of 0 is at least 2, then L0 is a perfect (that is, closed and
without isolated points) subset of P1(F); see [Gerritzen and van der Put 1980, I,
(1.6.3) and (1.7.2)].

Let �0 = (P1)
an L0; it is a 0-invariant open set of Pan

1 . By Lemma 5.4 below,
it is geometrically irreducible.

2.4. Quotients. Let us assume that 0 is a Schottky group and let g be its rank. From
the explicit description of the action of the group 0 given by [Gerritzen and van der
Put 1980, I.4] and recalled in Section 6.5 below (see also [Berkovich 1990, p. 86]),
it follows that the group 0 acts freely on �0 , and the quotient space �0/0 admits
a unique structure of an F-analytic space such that the projection p0 :�0→�0/0

is both a topological covering and a local isomorphism. Moreover, �0/0 is the
F-analytic space associated with a smooth, geometrically connected, projective
F-curve X0 of genus g [Gerritzen and van der Put 1980, III, (2.2); Berkovich 1990,
Theorem 4.4.1, p. 86], canonically determined by the GAGA theorem in this context,
[Berkovich 1990, Theorem 3.4.12, p. 68].

2.5. Let us now consider a finite family (0i )1≤i≤n of Schottky subgroups of
PGL(2, F) of rank ≥ 2. Let us set � =

∏n
i=1�0i and X =

∏n
i=1 X0i , and let

p :�→ X an be the morphism deduced from the morphisms p0i :�0i → X an
0i

.

2.6. Flat subvarieties. Let K be a complete extension of F and let W be a closed
analytic subspace of �K .

The following terminology is borrowed from the analogous notions in the differ-
ential geometry of hermitian symmetric domains.

We say that W is irreducible algebraic if there exists a K -algebraic subvariety Y
of (Pn

1)K such that W is an irreducible component of the analytic space �K ∩ Y an.
In this case, one can take for Y the Zariski closure of W in (Pn

1)K ; it is irreducible
and satisfies dim(Y )= dim(W ); see [Ducros 2009, Proposition 4.22].

We say that W is flat if it can be defined by equations of the following form:

(1) zi = c for some i ∈ {1, . . . , n} and c ∈�0i (K );

(2) z j = g · zi for some pair (i, j) of distinct elements of {1, . . . , n} and some
g ∈ PGL(2, F).

Assume that W is flat and let Y be the subvariety of (Pn
1)K defined by equations of

this form which define W on�K . There exists a subset I of {1, . . . , n} such that the
projection qI : Pn

1→ PI
1 given by the coordinates in I induces an isomorphism of Y

to (PI
1)K . This implies that qI induces an isomorphism from W to

∏
i∈I �i,K . In

particular, W is irreducible, even geometrically irreducible, and hence is irreducible
algebraic. Conversely, we observe that if W is geometrically irreducible and if there
exists a complete extension L of K such that WL is flat, then W is flat.
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We say that W is geodesic if, moreover, the elements g in (2) can be taken such
that g0i g−1 and 0 j are commensurable (i.e., their intersection has finite index in
both of them).

Here is the main result of this paper.

Theorem 2.7 (nonarchimedean Ax–Lindemann theorem). Let F be a finite exten-
sion of Qp and let (0i )1≤i≤n be a finite family of arithmetic Schottky subgroups of
PGL(2, F) of ranks≥ 2. As above, let us set�=

∏n
i=1�0i and X =

∏n
i=1 X0i , and

let p :�→ X an be the morphism deduced from the morphisms p0i :�0i → X an
0i

.
Let V be an irreducible algebraic subvariety of X and let W be an irreducible

algebraic subvariety of �, maximal among those contained in p−1(V an). Then
every irreducible component of WCp is flat.

The proof of this theorem is given in Section 8; it follows the strategy of Pila–
Zannier. In the archimedean setting, this strategy relies crucially on a theorem
of Pila–Wilkie about rational points on definable sets; we recall in Section 4 the
nonarchimedean analogue of this theorem [Cluckers et al. 2015] which is used here.
It is at this point that we need the assumption that the group 0 be arithmetic. This
restriction is inherent to Pila–Zannier’s strategy and we do not know whether it can
be bypassed.

In Section 6, we recall a few more facts on p-adic Schottky groups and p-adic
uniformization, essentially borrowed from [Gerritzen and van der Put 1980].

In a final section, we prove a characterization (Theorem 9.2) of geodesic subvari-
eties of � as the geometrically irreducible algebraic subvarieties whose projection
to X is algebraic (“bialgebraic subvarieties”), in analogy with what happens in the
context of Ax’s theorem or of Shimura varieties.

3. The example of Shimura curves

We begin by recalling the definition of Shimura curves and their p-adic uniformiza-
tion. The literature is unfortunately rather scattered; we refer to [Boutot and Carayol
1992] for more detail, as well as to [Clark 2003, Chapter 0].

3.1. Complex Shimura curves. Let B be a quaternion division algebra with cen-
ter Q; we assume that it is indefinite, namely B ⊗Q R ' M2(R). Let then OB

be a maximal order of B, that is a maximal subring of B which is isomorphic
to Z4 as a Z-module. Let H be the algebraic group of units of OB , modulo
center, considered as a Z-group scheme. For every field R containing Q, one has
H(R)= (B⊗Q R)×/Z((B⊗Q R)×); in particular, the group H(R) is isomorphic
to PGL(2,R), and we fix such an isomorphism. Then the group H(R) acts by
homographies on the double Poincaré upper half-plane

h± = C R.
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Let also 1 be a congruence subgroup of H(Z); recall that this means that there
exists an integer N ≥ 1 such that 1 contains the kernel of the canonical morphism
H(Z)→ H(Z/NZ). We assume that 1 has been chosen small enough so that
the stabilizer of every point of h± is trivial. The quotient h±/1 has a natural
structure of a compact Riemann surface and the projection p : h±→ h±/1 is an
étale covering.

This curve parameterizes triples (V, ι, ν), where V is a complex two-dimensional
abelian variety, ι : OB → End(V ) is a faithful action of OB on V and ν is a level
structure “of type 1” on V . When 1 is the kernel of H(Z) to H(Z/NZ), for some
integer N ≥ 1, such a level structure corresponds to an equivariant isomorphism
of VN , the subgroup of N -torsion of V , with OB/NOB .

By [Shimura 1961], it admits a canonical structure of an algebraic curve S which
can be defined over a number field E in C.

3.2. The p-adic uniformization of Shimura curves. Let p be a prime number at
which B ramifies, which means that B⊗Q Qp is a division algebra. Let also F be
the completion of the field E at a place dividing p; we denote by Cp the p-adic
completion of an algebraic closure of F . We still denote by S the F-curve deduced
from an E-model of the complex curve S.

Let �= (P1)
an
F P1(Qp) be the extension of scalars to F of Drinfel’d’s upper

half-plane. According to the theorem of Čerednik and Drinfel’d [Čerednik 1976;
Drinfel’d 1976] (see also [Boutot and Carayol 1992] for a detailed exposition), and
up to replacing F by a finite unramified extension, the F-analytic curve San admits
a “p-adic uniformization” which takes the form of a surjective analytic morphism

j :�→ San,

identifying San with the quotient of � by the action of a subgroup 0 of PGL(2,Qp).
Up to replacing 1 by a smaller congruence subgroup, which replaces S by a finite
(possibly ramified) covering, we may also assume that 0 is a p-adic Schottky
subgroup acting freely on �, and that j is topologically étale. Then the morphism
j :�→ San is the universal cover of San.

Let us describe this subgroup. Let A be the quaternion division algebra over Q
with the same invariants as B, except for those invariants at p and ∞ which
are switched. In particular, A ⊗Q R is Hamilton’s quaternion algebra, while
A⊗Q Qp 'M2(Qp). Let G be the algebraic group of units of A, modulo center;
in particular, G(Qp)' PGL(2,Qp). As explained in [Boutot and Carayol 1992],
the discrete subgroup 0 is the intersection of G(Q) with a compact open subgroup
of G(Af), the adelic group associated with G where the place at∞ is omitted.

Lemma 3.3. The group 0 is conjugate to an arithmetic Schottky subgroup in
PGL(2,Qp), its rank is at least 2, and its limit set is equal to P1(Qp).
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Proof. The group 0 is a discrete subgroup of PGL(2,Qp), so its limit set L0

is a 0-invariant subset of P1(Qp). In other words, the Drinfeld upper half-plane
�= Pan

1 P1(Qp) is an open subset of �0 = Pan
1 L0 . By the theory of Mumford

curves and Schottky groups (see [Gerritzen and van der Put 1980]), the analytic
curve (Pan

1 L0)/0 is algebraic, and admits the analytic curve San
= �/0 as

an open subset. According to the Čerednik–Drinfel’d theorem, the curve San is
projective. This implies that �= Pan

1 L0, and hence L0 = P1(Qp).
After base change to Qp, the algebraic Q-group G becomes isomorphic to

PGL(2)Qp . Consequently, there exists a finite algebraic extension K of Q, contained
in Qp, such that G K ' PGL(2)K . By such an isomorphism, G(Q) is mapped
into PGL(2, K ); this implies that the group 0 is conjugate to an arithmetic group.

Since 0 is a Schottky group, it is free. Since it is nonabelian, its rank is at
least 2. �

By this lemma, the following result is a special case of our main theorem
(Theorem 2.7).

Theorem 3.4. Let F be a finite extension of Qp, let �= (P1)
an
F P1(Qp) and let

j : �n
→ San be the Čerednik–Drinfel’d uniformization of a product of Shimura

curves. Let V be an irreducible algebraic subvariety of S and let W ⊂ �n be
a maximal irreducible algebraic subvariety of j−1(V an). Then every irreducible
component of WCp is flat.

3.5. By the same arguments, one can show that Theorem 2.7 also applies to the
uniformizations of Shimura curves associated with quaternion division algebras over
totally real fields, as considered by Čerednik [1976] and Boutot and Zink [1995].

3.6. As suggested by J. Pila and explained to us by Y. André, Theorem 3.4 can
also be deduced from its complex analogue, which is a particular case of [Ullmo
and Yafaev 2014]. The crucial ingredient is a deep theorem of André [2003, III,
4.7.4] stating that the p-adic uniformization and the complex uniformization of
Shimura curves satisfy the same nonlinear differential equation. His proof relies on
a delicate description of the Gauss–Manin equation in terms of convergent crystals
and on the tempered fundamental group introduced by him. From that point on, one
can apply Seidenberg’s embedding theorem [1958] in differential algebra to prove
that both the complex and nonarchimedean Ax–Lindemann theorems are equivalent
to a single statement in differential algebra, in the original spirit of [Ax 1971].

