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On the algebraic structure
of iterated integrals of quasimodular forms

Nils Matthes

We study the algebra IQM of iterated integrals of quasimodular forms for SL2.Z/,
which is the smallest extension of the algebra QM� of quasimodular forms
which is closed under integration. We prove that IQM is a polynomial algebra
in infinitely many variables, given by Lyndon words on certain monomials in
Eisenstein series. We also prove an analogous result for the M�-subalgebra IM

of IQM of iterated integrals of modular forms.

1. Introduction

Quasimodular forms, a generalization of modular forms, were first introduced in
[Kaneko and Zagier 1995] in a context motivated by mathematical physics. The
C-algebra QM� of quasimodular forms for the full modular group SL2.Z/ can be
defined, in a slightly ad hoc fashion, as the polynomial ring CŒE2;E4;E6� , where
E2k denotes the normalized Eisenstein series of weight 2k:

E2k.�/D 1�
4k

B2k

1X
nD1

n2k�1 qn

1� qn
; q D e2� i� ;

where B2k are the Bernoulli numbers. In particular, QM� contains the algebra of
modular forms M� Š CŒE4;E6� .

The derivative of a quasimodular form (of weight k) is again a quasimodular
form (of weight k C 2); this was essentially already known to Ramanujan (see
[Zagier 2008, Proposition 15]). On the other hand, the integral of a quasimodular
form is in general not quasimodular. For example, a primitive of E2 would have to
be of weight zero, but every quasimodular form of weight zero is constant.

The goal of this paper is to study the smallest algebra extension of QM� which
is closed under integration. For this, the idea is to iteratively adjoin primitives
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to QM�, which eventually leads to adjoining all (indefinite) iterated integrals

I.f1; : : : ; fnI �/D .2� i/n
Z
� � �

Z
���1������n�i1

f1.�1/ � � � fn.�n/ d�1 � � � d�n; (1-1)

where f1; : : : ; fn are quasimodular forms (a precise definition will be given in
Definition 2.6). The integrals (1-1) were first studied by Manin [2006], and later by
Brown [2016] and Hain [2016], in the case where all the fi are modular forms.1 In
all of these treatments, the focus lies rather on arithmetic aspects of these iterated
integrals, for example their special values at cusps of the upper half-plane. By
contrast, we study them solely as holomorphic functions of � . It is also worth noting
that even in the modular case, the iterated integrals we study in the present paper
are slightly more general than the ones introduced in [Manin 2006; Brown 2016;
Hain 2016]. For example, if f .�/ is a modular form of weight k, then the integralR i1
� f .�1/�

n
1

d�1 is an iterated integral of modular forms in the sense of the present
paper for every n� 0, while [Manin 2006; Brown 2016; Hain 2016] also require
n� k � 2.

Now let IQM be the QM�-algebra generated by all the integrals (1-1), which
is the smallest algebra extension of QM� closed under integration. It turns out
that IQM is not finitely generated, but still has a manageable structure, which is
captured by the notion of shuffle algebra (which is just the graded dual of the tensor
algebra with a certain commutative multiplication, the so-called shuffle product)
[Reutenauer 1993]. More precisely, let V D C �E2˚M� be the C-vector space
spanned by all modular forms and the Eisenstein series E2, and let ChV i be the
shuffle algebra on V . Our main result is the following.

Theorem (Theorem 4.3). The QM�-linear morphism

'QM
W QM�˝C ChV i ! IQM; Œf1 j � � � j fn� 7! I.f1; : : : ; fnI �/

is an isomorphism of QM�-algebras.

A similar result holds for the M�-subalgebra IM of IQM of iterated integrals
of modular forms (see Theorem 4.5).2 The surjectivity of 'QM can be reduced to
the fact that every quasimodular form can be written uniquely as a polynomial in
n-th derivatives of modular forms and the Eisenstein series E2; see [Zagier 2008,
Proposition 20]. The proof of injectivity is more elaborate and amounts to showing
that iterated integrals of modular forms and the Eisenstein series E2 are linearly

1More precisely, Manin only defined iterated integrals of cusp forms, and the extension to all
modular forms is due to Brown.

2After this paper was submitted for publication, the author learned that, in the case of iterated
integrals of modular forms, a very similar result has also been proved by Brown [2017, Proposition 4.4]
using a slightly different method.
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independent over QM�. It extends results of [Lochak et al. 2017], which dealt with
iterated integrals of Eisenstein series. In both cases, the key is to use a general result
on linear independence of iterated integrals [Deneufchâtel et al. 2011]. It would be in-
teresting to prove similar results for quasimodular forms for congruence subgroups.

The Milnor–Moore theorem [Milnor and Moore 1965] states that if k has charac-
teristic zero, then khV i is isomorphic to a polynomial algebra (usually in infinitely
many variables). Fixing a (totally ordered) basis B of V , Radford [1979] has given
explicit generators of khV i in terms of Lyndon words on B (see Section 4). Using
this, we get the following theorem.

