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As we explain, when a positive integer n is not squarefree, even over C the moduli
stack that parametrizes generalized elliptic curves equipped with an ample cyclic
subgroup of order n does not agree at the cusps with the 00(n)-level modular
stack X0(n) defined by Deligne and Rapoport via normalization. Following
a suggestion of Deligne, we present a refined moduli stack of ample cyclic
subgroups of order n that does recover X0(n) over Z for all n. The resulting
modular description enables us to extend the regularity theorem of Katz and
Mazur: X0(n) is also regular at the cusps. We also prove such regularity for X1(n)
and several other modular stacks, some of which have been treated by Conrad
by a different method. For the proofs we introduce a tower of compactifications
E``m of the stack E`` that parametrizes elliptic curves—the ability to vary m in
the tower permits robust reductions of the analysis of Drinfeld level structures on
generalized elliptic curves to elliptic curve cases via congruences.

Chapter 1. Introduction 2001
Chapter 2. Isogenies of generalized elliptic curves 2006
Chapter 3. Compactifications of the stack of elliptic curves 2019
Chapter 4. Modular descriptions of modular curves 2036
Chapter 5. A modular description of X00(n) 2066
Chapter 6. Implications for coarse moduli spaces 2082
Acknowledgements 2086
References 2087

Chapter 1. Introduction

1.1. Algebraic stacks that refine X0(n). The study of the compactification X0(n)
of the coarse moduli space of the algebraic stack Y0(n) that parametrizes elliptic
curves equipped with a cyclic subgroup of order n is key for many arithmetic
problems, so one seeks to understand the arithmetic properties of X0(n), especially
over Z. For this, it is desirable to conceptualize the construction of X0(n) by
realizing it as a coarse moduli space of an algebraic stack that compactifies Y0(n).
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The sought compactifying stack X0(n) was defined by Deligne and Rapoport
[1973, IV.3.3] via a normalization procedure. However, X0(n) lacks an a priori
moduli interpretation, so instead one often considers the stack X0(n)naive that
parametrizes generalized elliptic curves whose smooth locus is equipped with a
cyclic subgroup of order n that is ample, i.e., meets every irreducible component of
every geometric fiber. Even though X0(n)naive is algebraic, has X0(n) as its coarse
moduli space, and agrees with X0(n) on the elliptic curve locus, it seems to have
been overlooked that

If n is not squarefree, then X0(n) and X0(n)naive are genuinely different,
even over C.

1.2. Pathologies of X0(p2)naive. To explain the difference, we set n := p2 for
some prime p, let X (1) denote the stack that parametrizes those generalized elliptic
curves whose geometric fibers are integral, and consider the structure morphism

c :X0(p2)naive
→X (1)

which in terms of the moduli interpretation forgets the subgroup and contracts the
generalized elliptic curve with respect to the identity section. We claim that the
morphism c is not representable.

To see this, let E be the standard p-gon over C and let ζp2 ∈ C× be a primitive
root of unity of order p2. Then E sm

= Gm ×Z/pZ and each of the µp worth of
automorphisms of E fixing Gm × {0} stabilizes the cyclic subgroup 〈(ζp2, 1)〉 of
order p2. Each such automorphism contracts to the identity, so c is not representable.

In contrast, the morphism

X0(p2)→X (1)

is representable by construction, so the X (1)-stacks X0(p2)naive and X0(p2) are not
isomorphic. The same p-gon example carried out over Fp shows that X0(p2)naive

is not even Deligne–Mumford (whereas X0(p2) is), a pathology that has already
been pointed out in [Edixhoven 1990, 1.1.1.1; Conrad 2007].

1.3. A modular description of X0(n). One of the main goals of this paper is to
refine the definition of X0(n)naive to obtain a moduli interpretation of X0(n) even
when n is not squarefree. The elliptic curve locus needs no refinement, so the
issue is to incorporate the cusps in a way that avoids the nonrepresentability of
c phenomenon. For this, we follow a suggestion of Deligne [2015]. To present
Deligne’s idea, we assume that n = p2 for a prime p and work over Z[1/p].

In vague terms, the idea is to subsume the automorphisms causing the nonrep-
resentability of c into the moduli problem. To make this possible, the data being
parametrized will involve algebraic stacks and not merely schemes. In precise
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terms, the moduli problem that in Chapter 5 will be proved to recover X0(p2)Z[1/p]

assigns to every Z[1/p]-scheme S the groupoid of tuples(
E→ S, G, S(1), S(p), S(p2), G(1), G(p), G(p2)

)
consisting of:

• a generalized elliptic curve E→ S;

• a cyclic subgroup G ⊂ ES−S∞ of order p2 over the elliptic curve locus S−S∞;

• open subschemes S(1), S(p), and S(p2) of S that cover S, have S− S∞ as their
pairwise intersections, and such that the degenerate geometric fibers of ES(1)
and ES(p) are 1-gons and those of ES

(p2)
are p2-gons;

• ample cyclic subgroups G(1) ⊂ E sm
S(1) and G(p2) ⊂ E sm

S
(p2)

of order p2 that recover
G over S− S∞;

• an ample cyclic subgroup G(p) ⊂ Esm
(p) of order p2 of the universal generalized

elliptic curve E(p) whose degenerate geometric fibers are p-gons and whose
contraction is ES(p) , subject to the requirement that G(p) recovers G over S−S∞

(over which E(p) is identified with E).

In essence, the moduli problem parametrizes generalized elliptic curves equipped
with an ample cyclic subgroup of order p2 with the caveat that over the part
of the degeneracy locus prone to the nonrepresentability of c the subgroup has
been upgraded to live inside a suitable universal “decontraction” E(p) (which is
an algebraic stack and not a scheme). The role of the S(pi ) is to remember the
subdivision of the degeneracy locus S∞— without S(1) and S(p) we cannot single
out those 1-gon degenerate geometric fibers of E that were “meant” to be p-gons
but had to be “upgraded” in order to avoid the nonrepresentability of c.

1.4. Incorporating bad characteristics. After the work of Drinfeld and of Katz and
Mazur, the extension of the above modular description of X0(p2)Z[1/p] to X0(p2)

is a matter of technique. However, new difficulties at the cusps in characteristic
p force us to impose an additional coherence requirement on G(p), a requirement
that holds automatically away from p and also on the elliptic curve locus (see
Section 5.5 and Lemma 5.6) and that seems well suited for the analysis of G(p) even
over Z[1/p]. With this proviso, we prove that for any n the analogue of the moduli
problem described in Section 1.3 gives a moduli interpretation for X0(n). We
then use this moduli interpretation to prove the following extension of a regularity
theorem of Katz and Mazur:

Theorem 1.5 (Theorem 5.13(a)). The Deligne–Mumford stack X0(n) is regular.

In fact, X0(n)Z[1/n] is even Z[1/n]-smooth by [Deligne and Rapoport 1973,
IV.6.7], whereas the elliptic curve locus Y0(n) is regular by [Katz and Mazur 1985,
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5.1.1], so Theorem 1.5 was known away from the closed substack of the cusps that
lies in characteristics dividing n.

In the proof of Theorem 1.5, the eventual source of regularity is the combination
of [Deligne and Rapoport 1973, V.4.13] and [Katz and Mazur 1985, 5.1.1] that
proves the regularity of another modular stack X (n). The reduction to X (n) rests
on the moduli interpretation of X0(n) and on the regularity of Y0(n). In particular,
no stage of the argument requires any computations with universal deformation
rings, other than what comes in from [Katz and Mazur 1985, Chapters 5–6] through
our reliance on the regularity of Y (n) and Y0(n).

We use Theorem 1.5 and the moduli interpretation of X0(n) to prove that
the coarse moduli space X0(n) is regular in a neighborhood of the cusps (see
Theorem 6.7). This regularity is not new (see the introduction of Chapter 6) but our
proof seems more conceptual.

1.6. The compactifications E``m . We have been vague about the base of the uni-
versal “decontraction” E(p). For the construction of this base in general (beyond
n = p2), it is natural to fix an m ∈ Z≥1 and to consider the Z-stack E``m that
parametrizes those generalized elliptic curves whose degenerate geometric fibers
are m-gons. We prove in Theorem 3.1.6 that E``m is algebraic, as well as proper
and smooth over Z, albeit is not Deligne–Mumford unless m = 1. Thus, each
E``m compactifies the stack E`` that parametrizes elliptic curves, and E``1 is the
compactification that is sometimes called M1,1.

As we describe in Section 3.2, the compactifications E``m form an infinite tower,
with transition maps given by contractions of generalized elliptic curves. This tower
is the backbone of our study of X0(n) and of several other “classical” modular
curves. For these curves, the most important moduli-theoretic phenomenon that is
not seen on the elliptic curve locus is the fact that “forgetful” contractions change
generalized elliptic curves that underlie level structures. The ability to vary m in the
tower {E``m}m|m′ allows us to isolate the part of this phenomenon that has nothing
to do with level structures. The remaining part that is specific to the level structure
at hand may then be studied via “congruences” that reduce to the elliptic curve
case.

1.7. Other modular curves. To illustrate the utility of E``m , let us consider the
stack X (n)naive that parametrizes pairs consisting of a generalized elliptic curve
E→ S with n-gon degenerate geometric fibers and a Drinfeld (Z/nZ)2-structure
on E sm

[n]. (In the end, X (n)naive agrees with X (n) mentioned earlier and gives
X (n) a moduli interpretation.) Using the work of Katz and Mazur, we prove via
“mod n congruences with elliptic curves” that the forgetful map

X (n)naive
→ E``n
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is representable and finite locally free of rank # GL2(Z/nZ). It follows that
X (n)naive is algebraic, proper and flat over Z, and even Cohen–Macaulay. Other
proofs of these properties of X (n)naive have been given by Conrad [2007]: the proof
of the algebraicity used Hilbert schemes via tricanonical embeddings, whereas the
Cohen–Macaulay property required a detailed analysis of the universal deformation
rings at the cusps (in addition to the work of Katz and Mazur on the elliptic
curve locus).

The relations with E``m together with the “congruence method” that crucially
uses the work of Katz and Mazur allow us to reprove the main results of [Conrad
2007] in Chapter 4. These include the moduli interpretations and the regularity of
the modular stacks X (n) and X1(n) (as well as some variants) and the construction
of Hecke correspondences for X1(n). The latter takes advantage of the theory of
isogenies of generalized elliptic curves developed in Chapter 2. Away from the
level, the moduli interpretations and the regularity have been proved by Deligne and
Rapoport [1973, IV.3.5 and IV.4.14]; away from the cusps, they have been proved
by Katz and Mazur [1985, 5.1.1]. Prior to the work of Conrad, [2007], the moduli
interpretations and the regularity of X (n) and X1(n) (among others) have been
considered in an unfinished manuscript of Edixhoven [2001, especially 2.1.2].

1.8. Reliance on the literature. For what concerns generalized elliptic curves and
Drinfeld level structures on them, we wish to explicate the logical dependence of
our work on the three main references that we use: [Deligne and Rapoport 1973;
Katz and Mazur 1985; Conrad 2007].

• We rely on [Deligne and Rapoport 1973] almost in its entirety; the sections of
[op. cit.] that are logically independent from the work of this paper are II.§3,
V.§2–3, VI.§2–6, and VII.§3–4.

• We make essential use of the results of [Katz and Mazur 1985, Chapters 1–6]
and extend some of them to generalized elliptic curves (see, in particular,
Section 4.2), but have no need for the results of [Katz and Mazur 1985,
Chapters 7–14] (other than for comparison in Proposition 6.3 and Remarks 6.5
and 6.8).

• We use some auxiliary general results from sections 2.1 and 2.2 of [Conrad
2007] but the rest of [op. cit.] is logically independent from our work (as
mentioned in Section 1.7, we give different proofs to the main results of
[Conrad 2007]).

1.9. Notation and conventions. We let E`` denote the Z-stack that, for variable
schemes S, parametrizes elliptic curves E→ S. More precisely, for a scheme S,
the objects (resp. the morphisms) of the groupoid E``(S) are the elliptic curves
E→ S (resp. the isomorphisms between elliptic curves over S) and, for a scheme
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morphism S′→ S, the induced functor E``(S)→ E``(S′) is E 7→ E×S S′. We use
the analogous meaning of “parametrizes” when defining other stacks. Other than
in the introduction, we use the notation X00(n) (resp. X01(n), etc.) introduced in
Section 4.1.2 for stacky modular curves defined via normalization and the notation
X0(n) (resp. X1(n), etc.) for stacks defined in terms of a moduli problem; once
we prove that X00(n) =X0(n) (and similarly in the other cases), we use the two
notations interchangeably.

We use the definition of an fpqc cover for which all Zariski covers are fpqc;
explicitly, S′→ S is an fpqc cover if it is flat and every affine open U ⊂ S is the
union of images of finitely many affine opens of S′. An S-scheme S′ is an fppf
cover (or simply fppf) if S′→ S is faithfully flat and locally of finite presentation.
For a scheme S, we let Sred denote its associated reduced scheme. For an S-group
algebraic space G, we let G0 denote the subsheaf of sections that fiberwise factor
through the identity component. We let X sm and 1X /S denote the smooth locus
and the diagonal of a morphism X → S. For a field k, we let k denote a choice of
its algebraic closure. A geometric point is the spectrum of an algebraically closed
field. For an n ∈ Z≥1, we set φ(n) := #(Z/nZ)×.

For what concerns algebraic stack and algebraic space conventions, we follow [SP
2005–], except that “representable” stands for “representable by algebraic spaces.”
In particular, quasicompactness or separatedness of the diagonal are not part of the
definition, but in practice end up being present (along with even stronger properties).
An algebraic stack is Deligne–Mumford if its diagonal is unramified — for the
equivalence with the étale atlas definition in the presence of quasicompactness
and separatedness of the diagonal, see [Laumon and Moret-Bailly 2000, 8.1]. The
relative dimension (at a point) of a smooth morphism of algebraic stacks is the
difference of the relative dimensions (at a lift of the point) of the morphisms from a
smooth atlas of the source, cf. [Laumon and Moret-Bailly 2000, bottom of p. 98].

Chapter 2. Isogenies of generalized elliptic curves

The main goal of this chapter is to expose a robust theory of isogenies of generalized
elliptic curves. This theory is the subject of Section 2.2 and will be useful on several
occasions, particularly, for algebraizing homomorphisms of formal generalized
elliptic curves in Section 3.4 and for constructing Hecke correspondences for X1(n)
in Section 4.7. In order to prepare for the study of isogenies, in Section 2.1 we review
several basic concepts, such as that of a homomorphism of generalized elliptic
curves, and record some general results that will be useful throughout the paper.

2.1. Homomorphisms between generalized elliptic curves

In this section, we review basic definitions and properties of generalized elliptic
curves, building up to the notion of a homomorphism, which will be studied in
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Section 2.2. We assume that the reviewed concepts are familiar, so we concentrate
on those aspects that will be used later. We begin with the notion of an n-gon,
which is needed in order to define generalized elliptic curves. Informally, an n-gon
is the curve obtained by gluing n-copies of P1 in a cyclic manner: the point 0 of
the i-th copy gets identified with the point∞ of the (i+1)-st copy.

Definition 2.1.1. For an n ∈ Z≥1 and an scheme S, the standard n-gon over S is
the coequalizer of ⊔

Z/nZ S �� //
� � // ⊔

Z/nZ P1
S,

where the top (resp. the bottom) closed immersion includes the i-th copy of S as
the 0 (resp. the∞) section of the i-th (resp. (i+1)-st) copy of P1

S . A Néron n-gon
over S (or an n-gon over S) is an S-scheme isomorphic to the standard n-gon over
S. (We often omit “over S” if the base is implicit.)

Remark 2.1.2. Even though colimits usually do not exist in the category of schemes,
the ones used in Definition 2.1.1 do exist and their formation commutes with base
change in S. To see this, one checks directly (or with the help of [Ferrand 2003,
4.3]) that for n ≥ 2 the sought coequalizer is the base change to S of the gluing of⊔

i∈Z/nZ Spec
(
Z[X i , Yi ]/(X i Yi )

)
obtained by identifying the opens

Spec
(
Z
[
Yi ,

1
Yi

])
and Spec

(
Z
[
X i+1,

1
X i+1

])
via Yi = 1/X i+1 for every i ∈ Z/nZ, and one treats the n = 1 case by realizing the
standard 1-gon as the Z/nZ-quotient of the standard n-gon, cf. [Conrad 2007, top
of p. 215].

We recall the definition of a generalized elliptic curve, which is a central notion
for this paper.

Definition 2.1.3. A generalized elliptic curve over a scheme S is the data of

• a proper, flat, finitely presented morphism E→ S each of whose geometric
fibers is either a smooth connected curve of genus 1 or a Néron n-gon for some
n ≥ 1, and

• an S-morphism E sm
×S E

+
−→ E that restricts to a commutative S-group scheme

structure on E sm for which + becomes an S-group action,

such that via pullback of line bundles the action + induces the trivial action of E sm

on Pic0
E/S .

Remark 2.1.4. Our definition of a generalized elliptic curve is equivalent to the
one given in [Deligne and Rapoport 1973, II.1.12]: the difference is that we have
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imposed the requirement that E sm acts trivially on Pic0
E/S at the outset. In [loc. cit.]

this is replaced with the a priori milder requirement that on degenerate geometric
fibers every translation by a smooth point induces a rotation on the underlying
n-gon, which ends up being equivalent due to [Deligne and Rapoport 1973, II.1.7(ii)
and II.1.13].

The requirement about the triviality of the induced action on Pic0
C/S holds auto-

matically on a large part of E sm, namely, it always holds on the relative identity
component (E sm)0 — to see this, we apply [Deligne and Rapoport 1973, II.1.14]1

to Pic0
E/S ×S E sm to get the openness of the locus of E sm where the induced action

on Pic0
E/S is trivial, note that this locus is closed under the group law of E sm, and

conclude by noting that it contains the zero section. In particular, every elliptic
curve is a generalized elliptic curve, and a generalized elliptic curve E→ S is an
elliptic curve over the open of S over which E is smooth.

Remark 2.1.5. The standard n-gon is canonically a generalized elliptic curve: due
to its description recalled in Remark 2.1.2, its smooth locus is Gm ×Z/nZ and the
translation action of this group scheme on itself extends to an action on the n-gon.
By the previous remark, the triviality of the induced action on Pic0 may be checked
on the geometric fibers using [Deligne and Rapoport 1973, II.1.7(ii)]. For later use,
we now describe the automorphism functor of this generalized elliptic curve.

Lemma 2.1.6. For a fixed n ∈ Z≥1, let E→ Spec Z be the standard n-gon general-
ized elliptic curve. There is the following identification of the automorphism functor
of E :

Aut(E)∼= µn ×Z/2Z,

where the generator of Z/2Z acts as inversion on E sm and, for a scheme S and an
index i ∈ Z/nZ, a section ζ ∈ µn(S) acts on the i-th component of

E sm
S
∼= (Gm)S ×Z/nZ

as scaling by ζ i .

Proof. By [Deligne and Rapoport 1973, II.1.10], we have

Aut(E)∼= µn oZ/2Z

1We could also apply [Conrad 2007, 2.2.1] to avoid using the representability of Pic0
E/S by a

scheme. On the other hand, such representability may be proved as follows: by [Artin 1969, 7.3], the
functor Pic0

E/S is an algebraic space, so [Deligne and Rapoport 1973, II.2.6(i)] proves that the map

(Esm)0→ Pic0
E/S defined by t 7→ OE (t)⊗OE (e)

−1

is an open immersion (where e ∈ E(S) denotes the identity section), and the representability of Pic0
E/S

by a scheme follows from [BLR90 1990, 6.6/2(b)] applied to Pic0
E/S acting on itself by translation

(see also Remark 2.1.16).
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with µn and Z/2Z acting as described above, so we need to argue that Z/2Z is
central in Aut(E). For this, due to the Z-universal schematic density of E sm in E
supplied by [EGA IV3 1966, 11.10.10], it suffices to note that every generalized
elliptic curve automorphism of a base change of E must commute with inversion
on E sm. �

We turn to the closed subschemes E sing
⊂ E and S∞,π ⊂ S that measure the

degeneration of E .

Definition 2.1.7. The subscheme of nonsmoothness of a generalized elliptic curve
E −→π S is the closed subscheme E sing

⊂ E defined by the first Fitting ideal sheaf
Fitt1(�1

E/S) ⊂ OE . The degeneracy locus of E −→π S is the schematic image
S∞,π ⊂ S of E sing.

Remark 2.1.8. The closed subscheme E sing is supported at those points of E at
which π is not smooth and its formation commutes with arbitrary base change
in S, see [SGA 7I 1972, VI, 5.3 and 5.4]. Even though the formation of schematic
images often does not commute with nonflat base change, the formation of S∞,π

does commute with arbitrary base change, see [Conrad 2007, 2.1.12].

Remark 2.1.9. By [Deligne and Rapoport 1973, II.1.15], we have

S∞,π =
⊔

n≥1 S∞,π,n

for closed subschemes S∞,π,n ⊂ S such that only finitely many of the S∞,π,n meet
a given affine open of S and such that ES∞,π,n is fppf locally on S∞,π,n isomorphic
to the standard n-gon (which was discussed in Remark 2.1.5). In particular, every
generalized elliptic curve E −→π S is, Zariski locally on S, projective because, by
[Deligne and Rapoport 1973, II.1.20; Katz and Mazur 1985, 1.2.3], over the open

S−
⊔

n 6=n′ S
∞,π,n

the n′-torsion subscheme E sm
[n′] ⊂ E is a π -ample relative effective Cartier divisor.

We record a basic relationship between E sing and its schematic image S∞,π in
the following lemma:

Lemma 2.1.10. For a generalized elliptic curve E→ S, the map

E sing
→ S∞,π

is finite étale; it has degree n over S∞,π,n .

Proof. The map in question exists by the definition of S∞,π and its formation
commutes with base change in S by Remark 2.1.8. We may therefore assume that
S = S∞,π,n and that E is the standard n-gon. But in this case E sing is a disjoint
union of n copies of S and there is nothing to prove. �
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Degenerate generalized curves possess canonical finite subgroups of multiplica-
tive type and their torsion subgroups are amenable to scrutiny. We make this precise
in the following lemma:

Lemma 2.1.11. For every generalized elliptic curve E −→π S with Sred
= (S∞,π )red

and every d ∈ Z≥1, the d-torsion (E sm)0[d] is a finite locally free S-group scheme
of order d that is étale locally on S isomorphic to µd . The S-group scheme

E sm
[d]/(E sm)0[d]

is étale and if m ∈ Z≥1 divides both d and the number of irreducible components
of each geometric fiber of E , then (E sm

[d]/(E sm)0[d])[m] is étale locally on S
isomorphic to Z/mZ.

Proof. Due to the fibral criterion for flatness [EGA IV3 1966, 11.3.11], the quasifi-
nite, finitely presented, separated S-groups (E sm)0[d] and E sm

[d] are flat. The
fibers of (E sm)0[d] → S have degree d, so, due to [Deligne and Rapoport 1973,
II.1.19], the S-group (E sm)0[d] is finite locally free of rank d . Due to [Conrad 2014,
B.4.1 and B.3.4], the claim about the étale local structure of (E sm)0[d] reduces to
case of geometric fibers.

Thanks to the settled claims about (E sm)0[d], [EGA IV3 1966, 8.11.2] and
[SGA 3 I (new) 2011, V, 4.1] imply that E sm

[d]/(E sm)0[d] is a separated, quasifi-
nite, finitely presented, flat S-scheme. By inspecting geometric fibers we see that
E sm
[d]/(E sm)0[d] is étale. The étale local structure of

(E sm
[d]/(E sm)0[d])[m]

may be seen over the strict Henselizations of S, and hence even on geometric
fibers. �

The focus of Chapter 2 is generalized elliptic curve homomorphisms. We recall
their definition.

Definition 2.1.12. A homomorphism between generalized elliptic curves E→ S
and E ′→ S is an S-morphism

f : E→ E ′ with f (E sm)⊂ E ′sm

that intertwines the group laws of E sm and E ′sm. Its kernel is the S-subscheme
Ker f := E× f, E ′, e′ S of E , where × f, E ′, e′ denotes the base change along f of the
identity section e′ : S→ E ′.

Remark 2.1.13. Due to the S-universal schematic density of E sm in E supplied by
[EGA IV3 1966, 11.10.10] and the separatedness of E ′→ S, a homomorphism f
necessarily also intertwines the group actions E sm

× E→ E and E ′sm
× E ′→ E ′.



A modular description of X0(n) 2011

Remark 2.1.14. If a homomorphism f is surjective, then f |E sm is flat and Ker f is
contained in E sm, as may be checked on geometric fibers using the fibral criterion
for flatness [EGA IV3 1966, 11.3.11]. In this case, Ker f is a finite locally free
S-subgroup scheme of E sm.

Example 2.1.15. The constant morphism that factors through e′ is a homomor-
phism, the “zero homomorphism.” Any elliptic curve isogeny is also a homomor-
phism. For a d ∈ Z≥1, the map

P1
S→ P1

S given on homogeneous coordinates by [x : y] 7→ [xd
: yd
]

respects 0 and∞, so it induces an S-morphism from the standard 1-gon over S to
itself. This morphism restricts to the d-th power map on the (Gm)S of the smooth
locus of the 1-gon, so it is a homomorphism with kernel (µd)S .

Remark 2.1.16. Generalized elliptic curves are susceptible to limit arguments
that reduce to a Noetherian base. More precisely, by [EGA IV2 1965, 8.8.2(ii),
8.10.5(xii), 11.2.6(ii)], Zariski locally on S, the underlying relative curve E→ S
is the base change of a proper and flat relative curve E0→ S0 for which S0 is of
finite type over Z. Thus, since the formation of E sm

0 commutes with base change,
E sm is necessarily of finite presentation. Moreover, by [EGA IV2 1965, 8.8.2(i)],
after enlarging S0, the commutative S-group action

E sm
×S E

+
−→ E descends to a commutative S0-group action E sm

0 ×S0 E0
+
−→ E0.

The degenerate geometric fibers of E0→ S0 are Néron n-gons: indeed, [Deligne
and Rapoport 1973, II.1.3] applies because the condition of having only ordinary
double points as singularities is equivalent to the unramifiedness of E sing

0 , whose
formation commutes with base change (see Remark 2.1.8), whereas the triviality of
the relative dualizing sheaf may be descended from an overfield using specialization
techniques. Using Remark 2.1.4 to infer the triviality of the induced action of
E sm

0 on Pic0
E0/S0

, we conclude that E0 → S0 is a generalized elliptic curve that
descends E→ S to a Noetherian base. Similarly, Zariski locally on S, elliptic curve
homomorphisms are defined over a base that is of finite type over Z.

By the limit arguments above, the open immersion S − S∞,π ↪→ S is always
quasicompact.