4. Definability — a p-adic Pila–Wilkie theorem

4.1. There are two distinct notions of p-adic analytic geometry: one is “naïve”,
and the other rigid analytic. (Regarding rigid analytic geometry, we work in the
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framework defined by Berkovich.) These two notions give rise to three classes of
sets, and we use them all in this paper. Let F be a finite extension of Qp.

a) Semialgebraic and subanalytic subsets of Qn
p are defined by Denef and van

den Dries [1988]; see also [Cluckers et al. 2015, p. 26].
Replacing Qp by a finite extension F , this leads to an analogous notion of

F-semialgebraic, or F-subanalytic, subset of Fn . Considering affine charts,
one then defines F-semialgebraic or F-subanalytic subsets of V (F), for every
(quasiprojective, say) algebraic variety V defined over F .

On the other hand, the Weil restriction functor assigns to V an alge-
braic variety W defined over Qp together with a canonical identification
V (F)→ W (Qp); we say that a subset of V (F) is Qp-semialgebraic or Qp-
subanalytic if its image in W (Qp) is Qp-semialgebraic or Qp-subanalytic,
respectively. Observe that F-semialgebraic subsets of V (F) are Qp-semi-
algebraic, and that F-subanalytic subsets of V (F) are Qp-subanalytic.

Recall that an F-subanalytic subset S is said to be smooth of dimension d
at a point x if it possesses a neighborhood U which is isomorphic to the unit
ball of Fd ; then S is smooth of dimension d at every point of U .

b) Lipshitz [1993] defined a notion of rigid subanalytic subset of Cn
p. We use in

this paper the variant [Lipshitz and Robinson 2000a, Definition 2.1.1] where
the coefficients of all polynomials and power series involved belong to F ; we
call them rigid F-subanalytic. The notion extends to subsets of V (Cp), where
V is an algebraic variety defined over F .

These classes of sets are stable under boolean operations and projections [Lipshitz
and Robinson 2000b, Corollary 4.3], admit cell decompositions [Cluckers et al.
2006, Theorem 7.4], a natural notion of dimension (in fact, they are b-minimal in
the sense of [Cluckers and Loeser 2007]), as well as a natural notion of smoothness.

Lemma 4.2. Let F be a finite extension of Qp contained in Cp and let V be an
algebraic variety over F. Let Z be a rigid F-subanalytic subset of V (Cp). Then
Z(F)= Z ∩ V (F) is an F-subanalytic subset of V (F).

Proof. We may assume that V = An . Then Z can be defined by a quantifier-free
formula of the above-mentioned variant of Lipshitz’s analytic language, and our
claim follows from the very definition of this language. �

4.3. A block in Qn
p is either empty, or a singleton, or a smooth subanalytic subset

of pure dimension d > 0 which is contained in a smooth semialgebraic subset of
dimension d .

A family of blocks in Qn
p×Qs

p is a subanalytic subset W such that there exists an
integer t ≥ 0 and a semialgebraic set Z ⊂Qn

p×Qt
p such that for every σ ∈Qs

p, there
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exists τ ∈Qt
p such that the fibers Wσ and Zτ are smooth of the same dimension,

and Wσ ⊂ Zτ . (In particular, the sets Wσ , for σ ∈Qs
p, are blocks in Qn

p.)
Let F be a finite extension of Qp. Considering Weil restriction, we deduce from

these notions the definition of a block in Fn , or of a family of blocks in Fn
×Qt

p.

4.4. Let H be the standard height function on Q; for x ∈Q, written as a fraction
a/b in lowest terms, one has H(x)=max(|a|, |b|). We also write H for the height
function on Qn defined by H(x1, . . . , xn)=maxi (H(xi )). Viewing GL(d,Q) as a
subspace of Qd2

, it defines a height function on GL(d,Q). There exists a strictly
positive real number c such that H(gg′)≤ cH(g)H(g′) for every g, g′ ∈GL(d,Q),
and H(g−1)� H(g)c for every g ∈GL(d,Q). When d = 2 and g ∈ SL(2,Q), one
even has H(g−1)= H(g).

Consider g ∈ GL(d,Q). If g is diagonal, then H(gn) = H(g)n for every
n ∈ Z. More generally, if g is semisimple, then we have upper and lower bounds
H(g)n � H(gn)� H(g)n for every n ∈ Z.

By abuse of language, if G is a linear algebraic Q-group, we implicitly choose
an embedding in some linear group, which furnishes a height function H on G(Q).

The actual choice of this height function depends on the chosen embedding,
but any other height function H ′ is equivalent, in the sense that there is a strictly
positive real number c such that H(x)1/c� H ′(x)� H(x)c for every x ∈ G(Q).

4.5. Let Z be a subset of Fn and let K be a finite extension of Q contained in F .
We write Z(K )= Z ∩ K n (K -rational points of Z ). For every real number T , we
define Z(K ; T ) = {x ∈ Z(K ) : H(x) ≤ T }; for every integer D, we also define
Z(D; T ) to be the set of points x ∈ Z(F) such that [Q(xi ) : Q] ≤ D for every
i ∈ {1, . . . , n} and H(x)≤ T . These are finite sets.

We say that Z has many K -rational points if there exist strictly positive real
numbers c, α such that

Card(Z(K ; T ))≥ cT α

for all T large enough. This notion only depends on the equivalence class of the
height.

4.6. In [Cluckers et al. 2015], Cluckers, Comte and Loeser established a p-adic
analogue of a theorem of Pila and Wilkie [2006] concerning the rational points
of a definable set. We will use the following variant of [Cluckers et al. 2015,
Theorem 4.2.3].

Theorem 4.7. Let F be a finite extension of Qp and let K be a finite extension
of Q contained in F. Let Z ⊂ Fn be a Qp-subanalytic subset. Let ε > 0. There
exist s ∈ N, c ∈ R and a family of blocks W ⊂ Z ×Qs

p satisfying the following
property: for every T > 1, there exists a subset ST ⊂Qs

p of cardinality < cT ε such
that Z(K ; T )⊂

⋃
σ∈ST

Wσ .
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Proof. Let d=[F :Qp]. By Krasner’s lemma, there exists an algebraic number e∈ F
of degree d such that F = Qp(e). Then the basis (1, e, . . . , ed−1) defines a Qp-
linear bijection ψ : Qd

p
∼
−→ F , (x1, . . . , xd) 7→

∑
xi ei−1. Let ϕ : F ' Qd

p be its
inverse.

By construction, if K is a number field contained in F and x ∈ K d , then
ψ(x) ∈ K (e); in particular, [Q(ψ(x)) : Q] ≤ d[Q(x) : Q]. Conversely, if x ∈ K ,
then the coordinates of ϕ(x) in Qd

p belong to the Galois closure K (e)′ of the
compositum K ·Q(e), hence are algebraic numbers of degrees ≤ D = [K (e)′ :Q].
In other words, ϕ and ψ induce bijections at the level of algebraic points. Since
these maps are linear, there exists a positive real number a> 0 such that a−1 H(x)≤
H(ϕ(x))≤ aH(x) for every x ∈ K .

We deduce from ϕ a Qp-linear isomorphism ϕ : Fn
→ Qnd

p . In particular,
Z ′ = ϕ(Z) is a subanalytic subset of Qnd

p . The morphism ϕ maps algebraic points
of given degree to algebraic points of uniformly bounded degree, and there exists
a positive real number a > 0 such that a−1 H(x) ≤ H(ϕ(x)) ≤ aH(x) for every
x ∈ Z(K ).

The definition of a family of blocks that we have adopted here is slightly stronger
than the one used in Theorem 4.2.3 of [Cluckers et al. 2015]. However, all proofs go
over without any modification, so that there exists a family of blocks W ′ ⊂ Z ′×Qs

p
such that for any T > 1, there exists a subset ST ⊂ Qs

p of cardinality < cT ε

such that Z ′(D; T ) ⊂
⋃
σ∈ST

W ′σ . Let ψ : Fn
× Qs

p → Qnd
p × Qs

p be the map
(x, y) 7→ (ϕ(x), y) and let W =ψ−1(W ′)⊂ Fn

×Qs
p. By definition, W is a family

of blocks in Z . Moreover, for any T > 1, one has

Z(F; T )⊂ ψ−1(Z ′(D; aT ))⊂
⋃
σ∈SaT

ϕ−1(W ′σ )=
⋃
σ∈SaT

Wσ .

Since Card(SaT )≤ caεT ε, the family of blocks W satisfies the requirements of the
theorem. �

5. Zariski closures and analytic functions

5.1. Let F be a complete nonarchimedean valued field. Let V be an F-scheme
of finite type. One says that a subset K of V an is sparse if there exist a set T and
a subset Z of V an

× T such that for every t ∈ T , Z t = {x ∈ V an
: (x, t) ∈ Z} is a

Zariski-closed subset of V an with empty interior, and K =
⋃

t∈T Z t .

Lemma 5.2. A sparse set has empty interior.

Proof. Let us say that a point x ∈ V an is maximally Abhyankar if the rational
rank of the value group of H (x) is equal to dimx(V an). If V is irreducible, then
maximally Abhyankar points are dense in V an; moreover, each of them is Zariski
dense. Let K be a sparse set in V an; write K =

⋃
t Z t as above. Let us argue by
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contradiction and let U be a nonempty subset of V an contained in K . By what
precedes, there exists a maximally Abhyankar point x ∈U . Let t ∈ T be such that
x ∈ Z t . Then Z t contains the Zariski closure of x in V an, so that Z t contains an
irreducible component of V an, contradicting the definition of a sparse set. �

Lemma 5.3. Let F ′ be an algebraically closed complete extension of F and
q : V an

F ′ → V an the base change morphism. Let K be a closed sparse subset of V an

and let K ′ = q−1(K ). Then K ′ is sparse.

Proof. Indeed, if K =
⋃

t∈T Z an
t is a description of the sparse set K , then the

equality K ′ =
⋃

t∈T (Z t)
an
F ′ shows that K ′ is sparse as well. �

Lemma 5.4. Let us assume that K is sparse, and let C ⊂ V be a geometrically
irreducible curve such that Can

6⊂ K . Then Can K is connected.

