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It has been conjectured by Bombieri and Ghosh that the real parts of the zeros of
a linear combination of two or more L-functions should be dense in the interval
[1, σ ∗], where σ ∗ is the least upper bound of the real parts of such zeros. In this
paper we show that this is not true in general. Moreover, we describe the optimal
configuration of the zeros of linear combinations of orthogonal Euler products
by showing that the real parts of such zeros are dense in subintervals of [1, σ ∗]
whenever σ ∗ > 1.

1. Introduction

Let L(s) be a Dirichlet series and let σ ∗=σ ∗(L) be the least upper bound of the real
parts of the zeros of L(s). It is well known that σ ∗ is finite (see, e.g., Titchmarsh
[1975, §9.41]). For the Riemann zeta function we know that σ ∗ ≤ 1, and it is
expected that the Riemann hypothesis holds, i.e., σ ∗ = 1

2 . A similar situation is
expected for many Euler products (see, e.g., Selberg [1992]).

On the other hand, we have recently proved [Righetti 2016a], for a large class of
L-functions with a polynomial Euler product, that nontrivial linear combinations
have zeros for σ > 1. This is not surprising since many examples of such linear
combinations were already known to have zeros for σ > 1 from work of Davenport
and Heilbronn [1936a; 1936b] on the Hurwitz and Epstein zeta functions. We also
refer to later important works of Cassels [1961], Conrey and Ghosh [1994], Saias
and Weingartner [2009], and Booker and Thorne [2014].

Since for this type of Dirichlet series we know that there are zeros in the region
of absolute convergence, which we may always suppose to be σ > 1, it is of
interest to know the distribution of such zeros in this half-plane. With respect to the
distribution of the imaginary parts the problem was completely solved by Jessen
and Tornehave [1945]. Indeed it is known that the number of zeros in any rectangle
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[σ1, σ2] × [T1, T2], with 1 < σ1 < σ2, satisfies (cf. Theorem 31 of [Jessen and
Tornehave 1945])

N (σ1, σ2, T1, T2)= c(T2− T1)+ o(|T2− T1|), when |T2− T1| →∞, (1-1)

for some nonnegative constant c = c(σ1, σ2). Note that by a classical application
of the Bohr almost periodicity of Dirichlet series and Rouché’s theorem we easily
have that c > 0 whenever N (σ1, σ2, T1, T2) > 0.

On the other hand the situation regarding the distribution of the real parts of the
zeros is much more complicated. In fact some Epstein zeta functions studied by
Bombieri and Mueller [2008] are known to have the property that the real parts
of their zeros are dense in the interval [1, σ ∗]. Note that these functions may be
written as a linear combination of two Hecke L-functions. Other examples of linear
combinations with this property may be found in Bombieri and Ghosh [2011],
although not explicitly stated. Moreover, we remarked in [Righetti 2016a] that, as
a consequence of the technique used to prove the main result there, the real parts of
the zeros of nontrivial combinations of orthogonal L-functions are dense in a small
interval [1, 1+ η], for some η > 0 (cf. Corollary 1 of [Righetti 2016a]). Hence
one might expect, as conjectured by Bombieri and Ghosh [2011, p. 230], that the
real parts of the zeros of linear combinations of two or more L-functions should be
dense in the whole interval [1, σ ∗]. However this is too much to hope for as one
can see from the following general counterexample.

Theorem 1.1. Let N ≥ 2 be an integer and let Fj (s) =
∑
∞

n=1 a j (n)n−s be dis-
tinct nonidentically zero Dirichlet series absolutely convergent for σ > 1, j =
1, . . . , N , with

∑N
j=1 |a j (1)| 6= 0. Then, for any x = (x1, . . . , xN ) ∈ CN such that∑N

j=1 x j a j (1)= 0 but the Dirichlet series L x(s)=
∑N

j=1 x j Fj (s) is not identically
zero, there exist infinitely many projectively inequivalent vectors c ∈ CN such that
L c(s) has no zeros in some vertical strip σ1 < σ < σ2 with 1< σ1 < σ2 < σ

∗(L c).

Remark. The above statement is very general, but in particular may be applied to
linear combinations of linearly independent L-functions. Moreover, it is easy to
show that the same argument works also for a-values with a 6= 0.

This has to be compared with what happens for 1
2 <σ < 1. There it is known that

joint universality of L-functions implies that the real parts of the zeros of any linear
combination of these L-functions are dense in

[ 1
2 , 1

]
(see, e.g., [Bombieri and Gosh

2011, p. 230]). Furthermore joint universality is known to hold for many families
of L-functions and recently Lee, Nakamura and Pańkowski [Lee et al. 2017] have
shown that this property holds in an axiomatic setting such as the Selberg class
under a strong Selberg orthonormality conjecture.

We can actually prove more, i.e., it is in general possible to construct Dirichlet
series, given by a linear combination of L-functions, which have many distinct
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vertical strips without zeros, i.e., such that between every two vertical strips without
zeros there is at least one zero.

Theorem 1.2. Let k ≥ 1 be an integer and, for j = 1, . . . , k + 1, let Fj (s) =∑
∞

n=1 a j (n)n−s be a Dirichlet series absolutely convergent for σ > 1 with a j (1) 6= 0.
Suppose that

det


a1(1) a1(2) · · · a1(k+ 1)
a2(1) a2(2) · · · a2(k+ 1)
...

...
. . .

...

ak+1(1) ak+1(2) · · · ak+1(k+ 1)

 6= 0. (1-2)

Then there exists at least one c ∈ Ck+1 such that the Dirichlet series L c(s) =∑k+1
j=1 c j Fj (s) has at least k distinct vertical strips without zeros in the region

1< σ < σ ∗(L c).

Remark. Note that trivially every nonzero scalar multiple of a vector c of Theorems
1.1 or 1.2 has the same property. On the other hand, in Theorem 1.1, for every x the
vectors c are given by the intersection of a ball and a hyperplane in CN , hence there
are clearly infinitely many projectively inequivalent such vectors; see Section 6 for
details. Besides, the proof of Theorem 1.2 seems to suggest that there may actually
be infinitely many projectively inequivalent vectors c with the same property in this
case too.

The proof of Theorem 1.2 is actually constructive and may be used to explicitly
obtain coefficients c. As a concrete example we apply it to ζ(s), L(s, χ1) and
L(s, χ1), where χ1 is the unique Dirichlet character mod 5 such that χ1(2) = i ,
which satisfy the hypotheses of Theorem 1.2. We thus obtain the Dirichlet series

L(s)= c1L(s, χ1)+ c2L(s, χ1)+ c3ζ(s),

where

c1 =−
1

L(8, χ1)

L(16, χ1)ζ(8)− L(8, χ1)ζ(16)
L(16, χ1)ζ(8)− L(8, χ1)ζ(16)

=−0.08260584 . . .− i0.99658995 . . . ,

c2 =
1

L(8, χ1)
= 1.00000059 . . .+ i0.00375400 . . . ,

c3 =
1

L(8, χ1)

L(8, χ1)L(16, χ1)− L(8, χ1)L(16, χ1)

ζ(8)L(16, χ1)− L(8, χ1)ζ(16)
=−0.91739597 . . .+ i0.99283727 . . . .

In Figure 1 we see part of two distinct vertical strips without zeros of L(s) within
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Figure 1. Approximate plot of

min
t

∣∣c1L(σ + i t, χ1)+ c2L(σ + i t, χ1)+ c3ζ(σ + i t)
∣∣

for σ ∈ [7, 22] and t ∈ [0, 2000] with step 0.01.

the vertical strip 1 < σ < σ ∗. We recall that, by [Saias and Weingartner 2009],
there are zeros in the vertical strip 1< σ < 1+ η for some η > 0.

Actually Figure 1 shows that another interesting phenomenon happens for linear
combinations of orthogonal (see (1-3)) L-functions: it looks like that whenever
there is one zero then there should be a small closed interval, either around or beside
its real part, where the real parts of the zeros are dense. The bulk of this paper is
devoted to showing that this is indeed true.

We first recall that, as a consequence of the work of Jessen and Tornehave [1945]
on the asymptotic number of zeros mentioned above, we have the following general
result. We denote by σu(L) the abscissa of uniform convergence of L(s).

Theorem 1.3. Suppose L(s)=
∑
∞

n=n0
a(n)/ns has a(n0) 6= 0 and σ ∗(L) > σu(L).

Then in any vertical strip σu(L) < α ≤ σ ≤ σ ∗(L), L(s) has only a finite number
of zero-free vertical strips and a finite number of isolated vertical lines containing
zeros. In particular, if ρ0 = β0+ iγ0 is a zero of L(s) with β0 > σu(L), then either
σ = β0 is an isolated vertical line as above or there exist σ1≤ β0≤ σ2, with σ1<σ2,
such that the set {

β ∈ [σ1, σ2] | ∃γ ∈ R such that L(β + iγ )= 0
}

is dense in [σ1, σ2].

The first part of Theorem 1.3 is a reinterpretation of Theorem 31 of [Jessen and
Tornehave 1945] in view of Theorem 8 of the same paper. The second part follows
from the first one by a simple set-theoretic argument.
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Therefore we just need to prove that a linear combination of orthogonal Euler
products has no isolated vertical lines containing zeros. As in [Righetti 2016a] we
work in an axiomatic setting, and at the end of the introduction we briefly mention
some important families of L-functions satisfying the required properties. Given a
complex function F(s) we consider the following properties:

(I) F(s)=
∑
∞

n=1 aF (n)/ns is absolutely convergent for σ > 1;

(II) log F(s) =
∑

p
∑
∞

k=1 bF (pk)/pks is absolutely convergent for σ > 1, with
|bF (pk)| � pkθ for every prime p and every k ≥ 1, for some θ < 1

2 ;

(III) for any ε > 0, |aF (n)| � nε for every n ≥ 1.

Definition. For any integer N ≥ 1, we say that F1(s), . . . , FN (s) satisfying (I) and
(II) are orthogonal if∑

p≤x

aFi (p)aFj (p)
p

= (mi, j + o(1)) log log x, x→∞, (1-3)

with mi,i > 0 and mi, j = 0 if i 6= j .