Theorem (Theorem 4.9). Let B be a basis of C �E2 ˚M�. We have a natural
isomorphism

IQM
Š QM�ŒLyn.B�/�; (1-2)

where the right-hand side is the polynomial QM�-algebra on the set Lyn.B�/ of
Lyndon words of B.

Again, a similar result holds for IM. Since QM� has an explicit basis given by
monomials in the Eisenstein series E2, E4 and E6, the isomorphism (1-2) can be
made completely explicit, and may be viewed as an analog of the isomorphism
QM� Š CŒE2;E4;E6� [Kaneko and Zagier 1995].

Finally, we note that classically, integrals of modular forms play an important
role in Eichler–Shimura theory, where they give rise to group-cocycles (say for
SL2.Z/ or more generally for some congruence subgroup thereof) with values
in homogeneous polynomials. This has been generalized by Manin [2006], and
later by Brown [2016] and Hain [2016], who attach certain nonabelian cocycles to
iterated integrals of modular forms. Although it is not the main focus of this article,
in the Appendix we show how one can attach cocycles to quasimodular forms (for
SL2.Z/), partly since we found no mention of this in the literature. On the other
hand, we leave the definition and study of cocycles attached to iterated integrals of
quasimodular forms for future investigation.

The plan of the paper is as follows. In Section 2, we collect the necessary
background on quasimodular forms and their iterated integrals. In Section 3, we
prove a linear independence result for iterated integrals of quasimodular forms.
This result is then put to use in Section 4, where the main results are proved.
In the Appendix, we discuss the above-mentioned generalization of the classical
Eichler–Shimura theory to quasimodular forms for SL2.Z/.

2. Preliminaries

Throughout the paper, all modular and quasimodular forms will be for SL2.Z/. We
fix some notation. Let HDfz2C j Im.z/>0g be the upper half-plane with canonical
coordinate � . For every k 2 Z, we have a group action of SL2.Z/ on the set of all
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functions f W H! C (not necessarily holomorphic), defined by .; f / 7! f jk  ,
where

.f jk  /.�/ WD .c� C d/�kf
�

a�Cb

c�Cd

�
:

For fixed � 2H, we also define a map X W SL2.Z/!C by X. /D 1
2�i

c
c�Cd

. Note
that X has infinite, and thus Zariski dense, image.

Recap of modular forms. Denote by Mk the space of modular forms of weight
k 2 Z. By definition, these are the holomorphic functions f WH!C, which satisfy
f jk  D f for all  2 SL2.Z/, and which are “holomorphic at the cusp”. The latter
condition means that in the Fourier expansion f .�/D

P
n2Z anqn (which exists

since for  D
�

1
0

1
1

�
2 SL2.Z/, the condition f jk  D f is just f .� C 1/D f .�/

for all � ), an D 0 for all n< 0. Examples of modular forms include the Eisenstein
series

E2k.�/D 1�
4k

B2k

1X
nD1

n2k�1 qn

1� qn
D 1�

4k

B2k

1X
nD1

�X
d jn

d2k�1

�
qn;

which is a modular form of weight 2k, for k � 2 (the B2k are Bernoulli numbers).
The C-vector space of all modular forms M� is a graded (for the weight) C-algebra
M�D

L
k2Z Mk , which is well-known to be isomorphic to the polynomial algebra

CŒE4;E6� . Proofs of all these facts and much more on modular forms can be found,
for example, in [Zagier 2008].

Quasimodular forms. Quasimodular forms are a generalization of modular forms
which was first introduced in [Kaneko and Zagier 1995]; see also [Bloch and
Okounkov 2000, §3; Zagier 2008, §5.3]. The definition we give here is due to
W. Nahm3 and is also used for example in [Martin and Royer 2005].

Definition 2.1. Let k;p 2 Z with p � 0. A quasimodular form of weight k and
depth � p is a function f W H ! C with the following property: there exist
holomorphic functions fr W H! C, for 0� r � p, which have Fourier expansionsP1

nD0 anqn such that

.f jk  /.�/D

pX
rD0

fr .�/X. /
r ; for all  2 SL2.Z/: (2-1)

We denote by QM�p

k
the C-vector space of quasimodular forms of weight k and

depth � p, and set

QMk WD

[
p�0

QM�p

k
; QM� WD

M
k2Z

QMk :

3See [Zagier 2008, §5.3].
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Remark 2.2. (i) It is clear from the definition that, if f1 2QM�p1

k1
, f2 2QM�p2

k2
,

then f1f2 2 QM�p1Cp2

k1Ck2
. In other words, QM� is a graded (for the weight)

and filtered (for the depth) C-algebra.

(ii) Using the fact that X is Zariski dense, it is easy to see that the functions fr .�/

are uniquely determined by f .�/. Also, applying (2-1) with  D
�

1
0

0
1

�
, we

see that f0.�/D f .�/. In particular, every quasimodular form is holomorphic
on H and at the cusp.