Proof. Using Lemma 5.3, we reduce to the case where F is algebraically closed;
moreover, we may assume that C is reduced. Let K =

⋃
t∈T Z an

t be a description
of K as above. Up to adding the singular locus of C to K , we may assume that
C is smooth. By assumption, for every t ∈ T , C 6⊂ Z an

t ; consequently, Z an
t ∩Can

consists of rigid points of Can, and hence K ∩Can consists of rigid points of Can.
In the topological description of smooth geometrically irreducible analytic curves
as real graphs [Berkovich 1990, Chapter 4], their rigid points are endpoints, so
Can (K ∩Can) is connected as well. �

Proposition 5.5. Let F be a complete nonarchimedean valued field. Let V be
an F-scheme of finite type which is geometrically connected (resp. geometrically
irreducible) and let K be a closed sparse subset of V an. Then V an K is a
geometrically connected (resp. geometrically irreducible) analytic space.

The particular case K =∅ implies the “GAGA”-type consequence that if V is
geometrically connected (or geometrically irreducible), then so is V an.

Proof. Using Lemma 5.3, we reduce to the case where F is algebraically closed.
By assumption, V is connected. Let us prove that V an K is connected. Let
x, y ∈ V an K . Let F ′ an algebraically closed complete valued field containing
both H (x) and H (y), and view x, y as elements of V (F ′). Let q : V an

F ′ → V an be
the base change morphism and let K ′ = q−1(K ); by Lemma 5.3, this is a sparse
subset of V an

F ′ . By [Mumford 1970, p. 56], there exists an irreducible curve C ⊂ VF ′

which passes through x and y. Then Can is connected. One has C 6⊂ K ′, by
definition of K ′; it follows from Lemma 5.4 that Can (K ′ ∩Can) is connected.
Consequently, x and y belong to the same component of V an

F ′ K ′, and hence their
images in V an K belong to the same connected component. This proves that
V an K is connected.

Let us now assume that V is geometrically irreducible. The normalization
morphism p :W→ V is finite, and W is geometrically connected. Since p−1(K ) is
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a sparse subset of W an, it follows from the first part of the lemma that W an p−1(K )
is geometrically connected. Since W an is the normalization of V an [Ducros 2016,
Lemma 2.7.15], then W an p−1(K )= p−1(V an K ) is the normalization of V an K .
By Theorem 5.17 of [Ducros 2009], this implies that V an K is geometrically
irreducible. �

Corollary 5.6. Let F be a complete valued field, let V be an F-scheme of finite
type and let K be a closed sparse subset of V an. The set of irreducible com-
ponents of V an K is finite. If V is equidimensional, then each of them has
dimension dim(V ).

Proof. We may assume that V is irreducible. Let � = V an K . Let E be the
completion of an algebraic closure of F . By Proposition 5.5,�E∩Z an is irreducible
for every irreducible component Z of VE , and the family of these intersections is
the family of irreducible components of �E . The finiteness statement then follows
from [Ducros 2009, Lemme 4.25], while the one about dimension follows from
[Ducros 2009, Proposition 4.22]. �

Corollary 5.7. Let F be a complete valued field, let V be an irreducible F-scheme
of finite type and let K be a closed sparse subset of V an. Let W be an irreducible
component of V an K . If W is geometrically irreducible, then V is geometrically
irreducible as well, one has W = V an K and W is topologically dense in V an.

Proof. Let E be a complete algebraically closed extension of F , and let V1, . . . , Vn

be the irreducible components of VE . Let L be the preimage of K in VE ; it is a
closed sparse subset of V an

E (Lemma 5.3). Consequently, L j = V an
j ∩ L is a closed

sparse subset of V an
j , for every j . By Proposition 5.5, W j = V an

j L j is geometri-
cally irreducible. The automorphism group Aut(E/F) acts transitively on the set
{V1, . . . , Vn} of irreducible components of VE , hence on the set {W1, . . . ,Wn} of
irreducible components of V an

E L . Since VE is geometrically irreducible, there
exists an index j such that WE =W j ; then Aut(E/F) fixes W j , so that n = 1 and
j = 1. This proves that V is geometrically irreducible. By Proposition 5.5, one has
W = V an K . By Lemma 5.2, W is topologically dense in V an. �

Proposition 5.8. Let F be a finite extension of Qp. Let A be an affine scheme of
finite type over F and let�⊂ Aan be the complement of a closed sparse subset. Let X
be a closed analytic subspace of �. Let V be a Qp-semialgebraic subset of A(F),
contained in X (F), and let W be its Zariski closure in A. Then W an

∩�⊂ X.

Proof. This proof is inspired by that of [Pila and Tsimerman 2013, Lemma 4.1].
We argue by noetherian induction on W , assuming that if W ′ is the Zariski closure

of a Qp-semialgebraic subset V ′ of A(F) contained in X (F), and if W ′ ( W , then
(W ′)an

∩�⊂ X .
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First assume that W is not irreducible. Then any irreducible component W ′ of W
is the Zariski closure in A of V ∩W ′(F), a Qp-semialgebraic subset of A(F); by
induction, (W ′)an

∩�⊂ X , so that W an
∩�⊂ X .

We may thus assume that W is irreducible; since its subset W (F) of F-rational
points contains V , it is Zariski-dense in W , so that W is geometrically irreducible.

Let K = Aan �. By assumption, K is closed and sparse. Let K =
⋃

San
t be

a presentation of K , where for every t , St is a Zariski-closed subset with empty
interior of A. Since W is irreducible and not contained in St , W ∩ St is a strict
Zariski-closed subset of W . Consequently, W an

∩ K is a sparse subset of W an. By
Proposition 5.5, W an

∩� is thus a geometrically irreducible analytic space.
Let R be the Weil restriction functor from F to Qp. By definition, A(F) is

identified with R(A)(Qp) and we write R(V ) for the image of V inside R(A)(Qp).
Let then Z be the Zariski closure of R(V ) inside R(A).

Let Z ′ be an irreducible component of Z . Then Z ′ ∩R(V ) is a semialgebraic
subset of R(A), of the form R(V ′), for a unique Qp-semialgebraic subset V ′ of V .
When Z ′ varies, the corresponding subsets V ′ cover V ; we may thus choose Z ′

such that V ′ is Zariski dense in W . Replacing V by V ′, we may assume that Z
is irreducible; then it is geometrically irreducible, because its set of Qp-points is
Zariski dense.

Since V is Qp-semialgebraic, the subset R(V ) of R(A)(Qp) is semialgebraic;
hence, the dimension of Z coincides with the dimension of V as a Qp-semialgebraic
subset of A(F). Consequently, dimZar(Z)= dim(Z(Qp))= dim(R(V )).

Since W is a Zariski closed subset of A containing V , the subscheme R(W ) is
Zariski closed in R(A) and contains R(V ), so that Z ⊂ R(W ). By Weil restriction,
the inclusion Z→ R(W ) corresponds to a morphism g : Z F →W . Let x ∈ A(F)
and let x̃ ∈R(A)(Qp) be the corresponding point; if x ∈ V , then x̃ ∈R(V )⊂ Z(Qp),
and hence x̃ ∈ Z F (F). By the definition of the Weil restriction functor, one has
g(x̃) = x . In particular, the image of Z F (F) under g contains V . Hence, g is
dominant, by definition of W .

The morphism g induces an analytic morphism gan
: Z an

F → W an
⊂ Aan. The

inverse image of W an
∩� is the complement of a closed sparse subset of Z an

F ; since
Z an

F is geometrically irreducible, Corollary 5.6 implies that (gan)−1(W an
∩�) is

geometrically irreducible, of dimension dim(Z an
F ). Let Y = (gan)−1(W an

∩ X); it is
a Zariski closed analytic subset of (gan)−1(W an

∩�).
Let us admit for a moment that dim(Y ) = dim(Z F ) and let us conclude that

W an
∩�⊂ X . Since dim(Z an

F )= dim(Z F )= dim((gan)−1(W an
∩�)), we see that

Y = (gan)−1(W an
∩ X)= (gan)−1(W an

∩�).

The morphism g : Z F →W being dominant, its image contains a nonempty open
subset W ′ of W . Since W is geometrically irreducible, (W ′)an is dense in W an;
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in particular, the image of gan meets any nonempty open subset of W an. Since
(gan)−1(W an

∩ (� X)) is empty, by the preceding equality, this implies that
W an
∩ (� X) is empty; hence, W an

∩�=W an
∩ X .

It remains to prove the equality dim(Y )= dim(Z F ).
Let us consider a semialgebraic cell decomposition of R(A)(Qp)which is adapted

to R(V ), Z(Qp), Zsing(Qp), and to their singular loci: a finite partition of R(A)(Qp)

into “open cells” such that these Qp-semialgebraic subsets are unions of cells; see
[Denef 1986] and also [Cluckers and Loeser 2007].

Let C̃ be a cell of dimension dim(R(V )) which is contained in R(V ). Since

dim(Zsing(Qp))≤ dim(Zsing) < dim(Z)= dim(R(V )),

the cell C̃ is disjoint from Zsing(Qp). By definition of a cellular decomposition, C̃
is open in R(V ) and in (Z Zsing)(Qp).

Let C be the subset of V corresponding to C̃ . Since the identification of C
with C̃ provided by the Weil restriction functor is a homeomorphism which respects
the singular loci, C is an open subset of V .

Let x be a point of C and let x̃ be the corresponding point of C̃ . By what precedes,
R(V ), Z(Qp) and Z are smooth at x̃ , so that Tx̃(R(V )) = Tx̃(Z(Qp)) = Tx̃(Z).
In particular, these three Qp-vector spaces have the same dimension, equal to
dim(Tx(V ))= dim(V ).

Since g(x̃)= x ∈ X , one has x̃ ∈ Y ; more generally, C̃ ⊂ Y . The tangent space
Tx̃(Y ) of Y at x̃ is an F-vector subspace of Tx̃(Z F ) = (Tx̃(Z))F which contains
Tx̃(C̃) = Tx̃(Z). Consequently, Tx̃(Y ) = Tx̃(Z F ). This implies that the analytic
space Y has dimension dim(Z F ), and concludes the proof. �

6. Complements on p-adic Schottky groups and uniformization

Let F be a finite extension of Qp. Unless specified otherwise, analytic spaces are
F-analytic spaces.