Remark. There are some differences between the axioms that in [Righetti 2016a]
define the class E and the above axioms (I)–(III), so that in principle we cannot say
that the results that we obtained in [Righetti 2016a] may be applied here or vice
versa. However most of the known families of L-functions satisfy, or are supposed
to satisfy, both the axioms of E and (I)–(III).

We can now state the main theorems. We consider separately the cases N = 2 and
N ≥ 3 since they are handled in different ways and yield different results, although
the underling idea is the same.

Theorem 1.4. Let F1(s), F2(s) be orthogonal functions satisfying (I) and (II),
c1, c2 ∈ C \ {0}, and L(s)= c1 F1(s)+ c2 F2(s). Then L(s) has no isolated vertical
lines containing zeros in the half-plane σ > 1.

Theorem 1.5. Suppose N ≥ 3 is an integer, c1, . . . , cN ∈ C \ {0}, c ∈ C, and
F1(s), . . . , FN (s) are orthogonal functions satisfying (I)–(III). If we write L(s)=∑N

j=1 c j Fj (s)− c, then L(s) has no isolated vertical lines containing zeros in the
half-plane σ > 1.

Theorems 1.4 and 1.5 are obtained by suitably adapting the works of Bohr and
Jessen [1930; 1932], Jessen and Wintner [1935], Jessen and Tornehave [1945],
Borchsenius and Jessen [1948], and Lee [2014] on the value distribution of Dirichlet
series. Note that, however, most of these papers refer to results on particular Dirichlet
series in the strip 1

2 < σ < 1, while we work in the half-plane σ > 1 with far more
general Dirichlet series. Hence, although the ideas are similar, the results are quite
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different in nature and technical difficulty. The proofs will be given in Sections 4
and 5 respectively.

Remark. Note that orthogonality is necessary in Theorems 1.4 and 1.5 as is shown
by the following simple example

(1− 2−s)ζ(s)− 3
4ζ(s)=

(1
4
−

1
2s

)
ζ(s),

which clearly vanishes, in the half-plane of absolute convergence σ > 1, only on
the vertical line σ = 2. We mention here that in the proof of Theorems 1.4 and 1.5,
roughly speaking, orthogonality is just used to bound particular oscillatory integrals
(see the end of Section 2) and therefore to show that certain distribution functions
behave “nicely” (see Section 3).

From Theorems 1.4 and 1.5 we obtain the following interesting consequence,
which should be compared with Corollary 1 of [Righetti 2016a].

Corollary 1.6. Let L(s) be as in Theorems 1.4 or 1.5. If σ ∗(L) > 1, then there
exists η > 0 such that the set{

β ∈ [σ ∗(L)− η, σ ∗(L)] | ∃γ such that L(β + iγ )= 0
}

is dense in [σ ∗(L)− η, σ ∗(L)].

Proof. If σ ∗ = σ ∗(L) is itself the real part of a zero, the result follows immediately
from the second part of Theorem 1.3 and Theorems 1.4 and 1.5, choosing η =
σ ∗− σ1 > 0 and σ2 = σ

∗. Suppose otherwise that σ ∗ is not the real part of a zero.
Then by definition σ ∗ is the limit point of the real part of certain zeros of L(s).
Note that in general if L(σ + i t) 6= 0, then either for any ε > 0 there exist βε with
|σ −βε|< ε and γε ∈ R such that L(βε + iγε)= 0, i.e., σ is the limit point of the
real part of certain zeros of L(s), or there exists an open interval (σ − δ, σ + δ), for
some δ > 0, which does not contain any real part of the zeros. Since by Theorem 1.3
the number of zero-free vertical strips in σ ∗− ε < σ < σ ∗ is finite for every small
ε > 0, we can take η = ε small enough so that there are none. �

By Theorems 1.1 and 1.2 we see that Theorems 1.4 and 1.5 are optimal, in the
sense that without conditions on the coefficients c we cannot expect stronger results
on the density of the real parts of the zeros. On the other hand it may be true that
one could provide necessary and sufficient conditions on the coefficients of a linear
combination of L-functions to guarantee Bombieri and Ghosh’s conjecture to hold,
but this seems out of reach at the moment. Here we just mention the following
example with the Davenport–Heilbronn type L-functions studied by Bombieri and
Ghosh [2011]. As we already remarked, Bombieri and Ghosh do not say whether
these functions do have the property that the real parts of their zeros are dense
in [1, σ ∗]. However, in our Ph.D. thesis [Righetti 2016b] we gave necessary and
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Figure 2. Approximate plot of

f (σ )=min
t

∣∣∣∣L(σ + i t, χ1)

L(σ + i t, χ1)
+

1+ iτ
1− iτ

∣∣∣∣,
g(σ )=min

t

∣∣∣∣L(σ + i t, χ1)

L(σ + i t, χ1)
−

L(8, χ1)

L(8, χ1)

∣∣∣∣,
where σ ∈ [1.01, 16.01] and t ∈ [0, 2000] with step 0.01.

sufficient conditions on the coefficients of these Dirichlet series for this to happen,
namely:

Theorem 1.7. Let ξ ∈ R, χ1 be the unique Dirichlet character mod 5 such that
χ1(2)= i , q be a positive integer and χ0 be the principal character mod q. Then
there exists ξmax(q), such that the real parts of the zeros for σ > 1 of

f (s, ξ, q)= 1
2

[
(1− iξ)L(s, χ1χ0)+ (1+ iξ)L(s, χ1χ0)

]
are dense in the interval [1, σ ∗(ξ, q)] if and only if |ξ | ≤ ξmax(q). In particular, if
6 - q it is sufficient to take |ξ | ≤ 6.5851599.

Proof. The proof is a continuation of the proof of Theorem 7 of [Bombieri and Gosh
2011] using results of Kershner [1936, Theorems II–III] on the support function
of the inner border of the sum of convex curves. We refer to Theorem 4.1.3 of
[Righetti 2016b] for details. �

As an example we see in Figure 2 that the real parts of the zeros of Davenport–
Heilbronn type L-function

f (s, τ )= 1
2

[
(1−iτ)L(s, χ1)+(1+iτ)L(s, χ1)

]
, τ=−

1+
√

5
2
−

√
1+
(1+
√

5
2

)2
,
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are dense up to σ ∗ = 2.3822861089 . . . . On the other hand, we see that the real
parts of the zeros of L(s, χ1)− cL(s, χ1), where

c =
L(8, χ1)

L(8, χ1)
= 0.99997181 . . .+ i0.00750790 . . . ,

are dense close to σ = 1 (cf. Corollary 1 of [Righetti 2016a]), there are no zeros
with real part in the interval [2, 7], but s = 8 is clearly a zero.

Note that in the previous results we don’t ask for a functional equation or
meromorphic continuation to the whole complex plane. However, in many concrete
cases these are known to hold, so one might ask what happens if one adds these
conditions. On account of this we show that Theorem 1.1 may be modified so
that the resulting Dirichlet series is an L-function with functional equation and, of
course, without Euler product. We therefore consider functions F(s) satisfying (I)
and

(IV) (s− 1)m F(s) is an analytic continuation as an entire function of finite order
for some m ≥ 0,

(V) F(s) satisfies a functional equations of the form 8(s) = ω8(1− s̄), where
|ω| = 1 and

8(s)= Qs
r∏

j=1

0(λ j s+µ j )F(s)= γ (s)F(s),

say, with r ≥ 0, Q > 0, λ j > 0 and Reµ j ≥ 0,

although such requirements can actually be relaxed.

Theorem 1.8. Let N ≥ 3 be an integer, (r, Q,λ,µ) fixed parameters, and let
F1(s), . . . , FN (s) be functions satisfying (I), (II), (IV) and (V) for some |ω j | = 1,
j = 1, . . . , N. Suppose furthermore that ωh 6= ωk for some h, k ∈ {1, . . . , N }. Then
there exist infinitely many c ∈ CN such that L c(s) =

∑N
j=1 c j Fj (s) satisfies (IV),

(V) and has no zeros in some vertical strip σ1 < σ < σ2 with 1< σ1 < σ2 < σ
∗(L c).

To give a concrete example of the above result, we fix an integer q≥7, square-free,
(q, 6)=1 and q 6≡2 (mod 4), and consider the Dirichlet L-functions associated with
primitive characters χ (mod q). Their number is ϕ∗(q)=

∏
p|q(p− 2) and at least

half of them have the same parity. We denote by W(q) the set of such characters
and we have that |W(q)| ≥ 3. As a consequence of Theorem 1 of Kaczorowski,
Molteni and Perelli [Kaczorowski et al. 2010], we have that ωχ1

6= ωχ2
if χ1 6= χ2

for χ1, χ2 ∈ W(q), so we may apply Theorem 1.8 to the Dirichlet L-functions
associated with distinct characters of W(q).

On the other hand, we mention that Bombieri and Hejhal [1995] have shown
that, under the generalized Riemann hypothesis and a weak pair correlation of the
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zeros, linear combinations with real coefficients of Euler products with the same
functional equation have asymptotically almost all of their zeros on the line σ = 1

2 .

As concrete examples of families of L-functions satisfying the properties required
by Theorems 1.4 and 1.5 we refer to [Righetti 2016a] for Artin L-functions, automor-
phic L-functions and the Selberg class. Here we only recall that the relevant analytic
properties of the automorphic L-functions and their orthogonality can be found in
the papers of Rudnick and Sarnak [1996], Iwaniec and Sarnak [2000], Bombieri
and Hejhal [1995], Kaczorowski and Perelli [2000], Kaczorowski, Molteni and
Perelli [Kaczorowski et al. 2007], Liu and Ye [2005], and Avdispahić and Smajlović
[2010]. Moreover, we refer to Selberg [1992] and the surveys of Kaczorowski
[2006], Kaczorowski and Perelli [1999], and Perelli [2005] for a thorough discussion
on the Selberg class.

For the computations we have used the software packages PARI/GP [2016] and
MATLABr. These were made by truncating the Dirichlet series to the first 70 000
terms, which guarantees accuracy to eight decimal places for the values given above.

