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In this note we give sentences ϑK in the language of fields which describe the
isomorphy type of K among finitely generated fields, provided the Kronecker
dimension dim(K ) satisfies dim(K ) < 3. This extends results by Rumely (1980)
concerning global fields; see also Scanlon (2008).

1. Introduction

We begin by recalling Rumely’s result [1980] showing that for every global field
k there exists a sentence ϑRu

k which characterizes the isomorphy type of k among
global fields, i.e., if l is any global field, then ϑRu

k holds in l if and only if l ∼= k as
fields.

It is one of the main open questions in the first-order theory of finitely generated
fields whether a fact similar to Rumely’s result mentioned above holds for all
finitely generated fields K . We notice that the question above is related to, but much
stronger than, the still open elementary equivalence versus isomorphism problem,
which asks whether the isomorphism type of every finitely generated field K is
encoded in the whole first-order theory Th(K ) of K ; see, e.g., [Pop 2003] for
details and literature about this, as well as [Scanlon 2008].1

In the present note we show that the answer to the above question is positive for
finitely generated fields K having Kronecker dimension dim(K ) < 3, which are
precisely the finite fields, the global fields, and the function fields of (algebraic)
curves over global fields.
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Main Result. For every finitely generated field K having dim(K ) < 3, there exists
a first-order sentence in the language of fields ϑK such that for finitely generated
fields L , the sentence ϑK holds in L if and only if L ∼= K as fields.

The more precise form of the result is as follows: Recall that by one of the main
results in [Pop 2002], for every d ≥ 0, there exists a sentence ϕd (in the language
of fields) such that for all finitely generated fields K , ϕd holds in K if and only if
dim(K )= d. In particular, if K is any finitely generated field, then ϕ0 holds in K
if and only if K is a finite field, ϕ1 holds in K if and only if K is a global field, and
finally ϕ2 holds in K if and only if dim(K )= 2.

In particular, given a global field K , consider the sentence ϑK given by ϕ1∧ϑRu
K .

Then if ϑK holds in a finitely generated field L , one has the following: First,
dim(L)= 1, because ϕ1 holds in L , and hence L is a global field. Second, L ∼= K
because ϑRu

K holds in the global field L .
In the case dim(K )= 2, let k0 = K abs be the constant subfield of K , i.e., the set

of elements of K which are algebraic over the prime field of K . Then k0 is finite if
and only if char(K ) > 0, and if so, K is the function field of a projective smooth
geometrically integral surface over k0. Letting (t0, t1) be a separable transcendence
basis of K , there exists t2 ∈ K such that K = k0(t0, t1, t2), with t0, t1, t2 satisfying an
absolutely irreducible polynomial f (T0, T1, T2) over k0. And if char(K )= 0, then
K is the function field of a projective smooth k0-curve, and for every nonconstant
t1∈K there exists t2∈K such that K = k0(t1, t2), with t1, t2 satisfying an irreducible
polynomial f (T1, T2) ∈ k0[T1, T2]. The precise result proven will be the following;
see Section 5 for proofs.

Theorem 1.1. Let K be a finitely generated field. The following hold:

(1) For every finite field k0 and absolutely irreducible polynomial f = f (T0, T1, T2)

over k0, there exists a formula ψk0, f (t0, t1, t2) with free variables t0, t1, t2 such
that the following are equivalent:

(i) The sentence ϑK defined by ∃t0, t1, t2 ψk0, f (t0, t1, t2) holds in K.
(ii) There exist t0, t1, t2 ∈ K such that K = k0(t0, t1, t2) and f (t0, t1, t2)= 0.

(∗) In particular, suppose that ϑK holds in K. Then for all finitely gener-
ated fields L , ϑK holds in L if and only if L ∼= K as abstract fields.

(2) For every number field k0 and absolutely irreducible polynomial f = f (T1, T2)

over k0, there exists a formula ψk0, f (t1, t2) with free variables t1, t2 such that
the following are equivalent:

(i) The sentence ϑK defined by ∃t1, t2 ψk0, f (t1, t2) holds in K.
(ii) There exist t1, t2 ∈ K such that K = k0(t1, t2) and f (t1, t2)= 0.

(∗) In particular, suppose that ϑK holds in K. Then for all finitely gener-
ated fields L , ϑK holds in L if and only if L ∼= K as abstract fields.
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The result above is based on and uses in an essential way, among other things, pre-
vious results by Rumely, Poonen, and Pop. First, the above-mentioned sentences ϕd

single out the finite fields, the global fields, and the fields of curves over global fields
among all finitely generated fields K . Second, Poonen [2007] showed that there ex-
ists a predicate, i.e., formula ψabs(x) with one free variable x such that for all finitely
generated fields K , one has k0 := K abs

= {x ∈ K | ψabs(x) is true in K }. Further,
techniques developed in [Poonen 2007] (using [Pop 2002] as well) give formulas
ψr (x1, . . . , xr , xr+1) with r + 1 free variables such that for x1, . . . , xr+1 ∈ K , one
has that ψr (x1, . . . , xr , xr+1) holds in K if and only if x1, . . . , xr are algebraically
independent over k0, but x1, . . . , xr , xr+1 are not. Hence, for x1, . . . , xr ∈ K
algebraically independent over k0, the relative algebraic closure of k0(x1, . . . , xr ) in
K is given by L := {xr+1 ∈ K | ψr (x1, . . . , xr , xr+1) holds in K }. Finally, Poonen
[2007] showed that there exists a sentence ψ0 which holds in a finitely generated
field K if and only if char(K )= 0.

Hence, in the case dim(K ) = 2, one has the following: First, k0 = K abs is
finite if and only if char(K ) > 0 if and only if ψ0 does not hold in K . If so, K
is the function field of a projective smooth surface over k0. Therefore, there exist
separable transcendence bases t0, t1 of K |k0 satisfying that the relative algebraic
closure k ⊂ K of k0(t0) in K is a global function field, and furthermore that K |k is
the function field of a (projective smooth) geometrically integral k-curve X . Thus
K = k(t1, t2) for a properly chosen t2. Second, if K has characteristic zero, then
k := k0 = K abs is a number field, and K is the function field of a projective smooth
geometrically integral k-curve X . So for t1 ∈ K \k, and properly chosen t2 ∈ K , one
has K = k(t1, t2). Hence, one can deduce Theorem 1.1 above from the following
theorem; see Section 5 for detailed proofs.

Theorem 1.2. The k-valuations of function fields K = k(X) of projective smooth
geometrically integral k-curves X over global fields k are uniformly first-order
definable. In particular, there exist formulas degN (t), ψ

R(t,t′), ψ0(t,t′), with free
variables t, t′, such that for every K |k as above and t ∈ K \ k, the following hold:

(a) degN (t) is true in K if and only if t has degree N as a function of K |k, i.e.,
[K : k(t)] = N.

(b) R := { t ′ ∈ K | ψ R(t, t ′) is true in K } is the integral closure of k[t] in K.

(c) k[t] = { t ′ ∈ K | ψ0(t, t ′) is true in K }.

We mention that the formulas degN (t), ψ
R(t,t′), ψ0(t,t′) are quite explicit; see

Section 5. In particular, so is Theorem 5.3, which is slightly more general than
Theorem 1.2 above. The main technical tool in the proof is one of Kato’s higher
Hasse local-global principles (LGPs) for H3; see Theorem 2.1 below. If similar
LGPs would be available in higher dimensions, it would be possible to extend the
methods of this paper to higher dimensions.
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2. Reviewing well known facts

2A. The Hasse–Brauer–Noether local-global principle. We recall briefly the fa-
mous Hasse–Brauer–Noether LGP for the Brauer group of a global field k. Let P(k)
be the set of nontrivial places of k. For v ∈ P(k), we denote by kv the completion
of k with respect to v. Then kv is a locally compact (nondiscrete) field, and the
Brauer group Br(kv) of kv admits a canonical embedding invv : Br(kv)→ Q/Z,
called the invariant (isomorphism), satisfying the following:

(a) If kv = C, then Br(kv)= 0 and invv is the trivial map.