2.2. Quotients of generalized elliptic curves by finite locally free subgroups

Even though homomorphisms between generalized elliptic curves are useful in
practice, their structural properties are not immediately apparent. Moreover, guided
by the theory of isogenies of elliptic curves, one suspects that for any finite locally
free S-subgroup scheme G ⊂ E sm with E→ S a generalized elliptic curve, there
should be an essentially unique homomorphism E → E ′ with kernel G. If G
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intersects the identity components of the degenerate geometric fibers of E → S
trivially, then the translation action of G on E is free, the fppf sheaf quotient E/G
is a generalized elliptic curve, and

E→ E/G

is the sought “isogeny.” This special case is already useful — for instance, such
isogenies are discussed in [Conrad 2007, 2.1.6] and exploited in several key proofs
of [op. cit.].

The goal of this section is to explain how to make sense of isogenies of generalized
elliptic curves in general. Theorem 2.2.4 and its proof explain how to build the
desired “quotient by G” homomorphism E→ E/G, and we arrive at the concept of
an isogeny in Definition 2.2.8. With Theorem 2.2.4 in hand, structural properties of
arbitrary homomorphisms are susceptible to scrutiny and are detailed in Propositions
2.2.9 and 2.2.10.

We begin with an example that illustrates what E/G should be in a certain
degenerate situation.

Example 2.2.1. Let E be the standard n-gon over Z, and consider the subgroup
µd ⊂ (E sm)0 for some d ∈ Z≥1. We would like to build a generalized elliptic curve
homomorphism

fd : E→ E ′ with kernel µd .

By Remark 2.1.13, any such fd is µd -equivariant, so it factors through the categori-
cal quotient E/µd , which exists because E is projective and µd is finite. We claim
that

E→ E/µd

is already the desired fd : E→ E ′.
This claim follows from the description of E recalled in Remark 2.1.2. More

precisely, if n ≥ 2, then on Spec(Z[X i , Yi ]/(X i Yi )) the action of

µd = Spec(Z[T ]/(T d
− 1))

is determined by
X i 7→ X i ⊗ T and Yi 7→ Yi ⊗ T,

so the ring of invariants is the Z-subalgebra of Z[X i , Yi ]/(X i Yi ) generated by Xd
i

and Y d
i , and hence E/µd is the standard n-gon with the quotient map E→ E/µd

induced by the d-th power map on each P1
Z. The same description holds if n = 1,

as the same computation performed Z/mZ-equivariantly on the m-gon cover for
some m ≥ 2 proves. Thus, the map E→ E/µd is a homomorphism whose kernel
is µd , and it is initial among such homomorphisms, so it is the desired fd .
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Remark 2.2.2. Example 2.2.1 may be carried out over any base scheme S, which
shows that the formation of fd commutes with arbitrary base change. In particular,
the formation of the categorical quotient E/µd commutes with arbitrary (possibly
nonflat) base change.

Remark 2.2.3. For d > 1, the “isogeny” E→ E/µd constructed in Example 2.2.1
is not flat at the singular points, as the formal criterion for flatness [Bourbaki 1965,
III, §5, n◦ 2, Theorem 1] reveals. In contrast, every isogeny between elliptic curves
is flat.

Example 2.2.1 suggests that over an arbitrary base S, the desired quotient of
a generalized elliptic curve E → S by a finite locally free S-subgroup G ⊂ E sm

may simply be the categorical quotient E/G. In Theorem 2.2.4 we prove that this
indeed the case. The main issue that needs to be addressed is that the formation of
categorical quotients does not in general commute with nonflat base change (as in
the special case of forming the ring of invariants under the action of a finite group).
Such phenomena do not occur for generalized elliptic curves because the analysis
of E/G may be reduced to the cases when G is either diagonalizable or acts freely
on E .

Theorem 2.2.4. Let S be a scheme, E −→π S a generalized elliptic curve, and
G ⊂ E sm an S-subgroup scheme that is finite locally free over S. There is an
S-scheme morphism

q : E→ E/G

that is initial among G-equivariant S-morphisms from E to an S-scheme equipped
with the trivial G-action (E is equipped with the translation action of G). Moreover,
q has the following properties.

(i) The formation of q commutes with arbitrary base change in S, and E/G is
S-flat.

(ii) The map q : E→ E/G is surjective, finite, and universally open.

(iii) There is a unique structure of a generalized elliptic curve on

E/G→ S

for which q is a homomorphism. For this structure, q induces an S-group
isomorphism

E sm/G ∼= (E/G)sm,

where E sm/G is the fppf sheaf quotient; in particular, E sm q
−→(E/G)sm is finite

locally free.

(iv) If E is an elliptic curve, then q : E→ E/G is an isogeny with kernel G.



2014 Kęstutis Česnavičius

Proof. Zariski locally on S the map π is projective (see Remark 2.1.9), so every finite
set of points of any π -fiber is contained in an affine open of E (see [EGA II 1961,
4.5.4]). Therefore, by [SGA 3 I (new) 2011, V, 4.1(i)] and its proof, E is covered by
G-invariant affine opens and the initial q is nothing but the categorical quotient that
is glued together from the rings of invariants of such G-invariant affines; moreover,
this q is automatically a quotient map on the underlying topological spaces.

Since G acts freely on E sm, by [SGA 3 I (new) 2011, V, 4.1(iv)], the open S-
subscheme

E sm/G ⊂ E/G

that results from the G-invariance of E sm is identified with the fppf sheaf quotient
of E sm by G, the map E sm q

−→E sm/G is finite locally free, and the formation of
E sm/G commutes with base change.

(i) The formation of E/G commutes with flat base change, so we may first assume
that S is affine and then use Remark 2.1.16 to assume that S = Spec R for some
Noetherian R. Moreover, by the previous paragraph, the claim is clear on the elliptic
curve locus, so we may replace R by its completion along the ideal I ⊂ R that cuts
out the degeneracy locus S∞,π ⊂ S to assume that R is I -adically complete and
separated.

For such R, the intersections

G R/I j ∩ (E sm
R/I j )

0 for j ≥ 1

are finite locally free R/I j -subgroup schemes of G. By Grothendieck’s existence
theorem [Illusie 2005, 8.4.5, 8.4.7], these subgroups algebraize to a finite locally
free R-subgroup

H ⊂ G with H ⊂ (E sm)0.

The R/I -fibers of H are of multiplicative type, so H itself is of multiplicative type.
At the cost of replacing R by a finite locally free cover we may assume that H is
diagonalizable.

By [SGA 3 I (new) 2011, I, 4.7.3], any R-module M equipped with an action of a
diagonalizable H is a direct sum of χ -isotypic submodules for characters χ of H , so
the submodule M H of H -invariants is of formation compatible with arbitrary base
change and is R-flat if M is. In particular, the categorical quotient E/H is R-flat
and of formation compatible with base change. As may be checked on geometric
R-fibers, G/H acts freely on E/H , so the further quotient E/G = (E/H)/(G/H)
is also R-flat and of formation compatible with base change.

(ii) The surjectivity of q follows from the first paragraph of the proof. By [SGA 3 I (new)

2011, V, 4.1(ii)], the morphism q is integral, and hence even finite because it inherits
the property of being of finite type from E → S. In particular, q is universally
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closed, so it is also universally open by [Rydh 2013, 2.4] (which applies due to the
bottom of p. 636 there and [SGA 3 I (new) 2011, V, 4.1(iii)]).

(iii) We begin by arguing that E/G possesses the S-scheme properties required in
Definition 2.1.3.

Due to [Atiyah and Macdonald 1969, 7.8], the morphism E/G → S inherits
finite presentation from E→ S thanks to the finiteness of E→ E/G (and an initial
reduction to Noetherian S based on (i)). By (ii),

E→ E/G, and hence also E ×S E→ E/G×S E/G,

is a finite surjection, so the image of1E/S(E) in E/G×S E/G, i.e.,1(E/G)/S(E/G),
is closed. In other words, the finite type morphism E/G→ S inherits separatedness
from E → S, so it also inherits properness by [EGA II 1961, 5.4.3 (ii)]. Finally,
E/G→ S is flat by (i). For the fibral properties, due to (i), we may assume that S
is a geometric point.

If S is a geometric point and E is an elliptic curve, then E/G is its isogenous
quotient. If S is a geometric point and E is the standard N -gon, then we set

H := G ∩ (E sm)0, so H ∼= µd for some d ≥ 1.

By Example 2.2.1, E→ E/H is a “self-isogeny” of the standard N -gon, and, by
construction, G/H acts freely on E/H . Therefore, E/G, which is identified with
(E/H)/(G/H), is the standard n-gon with n = N/#(G/H). This analysis also
shows that q(E sm)= (E/G)sm.

Due to the paragraph preceding the proof of (i), all that remains to be shown is
that the S-group scheme structure of (E/G)sm∼= E sm/G extends to a unique action
of (E/G)sm on E/G; indeed, the induced action on Pic0

(E/G)/S will automatically
be trivial due to the fibral analysis of the previous paragraph and Remark 2.1.4. The
uniqueness follows from the separatedness of E/G and the universal schematic
density of (E/G)sm in E/G supplied by [EGA IV3 1966, 11.10.10]. For the same
reason, for the existence we only need to produce a morphism

(E/G)sm
×S E/G→ E/G

that extends the group law of (E/G)sm — the relevant diagrams that encode the
property of being a group scheme will automatically commute. To build this
morphism from the one for E , it suffices to prove that

E sm/G×S E/G ∼= (E sm
×S E)/(G×S G),

where the quotients are categorical. For this isomorphism, it suffices to form the
quotient on the right in stages and to note that the formation of E sm/G commutes
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with base change along E→ S whereas the formation of E/G commutes with base
change along E sm/G→ S.

(iv) By (iii), q : E→ E/G is a finite locally free homomorphism between elliptic
curves over S and its kernel is G, i.e., q is an isogeny with kernel G. �

Remark 2.2.5. The categorical quotient E/G may also be analyzed with the tame
stack formalism of Abramovich, Olsson, and Vistoli [AOV08 2008]. For this, the
key point is that the quotient stack [E/G] is tame by [AOV08 2008, Theorem 3.2]
because the automorphism functors of its geometric points are of multiplicative
type. Then, since E/G is the coarse moduli space of [E/G] (see [Conrad 2005,
Theorem 3.1]), E/G is S-flat and of formation compatible with arbitrary base
change by [AOV08 2008, Corollary 3.3].

2.2.6. The quotient notation. In the sequel, whenever E → S is a generalized
elliptic curve and G ⊂ E sm is a finite locally free S-subgroup, we write E/G for the
generalized elliptic curve constructed in Theorem 2.2.4. In the following corollary,
we record some further properties of this quotient construction that follow from
Theorem 2.2.4 and its proof.

Corollary 2.2.7. Let E→ S (resp. E ′→ S) be a fixed (resp. variable) generalized
elliptic curve over a scheme S.

(a) If G⊂ E sm is finite locally free S-subgroup, then the homomorphism E→ E/G
is initial among homomorphisms f : E→ E ′ with G ⊂ Ker f .

(b) If f : E→ E ′ is a surjective homomorphism, then Ker f is a finite locally free
S-subgroup of E sm, and Ker f determines f up to an isomorphism in the sense
that f induces an isomorphism

E/(Ker f )∼= E ′.

(c) If G1 ⊂ G2 ⊂ E sm are finite locally free S-subgroups, then

(E/G1)/(G2/G1)∼= E/G2.

Proof. (a) The map f is G-equivariant for the trivial G-action on E ′, so it uniquely
factors through the categorical quotient E → E/G. It remains to note that the
induced map (E/G)sm

→ (E ′)sm intertwines the group laws, as may be checked
on the fppf cover E sm

→ (E/G)sm.

(b) The first claim was proved in Remark 2.1.14. Due to (a), f induces a homomor-
phism E/(Ker f )→ E ′ that is an isomorphism on the smooth loci. Due to [EGA IV4

1967, 17.9.5] and the S-flatness of E/(Ker f ), checking that E/(Ker f )→ E ′ is an
isomorphism may be done on geometric fibers, where it follows from the fact that
an endomorphism of the standard n-gon that is an automorphism on the smooth
locus must be an automorphism.
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(c) The claim follows from the universal property of E→ E/G2 recorded in (a). �

Corollary 2.2.7(b) and the analogy with elliptic curves justify the following
definition:

Definition 2.2.8. An isogeny between generalized elliptic curves E→ S and E ′→ S
is a surjective homomorphism f : E→ E ′ (so, by Corollary 2.2.7(b), it induces an
isomorphism E ′ ∼= E/(Ker f )). The degree of an isogeny f is the locally constant
function on S given by the order of Ker f .

The principal difference with the elliptic curve case is that an isogeny between
generalized elliptic curves is not necessarily flat (see Remark 2.2.3). As we explain
in Proposition 2.2.9 (whose elliptic curve case is [Katz and Mazur 1985, 2.4.2]), the
structure of an arbitrary homomorphism may be completely understood in terms of
isogenies (in turn, by Corollary 2.2.7(b), the structure of an isogeny is completely
determined by its kernel).

Proposition 2.2.9. Every homomorphism f : E→ E ′ between generalized elliptic
curves E → S and E ′→ S is Zariski locally on S either an isogeny or the zero
homomorphism.

Proof. Limit arguments described in Remark 2.1.16 allow us to reduce to the case
when S is Noetherian, so the claim follows from [MFK94 1994, Proposition 6.1],
which proves that on each connected component of S the map f is either surjective
(i.e., an isogeny) or the zero homomorphism. �

Due to Proposition 2.2.9, the following result describes how homomorphisms
interact with the degeneracy loci of Definition 2.1.7 and the subschemes of nons-
moothness:

Proposition 2.2.10. If f : E→ E ′ is an isogeny between generalized elliptic curves
E −→π S and E ′ −→π

′

S, then f |E sing factors through E ′sing and S∞,π ⊂ S∞,π
′

.

Proof. The second claim follows from the first because S∞,π (resp. S∞,π
′

) is
the schematic image of E sing

→ S (resp. of E ′sing
→ S). Moreover, since the

formation of all the subschemes in question commutes with base change in S (see
Remark 2.1.8), we may use Remark 2.1.9 to assume that S = S∞,π,n and that E is
the standard n-gon.

The intersection G of Ker f with the relative identity component (E sm)0 = Gm

is a finite locally free S-subgroup scheme of both Ker f and Gm . By parts (b) and
(c) of Corollary 2.2.7, f is identified with the composite

E→ E/G→ (E/G)/((Ker f )/G)

of isogenies. Therefore, since the assertion about f |E sing is compatible with compo-
sition, it suffices to treat the cases G = Ker f and G = 0 separately.
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Since Gm has a unique finite locally free S-subgroup of a given order, Zariski
locally on S we have G = µd for some d ∈ Z≥1. Thus, if G = Ker f , then we may
assume that f is the fd described in Example 2.2.1 (see also Remark 2.2.2). For
this fd , the claim is clear:

E sing is identified with
⊔

Z/nZ S used in Definition 2.1.1

and fd is induced by the d-th power map on every P1
S so maps E sing to itself.

If G = 0, then f is étale, so that �1
E/S
∼= f ∗�1

E ′/S . By [SGA 7I 1972, VI, 5.1(a)],
the formation of the closed subscheme cut out by a Fitting ideal of a finite type
quasicoherent module commutes with pullback to another scheme, so this relation
between the sheaves of differentials gives E sing

= f −1(E ′sing). �

The inclusion S∞,π ⊂ S∞,π
′

of Proposition 2.2.10 may be sharpened to a
precise relation between the corresponding ideal sheaves. We record this in
Proposition 2.2.11 and Remark 2.2.12.

Proposition 2.2.11. If f : E→ E ′ is an isogeny between generalized elliptic curves
and if there is a d ∈ Z≥1 such that for every degenerate geometric fiber Es the
intersection (Ker f )s ∩ (E sm

s )0 has rank d, then the ideal sheaves in OS of the
degeneracy loci S∞,π and S∞,π

′

of E and E ′ are related by

IS∞,π ′ =I d
S∞,π .

Remark 2.2.12. For any f , Zariski locally on S there exists a required d . In order
to prove this, we may assume that S = S∞,π and may work fppf locally on S,
so Remark 2.1.9 reduces to the case when E is the standard n-gon. In this case
Ker f ∩ (E sm)0 is an open and closed S-subgroup of Ker f , and the claim follows
from the local constancy of its rank over S.

Proof of Proposition 2.2.11. It suffices to treat the case when S = Spec R for
some Artinian local ring (R,m) that has a separably closed residue field R/m. The
elliptic curve case is clear, so we assume that ER/m is degenerate. Moreover, by
Corollary 2.2.7(c), quotients may be taken in stages, so we assume that either

Ker f ⊂ (E sm)0 or Ker f ∩ (E sm)0 = 0.

We begin with the case Ker f ∩ (E sm)0 = 0, when f is finite étale of rank
#(Ker f ), so that E sing

= f −1(E ′sing) by [SGA 7I 1972, VI, 5.1(a)]. Lemma 2.1.10
then gives the desired S∞,π = S∞,π

′

.
In the remaining case when Ker f ⊂ (E sm)0, we first replace S by a flat cover to be

able to assume that there is a finite étale S-subgroup G ⊂ E sm such that G R/m maps
isomorphically to the component group of E sm

R/m. Due to the settled Ker f ∩(E sm)0=

0 case, passage to E/G and E ′/ f (G) does not affect the degeneracy loci. Therefore,
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we may replace
E by E/G and E ′ by E ′/ f (G)

to reduce to the case when E is irreducible.
In this situation, since S is Artinian local and strictly Henselian, [Deligne and

Rapoport 1973, VII.2.1] ensures that E is a base change of the Tate curve

Tate1→ Spec ZJqK

[loc. cit.] proves that Tate1 realizes Spec ZJqK as an étale double cover of the formal
completion of E``1 along E``∞1 ; in the notation of [loc. cit.], Tate1 = G

q
m/qZ). If,

moreover, Ker f ⊂(E sm)0, then Ker f =µ#(Ker f ) inside (E sm)0 (see Lemma 2.1.11),
so that we are reduced to the case when

E→ S is Tate1→ Spec ZJqK and Ker f = µd .

However, in this case the quotient map2 Tate1→ Tate1/µd is identified with the
map

Tate1→ Tate1(qd) induced by “raising the coordinates to the d-th power,”

as in Example 2.2.1 (compare with [Conrad 2007, 2.5.1]). It remains to recall from
[Deligne and Rapoport 1973, VII.1.11] that the degeneracy locus of Tate1 (resp. of
Tate1(qd)) is cut out by the principal ideal (q)⊂ ZJqK (resp. (qd)⊂ ZJqK). �

Chapter 3. Compactifications of the stack of elliptic curves

Our approach to the study of level structures on generalized elliptic curves makes
essential use of the tower {E``n}n|n′ of compactifications of the stack E`` that
parametrizes elliptic curves. The purpose of this chapter is to construct this tower
and to detail its properties. We begin with the construction of the individual com-
pactifications E``n in Section 3.1, and proceed to expose the transition morphisms
E``nm→ E``n in Section 3.2. Section 3.3 proves that the coarse moduli space of
(E``n)S is the “ j-line” P1

S for every n and every scheme S, whereas Section 3.4
uses the global structure of the stacks E``n to algebraize formal generalized elliptic
curves and their homomorphisms.

3.1. The compactification E``n obtained by allowing n-gons for a fixed n

The goal of this section is to detail algebro-geometric properties of the Z-stack
E``n obtained from the stack of elliptic curves E`` by “adjoining Néron n-gons”
(see Definition 3.1.1). We prove in Theorem 3.1.6 that E``n is a proper and smooth

2In the notation of [Deligne and Rapoport 1973, VII.1.10], we have Tate1(qd )= G
qd

m /(qd )Z over
A = ZJqK.
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compactification of E``. This result has already been proved over Z[1/n] in [Deligne
and Rapoport 1973, IV.2.2], which uses deformation-theoretic methods through
its reliance on [Deligne and Rapoport 1973, III.1.2]. These methods require the
number of the irreducible components of each geometric fiber of the generalized
elliptic curve in question to be prime to the characteristic, so they do not seem
to work without inverting n. A related difficulty is that even though the stack
E``n is algebraic, outside the elliptic curve locus it is not Deligne–Mumford in
characteristics dividing n (see Theorem 3.1.6(b)), so E``n may not possess universal
deformation rings at some of its geometric points. To overcome these difficulties,
we proceed indirectly by exploiting a convenient auxiliary algebraic stack Bn whose
relationship to E``n is described in Proposition 3.1.5.

We begin by defining the stack E``n that we are going to study and later use.

Definition 3.1.1. For an n ∈ Z≥1, let E``n denote the Z-stack parametrizing those
generalized elliptic curves E −→π S whose degenerate geometric fibers are n-gons.
Let E``∞n denote the closed substack of E``n cut out by the degeneracy loci S∞,π

(defined in Definition 2.1.7).

Remark 3.1.2. The effectivity of descent data that is needed for E``n to be a Z-
stack (for the fpqc topology) results from the S-ampleness of the relative effective
Cartier divisor E sm

[n] ⊂ E .

Remark 3.1.3. The well-definedness of the closed substack E``∞n rests on the
compatibility (recalled in Remark 2.1.8) of the formation of the degeneracy locus
S∞,π with base change.

We turn to the auxiliary stack Bn and to its relation to E``n .

3.1.4. The stack Bn . Following [Deligne and Rapoport 1973, V.1.3], for an n ∈
Z≥1 we let Bn be the Z-stack that, for variable schemes S, parametrizes the pairs
(E,G) consisting of a generalized elliptic curve E→ S whose degenerate geometric
fibers are n-gons and a finite étale subgroup G ⊂ E sm that is étale locally on S
isomorphic to Z/nZ and meets every irreducible component of every geometric
fiber of E→ S. If n = 1, then G is the zero subgroup, so B1 = E``1.

Proposition 3.1.5. Fix an n ∈ Z≥1.

(a) The Z-stack Bn is Deligne–Mumford and Z-smooth of relative dimension 1.

(b) The morphism
Bn→ E``n

that forgets G factors through the open substack E``n- ord
n ⊂ E``n obtained by

removing the supersingular elliptic curves in characteristics dividing n. The
induced morphism

Bn→ E``n- ord
n



A modular description of X0(n) 2021

is representable by schemes, separated, quasifinite, faithfully flat, and of finite
presentation.

(c) The stack E``n- ord
n is algebraic and Z-smooth of relative dimension 1.

Proof. (a) Both claims follow from [Deligne and Rapoport 1973, V.1.4].

(b) The morphism

q : E``n→ E``1 is well defined by q(E)= E/E sm
[n]

(see Section 2.2.6), and, as in [Deligne and Rapoport 1973, VI.1.1], the j-invariant
gives the morphism j : E``1→ P1

Z. Since E``n- ord
n is the preimage under j ◦ q of

the open subscheme of P1
Z obtained by removing the supersingular j-invariants in

characteristics dividing n, it is indeed an open substack of E``n .
The morphism Bn → E``n factors through E``n- ord

n because a supersingular
elliptic curve over an algebraically closed field of positive characteristic p cannot
have Z/pZ as a subgroup. Therefore, our task is to prove that for any generalized
elliptic curve E→ S whose geometric fibers are n-gons, ordinary elliptic curves in
characteristic dividing n, or arbitrary elliptic curves in characteristic not dividing n,
the functor

F0 : S′ 7→
{

S′-ample subgroups G ⊂ E sm
S′ that are

étale locally on S′ isomorphic to Z/nZ
}

on the category of S-schemes is representable by a separated, quasifinite, faithfully
flat S-scheme B of finite presentation (the S′-ampleness of G as a relative effective
Cartier divisor on ES′ is equivalent to the condition that G meets every irreducible
component of every geometric fiber of ES′ → S′). In fact, it suffices to prove
the same statement with “faithfully flat” replaced by “flat” and for the functor
F ′0 obtained by dropping the S′-ampleness requirement from the definition of F0:
indeed, the surjectivity of B→ S will follow from the imposed fibral assumptions
on E→ S, whereas [EGA IV3 1966, 9.6.4] together with limit arguments ensures
that the inclusion F0 ⊂ F ′0 is representable by quasicompact open immersions.

We analyze F ′0 by studying the related functor

F1 : S′ 7→
{

P ∈ E sm
[n](S′) that define

a closed immersion Z/nZ ↪→ E sm
S′ [n] by 1 7→ P

}
.

The map F1 → F ′0 that sends P to the copy of Z/nZ that P generates is repre-
sentable by schemes and finite étale of rank φ(n). Therefore, once we prove that
F1 is representable by a finitely presented, separated, quasifinite (and hence also
quasiaffine, see [EGA IV3 1966, 8.11.2]), flat S-scheme, the desired claim about
F ′0 will follow from [SGA 3 I (new) 2011, V, 4.1] (combined with [EGA IV2 1965,
2.2.11(iii); EGA IV4 1967, 17.7.5]).
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The S-scheme E sm
[n] represents the functor of S′-homomorphisms

Z/nZ→ E sm
S′ [n].

Such a homomorphism is a closed immersion if and only if its corresponding map
f of finite locally free OS′-algebras is surjective, which is an open condition on
S′ because Coker( f ) is a finitely generated OS′-module. Therefore, the inclusion
F1 ⊂ E sm

[n] is representable by open immersions, and is quasicompact by limit
arguments, so the claims about F1 follow.

(c) Both claims follow from (b). More precisely, if X→Bn is a smooth atlas, then
the composed morphism

X→ E``n- ord
n

is representable by algebraic spaces, faithfully flat, and locally of finite presentation,
so E``n- ord

n is algebraic by [SP 2005–, 06DC] (see also [Laumon and Moret-Bailly
2000, 10.6] for a related result), whereas, due to [EGA IV4 1967, 17.7.7], the Z-
smoothness of E``n- ord

n follows from that of Bn (for the relative dimension aspect,
one may use [EGA IV2 1965, 6.1.2]). �

With Proposition 3.1.5 in hand, we are ready to address algebro-geometric
properties of E``n (see Proposition 3.3.2 for some further properties).

Theorem 3.1.6. Fix an n ∈ Z≥1.

(a) The Z-stack E``n is algebraic with finite diagonal, proper, and smooth of
relative dimension 1.

(b) The largest open substack of E``n that is Deligne–Mumford is

E``n − (E``
∞

n )Z/nZ.

(c) The morphism Spec Z → E``∞n that corresponds to the standard n-gon is
surjective, representable, and finite locally free of rank 2n. In particular, the
proper Z-algebraic stack E``∞n is irreducible, has geometrically irreducible
Z-fibers, and is Z-smooth of relative dimension 0.

(d) The closed substack E``∞n ⊂E``n is a reduced relative effective Cartier divisor
over Spec Z.

Remark 3.1.7. In (b), the largest Deligne–Mumford open substack of the separated
Z-algebraic stack E``n does make sense a priori. Indeed, the proof of [Conrad
2007, 2.2.5(2)] shows that if S is a scheme and X is an S-algebraic stack that is
covered by S-separated open substacks, then there is a unique open substack

U ⊂X

http://stacks.math.columbia.edu/tag/06DC
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containing exactly those geometric points of X that have an unramified auto-
morphism functor. (Equivalently, U contains those S-scheme valued points of
X whose automorphism functors are unramified.) By Nakayama’s lemma (or
simply by [SP 2005–, 02GF (1)⇔(2)]), the diagonal 1U /S is unramified, so U

is Deligne–Mumford, and, by construction, U contains every Deligne–Mumford
open substack of X . Even though we take the unramifiedness of the diagonal as
our definition of being Deligne–Mumford (see Section 1.9), in the case in hand U

inherits separatedness from E``n , so, by [Laumon and Moret-Bailly 2000, 8.1], it
also satisfies the étale atlas definition of a Deligne–Mumford stack.