2. Radii of convexity of power series

Let F(s) be a function satisfying (I) and (II). Then we can write F(s) as an
absolutely convergent Euler product F(s)=

∏
p Fp(s) for σ > 1, where the local

factor Fp(s) is determined by log Fp(s)=
∑
∞

k=1 bF (pk)p−ks. Then, in most of the
results on the value distribution of F(s) for some fixed σ, a fundamental ingredient
is the convexity of the curves log Fp(σ + i t), t ∈ R, at least for infinitely many
primes p. In this section we collect and prove some results on this matter which
will be needed later.

Let A be the class of functions f (z) = z+
∑
∞

n=2 b(n)zn which are regular on
D = {|z|< 1}. Let F be any subclass of A, then we write rc(F) for the largest r ,
with 0< r ≤ 1, such that f ({|z|< r}) is convex.

Proposition 2.1 [Yamashita 1982, Theorem 2]. Let B={ f ∈A | |b(n)| ≤ n, n≥ 2}.
Then rc(B)≥ R1, where R1 is the smallest root in (0, 1) of 2(1−X)4= 1+4X+X2.
Let K > 0 and G(K ) = { f ∈ A | |b(n)| ≤ K , n ≥ 2}. Then rc(G(K )) ≥ R2(K ),
where R2(K ) is the smallest root in (0, 1) of X3

− 3X2
+ 4X = (1− X)3/K .

The proof of the above proposition is actually a simple consequence of the
following result of Alexander and Remak (see Theorem 1 of [Goodman 1957]).

Theorem 2.2 (Alexander–Remak). If f (z)= z+
∑
∞

n=2 b(n)zn
∈A and

∞∑
n=2

n2
|b(n)| ≤ 1,

then f (D) is convex.
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Adapting Yamashita’s proof [1982, §2] we obtain the following:

Proposition 2.3. Let K > 0 and H(K ) = { f ∈ A | |b(n)| ≤ K n2, n ≥ 2}. Then
rc(H(K ))≥ R3(K ), where R3(K ) is the smallest root in (0, 1) of

X5
− 5X4

+ 11X3
+ X2

+ 16X = (1− X)5/K .

Remark 2.4. Note that R3(K ) is a strictly decreasing function of K , with

sup
K>0

R3(K )= lim
K→0+

R3(K )= 1 and inf
K>0

R3(K )= lim
K→+∞

R3(K )= 0.

Moreover, for any K > 0 we have R3(K )≤ R2(K ).

Proof of Proposition 2.3. For f (z)= z+
∑
∞

n=2 b(n)zn
∈H(K ) and any r ≤ R3 =

R3(K ) we have

∞∑
n=2

n2
|b(n)|rn−1

≤ K
∞∑

n=2

n4 Rn−1
3 = K

R5
3 − 5R4

3 + 11R3
3 + R2

3 + 16R3

(1− R3)5
= 1,

where the last equality follows from the fact that R3 is chosen as the smallest real
root in (0, 1) of X5

− 5X4
+ 11X3

+ X2
+ 16X = (1− X)5/K . Therefore we can

apply Theorem 2.2 to h(z) = r−1 f (r z), which is thus convex on |z| < 1. Hence
f ({|z|< r}) is convex for any r ≤ R3 and thus R3 ≤ rc(H(K )). �

From this we obtain an explicit version of Theorem 13 of [Jessen and Wintner
1935] and Lemma 2.5 of [Lee 2014].

Proposition 2.5. Let N be a fixed positive integer,

G j (z)=
∞∑

n=1

a j (n)zn, j = 1, . . . , N ,

and suppose there exist positive real numbers ρj and K j such that |a(n)| ≤ K jρ
1−n
j

for every n ≥ 2. For any y = (y1, . . . , yJ ) ∈ CN , define

g(r, θ, y)=
N∑

j=1

Re
(
G j (re2π iθ )yj

)
,

where 0 < r < min j ρj and θ ∈ [0, 1]. If
∑N

j=1 yj a j (1) 6= 0, then there exists a
positive constant C such that for any δ > 0 we have∣∣∣∣∫ 1

0
eig(r,θ, y) dθ

∣∣∣∣≤ 24
√

Cδr‖ y‖
(2-1)

for every 0<r≤ R3
( 1
δ

√∑
j |K j |

2
)

min j ρj and every y such that
∣∣∑N

j=1 yj a j (1)
∣∣≥

δ‖ y‖> 0.
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Proof. The proof is a combination of Theorems 12 and 13 of [Jessen and Wintner
1935] and Lemma 2.5 of [Lee 2014], and we use the aforementioned results to
obtain explicit constants. Consider the power series

f (z)=
∞∑

n=1

( N∑
j=1

yj a j (n)
)

zn and h(z)=
∞∑

n=1

n2
( N∑

j=1

yj a j (n)
)

zn.

Since, by hypothesis and the Cauchy–Schwarz inequality, we have∣∣∣∣ N∑
j=1

yj a j (n)
∣∣∣∣≤ ‖ y‖

√∑
j |K j |

2

(min j ρj )n−1 ∀n ≥ 2, (2-2)

f (z) and h(z) are both holomorphic for |z|<min j ρj and, by definition, we have

g(r, θ, y)=Re f (re2π iθ ) and g′′(r, θ, y)= ∂2

∂θ2 g(r, θ, y)=−4π2 Re h(re2π iθ ).

By Proposition 2.1 we have that f (re2π iθ ) is a parametric representation of a convex
curve if

r ≤ R2

(
‖ y‖
√∑

j |K j |
2∣∣∑N

j=1 yj a j (1)
∣∣
)

min
j
ρj .

Indeed, substituting w = z/min j ρj , we have

f̃ (w)=
f (z/min j ρj )

(min j ρj )
(∑N

j=1 yj a j (1)
) = w+ ∞∑

n=2

(min
j
ρj )

n−1
(∑N

j=1 yj a j (n)∑J
j=1 yj a j (1)

)
wn

and, by (2-2),

f̃ (w) ∈ G
(
‖ y‖
√∑

j |K j |
2∣∣∑J

j=1 yj a j (1)
∣∣
)
.

Analogously, by Proposition 2.3 we have that h(re2π iθ ) is a parametric representa-
tion of a convex curve if

r ≤ R3

(
‖ y‖
√∑

j |K j |
2∣∣∑N

j=1 yj a j (1)
∣∣
)

min
j
ρj . (2-3)

Therefore, by Remark 2.4, both f (re2π iθ ) and h(re2π iθ ) are parametric represen-
tations of convex curves for any fixed r satisfying (2-3). This implies that both
g(r, θ, y) and g′′(r, θ, y) have exactly two zeros mod 1. By the mean value theorem,
we have that also g′(r, θ, y) has exactly two zeros mod 1, which separate those of
g′′(r, θ, y). Note that the zeros of g′(r, θ, y) and g′′(r, θ, y) depend continuously on
r and y since g′(r, θ, y) and g′′(r, θ, y) are continuous functions in each variable.
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We now consider the midpoints of the four arcs mod 1 determined by the zeros
of g′(r, θ, y) and g′′(r, θ, y). These midpoints clearly depend continuously on r
and y, and divide [0, 1] into four arcs, namely I1, I2, I3 and I4, such that I1 and
I3 each contain one zero of g′(r, θ, y), while I2 and I4 each contain one zero of
g′′(r, θ, y). By van der Corput’s lemma for oscillatory integrals (see [Titchmarsh
1986, Lemmas 4.2 and 4.4]) we have∣∣∣∣∫

I2∪I4

eig(r,θ, y)dθ
∣∣∣∣≤ 8

min
I2∪I4
|g′(r, θ, y)|

and ∣∣∣∣∫
I1∪I3

eig(r,θ, y)dθ
∣∣∣∣≤ 16√

min
I1∪I3
|g′′(r, θ, y)|

.

Writing

g(r, θ, y)= r
∣∣∣∣ N∑

j=1

yj a j (1)
∣∣∣∣ cos(2π(θ − ξ))+ r2O(‖ y‖)

for some ξ , we see that by continuity there exists a positive constant C such that

g′(r, θ, y)
r
∣∣∑N

j=1 yj a j (1)
∣∣ ≥ C on I2 and I4, and

g′′(r, θ, y)
r
∣∣∑N

j=1 yj a j (1)
∣∣ ≥ C on I1 and I3

for every r satisfying (2-3) and y ∈ CN .
We fix δ > 0, y 6= 0 such that∣∣∣∣ J∑

j=1

yj a j (1)
∣∣∣∣≥ δ‖ y‖, r ≤ R3

(
1
δ

√∑
j

|K j |
2
)

min
j
ρj ,

and we obtain ∣∣∣∣∫ 1

0
eig(r,θ, y)dθ

∣∣∣∣≤ 8
Cδr‖ y‖

+
16

√
Cδr‖ y‖

.

Since 1/(Cδr‖ y‖)≤ 1/
√

Cδr‖ y‖ when Cδr‖ y‖ ≥ 1,∣∣∣∣∫ 1

0
eig(r,θ, y)dθ

∣∣∣∣≤ 24
√

Cδr‖ y‖
for ‖ y‖ ≥

1
Cδr

.

On the other hand, we clearly have that
∣∣∫ 1

0 eig(r,θ, y)dθ
∣∣ ≤ 1, hence (2-1) holds

whenever the RHS is ≥ 1. Therefore the result follows from the simple fact that the
RHS of (2-1) is > 24 when 0< ‖ y‖< 1/(Cδr). �
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Theorem 2.6. Let F1(s), . . . , FN (s) be orthogonal functions satisfying (I) and (II).
Then there exists a positive constant A and infinitely many primes p such that∣∣∣∣∫ 1

0
exp

(
i

N∑
j=1

Re
(

yj log F j,p

(
σ + i 2πθ

log p

)))
dθ
∣∣∣∣≤ A
√
‖ y‖

pσ/2 (2-4)

for every σ ≥ 1 and every y = (y1, . . . , yN ) ∈ CN
\ {0}.