(b) If kv = R, then invv : Br(kv)→ 1
2 Z/Z⊂Q/Z is an isomorphism.

(c) In the remaining cases, invv : Br(kv)→Q/Z is an isomorphism.

The Hasse–Brauer–Noether LGP asserts that the canonical sequence

0→ Br(k)→
⊕
v

Br(kv)→Q/Z→ 0

is exact. Here, the first map is the direct sum of all the canonical restriction maps
Br(k)→ Br(kv); thus implicitly, for every division algebra D over k there exist
only finitely many v such that D⊗k kv is not a matrix algebra. And the second map
is the sum of the invariant morphisms.

Moreover, if n( ) denotes the n-torsion, then identifying the n-torsion in Q/Z

canonically with Z/n, the above exact sequence gives rise canonically to an exact
sequence

0→ nBr(k)→
⊕
v

nBr(kv)→ Z/n→ 0.

2B. Hasse higher LGPs (after Kato). It is a fundamental observation by Kato
[1986] that the above local-global principle has higher dimensional variants as
follows: First, following [Kato 1986], for every positive integer n, say n = mpr

with p the characteristic, and an integer twist i , one sets Z/n(0)=Z/n, and defines
in general Z/n(i) := µ⊗i

m ⊕Wr�
i
log[−i], where Wr�log is the logarithmic part of

the de Rham–Witt complex on the étale site; see [Illusie 1979] for details. In this
notation, for every (finitely generated) field K one has

H1(K,Z/n)= Homcont(GK ,Z/n), H2(K,Z/n(1))= nBr(K ),

where GK is the absolute Galois group of K . Hence, the cohomology groups
Hi+1(K,Z/n(i)) have a particular arithmetical significance for i = 0, 1. Further,
in this notation, the Hasse–Brauer–Noether LGP is a local-global principle for
the cohomology group H2(K,Z/n(1)), and note that global fields have Kronecker
dimension d = dim(K )= 1.

This led Kato to the fundamental idea that for finitely generated fields K of
Kronecker dimension d there should exist similar LGPs for Hd+1(K,Z/n(d)). And
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Kato [1986] proved that such higher dimension LGPs do indeed hold for d = 2,
i.e., for H3(K,Z/n(2)), where K is the function field of an integral curve over
some global field, or equivalently the function field of an integral two dimensional
scheme of finite type.

We describe below one of Kato’s local-global principles for H3(K,Z/n(2)), and
will use that LGP in the cases n = 2, char(K ) 6= 2 as well as n = 3, char(K )= 2.
The situation is as follows. Let k be a global field, and K |k be the function field
of a complete smooth geometrically integral k-curve X . Let S be the arithmetical
complete normal curve with function field κ(S)= k; hence S = SpecOk if k is a
number field, and S is the unique projective smooth curve with function field k if
k is a global field of positive characteristic. Then by Abhyankar’s regularization
theorems of surfaces [1965], X→ Spec k is the generic fiber of a proper morphism
X → S of regular schemes (and having further properties, e.g., having NCD on X
as reduced fibers, etc.). For i ≥ 0, we denote by Xi ⊂ X the points of dimension i
in X . Then for x ∈ X one has:

(a) x ∈ X0 ⇔ Ox is a two dimensional local ring ⇔ κ(x) is a finite field.

(b) x ∈ X1 ⇔ Ox is a discrete valuation ring ⇔ κ(x) is a global field.

For s ∈ S0 we denote by vs the canonical valuation of Os and by ks the completion
of k at s. For x1 ∈ X1 we denote by vx1 the canonical valuation of Ox1 , and by Kx1

the completion of K at x1. Notice that x1 7→ s under X→ S if and only if Os ≺Ox1 ,
that is, the local ring Os is dominated by the local ring Ox1 under k ↪→ K .

Next let L be an arbitrary field, and recall the canonical isomorphism (gener-
alizing the classical Kummer theory isomorphism) h1

: L×/n→ H1(L ,Z/n(1)).2

As explained in [Kato 1986, §1], the isomorphism h1 gives rise canonically for all
q 6= 0 to morphisms3

hq
: K M

q (L)/n→ Hq(L ,Z/n(q)),

{a1, . . . , aq}/n 7→ h1(a1)∪ · · · ∪ h1(aq)=: a1 ∪ · · · ∪ aq .

Let v be a discrete valuation of L . Then for every uniformizing parameter π ∈ L
at v, one defines the boundary homomorphism

∂v : Hq+1(L ,Z/n(q + 1))→ Hq(λ,Z/n(q))

by π∪a1 · · ·∪aq 7→a1∪· · ·∪aq and a0∪a1 · · ·∪aq 7→0, provided all a0, a1, . . . , aq

are v-units. We notice that in general, this homomorphism depends on the uni-
formizing parameter π . Further, if the Galois action on Z/n(1) is trivial, then

2Recall that for every abelian group A, we denote A/n := A/(n A).
3By the (now proven) Milnor–Bloch–Kato conjecture, hq are isomorphisms. Nevertheless, that

fact in its full generality is not needed here, because one could work as well with the subgroup
generated by symbols Hq

∪
(L ,Z/n(q))⊆ Hq (L ,Z/n(q)).
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all Galois modules Z/n(q) are actually isomorphic to Z/n, and ∂v gives rise to
morphisms

∂v : Hq+2(L ,Z/n(q + 1))→ Hq+1(λ,Z/n(q)).

We will use two instances of these homomorphisms for q ≤ 2 and L a finitely
generated field of Kronecker dimension equal to q containing µ2n (thus having no
orderings).4 First, let k be a global field, K |k be the function field of a complete
smooth k-curve X , and X→ S, etc., be as introduced above. For x1∈X1, let v :=vx1

be the corresponding discrete valuation of K . The boundary homomorphisms we
will consider are

∂x1 : H
3(K,Z/n(2))→ H2(κ(x1),Z/n(1)).

For later use we notice that for f, g, h ∈ K such that g, h are vx1-units, one has

∂x1( f ∪ g ∪ h)= vx1( f ) · ḡ ∪ h̄ in H2(κ(x1),Z/n(1)),

where u 7→ ū is the residue map Ox1 → κ(x1). In particular, if the vx1-values of
f, g, h ∈ K are all divisible by n (for instance, if f, g, h are all vx1-units), then
∂x1( f ∪ g ∪ h)= 0.

For q = 1, L = κ(x1) is the residue field of K at some x1 ∈ X1 and v is some
finite place p0 of κ(x1). Thus the boundary homomorphisms we will consider are

∂p0 : H
2(κ(x1),Z/n(1))→ H1(κ(p0),Z/n(0))= Z/n.

Notice that ∂p0 is nothing but the local component of the Hasse–Brauer–Noether
LGP for the global field κ(x1) defined by the place p0.

Following [Kato 1986, §1], for all x1 ∈ X1, x0 ∈ X0, one defines boundary
homomorphisms

∂x1x0 : H
2(κ(x1),Z/n(1))→ H1(κ(x0),Z/n)

as follows. First, if x0 6∈ {x1}, set ∂x1x0 = 0. Second, if x0 ∈ {x1}, proceed as follows:
Recall that Ox0 is a two dimensional regular local ring, and set Xx0 :=SpecOx0 ↪→X .
Then x0 ∈ {x1} if and only if x1 ∈ Xx0 . If so, then Ox1 is some localization of Ox0

and the image Ox0 ⊂ κ(x1) of Ox0 under the projection Ox1→ κ(x1) is a local
Noetherian ring of Krull dimension one. Thus its integral closure Õx0 in κ(x1) is a
Dedekind domain with finitely many maximal ideals pi , and thus a principal ideal
domain. Further, every completion κ(x1)pi is a localization of the global field κ(x1)

and the residue fields κ(pi )|κ(x0) are finite fields. Kato defined ∂x1x0 as follows,
where the last map is the sum of the corestriction maps:

∂x1x0 : H
2(κ(x1),Z/n(1))→

⊕
pi

H1(κ(pi ),Z/n)→ H1(κ(x0),Z/n).