Proof of Theorem 3.1.6. (a) The stack E``n is a union of open substacks E``

and E``n- ord
n , both of which are algebraic and Z-smooth of relative dimension 1

by Proposition 3.1.5. Therefore, E``n is also algebraic and Z-smooth of relative
dimension 1.

By [Conrad 2007, 3.2.4], the isomorphism functor of two generalized elliptic
curves E → S and E ′ → S whose degenerate geometric fibers are n-gons is
representable by a finite S-scheme,3 so 1E``n/Z

is finite and, in particular, E``n is
separated. The morphism

E``tSpec Z→ E``n

whose restriction to Spec Z corresponds to the standard n-gon is surjective on
underlying topological spaces, so E``n is quasicompact, and hence is of finite
type over Z. Its properness therefore results from the valuative criterion [Laumon
and Moret-Bailly 2000, 7.10], which is satisfied due to the semistable reduction
theorem for elliptic curves (and the availability of contractions, which are reviewed
in Section 3.2.1).

(b) In the view of Remark 3.1.7, we only need to show that

E``n − (E``
∞

n )Z/nZ

contains those geometric points x of E``n whose automorphism functor is un-
ramified. If x lies in E`` = E``n −E``∞n , then Aut(x) is unramified by [Deligne
1975, 5.3(I)] (or by [MFK94 1994, Corollary 6.2]). If x lies in E``∞n , then, by

3 Here is a sketch for a proof of this representability that bypasses blowups used in [Conrad 2007,
3.2.2 and 3.2.4]: as in the proof of [Deligne and Rapoport 1973, III.2.5], one uses Hilbert schemes to
get representability by a quasifinite, separated S-scheme; then, due to the valuative criterion, the key
point is to check that if S is the spectrum of a strictly Henselian discrete valuation ring and E and E ′

are degenerating elliptic curves with identified generic fibers: Eη = E ′η, then E = E ′; for this, the
theory of Néron models (especially, [BLR90 1990, 7.4/3]) identifies (Esm)0 with (E ′sm)0 and, since
the reductions of η-rational points are dense in the special fibers, also Esm with E ′sm; then Zariski’s
main theorem [BLR90 1990, 2.3/2′] produces the graph of the sought identification E = E ′.

http://stacks.math.columbia.edu/tag/02GF


2024 Kęstutis Česnavičius

Lemma 2.1.6, Aut(x) is unramified if and only if x lies in

E``∞n − (E``
∞

n )Z/nZ.

(c) For the asserted properties of the morphism, it suffices to note that for a
generalized elliptic curve E −→π S with S∞,π,n = S, the functor of isomorphisms
between E and the standard n-gon is representable by a finite locally free S-scheme
of rank 2n, as may be checked fppf locally on S with the help of Remark 2.1.9
and Lemma 2.1.6. The asserted properties of E``∞n then follow by using [EGA IV4

1967, 17.7.7; EGA IV2 1965, 6.1.2] for the smoothness aspect.

(d) By (c), the stack E``∞n is Z-smooth, so it is also reduced. For the Cartier divisor
claim, we may work over a smooth finite type scheme cover

X→ E``n, with X∞ ⊂ X being the preimage of E``∞n .

By [Katz and Mazur 1985, 1.1.5.2], we may also base change from Z to an alge-
braically closed field. Then, for a point x ∈ X∞, by (a) and (c), both X and X∞

are smooth at x and

dimx X∞ = dimx X − 1.

Thus, X∞ ⊂ X is a Weil divisor and, since X is regular, also a desired Cartier
divisor. �

For later use we record the following proposition from [Conrad 2007, 3.2.4].

Proposition 3.1.8. Let E −→π S and E ′ −→π
′

S be generalized elliptic curves such
that

S∞,π,n ∩ S∞,π
′,m
=∅ whenever n 6= m.

(a) The fppf sheaf Isom(E, E ′) that parametrizes generalized elliptic curve iso-
morphisms is representable by a finite S-scheme of finite presentation.

(b) If S is integral and normal and η is its generic point, then any η-isomorphism

Eη ' E ′η extends to a unique S-isomorphism E ' E ′.

Proof. Part (a) has essentially been proved in footnote 3. Alternatively, Zariski
locally on S there is an n ∈ Z≥1 such that E and E ′ correspond to objects of
E``n , so (a) is a reformulation of the finiteness of the diagonal of E``n proved
in Theorem 3.1.6(a). To obtain (b) one combines (a) with the following useful
lemma. �

Lemma 3.1.9. If S is an integral normal scheme, η is its generic point, and F is a
finite S-scheme, then the pullback map F(S)→ F(η) is bijective.
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Proof. The injectivity follows from the schematic dominance of η→ S and the
separatedness of F→ S. For the surjectivity, we may work Zariski locally on S
to assume that S = Spec A. Then the schematic image in F of an x ∈ F(η) is
Spec B for some finite A-subalgebra B ⊂ Frac A. Since A is normal, A = B, so
the schematic image is the sought extension of x to an element of F(S). �

3.2. The tower of compactifications

The compactifications E``n introduced in the previous section are related to each
other: they form an infinite tower in which the transition morphisms

E``nm→ E``n

encode contractions of generalized elliptic curves. The goal of this section is to use
the already established results about E``n to prove several basic properties, such as
flatness, of these transition morphisms (see Theorem 3.2.4) and to deduce some
concrete results about the generalized elliptic curves themselves (see Corollaries
3.2.5 and 3.2.6). We begin with a brief review of contractions.

3.2.1. Contraction with respect to a finite locally free subgroup. As is justified
in [Conrad 2007, top of p. 218] (which is based on [Deligne and Rapoport 1973,
IV.1.2]), if E → S is a generalized elliptic curve and G ⊂ E sm is a finite locally
free S-subgroup, then there is a generalized elliptic curve

cG(E)→ S equipped with a surjective S-scheme morphism E→ cG(E)
(3.2.1.1)

such that:

• the image under E→ cG(E) of each disjoint from G irreducible component
of a geometric fiber of E→ S is a single point, and

• the map E → cG(E) restricts to a group isomorphism between the open
complement of the union of such components and (cG(E))sm.

In particular, if E is an elliptic curve, then E = cG(E).
These conditions ensure that G is identified with an S-subgroup of cG(E)sm

that meets every irreducible component of every geometric fiber of cG(E)→ S.
Due to [Deligne and Rapoport 1973, IV.1.2], they also determine the data (3.2.1.1)
uniquely up to a unique isomorphism. In particular, whenever G ′ ⊂ E sm is another
finite locally free S-subgroup that meets the same irreducible components of the
geometric fibers of E→ S as G, one gets a canonical identification

cG(E)= cG ′(E). (3.2.1.2)

For the same reason, the formation of E→ cG(E) commutes with arbitrary base
change in S.
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We call this cG(E) the contraction of E with respect to G. The compatibility
of the formation of cG(E) with base change shows that for every n,m ∈ Z≥1, the
identity map on E`` extends to the “contraction” Z-morphism

E``nm→ E``n defined by E 7→ cE sm[n](E).

Also, if (E,G) is classified by the stack Bnm of Section 3.1.4, then (cG[n](E),G[n])
is classified by the stack Bn , so there is the “contraction” Z-morphism

Bnm→Bn defined by (E,G) 7→ (cG[n](E),G[n]).

These and similar morphisms will be called contractions or contraction morphisms
in the sequel (a slight abuse of terminology because it is not substacks of E``nm or
Bnm that are getting contracted).

In many situations, we will need a robust criterion for recognizing algebraic
spaces and morphisms that are representable by algebraic spaces. The following
lemma, which paraphrases [Conrad 2007, 2.2.5(1) and 2.2.7] and may be traced
back to [Deligne and Rapoport 1973, IV.2.6], is well suited for this task.

Lemma 3.2.2. Let S be a scheme and let X and Y be S-algebraic stacks whose
diagonals 1X /S and 1Y /S are quasicompact and separated.

(a) The stack X is an algebraic space if and only if for every algebraically
closed field k whose spectrum is equipped with a morphism to S, every object
ξ of X (k), and every Artinian local k-algebra A, the pullback of ξ to the
groupoid X (A) has no nonidentity automorphism; if X is Deligne–Mumford,
then A = k suffices.

(b) An S-morphism
f :X → Y

is representable by algebraic spaces if and only if for every algebraically
closed field k whose spectrum is equipped with a morphism to S, every object ξ
of X (k), and every Artinian local k-algebra A, no nonidentity automorphism
of the pullback of ξ to X (A) is sent to an identity automorphism in Y (A); if
X is Deligne–Mumford, then A = k suffices.

Proof. (a) The necessity is clear. For the sufficiency, due to [Conrad 2007, 2.2.5(1)],
it is enough to argue that the assumed condition implies the triviality of the auto-
morphism functor of every ξ . This functor is a separated k-group algebraic space
G of finite type, so is necessarily a scheme due to [Artin 1969, 4.2], and is even
k-étale if X is Deligne–Mumford. The triviality of G is therefore equivalent to
that of all the G(A), with A = k being sufficient if X is Deligne–Mumford.

(b) The failure of the condition on ξ implies that the groupoid of A-points of some
A-fiber of f has a nonidentity automorphism, and the necessity follows. For the
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sufficiency, due to [Conrad 2007, 2.2.7], it is enough to argue that the assumed
condition implies that each k-fiber X of f is an algebraic space, so it remains to
observe that this condition ensures that X meets the criterion of (a). �

To infer further representability by schemes, we will often use the following
well-known lemma:

Lemma 3.2.3. For stacks X and Y over a scheme S, an S-morphism f :X → Y

that is representable by algebraic spaces, separated, and locally quasifinite is
representable by schemes; if , in addition, f is proper, then f is finite.

Proof. This follows from [Laumon and Moret-Bailly 2000, A.2] (see also [Conrad
2007, 2.2.6]) and [EGA IV4 1967, 18.12.4]. �

We are ready to exploit the relationship between the two contractions introduced
in Section 3.2.1 to extract further information about the stacks E``n .

Theorem 3.2.4. For Bn as in Section 3.1.4 and any n,m ∈ Z≥1, consider the
commutative diagram

Bnm

c′

��

a
// E``nm

c
��

Bn
b
// E``n

in which c and c′ are the contraction morphisms of Section 3.2.1 and a and b forget
the subgroup G.

(a) The contractions c and c′ are flat and of finite presentation. Moreover, c is
proper, with finite diagonal, and surjective, whereas c′ is representable by
schemes, separated, and quasifinite.

(b) The closed substack

E``∞n ×E``n,c E``nm ⊂ E``nm

is a relative effective Cartier divisor over Spec Z that is a positive integer
multiple of E``∞nm .

(c) The multiple needed in (b) is m, i.e.,

[E``∞n ×E``n,c E``nm] = m · [E``∞nm]

as Cartier divisors on E``nm .

Proof. The commutativity of the diagram follows from the identification discussed
in Section 3.2.1.

By Proposition 3.1.5(b), the maps a and b are representable by schemes, separated,
quasifinite, of finite presentation, flat, and faithfully flat onto E``nm-ord

nm and E``n-ord
n ,

respectively.
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(a) By Theorem 3.1.6(a), the stacks E``nm and E``n are Z-proper with finite
diagonal, so c is also proper, with finite diagonal, and of finite presentation. Since
the contraction of the standard nm-gon with respect to its n-torsion is the standard
n-gon, c is surjective. Moreover, c|E`` is the identity, E`` and E``nm-ord

nm cover E``nm ,
and, by Proposition 3.1.5(b), a is faithfully flat onto E``nm-ord

nm , so the flatness of c
will follow once we establish that of c′.

It remains to establish the claims about c′. For the representability of c′ by
algebraic spaces, due to Lemma 3.2.2(b), it suffices to observe that if E is the
standard nm-gon over an algebraically closed field and

G ' Z/nmZ

is a subgroup of E sm that meets every irreducible component of E , then, by
Lemma 2.1.6, no nonidentity automorphism of (E,G) restricts to the identity map
on (E sm)0. The separatedness of c′ follows from the separatedness of b ◦ c′ = c ◦ a
and of b, and similarly for the finite presentation of c′. For the quasifiniteness of c′

it therefore suffices to observe that a generalized elliptic curve over an algebraically
closed field has finitely many subgroups of order nm. The representability of c′ by
schemes follows from Lemma 3.2.3.

Finally, since c′ is a quasifinite map between separated Deligne–Mumford stacks
that are smooth of relative dimension 1 over Z, it is flat by [EGA IV2 1965, 6.1.5].

(b) Since c is flat by (a) and E``∞n ⊂ E``n is a relative effective Cartier divisor over
Spec Z by Theorem 3.1.6(d), the pullback in question is also a relative effective
Cartier divisor over Spec Z. Both

E``∞n ×E``n,c E``nm and E``∞nm

are supported on the same closed subset of the underlying topological space of
E``nm and, by Theorem 3.1.6(c)–(d), this subset is irreducible and has E``∞nm as its
associated reduced closed substack (see [Laumon and Moret-Bailly 2000, 5.6.1(ii)]).
Moreover, E``nm is regular, so on any of its scheme atlases Cartier divisors identify
with Weil divisors. Passage to such an atlas then shows that E``∞n ×E``n,c E``nm is
a positive integer multiple of E``∞nm — the global constancy of the needed factor
across the irreducible components of the pullback of E``∞nm to the atlas follows
from the irreducibility of E``∞nm (to check that the generic points of such irreducible
components map to the generic point of E``∞nm , one uses the fact that generizations
lift along a flat morphism; see [Laumon and Moret-Bailly 2000, 5.8]).

(c) Due to (b) and the moduli interpretation, it suffices to find a single general-
ized elliptic curve E −→π S with nm-gon degenerate geometric fibers such that its
contraction E ′ −→π

′

S with respect to E sm
[n] satisfies the equality

IS∞,π ′ =I d
S∞,π of OS-ideal sheaves for d = m,



A modular description of X0(n) 2029

but does not satisfy this equality for any other d ∈Z≥1 (here IS∞,π ⊂OS is the ideal
sheaf that cuts out the degeneracy locus S∞,π ⊂ S, and likewise for IS∞,π ′ ). Tate
curves supply such E , see [Deligne and Rapoport 1973, VII.1.11 and VII.1.14]. �

We now record some concrete consequences of our analysis of the contraction

c : E``nm→ E``n.

Corollary 3.2.5. For a generalized elliptic curve E −→π S, let IS∞,π ⊂ OS be the
ideal sheaf that cuts out the degeneracy locus S∞,π ⊂ S. If the degenerate geometric
fibers of E −→π S are nm-gons and cE sm[n](E)−→π

′

S is the contraction of E −→π S
with respect to E sm

[n], then

IS∞,π ′ =I m
S∞,π .

Proof. This is a reformulation of Theorem 3.2.4(c). �

Corollary 3.2.6. For each n ∈ Z≥1, every generalized elliptic curve E→ S is fppf
locally on S the contraction (with respect to some subgroup) of a generalized elliptic
curve E ′→ S for which the number of irreducible components of each degenerate
geometric fiber is divisible by n. An fppf cover of S over which such an E ′ exists
may be chosen to be locally quasifinite over S.

Proof. We may assume that there is a d ∈ Z≥1 such that the degenerate geometric
fibers of E are d-gons (see Remark 2.1.9). The first claim then follows from flatness,
surjectivity, and finite presentation of E``nd

c
−→ E``d . The second claim follows

from the first and [EGA IV4 1967, 17.16.2]. �

We conclude the section by using Corollary 3.2.6 to analyze the torsion subgroups
of a generalized elliptic curve in a formal neighborhood of the degeneracy locus.
Similar analysis in the case of Tate curves has been carried out in [Deligne and
Rapoport 1973, VII.1.13–VII.1.15].

Proposition 3.2.7. Let E −→π S be a generalized elliptic curve with S = Spec R for
a Noetherian R that is complete and separated with respect to the ideal I ⊂ R that
cuts out S∞,π ⊂ S.

(a) For every n ∈ Z≥1, the S-group (E sm)0 has a unique finite locally free S-
subgroup Bn ⊂ (E sm)0 of order n, and Bn ' µn étale locally on S. If an
m ∈ Z≥1 divides both n and the number of irreducible components of each
degenerate geometric fiber of E , then E sm

[n] has a unique finite locally free
S-subgroup An,m that meets precisely m irreducible components of every
degenerate geometric fiber of E , contains every other finite locally free S-
subgroup of E sm

[n] with this property, is of order nm, and fits into a short
exact sequence

0→ Bn→ An,m→ Cm→ 0
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with Cm isomorphic to Z/mZ étale locally on S.

(b) For every n ∈ Z≥1, over S− S∞,π the group Bn from (a) fits into a short exact
sequence

0→ (Bn)S−S∞,π → ES−S∞,π [n] → C ′n→ 0

with C ′n an (S− S∞,π )-group scheme that is isomorphic to Z/nZ étale locally
on S− S∞,π .

Proof. (a) If S is an infinitesimal thickening of S∞,π , then Lemma 2.1.11 gives the
claim. Therefore, the uniqueness and the existence of Bn and An,m follow from
[EGA III1 1961, 5.1.4 and 5.4.1] (the S-group structure of Bn may be read off
from the action morphism Bn ×S E→ E , so the nonproperness of E sm does not
intervene, and likewise for An,m). The étale local structure of Bn translates into
that of its Cartier dual, so it may be read off on geometric fibers at points in S∞,π ,
and likewise for the étale local structure of Cm .

(b) In the case when n divides the number of irreducible components of each
degenerate geometric fiber of E , the claim follows from (a). In general, C ′n is a
finite locally free (S − S∞,π )-group scheme of order n and it suffices to check
that its geometric fibers are isomorphic to Z/nZ. In order to check this at a point
η ∈ S − S∞,π , we choose a specialization s ∈ S∞,π of η and use [EGA II 1961,
7.1.9] to find an S-scheme T that is the spectrum of a complete discrete valuation
ring whose generic (resp. closed) point maps to η (resp. s). Due to the uniqueness of
Bn , the formation of C ′n commutes with base change of E to T , so we are reduced
to the case when S = Spec R for some complete discrete valuation ring R and
I ⊂ R is a nonzero power of the maximal ideal. In this case, Corollary 3.2.6 and
[EGA IV4 1967, 18.5.11 (a)⇔(c)] supply a finite faithfully flat R-algebra R′ such
that ER′ is the contraction of a generalized elliptic curve E ′→ Spec R′ for which
n divides the number of irreducible components of each degenerate geometric fiber.
Base change to R′ reduces the claim to the settled case of E ′. �

3.3. The coarse moduli space of E``n

We seek to prove in Proposition 3.3.2 that for any scheme S and any n ∈ Z≥1 the
coarse moduli space of (E``n)S is isomorphic to P1

S , the “ j -line.” Of course, this is
hardly surprising, but even in the n = 1 case we are not aware of a reference that
would treat arbitrary S — for n = 1, [Deligne and Rapoport 1973, VI.1.1] settles
the basic case S = Spec Z, whereas [Fulton and Olsson 2010, 2.1] handles general
locally Noetherian S (the formation of the coarse moduli space need not commute
with nonflat base change, so the S = Spec Z case does not automatically imply the
general case). We will build on the above result of Deligne and Rapoport through
the following lemma.
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The existence of all the coarse moduli spaces that we will consider in this section
is guaranteed by [Keel and Mori 1997, 1.3(1)] (see also [Conrad 2005, 1.1; Rydh
2013, 6.12]).

Lemma 3.3.1. Let X be a Deligne–Mumford stack that is separated, flat, and
locally of finite type over Z, and let

f :X → X

be its coarse moduli space map. If fFp : XFp → XFp is the coarse moduli space
map of XFp for every prime p, then fS :XS→ X S is the coarse moduli space map
of XS for every scheme S.

Proof. The formation of the coarse moduli space f : X → X commutes with
flat base change in X , and we may work fppf locally on X S when checking that
fS :XS→ X S is the coarse moduli space of XS . We may therefore assume that
S = Spec R for some ring R and, by [Abramovich and Vistoli 2002, 2.2.3 and its
proof], that

X = Spec A and X = [(Spec B)/G]

for some finite A-algebra B equipped with an action of a finite group G. In this
situation, as is explained in [Conrad 2005, 3.1], we have A= BG , the coarse moduli
space of XS is Spec((B⊗Z R)G), and we seek to prove that the map

jR : BG
⊗Z R→ (B⊗Z R)G

is an isomorphism granted that it is an isomorphism whenever R = Fp for any p.
The Z-flatness of X ensures that B is torsion-free, so the abelian group B/BG

is also torsion-free. Therefore, BG
⊗Z R→ B⊗Z R, and hence also jR , is injective

for every Z-module R. In order to conclude, we will prove that jR is also surjective
for every Z-module R.

By passage to a filtered direct limit, we may assume that the Z-module R is
finitely generated. Thus, since the case R = Z is clear, we may assume that
R = Z/nZ for some n ∈ Z≥1. To then finally reduce to the assumed R = Z/pZ

case by dévissage, it remains to use the commutative diagram

0 // BG
⊗Z R′ //
� _

jR′

��

BG
⊗Z R //
� _

jR

��

BG
⊗Z R′′ //
� _

jR′′

��

0

0 // (B⊗Z R′)G // (B⊗Z R)G // (B⊗Z R′′)G

that is in place whenever one has a short exact sequence 0→ R′→ R→ R′′→ 0
of Z-modules. �
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We are ready for the promised conclusion about the coarse moduli space of
(E``n)S .

Proposition 3.3.2. For any n ∈ Z≥1, the coarse moduli space of E``n (resp. of
the open substack E`` ⊂ E``n) is isomorphic to P1

Z (resp. to A1
Z ⊂ P1

Z, with the
map E``→ A1

Z being given by the j-invariant) and its formation commutes with
base change to an arbitrary scheme S. In particular, E``n is irreducible and has
geometrically irreducible Z-fibers.

Proof. The last assertion follows from the rest because the map to the coarse moduli
space induces a homeomorphism on topological spaces.

We begin with the n = 1 case, for which the base S = Spec Z has been treated in
[Deligne and Rapoport 1973, VI.1.1 and VI.1.3] and we only need to prove that the
formation of the coarse moduli space of E``1 commutes with arbitrary base change.
Let

C ⊂ E``1

be the preimage of the open subscheme of P1
Z obtained by removing the sections

j = 0 and j = 1728. By [Deligne 1975, 5.3(III)], the automorphism functor of every
generalized elliptic curve classified by C is the constant group {±1}. Therefore,
as is explained in [ACV03 2003, §5.1], [Romagny 2005, §5], or [AOV08 2008,
Appendix A], we may “quotient out” this constant group from the automorphism
functors to obtain the algebraic stack C( {±1} that is a “rigidification” of C . By,
for instance, [AOV08 2008, A.1], the rigidification map

C → C( {±1}

induces an isomorphism on coarse moduli spaces. However, by [Laumon and
Moret-Bailly 2000, 8.1.1], the algebraic stack C( {±1} is its own coarse moduli
space. Thus, since the formation of C( {±1} commutes with arbitrary base change,
so does that of the coarse moduli space of C . In particular, for every prime p, the
map from the coarse moduli space of (E``1)Fp to P1

Fp
is an isomorphism on a dense

open subscheme. However, this map is finite locally free due to the normality of
its source inherited from the Fp-smooth (E``1)Fp , so it is an isomorphism globally.
This settles the n = 1 case for S = Spec Fp, and the general n = 1 case then follows
from Lemma 3.3.1.

For general n, we begin by arguing that the coarse moduli space Y of E``n is
Z-flat and that its formation commutes with arbitrary base change. By the settled
n = 1 case, this is true on the elliptic curve locus, so we may focus on the open
substack Cn ⊂ E``n that is the preimage of C . By [Deligne and Rapoport 1973,
II.2.8], every generalized elliptic curve has the automorphism −1 that restricts to
inversion on the smooth locus. In particular, the constant group scheme {±1} is
a canonical subgroup functor of the automorphism functor of every generalized
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elliptic curve classified by Cn , so we may pass to the rigidification Cn( {±1} and
need to argue that its coarse moduli space is Z-flat and of formation compatible
with base change. This follows from [AOV08 2008, 3.3] because the algebraic
stack Cn( {±1} is tame by Lemma 2.1.6 and [Deligne 1975, 5.3(III)].

It remains to prove that the map f : Y → P1
Z between the coarse moduli spaces

of E``n and E``1 is an isomorphism. By [Rydh 2013, 6.12], the coarse moduli
space Y is Z-proper, so the map in question is proper and quasifinite, and hence also
finite by Lemma 3.2.3. Once we prove its flatness, and hence also local freeness,
it will remain to inspect the elliptic curve locus to see that it is an isomorphism.
Due to the Z-flatness of Y and [EGA IV3 1966, 11.3.11], for the remaining flatness
of f we may work Z-fiberwise, and hence conclude with the help of [EGA IV2

1965, 6.1.5] after observing that for every field k, the reducedness of the k-smooth
(E``n)k ensures the reducedness, and hence also the Cohen–Macaulay property, of
its 1-dimensional coarse moduli space Yk . �

3.4. Algebraization of formal generalized elliptic curves and of their
homomorphisms

The goal of this section is to prove that a formal generalized elliptic curve that is
adic over an affine Noetherian formal scheme and whose number of irreducible
components of a degenerate geometric fiber is constant may be uniquely algebraized,
and likewise for generalized elliptic curve homomorphisms — see Theorem 3.4.2
for a precise statement. Such algebraizability does not immediately follow from
Grothendieck’s formal GAGA formalism because the loci of smoothness may not
be proper over the base, but it nevertheless is not surprising: if this formalism
applied to the Z-proper stack E``n as it does in the scheme case, then the pullback
map

E``n(R)→ lim
←−−m E``n(R/I m)

would be an equivalence for every adic Noetherian ring R with an ideal of definition
I , and Theorem 3.4.2(a) would follow. The key difference from the scheme case is
that a section of (E``n)R → Spec R is not a closed immersion. Nevertheless, an
argument that we have extracted from [Olsson 2006, 5.4] proves a suitable formal
GAGA statement recorded in Lemma 3.4.1 (see also [Aoki 2006b, §3.4; Aoki
2006a] for a similar argument).