6.1. Let a ∈ F and r ∈ R>0; as usual, we let B(a, r) and E(a, r) be the subsets
of (A1)an of points x such that |T (x)− a| < r and |T (x)− a| ≤ r , respectively.
The subspace B(a, r) is called a bounded open disk; we say that E(a, r) is the
corresponding bounded closed disk. If B is a bounded open disk, we write B+

for the corresponding bounded closed disk. We say that such a disk is strict if its
radius r belongs to |F×|Q.

To these disks, we also add the unbounded open disks Pan
1 E(a, r) and the

unbounded closed disks Pan
1 B(a, r). An unbounded disk is said to be strict if its

complementary disk is strict.
The image by an homography γ ∈ PGL(2, F) of an open (resp. closed, strict)

disk is again an open (resp. closed, strict) disk.
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6.2. We endow P1(Cp) with the distance given by

δ(x, y)=
|x − y|

max(1, |x |)max(1, |y|)

for x, y ∈ Cp — it is invariant under the action of PGL(2,OCp). Moreover, an
elementary calculation shows that every element g ∈ PGL(2,Cp) is Lipschitz for
this distance; see also Theorem 1.1.1 of [Rumely 1989].

6.3. Let 0 be a Schottky group in PGL(2, F), L0 ⊂ P1(F) its limit set and �0 =
Pan

1 L0. For any rigid point x ∈�0, let δ0(x) be the δ-distance of x to L0.
For every γ ∈ PGL(2, F), there exists a real number c ≥ 1 such that c−1δ0(z)≤

δ0(γ · z)≤ cδ0(z) for every rigid point z ∈�0.

Lemma 6.4. Let G be a compact subset of �0 . There exists a strictly positive real
number c such that δ0(x)≥ c for every rigid point x ∈G.

Proof. Arguing by contradiction, we assume that there exists a sequence (xn)

of rigid points of G such that δ0(xn)→ 0. For every n, let ξn ∈ L0 such that
δ0(xn) = δ(xn, ξn); it exists since L0 is compact. Extracting a subsequence if
necessary, we assume that the sequence (ξn) converges to a point ξ of L0. Then
δ(xn, ξ)→ 0. This implies that the sequence (xn) converges to ξ in the Berkovich
space Pan

1 . Since G is compact, one has ξ ∈G, a contradiction. �

6.5. Let 0 be a Schottky subgroup of PGL(2, F). Let us assume that the point at
infinity∞ does not belong to its limit set L0 . Then, by [Gerritzen and van der Put
1980, I, (4.3)], the group 0 admits a basis (γ1, . . . , γg) and a good fundamental
domain F0 with respect to this basis, in the following sense:

(1) There exists a finite family (B1, . . . , Bg,C1, . . . ,Cg) of strict bounded open
disks in Pan

1 such that F0 = Pan
1

(⋃
Bi ∪

⋃
Ci
)
.

(2) The corresponding bounded closed disks B+1 , . . . , B+g ,C+1 , . . . ,C+g are pair-
wise disjoint.

Let then F◦0 = Pan
1

(⋃
B+i ∪

⋃
C+i
)
.

(3) The elements γ1, . . . , γg satisfy γi (Pan
1 Bi )=C+i and γi (Pan

1 B+i )=Ci for
every i ∈ {1, . . . , g}.

With this notation, let W =Pan
1

⋃
Bi ; this is an affinoid domain of Pan

1 containing F,
stable under each γi . Indeed, one has W ⊂Pan

1 Bi . Hence, γi W ⊂γi (Pan
1 Bi )=C+i ,

and hence the claim since C+j is disjoint from each Bi .
Moreover, the following properties are satisfied:

(4) One has
⋃
γ∈0 γ ·F0 = P1 L0.

(5) For γ ∈ 0, one has F0 ∩ γ ·F0 6=∅ if and only if γ ∈ {id, γ±1
1 , . . . , γ±1

g }.
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(6) For every γ ∈ 0 {id}, one has F◦0 ∩ γ ·F0 =∅.

In this context, we identify an element γ of 0 with a reduced word in the letters
{γ±1 , . . . , γ

±
g } and denote its length by `0(γ ).

For every γ ∈ 0 {id}, [Gerritzen and van der Put 1980, I, §4, p. 29] define
a bounded open disk B(γ ), equal either to γ · (Pan

1 B+i ) or to γ · (Pan
1 C+i ),

according to whether the last letter of the reduced word representing γ is γi or γ−1
i ;

in any case, one has γ ·∞ ∈ B(γ ). Moreover, they prove:

(7) B(γ ′)⊂ B(γ ) if and only if γ is an initial subword of γ ′.

(8) For every integer n, one has

Pan
1

⋃
`0(γ )<n

γ ·F=
⋃

`0(γ )=n

B(γ ).

(9) There exists a real number c > 1 such that for every γ , the radius of the
disk B(γ ) is� c−`0(γ ).

(10) The intersection of every decreasing sequence of open disks (B(γn)), where
`0(γn) = n, is reduced to a limit point of 0, and every limit point can be
obtained in this way.

Proposition 6.6. Let 0 be a Schottky group in PGL(2, F) and let G be a compact
analytic domain of �0. There exist positive real numbers a, b such that for every
γ ∈ 0 and every rigid point x ∈ γ ·G, one has

`0(γ )≤ a− b log(δ0(x)).

Proof. To prove this proposition, we may extend the scalars to a finite extension of F
and henceforth assume that the limit set L0 is not equal to P1(F). Placing a point of
P1(F) L0 at infinity, Section 6.5 furnishes a basis (γ1, . . . , γg) and a good funda-
mental domain with respect to this basis of the form F= Pan

1

(⋃g
i=1 Bi ∪

⋃g
i=1 Ci

)
.

Let b and c> 1 be positive real numbers such that the diameter of B(γ ) is bounded
by bc−`0(γ ), for every γ ∈ 0 {id}.

Let x ∈ �0 and let γ ∈ 0 be such that x ∈ γ · F. Let ξ ∈ L0(x) be such that
δ0(x)= δ(x, ξ). As the disk B(γ ) contains both x and ξ , one has δ0(x)≤ bc−`0(γ ),
that is,

`0(γ )≤
1

log(c)
(− log(δ0(x))+ log(b)),

since log(c) > 0. This proves the proposition in the particular case where G= F.
Let us now prove the general case. Let a be a real number such that δγ (x)≥a> 0

for every rigid point of G (Lemma 6.4). The preceding inequality shows that there
exists a finite subset S of 0 such that G meets γ ·F if and only if γ ∈ S. It then
follows from property (8) that G is contained in the finite union

⋃
s∈S s · F. To

conclude the proof, we observe that if x ∈ γ ·G, then there exists s ∈ S such that
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x ∈ γ s ·F. The proposition then follows from the particular case already treated
and from the inequality `0(γ )≤ `0(γ s)+ `0(s). �

Corollary 6.7. Let G and G′ be compact analytic domains of �0 . The set of γ ∈ 0
such that γ ·G∩G′ 6=∅ is finite.

Proof. Let S be this set. For γ ∈ S, the intersection γ ·G∩G′ is a nonempty affinoid
domain of Pan

1 ; hence, it contains a rigid point xγ . With a and b as in the statement
of Proposition 6.6, one has `0(γ ) ≤ a− b log(δ0(xγ )). Since xγ ∈ G′, δ0(xγ ) is
bounded from below by Lemma 6.4. This shows that `0(γ ) is bounded above when
γ runs over S. �

Proposition 6.8. Let 0 be a Schottky group in PGL(2, F) and let g be its rank. Let
ξ ∈L0 and let U be an open neighborhood of ξ in Pan

1 .
There exist an open neighborhood U ′ of ξ , contained in U , a basis γ1, . . . , γg

of 0, an affinoid domain F⊂�0 such that the following properties hold:

(1) One has F⊂U ′.

(2) For every i , one has γi (U ′)⊂U ′.

(3) One has
⋃
γ∈0 γF=�0.

Such an affinoid domain will be called a fundamental set.

Proof. We first treat the case where L0 6= P1(F). Placing a point of P1(F) L0 at
infinity, Section 6.5 furnishes a basis (γ1, . . . , γg) and a good fundamental domain F

with respect to this basis of the form F= Pan
1

(⋃g
i=1 Bi ∪

⋃g
i=1 Ci

)
.

By (10), for every integer n ≥ 1, there is an element γ ∈ 0 of length n such that
ξ ∈ B(γ ); if n is large enough, one has B(γ )+⊂U , because the diameter of B(γ )+

tends to 0 when n = `0(γ ) tends to ∞. Since γ · F ⊂ B(γ )+, this implies that
γ ·F⊂U .

Up to changing the basis (γ1, . . . , γg) into (γ−1
1 , . . . , γ−1

g ), and exchanging Bi

and Ci for every i , we may assume that the last letter of γ is γs , for some
s ∈ {1, . . . , g}. Set W = Pan

1
⋃g

i=1 Bi ; recall that W is an affinoid domain
of Pan

1 containing F and stable under γ1, . . . , γg. By definition, one has

B(γ )+ = γ · (Pan
1 Bs)⊃ γ ·W,

since W ⊂ Pan
1 Bs .

Let us now set F′ = γ ·F, W ′ = γ ·W and γ ′i = γ γiγ
−1 for i ∈ {1, . . . , g}. By

construction, F′ and W ′ are affinoid domains of Pan
1 such that F′⊂W ′⊂ B(γ )+⊂U ,

the translates of F′ under 0 cover �0 , and W ′ is stable under the basis (γ ′1, . . . , γ
′
g)

of 0.
This almost proves (1–3), except that W ′ is affinoid and not open. To conclude

the construction, one sets U ′ to be the interior of W ′ and redoes the construction
starting from U ′ instead of U . The second paragraph of the proof shows that there
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exists γ ′ ∈ 0 such that γ ′ · F′ is contained in U ′. The affinoid γ ′ · F′, the open
subset U ′ and the basis (γ ′1, . . . , γ

′
g) satisfy the requirements of the proposition.