4Recall that in these cases, the equality H3
∪
= H3 has been known for a while already.
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Finally, one of the local-global principles Kato gives — which is essential for
the methods of this paper — is the following; see [Kato 1986, p. 145, Corollary].

Theorem 2.1. With the above notation, suppose that K has no orderings, e.g.,
µ2n ⊂ K. Then via the obvious direct sums of the above boundary homomorphisms
one gets a long exact sequence of the following form, where the last map is given by
the sum:

0→H3(K,Z/n(2))→
⊕

x1∈X1

H2(κ(x1),Z/n(1))→
⊕

x0∈X0

H1(κ(x0),Z/n)→Z/n→0.

In particular, recalling that Xx0 is the set of all the x1 ∈ X1 such that x0 ∈ {x1},
the map H3(K,Z/n(2))→

⊕
x1∈Xx0

H2(κ(x1),Z/n(1))→ H1(κ(x0),Z/n) is triv-
ial for each x0 ∈ X0.

2C. An arithmetical application/interpretation. In the following discussion, sup-
pose that the Galois action on Z/n(1) is trivial, so that Z/n(q) are isomorphic to
Z/n as Galois modules.

(1) Recall nBr(L)=H 2(L ,Z/n(2)) and H 3(L ,Z/n(3)) are generated by symbols
a ∪ b and a ∪ b∪ c, respectively, with a, b, c ∈ L×.

(2) Now suppose that n is a prime number. For a, b ∈ L× consider the field exten-
sion La |L defined by h1(a) ∈ H1(L ,Z/n(1)), the norm map Na : L×a → L×,
and the cyclic algebra Aa,b with [Aa,b] = a ∪ b ∈ H2(L ,Z/n(1)). Then
a ∪ b ∈ H2(L ,Z/n(1)) is trivial if and only if b ∈ Na(L×a ). Furthermore, if
Aa,b is a division algebra, let Na,b : A×a,b→ L× be the reduced norm of Aa,b.
Then by [Merkurjev and Suslin 1982], Na,b represents c ∈ L× if and only if
a ∪ b∪ c ∈ H 3(L ,Z/n(3)) is trivial.

Therefore, since the conditions b ∈ im(Na) and/or c ∈ im(Na,b) are first-
order expressible, we conclude that a ∪ b and/or a ∪ b∪ c being (non)trivial
are first-order expressible. Hence, the following hold:
(∗) The subsets 62 ⊂ L×× L× and 63 ⊂ L×× L×× L× defined by

62 := {(a, b) | a ∪ b is nontrivial},

63 := {(a, b, c) | a ∪ b∪ c is nontrivial}

are first-order definable subsets.

(3) Let K |k be a function field in one variable over a global field k as above. Let
k̃ |k be a finite extension with µn ⊂ k̃, and K̃ := K k̃. Then K̃ | k̃ is the function
field of the complete smooth geometrically integral k̃-curve X̃ := X ×k k̃. As
in the case of K |k, we consider proper regular models X̃ → S̃ of X̃→ Spec k̃,
and the sets X̃ i ⊂ X̃ for i = 0, 1, 2. In particular, for every x̃1 ∈ X̃ 1, the
local rings Ox̃1 are discrete valuation rings of K̃ , and we denote by K̃ x̃1 the
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corresponding completions of K̃ . Then if Aa,b is a division algebra as in (2)
above, the following holds:

Na,b represents c ∈ K̃× over K̃ if and only if Na,b represents c over
K̃ x̃1 for all x̃1 ∈ X̃ 1.

3. Consequences of Kato’s local-global principles

3A. General facts. Let K be a finitely generated field of Kronecker dimension
dim(K )= 2, and k0 = K abs be its absolute subfield. If char(K )= 0, then k := k0

is a number field, and S = SpecOk is the “canonical global curve” with function
field k. Further, K is the function field of a projective regular S-surface X → S,
having as a generic fiber a smooth projective geometrically integral k-curve X . If
char(K ) = p > 0, there exist (many) global function subfields k ⊂ K of K with
k = k̄ ∩ K such that letting S be the unique projective smooth k0-curve, there exist
projective smooth S-surfaces X → S having as generic fiber a projective smooth
k-curve X .

In the above notation, we denote by Si ⊂ S, X i ⊂ X , Xi ⊂ X the points of
dimension i in the corresponding schemes. In particular, one has the following:

• S0 ⊂ S, X0 ⊂ X , X0 ⊂ X are the closed points in the corresponding schemes.

• S = S0 ∪ {η} and X = X0 ∪ {ηX }, where η ∈ S, ηX ∈ X are the generic points.

• X = X0 ∪X1 ∪ {ηX }, and ηX = ηX , X0 ⊂ X1 under the canonical inclusion
X ↪→ X1.

Notation/Remarks 3.1. Let n be a fixed prime number such that the group of roots
of unity µ2n of order 2n is contained in K . We notice/define the following:

(1) The local rings Os at the closed points s ∈ S0 of S are exactly the valuation
rings of the nonarchimedean places of k. Further, for x ∈ X one has x 7→ s if and
only if the corresponding local rings dominate each other: Os ≺Ox under k ↪→ K .

(2) For x1 ∈X1, let Cx1 ={x1}⊂X be the schematic closure of x1 in X . Then Cx1 is
an arithmetic curve on X with generic point x1 ∈X1. For s ∈ S, let Xs→ κ(s) be the
fiber of X → S at s. Then Xs is a projective (maybe nonreduced) one dimensional
κ(v)-scheme of finite type. In the above notation, one has the following:

(a) x1 7→ η ∈ S if and only if x1 ∈ X0 if and only if Cx1 → S is finite dominant.
If so, Cx1 is called a horizontal curve on X , and we denote

X1,η := {x1 ∈ X1 | Cx1 is a horizontal curve}.

(b) x1 7→ s ∈ S0 if and only if Cx1 is a reduced irreducible component of Xs→ κ(s).
If so, Cx1 is called a vertical curve on X , and we denote

X1,0 := {x1 ∈ X1 | Cx1 is a vertical curve}.
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(3) One obviously has X1 = X1,η ∪X1,0 , and the map X1,0→ S0 has finite fibers.

(4) Since the generic fiber X→ k of X → S is a projective smooth geometrically
integral k-curve, there exists a (unique) nonempty maximal open subset U =UX
of S such that XU := X ×S U→ U is a family of projective smooth curves with
geometrically integral fibers. For s ∈ U0 := U ∩ S0, letting xs ∈ Xs ⊂ X be the
generic point, one has:

(a) xs is the unique preimage of s in X1, so xs ∈ X1,0 and Cxs = Xs .

(b) κ(s) is relatively algebraically closed in κ(xs).

(5) For f ∈ K×, let |div( f )| := {P ∈ X0 | vP( f ) 6= 0} ⊂ X0 be the support of the
divisor ( f ) of f viewed as a function on X→ k. Then CP = {P} with P ∈ |div( f )|
are distinct horizontal curves and

⋃
P∈|div( f )| CP is the closure of |div( f )| in X .

Therefore, there exists a unique maximal open subset Uf =UX f ⊂U satisfying:

(a)
⋃

P∈|div( f )| CP→ S is étale above Uf . Hence, CP ∩Xs ∩CP ′ =∅ for P ′ 6= P .

(b) For s ∈Uf and its unique preimage xs ∈ X1,0 under X1,0→ S, the following
hold:
• n is invertible in κ(s).
• f is a vxs-unit, and its residue f̄ ∈ κ(xs) nonconstant: f̄ ∈ κ(xs) \ κ(s).