Proof. We want to apply Proposition 2.5 to

G j (z)=
∞∑

n=1

bFj (p
n)

√m j, j
zn, j = 1, . . . , N ,

where the m j, j are as in (1-3). By (II) there exist KFj and θ j <
1
2 such that for every

prime p and every n≥2 we have |bFj (p
n)|≤KFj pnθ j ≤KFj p2(n−1)θ j , j=1, . . . , N .

Thus, for j = 1, . . . , N and every prime p we may take K j = KFj /
√m j, j and

ρj = p−2θ j .
On the other hand, by orthogonality we have that for any y 6= 0

∑
p≤x

∣∣∣∣ y1bF1(p)
√

m1,1
+ · · ·+

yN bFN (p)
√

m N ,N

∣∣∣∣2/p ∼ ‖ y‖2 log log x, as x→∞.

In particular this implies that there are infinitely many primes p such that∣∣∣∣ y1bF1(p)
√

m1,1
+ · · ·+

yN bFN (p)
√

m N ,N

∣∣∣∣≥ ‖ y‖
4

for every y 6= 0. For each such prime p we take r = p−σ and δ = 1
4 . Then

Proposition 2.5 yields∣∣∣∣∫ 1

0
exp

(
i

N∑
j=1

Re
(

yj
√m j, j

log F j,p

(
σ + i

2πθ
log p

)))
dθ
∣∣∣∣≤ 48
√

C‖ y‖
pσ/2 (2-5)

when

p−σ ≤ R3

(
4

√∑
j

|KFj |
2

m j, j

)
p−2 max j θ j (2-6)

and y 6= 0. Note that (2-6) holds for every σ ≥ 1 if p is sufficiently large since
max j θ j <

1
2 . Now, substituting

y′
= (y′1, . . . , y′N )=

(
y1
√

m1,1
, . . . ,

yN
√

m N ,N

)
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in (2-5) we obtain that there are infinitely many primes p such that∣∣∣∣∫ 1

0
exp

(
i

N∑
j=1

Re
(

y′j log F j,p

(
σ + i

2πθ
log p

)))
dθ
∣∣∣∣

≤
48

√
C 4
√

m1,1|y′1|
2+ · · ·+m N ,N |y′N |2

pσ/2

for every σ ≥ 1 and every y′
∈ CN

\ {0}. Since clearly there exists a positive
constant D such that

√

m1,1|y′1|
2
+ · · ·+m N ,N |y′N |

2
≥ D‖ y′

‖, the result follows
immediately with A = 48/

√
DC . �

Remark 2.7. From the proof we have that (2-4) holds for σ ≥1 because max j θ j <
1
2

by (II). Therefore if we had that max j θ j <
κ
2 for some 0 < κ < 1, we would

immediately have that (2-4) holds for every σ ≥ κ .

3. On some distribution functions

This section is an adaptation of Chapter II of [Borchsenius and Jessen 1948]. We will
also use Theorem 2.6 similarly to how Borchsenius and Jessen use Theorem 13 of
[Jessen and Wintner 1935]. The particular distribution functions under investigation
in this section may be found in [Lee 2014] and they will be used in Sections
4 and 5 for the proofs of Theorems 1.4 and 1.5. We refer to [Lee 2014] for a
brief introduction to the theory developed by Jessen and Tornehave [1945] and
Borchsenius and Jessen [1948] and how it may be applied to linear combinations
of Euler products.

Given a function F(s) satisfying (I) and (II), and a positive integer n we write

Fn(s)=
n∏

m=1

Fpm (s) and Fn(σ, θ)= Fn(σ, θ1, . . . , θn)=

n∏
m=1

Fpm

(
σ+i

2πθm

log pm

)
,

where pm is the m-th prime and Fp(s) is determined by

log Fp(s)=
∞∑

k=1

bF (pk)p−ks .

Remark 3.1. For any n ≥ 1, Fn(s) is well defined as a Dirichlet series (and Euler
product) absolutely convergent for σ > θ = θF by (II). Moreover, Fn(s) and
log Fn(s) converge uniformly for σ ≥ σ0 > 1 to F(s) and log F(s), respectively.

Let F1(s), . . . , FN (s) be orthogonal functions satisfying (I) and (II). For θ∈[0,1]n,
we define

Fn(σ, θ)=
(
F1,n(σ, θ), . . . , FN ,n(σ, θ)

)
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and
log Fn(σ, θ)=

(
log F1,n(σ, θ), . . . , log FN ,n(σ, θ)

)
.

To these functions we attach some distribution functions, namely for any Borel set
E ⊆ CN , j, l ∈ {1, . . . , N }, j 6= l and σ > 1, we set

λσ,n; j (E)=
∫

Wlog Fn (σ,E)

∣∣∣∣F ′j,n
F j,n

(σ, θ)

∣∣∣∣2 dθ (3-1)

and

λσ,n; j,l;τ (E)=
∫

Wlog Fn (σ,E)

∣∣∣∣F ′j,n
F j,n

(σ, θ)+ τ
F ′l,n
Fl,n

(σ, θ)

∣∣∣∣2 dθ , (3-2)

where Wlog Fn (σ, E)= {θ ∈ [0, 1)n | log Fn(σ, θ) ∈ E}, and τ =±1,±i .
A distribution function µ on Cn is absolutely continuous (with respect to the

Lebesgue measure, meas) if for every Borel set E ⊆ Cn , meas(E) = 0 implies
µ(E)= 0 (cf. [Bogachev 2007, Definition 3.2.1]). By the Radon–Nikodym theorem
(see, e.g., Theorem 3.2.2 in [Bogachev 2007]) this holds if and only if there exists
a Lebesgue integrable function Gµ : C

n
→ R≥0 such that

µ(E)=
∫

E
Gµ(x) dx

for any Borel set E ⊆ Cn; Gµ(x) is the density of µ.
As a sufficient condition for absolute continuity we recall here the following

result (cf. [Borchsenius and Jessen 1948, §6; Bogachev 2007, §3.8]).

Lemma 3.2. Let µ be a distribution function on Cn and let µ̂ be its Fourier trans-
form. If

∫
Cn‖ y‖q |µ̂( y)| dy < ∞ for some integer q ≥ 0, then µ is absolutely

continuous with density Gµ(x) ∈ Cq(Cn) determined by the Fourier inversion
formula

Gµ(x)=
1

(2π)2n

∫
Cn

e−i〈x, y〉µ̂( y) dy.

We have the following result on the distribution functions defined above.

Theorem 3.3. Let F1(s), . . . , FN (s) be orthogonal functions satisfying (I) and (II).
Then there exists n0 ≥ 1 such that the distribution functions λσ,n; j and λσ,n; j,l;τ
are absolutely continuous with continuous densities Gσ,n; j (x) and Gσ,n; j,l;τ (x) for
every n ≥ n0, σ ≥ 1, j, l ∈ {1, . . . , N }, j 6= l and τ =±1,±i . More generally for
any k ≥ 0 there exists nk ≥ 1 such that Gσ,n; j (x), Gσ,n; j,l;τ (x) ∈ Ck(CN ) for every
n ≥ nk , σ ≥ 1.
Moreover, λσ,n; j and λσ,n; j,l;τ converge weakly to some distribution functions
λσ ; j and λσ ; j,l;τ as n → ∞, which are absolutely continuous with densities
Gσ ; j (x), Gσ ; j,l;τ (x) ∈ C∞(CN ) for every σ ≥ 1, j, l ∈ {1, . . . , N }, j 6= l and
τ =±1,±i . The functions Gσ,n; j (x) and Gσ,n; j,l;τ (x) and their partial derivatives
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converge uniformly for x ∈Cn and 1≤ σ ≤M to Gσ ; j (x) and Gσ ; j,l;τ (x) and their
partial derivatives as n→∞ for every M > 1.

Proof. The proof is an adaptation of Theorem 5 of Borchsenius and Jessen [1948]
(see also [Lee 2014, pp. 1827–1830]). We prove it just for λσ,n; j since the proof
for the other distributions is completely similar.

We compute the Fourier transform of the functions λσ,n; j and get

λ̂σ,n; j ( y)=
∫
[0,1]n

exp
(

i
N∑

h=1

Re(log Fh,n(σ, θ)yh)

)∣∣∣∣F ′j,n
F j,n

(σ, θ)

∣∣∣∣2 dθ , (3-3)

for any y= (y1, . . . , yN )∈CN . By Lemma 3.2, to prove the first part it is sufficient
to show that for every k ≥ 0 there exists nk such that, for any M > 1, ‖ y‖k λ̂σ,n; j ( y)
is Lebesgue integrable for every n ≥ nk and 1≤ σ ≤ M . We recall that by (II) there
exist KFj and θFj <

1
2 such that

|bFj (p
n)| ≤ KFj pnθFj

for every prime p and k ≥ 1, j = 1, . . . , N . Then we have

|λ̂σ,n; j ( y)| ≤ sup
σ>1

∣∣∣∣F ′j,n
F j,n

(σ, θ)

∣∣∣∣2 ≤ n∑
m=1

log2 pm

∞∑
k=1

|bFj (p
k
m)|

2

p2kσ
m

≤ K 2
Fj

∑
p

log2 p

p2(σ−θFj )
<∞ (3-4)

for every n ≥ 1 and σ ≥ 1. Hence it is sufficient to show that there exist constants
Ck > 0 and nk ≥ 1 such that for any M > 1 we have

|λ̂σ,n; j ( y)| ≤ Ck‖ y‖−
5
2−k as ‖ y‖→∞

for every n ≥ nk and 1 ≤ σ ≤ M . To prove this, note that we can write (cf.
[Borchsenius and Jessen 1948, (47); Lee 2014, (3.24)])

λ̂σ,n; j ( y)=
n∑

m=1

K2, j (pm, y)
n∏
`=1
6̀=m

K0, j (p`, y)

+

n∑
m,k=1
m 6=k

K1, j (pm, y)K1, j (pk,− y)
n∏
`=1
`6=m,k

K0, j (p`, y), (3-5)
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where, for any prime p and j ∈ {1, . . . , N }, we take

K0, j (p, y)=
∫ 1

0
exp

(
i

N∑
h=1

Re
(

log Fh,p

(
σ + i

2πθ
log p

)
yh

))
dθ,

K1, j (p, y)

=

∫ 1

0
exp

(
i

N∑
h=1

Re
(

log Fh,p

(
σ + i

2πθ
log p

)
yh

))F ′j,p
F j,p

(
σ + i

2πθ
log p

)
dθ,

K2, j (p, y)

=

∫ 1

0
exp

(
i

N∑
h=1

Re
(

log Fh,p

(
σ + i

2πθ
log p

)
yh

))∣∣∣∣F ′j,p
F j,p

(
σ + i

2πθ
log p

)∣∣∣∣2 dθ.