Every modular form is a quasimodular form of depth zero; more precisely,
Mk D QM�0

k
. An example of a quasimodular form which is not modular is the

Eisenstein series of weight two E2.�/D 1� 24
P1

nD1 n qn

1�qn ; which transforms as

.E2 j2  /.�/DE2.�/C 12X. /DE2.�/�
6i

�

c

c�Cd
(2-2)

for all  2 SL2.Z/. In particular, E2 2 QM�1
2
nM2.

The following proposition recalls basic properties of QM� that will be of use later.

Proposition 2.3. (i) The C-algebra QM� is closed under the differential operator
D WD 1

2�i
d

d�
D q d

dq
. More precisely, for f quasimodular of weight k and

depth � p, we have

.D.f /jkC2  /.�/D

pC1X
rD0

.D.fr /.�/C .k � r C 1/fr�1.�//X. /
r :

In particular, D.QM�p

k
/� QM�pC1

kC2
for all k;p 2 Z.

(ii) We have

QMk D

8<:
f0g if k < 0,
C �E2 if k D 2,
D.QMk�2/˚Mk else.

In particular, QM� D C �E2˚D.QM�/˚M�, and

QM� Š CŒE2;E4;E6�

as graded C-algebras.

Proof. For (i), simply apply D to both sides of (2-1). The first equality in (ii) follows
from [Zagier 2008, Proposition 20(iii)], and the isomorphism QM�ŠCŒE2;E4;E6�

is essentially a consequence of this, but can also be proved independently (see
[Bloch and Okounkov 2000, Proposition 3.5(ii)]). �
Remark 2.4. Relaxing the condition in the definition of quasimodular forms that
every fr be a holomorphic function, one can define the notion of weakly quasi-
modular form of weight k and depth � p as a meromorphic function f W H! C

satisfying (2-1), but where the functions fr .�/ are only required to be meromorphic
on H and have Fourier series of the form

P1
nD�M anqn (fr is “meromorphic
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at the cusp”). As in the case of quasimodular forms, one shows easily that the
functions fr .�/ are uniquely determined by f .�/ (see Remark 2.2). Moreover,
Proposition 2.3(i) generalizes straightforwardly to weakly quasimodular forms.

We end this subsection with a short lemma, for which we couldn’t find a suitable
reference. Denote by �D 1

1728
.E3

4
�E2

6
/ Ramanujan’s cusp form of weight 12.

Lemma 2.5. Let g 2 QM� n f0g and ˛ 2 C be such that

D.g/D .˛E2/ �g: (2-3)

Then ˛ is a nonnegative integer, and g D ˇ�˛ for some ˇ 2 C n f0g.

Proof. Let gD
P1

nD0 anqn, so that D.g/D
P1

nD0 nanqn. Comparing coefficients
on both sides of (2-3) yields that ˛ equals the smallest integer m�0 such that am¤0.
On the other hand, D.�/=�DE2 [Zagier 2008, proof of Proposition 7], and from
the chain rule, D.�˛/=�˛ D ˛E2, which gives the result. �

Iterated integrals on the upper half-plane. Iterated integrals of modular forms
were first considered by Manin [2006] (for cusp forms), and later by Brown [2016]
(in general). They are generalizations of the classical Eichler integralsZ i1

�

f .z/zm dz; mD 0; : : : ; k � 2; (2-4)

where f is a cusp form of weight k [Eichler 1957; Lang 1976]. Extending (2-4) to
a general modular form poses the problem of logarithmic divergences, which arise
from the constant term in the Fourier series of f . A procedure for regularizing
such integrals is described in [Brown 2016], and we borrow it to define iterated
integrals of quasimodular forms. Since it is perhaps not so well-known, we give
some details for the convenience of the reader.

Let W �O.H/ be the C-subalgebra of holomorphic functions f WH!C, which
have an everywhere convergent Fourier series f .�/D

P1
nD0 anqn with q D e2�i�.

Note that QM� �W . For f .�/ 2W , let f1 D a0, and f 0.�/D f .�/� f1 DP1
nD1 anqn. Let ChW i (sometimes denoted by T c.W /) be the shuffle algebra

[Reutenauer 1993], i.e., the graded dual of the tensor algebra T .W /D
L

k�0 W ˝n

on W , where the grading is by the length of tensors. Elements of .W ˝n/_ will be
written using bar notation Œf1 j f2 j � � � j fn� , and a general element of ChW i is a
C-linear combination of those. The product on ChW i is the shuffle product ,
which is defined on the basic elements by

Œf1 j � � � j fr � ŒfrC1 j � � � j frCs �D
X
�2†r;s

Œf�.1/ j � � � j f�.rCs/�; (2-5)

where †r;s denotes the set of all the permutations on the set f1; : : : ; r C sg such
that ��1.1/ < � � �< ��1.r/ and ��1.r C 1/ < � � �< ��1.r C s/.
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Define a C-linear map R W ChW i ! ChW i by the formula

RŒf1 j � � � j fn�D

nX
iD0

.�1/n�i Œf1 j � � � j fi � Œf1n j � � � j f
1

iC1�:

Following [Brown 2016, §4], we make the following definition.