(6) Finally, we notice that Uf ⊆U0 has the following permanence property: Let
k̃ |k be a finite extension, and set K̃ := K k̃. Let S̃→ S be the normalization of S
in k ↪→ k̃, and X̃ → S̃ be a minimal proper regular model of K̃ | k̃ which dominates
X → S. In particular, the generic fiber X̃ → k̃ of X̃ → S̃ is the normalization
X̃ → X of X in K ↪→ K̃ . Let UX̃ ⊂ S̃ be the maximal open subset such that
X̃UX̃ := X̃ ×S̃ UX̃ →UX̃ is smooth and has reduced geometrically integral fibers,
and define the subsets UX̃ f ⊆UX̃ for the model X̃ → S̃ of K̃ |k̃ and f ∈ K̃ in the
way the subsets UX f ⊆UX of S were defined above for the model X → S of K |k
and f ∈ K . Then one has:

Lemma 3.2. In the above notation, let ŨX f ⊆ ŨX be the preimages of UX f ⊆UX
under the map S̃→ S. Then X̃ ×S̃ ŨX → ŨX is smooth, whence ŨX ⊆ UX̃ and
X̃ ×S̃ ŨX = X ×S ŨX . Further, ŨX f ⊆ UX̃ f , and the morphism X̃ → X is finite
above X ×S UX .

Proof. For the first inclusion, let X n
→ S̃ denote the normalization of X → S in

the field extension K ↪→ K̃ . Then X̃ being regular, it is also normal. Thus X̃ → S̃
dominates X n

→ S̃. Moreover, since the base change X ×S S̃→ S̃ is dominant and
finite over X → S, it follows that X n

→ S̃ dominates X ×S S̃→ S̃. Thus finally
X̃ → S̃ dominates X ×S S̃→ S̃. To simplify notation, set U :=UX and Ũ := ŨX .
Since XU := X ×S U→U is smooth and has reduced geometrically integral fibers,
so is the base change XU ×S Ũ → Ũ , and in particular XU ×S Ũ is regular. Hence,
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by the minimality of X̃ → S̃, one has X̃ ×S̃ Ũ = X n
×S̃ Ũ = XU ×S Ũ . Therefore,

X̃ Ũ := X̃ ×S̃ Ũ → XU is finite because X n
→ X is. Since X̃ Ũ = X ×S Ũ → Ũ is

also smooth, one has ŨX ⊆UX̃ by the maximality of the latter. The other inclusion
follows immediately from the fact that being étale is preserved under base change,
and the fact that X̃ ×S̃ ŨX = X ×S ŨX . �

3B. A local-global principle for H3(X , f ). We work in the context and the nota-
tion of the previous subsection. Let X1 f ⊂X1 be the preimage of Uf under X1→ S.
We notice that X1 \X1 f is the finite closed subset of X1,0 consisting of all x1 ∈ X1

which map into the (finite) closed set S0 \Uf .

Notation. Let H3(X , f )⊂H3(K,Z/n(2)) denote the set of all the symbols f ∪a∪b
with a, b ∈ k× which are nontrivial over some completion Kx1 with x1 ∈ X1 f .

Lemma 3.3. Let Df ⊆|div( f )| be the set of all P such that vP( f ) is not divisible by
n in vP(K ). Suppose that K has no orderings. Then for every f ∪a∪b ∈H3(X , f )
there exists P ∈ Df such that f ∪ a ∪ b is nontrivial over KP .

Proof. Let z1∈X1 be a given point. Then by the concrete description of the boundary
homomorphism ∂̂z1 as given before Theorem 2.1, one has that if vz1( f ), vz1(a), vz1(b)
are all divisible by n, then f ∪ a ∪ b is trivial over the completion Kz1 at vz1 . In
particular, if z1 ∈ X1,η, then a, b ∈ k× are vz1-units. Thus vz1(a)= 0= vz1(b) are
divisible by n. Hence, if vz1( f ) is divisible by n, then f ∪ a ∪ b is trivial over Kz1 .

Returning to the proof of the lemma, let f ∪a∪b ∈H3(X , f ) be a given element,
and let x1 ∈ X1 f ⊂ X1 be such that f ∪ a ∪ b is nontrivial over the completion Kx1 .

Case 1. x1 ∈ X1,η = X0. Then vx1 is trivial on k, so vx1(a) = 0 = vx1(b). Hence,
since f ∪a∪b∈H3(X , f ) is nontrivial over the completion Kx1 , it follows by the dis-
cussion above that vx1( f ) is not divisible by n. Thus P := x1 ∈ Df , and we are done.

Case 2. x1 ∈ X1,0. Let s ∈Uf be the image of x1 under X1 f →Uf ⊂ S. Then by
the definition of X1 f , one has that xs := x1 is the unique preimage of s in X1, and
the following hold:

• Xs is a projective smooth geometrically integral κ(s)-curve, and Cxs = Xs .

• For all P 6= P ′ in |div( f )|, if x0 ∈ Xs ∩CP , then x0 6∈ Xs ∩CP ′ .

• n is invertible in κ(s).

• f is a vxs-unit, and its residue f̄ ∈ κ(xs) is nonconstant, i.e., f̄ ∈ κ(xs) \ κ(s).

From this we reason as follows. Let x0 ∈ X0 be a closed point with x0 7→ s ∈Uf ,
and let z1 ∈X1 satisfy that x0 ∈Cz1 and not all vz1(a), vz1(b), vz1( f ) are zero. Then
we have:

(a) If z1 ∈ X1,0, i.e., z1 maps to some s ′ ∈ S0, then Cz1 is a vertical curve; and
since Cz1 3 x0 7→ s, we must have Cz1 = Xs , so that z1 = x1, etc.
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(b) If P := z1 ∈X1,η = X0, then a, b are vP -units, and therefore vP( f ) 6= 0. Thus
P ∈ |div( f )|, and x0 ∈ Xs ∩CP . Moreover, P is the unique point in |div( f )|
with the property x0 ∈ CP ∩Xs .

From this we can conclude the following. Let x0 ∈ X be a closed point above the
point s ∈ Uf . Then there exist at most two points z1 ∈ X1, each satisfying that
x0 ∈ Cz1 and at least one of the values vz1(a), vz1(b), vz1( f ) is nonzero. Further,
the two (potential) points are

• the given point xs = x1 ∈X1,0 — note that vxs( f )= 0, f̄ ∈ κ(xs) is nonconstant,
etc.;

• the unique P0 ∈ |div( f )| such that x0 ∈CP0 ∩Xs — note that a, b are vP0-units.

Therefore, the image of f ∪a∪b ∈H3(K,Z/n(2)) in
⊕

x1∈Xx0
H2(κ(x1),Z/n(1))

under the homomorphism of Theorem 2.1 actually lies in

H2(κ(P0),Z/n(1))⊕H2(κ(xs),Z/n(1)).

Let us compute ∂xs( f ∪a∪b). First, since s∈Uf , we have f ∈O×xs
and f̄ ∈κ(xs) is

nonconstant. Second, every uniformizing parameter π ∈ k at s is also a uniformizing
parameter π at xs , because Xs is reduced by the fact that s ∈Uf . For such a π , set
a = πqa′ and b = πr b′ with a′, b′ ∈O×s . Then setting c = a′ r/ b′q ∈O×s , it follows
by the definition of ∂xs that we have 0 6= ∂xs( f ∪a∪b)= f̄ ∪ c̄ ∈H2(κ(xs),Z/n(1)).