(3-6)

Hence, we just need to estimate the functions defined in (3-6).
For all primes p and j ∈ {1, . . . , N } we clearly have

|K0, j (p, y)| ≤ 1. (3-7)

On the other hand, by the hypotheses on F1(s), . . . , FN (s)we can apply Theorem 2.6
and obtain a positive constant A and infinitely many primes p such that

|K0, j (p, y)| ≤
A
√
‖ y‖

pσ/2 (3-8)

for every σ ≥ 1, y 6= 0 and j ∈ {1, . . . , N }. Thus, putting together (3-7) and (3-8)
we obtain that for any fixed integer q ≥ 1 there exists mq such that

n∏
`=1
6̀=m,k

|K0, j (p`, y)| ≤
[

A
√
‖ y‖

pσ/2mq

]q

(3-9)

for every m, k ≤ n, n ≥mq , σ ≥ 1, y 6= 0 and j ∈ {1, . . . , N }. Since we shall need
it later, we also note that from the fact that |ei t

− 1− i t | ≤ t2/2 and by (II), for
every prime p we get (cf. [Borchsenius and Jessen 1948, (50); Lee 2014, p. 1830])

|K0, j (p, y)− 1| ≤
‖ y‖2

2

( N∑
h=1

K 2
Fj

)
1

p2(σ−maxh θFh )
. (3-10)

For K1, j (p, y), using the fact that |ei t
−1| ≤ |t | and (II), we obtain for any σ ≥ 1

and any prime p (cf. [Borchsenius and Jessen 1948, (52); Lee 2014, (3.27)])

|K1, j (p, y)| ≤ ‖ y‖KFj

√
N∑

h=1

K 2
Fh

log p

p2(σ−maxh θFh )
. (3-11)
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Finally, for any prime p, σ ≥ 1 and j ∈ {1, . . . , N }, we simply have (cf. [Borch-
senius and Jessen 1948, (53); Lee 2014, (3.26)])

|K2, j (p, y)| ≤
∫ 1

0

∣∣∣∣F ′j,p
F j,p

(
σ + i

2πθ
log p

)∣∣∣∣2 dθ
(II)
≤ K 2

Fj

log2 p

p2(σ−θFj )
. (3-12)

Putting (3-7), (3-9), (3-11) and (3-12) into (3-5), for any fixed M > 1, j ∈
{1, . . . , N } and q ≥ 0, we get

|λ̂σ,n; j ( y)| ≤ K 2
Fj

Aq
‖ y‖−q/2 pqσ/2

mq

n∑
m=1

log2 pm

p
2(σ−θFj )

m

+ K 2
Fj

( N∑
h=1

K 2
Fh

)
Aq
‖ y‖2−q/2 pqσ/2

mq

( n∑
m=1

log pm

p
2(σ−maxh θFh )
m

)2

for any n ≥ mq , σ ≥ 1 and y 6= 0. Choosing q = 9+ 2k, nk = m9+2k and

Ck =

( N∑
h=1

K 2
Fh

)
A9+2k p(9+2k)M/2

nk

(
1+

( N∑
h=1

K 2
Fh

)2∑
p

log p

p2(σ−maxh θFh )

)
×

∑
p

log p

p2(σ−maxh θFh )

we have
|λ̂σ,n; j ( y)| ≤ Ck‖ y‖−

5
2−k when ‖ y‖ ≥ 1, (3-13)

for every n≥nk =m9+2k , 1≤σ ≤M and j ∈{1, . . . , N }. Therefore, by Lemma 3.2,
since nk doesn’t depend on M and since M is arbitrary, it follows that λσ,n; j ,
j = 1, . . . , N , are absolutely continuous with continuous density for every n ≥ n0

and every σ ≥ 1, while Gσ,n; j (x) ∈ Ck(CN ) for every j ∈ {1, . . . , N }, n ≥ nk and
σ ≥ 1.

On the other hand, by (3-4), (3-5), (3-7), (3-10), (3-11), and (3-12), we have (cf.
[Borchsenius and Jessen 1948, (60); Lee 2014, p. 1830])

|λ̂σ,n+1; j ( y)− λ̂σ,n; j ( y)| � ‖ y‖2
log pn+1

p
2(σ−maxh θFh )

n+1

for every n ≥ 1, σ ≥ 1 and j ∈ {1, . . . , N }. By the triangle inequality we thus get

|λ̂σ,n+k; j ( y)− λ̂σ,n; j ( y)| � ‖ y‖2
n+k∑

m=n+1

log pm

p
2(σ−maxh θFh )
m

≤ ‖ y‖2
∞∑

m=n+1

log pm

p
2(σ−maxh θFh )
m

(3-14)
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for every n, k ≥ 1 and σ ≥ 1. Hence, by Cauchy’s criterion, there exist the limit
functions

λ̂σ ; j ( y)= lim
n→∞

λ̂σ,n; j ( y), j = 1, . . . , N ,

and by (3-14) it is clear that the convergence is uniform in ‖ y‖ ≤ a, for every
a > 0. Therefore, by Lévy’s convergence theorem (see, e.g., Theorem 8.8.1 in
[Bogachev 2007]), we have that λ̂σ ; j ( y) is the Fourier transform of some distribution
function λσ ; j and λσ,n; j → λσ ; j weakly as n→∞, for j = 1, . . . , N . Moreover
by (3-13) we have that we may apply the dominated convergence theorem and thus
λσ ; j are absolutely continuous for every σ ≥ 1 and j ∈ {1, . . . , N }, with density
Gσ ; j (x) ∈ C∞(C) (for the arbitrariness of M and k). Moreover, since Gσ,n; j (x)
and Gσ ; j (x) are determined by the inverse Fourier transform (see Lemma 3.2), the
dominated convergence theorem yields that Gσ,n; j (x) and their partial derivatives
converge uniformly for x ∈ Cn and 1 ≤ σ ≤ M toward Gσ ; j (x) and their partial
derivatives for every j ∈ {1, . . . , N }. �

Theorem 3.4. For any α > 0 and q ≥ 0 the densities Gσ ; j (x) and Gσ,n; j (x),
n ≥ nq , together with their partial derivatives of order ≤ q , have a majorant of the
form Kqe−α‖x‖

2
for every σ ≥ 1, j, l ∈ {1, . . . , N }, j 6= l and τ =±1,±i .

Proof. This is a straightforward adaptation of Theorems 6 and 9 of [Borchsenius
and Jessen 1948]. �

Theorem 3.5. The distribution functions λσ ; j , λσ ; j,l;τ , λσ,n; j and λσ,n; j,l;τ , for
n≥n0, depend continuously on σ , and their densities Gσ ; j (x), Gσ ; j,l;τ (x), Gσ,n; j (x)
and Gσ,n; j,l;τ (x), together with their partial derivatives of order ≤ q if n ≥ nq , are
continuous in σ for every σ ≥ 1, j, l ∈ {1, . . . , N }, j 6= l and τ =±1,±i .

Proof. As in Theorem 9 of [Borchsenius and Jessen 1948] the result follows from
(3-13), (3-14) and the Fourier inversion formula. �

Remark 3.6. As for Remark 2.7, note that Theorems 3.3, 3.4 and 3.5 hold for
σ > 1 because max j θFj <

1
2 by (II). Therefore if we had that max j θFj < κ/2 for

some 0< κ < 1 we would immediately have that (2-4) holds for every σ > κ .

4. Zeros of sums of two Euler products

Let F1(s) and F2(s) be functions satisfying (I) and (II), and c1, c2 ∈ C \ {0}. We
then set

L(s)= c1 F1(s)+ c2 F2(s).

To study the distribution of the zeros of L(s) for σ > 1, we note that, since
F1(s)F2(s) 6= 0 for σ > 1,

L(s)= 0 ⇔ log
(

F1(s)
F2(s)

)
= log

(
−

c2

c1

)
.
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This idea was used by Gonek [1981], and later by Bombieri and Mueller [2008] and
Bombieri and Ghosh [2011]. Moreover, if F1(s) and F2(s) are orthogonal, then it
is easy to show that F1

F2
(s) satisfies (I), (II) and, if we write F1

F2
(s)=

∑
∞

n=1 a(n)n−s ,

∑
p≤x

|a(p)|2

p
= (κ + o(1)) log log x, x→∞, (4-1)

for some constant κ > 0. Therefore Theorem 1.4 follows immediately from the
following more general result on the value distribution of the logarithm of an Euler
product.

Theorem 4.1. Let F(s) be a function satisfying (I), (II) and (4-1), and c ∈ C. Then
the Dirichlet series log F(s)− c has no isolated vertical lines containing zeros in
the half-plane σ > 1.

Proof. The first part of the proof is similar to Borchsenius and Jessen’s application
[1948, Theorems 11 and 13] of their Theorems 5–9 to the Riemann zeta function.

For every n ≥ 1 consider the Dirichlet series log Fn(s), which are absolutely
convergent for σ > θF by Remark 3.1. Let νσ,n be, for every σ > θF , the asymptotic
distribution function of log Fn(s) with respect to |(F ′n/Fn)(s)|2, defined for any
Borel set E ⊆ C by (cf. [Borchsenius and Jessen 1948, §7])

νσ,n(E)= lim
T2−T1→∞

1
T2− T1

∫
Vlog Fn (σ,T1,T2,E)

∣∣∣∣F ′n
Fn
(s)
∣∣∣∣2 dt,

where Vlog Fn (σ, T1, T2, E) = {t ∈ (T1, T2) | log Fn(σ + i t) ∈ E}. For σ ≥ 1, we
compute its Fourier transform and, by the Kronecker–Weyl theorem (see, e.g.,
[Karatsuba and Voronin 1992, §A.8]) we get (cf. [Borchsenius and Jessen 1948, p.
160] or [Lee 2014, p. 1819])

ν̂σ,n(y)=
∫
[0,1]n

exp
(
i Re(log Fn(σ, θ)y)

)∣∣∣∣F ′n
Fn
(σ, θ)

∣∣∣∣2dθ
(3-3)
= λ̂σ,n;1(y),

with N = 1. For simplicity we write λσ,n = λσ,n;1. By the uniqueness of the Fourier
transform (see, e.g., Proposition 3.8.6 in [Bogachev 2007]) we have that νσ,n = λσ,n
as distribution functions for every σ ≥ 1 and n ≥ 1.