Definition 2.6. For f1; : : : ; fn 2W , define their regularized iterated integral

I.f1; : : : ; fnI �/

WD .2� i/n
nX

iD0

.�1/n�i

Z i1

�

RŒf1 j � � � j fi �

Z �

0

Œf1n j � � � j f
1

iC1�; (2-6)

whereZ b

a

Œf1 j � � � j fn� WD

Z
0�t1�����tn�1

. b
a /
�.f1.�1/ d�1/ � � � .

b
a /
�.fn.�n/ d�n/

denotes the usual iterated integral along the straight line path  b
a from a to b.

Remark 2.7. Using the change of variables � 7! q D e2�i� , it is easy to see that
I.f1; : : : ; fnI �/ 2 W Œlog.q/� , where log.q/ WD 2� i� . By the same token, if all
of the fi have rational Fourier coefficients, then I.f1; : : : ; fnI �/ will also have
rational coefficients, as a series in q and log.q/.

Proposition 2.8. The functions I.f1; : : : ; fnI �/ satisfy the following properties.

(i) The product of any two of them is given by the shuffle product

I.f1; : : : ; fr I �/I.frC1; : : : ; frCsI �/D
X
�2†r;s

I.f�.1/; : : : ; f�.rCs/I �/: (2-7)

(ii) They satisfy the differential equation

1

2� i

d

d�

ˇ̌̌
�D�0

I.f1; : : : ; fnI �/D�f1.�0/I.f2; : : : ; fnI �0/: (2-8)

(iii) We have the integration by parts formulas

I.f1; : : : ; fi ;D.g/; fiC1; : : : ; fnI �/

D I.f1; : : : ; fi ;gfiC1; : : : ; fnI �/� I.f1; : : : ; fig; fiC1; : : : ; fnI �/; (2-9)

as well as

I.D.g/; f2; : : : ; fnI �/D I.gf2; f3; : : : ; fnI �/�g.�/I.f2; : : : ; fnI �/;

and

I.f1; : : : ; fn�1;D.g/I �/D g.i1/I.f1; : : : ; fn�1I �/� I.f1; : : : ; fn�1gI �/:

Proof. Using the definition (2-6), all of these follow from the analogous properties
for usual iterated integrals; see, e.g., [Hain 1987]. �
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A criterion for linear independence of iterated integrals. Let Frac.W / be the field
of fractions of the C-algebra W introduced in the last subsection. By the quotient
rule, it is easy to see that Frac.W / is closed under D D 1

2�i
d

d�
.

The following theorem is a special case of the main result of [Deneufchâtel et al.
2011].

Theorem 2.9. Let F D .fi/i2I be a family of elements of W , and let C � Frac.W /

be a subfield which is closed under D and contains F . The following are equivalent:

(i) The family of iterated integrals .I.f1; : : : ; fnI �/ jfi 2 I; n � 0/ is linearly
independent over C.

(ii) The family F is linearly independent over C, and we have

D.C/\SpanC.F/D f0g:

Proof. This is the special case of Theorem 2.1 in [Deneufchâtel et al. 2011], with the
notation kDC, .A; d/D .Frac.O.H//;D/, X DfAfi

jfi 2Fg, M D�
P

i2I fiAfi

and S D
P

n�0

P
fi1
;:::;fin2S I.f1; : : : ; fnI �/ �Af1

� � �Afn
. Note that it follows

from (2-8) that
D.S/DM �S;

as required in [loc. cit.]. �

Remark 2.10. Variants of Theorem 2.9 have been known before; see [Brown 2009,
Lemma 3.6].

3. Linear independence of iterated integrals of quasimodular forms

In this section, we apply Theorem 2.9 to deduce linear independence of a large
family of iterated integrals of quasimodular forms. More precisely, our main result
is the following theorem.

Theorem 3.1. Let B be a C-linearly independent family of elements of C �E2˚M�.
Then the family of iterated integrals

.I.f1; : : : ; fnI �/ j fi 2 B/

is linearly independent over Frac.QM�/Š C.E2;E4;E6/.

Two auxiliary lemmas. For the proof of Theorem 3.1, we need two lemmas.

Lemma 3.2. Let f;g 2 CŒE2;E4;E6� be such that g ¤ 0 and such that f and
g are coprime. Assume that D.f=g/ 2 CŒE2;E4;E6� . Then g D ˇ�˛ for some
˛ 2 Z�0 and some ˇ 2 C n f0g, where � WD 1

1728
.E3

4
�E2

6
/ is Ramanujan’s cusp

form of weight 12.
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Proof. By the quotient rule, we have

D
�f

g

�
D

D.f /g�fD.g/

g2
D

D.f /�fD.g/=g

g
:

The left-hand side is contained in CŒE2;E4;E6� by assumption, and since also
D.f / and g are in CŒE2;E4;E6� , we have fD.g/=g 2 CŒE2;E4;E6� . But
then, as f and g have no common factor, g must divide D.g/, i.e., there exists
h 2 CŒE2;E4;E6� such that

D.g/D gh:

Since D W QM�! QM� is homogeneous of weight 2 (see Proposition 2.3(i)), we
have h 2 QM2, i.e., hD ˛E2 with ˛ 2 C. In other words, g solves the differential
equation D.g/D .˛E2/ �g. But by Lemma 2.5, ˛ must be a nonnegative integer
and g D ˇ�˛ for some ˇ 2 C n f0g. �
Lemma 3.3. Let f be a weakly quasimodular form such that its derivative D.f /

is a quasimodular form. Then f is a quasimodular form.