Lemma 3.4.1. Let R be a Noetherian ring that is complete and separated with
respect to an ideal I ⊂ R. For every proper R-algebraic stack X with finite
diagonal 1X /R (for instance, for every proper Deligne–Mumford R-stack X ), the
functor

X (R)→ lim
←−−m X (R/I m) (3.4.1.1)

is an equivalence of categories.
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Proof. If x, x ′ ∈ X (R), then the isomorphism functor Isom(x, x ′) is a finite R-
scheme, so

Isom(x, x ′)(R)→ lim
←−−m Isom(x, x ′)(R/I m)

is bijective by formal GAGA for schemes [EGA III1 1961, 5.1.6]. In other words,
the functor (3.4.1.1) is fully faithful. For its essential surjectivity, suppose that

{xm ∈X (R/I m)}m≥1

is a compatible sequence of objects. Due to the finiteness of 1X /R , each map

Spec(R/I m)
xm
−→XR/I m

is representable by schemes and finite. Therefore, xm corresponds to a coherent
OXR/I m -algebra Am . By formal GAGA for Artin stacks, i.e., by [Olsson 2006, A.1],
the compatible system {Am}m≥1 comes via base change from a unique coherent
OX -algebra A . It remains to argue that the composition of the finite morphism
X

x
−→ X corresponding to A and the structure morphism X → Spec R is an

isomorphism. By construction, xR/I m = xm for every m ≥ 1, so the claim will
follow from [EGA III1 1961, 5.1.6] once we prove that the proper R-algebraic stack
X is a finite R-scheme.

By [Conrad 2007, 2.2.5(2)], the algebraic space locus of X is open and contains
X R/I , so it must coincide with X . Since the relative dimension of X over R may
be computed étale locally on X , [EGA IV3 1966, 13.1.3] proves that the relative
dimension 0 locus of X is open, and hence must equal X because it contains X R/I .
To conclude that X→ Spec R is finite one then applies Lemma 3.2.3. �

The algebraization Theorem 3.4.2(a) has already been proved in [Conrad 2007,
2.2.4] by a different argument that does not use formal GAGA for Artin stacks
(a similar argument had previously been used in [Deligne and Rapoport 1973,
VII.1.10] to construct Tate curves), but it seems worthwhile to put this result in the
context of Lemma 3.4.1. In contrast, the method of [Conrad 2007, 2.2.4] does not
seem to suffice for the proof of the algebraizability of homomorphisms (beyond the
case of isomorphisms), i.e., for Theorem 3.4.2(b). To algebraize homomorphisms
we exploit their structure detailed in Section 2.2.

Theorem 3.4.2. Let R be a Noetherian ring, complete and separated with respect
to an ideal I ⊂ R.

(a) For each n ∈ Z≥1, every compatible under pullback sequence

{Em→ Spec(R/I m)}m≥1
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of generalized elliptic curves whose degenerate geometric fibers are n-gons is
isomorphic to the sequence obtained via base change from a unique generalized
elliptic curve E→ Spec R.

(b) For generalized elliptic curves E→ Spec R and E ′→ Spec R, every compati-
ble sequence

{ fm : ER/I m → E ′R/I m }m≥1

of generalized elliptic curve homomorphisms (defined in Definition 2.1.12)
comes via base change from a unique generalized elliptic curve homomorphism

f : E→ E ′.

Proof. (a) Lemma 3.4.1 applied to E``n proves the claim (for the uniqueness,
Remark 2.1.9 ensures that the degenerate geometric fibers of E are n-gons).

(b) We begin with the case when all the fm are isomorphisms (Lemma 3.4.1
does not apply because E need not correspond to an object of E``n for any n).
Due to Remark 2.1.9, there is no geometric point s of Spec R for which Es and
E ′s are both degenerate but have distinct numbers of irreducible components, so
Proposition 3.1.8(a) shows that the isomorphism functor Isom(E, E ′) is a finite
R-scheme. Therefore, by [EGA III1 1961, 5.1.6], the sequence

( fm) ∈ lim
←−−m Isom(E, E ′)(R/I m)

is induced by a desired unique

f ∈ Isom(E, E ′)(R).

In the general case, by [EGA III1 1961, 5.4.1], the fm algebraize to a unique
R-morphism

f : E→ E ′,

and our task is to show that f is a generalized elliptic curve homomorphism. Since
idempotents of R/I lift uniquely to R (see [EGA IV4 1967, 18.5.16(ii)]), we may
use Proposition 2.2.9 to write

R = R′× R′′ and I = I ′× I ′′

in such a way that ( f1)R′/I ′ is the zero homomorphism and ( f1)R′′/I ′′ is an isogeny.
Then R′ (resp. R′′) is complete and separated with respect to I ′ (resp. I ′′) and each
( fm)R′/I ′m (resp. ( fm)R′′/I ′′m ) is the zero homomorphism (resp. an isogeny). Thus,
fR′ must be the zero homomorphism, and we are reduced to the case when all the
fm are isogenies.
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Let Km ⊂ ER/I m be the kernel of the isogeny fm . The group law of Km is the
restriction of the action morphism

Km × ER/I m → ER/I m ,

so [EGA III1 1961, 5.1.4 and 5.4.1] supply a finite locally free R-subgroup K ⊂ E sm

that algebraizes all the Km . Corollary 2.2.7(b) and the settled case when the fm are
isomorphisms then provide the identification E/K ∼= E ′, so f is identified with the
isogeny E→ E/K and hence is a homomorphism. �

Chapter 4. Modular descriptions of modular curves

With the compactifications E``n at our disposal, we are ready to exhibit the moduli
interpretations and the regularity of several classical modular curves, such as X (n)
or X1(n) (see Section 1.7 for an overview of our method and of previous work).
We begin in Section 4.1 by reviewing the construction and the properties of modular
curves of arbitrary congruence level. The moduli interpretations of X (n) and X1(n)
given in Sections 4.3 and 4.4 use Drinfeld structures on generalized elliptic curves,
so in Section 4.2 we extend a number of properties of such structures from the
elliptic curve case studied by Katz and Mazur. In Section 4.5, we synthesize the
arguments used for X (n) and X1(n) in the form of an axiomatic result, which
we use in Section 4.6 to treat further modular curves X̃1(n; n′), X1(n; n′), and
X0(n; n′) for suitable n and n′. The analysis of X1(n; n′) is used in Section 4.7 to
give a modular construction of some Hecke correspondences for X1(n).

4.1. Modular curves of congruence level

The main goal of this section is to review the definition given by Deligne and
Rapoport [1973, IV.3.3] of (stacky) modular curves over Z of congruence level.
The definition is via a normalization procedure, and for general levels there is no
known description of these Z-curves as moduli spaces of generalized elliptic curves
equipped with additional structure (one of the principal goals of this paper is to
give such a description in the case of 00(n) level). The normalization procedure
rests on the case of “no level,” with which we begin.

4.1.1. The case of no additional level. In this case, the modular curve in question
is the Z-stack E``1 that parametrizes generalized elliptic curves with integral geo-
metric fibers (see Definition 3.1.1). In the context of level structures, we will denote
E``1 by XGL2(Ẑ)

, by X0(1), or simply by X (1), and we will denote its elliptic curve
locus E`` by similar notation with X replaced by Y , e.g., by

Y (1)⊂X (1).
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By Theorem 3.1.6(a)–(b) (i.e., by [Deligne and Rapoport 1973, III.2.5(i), III.1.2(iii),
and IV.2.2]), the stack X (1) is Deligne–Mumford and the morphism

X (1)→ Spec Z

is proper and smooth of relative dimension 1.

4.1.2. The case of an arbitrary congruence level H . The level is an open (and
hence finite index) subgroup H of GL2(Ẑ). Its associated modular curve XH

is a Deligne–Mumford Z-stack that, loosely speaking, compactifies the stack
YH [1/level] which represents the “level H moduli problem” on elliptic curves
over schemes on which bad primes that depend on the level are invertible. More
precisely, given H , one fixes an n ∈ Z≥1 for which

Ker(GL2(Ẑ)� GL2(Z/nZ))⊂ H and sets H := Im(H → GL2(Z/nZ)).

One then lets YH [1/n] be the Z[1/n]-stack that, for variable Z[1/n]-schemes S,
parametrizes elliptic curves E → S equipped with an S-point of the finite étale
S-scheme

H \ Isom(E[n], (Z/nZ)2).

Finally, one defines XH to be the Deligne–Mumford X (1)-stack obtained by
normalizing X (1) with respect to the “forgetful” finite étale morphism

YH
[ 1

n

]
→ Y (1)Z[ 1

n ]
.

One lets YH be the preimage of Y (1) in XH . It is proved in [Deligne and Rapoport
1973, IV.3.6] that different choices of n lead to canonically isomorphic XH .

The map
XH →X (1) (4.1.2.1)

is representable, finite, and also surjective because X (1) is irreducible. Moreover,
by [EGA IV2 1965, 6.1.5] (which applies because of “going down” and the normality
of XH ), the map (4.1.2.1) is flat, so it is locally free of rank [GL2(Ẑ) : H ] and
XH is of relative dimension 1 over Z at every point. By [Deligne and Rapoport
1973, IV.6.7], the proper and flat structure morphism XH → Spec Z is even smooth
over Z[1/n]. If H ′ ⊂ H , then the finite étale Y (1)-morphism

YH ′
[ 1

n

]
→ YH

[ 1
n

]
obtained from the S-morphisms

H ′ \ Isom
(
E[n], (Z/nZ)2

)
→ H \ Isom

(
E[n], (Z/nZ)2

)
gives rise to the finite X (1)-morphism

XH ′→XH .
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Thus, due to the following lemma and Proposition 4.3.6, all the XH are schemes
for small enough H .

Lemma 4.1.3. If the modular curve XH has an open substack U ⊂ XH whose
geometric points have no nontrivial automorphisms, then U is a scheme that is
quasiprojective over Spec Z.

Proof. By Lemma 3.2.2(a), U is an algebraic space. Moreover, the coarse moduli
space morphism X (1) → P1

Z is separated and quasifinite, so U → P1
Z is also

separated and quasifinite, and hence U is a scheme by Lemma 3.2.3. Finally, the
morphism U → P1

Z is quasiprojective by [EGA IV3 1966, 8.11.2] or by Zariski’s
main theorem [EGA IV3 1966, 8.12.6], so U → Spec Z is also quasiprojective. �

Remark 4.1.4. Due to Lemma 4.1.3 and [Conrad 2007, 2.2.5(2)], each XH has a
unique largest open subscheme. This subscheme contains exactly those geometric
points of XH whose automorphism functors are trivial.

One suspects that XH is the “correct” modular curve of level H , in part because
there is no other choice granted that one believes that such a modular curve should be
representable and finite over X (1), normal, and agree with YH [1/n] over Y (1)Z[1/n].
One of the bottlenecks limiting practical usefulness of the stacks XH is the lack
of descriptions of their functors of points (without inverting the level) in terms of
generalized elliptic curves equipped with additional data. In the cases where such
descriptions have been found, one has been able to analyze XH more thoroughly,
e.g., to prove that XH is regular (and not just normal). Such regularity is useful
in practice (but is not known in general) — for instance, through [EGA IV2 1965,
6.1.5] it would ensure flatness of the maps XH→XH ′ mentioned above. Similarly,
the proof of the Z[1/n]-smoothness of (XH )Z[1/n] given in [Deligne and Rapoport
1973, IV.6.7] rests on the modular description of (XH )Z[1/n] presented in [loc. cit.]
for any H (however, this description is not explicit enough to a priori recover the
“obvious” candidate descriptions for classical choices of H ).

Modular descriptions of XH are known for most “classical” H , and we will
reprove some of them in Sections 4.3–4.6 below.

4.2. Drinfeld level structures on generalized elliptic curves via congruences

In order to efficiently handle all residue characteristics, the modular descriptions of
various XH that will be discussed in subsequent sections will use Drinfeld level
structures on generalized elliptic curves. In the elliptic curve case, the necessary
properties of such structures follow from the work of Katz and Mazur [1985], and
the goal of this section is to extend them to the generalized elliptic curve case.
Some such extensions have already been obtained in [Conrad 2007], but our method
seems simpler, more direct, and applies in a wider range of situations. The key idea
is to exploit “mod n congruences” with elliptic curves: the properties of various
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“mod n Drinfeld level structures” tend to be fppf local and to depend solely on
the n-torsion E sm

[n], so for many purposes we may first use Corollary 3.2.6 to
reduce to the case when E sm

[n] is finite locally free of rank n2 and then apply the
following lemma to further reduce to the elliptic curve case.

Lemma 4.2.1. For every n ∈ Z≥1 and every generalized elliptic curve E→ S for
which n divides the number of irreducible components of each degenerate geometric
fiber, there is an fppf cover S′→ S and an elliptic curve E ′→ S′ for which

E sm
S′ [n] ' E ′[n].

Proof. We may work étale locally on S, so limit arguments allow us to assume that
S is local and strictly Henselian. We may then also assume that the special fiber
of E is degenerate, so the connected-étale sequence (together with Lemma 2.1.11)
shows that E sm

[n] is an extension of Z/nZ by µn . After passage to an fppf cover
this extension splits and our task reduces to showing that fppf locally on Spec Z

there is an elliptic curve E ′ with E ′[n] ∼= µn ×Z/nZ.
Via limit arguments, it suffices to find such an E ′ over each strict Henselization

(R,m) of Spec Z at every closed point. The conclusion then follows from choosing
an ordinary elliptic curve over R/m, lifting its Weierstrass equation to R, and using
the connected-étale sequence again. �

To make sense of Drinfeld level structures as alluded to above, we recall the
following key definition:

Definition 4.2.2. For a finite abelian group A and a generalized elliptic curve
E→ S, a Drinfeld A-structure on E is a homomorphism α : A→ E sm(S) for which
the relative effective Cartier divisor

Dα :=
∑

a∈A[α(a)] ⊂ E sm

is an S-subgroup scheme. If this S-subgroup G ⊂ E sm is given in advance, then
we say that α is a Drinfeld A-structure on G.

Remark 4.2.3. By [Katz and Mazur 1985, 1.5.3], if #A is invertible on S, then a
Drinfeld A-structure α on E amounts to an isomorphism induced by α between the
constant S-group AS and some S-subgroup of E sm.

Convention 4.2.4. In the sequel we will sometimes deal with Drinfeld Z/nmZ-
or (Z/nmZ)2-structures for fixed n,m ∈ Z≥1 and will want to obtain Z/nZ- or
(Z/nZ)2-structures by restricting to the n-torsion subgroups. To make sense of this
we need to choose noncanonical isomorphisms

Z/nZ' (Z/nmZ)[n] and (Z/nZ)2 ' (Z/nmZ)2[n].

The particular choices will never matter for the results, but for definiteness we
always choose the isomorphisms induced by multiplication by m on Z or on Z2.
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In the results below, the “compare with” references point to the elliptic curve
cases treated by Katz and Mazur. We begin by detailing the properties of restrictions
to subgroups of various Drinfeld structures on generalized elliptic curves. Parts (a)
and (c) of Proposition 4.2.5 have been proved in [Conrad 2007, 2.3.2] by a different
method that also eventually reduces to the elliptic curve case.

Proposition 4.2.5. Let n,m ∈ Z≥1, and let E→ S be a generalized elliptic curve.

(a) (Compare with [Katz and Mazur 1985, 5.5.2(1) and 5.5.7(1)]). If α is a
Drinfeld (Z/nmZ)2-structure on E sm

[nm], then α|(Z/nmZ)2[n] is a Drinfeld
(Z/nZ)2-structure on E sm

[n] and α|Z/nmZ×{0} is a Drinfeld Z/nmZ-structure
on E.

(b) (Compare with [Katz and Mazur 1985, 5.5.8(1)]). If α : (Z/nmZ)2→ E sm(S)
is a group homomorphism, every prime divisor of m divides n, and α|(Z/nmZ)2[n]
is a Drinfeld (Z/nZ)2-structure on E sm

[n], then α is a Drinfeld (Z/nmZ)2-
structure on E sm

[nm] (so, in particular, the number of irreducible components
of each degenerate geometric fiber of E is divisible by nm).

(c) (Compare with [Katz and Mazur 1985, 5.5.7(2)]). If α is a Drinfeld Z/nmZ-
structure on E , then α|(Z/nmZ)[n] is a Drinfeld Z/nZ-structure on E.

(d) (Compare with [Katz and Mazur 1985, 5.5.8(2)]). If α : Z/nmZ→ E sm(S) is
a group homomorphism, every prime divisor of m divides n, and α|(Z/nmZ)[n] is
a Drinfeld Z/nZ-structure on E , then α is a Drinfeld Z/nmZ-structure on E.

(e) (Compare with [Katz and Mazur 1985, 5.5.2(2)]). For brevity, set N := nm. If
α is a Drinfeld (Z/NZ)2-structure on E sm

[N ] and G ⊂ E sm is the subgroup∑
i∈Z/NZ×{0}[α(i)] supplied by (a), then

α|{0}×Z/NZ : {0}×Z/NZ→ (E/G)sm(S)

is a Drinfeld Z/NZ-structure on E sm
[N ]/G ⊂ (E/G)sm.

Proof. It suffices to work fppf locally on S, so we may use Corollary 3.2.6 to
reduce to the case when the number of irreducible components of each degenerate
geometric fiber of E is divisible by nm (in parts (a) and (e) we are in this case at
the outset). We may then apply Lemma 4.2.1 to assume further that there is an
elliptic curve E ′→ S with E ′[nm] ' E sm

[nm]. By [Katz and Mazur 1985, 1.10.6
and 1.10.11], the properties under consideration depend solely on the S-group
scheme E sm

[nm] equipped with the homomorphism α and not on the embedding
of E sm

[nm] into a smooth S-group scheme of relative dimension 1 (such as E sm or
E ′). Thus, the claims result from their elliptic curve cases. �

Cyclic subgroups of generalized elliptic curves will be important for us, so we
recall their definition.



A modular description of X0(n) 2041

Definition 4.2.6. For a generalized elliptic curve E → S, a finite locally free S-
subgroup G ⊂ E sm is cyclic of order n if fppf locally on S there is a Drinfeld
Z/nZ-structure on G. For a G that is cyclic of order n, a section g ∈ G(S) is a
generator of G (or generates G) if the homomorphism

α : Z/nZ→ E sm(S)

defined by α(1) = g is a Drinfeld Z/nZ-structure on G. An isogeny of constant
degree n between generalized elliptic curves over S is cyclic if its kernel is cyclic
of order n.

We turn to the properties of cyclic subgroups of generalized elliptic curves. Parts
(a), (d), and (f) of Proposition 4.2.7 have also been reduced to the elliptic curve
case in [Conrad 2007, 2.3.7, 2.3.8, and 2.3.5] by a different method.

Proposition 4.2.7. Let E → S be a generalized elliptic curve, G ⊂ E sm an S-
subgroup that is finite locally free of rank n over S, and G× ⊂ G the S-subsheaf of
generators of G (by [Katz and Mazur 1985, 1.6.5], the S-subsheaf G× is a closed
S-subscheme of G of finite presentation).

(a) (The Katz–Mazur cyclicity criterion; compare with [Katz and Mazur 1985,
6.1.1(1)]). The subgroup G is cyclic of order n if and only if G× is finite locally
free of rank φ(n) over S. In particular, G is cyclic of order n if and only if it
becomes cyclic of order n over an fpqc cover of S. If n is invertible on S and
G is cyclic of order n, then G×→ S is étale.

(b) (Compare with [Katz and Mazur 1985, 6.1.1(2)]). If g ∈ G(S) is a generator
of G, then

G× =
∑

i∈(Z/nZ)×[i · g] as effective Cartier divisors on E sm.

(c) (Compare with [Katz and Mazur 1985, 6.4.1]). There is a finitely presented
closed subscheme T ⊂ S such that the base change GS′ to an S-scheme S′ is
cyclic if and only if S′→ S factors through T .

(d) (Compare with [Katz and Mazur 1985, 6.8.7]). If n is squarefree, then G is
cyclic.

(e) (Compare with [Katz and Mazur 1985, 5.5.4(3)]). If G is cyclic of order n
and the number of irreducible components of each degenerate geometric fiber
of E→ S is divisible by n, then the subgroup E sm

[n]/G of E/G is cyclic of
order n.

(f) (Compare with [Katz and Mazur 1985, 6.7.2]). If G is cyclic and g, g′ ∈ G(S)
are generators of G, then for every positive divisor d of n both n

d · g and n
d · g

′

are generators of the same S-subgroup

Gd ⊂ G
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that is cyclic of order d. In particular, if G is cyclic, then the fppf local on S
subgroup of G defined in this way descends to a canonical cyclic S-subgroup
Gd ⊂ G of order d.

Proof. Cyclicity is an fppf local condition, so we may work fppf locally on S. We
may therefore use Corollary 3.2.6 and Lemma 4.2.1 to assume that the number of
irreducible components of each degenerate geometric fiber of E→ S is divisible by
n and that there is an elliptic curve E ′→ S such that E sm

[n] ' E ′[n]. Thus, since,
by [Katz and Mazur 1985, 1.10.6 and its generalization 1.10.1], the properties under
consideration depend solely on the S-group scheme E sm

[n] and its subgroup G,
the claims follow from their elliptic curve cases (in (a), if n is invertible on S, then
a cyclic G of order n becomes isomorphic to Z/nZ over an étale cover of S, so that
G× becomes isomorphic to the constant subscheme (Z/nZ)× ⊂ Z/nZ). �

Definition 4.2.8. For a generalized elliptic curve E→ S and a cyclic S-subgroup
G ⊂ E sm of order n, the S-subgroup Gd defined in Proposition 4.2.7(f) is the
standard cyclic subgroup of G of order d . Isogenies f1 : E→ E ′ and f2 : E ′→ E ′′

of constant degrees between generalized elliptic curves over S are cyclic in standard
order if Ker( f2 ◦ f1) is cyclic and Ker f1 is its standard cyclic subgroup (so that, in
particular, f1 and f2 are both cyclic by Proposition 4.2.9(e) below).

In Propositions 4.2.9 and 4.2.10 we extend various results of [Katz and Mazur
1985, §6.7] about standard cyclic subgroups and standard order factorizations of
cyclic isogenies to the case of generalized elliptic curves (Chapter 2 provides a
robust extension of the notion of an isogeny). Some of these extensions will be
important for the analysis of X00(n) carried out in Chapter 5.

Proposition 4.2.9. Let E → S be a generalized elliptic curve, let G ⊂ E sm be a
cyclic S-subgroup of order n, let d and d ′ be positive divisors n, and let

Gd ⊂ G

denote the standard cyclic subgroup of order d.

(a) (Compare with [Katz and Mazur 1985, 6.7.4]). If d | d ′, then Gd is identified
with the standard cyclic subgroup of Gd ′ of order d.

(b) Interpreting the intersection as that of fppf subsheaves of G, we have

Gd ∩Gd ′ = Ggcd(d,d ′).

(c) If G meets precisely m irreducible components of every degenerate geometric
fiber of E , then Gd meets precisely m/gcd

(
m, n

d

)
irreducible components of

every degenerate geometric fiber of E.

(d) (Compare with [Katz and Mazur 1985, 6.7.5]). Letting G×d denote the S-
scheme parametrizing the generators of Gd (so that, by Proposition 4.2.7(a),



A modular description of X0(n) 2043

G×d is a closed subscheme of Gd and is finite locally free of rank φ(d) over
S), we have

G =
∑

d|n G×d as effective Cartier divisors on E sm.

(e) (Compare with [Katz and Mazur 1985, 6.7.4]). The quotient

G/Gd ⊂ (E/Gd)
sm

is a cyclic S-subgroup of order n
d , the image of any generator of G generates

G/Gd , and if d | d ′, then the standard cyclic subgroup of G/Gd of order d ′
d is

identified with Gd ′/Gd .

(f) (Compare with [Katz and Mazur 1985, 6.7.11 (2)]). If n and n
d have the same

prime divisors, then g ∈ G(S) generates G if and only if its image generates
G/Gd , and, in particular, g generates G if and only if g+ h generates G for
some (equivalently, for any) h ∈ Gd(S).

Proof. Part (a) follows from the definitions because we may work fppf locally to
assume that G has a generator. Part (b) follows from (a): since Ggcd(d,d ′) lies inside
both Gd and Gd ′ , it suffices to observe that Gd/Ggcd(d,d ′) and Gd ′/Ggcd(d,d ′) have
coprime orders and hence intersect trivially inside G/Ggcd(d,d ′). Part (c) follows
from the definition of Gd . To prove part (d), we pass to an fppf cover of S over
which G admits a generator and apply Proposition 4.2.7(b).

For the remaining (e) and (f), we work fppf locally on S and use Corollary 3.2.6
and Lemma 4.2.1 to assume that G has a generator, that the number of irreducible
components of each degenerate geometric fiber of E is divisible by n, and that there
is an elliptic curve E ′→ S with E sm

[n]' E ′[n]. By [Katz and Mazur 1985, 1.10.6],
the properties under consideration in (e) and (f) depend solely on the S-group G
and not on its embedding into E sm or E ′, so (e) and (f) follow from their elliptic
curve cases. �

Proposition 4.2.10. Let

f1 : E0→ E1, f2 : E1→ E2, and f := f2 ◦ f1 : E0→ E2

be isogenies of constant degrees d1, d2, and d1d2 between generalized elliptic curves
over S.

(a) (Compare with [Katz and Mazur 1985, 6.7.8]). If f is cyclic and Ker f2 is
étale over S, then f1 and f2 are cyclic in standard order.

(b) (Compare with [Katz and Mazur 1985, 6.7.10]). If d1 and d2 are coprime, then
f is cyclic if and only if both f1 and f2 are cyclic, in which case f1 and f2 are
cyclic in standard order.
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(c) (Compare with [Katz and Mazur 1985, 6.7.12]). If f1 and f2 are cyclic, d1

and d2 have the same prime divisors, and g ∈ (Ker f )(S) is such that d2 · g
generates Ker f1 and f1(g) generates Ker f2, then f1 and f2 are cyclic in
standard order and g generates Ker f .

(d) (Compare with [Katz and Mazur 1985, 6.7.15]). If {Ei−1−→
fi Ei }

n
i=3 are further

isogenies of constant degrees di between generalized elliptic curves over S
such that d1, . . . , dn all have the same prime divisors and such that for each
1 ≤ i ≤ n − 1 the isogenies fi and fi+1 are cyclic in standard order, then
Ker( fn ◦ · · · ◦ f1) is cyclic and each Ker( fi ◦ · · · ◦ f1) is its standard cyclic
subgroup.

Proof. For notational convenience, we set n := 2 in (a)–(c). By Corollary 2.2.7 and
[Katz and Mazur 1985, 1.10.6], the properties under consideration may be expressed
in terms of the S-group scheme Ker( fn ◦ . . . ◦ f1) equipped with its S-subgroups
Ker( fi ◦ . . . ◦ f1). Thus, since the claims are fppf local on S, Corollary 3.2.6 and
Lemma 4.2.1 allow us to assume that the number of irreducible components of each
degenerate geometric fiber of E0 is divisible by

∏n
i=1 di and that there is an elliptic

curve E ′→ S with

E sm
0

[∏n
i=1 di

]
' E ′

[∏n
i=1 di

]
.