By Theorem 3.3 we know that νσ,n=λσ,n is absolutely continuous for n≥n0 with
density Gσ,n(x) which is a continuous function of both σ and x (see Theorem 3.5).
Hence for any n≥n0, x ∈C and σ >θF we have that the Jensen function ϕlog Fn−x(σ )

(see, e.g., Theorem 5 of [Jessen and Tornehave 1945]) is twice differentiable with
continuous second derivative (cf. [Borchsenius and Jessen 1948, §9])

ϕ′′log Fn−x(σ )= 2πGσ,n(x). (4-2)
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Note that in order to apply Theorems 3.3 and 3.5 we have implicitly made use of
the orthogonality hypothesis.

On the other hand, for any 1<σ1 <σ2, by the uniform convergence of log Fn(s)
of Remark 3.1 and by Theorem 6 of [Jessen and Tornehave 1945], we have that

ϕlog Fn−x(σ )→ ϕlog F−x(σ ) as n→∞ (4-3)

uniformly for σ1≤σ ≤σ2. Moreover, by Theorem 3.3, Gσ,n(x) converges uniformly
for σ1≤ σ ≤ σ2 toward Gσ (x), which is continuous in both σ and x . Then, by (4-2),
(4-3), the convexity of ϕlog Fn−x and Theorem 7.17 in [Rudin 1976] we obtain that
for any x ∈C the Jensen function ϕlog F−x(σ ) is twice differentiable with continuous
second derivative

ϕ′′log F−x(σ )= 2πGσ (x).

We fix an arbitrary c∈C and we note the following: Suppose that ϕ′′log F−c(σ0)>0
for some σ0 > 1. Then, by continuity, there exists ε0 > 0 such that ϕ′′log F−c(σ ) > 0
for every σ ∈ (σ0−ε0, σ0+ε0). Then, for any 0<ε<ε0, by Theorem 31 of [Jessen
and Tornehave 1945] and the mean value theorem, we have

lim
T2−T1→∞

Nlog F−c(σ0− ε, σ0+ ε, T1, T2)

T2− T1

=
1

2π
(
ϕ′log F−c(σ0+ ε)−ϕ

′

log F−c(σ0− ε)
)
=

ε

2π
ϕ′′log F−c(σε) > 0,

for some σε ∈ (σ0− ε, σ0+ ε), i.e., there are infinitely many zeros with real part
σ ∈ (σ0− ε, σ0+ ε). This means, by letting ε→ 0+, that σ0 is the limit point of
the real parts of some zeros of log F(s)− c (or σ0 is itself a zero).

Now, suppose there exists ρ0 = β0+ iγ0 with β0 > 1 such that log F(ρ0)−c= 0.
If we suppose that ϕ′′log F−c(β0) > 0, then σ = β0 cannot be an isolated vertical
line containing zeros since β0 is the limit point of the real parts of some zeros.
Suppose otherwise that ϕ′′log F−c(σ̃ )= 0, and for any δ > 0 consider the intervals
I+δ = (σ̃ , σ̃ + δ) and I−δ = (σ̃ − δ, σ̃ ). Note that in general, if ϕ′′log F−c(σ ) = 0
for every σ ∈ (σ1, σ2), for some 1 < σ1 < σ2, then Theorem 31 of [Jessen and
Tornehave 1945] and the mean value theorem imply that log F(s)− c has no zeros
for σ1 < σ < σ2. Therefore, in at least one of I+δ or I−δ there are infinitely many σ
such that ϕ′′log F−c(σ )> 0, for any δ > 0, by almost periodicity. Hence, letting δ→ 0,
we see that there exists a sequence {σδ}δ such that ϕ′′log F−c(σδ) > 0 and σδ→ β0.
Since every σδ is the limit point of the real parts of some zeros, we conclude that
also β0 is the limit point of the real parts of some zeros. �

5. c-values of sums of at least three Euler products

We first state the following simple result which is a generalization of Lemma 2.4 of
[Lee 2014].
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Lemma 5.1. Let F(s) be a function satisfying (I), (II) and (III), σ0 >
1
2 and k be a

fixed positive integer. Then there exists a positive constant Ak(σ0) such that∫
[0,1]n
|Fn(σ, θ)|

2k dθ ≤ Ak(σ0) and
∫
[0,1]n
|F ′n(σ, θ)|

2k dθ ≤ Ak(σ0)

for every n ≥ 1 and σ ≥ σ0.

Proof. As in Lemma 2.4 of [Lee 2014] the proof follows from a bound of

Jk(z1, . . . , zn, w1, . . . , wn)=

∫
[0,1]n

k∏
j=1

Fn(σ + z j , θ)Fn(σ +w j , θ) dθ

and Cauchy’s integral formula on polydiscs. This bound may be obtained with the
same computations as in Lemma 2.5 of [Lee 2014] by replacing the Ramanujan
bound |a(n)| ≤ 1 with the weaker Ramanujan conjecture |a(n)| �ε nε, where we
take 0< ε < (2σ0− 1)/4. �

Proof of Theorem 1.5. To handle this case we follow an idea of Lee [2014, §3.2]
and we use the distribution functions studied in Section 3, similarly to what we
have done in the previous section for N = 2. We give only a sketch of the proof.

For every n ≥ 1 we write

Ln(s)=
N∑

j=1

c j F j,n(s),

Ln(σ, θ)= Ln(σ, θ1, . . . , θn)=

N∑
j=1

c j F j,n(s, θ1, . . . , θn).

Let νσ,n be the asymptotic distribution function of Ln(s) with respect to |L ′n(s)|
2

defined for any Borel set E ⊆ C by (cf. [Borchsenius and Jessen 1948, §7])

νσ,n(E)= lim
T2−T1→∞

1
T2− T1

∫
VLn (σ,T1,T2,E)

|L ′n(s)|
2 dt,

where VLn (σ, T1, T2, E)= {t ∈ (T1, T2) | Ln(σ + i t) ∈ E}. As in Theorem 4.1, by
the Kronecker–Weyl theorem and the uniqueness of the Fourier transform, we have
that νσ,n = λσ,n , for any n ≥ 1 and σ ≥ 1, where λσ,n is the distribution function of
Ln(s, θ) with respect to |L ′n(s, θ)|

2, defined for every Borel set E ⊆ C by

λσ,n(E)=
∫

WLn (σ,E)
|L ′n(σ, θ)|

2 dθ ,

with WLn (σ, E) = {θ = (θ1, . . . , θn) ∈ [0, 1)n | Ln(σ, θ) ∈ E}. We want to show
that there exists ñ ≥ 1 such that λσ,n , and hence νσ,n , is absolutely continuous with
continuous density, which we call Hσ,n(x), for every n ≥ ñ and σ ≥ 1.
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As in [Lee 2014, pp. 1830–1831], we compute the Fourier transform of λσ,n
and, for σ ≥ 1 and n ≥ n0, we get

λ̂σ,n(y)

=

N∑
j,l=1

c j cl(2π)N
∫

RN
+

∫
RN

exp
(

i
N∑

h=1

|ch y|rh sin(2π(θh −αh))− 2π iθ j + 2π iθl

)

×r jrl Gσ,n; j,l(r)
dr1

r1
· · ·

drN

rN
dθ1 · · · dθN ,

where r = (log r1+2π iθ1, . . . , log rN +2π iθN ), αh is determined by the argument
of ch y, for h = 1, . . . , N , and

Gσ,n; j,l(x)=
{

Gσ,n; j (x), j = l,∑
τ=±1,±i τGσ,n; j,l;τ (x), j 6= l

is defined from the densities of the distribution functions λσ,n; j and λσ,n; j,l;τ of
Section 3.

For any h ∈ {1, . . . , N } and any ε > 0 let

Ah,ε =
{
θ ∈ R | |θ −αh −mπ |< ε for some m ∈ Z

}
.

Then we note that integrating by parts with respect to rh , h=1, . . . , N , and using the
majorant KN exp

(
−
[∑N

h=1 log2 rh+ θ
2
h

])
of Theorem 3.4 for the partial derivatives

up to order N of the density Gσ,n; j,l(r), for n ≥ nN and σ ≥ 1, we obtain (cf. [Lee
2014, p. 1832])∫

R\A1,ε

· · ·

∫
R\AN ,ε

∫
RN
+

exp
(

i Re
( N∑

h=1

rhch ye2π iθh

)
− 2π iθ j + 2π iθl

)
×r jrl Gσ,n; j,l(r)

dr1

r1
· · ·

drN

rN
dθ1 · · · dθN

�

N∏
h=1

∫
R\Ah,ε

1
|ch y| sin(2π(θh −αh))

e−θ
2
h dθh

�
1

(ε|y|)N (5-1)

for every n≥ nN , σ ≥ 1 and y 6= 0. Analogously, integrating by parts with respect to
θh , h = 1, . . . , N , using van der Corput’s lemma for oscillatory integrals (see, e.g.,
Lemma 4.2 in [Titchmarsh 1986]) on each interval [αh+mh/2−ε, αh+mh/2+ε]
with ε < 1

2 , and the majorant KN exp
(
−
[∑N

h=1 log2 rh + θ
2
h

])
of Theorem 3.4 for

the partial derivatives up to order N of the density Gσ,n; j,l(r), n ≥ nN and σ ≥ 1,
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we obtain (cf. [Lee 2014, p. 1832])∫
RN
+

∫
A1,ε

· · ·

∫
AN ,ε

exp
(

i Re
( N∑

h=1

rhch ye2π iθh

)
− 2π iθ j + 2π iθl

)
×r jrl Gσ,n; j,l(r)

dr1

r1
· · ·

drN

rN
dθ1 · · · dθN

�

N∏
h=1

∫
R+

1
|ch y|

e− log2 rh drh

�
1
|y|N

, (5-2)

for every n ≥ nN , σ ≥ 1, |y| ≥maxh 1/|ch| and ε > 0 sufficiently small. Note that
to apply Theorem 3.4 we have implicitly made use of the orthogonality hypothesis.
Fixing ε > 0 sufficiently small so that (5-2) holds and putting together (5-1) and
(5-2), we obtain

|ν̂σ,n(y)| = |λ̂σ,n(y)| � |y|−N
� |y|−3 (5-3)

since N ≥ 3, for every n≥ nN , σ ≥ 1 and |y|≥max(1,maxh |ch|
−1). By Lemma 3.2

we have thus proved that νσ,n is absolutely continuous for every n ≥ ñ = nN and
σ ≥ 1. Moreover, since νσ,n depends continuously on σ (cf. [Borchsenius and
Jessen 1948, §7]), we have that ν̂σ,n is continuous in σ . Therefore (5-3) and the
Fourier inversion formula imply that Hσ,n(x) is continuous in both σ and x . Note
that all implied constants in (5-3) are independent of n.