Proof. It is no loss of generality to assume that f is of weight k 2 Z and depth � p,
where p� 0. By the definition of weakly quasimodular forms (see also Remark 2.2),
there exist uniquely determined meromorphic functions fr .�/, for 0� r � p, such
that

.f jk  /.�/D

pX
rD0

fr .�/X. /
r

for all  2SL2.Z/. Therefore, we only need to show that every fr .�/ is holomorphic,
including at the cusp.

To this end, by Proposition 2.3(i), we know that

.D.f /jkC2 /.�/D

pC1X
rD0

.D.fr /.�/C .k � r C 1/fr�1.�//X. /
r ; (3-1)

and since D.f / is a quasimodular form by assumption, every coefficient of (3-1)
is holomorphic, including at the cusp.

The constant term, with respect to X. /, in (3-1) equals D.f0/.�/, which is
holomorphic by assumption. But a meromorphic function whose derivative is
holomorphic everywhere is itself holomorphic everywhere. An easy induction
argument, using the fact that the coefficients of (3-1) are holomorphic, now shows
that in fact every fr .�/ is holomorphic. �

Proof of Theorem 3.1. We use the criterion of Theorem 2.9 in the case where
C D Frac.QM�/ and F D B. Since B is linearly independent over C by assumption,
it is enough to prove that if h 2 Frac.QM�/ then

D.h/D
X
f 2B

f̨ f and f̨ 2 C ) f̨ D 0; for all f 2 B:
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Also, since B spans a subspace of C �E2˚M�, it clearly suffices to prove that
D.h/ 2 C �E2 ˚M� implies that D.h/ D 0, or equivalently, that h is constant.
Thus, the following proposition completes the proof of Theorem 3.1.

Proposition 3.4. Suppose that h 2 Frac.QM�/ Š C.E2;E4;E6/ is such that
D.h/ 2 C �E2˚M�. Then h is constant.

Proof. Write hD f=g with f;g 2 CŒE2;E4;E6� such that g¤ 0 and f and g are
coprime. Writing f as a C-linear combination of its homogeneous components, it
is enough to show the proposition for f homogeneous of weight kf .

First, we know from Lemma 3.2 that gDˇ�˛ for some ˛ 2Z�0 and ˇ 2Cnf0g,
where � is Ramanujan’s cusp form of weight 12. In particular, g is a cusp form of
weight kg D 12˛.

Since f is quasimodular of weight kf and depth � p, there exist holomorphic
(including at the cusp) functions fr .�/, for 0� r � p, such that

.f jkf
 /.�/D

pX
rD0

fr .�/X. /
r

for all  2 SL2.Z/. Setting hr .�/ WD
fr

g
.�/, we also have, for k WD kf � kg,

.hjk  /.�/D

pX
rD0

hr .�/X. /
r :

Moreover, the functions hr .�/ are meromorphic; thus, h is a weakly quasimodular
form (of weight k and depth � p). By assumption, D.h/ is a quasimodular form
(necessarily of weight kC2 and depth �pC1), and using Lemma 3.3, this implies
that h 2 QM�p

k
. Therefore, every hr .�/ is holomorphic, including at the cusp.

Summarizing, we have seen that h 2 Frac.QM�/ such that D.h/ 2QM� implies
that h2QM�. But we even have D.h/2C �E2˚M� by assumption, and therefore
Proposition 2.3(ii) now implies that h is constant, as was to be shown. �

4. Iterated integrals of quasimodular forms and shuffle algebras

We describe the QM�-algebra of iterated integrals of quasimodular forms, which is
the smallest algebra which contains QM� and is closed under integration. Using the
results of the last section, we show that it is canonically isomorphic to an explicit
shuffle algebra. A similar result holds for the M�-subalgebra of iterated integrals
of modular forms.

The algebra of iterated integrals of quasimodular forms.

Definition 4.1. Define IQM to be the QM�-module generated by all iterated inte-
grals of quasimodular forms:
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IQM
D SpanQM�fI.f1; : : : ; fnI �/ j fi 2 QM�g:

We also denote by IQM
n the QM�-linear submodule, which is spanned by all of the

I.f1; : : : ; fr I �/ with r � n.

The subspaces IQM
n define an ascending filtration IQM

�
on IQM, called the length

filtration (in analogy with the length filtration on iterated integrals [Hain 1987]). It
follows from (2-7) that IQM is a filtered QM�-algebra. However, the length is not
a grading, as shown by the next result.