This reduces to the elliptic curve cases treated by Katz–Mazur in [op. cit.]. �

We wish to prove in Proposition 4.2.11(b) a generalization of the claim of [Conrad
2007, 2.4.5] that is important for the definition of 01(N ; n)-structures given there.
The argument given in [loc. cit.] seems to require further input: the “universal
deformation technique” invoked towards the end of the proof does not seem to apply
directly because it is based on [Deligne and Rapoport 1973, III.1.2(iii)] that requires
the number of irreducible components of the closed fiber to be prime to the residue
characteristic and the Z/NZ-structure P may interfere with this requirement.

Proposition 4.2.11. Let E→ S be a generalized elliptic curve, and let n,m ∈ Z≥1.

(a) If G ⊂ E sm and H ⊂ E sm are S-subgroups that are cyclic of orders n and
m, respectively, and α and β are fppf local on S Drinfeld Z/nZ- and Z/mZ-
structures on G and H , then∑

i∈Z/nZ
j∈Z/mZ

[α(i)+β( j)]

is an effective Cartier divisor on E sm that does not depend on the choices of α
and β and descends to a well-defined relative effective Cartier divisor on E sm

over S denoted by [G+ H ].
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(b) Set d := gcd(n,m) and suppose that the number of irreducible components of
each degenerate geometric fiber of E→ S is divisible by d. If G ⊂ E sm and
H ⊂ E sm are S-subgroups that are cyclic of orders n and m, respectively, and
[Gd + Hd ] = E sm

[d], then [G+ H ] is a finite locally free S-subgroup scheme
of E sm of order nm and killed by lcm(n,m), and any Drinfeld Z/nZ-structure
on G induces a Drinfeld Z/nZ-structure on [G+ H ]/H ⊂ (E/H)sm.

Proof. For (a), the cases when either α or β is fixed suffice, so one only needs to
observe that translation by an S-point is an automorphism of the S-scheme E sm

and hence commutes with the formation of the sum of effective Cartier divisors —
for example, the left hand side of

α(i)+ H =
∑

j∈Z/mZ[α(i)+β( j)]

does not depend on β.
For (b), we work fppf locally on S and use Corollary 3.2.6 to assume that the

number of irreducible components of each degenerate geometric fiber of E→ S is
divisible by nm and that there are Drinfeld Z/nZ- and Z/mZ-structures α and β on
G and H . We then imitate the argument of [Conrad 2007, top of p. 231] given in
the elliptic curve case. Namely, we use [Katz and Mazur 1985, 1.7.2 and 1.10.6] to
“factor into prime powers” to reduce to the case when n = pr and m = ps for some
prime p and r ≤ s (the r ≥ s case of the last aspect of the claim will be argued
separately in the last paragraph of this proof). We assume that r ≥ 1 (otherwise
[G+H ] = H ) and, after replacing S by an fppf cover, we choose a homomorphism
α̃ : Z/psZ→ E(S) with ps−r α̃(1)= α(1). By Proposition 4.2.5(b),

α̃+β : (Z/psZ)2→ E sm(S)

is a Drinfeld (Z/psZ)2-structure on E[ps
], so, by Proposition 4.2.5(e),

α̃ : Z/psZ→ (E/H)sm(S)

is a Drinfeld Z/psZ-structure on E/H . Then, by Proposition 4.2.5(c),

α : Z/pr Z→ (E/H)sm(S)

is a Drinfeld Z/pr Z-structure on a subgroup K ⊂ (E/H)sm. Finally, by [Katz
and Mazur 1985, 1.11.3], the scheme [G + H ] is the preimage of K in E , so is
a subgroup, as desired. Moreover, [G + H ] is killed by ps because the quotient
[G+ H ]/E[pr

] is killed by its order, i.e., by ps−r , whereas E[pr
] is killed by pr .

By construction, α, whose particular choice is irrelevant for the argument, induces
a Drinfeld Z/pr Z-structure on [G+ H ]/H .

It remains to prove that any α also induces a Drinfeld Z/pr Z-structure on
[G + H ]/H ⊂ (E/H)sm when r ≥ s and s ≥ 1. For this, by Proposition 4.2.5(e),
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α|(Z/pr Z)[ps ] induces a Drinfeld Z/psZ-structure on E/H , so, by Proposition 4.2.5(d),
α induces a Drinfeld Z/pr Z-structure on some S-subgroup K ′ ⊂ (E/H)sm, and it
remains to apply [Katz and Mazur 1985, 1.11.3] again to deduce that the preimage
of K ′ in E must equal [G+ H ]. �

One of the cornerstones of our approach to the study of various moduli stacks of
Drinfeld A-structures on generalized elliptic curves is a direct reduction of many
questions to the A = (Z/nZ)2 case. To make reductions of this sort feasible we
will need the following result:

Proposition 4.2.12. Let E→ S be a generalized elliptic curve, let n,m ∈ Z≥1, let
S′ be a variable S-scheme, and recall Convention 4.2.4.

(a) If the number of irreducible components of each degenerate geometric fiber of
E → S is divisible by nm and α is a Drinfeld (Z/nZ)2-structure on E sm

[n],
then the functor

S′ 7→
{
Drinfeld (Z/nmZ)2-structures β on E sm

S′ [nm]

such that β|(Z/nmZ)[n] = αS′
}

is representable by a finite locally free S-scheme of rank

# GL2(Z/nmZ)

# GL2(Z/nZ)

that is étale if nm is invertible on S.

(b) (Compare with [Katz and Mazur 1985, 5.5.3]). If E → S is a generalized
elliptic curve for which n divides the number of irreducible components of each
degenerate geometric fiber and α is a Drinfeld Z/nZ-structure on E , then the
functor

S′ 7→
{
Drinfeld (Z/nZ)2-structures βon E sm

S′ [n]

such that β|Z/nZ×{0} = αS′
}

is representable by a finite locally free S-scheme of rank n ·φ(n).

(c) (Compare with [Katz and Mazur 1985, 5.5.3]). If the number of irreducible
components of each degenerate geometric fiber of E→ S is divisible by n and,
for some S-subgroup G ⊂ E ,

α : Z/nZ→ E sm(S) and β : Z/nZ→ (E/G)sm(S)

are Drinfeld Z/nZ-structures on G and on E sm
[n]/G, respectively, then the

functor

S′ 7→
{
Drinfeld (Z/nZ)2-structures γ on E sm

S′ [n] such that

αS′ = γ |Z/nZ×{0} and βS′ = γ |{0}×Z/nZ : Z/nZ→ (E/G)sm(S′)
}
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is representable by a finite locally free S-scheme of rank n.

(d) Set d := gcd(n,m) and N := lcm(n,m). If the number of irreducible compo-
nents of each degenerate geometric fiber of E→ S is divisible by N and α and
β are, respectively, Drinfeld Z/nZ- and Z/mZ-structures on E such that

α|(Z/nZ)[d]+β|(Z/mZ)[d] : (Z/dZ)2→ E sm(S)

is a Drinfeld (Z/dZ)2-structure on E sm
[d], then the functor

S′ 7→
{
Drinfeld (Z/NZ)2-structures γ on E sm

S′ [N ] such that

αS′ = γ |(Z/NZ×{0})[n] and βS′ = γ |({0}×Z/NZ)[m]
}

is representable by a finite locally free S-scheme of rank N ·φ(N )/(d ·φ(d)).

Proof. All the functors in question are fppf sheaves, so we may work fppf locally
on S. Setting N := nm (resp. N := n) in part (a) (resp. in parts (b) and (c)) for
notational convenience, we may therefore apply Lemma 4.2.1 to assume that there
is an elliptic curve E ′→ S with

E ′[N ] ' E sm
[N ].

By [Katz and Mazur 1985, 1.10.6], all the properties and functors under consider-
ation depend solely on the S-scheme E sm

[N ] (and its subgroup G in (c)), so we
may pass to E ′ to reduce to the elliptic curve case. This already settles (b) and (c),
and in order to also obtain (a) it remains to combine [EGA IV2 1965, 6.1.5] with
[Katz and Mazur 1985, 5.1.1], which ensures that for every ` ∈ Z≥1, the moduli
stack parametrizing Drinfeld (Z/`Z)2-structures on elliptic curves is finite locally
free of rank # GL2(Z/`Z) over E``, étale over E``Z[1/`], and regular.

For the remaining elliptic curve case of (d), we use [Katz and Mazur 1985, 1.7.2]
to “factor into prime powers” and reduce to the case when

n = pr and m = ps for some prime p.

Without loss of generality r ≥ s, so the case s = 0 is settled by (b). In the case
s ≥ 1, by Proposition 4.2.5(b) (i.e., by [Katz and Mazur 1985, 5.5.8(1)]), the
functor in question is identified with the functor parametrizing Q ∈ E(S′) such that
pr−s Q = βS′(1). This functor is an E[pr−s

]-torsor, so it is representable by a finite
locally free S-scheme of rank p2(r−s)

= pr
·φ(pr )/(ps

·φ(ps)). �

When proving the algebraicity of moduli stacks of Drinfeld structures on gen-
eralized elliptic curves we will sometimes rely on the representability of functors
parametrizing various such structures on a fixed curve. The key case of this repre-
sentability is Proposition 4.2.15(a) recorded below — further cases may be deduced
from it with the help of Proposition 4.2.7(a). It will be important to have such
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representability when the structures being parametrized are assumed to be ample,
so we first review the notion of ampleness.

Definition 4.2.13. A finite locally free S-subgroup G⊂ E sm of a generalized elliptic
curve E→ S is ample if G is S-ample as a relative effective Cartier divisor on E ,
equivalently, if G meets every irreducible component of every geometric fiber of
E→ S. For a finite abelian group A, a Drinfeld A-structure α on E is ample if the
S-subgroup Dα :=

∑
a∈A[α(a)] ⊂ E sm is ample.

Remark 4.2.14. The role of ampleness of α in the study of various stacks that
classify Drinfeld A-structures on generalized elliptic curves is twofold: it facilitates
descent considerations (e.g., the ones in the definition of a stack) by endowing
E→ S with a canonical S-ample line bundle OE(Dα), and it also kills undesirable
automorphisms that would hinder the representability of various “forget the level”
contraction morphisms (e.g., if α is ample and S is a geometric point, then one sees
from Lemma 2.1.6 that only the identity automorphism of (E, α) fixes (E sm)0).

Proposition 4.2.15. Let E→ S be a generalized elliptic curve, let S′ be a variable
S-scheme, and recall the notation Gd and [G+ H ] introduced in Definition 4.2.8
and Proposition 4.2.11(a).

(a) Fix n,m ∈ Z≥1, and set d := gcd(n,m) and N := lcm(n,m). The functor

F : S′ 7→
{
cyclic S′-subgroups G, H ⊂ E sm

S′

of orders n and m with[Gd + Hd ] = E sm
S′ [d]

}
(resp. its analogue which, in addition, requires [G + H ] to be ample) is
representable by a finitely presented, separated, quasifinite, flat S-scheme F
that is étale if nm is invertible on S. If N divides the number of irreducible
components of each degenerate geometric fiber of E → S, then F (defined
without the ampleness requirement) is finite locally free of rank

# GL2(Z/NZ) ·
d ·φ(d)

N ·φ(N ) ·φ(n) ·φ(m)
over S.

(b) (Compare with [Katz and Mazur 1985, 6.8.1]). For every n ∈ Z≥1, the functor

I : S′ 7→
{

finite locally free S′-subgroups G ⊂ E sm
S′ of rank n

}
(resp. its analogue which, in addition, requires G to be ample) is representable
by a finitely presented, separated, quasifinite, flat S-scheme I that is étale if n
is invertible on S. If n divides the number of irreducible components of each
degenerate geometric fiber of E→ S, then I (defined without the ampleness
requirement) is finite locally free over S and its rank is constant and equals the
number of subgroups of (Z/nZ)2 of order n.
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Remark 4.2.16. In (a), an important special case is m = 1, when F parametrizes
cyclic subgroups of order n. In (b), due to Corollary 2.2.7(b), I parametrizes
n-isogenies with source E .

Proof of Proposition 4.2.15. Due to [EGA IV3 1966, 9.6.4] and limit arguments
that reduce to a Noetherian base, the additional ampleness requirement cuts out
quasicompact open subfunctors of F and I, so the ampleness variant of the claims
will follow once we establish the rest.

To ease notation, we set N := n in (b). By [EGA IV4 1967, 18.12.12], quasifinite
and separated morphisms are quasiaffine, so effectivity of fppf descent for relatively
quasiaffine schemes enables us to work fppf locally on S. We may therefore apply
Corollary 3.2.6 to assume that E sm is an open S-subgroup of the smooth locus
of another generalized elliptic curve E ′→ S for which N divides the number of
irreducible components of each degenerate geometric fiber. The functor F (resp. I)
is an open subfunctor of the corresponding functor F ′ (resp. I ′) for E ′, and the
open immersion F ⊂ F ′ (resp. I ⊂ I ′) is quasicompact due to limit arguments, so
it suffices to settle the claims for E ′ in place of E . We may then use Lemma 4.2.1
to assume that there is an elliptic curve E ′′→ S with

E ′′[N ] ' E ′sm
[N ].

Since E ′ and E ′′ give isomorphic functors I, this reduces (b) to its elliptic curve
case [Katz and Mazur 1985, 6.8.1].

For (a), we let F ′N denote the functor that parametrizes Drinfeld (Z/NZ)2-
structures α on E ′sm

S′ [N ]. By Proposition 4.2.12(a), F ′N is representable by a finite
locally free S-scheme of rank # GL2(Z/NZ) that is étale if N is invertible on S.
By Proposition 4.2.5(a) and (c), there is a well-defined morphism

F ′N → F ′

that sends α to the pair of subgroups on which α|(Z/NZ×{0})[n] and α|({0}×Z/NZ)[m]

are Drinfeld Z/nZ- and Z/mZ-structures, respectively. By Proposition 4.2.7(a) and
Proposition 4.2.12(d), F ′N → F ′ is representable by schemes and finite locally free
of rank

N ·φ(N ) ·φ(n) ·φ(m)
d ·φ(d)

.

Therefore, the desired claim about F ′ follows from [SGA 3 I (new) 2011, V, 4.1]
(combined with [EGA IV2 1965, 2.2.11(ii); EGA IV4 1967, 17.7.5 and 17.7.7]). �

4.3. A modular description of X0(n)

The main goal of this section is to give a modular description of X0(n), where
n ∈ Z≥1 and

0(n) := Ker(GL2(Ẑ)� GL2(Z/nZ))
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(see Section 4.1.2 for the definition of X0(n); see also Section 1.9). This description
and the proof of its correctness follow already from the results of [Conrad 2007],
which also show the regularity and other properties of X0(n). We reprove both the
description and some of the properties of X0(n) by exploiting a direct relationship
with the compactification E``n studied in Chapter 3. The resulting proofs seem more
direct and more versatile — for instance, we will see in Section 4.4 that virtually
the same strategy also handles the H = 01(n) case, which is significantly more
complex for the methods of [op. cit.]. Another pleasant feature of this approach is
that it eliminates the crutch of analytic uniformizations — for instance, in the proof
of the “ampleness” of X (n)∞ ⊂X (n) given in Proposition 4.3.2(b), the only input
that is needed from the theory over C is the fact that the coarse moduli space of
(E``1)C is P1

C
(this comes in through our reliance on [Deligne and Rapoport 1973,

VI.1.1] in the proof of Proposition 3.3.2).
We begin by giving the definition of the modular stack X (n) that classifies

generalized elliptic curves endowed with an ample level n structure, and proceed to
establish enough of its properties to arrive at the identification X (n)=X0(n).

4.3.1. The stack X (n). This is the Z-stack that, for a fixed n ∈ Z≥1, and for
variable schemes S, parametrizes the pairs(

E −→π S, α : (Z/nZ)2→ E sm(S)
)

consisting of a generalized elliptic curve E −→π S whose degenerate geometric fibers
are n-gons and an (automatically ample) Drinfeld (Z/nZ)2-structure α on E sm

[n].
The notation agrees with that of Section 4.1.1 because X (1)= E``1. We let

X (n)∞ ⊂X (n) and Y (n)⊂X (n)

be the closed substack cut out by the degeneracy loci S∞,π and its open complement
(the elliptic curve locus), respectively. Due to Remark 4.2.3, for variable Z[1/n]-
schemes S, the base change Y (n)Z[1/n] parametrizes elliptic curves E→ S equipped
with an S-isomorphism α : (Z/nZ)2S −→

∼ E[n].
The results of Section 4.2 lead to the following direct relationship between X (n)

and E``n .

Proposition 4.3.2. Consider the Z-morphism f :X (n)→ E``n that forgets α.

(a) The morphism f is representable, finite, and locally free of degree equal
to # GL2(Z/nZ); moreover, f is étale over Z[1/n]. In particular, X (n) is
a Cohen–Macaulay, reduced algebraic Z-stack that is proper, flat, and of
relative dimension 1 over Spec Z at every point; moreover, X (n) is smooth
over Z[1/n].

(b) The closed substack X (n)∞ ⊂X (n) is the preimage of the closed substack
E``∞n ⊂E``n and is a reduced relative effective Cartier divisor over Spec Z that
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meets every irreducible component of every geometric fiber of X (n)→ Spec Z

and is smooth over Z[1/n].

Proof. (a) The asserted properties of f follow from Proposition 4.2.12(a), and
those of X (n), other than the reducedness, then result from Theorem 3.1.6(a)
(and [EGA IV2 1965, 6.4.2] for the Cohen–Macaulay aspect). By [EGA IV2 1965,
5.8.5], the reducedness amounts to the combination of (R0) and (S1). The Cohen–
Macaulay aspect implies (S1), whereas (R0) follows from the Z-flatness and Z[1/n]-
smoothness.

(b) In the given moduli interpretation, the map X (n)→ E``n does not change
the underlying generalized elliptic curves, so an S-point of X (n) factors through
X (n)∞ if and only if its image in E``n factors through E``∞n . In other words,

X (n)∞ =X (n)×E``n
E``∞n ,

as desired. All the remaining claims then follow from (a) and from their coun-
terparts for E``n supplied by Theorem 3.1.6(c)–(d) and Proposition 3.3.2 (for the
reducedness of X (n)∞ one uses the (R0)+(S1) criterion as in the proof of (a)). �

4.3.3. The contraction morphisms. Due to Proposition 4.2.5(a), the contraction
morphism

X (nm)
c
−→X (n) is well defined by (E, α) 7→

(
cE sm[n](E), α|(Z/nmZ)2[n]

)
(see Convention 4.2.4) for every n,m ∈ Z≥1. This morphism is compatible with
its analogue for E``n discussed in Section 3.2.1 in the sense that there is the
commutative diagram

X (nm)

c
��

fnm
// E``nm

��

X (n)
fn
// E``n

whose horizontal maps forget the level structures α.

Proposition 4.3.4. For every n,m ∈ Z≥1, the contraction c :X (nm)→X (n) is
representable, finite, and locally free of rank # GL2(Z/nmZ)/# GL2(Z/nZ). In
particular, each X (n) is Deligne–Mumford.

Proof. Since X (1) is Deligne–Mumford, the last assertion follows from the rest
(applied with n = 1). The representability of c by algebraic spaces follows from
Lemma 3.2.2(b) and Lemma 2.1.6.

The contraction c inherits properness and finite presentation from

X (nm)→ Spec Z,
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and so is quasifinite due to its moduli interpretation. Therefore, by Lemma 3.2.3,
the map c is representable by schemes and finite. It remains to prove that c is flat —
once this is done, the asserted rank may be read off on the elliptic curve locus by
using Proposition 4.3.2(a).

The flatness of the base change

E``nm ×E``n
X (n)

a
−→X (n)

follows from that of E``nm → E``n supplied by Theorem 3.2.4(a). On the other
hand,

E``nm ×E``n
X (n)

parametrizes generalized elliptic curves endowed with a Drinfeld (Z/nZ)2-structure
on E sm

[n] subject to the constraint that the degenerate geometric fibers are nm-gons,
so the map

X (nm)
b
−→ E``nm ×E``n

X (n)

is flat by Proposition 4.2.12(a). In conclusion, the composite c= a◦b is also flat. �

We are ready for the promised identification X (n)=X0(n).

Theorem 4.3.5. The Deligne–Mumford stack X (n) is regular and is identified
with the stack X0(n) of Section 4.1.2 (see the proof for the description of the
identification).

Proof. By [Katz and Mazur 1985, 5.1.1], the open substack Y (n)⊂X (n) is regular.
By combining this with the conclusions of Proposition 4.3.2, we see that X (n)
satisfies both (R1) and (S2), i.e., is normal. Therefore, due to the conclusions of
Proposition 4.3.4, X (n) is identified with the normalization of X (1) in Y (n)Z[1/n].
However, the moduli interpretations of the Y (1)-stacks Y (n)Z[1/n] and Y0(n)[1/n]
coincide (see Sections 4.1.2 and 4.3.1), so X (n) is identified with the normalization
of X (1) in Y0(n)[1/n], i.e., with X0(n). To then extend the regularity of Y (n)
supplied by [Katz and Mazur 1985, 5.1.1] to the regularity of the entire X (n), we
recall that it follows from [Deligne and Rapoport 1973, 4.13] that X0(n) is regular
away from the supersingular points in characteristics dividing n. �

In the sequel we will identify X (n) and X0(n). We conclude the section by
recording all the cases in which X (n) is a scheme (see [Deligne and Rapoport
1973, IV.2.9] for such a result over Z[1/n]).

Proposition 4.3.6. The stack X (n) is a (necessarily projective) scheme over Z

unless n = ps or n = 2ps for some prime p and some s ∈ Z≥1.

Proof. If n = ps or n = 2ps , then every supersingular elliptic curve E over Fp

equipped with a Drinfeld (Z/nZ)2-structure on E[n] has multiplication by −1 as
an automorphism, so X (n) cannot be a scheme. Outside of these cases, n = n′n′′
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for relatively prime n′ ≥ 3 and n′′ ≥ 3, so, due to [Katz and Mazur 1985, 2.7.2(1)]
and Lemma 2.1.6, the geometric points of X (n) have no nontrivial automorphisms,
and hence X (n) is a projective Z-scheme by Lemma 4.1.3. �

4.4. A modular description of X01(n)

The main goal of this section is to give a modular description of X01(n), where
n ∈ Z≥1 and

01(n) :=
{(

a b
c d

)
∈ GL2(Ẑ) such that a ≡ 1 mod n and c ≡ 0 mod n

}
(see Section 4.1.2 for the definition of X01(n); see also Section 1.9). The overall
strategy is similar to the case of 0(n) treated in the previous section: through
relations with the compactifications E``m we infer enough properties of the stack
X1(n) that classifies generalized elliptic curves endowed with an ample Drinfeld
Z/nZ-structure to arrive at the identification X1(n) = X01(n). As in the case of
0(n), this identification and the finer properties of X1(n), such as regularity, follow
already from the results of [Conrad 2007], but the alternative proofs given below
seem simpler. In particular, when proving the regularity of X1(n) we do not use any
computations with schemes of 01(n)-structures on Tate curves or with universal
deformation rings, but instead directly deduce such regularity from the regularity
of X (n).

4.4.1. The stack X1(n). This is the Z-stack that, for a fixed n ∈ Z≥1 and for
variable schemes S, parametrizes the pairs(

E −→π S, α : Z/nZ→ E sm(S)
)

consisting of a generalized elliptic curve E −→π S and an ample Drinfeld Z/nZ-
structure α on E . As before, we let

X1(n)∞ ⊂X1(n) and Y1(n)⊂X1(n)

be the closed substack cut out by the degeneracy loci S∞,π and its open complement
(the elliptic curve locus), respectively.

For a positive divisor m of n, we let

X1(n)(m) ⊂X1(n)

be the open substack that classifies those (E, α) for which the degenerate geometric
fibers of E→ S are m-gons (the openness follows from Remark 2.1.9), and we set

X1(n)∞(m) :=X1(n)(m) ∩X1(n)∞.

When m varies, the open substacks X1(n)(m) cover X1(n), and we will use them
to prove the algebraicity of X1(n).
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Proposition 4.4.2. Let f(m) :X1(n)(m)→ E``m be the Z-morphism that forgets α.

(a) The morphism f(m) is representable by schemes, quasifinite, separated, flat,
and of finite presentation; moreover, f(m) is étale over Z[1/n]. In particular,
X1(n) is an algebraic Z-stack with a quasicompact and separated diagonal
and is flat, of finite presentation, and of relative dimension 1 over Spec Z at
every point; moreover, X1(n) is smooth over Z[1/n].

(b) The closed substack X1(n)∞(m) ⊂ X1(n)(m) is the preimage of E``∞m ⊂ E``m .
In particular, X1(n)∞ ⊂X1(n) is a reduced relative effective Cartier divisor
over Spec Z that is smooth over Z[1/n].

Proof. (a) The asserted properties of f(m) follow from Proposition 4.2.15(a) and
Proposition 4.2.7(a). Since the X1(n)(m) cover X1(n), the asserted properties of
X1(n) follow from those of f(m) and from Theorem 3.1.6(a).

(b) For the first assertion, it suffices to observe that in the given moduli interpretation,
the map f(m) does not change the underlying generalized elliptic curve. The
remaining assertions then follow from the first, (a), and Theorem 3.1.6(c)–(d), using
the (R0)+(S1) criterion together with [EGA IV2 1965, 6.4.2] to establish the claimed
reducedness. �

4.4.3. The relation to X (n). There is a forgetful contraction morphism

g :X1(n)→X (1),

and, due to Proposition 4.2.5(a), also an X (1)-morphism

h :X (n)→X1(n), (E, α) 7→
(
cα|Z/nZ×{0}(E), α|Z/nZ×{0}

)
that contracts E with respect to the unique finite locally free subgroup of E sm on
which α|Z/nZ×{0} is a Drinfeld Z/nZ-structure.

We will extract further information about X1(n) by studying h. The main
difficulty is that h changes E , which makes its key properties, such as flatness, less
transparent. To overcome this, we will further exploit the compactifications E``m .

Theorem 4.4.4. (a) The morphism h :X (n)→X1(n) is representable, finite, and
locally free of rank n ·φ(n). In particular, X1(n)→ Spec Z is proper, X1(n)
is regular, and X1(n)∞ meets every irreducible component of every geometric
Z-fiber of X1(n).

(b) The contraction g :X1(n)→X (1) is representable, finite, and locally free of
rank # GL2(Z/nZ)/(n ·φ(n)).