Next, recall that since s ∈Uf , the special fiber Xs→ κ(s) is a complete smooth
geometrically integral model of the global function field κ(xs)|κ(s). Since f̄ ∪ c̄ is
nontrivial in H2(κ(xs),Z/n(1)), by the Hasse–Brauer–Noether LGP, there exists
a closed point x0 ∈ Xs,0 ⊂ X0 such that f̄ ∪ c̄ is nontrivial over the completion
κ(xs)x0 . Equivalently, the boundary homomorphism

∂x0 : H
2(κ(xs),Z/n(1))→ H1(κ(x0),Z/n)

maps f̄ ∪ γ̄ to some nontrivial element in H1(κ(x0),Z/n).
Let Ox0 be the local ring of x0 ∈ X viewed as a closed point of X , and let

Ox0 ⊂ κ(xs) be the image of Ox0 under the canonical projection Oxs→ κ(xs). Then
by scheme-theoretical nonsense, it follows that Ox0 is the local ring of the point
x0 ∈ Xs,0 viewed as a closed point of Xs . Hence, since the latter is a smooth curve
over κ(s), and thus regular, it follows that Ox0 =OXs ,x0 is regular. Therefore, by the
definition of ∂xs ,x0 as described before Theorem 2.1, it follows that ∂xs x0( f̄ ∪ c̄)=
∂x0( f̄ ∪ c̄). Hence we conclude that ∂xs x0( f̄ ∪ c̄) ∈ H1(κ(x0),Z/n) is nontrivial.
Viewing x0 as a closed point of X , we conclude that the image of f ∪ a ∪ b under
H3(K,Z/n(2))→ H2(κ(xs),Z/n(1))→ H1(κ(x0),Z/n) is nontrivial.

On the other hand, the image of f ∪ a ∪ b in
⊕

x1∈Xx0
H2(κ(x1),Z/n(1)) lies in

H2(κ(P0),Z/n(1))⊕H2(κ(xs),Z/n(1)), by the discussion above.
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For a contradiction, suppose that the image of f ∪ a ∪ b in H2(κ(P0),Z/n(1))
is trivial. Then the image of f ∪ a ∪ b in

⊕
x1∈Xx0

H2(κ(x1),Z/n(1)) lies in
H2(κ(xs),Z/n(1)), and this image is f̄ ∪ c̄. Thus, the image of f ∪a∪b under the
canonical map

H3(K,Z/n(2))→
⊕

x1∈Xx0

H2(κ(x1),Z/n(1))→ H1(κ(x0),Z/n)

is nontrivial. This contradicts Theorem 2.1.
Therefore, the image of f ∪a∪b in H2(κ(P0),Z/n(1))must be nontrivial. Since

that image is vP0( f ) · a ∪ b, we conclude, first, that vP0( f ) is not divisible by n, so
that P0 ∈ Df , and second, that f ∪ a ∪ b is nontrivial over K P0 . �

3C. The Chebotarev density theorem and the size of H3(X , f ). Let λ|k be a
finite extension with µ2n ⊂ λ. Consider α ∈ k which is not an n-th power in λ, or
equivalently, λ̃ := λ[ n

√
α ] is a cyclic extension of degree n of λ. Let further λ̂|k

be some finite Galois extension of k containing λ̃, and let T̂ → T̃ → T → S be
the normalizations of S in the field extensions k ↪→ λ ↪→ λ̃ ↪→ λ̂. For a generator
σ ∈Gal(λ̃|λ), consider a preimage τ ∈Gal(λ̂|λ)⊆Gal(λ̂|λ). Let T̂α→ Sα be the
sets of all the points ẑ 7→ s such that α is a vs-unit and τ is the Frobenius κ(ẑ)|κ(s).
Notice that by the Chebotarev density theorem, Sα has a positive Dirichlet density,
and that for ẑ ∈ T̂α and its image s ∈ Sα one has κ(ẑ)= κ(s)[γ̂ ] with γ̂ m

= ᾱ and
m the order of τ .

Finally, let z̃α→ zα be the images of ẑα in T̃ → T . Then for S̃α 3 z̃ 7→ z ∈ Tα,
one has that z̃ |z is unramified and has σ as Frobenius automorphism: κ(z)= κ(s)
and κ(z̃)= κ(s)[γ ], where γ n

= ᾱ. Thus we have showed the following:

Fact 3.4. Let λ|k be a finite extension of global fields, µ2n ⊂ λ, and α ∈ k not an
n-th power in λ. Let T → S be the normalization of S in k ↪→ λ. There exist subsets
Sα ⊂ S of positive Dirichlet density and Tα ⊂ T mapping onto Sα such that for all
Tα 3 z 7→ s ∈ Sα one has ks = λz , and α and n are vs-units, and α is not an n-th
power in ks = λz .

Notation/Remarks 3.5. For α, δ ∈ k× and Vδ := {s ∈ S | vs(δ)= 0} ⊂ S open and
nonempty, and the subgroup Hδ = {β ∈ k× | vs(β − 1) > 2vs(2n) if s 6∈ Vδ} ⊂ k×,
consider/define

(1) Hδα := α ∪Hδ ⊂ H2(k,Z/n(1)),

(2) H f δα := f ∪α ∪Hδ = f ∪Hδα ⊂ H3(K,Z/n(2)).

Notice that by Hensel’s lemma we have that if β ∈Hδ then β is an n-th power in ks

for all s 6∈ Vδ.

Lemma 3.6. Suppose that Vδ ⊆ Uf and that H f δα 6= 0. Then every nonzero
f ∪α∪β ∈H f δα lies in H3(X , f ), and for every such f ∪α∪β the following hold:
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(1) There exists P ∈ X such that f ∪α ∪β is nontrivial over KP . Hence, P ∈ Df

and α is not an n-th power in KP nor in the residue field κ(P).

(2) H f δ∗α is nontrivial over KP for all P as in (1) above and all δ∗ ∈ k×.

Proof. We first prove that every nonzero f ∪α∪β ∈H f δα actually lies in H3(X , f ).
Indeed, by Theorem 2.1, there exists some x1 ∈ X1 such that f ∪α∪β is nontrivial
over the completion Kx1 . Let x1 7→ s ∈ S be the image of x1 in S. We claim that
s ∈ Vδ . By contradiction suppose that s 6∈ Vδ . Then by Notation/Remarks 3.5, β is
an n-th power in ks and in particular, α∪β is trivial over ks . Further, since x1 7→ s,
we have ks ⊆ Kx1 . Hence f ∪α∪β is trivial over K̃ x̃1 , a contradiction! Thus finally
s ∈ Vδ, and since Vδ ⊆Uf we have s ∈Uf .

By (1), since f ∪ α ∪ β ∈ H3(X , f ), by Lemma 3.3 it follows that there exists
P ∈ Df such that f ∪ α ∪ β is nontrivial over KP . In particular, α is not an n-th
power in KP , etc.

For (2), by the discussion above, α is not an n-th power in λ := κ(P). In the
notation from Fact 3.4, for some fixed s∗ ∈ Vδ∗ ∩ Sα, let β∗ be a uniformizing
parameter at s∗ such that β∗ is an n-th power in ks for all s 6∈ Vδ∗ . Then α ∪ β∗

satisfies first, β∗ ∈ Hδ∗ , so α ∪β∗ ∈ Hδ∗α and f ∪α ∪β∗ ∈ H f δ∗α . Second, α ∪β∗

is trivial over all ks with s 6∈ Vδ∗ , because β∗ is an n-th power in ks . On the
other hand, α ∪ β∗ is not trivial over λz for z 7→ s∗ because β∗ is a uniformizing
parameter at s∗ and at all z 7→ s∗. Hence α ∪β∗ is not trivial over κ(P)⊂ κ(P)z .
But then, since ∂̂P : H3(KP ,Z/n(2))→ H2(κ(P),Z/n(1)) is an isomorphism and
∂̂P( f ∪α∪β∗)= vP( f )·α∪β∗ 6= 0, we get that f ∪α∪β∗ is nontrivial over KP . �

4. Detecting the k-valuations of K | k

In this section we work in the context/notation of the previous sections: n 6= char(K )
is a prime number and µ2n⊂ K . So if n= 2, then µ4⊂ K , and if n 6= 2, then µn⊂ K .

4A. The sets U•.

Notation/Remarks 4.1. In the usual context we have the following:

(1) For u ∈ K and α, c ∈ k, set uα,c = 1− c(1− u)+ αcn(1− u)n , and further
define uc := u0,c = 1+ c(u− 1) and uα := uα,1 = u+α(1− u)n .