Proposition 4.2. Let f1; : : : ; fn be quasimodular forms. Then

I.f1; : : : ; fi�1;D.fi/; fiC1; : : : ; fnI �/ 2 IQM
n�1

:

Proof. This follows immediately from the integration by parts formula (2-9). �

IQM as a shuffle algebra. We let V be the C-vector space C�E2˚M�, and denote
by ChV i the shuffle algebra on V (see Section 2). Recall that this is the graded
dual of the tensor algebra T .V /, whose grading is given by the length of tensors.
Elements of ChV i are C-linear combination of the basic elements Œf1 j � � � j fn� ,
and the product on ChV i is the shuffle product (2-5).

The following theorem is the main result of this paper.

Theorem 4.3. The QM�-linear map

'QM
W QM�˝C ChV i ! IQM; Œf1 j � � � j fn� 7! I.f1; : : : ; fnI �/ (4-1)

is an isomorphism of QM�-algebras.

Proof. Let B be a basis of V , so that the family .Œf1 j � � � j fn� j fi 2 B/ is a basis
of ChV i. The injectivity of 'QM follows from the Frac.QM�/-linear independence
of the family

F D .I.f1; : : : ; fnI �/ j fi 2 B/; (4-2)

which is a consequence of Theorem 3.1.
To obtain the surjectivity, we need to prove that the family (4-2) generates IQM.

To this end, we prove inductively that for every n� 0, we have IQM
n � SpanQM� F .

The case n D 0 is trivial. Now let n � 1 and assume that for every r � n � 1,
we have IQM

r � SpanQM� F . Given quasimodular forms f1; : : : ; fn, we can write
fi D giCD.hi/, where gi 2C �E2˚M� and hi 2D.QM�/ by Proposition 2.3(ii).
Then by linearity,

I.f1; : : : ; fnI �/D I.g1; : : : ;gnI �/

C

nX
iD1

I.g1; : : : ;gi�1;D.hi/;giC1; : : : ;gn/C � � � ; (4-3)
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where the � � � above signifies iterated integrals which have at least two D.hi/ as inte-
grands. The first term on the right is contained in SpanQM�F , since gi 2C�E2˚M�
for every i and B is a basis. On the other hand, all other terms in the sum (4-3)
are iterated integrals which contain at least one D.hi/. By Proposition 4.2, it thus
follows that

I.f1; : : : ; fnI �/� I.g1; : : : ;gnI �/ mod IQM
n�1

;

and we conclude using the induction hypothesis. Finally, it is clear that 'QM is a
homomorphism of algebras, since both sides of (4-1) are endowed with the shuffle
product. �

The algebra of iterated integrals of modular forms. In this section, we study the
subalgebra IM of IQM, generated by iterated integrals of modular forms.

Definition 4.4. Define IM to be the M�-module generated by all iterated integrals
of modular forms:

IM
D SpanM�

fI.f1; : : : ; fnI �/ j fi 2M�g:

As in the case of IQM, the length of iterated integrals defines the length filtration
IM
�

on IM, and IM is a filtered M�-subalgebra of IQM. We let ChM�i be the
shuffle algebra on the C-vector space M�.

Theorem 4.5. The M�-linear map

'M
WM�˝C ChM�i ! IM ; Œf1 j � � � j fn� 7! I.f1; : : : ; fnI �/

is an isomorphism of M�-algebras.

Proof. The morphism 'M is surjective by definition. It is also injective, since for a
basis BM of M�, the iterated integrals I.f1; : : : ; fnI �/ with fi 2 BM are linearly
independent over M� by Theorem 3.1, as M� � Frac.QM�/. �

A polynomial basis for IQM. Recall from Proposition 2.3(ii) that QM� is isomor-
phic to the polynomial algebra CŒE2;E4;E6� . A similar, but slightly more involved
statement holds for the QM�-algebra IQM of iterated integrals of quasimodular
forms. Namely, IQM is a polynomial algebra over QM� in infinitely many variables,
which are given by certain Lyndon words.

In the following, if .S; </ is a totally ordered set, we will endow the free monoid
S� on S with the lexicographical order induced by <. Also, the length of w is
simply the number of letters of w.

Definition 4.6. A Lyndon word on S� is a nontrivial word w 2 S� n f1g such that
for all factorizations wD uv with u; v¤ 1, we have w < v. We denote by Lyn.S�/
the set of all Lyndon words on S�.
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Example 4.7. Let S D fa; bg with total order a < b. Then the Lyndon words on
S� of length at most four are

a; b; ab; aab; abb; aaab; aabb; abbb:

Now for a field k and any set S , define khSi to be the shuffle algebra on the free k-
vector space generated by S . If k is of characteristic zero, then by the Milnor–Moore
theorem [Milnor and Moore 1965], khSi is isomorphic to a polynomial algebra
(in possibly infinitely many variables). The following refinement is due to Radford.

Theorem 4.8 [Radford 1979]. If k has characteristic zero, then khSi is freely
generated, as a k-algebra, by the set of Lyndon words Lyn.S�/. Equivalently,
khSi Š kŒLyn.S�/� , the polynomial algebra on Lyn.S�/.