(c) The stack X1(n) is Deligne–Mumford and is identified with the stack X01(n) of
Section 4.1.2; more precisely, both X1(n) and X01(n) are the normalizations
of X (1) in Y1(n)Z[1/n] ∼= Y01(n)[1/n].
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Proof. (a) The representability of h by algebraic spaces follows from Lemma 3.2.2(b)
and Lemma 2.1.6. Let X (n)(m) ⊂ X (n) be the h-preimage of X1(n)(m), let
h(m) :X (n)(m)→X1(n)(m) be the restriction of h, and let f(m) :X1(n)(m)→ E``m

be the forgetful map studied in Proposition 4.4.2. By (3.2.1.2), the composition
f(m) ◦ h(m) agrees with the composition

X (n)(m)→ E``n
c
−→ E``m

in which the first map forgets the Drinfeld (Z/nZ)2-structure. Therefore, the
universal property of the fiber product gives the commutative diagram

X (n)(m)
h′
//

h(m)
((

X1(n)(m)×E``m
E``n

h′′

��

// E``n

c
��

X1(n)(m)
f(m)

// E``m

in which the square is Cartesian. By Proposition 4.2.12(b), the map h′ is repre-
sentable and finite locally free of rank n · φ(n). By Theorem 3.2.4(a), the base
change h′′ of c is proper, flat, and surjective. The representable map h(m) is therefore
proper, flat, surjective, and, due to its moduli interpretation, also quasifinite. Since
h inherits these properties, we see from Lemma 3.2.3 that h is representable by
schemes and finite locally free. Its rank is determined on the elliptic curve locus,
so equals n ·φ(n).

The remaining claims follow from the combination of Proposition 4.3.2, Theorem
4.3.5, and [EGA IV2 1965, 6.5.3(i)], once we establish the Z-separatedness of
X1(n). For this, since the diagonal map 1X1(n)/Z is separated and of finite type by
Proposition 4.4.2(a), its properness follows from the commutative diagram

X (n)

h
��

1X (n)/Z
// X (n)×Z X (n)

h×h
��

X1(n)
1X1(n)/Z

// X1(n)×Z X1(n)

and the properness of (h× h) ◦1X (n)/Z.

(b) Since X1(n)→ Spec Z is proper, g is also proper. Moreover, g is representable
by algebraic spaces and quasifinite due to its moduli interpretation, Lemma 3.2.2(b),
and Lemma 2.1.6. Thus, due to Lemma 3.2.3, g is representable by schemes and
finite. The remaining assertions follow by considering the composite

X (n)
h
−→X1(n)

g
−→X (1)

and combining (a) with Proposition 4.3.4.
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(c) Thanks to (b), the Deligne–Mumford property is inherited from X (1). For
the rest, due to the regularity of X1(n) and the finiteness of X1(n)→X (1), we
need to identify the stack Y1(n)Z[1/n] with the stack Y01(n)[1/n] that, for variable
Z[1/n]-schemes S, parametrizes pairs consisting of an elliptic curve E→ S and
an S-point of the finite étale S-scheme{(

1 ∗
0 ∗

)
⊂ GL2(Z/nZ)

} ∖
Isom

(
E[n], (Z/nZ)2

)
.

The datum of such an S-point amounts to the datum of an isomorphism between
Z/nZ and a subgroup of E , so the sought identification results from Remark 4.2.3.

�

4.5. An axiomatic criterion for recognizing correctness of a modular
description

The arguments of the preceding section that supplied the identification

X1(n)=X01(n)

and proved the regularity of X01(n) illustrate a general method that will similarly
handle more complicated cases in the sequel. Therefore, in order to avoid repeti-
tiveness, we wish to present the following axiomatic result that ensures that for any
open subgroup H ⊂ GL2(Ẑ) any “good enough” candidate stack X ′

H agrees with
the XH defined in Section 4.1.2 and that XH is automatically regular whenever
such a good candidate is present. Of course, the main difficulty of this approach to
the regularity of XH lies in finding a suitable X ′

H . In all the cases presented in the
sequel, the candidate X ′

H will be defined by a modular description of its functor of
points and Theorem 4.5.1 will act as a criterion for recognizing that this modular
description actually yields XH .

Theorem 4.5.1. Let H ⊂ GL2(Ẑ) be an open subgroup, let n ∈ Z≥1 be such that
0(n)⊂ H , and let X ′

H be a Z-stack.

(a) If there is a cover

X ′

H =
⋃

m|n(X
′

H )(m) by open substacks (X ′

H )(m) ⊂X ′

H

each of which admits a representable by algebraic spaces, separated, finite
type morphism

(X ′

H )(m)→ E``d(m)

for some d(m)∈Z≥1, then X ′

H is algebraic, has a quasicompact and separated
diagonal 1X ′

H /Z
, and is of finite type over Z.

(b) If X ′

H is algebraic, has a quasicompact and separated diagonal, is of finite
type over Z, and
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(1) there is a proper, flat, and surjective Z-morphism X (n)
h
−→X ′

H ,

then X ′

H is regular, X ′

H → Spec Z is a proper, flat surjection, and (X ′

H )Z[1/n]

is Z[1/n]-smooth.

(c) If X ′

H is algebraic, Z-proper, and satisfies (1) together with

(2) there is a representable by algebraic spaces Z-morphism X ′

H
g
−→X (1) that

over Z[1/n] is identified with the morphism YH [1/n] → Y (1)Z[1/n] of
Section 4.1.2, and

(3) the composition g ◦ h :X (n)→X (1) is identified with the contraction of
Section 4.3.3,

then X ′

H is Deligne–Mumford and the morphism g induces the identification

XH =X ′

H ;

more precisely, then both XH and X ′

H are the normalizations of X (1) in
YH [1/n].

Remark 4.5.2. The flatness of h is one of the most stringent requirements. For the
X ′

H that we will construct this flatness will be supplied by the results of Katz and
Mazur through congruences with elliptic curves (see Proposition 4.2.12(b) and the
proof of Theorem 4.4.4(a) for an example).

Proof of Theorem 4.5.1. (a) The algebraicity of each (X ′

H )(m) follows from that
of E``d(m) supplied by Theorem 3.1.6(a) (see [Laumon and Moret-Bailly 2000,
4.5(ii)]). This suffices for the algebraicity of X ′

H because the diagonal 1X ′

H /Z

factors as the composition

X ′

H =
⋃

m|n(X
′

H )(m)→
⋃

m|n(X
′

H )(m)×Z (X
′

H )(m) ⊂X ′

H ×Z X ′

H

in which the inclusion is representable by open immersions. Since the inclusion is
also quasicompact and each (X ′

H )(m) is separated over Z, i.e., each 1(X ′

H )(m)/Z
is

proper, it also follows that 1X ′

H /Z
is quasicompact and separated.

(b) In the commutative diagram

X (n)
1X (n)/Z

//

h
��

X (n)×Z X (n)

h×h
��

X ′

H

1X ′
H /Z

// X ′

H ×Z X ′

H

the composite (h×h)◦1X (n)/Z is proper,1X ′

H /Z
is separated and of finite type, and

h is surjective, so 1X ′

H /Z
is proper. In other words, X ′

H → Spec Z is separated, so
X ′

H inherits Z-properness from X (n). Due to the flatness and surjectivity of h, the
flatness, regularity, and smoothness aspects for X ′

H follow from the corresponding
aspects for X (n) supplied by Proposition 4.3.2(a) and Theorem 4.3.5.
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(c) The Deligne–Mumford property follows from the representability of g. The
map g inherits properness from X ′

H → Spec Z and quasifiniteness from g ◦ h,
so g is finite by Lemma 3.2.3. Moreover, X ′

H is normal by (b), so, due to the
requirement (2), g identifies X ′

H with the normalization of X (1) with respect to
YH [1/n]→ Y (1)Z[1/n]. On the other hand, by definition, this normalization is XH

(see Section 4.1.2). �

Example 4.5.3. Theorem 4.5.1 is useful for proving that “obvious” candidate modu-
lar descriptions for various mixtures of standard moduli problems are correct. When
treating “mixture situations,” one cannot simply “reduce to individual constituents”
via fiber products (unlike on the elliptic curve locus): such “reductions” fail already
in situations where no mixtures are involved, for instance,

X (15) 6∼=X (3)×X (1) X (5), even though Y (15)∼= Y (3)×Y (1) Y (5),

as one sees by inspecting the ramification at the cusps(
e.g., CJq

1
15 K 6∼= CJq

1
3 K⊗CJqK CJq

1
5 K
)
.

The concrete example of a “mixture situation” for which we wish to illustrate
Theorem 4.5.1 has

H = 0(d)∩01(`) with coprime d, ` ∈ Z≥1.

For this H , due to the factorizations of Drinfeld structures discussed in [Katz and
Mazur 1985, 1.7.2], the “obvious” candidate X ′

H is the stack that, for variable
schemes S, parametrizes ample Drinfeld ((Z/dZ)2×Z/`Z)-structures α on general-
ized elliptic curves E→ S subject to the requirement that α|(Z/dZ)2×{0} is a Drinfeld
(Z/dZ)2-structure on E sm

[d] (so d divides the number of irreducible components
of each degenerate geometric fiber of E→ S).

For this X ′

H , we let the maps h and g in Theorem 4.5.1 be the forgetful contrac-
tions with n = d` and let

(X ′

H )(m) ⊂X ′

H

be the open substack parametrizing those E → S whose degenerate geometric
fibers are m-gons. The requirements of Theorem 4.5.1(a) are met due to [Katz
and Mazur 1985, 1.7.2] and Propositions 4.2.5(a), 4.2.7(a), and 4.2.15(a) (with
(n,m)= (d`, d) in the latter). The requirement (b)(1) is checked with the help of a
diagram analogous to the one in the proof of Theorem 4.4.4(a), the key point being
that the induced map

X (n)(m)→ (X ′

H )(m)×E``m
E``n

from the h-preimage X (n)(m) of (X ′

H )(m) is finite locally free of rank ` · φ(`)
due to Proposition 4.2.12(b). The requirement (c)(2) is checked as in the proof
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of Theorem 4.4.4(c) by using the fact that the image of H in GL2(Z/nZ) is the
pointwise stabilizer of (Z/dZ)2×Z/`Z in (Z/nZ)2. Finally, the requirement (c)(3)
follows from the definitions of g and h.

In conclusion,
X ′

H =X0(d)∩01(`)

and X0(d)∩01(`) is regular (such regularity at the cusps is not an automatic conse-
quence of the regularity of X0(d) and X01(`)).

4.6. A modular description of X01(n; n′) and X00(n; n′) for suitable n and n′

Let n and n′ be positive integers, and let

01(n; n′)⊂ GL2(Ẑ)

be the preimage of the subgroup of GL2(Z/nn′Z) that stabilizes the subgroup
{0}× (Z/nn′Z)[n′] in (Z/nn′Z)2 and that fixes (Z/nn′Z)[n]× {0} pointwise. Our
goal is to prove that the “obvious” candidate modular description for X01(n;n′)

presented in Section 4.6.1 is correct under the assumption that

ordp(n′)≤ ordp(n)+ 1

for every prime p. The importance of X01(n; n′) stems from its role in defining
Hecke correspondences for X1(n) (see Section 4.7), but there also are the following
reasons for treating H = 01(n; n′).

• The techniques used below to study X01(n; n′) simultaneously expose properties
of the stack X0(n)naive that parametrizes generalized elliptic curves equipped
with an ample cyclic subgroup of order n. Although in general X0(n)naive does
not agree with X00(n), its properties will nevertheless be crucial for the study
of X00(n) in Chapter 5.

• Under the additional assumption that ordp(n′)≤ ordp(n) for all p | gcd(n, n′),
the correctness of the candidate modular description of X01(n; n′) also follows
from the results of [Conrad 2007] but it seems worthwhile to simplify the
proofs of [op. cit.] with the help of the general Theorem 4.5.1. In fact, Conrad
does not assume that ordp(n′)≤ 1 for p - n, but outside this case the forgetful
contraction morphism from the algebraic stack M01(n; n′) that he constructs in
op. cit. to X (1) is not representable (even over C), so M01(n; n′) cannot agree
with X01(n; n′) (a related pathology is that M01(n; n′) is not Deligne–Mumford
in characteristics p - n with p2

| n′).

In order to also recover and generalize the results of [Conrad 2007] in the cases
when ordp(n′) > 1 for some prime p - n, we initially drop all requirements on n and
n′, define a certain stack X1(n; n′) that agrees with the stack M01(n; n′) considered
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in op. cit.(in the cases in which M01(n; n′) was defined), prove that X1(n; n′) is
algebraic, Z-proper, and regular (among other properties), and only then impose
assumptions on n and n′ in order to arrive at the agreement with X01(n; n′).

4.6.1. The stack X1(n; n′). This is the Z-stack that, for fixed n, n′ ∈ Z≥1 with
d := gcd(n, n′) and for variable schemes S, parametrizes the triples(

E −→π S, α : Z/nZ→ E sm(S), H
)

consisting of a generalized elliptic curve E −→π S, a Drinfeld Z/nZ-structure α on
some S-subgroup G ⊂ E sm, and a cyclic S-subgroup H ⊂ E sm of order n′ subject
to the requirements that

[Gd + Hd ] = E sm
[d] and [G+ H ] is ample (4.6.1.1)

(we implicitly use Definition 4.2.8 and Proposition 4.2.11(a) to make sense of
[Gd + Hd ] and [G+ H ]). The effectivity of descent needed for X1(n; n′) to be a
stack is ensured by the ampleness of [G+H ] as in Remark 4.2.14. The requirement
[Gd + Hd ] = E sm

[d] implies that the number of irreducible components of each
degenerate geometric fiber of E is divisible by d , so Proposition 4.2.11(b) ensures
that [G+ H ] is a finite locally free S-subgroup of E sm of rank nn′ that is killed by
lcm(n, n′).

We let

X1(n; n′)∞ ⊂X1(n; n′) and Y1(n; n′)⊂X1(n; n′)

be the closed substack cut out by the degeneracy loci S∞,π and its open complement
(the elliptic curve locus), respectively. Similarly to the case of X1(n) (discussed in
Section 4.4.1), for every positive divisor m of lcm(n, n′), we let

X1(n; n′)(m) ⊂X1(n; n′)

be the open substack over which the degenerate geometric fibers of E are m-gons.

4.6.2. Variants X̃1(n; n′) and X0(n; n′). Slight modifications of the definition of
X1(n; n′) give the following related stacks:

• the stack X̃1(n; n′) obtained by replacing the datum H by the datum of a
Drinfeld Z/n′Z-structure β on some S-subgroup H ⊂ E sm subject to (4.6.1.1);

• the stack X0(n; n′) obtained by replacing the datum α by the datum of a cyclic
S-subgroup G ⊂ E sm of order n subject to (4.6.1.1).

Due to Proposition 4.2.7(a), the forgetful maps

X̃1(n; n′)→X1(n; n′) and X1(n; n′)→X0(n; n′) (4.6.2.1)
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are representable by schemes, finite locally free of ranks φ(n′) and φ(n), respec-
tively, and, over Z[1/n′] and Z[1/n], respectively, étale. As before, for every
positive divisor m of lcm(n, n′) we let

X̃1(n; n′)(m) ⊂ X̃1(n; n′) and X0(n; n′)(m) ⊂X0(n; n′)

be the open substacks over which the degenerate geometric fibers of E are m-gons,
let

X̃1(n; n′)∞ ⊂ X̃1(n; n′) and X0(n; n′)∞ ⊂X0(n; n′)

be the degeneracy loci, and let

Ỹ1(n; n′)⊂ X̃1(n; n′) and Y0(n; n′)⊂X0(n; n′)

be the elliptic curve loci.
For suitably constrained n and n′, the stacks X̃1(n; n′) and X0(n; n′) were also

considered in [Conrad 2007] (in the notation M0̃1(N ; n) and M00(N ; n)). There
X̃1(n; n′) was often used as an intermediary in the proofs of the properties of
X1(n; n′), whereas X0(n; n′) was mentioned on page 273 in relation to modifica-
tions that one needs to make to the method of [op. cit.] to also construct Hecke
correspondences for X0(n). We will see below that the proofs of the properties of
X1(n; n′) will also prove the corresponding properties of X̃1(n; n′) and X0(n; n′).

4.6.3. Contraction maps from X (nn′). There is a forgetful contraction map

X (nn′)→ X̃1(n; n′) (4.6.3.1)

that sends a Drinfeld (Z/nn′Z)2-structure γ to

α := γ |(Z/nn′Z)[n]×{0} and β := γ |{0}×(Z/nn′Z)[n′]

(see Proposition 4.2.5(a) and (c) and Convention 4.2.4) and contracts the underlying
generalized elliptic curve accordingly. Similar forgetful contraction maps

X (nn′)→X1(n; n′) and X (nn′)→X0(n; n′)

are the compositions of (4.6.3.1) with the forgetful maps from (4.6.2.1).
We are ready to address the basic properties of the stack X1(n; n′) and its variants.

Theorem 4.6.4. Fix n, n′ ∈ Z≥1 and let X ∈ {X̃1(n; n′),X1(n; n′),X0(n; n′)}.

(a) The Z-stack X is algebraic, regular, proper, flat, and of relative dimension 1
over Spec Z at every point; moreover, X is smooth over Z

[ 1
nn′
]
. The diagonal

1X /Z is finite.

(b) The forgetful contraction map X (nn′)→X is representable by schemes and
is finite locally free of constant positive rank.
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(c) The closed substack X ∞
⊂X is a reduced relative effective Cartier divisor

over Spec Z that meets every irreducible component of every geometric Z-fiber
of X and is smooth over Z

[ 1
nn′
]
.

Proof. (a) By Proposition 4.2.15(a) and the finiteness of the maps (4.6.2.1), for every
positive divisor m of lcm(n, n′) the forgetful map X(m)→ E``m is representable,
separated, and of finite type, so, by Theorem 4.5.1(a), X is algebraic and has a
quasicompact and separated diagonal.

Except for the relative dimension and the diagonal aspects, the rest of the
claim follows from Theorem 4.5.1(b) once we prove that the forgetful contraction
X (nn′)→ X̃1(n; n′) is proper, flat, and surjective. For this, we first let X (nn′)(m)
for every positive divisor m of lcm(n, n′) be the preimage of X̃1(n; n′)(m). Due to
Theorem 3.2.4(a), it then suffices to note that, by Proposition 4.2.12(a) and (d), the
induced map

X (nn′)(m)→ X̃1(n; n′)(m)×E``m
E``nn′,

both components of which are forgetful, is finite locally free of constant positive
rank.

The relative dimension aspect will follow from the corresponding aspect for
X (nn′) once we prove that the surjective map X (nn′)→ X̃1(n; n′) is finite locally
free. In fact, due to Lemma 3.2.3 and the previous paragraph, representability
by algebraic spaces and quasifiniteness would suffice. The representability is
inherited from X (nn′)→X (1) and the quasifiniteness follows from the moduli
interpretation.

The diagonal 1X /Z is proper due to the Z-separatedness of X and is quasifinite
due to Theorem 3.1.6(a), so its finiteness follows from Lemma 3.2.3.

(b) Due to the proof of (a) and the fact that the forgetful contractions (4.6.2.1)
are representable and finite locally free, only the constancy of the rank requires
attention and we may focus on X0(n; n′). Moreover, since Y0(n; n′) is dense in
X0(n; n′), we may work on the elliptic curve locus. Therefore, since the rank of
Y (nn′)→ Y (1) is constant, the conclusion follows from Proposition 4.2.15(a)
which proves that Y0(n; n′)→ Y (1) is finite locally free of constant positive rank.

(c) The assertion about the geometric fibers follows from the corresponding assertion
for X (nn′)∞⊂X (nn′) supplied by Proposition 4.3.2(b), so it suffices to prove that
for each positive divisor m of lcm(n, n′) the restriction X ∞

(m)⊂X(m) of X ∞
⊂X is

a reduced relative effective Cartier divisor over Spec Z that is smooth over Z
[ 1

nn′
]
. To

do so, it suffices to note that X ∞

(m) is the pullback of E``∞m , to apply Theorem 3.1.6(c)–
(d) and Proposition 4.2.15(a), to use the properties of the forgetful maps (4.6.2.1),
and to use the (R0)+(S1) criterion for reducedness. �
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In principle it is possible to determine the largest Deligne–Mumford open sub-
stacks of X̃1(n; n′), X1(n; n′), and X0(n; n′) (such open substacks make sense a
priori due to Remark 3.1.7): one needs to inspect the defining modular descrip-
tions to determine those geometric points whose automorphism functors are not
étale. To illustrate the procedure, in Proposition 4.6.5 we exhibit large Deligne–
Mumford open substacks of X̃1(n; n′), X1(n; n′), and X0(n; n′) (the actual Deligne–
Mumford loci of X1(n; n′) and X0(n; n′) may be larger). For the stack M01(N ;n)

considered in [Conrad 2007], Proposition 4.6.5(b) improves on [Conrad 2007, 3.1.7]
by proving that the Deligne–Mumford locus includes all the cusps in characteristics
p | N (even when p2

| n).

Proposition 4.6.5. Fix n, n′ ∈ Z≥1 and set d := gcd(n, n′).

(a) The stack X̃1(n; n′) is Deligne–Mumford. In fact, the forgetful contraction
morphism

X̃1(n; n′)→X (1)

is representable by algebraic spaces.

(b) The open substack of X1(n; n′) obtained by removing the closed substacks
X1(n; n′)∞Fp

for the primes p with ordp(n′)≥ ordp(n)+2 is Deligne–Mumford.
If ordp(n′) ≤ ordp(n)+ 1 for every prime p, then the forgetful contraction
morphism

X1(n; n′)→X (1)

is representable by algebraic spaces.

(c) The open substack of X0(n; n′) obtained by removing the closed substacks
X0(n; n′)∞Fp

for the primes p with |ordp(n)−ordp(n′)|≥2 is Deligne–Mumford.
If |ordp(n)− ordp(n′)| ≤ 1 for every prime p, then the forgetful contraction
morphism

X0(n; n′)→X (1)

is representable by algebraic spaces.

Proof. We recall from Lemma 2.1.6 that the automorphism functor of the standard
m-gon generalized elliptic curve is µm × Z/2Z. To test the Deligne–Mumford
property of an open substack of X̃1(n; n′), X1(n; n′), or X0(n; n′), we will use
the criterion of having unramified automorphism functors at geometric points (see
Remark 3.1.7). To test the representability of contraction morphisms, we will use
Lemma 3.2.2(b). These preliminary remarks already settle part (a).

(b) Our task is to show that if p is a prime, E is the standard m-gon with p | m
over an algebraically closed field k, and (E, α, H) is an object of X1(n; n′)(k)
with ordp(n′) ≤ ordp(n)+ 1, then µp ⊂ Aut(E) does not fix both α and H . By
decomposing into primary parts with the help of [Katz and Mazur 1985, 1.7.2] and



2064 Kęstutis Česnavičius

by contracting away from the p-primary part of [G+ H ], we loose no generality
by assuming that n, n′, and m are powers of p and m > 1.

Suppose that µp fixes both α and H . Then α cannot be ample, so H is ample,
H ∩ (E sm)0 contains µp ⊂ (E sm)0, and ordp(n′) ≥ 2. Therefore, the standard
cyclic subgroup Hp ⊂ H of order p is contained in (E sm)0 and hence equals
µp. Moreover, due to the requirement ordp(n′) ≤ ordp(n)+ 1, we have n > 1,
so, by Proposition 4.2.5(a), the requirement [Gd + Hd ] = E sm

[d] implies that
[G p + Hp] = E sm

[p]. The latter forces G p to project isomorphically onto the p-
torsion subgroup of the component group of E sm, so G injects into this component
group. Since H is ample and H ∩ (E sm)0 6= 0, this violates the requirement
ordp(n′) ≤ ordp(n)+ 1 unless G is ample, that is, unless α is ample, which is a
contradiction.

(c) Our task is to show that if p is a prime, E is the standard m-gon with p |m over
an algebraically closed field k, and (E,G, H) is an object of X0(n; n′)(k) with
|ordp(n)− ordp(n′)| ≤ 1, then µp ⊂ Aut(E) does not fix both G and H . As in the
proof of (b), we assume that n, n′, and m are powers of p and m > 1.

Suppose that µp fixes both G and H . By the conclusion of (b), µp cannot fix any
Drinfeld Z/nZ-structure (resp. Z/n′Z-structure) on G (resp. H ), so G and H must
both be ample, and hence must both contain µp ⊂ (E sm)0. Then G p = Hp = µp

inside (E sm)0, which is a contradiction to the requirement [G p + Hp] = E sm
[p]

inherited from [Gd + Hd ] = E sm
[d]. �

With Proposition 4.6.5 in hand, we are ready for identifications with suitable
modular curves XH .

Theorem 4.6.6. Fix n, n′ ∈ Z≥1.

(a) Let 0̃1(n; n′) be the preimage in GL2(Ẑ) of the subgroup of GL2(Z/nn′Z) that
fixes the subgroups (Z/nn′Z)[n] × {0} and {0} × (Z/nn′Z)[n′] pointwise in
(Z/nn′Z)2. The forgetful contraction X̃1(n; n′)→X (1) induces the identifi-
cation

X̃1(n; n′)=X0̃1(n; n′).

(b) Let 01(n; n′) be the preimage in GL2(Ẑ) of the subgroup of GL2(Z/nn′Z) that
fixes the subgroup (Z/nn′Z)[n] × {0} pointwise and stabilizes the subgroup
{0} × (Z/nn′Z)[n′] in (Z/nn′Z)2. If ordp(n′) ≤ ordp(n)+ 1 for every prime
p, then the forgetful contraction X1(n; n′)→X (1) induces the identification

X1(n; n′)=X01(n; n′).

(c) Let 00(n; n′) be the preimage in GL2(Ẑ) of the subgroup of GL2(Z/nn′Z)
that stabilizes the subgroups (Z/nn′Z)[n] × {0} and {0} × (Z/nn′Z)[n′] in
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(Z/nn′Z)2. If |ordp(n′)− ordp(n)| ≤ 1 for every prime p, then the forgetful
contraction X0(n; n′)→X (1) induces the identification

X0(n; n′)=X00(n; n′).

Proof. By Proposition 4.6.5, the imposed assumptions on n and n′ ensure that the
forgetful contraction morphisms to X (1) are representable by algebraic spaces.
Therefore, due to Theorem 4.6.4 and Theorem 4.5.1(c), we only need to show that,
for variable Z

[ 1
nn′
]
-schemes S, the Y (1)Z[ 1

nn′ ]
-stacks

Ỹ1(n; n′)Z[ 1
nn′ ]
, Y1(n; n′)Z[ 1

nn′ ]
, and Y0(n; n′)Z[ 1

nn′ ]

parametrize elliptic curves E→ S equipped with an S-point of

0̃1(n; n′) \ Isom(E[nn′], (Z/nn′Z)2), 01(n; n′) \ Isom(E[nn′], (Z/nn′Z)2),

and 00(n; n′) \ Isom(E[nn′], (Z/nn′Z)2),

respectively, where overlines denote images in GL2(Z/nn′Z). For this, it suffices to
inspect the defining modular descriptions of X̃1(n; n′), X1(n; n′), and X0(n; n′) and
to use the definitions of 0̃1(n; n′), 01(n; n′), and 00(n; n′) given in the statements
of (a), (b), and (c). �

4.7. A modular construction of Hecke correspondences for X1(n)

We wish to explain how the results of Sections 2.2, 4.4, and 4.6 give rise to a Hecke
correspondence

π1, π2 :X01(n; p) ⇒ X01(n)

for every n ∈ Z≥1 and every squarefree p ∈ Z≥1 that may or may not be coprime
with n.