Let us now treat the case where L0 = P1(F). Let F ′ be a finite extension of F
of degree > 1. The preceding construction can be applied starting with a point of
P1(F ′) L0 and furnishes an open neighborhood V ′ of ξ in (Pan

1 )F ′ , contained
in UF ′ , a basis (γ1, . . . , γg) of 0 and an affinoid domain F′ of �0,F ′ satisfying
properties (1–3). The images U ′ of V ′ and F of F′ by the projection (Pan

1 )F ′→ Pan
1

satisfy the required properties. �

Lemma 6.9. Let 0 be an arithmetic Schottky group in PGL(2, F) and let H be
a height function on PGL(2,Q). There exists a positive real number c such that
H(γ )≤ c`0(γ )+1 for every γ ∈ 0.

Proof. Let (γ1, . . . , γg) be a basis of 0 as above. Let c1 be a positive real
number such that H(hh′) ≤ c1 H(h)H(h′) for every h, h′ ∈ PGL(2,Q). Let
c = c1 sup(H(id), H(γ1), . . . , H(γg)). One proves by induction on `0(γ ) that

c1 H(γ )≤ sup(c1 H(γ±1 ), . . . , c1 H(γ±g ))
`0(γ )c1 H(id)≤ c1c`0(γ )+1

for every γ ∈ 0, as was to be shown. �

Lemma 6.10. Let 0 be a Schottky subgroup of PGL(2, F) and let 1 be a subset of
P1(F) of cardinality 2. Let K be a number field contained in F. The stabilizer of 1
inside 0 does not have many K -rational points.

Proof. Let S be this stabilizer; we may assume that S 6= {id}. Let g ∈ S {id}. Then
g is hyperbolic (see [Gerritzen and van der Put 1980, p. 7, line 2]), and hence has
exactly two rational fixed points in P1(F). Up to a change of projective coordinates,
we may thus assume that 1 = {0,∞}. Then every element h of S is of the form
z 7→ λ(h)z, for some unique element λ(h) ∈ K×; moreover, unless h = id, any
such h is hyperbolic and thus is represented by a matrix having two eigenvalues
with distinct absolute values, so that |λ(h)| 6= 1. Let us choose h ∈ S {id} such
that |λ(h)| is > 1 and minimal. By euclidean division, one has S = 〈h〉.

Then S ∩ PGL(2, K ) is generated by an element of the form ha for some a ∈ Z.
Since ha is semisimple, we have H(ha)n � H(han)� H(ha)n , for every n ∈ Z
(see Section 4.4). This shows that S ∩ PGL(2, K ) does not have many rational
points. �

In Section 8, we will need the following lemma.

Lemma 6.11. Let r be a positive real number, f ∈ Cp[[z]] a power series which
converges on the closed disk E(0, r), and L1 and L2 closed subsets of Cp such that
f −1(L2) ⊂ L1. For every x ∈ Cp, let δ(x; L1) and δ(x; L2) be the distances of x
to L1 and L2, respectively. Then there exist real numbers m ≥ 0, c > 0 and s such
that 0< s < r and such that δ( f (x); L2)≥ cδ(x; L1)

m for every x ∈ E(0, s).
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Proof. Write f =
∑

cnzn . We may assume that there exists a ∈C×p such that r =|a|;
composing f with homographies which map E(0, r) to E(0, 1) and f (E(0, r))
into the disk E(0, 1), we assume that r = 1 and that |cn| ≤ 1 for all n. (Recall
from Section 6.2 that homographies are Lipschitz for the distance δ.)

Let us first treat the case where f (0) 6∈ L2. Then there exists a real number s > 0
such that E( f (0), s)∩ L2 = ∅. For every x ∈ E(0, 1) such that |x | < s, one has
| f (x)− f (0)|< s; hence, δ( f (x); L2) > s. It suffices to set m = 0 and c = s.

We now assume that f (0) ∈ L2, and hence 0 ∈ L1. Let m = ord0( f − f (0)).
Since f ′(z)=

∑
n≥m ncnzn−1, there exists a real number s such that 0< s ≤ 1 and

such that | f ′(z)| = |mcm ||z|m−1 provided |z| ≤ s. Moreover, | f (n)(z)/n!| ≤ 1 for
every n ≥ 0 and any z ∈ E(0, 1). Considering the Taylor expansion

f (y)=
∑
n≥0

1
n!

f (n)(x)(y− x)n,

we then see that there exists a real number s ′ such that

f (E(x, u))= E( f (x), | f ′(x)|u)

for every real number u such that 0< u ≤ s ′ and x ∈ E(0, 1) such that 0< |x | ≤ s.
If u < δ(x; L1), then E(x, u) ∩ L1 = ∅; hence, E( f (x), | f ′(x)|u) ∩ L2 = ∅.
Consequently, δ( f (x); L2)≥| f ′(x)| δ(x; L1). Since 0∈ L1, one has |x |≥ δ(x; L1).
Consequently,

δ( f (x); L2)≥ |mcm ||x |m−1δ(x; L1)≥ |mcm | δ(x; L1)
m .

This concludes the proof. �

7. Automorphisms of curves

The following result is already present in [Pila 2013]. For the clarity of exposition,
we isolate it as a lemma.

Lemma 7.1. Let k be an algebraically closed field of characteristic zero, B a
smooth connected projective k-curve and f : B→ P1 a nonconstant morphism. Let
R f ⊂ B be the ramification locus of f (the set of points of B at which f is not étale)
and let 1 f = f (R f ) be its discriminant locus.

Assume that there exist automorphisms g ∈ Aut(P1) and h ∈ Aut(B) such that
f ◦ h = g ◦ f , and that g has infinite order. Then B is isomorphic to P1, and one of
the following cases holds:

• The morphism f is an isomorphism (and 1 f =∅).

• One has Card(R f )= 2 and g(1 f )=1 f .
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Proof. By construction, f induces a finite étale covering of P1 1 f .
Let b ∈ R f . One has d f (b)= 0; hence, d( f ◦h)(b)= d(g◦ f )(b)= 0. Since h is

an automorphism of B, this implies that d f (h(b))= 0; hence, h(b) ∈ R f . We thus
have h(R f )⊂ R f ; hence, h(R f )= R f , because h is an isomorphism. Consequently,
g(1 f ) = 1 f , so that some power of g fixes 1 f pointwise. Since the identity is
the only homography that fixes 3 points and g has infinite order, this implies that
Card(1 f )≤ 2.

If Card(1 f )≤ 1, then P1 1 f is simply connected. Hence, f is an isomorphism
(and 1 f =∅).

Otherwise, one has Card(1 f )= 2. Let n= deg( f ). Up to a change of projective
coordinates in P1, we may assume that 1 f = {0,∞}. Then g is a homothety,
because it leaves 1 f invariant and has infinite order (otherwise, it would be of the
form g(z)= a/z). Since all finite étale coverings of P1 1 f are of Kummer type
(equivalently, π1(P1 1 f )= Z), one has B ' P1 and the morphism f is conjugate
to the morphism z 7→ zn from P1 to itself.

We then remark that h is a homography of infinite order. Indeed, if he
= idB ,

then f = ge
◦ f . Hence, ge

= id since f is surjective. Hence e = 0, since g has
infinite order. As above, the formula h(R f )= R f then implies that Card(R f )≤ 2.
On the other hand, Card(R f )≥ Card(1 f )= 2. Hence, Card(R f )= 2. �

Proposition 7.2. Let k be a field of characteristic zero. Let B be an integral k-
curve in Pn

1 possessing a smooth k-rational point. Let 0B be the stabilizer of B in
(Aut(P1))

n and let 01 ⊂ Aut(P1) be its image under the first projection. Assume
that 01 contains an element of infinite order. Then one of the following cases holds:

(1) The morphism p1|B is constant.

(2) The morphism p1|B is an isomorphism and the components of its inverse are
either constant or homographies.

(3) There is a subset of P1(k̄) of cardinality 2 which is invariant under every
element of 01.

Proof. Assume that p1|B is not constant. Let ν : B ′→ B be the normalization of B
and let p′1= p1◦ν : B ′→P1. Let g= (g1, . . . , gn) be an element of 0B . There exists
a unique automorphism h of B ′ that lifts g, so p′1 ◦ h = g1 ◦ p′1. Since the curve B
has smooth rational points, the curve B ′ is geometrically integral. Choosing g such
that g1 has infinite order, the preceding lemma implies that Card(Rp′1) ∈ {0, 2}.

Let us first assume that Card(Rp′1)= 2. Then Card(1p′1)= 2 as well. Moreover,
the relation p′1 ◦ h = g1 ◦ p′1 implies that g1(1p′1)⊂1p′1 , so that case (3) holds.

Let us now assume that Card(Rp′1)= 0 and fix g such that g1 has infinite order. By
the preceding lemma, p′1 is an isomorphism; this implies that p1|B is an isomorphism
as well. Let f be its inverse and let f1, . . . , fn be its components. Assume that



A nonarchimedean Ax–Lindemann theorem 1987

case (2) does not hold, that is, for some j , the rational map f j is neither constant,
nor a homography; its ramification locus R j is nonempty. Since g1 has infinite
order, the relation g j ◦ f j = f j ◦ g1 implies that g j has infinite order as well. By
the preceding lemma, one has Card(R j ) = 2. Let then g′ = (g′1, . . . , g′n) be any
element of 0B . The relation g′j ◦ f j = f j ◦ g′1 implies that g′1(R j ) ⊂ R j , so that
case (3) holds. �

8. Proof of Theorem 2.7

We will reduce the proof of Theorem 2.7 to the following variant:

Proposition 8.1. Let F be a finite extension of Qp and let (0i )1≤i≤n be a finite
family of arithmetic Schottky subgroups of PGL(2, F) of ranks ≥ 2. As above, let
us set � =

∏n
i=1�0i and X =

∏n
i=1 X0i , and let p : �→ X an be the morphism

deduced from the morphisms p0i :�0i → X an
0i

.
Let V be an irreducible algebraic subvariety of X and let W be an irreducible

algebraic subvariety of �, maximal among those contained in p−1(V an). If W is
geometrically irreducible, then it is flat.

Lemma 8.2. Proposition 8.1 implies Theorem 2.7.