(2) For u ∈ K× and c ∈ k× we set Ku,α,c := K [ n
√

uc, n
√

uα,c ], and notice that
Ku,α,c |K is a Z/n-elementary abelian extension of degree 1, n, or n2.

(3) In Notation/Remarks 3.5, suppose that H f δα 6=0. Thus H f δ∗α 6=0 for all δ∗∈k×.
We set U fα := {u ∈ K× | H f δ∗α is nontrivial over Ku,α,c for all c, δ∗ ∈ k×}.

(4) For u, α, c as above, set Du,α,c := {P ∈ Df | uc, uα,c ∈O×P }.
(5) Finally, let Dfα := {P ∈ Df | α is not an n-th power in κ(P)}. Note that by

Lemma 3.6, if H f δα is nontrivial then Dfα is nonempty.
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Lemma 4.2. Let Y → X , Q 7→ P , be the normalization of X in K ↪→ L := Ku,α,c

and suppose that n
√
α 6∈ L Q . Then uc, uα,c ∈O×P and hence P ∈ Du,α,c .

Proof. Let us analyze what happens if either uc or uα,c is not a vP -unit. We first
claim that u is vP -integral. Indeed, by contradiction, suppose that vP(u) < 0. Then
vP(1/u) > 0, and uα,c = ηα(−cu)n , where η is a principal vP -unit. But then η
is a principal vQ-unit too, and hence η is an n-th power in L Q . Conclude that

n
√
α ∈ L Q : contradiction! Thus finally u must be vP -integral. Further, if u is a

principal vP -unit, then so are uc, uα,c, and thus uc, uα,c ∈O×P . Hence, it is left to
analyze what happens if vP(u)≥ 0 and u is not a principal vP -unit. First we remark
that 1− u is a vP -unit, and hence so is αcn(1− u)n . Second, both uc and uα,c are
vP -integral. Therefore, since uα,c = uc+αcn(1− u)n , it follows that at least one
of the elements uc and uα,c is a vP -unit. By contradiction, suppose that either uc or
uα,c is not a vP -unit. Then either vP(uc)= 0 and vP(uα,c) > 0, or vice versa.

Case 1. vP(uc)= 0 and vP(uα,c) > 0.

Then α = −uc(1− uα,c/uc)/cn(1− u)n . Since µ2n ⊂ K , it follows that −1 is
an n-th power in K , and since 1−uα,c/uc is a principal vP -unit, it is an n-th power
in L Q . Hence all the factors on the right-hand side are n-th powers in L Q . Thus

n
√
α ∈ L Q : contradiction!

Case 2. vP(uα,c)= 0 and vP(uc) > 0.

Then α= uα,c(1−uc/uα,c)/cn(1−u)n with 1−uc/uα,c a principal vP -unit. But
then all the factors on the right-hand side are n-th powers in KP ⊂ L Q . Hence

n
√
α ∈ KP ⊆ L Q : contradiction!
We thus conclude that uc, uα,c ∈O×P , as claimed. �

Lemma 4.3. Suppose that Vδ ⊆ Uf and H f δα is nontrivial. Then the following
hold:

(1) If u ∈ U fα then uc ∈ U fα for all c ∈ k. And if c 6= 0 and uc ∈ U fα , then u ∈ U fα .

(2) 1+
⋃

P∈Dfα
mP ⊆ U fα.

(3) For every u ∈ U fα and each resulting uc, uα,c the following hold:

(a) There exists P ∈ Dfα with uc, uα,c ∈ O×P and H f δ∗α nontrivial over
KP Ku,α,c for all δ∗.

(b) There exists δ∗ such that if H f δ∗α is nontrivial over KP Ku,α,c, then
uc, uα,c ∈O×P and P ∈ Dfα.

Proof. (1): For all a, c, c′∈ k, (uc)a,c′=1−cc′(1−u)+a(cc′)n(1−u)n=ua,cc′ , and
therefore (uc)c′ = ucc′ and (uc)α,c′ = uα,cc′ . Hence {(uc)c′, (uc)α,c′} = {ucc′, uα,cc′}.
Now suppose that u ∈ U fα. Then by the definition of U fα it follows that H f δ∗α

is nontrivial over Ku,α,c′′ for all c′′ ∈ k and all δ∗ ∈ k×. In particular, setting
c′′ := cc′, it follows that H f δ∗α is nontrivial over Kuc,α,c′ , etc. The converse is
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clear, because given c′ and uc, by the discussion above one has that {uc′, uα,c′} =
{(uc)c′/c, (uc)α,c′/c}, etc.

For the proof of assertions (2) and (3) we first set up notation as follows: For
u ∈ K× and c ∈ k, set as usual L := Ku,α,c, and further, l := L ∩ k̄. Let T → S be
the normalization of S in k ↪→ l, and Y→ T be the minimal proper regular model
of L |l which dominates X → S. In particular, the generic fiber Y → l of Y→ T
is the normalization Y → X of X in the field extension K ↪→ L .

(2): Let u ∈ 1+mP be a principal unit at some P ∈ Dfα . Since P ∈ Dfα , we have
by definition that α is not an n-th power in κ(P) nor in KP , and H f δ∗α is nontrivial
over KP for all δ∗ ∈ k× by Lemma 3.6. On the other hand, since u is a principal
vP -unit, uc, uα,c are principal vP -units too (by mere definitions). Therefore, P is
totally split in the field extension L |K , and thus for every Q 7→ P one has L Q = KP .
Hence, H f δ∗α is nontrivial over L Q = L P (because it was nontrivial over KP ). But
then H f δ∗α is nontrivial over L ⊂ L Q too.

(3): For the proper regular model Y→ T of L |l and f ∈ L , we define the open
nonempty subsets UY f ⊆ UY of T , as we defined the sets Uf ⊆ UX of S for the
proper regular model X → S of K |k and f ∈ K at Notation/Remarks 3.1(5). For
both assertions (a) and (b), we consider δ∗ which satisfy Vδ∗ ⊆Uf , and the preimage
of Vδ∗ under T → S is contained in UY f . For such a δ∗ ∈ k× let f ∪α∪β∗ ∈H f δ∗α

be nontrivial over L .

Claim. The image of f ∪α ∪β∗ in H3(L ,Z/n(2)) lies in H3(Y, f ).

Indeed, since f ∪α∪β∗ is nontrivial over L , by Theorem 2.1, there exists some
y1 ∈ Y1 such that f ∪α∪β∗ is nontrivial over L y1 . Let y1 7→ z 7→ s∗ be the images
of y1 in T → S. We claim that s ∈ Vδ∗ , and thus z ∈ UY f by the definition of δ∗.
Indeed, by contradiction, suppose that s∗ 6∈ Vδ∗ . Then reasoning as in the proof
of Lemma 3.6, taking into account that β∗ is an n-th power in ks for s 6∈ Vδ∗ , we
conclude that α ∪ β∗ is trivial over ks∗ because β∗ is in ks∗ . Hence f ∪ α ∪ β∗ is
trivial over L y1 , because ks∗ ⊂ L y1 . Contradiction! The claim is proved.

(a): For u ∈ U fα and f ∪α∪β∗ ∈H f δ∗α , which is nontrivial over L , by Lemma 3.3
applied to f ∪ α ∪ β∗ ∈ H3(Y, f ), one found that there exists some Q ∈ Y such
that vQ( f ) is not divisible by n in vQ(L), and α is not an n-th power in L Q , nor
in κ(Q). Further, H f δ∗α is nontrivial over L Q = KP Ku,α,c for all δ∗ ∈ k×. Let
Q 7→ P ∈ X be the image of Q in X , and consider the canonical embeddings
KP ↪→ L Q , κ(P) ↪→ κ(Q), and recall that vQ = e(Q |P)vP , where e(Q |P) is the
ramification index of vQ |vP . Hence the following hold:

• Since vQ( f ) 6∈ n · vQ(L), one has that vP( f ) 6∈ n · vP(K ). Therefore, P ∈ Df .