In terms of the moduli interpretations given in Sections 4.4.1 and 4.6.1 and
proved in Theorems 4.4.4(c) and 4.6.6(b), the maps are given by

π1((E, α, H))= (cα(E), α) and π2((E, α, H))= (E/H, α),

and are well defined due to the last aspect of Proposition 4.2.11(b) (we let cα(E)
denote the contraction of E with respect to the unique subgroup on which α is a
Drinfeld Z/nZ-structure). To argue that we have exhibited a correspondence, it
suffices to prove the following lemma:

Lemma 4.7.1. The maps π1 and π2 are representable, finite locally free, and
surjective.

Proof. Since π1 is the X (1)-morphism induced by the inclusion 01(n; p)⊂ 01(n),
its finiteness follows from the finiteness of XH→XH ′ observed in the last paragraph



2066 Kęstutis Česnavičius

of Section 4.1.2. By Theorem 4.4.4(a), X01(n) is regular, so the flatness of π1 follows
from [EGA IV2 1965, 6.1.5]. The surjectivity of π1 may be checked over (Y01(n))Q.

For the representability of π2, due to Lemma 3.2.2(b) and the representability
of X01(n; p)→X (1), it suffices to observe that if E is a generalized elliptic curve
over an algebraically closed field and H ⊂ E sm is a finite subgroup, then every
automorphism i of E that stabilizes H and induces the identity map on E/H
must fix (E sm)0 because the endomorphism idE sm −i |E sm of E sm factors through H .
The properness of π2 follows from the Z-properness of X01(n; p) and X01(n), so
its quasifiniteness may be checked on geometric fibers. Finiteness of π2 is then
supplied by Lemma 3.2.3, and its flatness follows from [EGA IV2 1965, 6.1.5].
Finally, the surjectivity of π2 may be checked over (Y01(n))Q. �

In the case when p is a prime, the Hecke correspondence above has already
been constructed in [Conrad 2007, 4.4.3] by a different method: due to the lack
of the theory of quotients of generalized elliptic curves by arbitrary finite locally
free subgroups, [loc. cit.] first defines π2 by the same formula on the elliptic curve
locus and then argues that the resulting map extends uniquely to the entire X01(n;p).
The construction above seems simpler and more direct, and it also produces the
map ξ of [Conrad 2007, 4.4.3]: if e and e′ are the identity sections of E→ S and
E/H → S, then there is a map

(e′)∗(�1
(E/H)/S)→ e∗(�1

E/S)

whose formation is compatible with base change in S.

Chapter 5. A modular description of X00(n)

For an integer n ∈ Z≥1 and the subgroup

00(n) :=
{(

a b
c d

)
∈ GL2(Ẑ) | c ≡ 0 mod n

}
,

the goal of this chapter is to exhibit the modular curve X00(n) defined via normaliza-
tion (see Section 4.1.2) as a moduli stack parametrizing generalized elliptic curves
equipped with a “00(n)-structure,” which on the elliptic curve locus is the datum
of a subgroup that is cyclic of order n in the sense of Definition 4.2.6. The proof of
the correctness of this moduli interpretation in Theorem 5.13 will simultaneously
deduce the regularity of X00(n) from that of Y00(n) proved by Katz and Mazur. We
begin with a naive modular description that recovers X00(n) only for squarefree n
and then proceed to refine the naive description to a description that works for any n.

Throughout Chapter 5 we fix an integer n ∈ Z≥1.

5.1. The stack X0(n)naive. This is the Z-stack that, for variable schemes S,
parametrizes the pairs

(E −→π S, G)
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consisting of a generalized elliptic curve E −→π S and an ample S-subgroup G⊂ E sm

that is cyclic of order n (in the sense of Definition 4.2.6). We call such a G a naive
00(n)-structure on E .

We let
Y0(n)naive

⊂X0(n)naive

be the open substack that parametrizes those pairs for which E is an elliptic curve.
For each positive divisor m of n, we let

X0(n)naive
(m) ⊂X0(n)naive

be the open substack that parametrizes those pairs for which the degenerate geo-
metric fibers of E are m-gons.

In the notation of Section 4.6.2, one has

X0(n)naive
=X0(n; 1),

so, by Theorem 4.6.4(a), the stack X0(n)naive is algebraic, proper and flat over
Spec Z, and regular with finite diagonal 1X0(n)naive/Z. By Theorem 4.6.4(b) (and its
proof), the morphism

X (n)→X0(n)naive

that sends a Drinfeld (Z/nZ)2-structure α to the subgroup on which α|Z/nZ×{0} is
a Drinfeld Z/nZ-structure and contracts the underlying generalized elliptic curve
with respect to this subgroup is finite locally free of rank n ·φ(n)2.

If n is squarefree, then Theorem 4.6.6(c) proves that the contraction

X0(n)naive
→X (1) is identified with the structure morphism X00(n)→X0(1).

This identification fails when n is divisible by p2 for some prime p: variants of the
example given in Section 1.2 show that for such n the contraction

X0(n)naive
→X (1)

is not representable.

5.2. The notation d(m). For a positive divisor m of n, we set

d(m) :=
m

gcd
(
m, n

m

) ,
so that d(m) depends both on m and on the integer n that is fixed throughout.

To explain the role of the function m 7→ d(m) in the context of 00(n)-structures
on generalized elliptic curves, let E be the standard m-gon over an algebraically
closed field and suppose that E is equipped with an ample cyclic subgroup G⊂ E sm

of order n. Then G ∩ (E sm)0 = µn/m and µm ⊂ Aut(E) is the subgroup of those
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automorphisms that induce the identity map on the contraction of E with respect
to the zero section (see Lemma 2.1.6). The further subgroup of Aut(E) that in
addition stabilizes G is therefore µm ∩µn/m =µgcd(m,n/m) (intersection in (E sm)0),
and this subgroup acts trivially on precisely d(m) of the m irreducible components
of E .

When refining G to a 00(n)-structure on such an E , we will only remember
the contraction cE sm[d(m)](E) that is a d(m)-gon together with the standard cyclic
subgroup G(n/m)·d(m) of order n

m · d(m). In addition, we will require the datum of a
compatible ample cyclic G ′ of order n on every E ′ that contracts to (a base change)
of cE sm[d(m)](E) and that has m-gon degenerate geometric fibers. Different m may
give the same d(m), so there is no way to recover m from cE sm[d(m)](E) alone; to
overcome this, we will incorporate m into the data that comprises a 00(n)-structure.

For the precise definition of a 00(n)-structure given in Section 5.10, we need the
following preparations.

5.3. The stack of “decontractions”. Fix a positive divisor m of n and suppose that
we have a generalized elliptic curve E −→π S and an open subscheme Sπ,(m)⊂ S that
contains the elliptic curve locus S− S∞,π and such that the degenerate geometric
fibers of ESπ,(m) are d(m)-gons. (Such an Sπ,(m) will be part of the data of a 00(n)-
structure on E .) The base change ESπ,(m) determines a map Sπ,(m)→ E``d(m), so
we may consider the fiber product algebraic stack

Sπ,(m)×E``d(m)
E``m,

which parametrizes “decontractions” of ESπ,(m) , or, more precisely, which, for
variable Sπ,(m)-schemes S′, parametrizes the pairs(

E ′ −→π
′

S′, ι′ : ES′ −→
∼ cE ′sm[d(m)](E ′)

)
consisting of a generalized elliptic curve E ′ −→π

′

S′ whose degenerate geometric
fibers are m-gons and a specified S′-isomorphism ι′. We denote the universal object
of Sπ,(m)×E``d(m)

E``m by
(Eπ,(m), ιπ,(m)).

The base change of Sπ,(m)×E``d(m)
E``m (resp. of Eπ,(m)) to S− S∞,π is identified

with S− S∞,π (resp. with ES−S∞,π ), and the same holds over the entire Sπ,(m) if
d(m)= m.

We will endow the universal “decontraction” Eπ,(m) with additional structures.
The algebraic stack Eπ,(m) is typically not a scheme, but there are two ways to think
about such structures concretely:

• As compatible with isomorphisms and base change structures on E ′ for each

(E ′ −→π
′

S′, ι′);



A modular description of X0(n) 2069

• As compatible under the pullbacks

Sπ,(m)×E``d(m)
X1 ⇒ Sπ,(m)×E``d(m)

X0

structures on the “decontractions” over the indicated bases, where

X1 ⇒ X0→ E``m

is a once and for all fixed scheme presentation of the algebraic stack E``m , so
that

Sπ,(m)×E``d(m)
X1 ⇒ Sπ,(m)×E``d(m)

X0→ Sπ,(m)×E``d(m)
E``m

is a scheme presentation of the algebraic stack Sπ,(m)×E``d(m)
E``m (by Theorem

3.1.6(a), the algebraic stacks E``m and E``d(m) have finite diagonals, so
X0×E``m

X0 and similar fiber products that would a priori be algebraic spaces
are schemes).

The second way has the advantage of avoiding set-theoretic difficulties that would
need to be addressed in order to make the first way completely rigorous.

The contractions of the generalized elliptic curves parametrized by the stack
Sπ,(m)×E``d(m)

E``m are identified. In particular, the degenerate geometric fibers of
these curves have canonically isomorphic component groups because the identity
component of such a fiber may be used to fix the “direction” of the m-gon. This
observation lies behind the following lemma:

Lemma 5.4. Let E −→π S and E ′ −→π
′

S be generalized elliptic curves whose degen-
erate geometric fibers are m-gons and let ι : c(E)−→∼ c(E ′) be an S-isomorphism
between their contractions with respect to the identity sections.

(a) If S is a geometric point, then there is a unique identification

E sm/(E sm)0 = E ′sm/(E ′sm)0

of the component groups that is induced by any isomorphism E ' E ′ that is
compatible with ι.

(b) If Sred
= (S∞,π )red (so that also Sred

= (S∞,π
′

)red), then there is a unique
S-identification

(E sm)[m]/(E sm)0[m] = (E ′sm)[m]/(E ′sm)0[m]

whose base change to any geometric S-point s is induced by any s-isomorphism
Es ' E ′s compatible with ιs . Any S-isomorphism i : E ' E ′ compatible with ι
induces this identification.
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(c) For g ∈ E sm(S) and g′ ∈ E ′sm(S), the set of s ∈ S for which g and g′ meet the
same (in the sense of (a)) irreducible components of Es and E ′s forms an open
subscheme of S that is also closed if S red

= (S∞,π )red.

Proof. (a) If either E or E ′ is smooth, then ι itself induces the desired identification.
We may therefore assume that both E and E ′ are degenerate. Then, by Remark 2.1.9,
both E and E ′ are isomorphic to the standard m-gon discussed in Remark 2.1.5.
Moreover, any two isomorphisms E ' E ′ that are compatible with ι differ by an
automorphism of E ′ that is the identity map on (E ′sm)0. It remains to observe
that, by Lemma 2.1.6, any automorphism of E ′ that is the identity map on (E ′sm)0

induces the identity map on E ′sm/(E ′sm)0.

(b) If S is a geometric point, then

(E sm)[m]/(E sm)0[m] = E sm/(E sm)0,

and likewise for E ′, so the claim follows from (a). In general, by Lemma 2.1.11,
both

(E sm)[m]/(E sm)0[m] and (E ′sm)[m]/(E ′sm)0[m]

are étale, so we may and do assume that S = Sred. In this case, by Remark 2.1.9, i
exists fppf locally on S. Moreover, any i satisfies the defining property, so we only
need to check that two different i induce the same identification. For this, the case
of a local strictly Henselian S suffices and reduces to the settled case of a geometric
point.

(c) We may assume that S = S∞,π = S∞,π
′

and S is reduced and may work fppf
locally on S. We therefore use Remark 2.1.9 to fix an S-isomorphism i : E −→∼ E ′

that is compatible with ι and to assume that E is the standard m-gon. In this case,
the label of the component of E sm that meets g is locally constant on S, and likewise
for ι−1(g′). �

5.5. Coherence of a cyclic subgroup of the universal “decontraction”. In the
notation of Section 5.3, part of the data of a 00(n)-structure will be an ample cyclic
(Sπ,(m)×E``d(m)

E``m)-subgroup

G(m) ⊂ Esm
π,(m)

of order n, or, in more concrete terms, for every (E ′ −→π
′

S′, ι′) an ample cyclic
S′-subgroup G ′ ⊂ E ′sm of order n that is compatible with base change and with
isomorphisms of pairs (E ′, ι′) (for the notion of cyclicity, see Definition 4.2.6).

In order to isolate a well-behaved class of such G(m), we say that G(m) is coherent
if:
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For every Sπ,(m)-scheme S′ and every pair of objects(
E ′1

π ′1
−→ S′, ι′1

)
and

(
E ′2

π ′2
−→ S′, ι′2

)
of (Sπ,(m) ×E``d(m)

E``m)(S′), the pullbacks G ′1 ⊂ E ′sm
1 and G ′2 ⊂ E ′sm

2
of G(m) fpqc locally on S′ have generators g′1 and g′2 that meet the same
(in the sense of Lemma 5.4(a)) irreducible components of the geometric
fibers of E ′1 and E ′2 and satisfy

(ι′1)
−1
( n

m · g
′

1

)
= (ι′2)

−1
( n

m · g
′

2

)
.(

The last equality takes place in E and makes sense because n
m · g

′

1 lies in the
contraction cE ′sm

1 [d(m)]
(E ′1) by Proposition 4.2.9(c), and likewise for n

m · g
′

2.
)

Equiv-
alently, the coherence of G(m) is a condition of the existence of compatible fpqc
local generators of the pullbacks of G(m) along the two projections

(Sπ,(m)×E``d(m)
E``m)×Sπ,(m) (Sπ,(m)×E``d(m)

E``m)⇒ Sπ,(m)×E``d(m)
E``m,

where compatibility amounts to the conditions imposed on g′1 and g′2 above.
In what follows, the purpose of the coherence condition is to ensure that G(m) is

uniquely determined by its pullback to any (E ′−→π
′

S′, ι′) with S′= Sπ,(m), provided
that such an (E ′, ι′) exists. Lemma 5.7 will justify this, and its aspect (iii) will show
that no generality is lost if one strengthens the coherence condition by fixing an
fpqc local generator g′1 of G ′1 in advance.

Any G(m) is coherent if Sπ,(m)×E``d(m)
E``m = Sπ,(m), and also if n is a unit on

Sπ,(m) as we now show.

Lemma 5.6. If n is invertible on Sπ,(m), then every ample cyclic(Sπ,(m)×E``d(m)
E``m)-

subgroup G(m) ⊂ Esm
π,(m) of order n is coherent.

Proof. We will show that for every pair (E ′1
π ′1
−→S′, ι′1) and (E ′2

π ′2
−→S′, ι′2) as in the

definition of coherence, desired generators g′1 and g′2 of G ′1 and G ′2 exist even étale
locally on S′. For this, due to Lemma 5.4(c), we may assume that S′ is local strictly
Henselian and that the special fibers (E ′1)s′ and (E ′2)s′ are degenerate. Moreover,
since (E ′1)

sm
[n] and (E ′2)

sm
[n] are étale and G ′1 and G ′2 are constant, we may assume

further that S′ is a geometric point. In the case of a geometric point, it suffices to
transport any choice of a g′1 across any S′-isomorphism (E ′1, ι

′

1)' (E
′

2, ι
′

2). �

The following key lemma analyses the coherence condition beyond the case
when n is a unit by exhibiting a universal property satisfied by pullbacks of a
coherent G(m). This property compensates for the loss of a direct reduction to
geometric points that governed the case of an invertible n.

Lemma 5.7. Let m be a positive divisor of n, let d ∈ Z≥1 be a multiple of m, let
E −→π S and E ′ −→π

′

S be generalized elliptic curves whose degenerate geometric
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fibers are d-gons, and let

ι : cE sm[d(m)](E)−→∼ cE ′sm[d(m)](E ′)

be an S-isomorphism. For every cyclic S-subgroup G ⊂ E sm of order n that meets
precisely m irreducible components of every degenerate geometric fiber of E , there
is a unique cyclic S-subgroup G ′ ⊂ E ′sm of order n such that:

(i) Over S− S∞,π = S− S∞,π
′

there is an equality ι(GS−S∞,π )= G ′
S−S∞,π ′

.

(ii) fpqc locally on S there exist generators g of G and g′ of G ′ that meet the same
irreducible components of the geometric fibers of E and E ′ (in the sense of
Lemma 5.4(a)) and satisfy

ι
( n

m · g
)
=

n
m · g

′.

(So G ′ meets precisely m irreducible components of every degenerate geometric
fiber of E ′.)

Moreover, this unique G ′ is such that:

(iii) For every S-scheme T and every generator g̃ of GT , fpqc locally on T there
exists a generator g̃′ of G ′T such that g̃ and g̃′ meet the same irreducible
components of the geometric fibers of E and E ′ and satisfy

ι
( n

m · g̃
)
=

n
m · g̃

′.

(iv) The standard cyclic subgroups G(n/m)·d(m) ⊂ G and G ′(n/m)·d(m) ⊂ G ′ of order
n
m · d(m) satisfy

ι(G(n/m)·d(m))= G ′(n/m)·d(m).

Remark 5.8. Due to Proposition 4.2.9(c), the equalities displayed in (ii)–(iv) make
sense.

Proof of Lemma 5.7. We have broken the argument up into six steps.

Step 1: The claim of (iv) follows from the rest. The subgroups ι(G(n/m)·d(m)) and
G ′(n/m)·d(m) of E ′sm are cyclic of order n

m · d(m), agree with ι((G(n/m)·d(m))S−S∞,π )

over S− S∞,π
′

, and fpqc locally on S have generators ι
( m

d(m) ·g
)

and m
d(m) ·g

′ whose
n
m -multiples equal ι

( n
m ·
( m

d(m) · g
))

. Therefore, ι(G(n/m)·d(m)) and G ′(n/m)·d(m) must
be equal because they satisfy (i) and (ii) when n, m, and G are replaced by n

m ·d(m),
d(m), and G(n/m)·d(m), respectively (G(n/m)·d(m) meets precisely d(m) irreducible
components of every degenerate geometric fiber of E due to Proposition 4.2.9(c)).

Step 2: The claim of (iii). We may assume that T = S and may work fpqc locally
on S, so we fix g, g′, and g̃ over S. In order to find a desired fpqc local g̃′, we
work Zariski locally on S and use limit arguments together with Lemma 5.4(c) to
reduce to the case when S = Spec R for some Noetherian R. Then we pass to an
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fpqc cover to assume that R is complete and separated with respect to the ideal I
that cuts out S∞,π (equivalently, with respect to the ideal that cuts out S∞,π

′

; see
Corollary 3.2.5).

By Proposition 3.2.7(a), E sm
[n] (resp. E ′sm

[n]) has the largest finite locally free
S-subgroup An,m (resp. A′n,m) that meets precisely m irreducible components of
every degenerate geometric fiber of E (resp. E ′), so G ⊂ An,m and G ′ ⊂ A′n,m .
Moreover, Proposition 3.2.7(a) supplies extensions

0 // Bn // An,m // Cm // 0

0 // Bn // A′n,m // Cm // 0

of S-group schemes, where the identification of Bn is via ι and the identification of
Cm is via Lemma 5.4(b) (applied over R/I j for every j ≥ 1 to the contractions of
ER/I j and E ′R/I j with respect to the m-torsion). As may be checked on degenerate
geometric fibers, the generators g ∈G(S) and g′ ∈G ′(S) project to the same section
of Cm that gives an isomorphism Cm ' Z/mZ.

The homomorphism G→ Cm is finite locally free and, by Proposition 4.2.10(a),
its kernel is the standard cyclic subgroup Gn/m ⊂ G of order n

m . By replacing g
and g′ by u ·g and u ·g′ for a suitable u ∈ (Z/nZ)×(S), we reduce to the case when
g and g̃ have the same image in Cm . Then g− g̃ ∈ Gn/m , so n

m · g =
n
m · g̃, which

means that we may choose g̃′ to be g′.

For the rest of the proof, we focus on the remaining claim about the existence
and uniqueness of G ′.

Step 3: Reduction to the case when n is a prime power. The group G, as well
as any candidate G ′, decomposes as a product of its p-primary parts for various
primes p dividing n. By [Katz and Mazur 1985, 1.7.2], cyclicity of G or of G ′ is
equivalent to the cyclicity of the primary factors, and the datum of a generator of G
or of G ′ corresponds to the datum of a generator of each primary factor. Therefore,
for the existence and the uniqueness of the sought G ′ we may assume that n is a
prime power.

For the rest of the proof, we assume that n = pr and m = ps for some prime p
and r, s ∈ Z≥0.

Step 4: The case s = 0. For the existence, ι(G) fulfills the requirements (i)–(ii).
The uniqueness reduces to the case of an Artinian local S and then follows from
Proposition 3.2.7(a).

For the rest of the proof, we assume that s ≥ 1, so that n
m 6= n.
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Step 5: Uniqueness of G ′. Due to the claim concerning (iii) (i.e., due to Step 2),
we may assume that the two candidates G ′1,G ′2 ⊂ E ′sm have generators g′1 and g′2
that meet the same irreducible components of the geometric fibers of E ′ and satisfy
n
m · g

′

1 =
n
m · g

′

2. Furthermore, we may assume that the base S is Noetherian, then
local, then complete, and finally Artinian, and that E ′ is nonsmooth over S. Then,
since g′1− g′2 ∈ (E

′sm)0(S) and n
m · g

′

1 =
n
m · g

′

2, we have

g′2 = g′1+ h for some h ∈ (E ′sm)0
[ n

m

]
(S).

By Lemma 2.1.11 and Proposition 4.2.10(a), the S-group (E ′sm)0[n/m] is the
standard cyclic subgroup of G ′1 of order n

m , so Proposition 4.2.9(f) ensures that
g′1+ h generates G ′1, which means that G ′1 = G ′2.

Step 6: Existence of G ′. Due to the uniqueness of G ′, for its existence we may work
fpqc locally on S, so we fix a generator g of G. Moreover, as in Step 2 we reduce
to the case when S = Spec R for a Noetherian R that is complete and separated
with respect to the ideal I ⊂ R that cuts out S∞,π and use Proposition 3.2.7(a) to
obtain the diagram of extensions displayed in Step 2.

By Proposition 3.2.7(a), E ′sm
[m] ⊂ A′n,m , so E ′sm

[m/d(m)] ⊂ A′n,m , too, and
hence the image of A′n,m under the multiplication by m/d(m) map of E ′sm is a finite
locally free S-subgroup of A′(n/m)·d(m),d(m) of order

( n
m · d(m)

)
· d(m). This image

therefore equals A′(n/m)·d(m),d(m), so, since ι(m/d(m) · g) lies in A′(n/m)·d(m),d(m),
after replacing S by a finite locally free cover we may choose a g′ ∈ A′n,m(S) with

m
d(m)

· g′ = ι
( m

d(m)
· g
)
.

Since E ′sm
[m/d(m)] is an extension of (Cm)[m/d(m)] by (Bn)[m/d(m)], after a

further finite locally free cover of S we may adjust g′ by a lift to (E ′sm
[m/d(m)])(S)

of the difference of the images of g and g′ in Cm to arrange that g and g′ have
the same image in Cm and hence meet the same irreducible components of the
geometric fibers of E and E ′.

By Proposition 4.2.5(d), g′ generates a cyclic S-subgroup G ′ ⊂ E ′sm of order n.
Since (m/d(m)) | (n/m), the group G ′ satisfies (ii). Thus, to complete Step 6, and
hence also the proof of Lemma 5.7, it suffices to show that

ι(GS−S∞,π )= G ′S−S∞,π ′ .

We have G ⊂ An,m and G ′ ⊂ A′n,m with g and g′ projecting to the same section
of Cm . Moreover, by Proposition 3.2.7(b) and the diagram displayed in Step 2, both
ι((An,m)S−S∞,π ′ ) and (A′n,m)S−S∞,π ′ are the preimages in E ′

S−S∞,π ′
[n] of the unique

(S− S∞,π
′

)-subgroup of (E ′sm
[n]/Bn)S−S∞,π ′ of order m, so

ι identifies An,m and A′n,m over S− S∞,π
′

.
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We claim that under this identification via ι, the image of gS−S∞,π in An,m/Bn

agrees with the image of g′
S−S∞,π ′

in A′n,m/Bn . Since A′n,m/Bn is finite étale, it
suffices to check the claimed agreement on the geometric fibers at the points in
S− S∞,π

′

, so the technique used in the proof of Proposition 3.2.7(b) reduces the
proof of the claimed agreement to the case when R is a discrete valuation ring and
E and E ′ have smooth generic fibers but nonsmooth closed fibers. In this case,
by Proposition 3.1.8(b), ι extends to a unique isomorphism E ' E ′, which then
must induce the identification of the groups Cm for E and E ′. Thus, in this case the
claimed agreement follows from the agreement of the images of g and g′ in Cm .

Returning to the proof of ι(GS−S∞,π )= G ′
S−S∞,π ′

, via the above reasoning, we
conclude that g′

S−S∞,π ′
− ι(gS−S∞,π ) lies in Bn . Moreover, since (m/d(m)) | (n/m),

the construction of g′ ensures that

n
m · g

′

S−S∞,π ′
=

n
m · ι(gS−S∞,π ).

Therefore, there is an h ∈ ((Bn)[n/m])(S− S∞,π
′

) such that

g′S−S∞,π ′ = ι(gS−S∞,π )+ h.

By the uniqueness aspect of the first assertion of Proposition 3.2.7(a) and by
Proposition 4.2.9(c), (Bn)[n/m] is the standard cyclic subgroup of G of order n

m , so
ι(gS−S∞,π )+ h generates ι(GS−S∞,π ) by Proposition 4.2.9(f). The sought equality
ι(GS−S∞,π )= G ′

S−S∞,π ′
follows. �

We are ready for the definition of a 00(n)-structure on a generalized elliptic curve.

5.9. 00(n)-structures. For a generalized elliptic curve E −→π S, a 00(n)-structure
on E is a tuple (

G, {Sπ,(m)}m|n, {G(m)}m|n
)

consisting of the following data:

(1) a cyclic (S − S∞,π )-subgroup G ⊂ ES−S∞,π of order n (in the sense of
Definition 4.2.6);

(2) for each positive divisor m of n, an open subscheme Sπ,(m) ⊂ S such that
(2.1) S =

⋃
m Sπ,(m);

(2.2) if m 6= m′, then Sπ,(m) ∩ Sπ,(m′) = S− S∞,π ;
(2.3) the degenerate geometric fibers of ESπ,(m) are d(m)-gons, where

d(m)=
m

gcd
(
m, n

m

) ;
(3) for each positive divisor m of n, in the notation of Section 5.3, an ample cyclic

(Sπ,(m)×E``d(m)
E``m)-subgroup

G(m) ⊂ Esm
π,(m)
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of order n such that

(3.1) on the elliptic curve locus,

(G(m))S−S∞,π = ιπ,(m)(G);

(3.2) the cyclic subgroup G(m) is coherent in the sense of Section 5.5.

Remark 5.9.1. If E→ S is smooth, then the data (2)–(3) are uniquely determined
by (1) and a 00(n)-structure on E is nothing more than a cyclic S-subgroup of
order n.