Now we prove that the absolutely continuous distribution functions λσ,n converge
weakly as n→∞ toward the absolutely continuous distribution function λσ with
density Hσ (x) which is continuous in both σ and x . Moreover, we want to show
that, for any 1 < σ1 < σ2, Hσ,n(x) converges uniformly for σ1 ≤ σ ≤ σ2 toward
Hσ (x) as n→∞.

For this, note that

Ln+1(σ, θ , θn+1)

=

N∑
j=1

c j F j,n(σ, θ)F j,pn+1

(
σ + i

2πθn+1

log pn+1

)
(III)
=

N∑
j=1

c j F j,n(σ, θ)

(
1+

aFj (pn+1)

pσn+1
e2π iθn+1 + Oε

(
1

p2(σ−ε)
n+1

))

= Ln(σ, θ)+
e2π iθn+1

pσn+1

N∑
j=1

c j aFj (pn+1)F j,n(σ, θ)+ Oε

(∑
j |F j,n|

p2(σ−ε)
n+1

)
(5-4)
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for every σ ≥ 1 and 0< ε < 1
2 . Similarly

L ′n+1(σ, θ , θn+1)

= L ′n(σ, θ)+
e2π iθn+1

pσn+1

N∑
j=1

c j aFj (pn+1)
[
F ′j,n(σ, θ)− log pn+1 F j,n(σ, θ)

]
+ Oε

( log pn+1
∑

j |F j,n| + |F ′j,n|

p2(σ−ε)
n+1

)
for every σ ≥ 1 and 0< ε < 1

2 . Hence we have (cf. [Lee 2014, (3.20)])

λ̂σ,n+1(y)− λ̂σ,n(y)

=

∫
[0,1]n+1

[
ei Re(Ln+1(σ,θ ,θn+1)y)− ei Re(Ln(σ,θ)y)

]
|L ′n(σ, θ)|

2 dθ dθn+1

+
2

pσn+1

∫
[0,1]n+1

ei Re(Ln+1(σ,θ ,θn+1)y) Re
(

L ′n(σ, θ)e
2π iθn+1

×

N∑
j=1

c j aFj (pn+1)
(
F ′j,n(σ, θ)− log pn+1 F j,n(σ, θ)

))
× dθ dθn+1

+ Oε

(
log pn+1

p2(σ−ε)
n+1

∫
[0,1]n+1

(
1+

∑
j

|F ′j,n|
)(∑

j

|F j,n| + |F ′j,n|
)

dθ dθn+1

)

+ Oε

(
log2 pn+1

p4(σ−ε)
n+1

∫
[0,1]n+1

(∑
j

|F j,n| + |F ′j,n|
)2

dθ dθn+1

)
. (5-5)

for every σ ≥ 1 and 0< ε < 1
2 .

For the first term, using again |ei t
− 1− i t | ≤ t2/2, we obtain (cf. [Lee 2014,

(3.22)])∣∣∣∣∫ 1

0

[
ei Re(Ln+1(σ,θ ,θn+1)y)− ei Re(Ln(σ,θ)y)

]
dθn+1

∣∣∣∣�ε,a

∑
j |F j,n| + |F j,n|

2

p2(σ−ε)
n+1

for |y| ≤ a, a > 0, σ ≥ 1 and 0< ε < 1
2 . For the second term we get directly from

(5-4) and |ei t
− 1| ≤ |t | that∣∣∣∣∫ 1

0
ei Re(Ln+1(σ,θ ,θn+1)y)e±2π iθn+1 dθn+1

∣∣∣∣�ε,a

∑
j |F j,n|

p(σ−ε)n+1

for |y| ≤ a, a > 0, σ ≥ 1 and 0 < ε < 1
2 . We fix 0 < ε < 1

2 , then putting these
together, by triangle inequality and Lemma 5.1 with σ0 = 1, we get (cf. [Lee 2014,
p. 1826])

|λ̂σ,n+1(y)− λ̂σ,n(y)| �a,ε
log pn+1

p2(σ−ε)
n+1
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uniformly for |y| ≤ a, a > 0, and for every σ ≥ 1. It follows that for any k > 0

|λ̂σ,n+k(y)− λ̂σ,n(y)| �a,ε

n+k∑
m=n+1

log pm

p2(σ−ε)
m

≤

∞∑
m=n+1

log pm

p
2(σ−maxh θFh )
m

(5-6)

for every n, k ≥ 1 and σ ≥ 1, uniformly for |y| ≤ a, a > 0. Hence, by Cauchy’s
criterion, there exists the limit function

λ̂σ (y)= lim
n→∞

λ̂σ,n(y)

and by (3-14) the convergence is uniform in |y| ≤ a for every a > 0. Therefore, by
Lévy’s convergence theorem, we have that λ̂σ (y) is the Fourier transform of some
distribution function λσ , and λσ,n→ λσ weakly as n→∞. Moreover, since the
constants in (5-3) are independent of n, we may apply the dominated convergence
theorem and thus λσ is absolutely continuous for every σ ≥ 1, with continuous (both
in σ and x) density Hσ (x). Furthermore, since Hσ,n(x) and Hσ (x) are determined
by the Fourier inversion formula (see Lemma 3.2), the uniform convergence of
λ̂σ,n(y)→ λ̂σ (y) and (5-3) imply that Hσ,n(x) converges, uniformly with respect
to both 1≤ σ ≤ M , M > 1, and x ∈ C, toward Hσ (x).

Now, similarly to Theorem 4.1, for n ≥ ñ and c ∈ C we have that the Jensen
function ϕLn−c(σ ) is twice differentiable with continuous second derivative (cf.
[Borchsenius and Jessen 1948, §9])

ϕ′′Ln−c(σ )= 2πHσ,n(c). (5-7)

On the other hand, for any 1 < σ1 < σ2, by the uniform convergence of F j,n(s),
j = 1, . . . , N , of Remark 3.1 and by Theorem 6 of [Jessen and Tornehave 1945],
we have that

ϕLn−c(σ )→ ϕL−c(σ ) as n→∞ (5-8)

uniformly for σ1 ≤ σ ≤ σ2. By (5-7), (5-8), the convexity of ϕLn−c(σ ) and The-
orem 7.17 in [Rudin 1976] we obtain that the Jensen function ϕL(σ ) is twice
differentiable with continuous second derivative

ϕ′′L−c(σ )= 2πHσ (c).

At this point, the same final argument of Theorem 4.1 yields the result. �

6. Dirichlet series with vertical strips without zeros

In this section we collect the proofs of Theorems 1.1, 1.2 and 1.8.
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Proof of Theorem 1.1. Since L x(s) is not identically zero, then σ ∗(L x) < +∞

and hence we fix

σ2 > σ1 >max
(
σ ∗(L x), max

1≤ j≤N
σ ∗(Fj )

)
.

Then, by definition of σ ∗(L x) and Theorem 8 of [Jessen and Tornehave 1945],
there exists ε > 0 such that |L x(s)| > ε for σ1 ≤ σ ≤ σ2. Moreover, there exists
M > 0 such that |Fj (s)| ≤ M for σ1 ≤ σ ≤ σ2. On the other hand, if we consider
the hyperplanes H(σ )= {z ∈ CN

| L z(σ )= 0} we have

lim
σ→+∞

dist(x, H(σ ))= lim
σ→+∞

|L x(σ )|√∑
j |Fj (σ )|2

= 0.

Therefore there exists β > σ2 such that dist(x, H(β)) < ε/(4
√

N M). Then for
any 0 6= c ∈ Bε/(2

√
N M)(x) ∩ H(β) we have L c(β) = 0 and, by the triangle and

Cauchy–Schwartz inequalities,

|L c(s)| ≥ |L x(s)| − |L c−x(s)|> ε−
ε

2
=
ε

2
for 1 ≤ σ ∗(L x) < σ1 ≤ σ ≤ σ2 < β ≤ σ ∗(L c). This concludes the proof since
Bε/(2

√
N M)(x) ∩ H(β) clearly contains infinitely many projectively inequivalent

vectors c.

Proof of Theorem 1.2. We write N = k+ 1≥ 2. If N = 2 then the result follows
from Theorem 1.1; so we suppose that N ≥ 3.
Note that x ∈ CN is such that L x(σ ) = 0 for some σ > 1 if and only if x =
(x1, . . . , xN ) belongs to the hyperplane

F1(σ )x1+ · · ·+ FN (σ )xN = 0. (6-1)

If σ >max1≤ j≤N σ ∗(Fj )= σ̃0, then the space of solutions of (6-1) has dimension
N − 1≥ 2 and is generated by

v
(1)
j (σ )=

(
−

1
F1(σ )

, 0, . . . ,
1

Fj (σ )
, . . . , 0

)
, j = 2, . . . , N .