• Since n
√
α 6∈ κ(Q), one has that n

√
α 6∈ κ(P). Therefore, P ∈ Dfα.
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Hence H f δ∗α is nontrivial over KP Ku,α,c, and P ∈ Dfα and uc, uα,c ∈ O×P by
Lemma 4.2.

(b): Clear from the discussion above. �

4B. The k-rings R• and R•. In the above notation and context, we introduce
the ring stabilizer R fα of U fα, which will play an essential role in describing
k-valuations of K |k.

Notation/Remarks 4.4. (1) Let A,+, · be a commutative ring with 1A, and if
k ⊂ A is a subfield in A having identity equal to 1A, we consider A as a k-algebra.
It seems that the following are well known facts to (a nonempty set of) experts:

Let X ⊂ A satisfy X =−X and 0A ∈ X , and set X0 := {x ∈ A | x+X ⊆ X}.
Then X0 ⊆ X , and RX := {a ∈ X0 | a · X0 ⊆ X0} is a subring of R, which
contains 1A if and only if 1A ∈ X0 . Moreover, if A is a k-algebra, and X
is stable under multiplication with k, then RX is a k vector subspace.

(2) Given a commutative ring A,+, · with 1A as above, let ∗ and ◦ be the transport
of the usual addition and multiplication, respectively, on the underlying set A via
a 7→ a+1A. Hence a ∗b= a+b−1R and a ◦b= ab−a−b+2, and A endowed
with ∗, ◦ is an isomorphic copy of A,+, · which we denote A.

If X ⊂ A is a nonempty subset as in (1) above, we let RX ⊂ A, or simply R if
no confusion is possible, be the corresponding subring of A.

(3) In the context and notation of the previous subsection, recall the nonempty set
X := U fα of K . We notice that in Lemma 4.3(1) one has uc ∈ U fα if (and only if)
u ∈U fα (provided c 6= 0). On the other hand, c◦u= u◦c= (c−1)(u−1)+1= uc−1.
Hence for u ∈ K , c ∈ k, one has c◦u ∈ U fα if (and only if) u ∈ U fα (provided c 6= 1).

In particular, X := U fα is closed with respect to multiplication ◦ by elements
of k, and therefore, X is symmetric with respect to the addition ∗.

(4) For X := U fα , we denote by R fα :=RU fα the corresponding subring of K, ∗, ◦
(the latter being an isomorphic copy of the field K,+, · as mentioned above).

Hence Rfα :=R fα − 1 is a subring of the field K,+, · with the usual addition
and multiplication.

Lemma 4.5. The ring R fα, ∗ is a k, ∗, ◦ vector space. Thus Rfα is a k-subspace
of K,+ .

Proof. Clear by the discussion at (1) and (3) above. �

Lemma 4.6. In the above notation, let X := U fα . Then one has X0 ⊆
⋂

P∈Dfα
O×P .

Proof. Indeed, by contradiction, suppose that there exists u0 ∈ X0 such that
vP0(u0) 6= 0 for some P0 ∈ Dfα. Then using the weak approximation lemma,
we can choose t ∈ K such that vP0(t − 1) > 0, i.e., t is a principal vP0-unit,



Elementary equivalence versus isomorphism, II 2107

and vP ′(u0 + t − 1) < 0 for all P ′ 6= P0, P ′ ∈ Dfα. Then vP ′′(u0 + t − 1) 6= 0
for all P ′′ ∈ Dfα. On the other hand, since u is a vP0 principal unit, it follows by
Lemma 4.3(2) that t ∈U fα= X . Hence, since u0 ∈ X0, we must have t∗u0 ∈U fα (by
the definition of X0), i.e, u := t ∗u0= u0+ t−1∈ U fα . But then by Lemma 4.3(3a),
it follows that for every c, there must exist some P ∈ Dfα such that uc, uα,c ∈O×P .
Hence, for c= 1, one gets u0+t−1= u= uc ∈O×P for some P ∈ Dfα , contradicting
the fact that vP ′′(u0+ t − 1) 6= 0 for all P ′′ ∈ Dfα. �

Key Lemma 4.7. One has R fα=1+
⋂

P∈Dfα
mP , and therefore, Rfα=

⋂
P∈Dfα

mP .

Proof. Let X = U fα and X0 ⊂ X as in Notation/Remarks 4.4.
For the inclusion “⊆”, consider the partition Dfα = D2

∪ D1
∪ D0, where

• P ∈ D2 if and only if vP(R fα) 6= 0,

• P ∈ D1 if and only if vP(R fα)= 0 and R fα is not contained in 1+mP ,

• P ∈ D0 if and only if R fα ⊆ 1+mP .

Clearly, in order to show that R fα ⊆ 1+
⋂

P∈Dfα
mP , we have to show that D2

and D1 are empty. By contradiction, suppose that at least one of the sets D2, D1 is
nonempty.

Case 1. D2 is nonempty.

Let P ∈ D2 and t ∈R fα be such that vP(t) 6= 0. Using the weak approximation
lemma, choose any principal vP -unit u′ such that vP ′(t+u′−1) > 0 for all P ′ 6= P
from Dfα. Since u′ ∈ 1 + mP , it follows by Lemma 4.3 that u′ ∈ U fα. Since
t ∈R fα ⊆ X0 , and u′ ∈ X = U fα , we get (by the definition of X0) that t ∗ u′ ∈ U fα .
On the other hand, one has u := t ∗u′ = t+u′−1, and therefore vP ′′(u) 6= 0 for all
P ′′ ∈ Dfα, thus contradicting Lemma 4.3(3).

Case 2. D2 is empty, and D1 nonempty.

For P ∈ D1 we have R fα ⊂O×P and R fα not contained in 1+mP . In particular,
the image R fα of Rfα under the residue map OP → κ(P) is a nontrivial k-subring
of κ(P). Since κ(P) is a finite field extension of k, it follows that R fα is a k-
subfield of κ(P). Hence there exists t ∈ R fα whose image in κ(P) is the given
element α ∈ k. In order to conclude, using the weak approximation lemma, choose
u′ ∈ 1+mP ⊆ U fα such that vP(t + u′ − 1− α) > 0 for all P ′ 6= P from Dfα.
Then reasoning as above, it follows that t ∗ u′ ∈ U fα = X . On the other hand,
as above, u := t ∗ u′ = u + u′ − 1 has the property that vP ′′(u − α) > 0 for all
P ′′ ∈ Dfα . Therefore, u is a vP ′′-unit with residue ū = α in κ(P ′′) for all P ′′ ∈ Dfα .
Recalling that u = t ∗ u′ ∈ U fα, for c = 1 one has {uc, uα,c} = {u, u+ α(1− u)n},
and α = ū ∈ κ(P) for all P ∈ Dfα. Thus α is an n-th power in KP Ku,α,c for all
P ∈ Dfα, contradicting Lemma 4.3(3).
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For the converse inclusion “⊇”, we have to show that for every u1 = 1+ ũ ∈
1+

⋂
P∈Dfα

mP with ũ ∈
⋂

P∈Dfα
mP , the following hold:

(a) u1 ∈ X0, or equivalently, u1 ∗ u ∈ X for all u ∈ X .

(b) u1 ◦ X0 ⊆ X0, or equivalently, u1 ◦ u0 ∗ u ∈ X for all u0 ∈ X0, u ∈ X .

For (a), we show that u1∗u∈ X for all u∈ X . Indeed, t :=u1∗u=u1+u−1=u+ũ.
Since u ∈ X , by Lemma 4.3(3), there exists P ∈ Dfα such that uc, uα,c ⊂O×P , and
for all δ∗ one has that H f δ∗α is nontrivial over KP Ku,α,c. We now claim that
KP Ku,α,c = KP Kt,α,c. Indeed, since t = u + ũ, vP(ũ) > 0, and uc, uα,c ∈ O×P , it
follows that tc, tα,c ∈OP and t̄c = ūc and t̄α,c = ūα,c in κ(P)×. Hence, by Hensel’s
lemma it follows that n

√
uc, n
√

uα,c and n
√

tc, n
√

tα,c generate the same extension
of KP . Therefore, if f ∪ α ∪ β∗ ∈ H f δ∗α is nontrivial over L Q = KP Ku,α,c, it is
nontrivial over KP Ku,α,c = KP Kt,α,c, and thus also over Kt,α,c ⊂ KP Kt,α,c, etc.