Remark 5.9.2. If n is invertible on S, then, by Lemma 5.6, the requirement (3.2)
is superfluous.

Remark 5.9.3. If n is squarefree, then d(m) = m for every m, so that Sπ,(m) is
the open subscheme of S obtained by removing all the S∞,π,m

′

with m′ 6= m, the
“decontraction” Eπ,(m) is ESπ,(m) itself, and a 00(n)-structure on E is nothing else
than an ample cyclic S-subgroup of E sm order n.

In general, the datum {Sπ,(m)}m|n of (2) is equivalent to a subdivision

S∞,π =
⊔

m|n S∞π,(m),

subject to the requirement that S∞π,(m) ⊂ S∞,π,d(m) for every m. In this notation,

Sπ,(m) = S−
(⋃

m′ 6=m S∞π,(m′)
)
.

Remark 5.9.4. The subgroup G(m) determines an ample cyclic Sπ,(m)-subgroup

G(m) ⊂ E sm
Sπ,(m)

of order n
m · d(m) such that (G(m))S−S∞,π is a standard cyclic subgroup of G. To

build G(m), we choose an fppf cover S′ of Sπ,(m) for which there is an object
(E ′→ S′, ι′) of Sπ,(m)×E``d(m)

E``m , let G ′ ⊂ E ′sm be the pullback of G(m), and use
Proposition 4.2.9(c) to set

(G(m))S′ := (ι
′)−1(G ′(n/m)·d(m)).

Lemma 5.7(iv) shows the agreement of the two pullbacks of (G(m))S′ to S′×Sπ,(m) S′,
and hence also the effectivity of descent to the sought G(m) over Sπ,(m), as well as
the independence of the resulting G(m) on the choice of S′ and (E ′, ι′).

By construction and Lemma 5.7(iv), ιπ,(m)(G(m)) is a standard cyclic subgroup
of G(m).

The principal reason why the stack X0(n) that we are about to introduce is
practical to work with even when n is not squarefree is Lemma 5.12(a) below.
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5.10. The stack X0(n). In order to construct this Z-stack, we begin by letting S
be a variable scheme and by defining the categories X0(n)(S).

The objects of X0(n)(S) are the tuples(
E −→π S, G, {Sπ,(m)}m|n, {G(m)}m|n

)
consisting of a generalized elliptic curve E −→π S and a 00(n)-structure on E .

In X0(n)(S), a morphism(
E1

π1
−→ S, G1, {Sπ1,(m)}, {G(m),1}

)
→
(
E2

π2
−→ S, G2, {Sπ2,(m)}, {G(m),2}

)
between two tuples such that Sπ1,(m) = Sπ2,(m) for every positive divisor m of n
consists of:

(I) an S-isomorphism iE : E1 −→
∼ E2 of generalized elliptic curves such that

(iE)S−S∞,π1 (G1)= G2;

(II) for each positive divisor m of n, an isomorphisms i(m) of stacks over

Sπ1,(m) = Sπ2,(m)

and an isomorphism iE(m) of generalized elliptic curves that fit into the commu-
tative diagram

Eπ1,(m)
iE(m)

∼
//

��

Eπ2,(m)

��

Sπ1,(m)×E``d(m)
E``m

∼

i(m)

// Sπ2,(m)×E``d(m)
E``m

and such that iE(m) induces the isomorphism (iE)Sπ1,(m)×E``d(m)
E``m

between the
contractions of Eπ1,(m) and Eπ2,(m) with respect to

Esm
π1,(m)[d(m)] and Esm

π2,(m)[d(m)],

respectively, and satisfies

iE(m)(G(m),1)= G(m),2.

There are no morphisms between tuples for which Sπ1,(m) 6= Sπ2,(m) for some m.
In concrete terms, the datum (i(m), iE(m)) of (II) amounts to

(II′) an Sπ1,(m)-isomorphism

i(m) : Sπ1,(m)×E``d(m)
E``m −→

∼ Sπ2,(m)×E``d(m)
E``m
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together with: for every object (E ′1 → S′, ι′1) of Sπ1,(m) ×E``d(m)
E``m with

i(m)-image (E ′2→ S′, ι′2), a generalized elliptic curve isomorphism

iE ′1,E
′

2
: E ′1 −→∼ E ′2

that is compatible with (iE)S′ (via ι′1 and ι′2), brings the pullback of G(m),1 to
the pullback of G(m),2, and whose formation commutes with isomorphisms and
base change of pairs (E ′1, ι

′

1).

A compatible with iE pair of isomorphisms (i(m), iE(m)) always exists (send
(E ′1, ι

′

1) to (E ′1, ι
′

1 ◦ (iE)
−1
S′ )) and, thanks to iE(m) , is unique up to a unique isomor-

phism. However, this unique (i(m), iE(m)) may not automatically respect G(m),1 and
G(m),2. In practice, the uniqueness up to a unique isomorphism means that the lack
of canonicity in the choice of (i(m), iE(m)) does not matter and that the construction
of X0(n) stays in the realm of 2-categories.

The existence of a unique (i(m), iE(m)) compatible with iE ensures that:

• X0(n)(S) is a groupoid; and

• the base change functor X0(n)(S)→X0(n)(S′) along variable scheme mor-
phisms S′ → S turns X0(n) into a Z-stack for the fppf topology (see [SP
2005–, 026F] for stack axioms).

We let
X0(n)∞ ⊂X0(n) and Y0(n)⊂X0(n)

be the closed substack cut out by the degeneracy loci S∞,π and its open complement
(the elliptic curve locus), respectively. By Remark 5.9.1, there is an identification

Y0(n)= Y0(n)naive.

By Remark 5.9.3, if n is squarefree, then X0(n) is identified with X0(n)naive.
For a positive divisor m of n, we let

X0(n)(m) ⊂X0(n)

be the open substack cut out by the subschemes Sπ,(m). For every tuple classified
by X0(n)(m), the degenerate geometric fibers of E are d(m)-gons.

5.11. The contraction X0(n)naive
→X0(n). Let E −→π S be a generalized elliptic

curve equipped with a naive 00(n)-structure, i.e., with an ample cyclic S-subgroup
G ⊂ E sm of order n. To build a 00(n)-structure on a generalized elliptic curve
Ẽ−→̃π S out of (E,G), we first construct Ẽ by letting Sπ̃ ,(m), for a positive divisor m
of n, be the largest open subscheme of S over which the degenerate geometric fibers
of E are m-gons and by letting Ẽ be the gluing of the contractions cE sm[d(m)](ESπ̃ ,(m))

along ES−S∞,π . We endow ẼS−S∞,π̃ with the cyclic subgroup GS−S∞,π of order n.
This produces the data (1) and (2), so it remains to explain how to get (3).

http://stacks.math.columbia.edu/tag/026F
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For a fixed positive divisor m of n, each Sπ̃ ,(m)-scheme S′, and each generalized
elliptic curve E ′→ S′ whose degenerate geometric fibers are m-gons and that is
equipped with an S′-isomorphism

ι′ : ẼS′ = cE sm[d(m)](ES′)−→
∼ cE ′sm[d(m)](E ′),

we endow E ′ with the unique cyclic S′-subgroup G ′ of order n supplied by
Lemma 5.7. Due to the uniqueness, the formation of G ′ commutes with base
change and with isomorphisms of pairs (E ′, ι′). In other words, the subgroups G ′

give rise to a cyclic subgroup G(m) ⊂ Esm
π,(m) of order n, which agrees with G on the

elliptic curve locus due to Lemma 5.7(i), is ample due to Lemma 5.7(ii), and is
coherent due to Lemma 5.7(iii). This gives the sought datum (3).

The construction of Ẽ and of its 00(n)-structure respects isomorphisms and base
change of pairs (E,G), so we obtain the sought contraction morphism

X0(n)naive
→X0(n),

which for each positive divisor m of n restricts to a morphism

X0(n)naive
(m) →X0(n)(m).

The following lemma together with Lemma 5.7 is the driving force of our analysis
of X0(n).

Lemma 5.12. Let m be a positive divisor of n.

(a) The square
X0(n)naive

(m)
//

��

E``m

��

X0(n)(m) // E``d(m)

is Cartesian.

(b) The map X0(n)(m)→ E``d(m) is representable by schemes, of finite presenta-
tion, separated, quasifinite, and flat; moreover, it is étale over Z[1/n].

Proof. (a) For a generalized elliptic curve E −→π S, part of the data of a 00(n)-
structure α on E with Sπ,(m) = S is the datum of a naive 00(n)-structure G ′ on E ′

for every (E ′ −→π
′

S, ι′) classified by Sπ,(m)×E``d(m)
E``m . The assignment of this

naive 00(n)-structure gives the morphism

X0(n)(m)×E``d(m)
E``m→X0(n)naive

(m) ,

which, by construction of the contraction X0(n)naive
(m) →X0(n)(m) in Section 5.11,

is a left inverse to the induced morphism

X0(n)naive
(m) →X0(n)(m)×E``d(m)

E``m .
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To prove that it is also a right inverse, we need to argue that α agrees with the
00(n)-structure on E determined as in Section 5.11 by the naive 00(n)-structure
G ′ on E ′. For this, the key point is the coherence requirement (3.2) on the G(m)
that is part of α: thanks to it and to the uniqueness aspect of Lemma 5.7, for every
(E ′′−→π

′′

S, ι′′) classified by Sπ,(m)×E``d(m)
E``m , the naive 00(n)-structure G ′′ on

E ′′ that is part of α is also the one determined by G ′ through Lemma 5.7, and
likewise over any S-scheme S′.

(b) We prove the asserted properties with the representability by schemes require-
ment replaced by representability by algebraic spaces — due to Lemma 3.2.3, this
loses no generality.

By Proposition 4.2.15(a) (applied with m = 1 there), X0(n)naive
(m) → E``m enjoys

all the properties in question. Moreover, these properties are fppf local on the target
(for the representability by algebraic spaces, see [SP 2005–, 04SK] or [Laumon and
Moret-Bailly 2000, 10.4.2]) and, by Theorem 3.2.4(a), E``m→E``d(m) is surjective,
flat, and of finite presentation. With the help of (a), we therefore conclude that
X0(n)(m)→ E``d(m) inherits the properties in question. �

We are ready for the sought identification X0(n)=X00(n) and for the regularity
of X00(n).

Theorem 5.13. (a) The stack X0(n) is Deligne–Mumford and regular. The map
X0(n)→X (1) that forgets the 00(n)-structure and contracts with respect to
the identity section induces the identification

X0(n)=X00(n);

more precisely, X0(n) and X00(n) are the normalizations of X (1) in

Y0(n)Z[ 1
n ]
∼= Y00(n)

[ 1
n

]
.

(b) The substack X0(n)∞ ⊂X0(n) is a reduced relative effective Cartier divisor
over Spec Z that meets every irreducible component of every geometric fiber
of X0(n)→ Spec Z and is smooth over Z[1/n].

Proof. (a) We will use the axiomatic Theorem 4.5.1. To apply its part (a), and
hence to prove the algebraicity of X0(n) and the quasicompactness and separat-
edness of 1X0(n)/Z, we use the open cover X0(n)=

⋃
m|n X0(n)(m) and appeal to

Lemma 5.12(b). To then apply Theorem 4.5.1(b), and hence to prove the regularity
of X0(n), we let X (n)→X0(n) be the composition of the contractions

X (n)→X0(n)naive and X0(n)naive
→X0(n)

of Sections 5.1 and 5.11 and note that this composition is proper, flat, and surjective
due to Section 5.1, Lemma 5.12(a), and Theorem 3.2.4(a). Finally, in order to prove

http://stacks.math.columbia.edu/tag/04SK
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that X0(n) is Deligne–Mumford and X0(n) = X00(n), by Theorem 4.5.1(c), we
need to prove that the map

X0(n)→X (1)

is representable by algebraic spaces and that its base change to Y (1)Z[1/n] is
identified with

Y00(n)
[ 1

n

]
→ Y (1)Z[ 1

n ]
.

Since Y0(n)=Y0(n)naive, the latter identification results from the fact that the image
of 00(n) in GL2(Z/nZ) is the stabilizer of the subgroup Z/nZ× {0} in (Z/nZ)2

(compare with the proof of Theorem 4.4.4(c)).
Due to Lemma 3.2.2(b), the representability of X0(n)→X (1) will follow once

we prove that, for every Artinian local algebra A over an algebraically closed
field k and every ξ ∈X0(n)(k), no nonidentity automorphism of ξ |A maps to an
identity automorphism in X (1)(A). More concretely, by Lemma 2.1.6, we need to
prove that for every positive divisor d of n and every prime divisor p of d , there is
no 00(n)-structure α on the standard d-gon E over k such that some nonidentity
automorphism i ∈ µp(A) ⊂ Aut(E)(A) fixes the pullback αA of α to A. For the
sake of contradiction, we fix such α and i .

We let m be such that α has Sπ,(m) 6= ∅, so, in particular, d(m) = d. We
let (Ẽ, ι) be the standard m-gon over k equipped with the canonical isomorphism
ι :E−→∼ c

Ẽ sm[d]
(Ẽ). Up to unique isomorphism, the pair of isomorphisms (i(m), iE(m))

that extends i as in Section 5.10 sends (Ẽ A, ιA) to (Ẽ A, ιA ◦ i−1), so the ample
cyclic A-subgroups G̃ ⊂ Ẽ sm

A and G̃ ′ ⊂ Ẽ sm
A of order n that are the pullbacks of

G(m) corresponding to (Ẽ A, ιA) and (Ẽ A, ιA ◦ i−1) must be equal:

G̃ = G̃ ′ inside Ẽ A.

We replace A by an Artinian local fppf cover to assume that the automorphism
ιA ◦ i ◦ ι−1

A of cẼ sm
A [d]

(Ẽ A) is the contraction of an automorphism

ĩ ∈ µm(A)⊂ Aut(Ẽ)(A).

Then ĩ gives an isomorphism (Ẽ A, ιA ◦ i−1)−→∼ (Ẽ A, ιA), so must satisfy

ĩ(G̃ ′)= G̃, i.e., ĩ(G̃)= G̃.

The latter equality means that ĩ also lies in G̃ ∩ (Ẽ sm
A )

0
= (µn/m)A, that is,

ĩ ∈ µgcd(m,n/m)(A).

However, µgcd(m,n/m) acts trivially on cẼ sm[d(m)](Ẽ) by the definition of d(m) (see
Section 5.2), which means that ιA ◦ i ◦ ι−1

A = id and contradicts the assumption that

i 6= id .
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(b) By the proof of (a), X (n) → X0(n) is surjective, so the claim about the
geometric fibers follows from the corresponding claim for X (n)∞ ⊂X (n) proved
in Proposition 4.3.2(b).

For the rest, we may work on X0(n)(m) and may focus on the corresponding
claims for

X0(n)∞(m) :=X0(n)(m) ∩X0(n)∞,

so it suffices to observe that X0(n)∞(m) is the preimage of E``∞d(m) under the map

X0(n)(m)→ E``d(m),

to apply Theorem 3.1.6(c)–(d) and Lemma 5.12(b), and to use the (R0)+(S1)
criterion for reducedness. �

Chapter 6. Implications for coarse moduli spaces

The main goal of this chapter is to take advantage of the moduli interpretation of
X0(n) presented in Chapter 5 to prove that the coarse moduli space X0(n) is regular
at the cusps (and, in fact, regular on a large open subscheme, see Theorem 6.7).
This regularity is not new: [Edixhoven 1990, §1.2] uses the results of Katz and
Mazur to verify via an explicit computation that the completion of X0(n) along
the cusps is regular (such regularity is also a special case of an earlier assertion of
Gross and Zagier [1986, Proposition III.1.4]). In contrast, the proof given below
rests on Theorem 5.13(a), but requires no computation of completions.

We also exploit Lemma 3.3.1 to obtain a base change result for coarse moduli
spaces X H of arbitrary congruence level H (see Proposition 6.4). To prepare for it,
we review general properties of X H .

6.1. The coarse moduli space of XH . For an open subgroup H ⊂ GL2(Ẑ), the
finite type Deligne–Mumford Z-stack XH of Section 4.1.2 is separated, so it has a
coarse moduli space X H (by [Keel and Mori 1997, 1.3(1)], for instance). We let

YH ⊂ X H

be the open that is the coarse moduli space of the “elliptic curve locus”

YH ⊂XH .

We write X (n), Y0(n), etc. for X0(n), Y00(n), etc.
Since X (1) = P1

Z (see Proposition 3.3.2) and X H inherits Z-properness from
XH (see [Rydh 2013, 6.12]), the induced map

X H → X (1)
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is finite, so X H is a projective Z-scheme. Moreover, X H inherits normality from
XH (see [Abramovich and Vistoli 2002, 2.2.3] and compare with the proof of
Lemma 3.3.1), so X H → X (1) is even locally free of constant rank by [EGA IV2

1965, 6.1.5]. In particular, X H is flat and of relative dimension 1 over Spec Z at
every point.

Due to Lemma 4.1.3 (and the sentence preceding it), XH = X H whenever H is
small enough. The analysis of the case of arbitrary H is facilitated by the following
lemma:

Lemma 6.2 [Deligne and Rapoport 1973, IV.3.10(iii)]. For an open subgroup
H ⊂ GL2(Ẑ) and an n ≥ 1, if

0(n)⊂ H and H := Im(H → GL2(Z/nZ)),

then X H is identified with the categorical quotient X (n)/H. �

The coarse moduli spaces YH and X H have been studied extensively in [Katz
and Mazur 1985], albeit with somewhat different terminology, notation, and setup.
In order to put the results below in the context of the work of [Katz and Mazur
1985], we explicate the relationship between the terminology of [op. cit.] and that
of the approach based on the systematic use of the theory of algebraic stacks.

Proposition 6.3. Let H ⊂ GL2(Ẑ) be an open subgroup, let n ∈ Z≥1 be such that
0(n)⊂ H , and let H be the image of H in GL2(Z/nZ).

(a) The “quotient moduli problem” [0(n)]/H (in the sense of [Katz and Mazur
1985, §7.1]) is identified with YH .

(b) The “coarse moduli scheme” M([0(n)]/H) (in the sense of [Katz and Mazur
1985, §8.1]) is identified with YH .

(c) The “compactified coarse moduli scheme” M([0(n)]/H) (in the sense of [Katz
and Mazur 1985, §8.6]) is identified with X H .

Proof. (a) In the case H =0(n), the identification [0(n)]=Y (n) over E`` amounts
to the definitions given in [Katz and Mazur 1985, §5.1 and §3.1] and Section 4.3.1, so
the identification [0(n)] =Y0(n) is part of Theorem 4.3.5. Therefore, in general, the
desired identification over Spec Z[1/n] results by [Katz and Mazur 1985, 7.1.3(2)],
and hence also over all of Spec Z by [Katz and Mazur 1985, 7.1.3 (5)–(6)].

(b) If YH is representable, then the claim follows from (a) and the definition of [Katz
and Mazur 1985, 8.1.1]. Therefore, in general, the claim follows from Lemma 6.2.

(c) By (b), it suffices to observe that X H is the normalization of X (1) in YH , since
M([0(n)]/H) is defined as the normalization of P1

Z = X (1) in M([0(n)]/H). �

Before turning to the case H = 00(n), we record the following general result
that holds for every H . Its part (a) has been proved in [Deligne and Rapoport 1973,
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VI.6.7] by a different method, and the proof given below is in essence due to Katz
and Mazur. Its part (b) complements [Katz and Mazur 1985, 8.5.3].

Proposition 6.4. Let H ⊂ GL2(Ẑ) be an open subgroup, and let n ∈ Z≥1 be such
that 0(n)⊂ H.

(a) The coarse moduli space (X H )Z[1/n] of (XH )Z[1/n] is Z[1/n]-smooth.

(b) For any Z[1/gcd(6, n)]-scheme S, the canonical map from the coarse moduli
space of (XH )S to (X H )S is an isomorphism.

Proof. Let H denote the image of H in GL2(Z/nZ).

(a) The coarse moduli space X (n2) may be covered by GL2(Z/n2Z)-invariant open
subschemes that are affine over Z and are preimages of Z-affine open subschemes of
X (1), so Lemma 6.2 and [Katz and Mazur 1985, Theorem on p. 508 in the section
“Notes on Chapters 8 and 10”] reduce the proof to the case when H = 0(n2).
For this H , the n = 1 case is clear and if n ≥ 2, then the geometric points of
X (n2)Z[1/n] have no nontrivial automorphisms by [Katz and Mazur 1985, 2.7.2(1)]
and Lemma 2.1.6. Thus, if n ≥ 2, then Lemma 3.2.2(a) ensures that

X (n2)Z[1/n] =X (n2)Z[1/n]

and [Deligne and Rapoport 1973, IV.2.5] provides the sought Z[1/n]-smoothness
of X (n2)Z[1/n].

(b) We work locally on Z[1/gcd(6, n)], so we assume that S is either a Z
[ 1

6

]
-scheme

or a Z[1/n]-scheme.
Since XH→X (1) is representable, the automorphism group of every geometric

point of XH is of order dividing 24. Therefore, by [Olsson 2006, 2.12], étale locally
on its coarse moduli space, XH is the quotient of an affine scheme Spec A by an
action of a finite group G whose order divides 24. Thus, the case when S is a
Z
[ 1

6

]
-scheme follows from the fact that the formation of the ring of invariants AG

commutes with arbitrary base change if #G is invertible in A.
For the remainder of the proof we assume that S is a Z[1/n]-scheme, so applying

Lemma 3.3.1 with X = (XH )Z[1/n] reduces the proof to the case when S= Spec Fp

with p - n. We therefore let X ′ be the coarse moduli space of (XH )Fp and seek to
prove that the finite map

f : X ′→ (X H )Fp

is an isomorphism. The source and the target curves of f are Fp-smooth (equiva-
lently, normal): the target due to (a) and the source due to the Fp-smoothness of
(XH )Fp ensured by [Deligne and Rapoport 1973, IV.6.7]. Therefore, f is locally
free by [EGA IV2 1965, 6.1.5]. To conclude that its rank is 1, it suffices to exhibit
a fiberwise dense open substack U ⊂ YH [1/n] whose coarse moduli space is of
formation compatible with base change to Fp.
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We choose U to be the preimage of the complement of j = 0 and j = 1728 in
A1

Z[1/n], let E→ U denote the universal elliptic curve, and let

F := H \ Isom(E[n], (Z/nZ)2)

be the finite étale U -stack of level H structures on E (compare with Section 4.1.2).
The universal level H -structure is a section α of F → U , as is [−1]∗E(α). Since
F→U is finite étale, the substack V ⊂U over which α = [−1]∗E(α) is both open
and closed. By [Deligne 1975, 5.3(III)], the automorphism stack of E is the constant
{±1}U , so the open complement U \V is its own coarse moduli space, whereas the
coarse moduli space of V is the rigidification V( {±1} (in the notation of [AOV08
2008, Appendix]). Since the formation of V( {±1} commutes with arbitrary base
change, so does the formation of the coarse moduli space of U . �

Remark 6.5. For a version of Proposition 6.4(a) in residue characteristics dividing
n and suitable H , see [Katz and Mazur 1985, 10.10.3(5)].

Remark 6.6. In Proposition 6.4(b), for some subgroups H one cannot remove the
requirement that gcd(6, n) be invertible on S. For instance, by [Česnavičius 2017,
Theorem 3.2], the canonical map from the coarse moduli space of (X01(4))F2 to
(X01(4))F2 is not an isomorphism.

We are ready for the promised regularity of X0(n) at the cusps. Similar techniques
may be used to prove analogous regularity results for X (n) or X1(n) (or even for
X̃1(n; n′), X1(n; n′), or X0(n; n′) with n and n′ as in Theorem 4.6.6), but we do
not explicate them because in many cases X (n)=X (n) and X1(n)=X1(n) (see
Proposition 4.3.6 and Lemma 4.1.3), and in these cases the entire X (n) or X1(n) is
regular by Theorem 4.3.5 or Theorem 4.4.4(a).

Theorem 6.7. For an n ∈ Z≥1, the open subscheme U ⊂ X0(n) obtained by remov-
ing the closed points corresponding to j = 0 or j = 1728 in residue characteristics
dividing n is regular.

Proof. The regularity of X0(n)Z[1/n] follows from Proposition 6.4(a), so it suffices
to prove the regularity of the coarse moduli space of the preimage

U ⊂X0(n)

of the open subscheme of P1
Z obtained by removing the sections j = 0 and j = 1728.

By the moduli interpretation of X0(n) given in Section 5.10 and Theorem 5.13(a),
the constant group {±1}U is a subgroup of the automorphism group of the universal
object of U . In fact, due to [Deligne 1975, 5.3(III)] and the representability of
U →X (1), this automorphism group equals {±1}U . Therefore, the coarse moduli
space of U is the rigidification U( {±1}. By [AOV08 2008, A.1], the map

U � U( {±1}
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is étale, and, by Theorem 5.13(a), the stack U is regular, so U( {±1} is also regular,
as desired. �

Remark 6.8. One may use the structure of the fibers X0(n)Fp with p | n to sharpen
Theorem 6.7. For instance, if n is squarefree, then, due to Proposition 6.4 and [Katz
and Mazur 1985, 13.5.6 and Theorem on p. 508], in Theorem 6.7 one may require
that the removed points are in addition supersingular (and likewise for general n
and those removed points that lie on the reduced components of X0(n)Fp ). For a
more thorough analysis of the coarse space X0(n), see [Edixhoven 1990].

We end by proving that X0(n)naive yields the same coarse moduli space X0(n),
and hence suffices for many purposes (however, the proof of Theorem 6.7 does rely
on the finer X0(n) through the representability of X0(n)→X0(1)).

Proposition 6.9. For every n ∈ Z≥1, the contraction morphism

X0(n)naive
→X0(n)

defined in Section 5.11 induces an isomorphism on coarse moduli spaces.

Proof. The coarse moduli space X0(n)′ of X0(n)naive exists due to the finiteness of
the diagonal of X0(n)naive supplied by Theorem 4.6.4(a) (see [Rydh 2013, 6.12]).
As in Section 6.1, the map

X0(n)′→ P1
Z

is finite, so, since Y0(n)naive
= Y0(n), it suffices to prove that X0(n)′ is normal.

For the normality, we work Zariski locally on X0(n)′ and note that each open
substack

U ⊂X0(n)naive

that has an affine coarse moduli space Spec A satisfies A = 0(U ,OU ) by the
universal property for maps to A1

Z. To then see that 0(U ,OU ) is integrally closed
in its total ring of fractions it suffices to use the normality of U supplied by
Theorem 4.6.4(a) and the fact that generizations lift along smooth morphisms from
algebraic spaces to U (see [Laumon and Moret-Bailly 2000, 5.7.1]). �

Remark 6.10. The same proof shows that, in the notation of Section 4.6, for every
n, n′ ∈ Z≥1 the coarse moduli spaces of X1(n; n′) and X0(n; n′) agree with those
of X01(n;n′) and X00(n;n′).
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