Proof. Let Y be the Zariski closure of W in Pn
1; by assumption, W is an irre-

ducible component of Y an
∩�. Let W0 be an irreducible component of WCp . By

[Ducros 2009, Théorème 7.16(v)], there exists a finite extension F ′ of F , contained
in Cp, and an irreducible component W ′ of WF ′ such that W0 = W ′Cp

. Then W ′

is geometrically irreducible, as well as its Zariski closure Y ′. By Proposition 5.5,
�∩ Y ′ is geometrically irreducible. The inclusion W ′ ⊂�∩ Y ′ and the inequality
dim(W ′)= dim(W0)= dim(W )= dim(Y )≥ dim(Y ′) imply that W ′ =�∩ Y ′. In
particular, W ′ is irreducible algebraic and is contained in p−1(V an

F ′ ). Let us show
that it is maximal. Let W ′1 ⊂�F ′ be an irreducible algebraic subvariety contained
in p−1(V an

F ′ ) such that W ′ ( W ′1, and let Y ′1 ⊂ (P
n
1)F ′ be the Zariski closure of W ′1.

The image Y1 of Y ′1 in (Pn
1)F is Zariski closed, because F ′ is a finite extension

of F , and Y ′1 ⊂ (Y1)F ′ . Moreover, Y ⊂ Y1. There exists a unique irreducible
component W1 of � ∩ Y1 that contains W , and W ′1 is an irreducible component
of W1,F ′ . Necessarily, W1 is contained in p−1(V an), because W ′1 ⊂ p−1(V an

F ′ ); this
contradicts the maximality of W .

Applying Proposition 8.1 to W ′, we conclude that W ′ is flat. Consequently,
W0 =W ′Cp

is flat, as was to be shown. �

8.3. To prove Proposition 8.1, we argue by induction and assume that it holds if
there are less that n factors. Let W be an irreducible algebraic subvariety of �,
maximal among those contained in p−1(V an) and geometrically irreducible. Let
Y be an irreducible subvariety of Pn

1 such that W is an irreducible component
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of Y an
∩�. By Corollary 5.7, Y is geometrically irreducible, W = Y an

∩� and W
is topologically dense in Y .

The proof that W is flat requires intermediate steps and will be concluded in
Proposition 8.11.

A crucial step will consist in proving that the stabilizer of W inside 0 has many
points of bounded heights (Proposition 8.10). To that aim, we define in Section 8.7
an F-subanalytic subset R of PGL(2, F)n . The definition, close to that of a similar
set in [Pila 2011; 2015], guarantees the following important property (Lemma 8.8):
if B is a small enough subset of R then, for every g ∈ B, the translate (g ·Y an)∩�

is contained in p−1(V an), and is independent of g. At this point, the maximality
of W is invoked.

The existence of such blocks is established by applying the p-adic Pila–Wilkie
theorem of [Cluckers et al. 2015]. We thus prove that R has many rational points
(Lemma 8.9); these points are constructed using the action of the Schottky groups
in a neighborhood of a boundary point ξ , applying material recalled in Section 6.
The construction of such a point ξ , performed in Lemma 8.5, is actually the starting
point of the proof.

The actual statement of Proposition 8.10 furnishes elements in 0 of a precise
form. Using Proposition 7.2, we will finally conclude the proof of Proposition 8.1.

8.4. By assumption, W =Y an
∩�; consequently, the j -th projection q j : (P1)

n
→P1

is constant on Y if and only if it is constant on W, if and only if the j -th projection
from X to X j is constant on V, and in this case, its image is an F-rational point
of P1, because W is geometrically irreducible. Deleting these constant factors, we
thus assume that there does not exist j ∈ {1, . . . , n} such that the j-th projection
q j : (P1)

n
→ P1 is constant on Y . Consequently, q j |Y : Y → P1 is surjective for

every j ; in particular, Y an meets q−1
j (L0 j ).

Let m = dim(Y ); by what precedes, we have m > 0, and Y an
6⊂�.

Lemma 8.5. Up to reordering the coordinates, there exists a smooth rigid point
ξ ∈Y an and a connected open neighborhood U of ξ in (Pn

1)
an such that the following

properties hold:

(1) The first component q1(ξ) of ξ belongs to the limit set L01 of 01.

(2) Letting J = {1, . . . ,m}, the projection qJ : Pn
1 → PJ

1 induces a finite étale
morphism from U ∩ Y an to its image in (PJ

1 )
an.

(3) For every j ∈ {1, . . . , n} and every point y ∈U ∩ Y an such that q j (y) ∈L0 j ,
one has q1(y) ∈L01 .

Proof. For every subset V of Y an, let us define a relation �V on {1, . . . , n} as
follows: i �V j if and only if, for every y ∈ V such that qi (y) ∈ L0i , one has
q j (y)∈L0 j . This is a preordering relation. If U ⊂ V ⊂Y an and i �V j , then i �U j .
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We define a decreasing sequence (V0, V1, . . . , Vn) of nonempty open subsets
of Y an and a sequence ( j0, j1, . . . , jn) of elements of {1, . . . , n}, such that for
every k, q jk (Vk) meets L0 jk

and 1, . . . , k �Vk jk .
We start with V0 = Y an. We have reduced to the case where q j (Y an) = P1 for

every j . In particular, q j (Y an) meets L0 j . We may take j0 = 1.
Let k≥0 be such that V0, V1, . . . , Vk and j0, j1, . . . , jk are defined. If k+1�Vk jk ,

we set Vk+1=Vk and jk+1= jk . Otherwise, one has k+1 6�Vk jk . Hence, there exists
y ∈ Vk such that qk+1(y)∈L0k+1 and q jk (y) 6∈L0 jk

. Let Vk+1= Vk∩(q jk )
−1(�0 jk

);
this is an open neighborhood of y in Vk such that q jk+1(Vk+1) meets L0 jk+1

. By
construction, no element z of Vk+1 satisfies q jk (z) ∈L0 jk

, so that jk �Vk+1 k + 1.
We then set jk+1 = k+ 1.

Let V = Vn and i = jn , and let y ∈ V be such that qi (y)∈L0i . Let Z be the dense
open subscheme of Y consisting of smooth points at which dqi does not vanish.
Then Z an is open and dense in Y an, and V ∩ Z an is open and dense in V ; hence,
qi (V ∩ Z an) is dense in qi (V ). Since L0i has no isolated points, we may assume
that y ∈ Z an. Rigid points are dense in q−1

i (qi (y))∩ V ∩ Z an; there exists a rigid
point ξ in (qi )

−1(qi (y))∩V ∩ Z an. Since qi (y) is a rigid point, the point ξ is a rigid
point of V ∩ Z an (and not only of its fiber of qi ). Moreover, qi (ξ)= qi (y) ∈L0i .

Since dqi does not vanish at ξ , there exists a subset J of {1, . . . , n} containing i
such that the projection qJ from V to (PJ

1 )
an is finite étale at ξ . One has Card(J )=

dim(V ) = m. Consequently, there exists an open neighborhood U of ξ in (Pn
1)

an

such that qJ induces a finite étale morphism from U ∩ Y an to its image in (PJ
1 )

an.
Reordering the coordinates, we may assume that i = 1 and J = {1, . . . ,m},

hence the lemma. �

8.6. Choose ξ , J = {1, . . . ,m} and U as in the previous lemma; we may even
assume that U is of the form U1 × · · · × Un , where, for each i , Ui is an open
neighborhood of qi (ξ) in Pan

1 .
Let F ′ be a finite extension of F such that ξ ∈ Y (F ′). Since W is geometrically

irreducible, WF ′ is an irreducible algebraic subvariety of �. It is also maximal.
Note that the flatness of WF ′ implies the flatness of W . Replacing F by F ′, we
thus may assume that ξ ∈ Y (F); then qJ induces a local isomorphism at ξ .

Let ϕ = (ϕ1, . . . , ϕn) : O→ Y an
∩U be an analytic section of qJ |Y an∩U , defined

on an open neighborhood O of qJ (ξ); we may assume that O =U1× · · ·×Um .
By condition (3) of Lemma 8.5, q1(ϕ

−1
j (L0 j ))⊂L01 for every j ∈ {1, . . . , n}.

8.7. Let G be the Q-algebraic group PGL(2)n , and let G0 be the algebraic subgroup
of G defined by

(g1, . . . , gn) ∈ G0 ⇔ g2 = · · · = gm = 1. (8.7.1)

We denote by q1, . . . , qn the projections of G to PGL(2). For every compact
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analytic domain F of �, we define a subset RF of G0(F) by

g ∈ RF ⇔ dim(g · Y an
∩F∩ p−1(V an))= m. (8.7.2)

Lemma 8.8. Let F be an affinoid domain of �.

(1) The set RF is an F-subanalytic subset of G0(F).

(2) For every g ∈ RF, one has (g · Y an)∩�⊂ p−1(V an).

(3) Let M⊂ RF be a subset whose Zariski closure is irreducible; for every g, h∈M ,
one has g · Y = h · Y .

Proof. (1) The sets V and Y are algebraic over F ; hence, V (Cp) and Y (Cp)

are rigid F-subanalytic. Since F is affinoid, the morphism p|F defines a rigid
F-subanalytic map from F(Cp) to V (Cp), so that (F∩ p−1(V an))(Cp) is a rigid
F-subanalytic set. Consequently, taking Cp-points, (g · Y an

∩ F ∩ p−1(V an))g

furnishes a rigid F-subanalytic family of rigid F-subanalytic subsets of �(Cp),
parameterized by G0(Cp). By b-minimality, the set of points g ∈ G0(Cp) such that
dim(g ·Y an

∩F∩ p−1(V an))=m is a rigid F-subanalytic subset of G0(Cp). It then
follows from Lemma 4.2 that RF is an F-subanalytic subset of G0(F).

(2) Let g ∈ RF and let us prove that (g · Y an) ∩� ⊂ p−1(V an). Since g · Y an is
irreducible and g · Y an

∩ F has dimension m = dim(g · Y an), this intersection is
Zariski dense in g · Y an. Moreover, there exists a finite extension F ′ of F such that
g · Y an

F ′ ∩F(F
′) is Zariski dense in YF ′ (it suffices that g · Y an

∩F admits a smooth
F ′-point), so that the Zariski closure of g ·Y an

∩F(F ′) in (Pn
1)F ′ is equal to g ·YF ′ .

Moreover, g · Y (F ′)∩F(F ′) is F ′-semialgebraic. Hence, Proposition 5.8 implies
that g ·Y an

F ′ ∩�F ′ ⊂ p−1
F ′ (V

an
F ′ ). Since p is defined over F and g ∈G(F), this implies

that (g · Y an)∩�⊂ p−1(V an).

(3) As a subset, (M · Y an)∩� is contained in p−1(V an). By Proposition 5.8, its
Zariski closure Y ′ satisfies (Y ′)an

∩�⊂ p−1(V an) as well. Since Y and the Zariski
closure of M are geometrically irreducible, Y ′ is geometrically irreducible.