Returning to quasimodular forms, consider again the C-vector space

V D C �E2˚M�;

and let B D
S

k�0 Bk be the homogeneous basis of V given by Bk D fE
a
4
Eb

6
j

4aC 6b D kg for k ¤ 2, and B2 D fE2g. The basis B can be ordered for the
lexicographical order as follows: if Ea

4
Eb

6
;Ea0

4
Eb0

6
2 Bk , then

Ea
4Eb

6 <Ea0

4 Eb0

6 W, a< a0; or aD a0 and b < b0;

and if f 2 Bk , g 2 Bk0 with k < k 0, then f < g.
Now, since for f1; : : : ; fn 2B, the iterated integrals I.f1; : : : ; fnI �/ are linearly

independent over QM� (by Theorem 3.1), we can canonically identify the set of
all I.f1; : : : ; fnI �/ with the free monoid B� and order B� for the lexicographical
ordering induced from the order on B above. The next result is a formal consequence
of Theorems 4.3, 4.5 and 4.8.

Theorem 4.9. The elements of Lyn.B�/ are algebraically independent over QM�
and we have a natural isomorphism of QM�-algebras

QM�ŒLyn.B�/�Š IQM;

which is filtered for the length, where the left-hand side is the polynomial QM�-
algebra on Lyn.B�/. Explicitly, the isomorphism maps an element

w D f1 � � � fn 2 Lyn.B�/

to the iterated integral I.f1; : : : ; fnI �/. Similarly, we have a natural isomorphism
of M�-algebras

M�ŒLyn.B�M /�Š IM ;

where BM D B n fE2g.
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Example 4.10. The following table gives all elements of Lyn.B�/ involving iterated
integrals of length at most two of quasimodular forms of total weight at most 12.
For ease of notation, we have dropped the � from I.f1; : : : ; fnI �/.

Length

Weight 0 1 2

0 — I.1/ —

2 — I.E2/ —

4 — I.E4/ I.1;E4/

6 — I.E6/ I.1;E6/, I.E2;E4/

8 — I.E2
4
/ I.1;E2

4
/, I.E2;E6/

10 — I.E4E6/ I.1;E4E6/, I.E2;E
2
4/, I.E4;E6/

12 — I.E3
4/, I.E2

6/ I.1;E3
4/, I.1;E2

6/, I.E2;E4E6/, I.E4;E
2
4/

Also, the list of all elements of Lyn.B�/ consisting of iterated integrals of length
at most three of quasimodular forms of total weight 12 is given by

fI.E3
4/; I.E2

6/; I.1;E3
4/; I.1;E2

6/; I.E2;E4E6/; I.E4;E
2
4/;

I.1; 1;E3
4/; I.1; 1;E2

6/; I.1;E2;E4E6/; I.1;E4;E
2
4/; I.1;E6;E6/;

I.1;E2
4 ;E4/; I.1;E4E6;E2/; I.E2;E2;E

2
4/; I.E2;E4;E6/; I.E2;E6;E4/g:

Appendix: Eichler–Shimura for quasimodular forms

In this appendix, we show how one can attach one-cocycles to quasimodular forms.
This extends the classical Eichler–Shimura theory of the cocycles attached to
modular forms, and is probably well-known to the experts, but the author does not
know of a suitable reference for the precise statements.

Throughout this appendix, we will freely use some elementary concepts from
the cohomology of groups, for which we refer to [Weibel 1994, Chapter 6].

Cocycles attached to modular forms. We first briefly recall how modular forms
give rise to cocycles for SL2.Z/. A standard reference is [Lang 1976, Chapter VI].

For d � 0, let QŒX;Y �d be the Q-vector space of homogeneous polynomials in
X and Y of degree d . It is a right SL2.Z/-module by defining

P .X;Y /j DP .aXCbY; cXCdY / for  D
�

a b

c d

�
2SL2.Z/; P 2QŒX;Y �d :

With this action, given a modular form f of weight k � 2, it is straightforward to
verify that the holomorphic differential one-form

f .�/ WD .2� i/k�1f .�/.X � �Y /k�2 d� 2�1.H/˝Q QŒX;Y �k�2
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is SL2.Z/-invariant, where SL2.Z/ acts on H in the usual way via fractional linear
transformations. Fixing a base point �0 of H (possibly i1), it follows from the
SL2.Z/-invariance that the function

rf;�0
W SL2.Z/! CŒX;Y �k�2;  7!

Z �0

�

f .�/�

�Z �0

:�

f .�/

�ˇ̌̌̌


(regularized as in Section 2 if �0 D i1) is a one-cocycle, i.e., it satisfies

rf;�0
.12/D rf;�0

.1/j2
C rf;�0

.2/

for all 1; 2 2 SL2.Z/. Its cohomology class does not depend on �0, and we denote
this class simply by Œrf � .

The same construction can also be applied to the complex conjugate

f .�/ WD .�2� i/k�1f .�/.X � �Y /k�2 d�

of the one-form f .�/, and we denote by Œr
f
� the resulting cohomology class.