For (b), we show that u0 ∗ u ∈ X for all u ∈ X implies that (u1 ◦ u0) ∗ u ∈ X for
all u ∈ X . First, recall that by Notation/Remarks 4.4(4), it follows that u0 ∈O×P for
all P ∈ Dfα. Hence one gets

t := u1 ◦ u0 ∗ u = ((u1− 1)(u0− 1)+ 1)+ u− 1= ũ(u0− 1)+ u = u+ ũ′,

where ũ′= ũ(u0−1)∈
⋂

P∈Dfα
mP since u0 ∈

⋂
P∈Dfα

O×P and ũ ∈
⋂

P∈Dfα
mP . On

the other hand, u ∈U fα and P ∈ Dfα are such that H f δ∗α is nontrivial over KP Ku,α,c.
Hence KP Ku,α,c = KP Kt,α,c, by the fact that ū = t̄ in κ(P)× (and Hensel’s lemma).
Finally it follows that t ∈ U fα = X , as claimed.

This concludes the proof of Key Lemma 4.7. �

5. Proof of Theorems 1.1 and 1.2

5A. Defining the k-valuation rings. In the notation and hypotheses of the previ-
ous sections, let K |k be a smooth fibration of a finitely generated field K with
dim(K )= 2, and X the complete smooth k-curve with K = k(X). By Riemann–
Roch, if P ∈ X is a closed point and m � 0, there exist functions f ∈ K such
that ( f )∞ = m P , and letting m be prime to n, we have P ∈ Df . Further, setting
λ := κ(P), there exist “many” α ∈ k× such that α is not an n-th power in κ(P).
Hence there exists α such that Dfα is nonempty. Thus by Key Lemma 4.7, it follows
that R fα = 1+

⋂
P∈Dfα

mP .
For f and α as above, we set g := f + 1, and notice that (g)∞ = m P, etc. We

repeat the constructions above and we get Rgα = 1+
⋂

Q∈Dgα
mQ .

Since |div( f )| ∩ |div(g)| = {P}, by the weak approximation lemma one has(
1+

⋂
P∈Dfα

mP

)
·

(
1+

⋂
Q∈Dgα

mQ

)
= 1+mP .
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Therefore, one can recover OP ,mP from R fα and Rgα as follows:

mP =R fα ·Rgα − 1 and OP = {t ∈ K | tmP ⊆mP}.

We thus have a first-order recipe to define all the k-valuation rings of K |k:

Recipe 5.1. Let K = k(X) with X a complete smooth k-curve X . Suppose that a
predicateψ(x) is given which defines k inside K , i.e., k={x ∈K |ψ(x) holds in K }.
Let n 6= char(K ) be a prime number, and notice that describing the k-valuation rings
of K |k is equivalent to describing the k[µ2n]-valuation rings of K [µ2n]. Supposing
that µ2n ⊂ K , consider the following steps:

(1) For every δ ∈ k× let Hδ = {β ∈ k× | vs(β − 1) > 2vs(2n) if s 6∈ Vδ} ⊂ k×.
Note that Hδ is a definable subset of K , provided a predicate ψ(x) is given

which defines k inside K . Indeed, given the global field k, the valuation rings
Os,ms of k are definable inside k by Rumely’s recipe [1980] mentioned in
Section 1. Thus, one has

β ∈ Hδ if and only if ∀Os,ms (δ 6∈Os⇒ β − 1 ∈ 4n2
·ms).

(2) For every f ∈ K and α ∈ k×, set H f δα := f ∪α ∪Hδ ⊂ H3(K,Z/n(2)).

(3) Let U fα := {u ∈ K× | H f δα is nontrivial over Ku,α,c for all c ∈ k, δ ∈ k×},
where Ku,α,c :=K [ n

√
uc, n
√

uα,c ] and uc :=1−c(1−u), uα,c=:uc+αcn(1−u)n.
Note that the fact that H f δα is nontrivial over Ku,α,c is first-order expressible

as follows (see Section 2C): f ∪α is nontrivial and there exists β ∈ Hδ such
that the reduced norm N f,α of the division algebra A f,α does not represent β
over Ku,α,c.

(4) Let R fα := {u ∈ U fα | u+U fα − 1⊆ U fα, (u− 1)(U fα − 1)+ 1⊆ U fα}.

(5) Repeat the process above for g := f + 1.

(6) Set m :=R fα ·Rgα − 1 and O := {t ∈ K | tm⊆m}.

Conclusion 5.2. The k-valuation rings OP ,mP of K |k are among the definable
sets O,m. Precisely, for every OP ,mP there exist f and α such that O =OP , and
1/ f ∈m=mP .

5B. Concluding the proof of Theorem 1.2. First, the above Recipe 5.1 is a uniform
first-order description of the k-valuation rings of function fields of complete smooth
k-curves.

In order to give the formula degN (t), we first recall that k is a Hilbertian field.
Hence, for every nonconstant function t ∈ K there exist (infinitely many) special-
izations t 7→ a ∈ k such that the point P ∈ X with t̄ = a in κ(P) is unique. Hence
[κ(P) : k] = [K : k(t)] is the degree of t . Thus, one possibility for the formula



2110 Florian Pop

defN (t) would be

(∀O,m : t ∈ k+m⇒ [O/m : k] ≤ N )& (∃O,m : t ∈ k+m & [O/m : k] = N ).

For the formula ψ R(t, t′), let R ⊂ K be the integral closure of k[t] in K . Then
for any k-valuation ring O, one has t ∈ O if and only if k[t] ⊂ O if and only if
R ⊂ O. Further, R is actually the intersection of all the O which contain k[t], or
equivalently, which contain t . Thus the formula ψ R(t, t′) could be

∀O,m (t ∈O ⇒ t′ ∈O).

Finally, for the formula ψ0(t, t′), let R ⊂ K be the integral closure of k[t] in K .
Recall that t ′ ∈ K lies in k[t] if and only if t ′ ∈ R and for all O,m one has that if
the residue t̄ ∈O/m lies in k ⊂O/m, then the residue t̄ ′ ∈O/m lies in k ⊂O/m.
(Indeed, this follows again from the fact that k is Hilbertian.) Thus one possibility
for the formula ψ0(t, t′) could be

∀O,m ((t ∈O ⇒ t′ ∈O)& (t ∈m+ k ⇒ t′ ∈m+ k)).

This completes the proof of Theorem 1.2.

5C. Proof of Theorem 1.1. In order to prove Theorem 1.1, we recall that by the
main results of [Pop 2002] combined with the description of the absolute constants
in [Poonen 2007], one has the following:

(1) For every finitely generated field K over a number field k with d := tr.deg(K |k),
there exists a formula with d free variables ϕ0

K (t1, . . . , td) such that the sen-
tence

∃t1, . . . , td ϕ0
K (t1, . . . , td)

is true in K . Moreover, if L is any other finitely generated field such that
ϕ0

K (u1, . . . , ud) is true in L for some choice of u1, . . . , ud ∈ L , then the map
(t1, . . . , td) 7→ (u1, . . . , ud) extends to an embedding of fields K ↪→ L .

(2) Now suppose that d = 1. Then using the above degN (t) we have proved the
following theorem.

Theorem 5.3. Let ϑK be the sentence ∃t (ϕ0
K (t)& degN (t)). Then the following

hold:

(1) The sentence ϑK is true in K if and only if there exists some t ∈ K such that
ϕ0

K (t) is true in K , and t has degree N in K.

(2) Suppose that ϑK is true in K. Then for every finitely generated field L , the
sentence ϑK is true in L if and only if K and L are isomorphic as fields.
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