Let g ∈M ; then Y an
⊂ g−1 M ·Y an

⊂ g−1
·(Y ′)an, and hence W ⊂ g−1

·(Y ′)an
∩�.

By maximality of W , one has W = g−1
· (Y ′)an

∩�. This implies g ·Y = Y ′. Thus
g · Y = h · Y for every g, h ∈ M . �

We return to the context of Section 8.6. In particular, ξ is a point of Y (F) such
that q1(ξ) ∈L01 , and the restriction to Y of the projection to the first m coordinates
is étale at ξ , with a local analytic section ϕ defined on U1× · · ·×Um .

Lemma 8.9. There exist a real number c > 0, fundamental sets Fi ⊂ �0i and a
subset ϒ of RF ∩0, where F=

∏
Fi , such that the following hold:

(1) For all T large enough, one has Card(ϒT )≥ T c, where ϒT denotes the set of
all γ ∈ ϒ such that H(γ )≤ T .
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(2) The projection q1 is injective on ϒ .

(3) For all j ∈ {1, . . . , n} such that q j (ξ) 6∈L0 j , one has Card(q j (ϒ))= 1.

Recall that there exists a number field K contained in F such that0⊂PGL(2,K )n,
and H is induced by a fixed height function on PGL(2,Q)n . In particular, Lemma 8.9
implies that the subset RF of PGL(2, F)n has many K -rational points, in the sense
of Section 4.5.

Proof. Let q be the genus of X01 ; by Proposition 6.8, there exists a basis α1, . . . , αq

of 01, an open neighborhood U ′1 of q1(ξ) which is contained in U1 and stable under
the action of α1, . . . , αq , and a fundamental set F1 for 01 contained in U ′1. For
simplicity of notation, we now assume that U1 =U ′1.

We have introduced in Section 8.6 a local analytic section

ϕ = (ϕ1, . . . , ϕn) :U1× · · ·×Um→ Y an
∩U1× · · ·×Un

of the projection qJ : Y → PJ
1 , where J = {1, . . . ,m}. Let j ∈ {1, . . . , n} be such

that q j (ξ) 6∈L0 j . Then q j (ξ) has a compact analytic neighborhood U ′j contained
in �0 j . Shrinking U1, . . . ,Um if necessary, we assume that the image of ϕ j is
contained in U ′j for every such j .

Let a′ = (a1, . . . , an) ∈ W be a rigid point that belongs to the image of ϕ and
such that a1 ∈ F1. Let a = (a1, . . . , am); we have a′ = ϕ(a). For j ∈ {2, . . . , n},
we also choose a fundamental set F j that contains a j .

We claim that we can complete any element γ1 ∈ F1 which is a positive word γ1

in α1, . . . , αq to an element γ ∈ 0 such that γ−1
∈ RF and H(γ )� c`01 (γ1), for

some real number c.
Let us now prove the asserted claim. For any positive word γ1 in α1, . . . , αq , one

has γ1 ·a1 ∈U1; in particular, we can consider the point a(γ1)= (γ1 ·a1, a2, . . . , am)

of U1× · · ·×Um and its image ϕ(a(γ1)) under the section ϕ.
By Section 6.3, there exists a real number c1 ≥ 1 such that δ(α j · a1;L01) ≥

c−1
1 δ(a1;L01), uniformly in a1. By induction on the length `01(γ1) of the positive

word γ1, this implies the inequality

δ(γ1 · a1;L01)≥ c
−`01 (γ1)

1 . (8.9.1)

We first set γ2 = · · · = γm = 1.
Let j>m. Letψ j :U1→U j be the analytic map withψ j (x)=ϕ j (x, a2, . . . , am).

By construction (Lemma 8.5), if ψ j (x) = ϕ j (x, a2, . . . , am) ∈ L0 j , one has
x = q1(x, a2, . . . , am) ∈L01 . In other words, one has ψ−1

j (L0 j )⊂L01 . Applying
Lemma 6.11 to ψ j , we obtain an inequality of the form

δ(ϕ j (x, a2, . . . , am);L0 j )� δ(x;L01)
k,
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for some integer k ≥ 0 and all x ∈U1. In particular,

δ(ϕ j (a(γ1));L0 j )� δ(γ1 · a1;L01)
k . (8.9.2)

By Proposition 6.8, there exists γ j ∈ 0 j such that ϕ j (a(γ1)) ∈ γ j · F j . By
Proposition 6.6 and Lemma 6.9, one has

H(γ j )� δ(ϕ j (a(γ1));L0 j )
−κ , (8.9.3)

where κ is a positive real number, independent of γ1. By equations (8.9.1), (8.9.2)
and (8.9.3), we thus have

H(γ j )� δ(γ1 · a1;L0 j )
−kκ
� c

`01 (γ1)kκ
1 . (8.9.4)

Let c = ckκ
1 .

Let γ = (γ1, . . . , γn) ∈ 0. By what precedes, H(γ ) � c`01 (γ1). Moreover,
ϕ j (a(γ1)) ∈ γ j · F j for every j ; this follows from the fact that a j ∈ F j if j ≤ m,
and from the construction of γ j if j > m.

Let us prove γ−1
∈ RF. One has W ⊂ p−1(V an) by assumption; since γ ∈ 0,

this implies γ−1
·W ⊂ p−1(V an). Consequently,

γ−1
· Y an
∩F∩ p−1(V an)⊃ γ−1

·W ∩F∩ p−1(V an)= γ−1
·W ∩F.

The analytic morphism

U1× · · ·×Um→W, (x1, . . . , xm) 7→ ϕ(γ1 · x1, x2, . . . , xm)

is an immersion and maps the point a = (a1, . . . , am) to the point ϕ(a(γ1)) ∈ γ ·F.
Since a is a rigid point, this morphism maps a neighborhood of a into γ ·F, so that
dim(W ∩ γ ·F)≥ m. This proves γ−1

∈ RF.
Applying Lemma 6.9 to estimate H(γ1), we thus have shown the existence of

a positive real number c such that for every positive word γ1 in α1, . . . , αq , there
exists an element γ = (γ1, . . . , γn) completing γ1 such that H(γ )� c`01 (γ1) and
γ−1
∈ RF ∩0.

Let ϒ ′ be the set of all such elements γ−1, where γ1 ranges over positive words
in α1, . . . , αq . It is a subset of RF∩0. By construction, the projection q1 is injective
on ϒ ′. Moreover, since the number of positive words of length ` in α1, . . . , αq

is q`, the cardinality of ϒ ′T is bounded from below by q log(T )/ log(c)
= T log(q)/ log(c),

and the exponent of T is strictly positive, since q ≥ 2. Finally, let j be such
that q j (ξ) 6∈ L0 j . By construction, ϕ j (a(γ1)) ∈ γ jF j ; hence γ jF j meets U ′j . By
Corollary 6.7, the set S j of such elements γ j in 0 j is finite. It follows that there is
a subset ϒ of ϒ ′ that satisfies the conclusion of the proposition. �

Proposition 8.10. Let G ′0 be the subgroup of G0 consisting of elements (g j ) such
that g j = id if q j (ξ) 6∈L0 j . Both the stabilizer of W inside G ′0 ∩0 and its image
in 01 under the first projection have many rational points.



A nonarchimedean Ax–Lindemann theorem 1993

Proof. Let c, ϒ,Fi ,F=
∏

Fi and R = RF be as given by Lemma 8.9; let T0 > 1
be such that Card(ϒT )≥ T c for T ≥ T0.

Let K be a number field contained in F such that all groups 0 j are contained
in PGL(2, K ); the points of R ∩0 are K -rational points. Recall that for every real
number T , we denote by R(K ; T ) the set of K -rational points of R of height ≤ T .
One has ϒT = ϒ ∩ R(K ; T ).

Since R is F-subanalytic (Lemma 8.8), it is also Qp-subanalytic and we may
apply the p-adic Pila–Wilkie theorem of [Cluckers et al. 2015], as stated in
Theorem 4.7. Thus let s ∈ N, d ∈ R, ε > 0 and B ⊂ R × Qs

p be a family of
blocks such that for every T > 1, there exists a subset 6T ∈ Qs

p of cardinality
< dT ε such that R(K ; T )⊂

⋃
σ∈6T

Bσ . Let also t ∈ N and Z ⊂ G0(F)×Qt
p be

a semialgebraic subset such that for every σ ∈Qs
p, there exists τ ∈Qt

p such that
Bσ ⊂ Zτ and dim(Bσ )= dim(Zτ ). Let finally r be an upper bound for the number
of irreducible components of the Zariski closure of the sets Zτ , for τ ∈Qt

p.
Let T > T0. Since ϒT ⊂ R(K ; T ), by the pigeonhole principle, there exists

σ ∈6T such that

Card(ϒT ∩ Bσ )≥
Card(ϒT )

Card(6T )
≥

1
d

T c−ε.

Moreover, the Zariski closure of Bσ in PGL(2)nF has at most r irreducible com-
ponents. Consequently, we may choose such an irreducible component M whose
trace M on Bσ satisfies

Card(ϒT ∩M)≥
1

dr
T c−ε.

(Observe that M is indeed the Zariski closure of M .)
Let g ∈ϒT ∩M . Since the Zariski closure of M is irreducible and M ⊂ RF, it

follows from Lemma 8.8 that the stabilizer of W inside G0∩0 contains g−1 M ; hence
g−1(ϒT ∩M). By construction, the image of g−1(ϒT ∩M) under the projection
of index j is {id} if q j (ξ) 6∈L0 j . This shows in particular that the stabilizer of W
inside G ′0 ∩ 0 contains g−1(ϒT ∩ M). This set contains ≥ T c−ε/dr points, and
their heights are� T 2; the same holds for its image by the first projection, since
this projection is injective on g−1(ϒ ∩M).

We thus have shown that the stabilizer of W inside G ′0 ∩0 has many rational
points, as well as its image under the first projection, concluding the proof. �

Proposition 8.11. The subvariety W is flat.

Proof. We have constructed in Section 8.6 an analytic map ϕ :U1×· · ·×Um→ Y ,
which is a local section of the projection to the m first coordinates.