Theorem A.1 (Eichler–Shimura). For every k � 2, the morphism

Mk ˚Sk !H 1.SL2.Z/;QŒX;Y �k�2/˝Q C; .f;g/ 7! Œrf �C Œrg�

is an isomorphism of C-vector spaces. Here, Sk denotes the complex conjugate of
the C-vector space of cusp forms of weight k.

Cocycles for the braid group. The fact that rf is a cocycle hinges on the modularity
of f . In order to incorporate quasimodular forms into the picture, we need to
consider instead of SL2.Z/ the braid group B3 D h�1; �2 W �1�2�1 D �2�1�2i on
three strands. It is a central extension

1! Z! B3! SL2.Z/! 1; (A-1)

and also the fundamental group of the quotient of C� �H by the SL2.Z/-action

:.z; �/D ..c� C d/z; :�/ for  D
�

a b

c d

�
2 SL2.Z/;

where SL2.Z/ acts on H as before. We refer to [Hain 2011, §8] for more details
and further equivalent descriptions of B3.

Next, we compute the cohomology groups H 1.B3;QŒX;Y �d /, where B3 acts
on QŒX;Y �d via the projection B3! SL2.Z/.

Proposition A.2. We have canonical isomorphisms

H 1.B3;QŒX;Y �d /Š

�
H 1.SL2.Z/;QŒX;Y �d / for d � 1;

Q for d D 0:
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Proof. The Hochschild–Serre spectral sequence (see [Weibel 1994, §6.8.3]) associ-
ated to the extension (A-1) yields an exact sequence

0!H 1.SL2.Z/;QŒX;Y �d /!H 1.B3;QŒX;Y �d /!H 1.Z;QŒX;Y �d /
SL2.Z/! 0;

where we have used the fact that H 2.SL2.Z/;QŒX;Y �d / D f0g, as SL2.Z/ has
virtual cohomological dimension equal to one. The proposition now follows easily
from this. �

Quasimodular forms and braid group cocycles. In light of Theorem A.1, the iso-
morphisms of Proposition A.2 suggest attaching a one-cocycle B3 ! C to the
Eisenstein series E2. Indeed, this can be done as follows.

First, the modular transformation property of E2 (2-2) implies that the differential
one-form

2� iE2.�/ d� � 12
dz

z
2�1.C� �H/ (A-2)

is SL2.Z/-invariant, i.e., it descends to the quotient SL2.Z/n.C
� �H/. Denote by

E2.�; �/ WD '
�
�
2� iE2.�/ d� � 12

dz

z

�
D 2� iE2.�/ d� � 12 d� 2�1.C�H/

the pull-back of (A-2) along the universal covering map ' WC�H!SL2.Z/n.C
��H/.

Clearly, E2.�; �/ is B3-invariant and it follows that for any base point .�0; �0/ (for
example, .�0; �0/D .0; i1/), the function

rE2;.�0;�0/ W B3! C;  7!

Z .�0;�0/

.�;�/

E2.�; �/�

�Z .�0;�0/

:.�;�/

E2.�; �/

�ˇ̌̌̌


is a well-defined cocycle (again, regularization is needed if �0 D i1).

Remark A.3. The integral I.E2I �/ introduced in Section 2 is actually equal toR i1
� E2.�; �/, where we embed H into C�H by � 7! .0; �/. However, that em-

bedding is not B3-equivariant, and indeed the integral I.E2I �/ does not give rise
to a cocycle for B3; for this, one really needs to lift the form 2� iE2.�/ d� to the
form E2.�; �/.

Now, since the cocycle rE2;.�0;�0/ is nonzero, its cohomology class (which is
again independent of the choice of base point .�0; �0/) is nontrivial. The Eichler–
Shimura theorem (Theorem A.1) together with Proposition A.2 then implies the
next result.

Corollary A.4. For every k � 2, the morphism

Vk ˚Sk !H 1.B3;QŒX;Y �k�2/˝Q C; .f;g/ 7! Œrf �C Œrg� ;

where V WDM�˚C �E2, is an isomorphism of C-vector spaces.
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One can also attach a cocycle rf;�0
to a general quasimodular form f 2 QMk of

weight k as follows. By Proposition 2.3(ii), we know that f can be written uniquely
as a C-linear combination of derivatives of modular forms and of derivatives of E2.
Thus, we can write

f D
X

�g �D
pg.g/; �g 2 C; pg � 0;

where either g is a modular form of weight k�2pg or gDE2. Therefore, we may
define rf;�0

W B3! CŒX;Y ��k�2 WD
L

0�d�k�2 CŒX;Y �d by

rf;�0
WD

X
�g � rg;�0

:

Using this definition, one sees in particular that the cocycles of quasimodular forms
can be expressed in terms of the cocycles attached to modular forms and to E2.
This is of course in line with Corollary A.4.

Remark A.5. In [Manin 2006; Brown 2016; Hain 2016], certain nonabelian
SL2.Z/-cocycles given in terms of iterated integrals of modular forms are studied.
It would be natural to try and extend this theory to nonabelian B3-cocycles attached
to iterated integrals of quasimodular forms (perhaps along the lines suggested in
[Hain 2016, §14]), but this is beyond the scope of the present paper.
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