Let a ∈
∏m

i=2(�0i ∩Ui ); let us denote by Wa the fiber of W over a under the
projection to

∏m
i=2 Pan

1 , and Ya similarly. When a varies, the number of irreducible
components of Ya is uniformly bounded.
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Let ψa : (U1)H (a)→ Y an
a be the analytic morphism deduced from ϕ. We claim

that the components of ψa are either constant or homographies.
Let g ∈ G0 ∩ 0 be an element such that g ·W = W , g1 6= id and g j = id if

q j (ξ) 6∈ L0 j (Proposition 8.10). Since g · W = W , one has g · Y = Y . Hence
g ·Wa =Wa and g · Ya = Ya . The element g induces a commutative diagram

Ya Ya

(P1)H (a) (P1)H (a)

g

g1

ψa ψa

where the section ψa is analytic and defined over the open subset (U1)H (a) of
(P1)

an
H (a). Let Y ′a be the irreducible component of Ya that contains ψa(ξ1); it is

geometrically irreducible. Recall that g1 has infinite order; replacing g1 and g by
some fixed power, we may thus assume that g · Y ′a = Y ′a .

By Proposition 7.2, either Y ′a→ (P1)H (a) is an isomorphism and the components
of its inverse are constant or homographies, or there exists a subset 1 of P1(H (a))
such that Card(1)= 2 and g1(1)=1 for every element g= (g1, . . . , gn)∈G ′0∩0
such that g ·W =W and g · Y ′a = Y ′a . Let us assume that we are in the latter case.
Using that 01⊂PGL(2, F), we see that1⊂P1(F). By Lemma 6.10, the projection
to 01 of the stabilizer of W inside G ′0 ∩0 has few rational points, contradicting
Proposition 8.10.

We thus have shown that the components of the analytic map ψa are either
constant or given by homographies.

Let j ∈ {m+ 1, . . . , n}.
First assume that q j (ξ)∈�0 j . Then g j = id, whence the relation ψa, j =ψa, j ◦g1.

Since g1 6= id, this implies that ψa, j is constant, i.e., ϕ j does not depend on the
coordinate x1. Since U is reduced, the morphism ϕ j is deduced by pull-back of an
analytic map θ j :

∏m
i=2 Ui → Pan

1 .
Let us then assume that q j (ξ) ∈L0 j . Since the j-th component of ϕ takes the

value q j (ξ), the section ψa, j cannot be constant. It is thus a homography τ j,a .
A priori, one has τ j,a ∈ PGL(2,H (a)) for every a. However, by condition (3)

of Lemma 8.5, one has ϕ−1
j (L0 j )⊂L01 . The limit sets L01 and L0 j are contained

in P1(F) and have no isolated points, so that τ−1
j,a maps an infinite subset of P1(F)

into P1(F); this implies that τ j,a ∈ PGL(2, F).
Observe that for x ∈ U1 ∩ P1(F), one has τ j,a · x = ψa, j (x) = ϕ(x, a). In

particular, the assignment a 7→ τ j,a is induced by an analytic morphism. Since it
takes its values in PGL(2, F), it is constant.

Let J ′ and J ′′ be the set of all j ∈ {m+1, . . . , n} such that q j (ξ) belongs to L0 j

and�0 j , respectively. Let�′=�01×
∏

j∈J ′ �0 j and�′′=
∏m

i=2�0i×
∏

j∈J ′′ �0 j ;
similarly, write X ′= X1×

∏
j∈J ′ X j and X ′′=

∏m
i=2 X i×

∏
j∈J ′′ X j , and decompose



A nonarchimedean Ax–Lindemann theorem 1995

the projection p :�→ X as (p′, p′′), where p′ :�′→ X ′ and p′′ :�′′→ X ′′ are
the natural projections.

Let Z ′ be the graph in
(
P1 ×

∏
j∈J ′ P1

)an of (τ j ) j∈J ′ and Z ′′ the graph in(∏m
i=2 P1 ×

∏
j∈J ′′ P1

)an of (θ j ) j∈J ′′ . Let Y ′ and Y ′′ be the Zariski closure of
Z ′ and Z ′′, let W ′ and W ′′ be their traces in �′ and �′′, and let V ′ and V ′′ be
the Zariski closures of p′(Z ′) and p′′(Z ′′). It is clear that Y ′ = Z ′ is the curve
in P1×

∏
j∈J ′ P1 (with coordinates x1 and x j for j ∈ J ′) given by the equations

x j = τ j (x1), and W ′ is its trace on �′. In particular, W ′ is flat.
By construction, Z ′× Z ′′ is a subspace of Y an which meets W in a Zariski dense

subset of itself; hence Y = Y ′ × Y ′′ and W = � ∩ Y an
= W ′ ×W ′′. Moreover,

p(W ) = p′(W ′) × p′′(W ′′) ⊂ V ; hence V ′ × V ′′ ⊂ V . Consequently, W ′′ is a
maximal algebraic irreducible subset of (p′′)−1((V ′′)an). By induction, W ′′ is flat.

Consequently, W =W ′×W ′′ is flat, as was to be shown. �

9. A characterization of geodesic subvarieties

9.1. Let F be a finite extension of Qp and let (0i )1≤i≤n be a finite family of
arithmetic Schottky subgroups of ranks ≥ 2 in PGL(2, F) Let us set �=

∏n
i=1�0i ,

X =
∏n

i=1 X0i , and let p :�→ X an be the morphism deduced from the morphisms
p0i :�0i → X an

0i
.

Theorem 9.2. Let W be a Zariski closed subvariety of �, geometrically irreducible.
Then the following properties are equivalent:

(i) The variety W is geodesic.

(ii) Its projection p(W ) is algebraic.

(iii) The dimension of the Zariski closure of p(W ) in X is equal to dim(W ).

Proof. Let us assume that W is geodesic and show that p(W ) is algebraic.
We may assume that no projection p0i is constant on W . Define a relation ∼ on
{1, . . . , n} given by i ∼ j if there exists g ∈ PGL(2, F) (necessarily unique) such
that g0i g−1 and 0 j are commensurable and z j = g · zi for every z ∈W . This is an
equivalence relation. Fix an element j in each equivalence class; for i such that
i ∼ j , we may replace 0i by its conjugate g0i g−1 and assume that z j = zi on W .
This shows that W and � decompose as a product indexed by the set of equivalence
classes of the following particular situation: all the subgroups 0i are commensurable,
and W is the diagonal of �. It thus suffices to treat this particular case.

Let 00=
⋂

i 0i and X0 be the algebraic curve associated with�00/00. Then, for
every i , the morphism fi :W→ X an

i deduced from f = p|W factors as the composi-
tion of the uniformization p0 :�00→ X an

0 and of a finite morphism X an
0 → X an

i . By
GAGA [Berkovich 1990, Corollary 3.5.2; Poineau 2010, Appendix], a finite analytic
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morphism of algebraic curves is algebraic; consequently, there exists a finite mor-
phism qi : X0→ X i such that fi = qan

i ◦ p0. Then p(W ) is the image of X0 by the fi-
nite morphism q= (q1, . . . , qn) : X0→ X , hence is algebraic. This shows that (i) im-
plies (ii). Since it is clear that (ii) implies (iii), it remains to prove that (iii) implies (i).

Let us assume now that the dimension of the Zariski closure V of p(W ) in X is
equal to the dimension of W . By construction, W is a maximal irreducible algebraic
subvariety of p−1(V an). By Proposition 8.1, W is flat. A similar analysis as in the
proof of the first implication shows that there is a partition of the indices {1, . . . , n}
under which W decomposes as a product of flat curves and points. Since it suffices
to prove that each of these curves is geodesic, we may assume that W is a flat curve
of the form

W = {(z, g2 · z, . . . , gn · z)} ∩�,

where g2, . . . , gn ∈ PGL(2, F).
First assume that n= 2. Let then g ∈ PGL(2, F) be such that W = {(z, g ·z)}∩�

and let us prove that 02 and g01g−1 are commensurable, a property which is
equivalent to the finiteness of both orbit sets 02\02g01 and 01\01g−102.

Let us argue by contradiction and assume that 02\02g01 is infinite. (The other
finiteness is analogous, or follows by symmetry.) Fix a rigid point z ∈ �01 . Let
A⊂01 be a set such that g A is a set of representatives of 02\02g01; by assumption,
A is infinite. Since 0\W ⊂ V an, the algebraic variety V contains the infinite set of
points p(a · z, g · az)= (p1(z), p2(ga · z)), for a ∈ A; hence it contains its Zariski
closure {p1(z)}× X2. Since this holds for every z ∈W , we deduce that V contains
X1× X2, contradicting the assumption that dim(W )= 1.

Let us now return to the general case. To prove that W is geodesic, it suffices
to establish that the subgroups 0 j and g j01g−1

j are commensurable for every
j ∈ {2, . . . , n}. Up to renumbering the indices, it suffices to treat the case j = 2. Let
�′=�01×�02 , let p′ :�′→ X ′= X1×X2 be the uniformization map, and denote
by π the projections from� to�′ and from X to X ′. Let W ′=π(W ) and V ′=π(V ).
By Chevalley’s theorem, V ′ is an algebraic curve in X ′. Obviously, W ′ is a flat curve
contained in (p′)−1((V ′)an), and hence is a maximal irreducible algebraic subset of
(p′)−1((V ′)an)∩�′. By the case n = 2, the Schottky groups 02 and g201g−1

2 are
commensurable, as was to be shown. This concludes the proof of Theorem 9.2. �

Corollary 9.3. Let V be an irreducible curve in X. Then every irreducible alge-
braic subvariety of �Cp which is maximal among those contained in p−1(V an

Cp
) is

geodesic.

Proof. Let W0 be an irreducible algebraic subvariety of �Cp , maximal among
those contained in p−1(V an

Cp
); let us prove that W0 is geodesic. We may as-

sume that dim(W0) > 0. Since p is surjective and has discrete fibers, one has
dim(p−1(V an

Cp
))= dim(V an

Cp
), hence dim(W0) = 1, so that W0 is an irreducible
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component of p−1(V an)Cp . By Theorem 7.16 of [Ducros 2009], there exists a
finite extension E of F and an irreducible component W of p−1(V an)E such that
W0 =WCp .

By Theorem 9.2, W is geodesic. Consequently, W0 is geodesic. �

Remark 9.4. This corollary suggests that the main results of the paper extend to
maximal algebraic irreducible subvarieties of p−1(V an)Cp , without assuming that
they are defined over a finite extension of F .
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