Moreover we define inductively for h = 2, . . . , N − 1 the vectors

v
(h)
j (σ1, . . . , σh)

= v
(h−1)
j (σ1, . . . , σh−1)−

L
v
(h−1)
j (σ1,...,σh−1)

(σh)

L
v
(h−1)
h (σ1,...,σh−1)

(σh)
v
(h−1)
h (σ1, . . . , σh−1),

j = h+ 1, . . . , N . Note that these are well defined linear combinations of v(1)j (σ1),
j = 2, . . . , N , hence solutions of (6-1), if σ1 > σ̃0 and σh > σ

∗(L
v
(h−1)
h (σ1,...,σh−1)

),
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h = 2, . . . , N − 1. Actually, by definition it is clear that, under these conditions,
v
(h)
j (σ1, . . . , σh) is a solution of

F1(σ1)x1+ · · ·+ FN (σ1)xN = 0,
...

F1(σh)x1+ · · ·+ FN (σh)xN = 0.

Moreover, for any 1≤ m ≤ N − 1 we consider the vector

vm(σ1, . . . , σm−1,∞, . . . ,∞)= lim
σm→∞

· · · lim
σN−1→∞

v
(N−1)
N (σ1, . . . , σN−1) (6-2)

and for simplicity we write vN (σ1, . . . , σN−1)= v
(N−1)
N (σ1, . . . , σN−1). Note that

there exists a finite set of explicit conditions on σ1, . . . , σN−1 for which these limits
exist, i.e., there exist σ̃ j , j =1, . . . , N−1, which depend only on the Dirichlet series
F1, . . . , FN , such that vm(σ1, . . . , σm−1,∞, . . . ,∞) exists for every 1≤m≤ N−1
if σl >σ̃l for every l=1, . . . , N−1. These conditions actually correspond to the fact
that the vector vm(σ1, . . . , σm−1,∞, . . . ,∞) is a generator of the one-dimensional
vector space (by (1-2), reordering the functions if needed) defined by the system

F1(σ1)x1+ · · ·+ FN (σ1)xN = 0,
...

F1(σm−1)x1+ · · ·+ FN (σm−1)xN = 0,

a1(1)x1+ · · ·+ aN (1)xN = 0,
...

a1(N −m)x1+ · · ·+ aN (N −m)xN = 0.

Hence, in particular, this implies that the definition of vm(σ1, . . . , σm−1,∞, . . . ,∞)

is independent from the order of the limits and that Lvm(σ1,...,σm−1,∞,...,∞)(σl)= 0,
l = 1, . . . ,m− 1.

We work by induction on h ∈ [1, N − 2]. For h = 1 we fix

σ1,2 > σ1,1 >max
(
σ ∗(Lv1(∞,...,∞)), σ̃0

)
,

and take

ε1 = min
σ1,1≤σ≤σ1,2,t∈R

|Lv1(∞,...,∞)(σ + i t)|> 0

and

M1 = max
1≤ j≤N

max
σ1,1≤σ≤σ1,2,t∈R

|Fj (σ + i t)|<∞.
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Note that M1 > 0 by the choice of σ1,1 and σ1,2. By (6-2), we can choose β1 > σ1,2

such that ∥∥v1(∞, . . . ,∞)− v2(β1,∞, . . . ,∞)
∥∥< ε1

2
√

N M1
.

Then, since v2(β1,∞, . . . ,∞) is a solution of (6-1) with σ = β1, we have that
Lv2(β1,∞,...,∞)(β1)= 0. Moreover for σ1,1 ≤ σ ≤ σ1,2 we have, by the triangle and
Cauchy–Schwartz inequalities,

|Lv2(β1,∞,...,∞)(s)| ≥ |Lv1(∞,...,∞)(s)| − |Lv1(∞,...,∞)−v2(β1,∞,...,∞)(s)|

≥ ε1−
ε1
2
=
ε1
2
= δ1 > 0.

By induction we suppose that for any fixed 1< h ≤ N − 2 there exist

σ1,1 < σ1,2 < β1 < · · ·< σh,1 < σh,2 < βh

and δh > 0 such that

min
1≤l≤h

min
σl,1<σ<σl,2,t∈R

|Lvh+1(β1,...,βh ,∞,...,∞)(σ + i t)|> δh .

These hypotheses mean that the Dirichlet series Lvh+1(β1,...,βh ,∞,...,∞)(s), which
vanishes for s = β1, . . . , βh , has at least h distinct vertical strips without zeros in
the region 1< σ < σ ∗(Lvh+1(β1,...,βh ,∞,...,∞)).

For the inductive step h 7→ h+ 1, we take

σh+1,2>σh+1,1>max
(
σ ∗(Lvh+1(β1,...,βh ,∞,...,∞)), max

h+1≤ j≤N
σ ∗(L

v
(h)
j (β1,...,βh)

), σ̃h

)
,

εh+1 =min
(
δh, min

σh+1,1≤σ≤σh+1,2,t∈R
|Lvh+1(β1,...,βh ,∞,...,∞)(σ + i t)|

)
> 0

and

Mh+1 = max
1≤ j≤N

max
σ1,1≤σ≤σh+1,2,t∈R

|Fj (σ + i t)|<∞.

Note that since σh+1,1 > σ1,2 we have Mh+1 > 0. Then we choose βh+1 > σh+1,2

such that∥∥vh+1(β1, . . . , βh,∞, . . . ,∞)− vh+2(β1, . . . , βh, βh+1,∞, . . . ,∞)
∥∥

<
εh+1

2
√

N Mh+1
,
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which exists by definition. Moreover, by the triangle and Cauchy–Schwartz inequal-
ities, we have that∣∣Lvh+2(β1,...,βh+1,∞,...,∞)(s)

∣∣
≥
∣∣Lvh+1(β1,...,βh ,∞,...,∞)(s)

∣∣− ∣∣Lvh+2(β1,...,βh+1,∞,...,∞)−vh+2(β1,...,βh+1,∞,...,∞)(s)
∣∣

≥ δh −
εh+1

2
≥
εh+1

2
= δh+1

for any σl,1 ≤ σ ≤ σl,2, l = 1, . . . , h+ 1.
When h+ 1= N − 2+ 1= N − 1 we have just one vector

c= vN (β1, . . . , βN−1) ∈ CN
\ {0}

and the corresponding Dirichlet series L c(s) has, as noted above, at least N − 1
distinct vertical strips without zeros in the region 1< σ < σ ∗(L c).

Proof of Theorem 1.8. For any j=1, . . . , N , let αj be a square root of ω j . Without
loss of generality we may suppose that h = 1 and k = 2. Note that, since |ω j | = 1
and ω1 6=ω2 then α1 6= ±α2 and we may suppose α1 /∈R. It follows that the system
of equations

Re(α1)x1+ · · ·+Re(αN )xN = 0,

Im(α1)x1+ · · ·+ Im(αN )xN = 0
(6-3)

defines a real vector space V∞ of dimension N − 2≥ 1 which may be written as

V∞ =

{( ∞∑
j=3

(
Im(α2) Im(α1αj )

Im(α1) Im(α1α2)
−

Im(αj )

Im(α1)

)
t j ,−

∞∑
j=3

Im(α1αj )

Im(α1α2)
t j , t3, . . . , tN

)
∣∣∣∣ t3, . . . , tN ∈ R

}
.

Let v∞∈V∞ be the vector corresponding to a fixed choice (τ1, . . . , τN )∈RN−2
\{0}

and c0 = (α1v∞,1, . . . , αNv∞,N ). We take σ2 > σ1 > max(σ ∗(L c0)), then, by
Theorem 8 of [Jessen and Tornehave 1945], there exists ε > 0 such that |L c0(s)|>ε
for σ1≤σ ≤σ2. Moreover, there exists M>0 such that |Fj (s)|≤M for σ1≤σ ≤σ2.
On the other hand, for any fixed σ > σ2, the system of equations

Re(α1 F1(σ ))x1+ · · ·+Re(αN FN (σ ))xN = 0,

Im(α1 F1(σ ))x1+ · · ·+ Im(αN FN (σ ))xN = 0
(6-4)

defines a real vector space Vσ of dimension at least N−2. However, since Fj (σ )→

a j (1) = 1 as σ →∞, j = 1, 2, there exists σ0 > σ2 such that Vσ has dimension
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N − 2 for every σ > σ0 and

Vσ =

{(
∞∑
j=3

(
Im(α2 F2(σ )) Im(α1αj F1(σ )Fj (σ ))

Im(α1 F1(σ )) Im(α1α2 F1(σ )F2(σ ))
−

Im(αj )Fj (σ )

Im(α1)F1(σ )

)
t j ,

−

∞∑
j=3

Im(α1αj F1(σ )Fj (σ ))

Im(α1α2 F1(σ )F2(σ ))
t j , t3, . . . , tN

) ∣∣∣∣ t3, . . . , tN ∈ R

}
.

Let vσ ∈ Vσ be the vector corresponding to (τ1, . . . , τN ), then ‖v∞− vσ‖→ 0 as
σ →∞. Therefore there exists β > σ0 such that, taking c= (α1vβ,1, . . . , αNvβ,N ),
we have ‖c0− c‖ < ε/(2

√
N M). Then by (6-4) we have that L c(β) = 0 and, by

the triangle and Cauchy–Schwartz inequalities, that

|L c(s)| ≥ |L c0(s)| − |L c−c0(s)|> ε−
ε

2
=
ε

2
for 1≤ σ ∗(L c0) < σ1 ≤ σ ≤ σ2 < σ0 < β ≤ σ

∗(L c). Moreover

8(s)=
N∑

j=1

αjvβ, j8 j (s)=
N∑

j=1

αjvβ, jω j8 j (1− s̄)

=

N∑
j=1

αjvβ, j8 j (1− s̄)=8(1− s̄).
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KĘSTUTIS ČESNAVIČIUS

2091Elementary equivalence versus isomorphism, II
FLORIAN POP

2113On the algebraic structure of iterated integrals of quasimodular forms
NILS MATTHES

2131On the density of zeros of linear combinations of Euler products for σ > 1
MATTIA RIGHETTI

2165Adams operations on matrix factorizations
MICHAEL K. BROWN, CLAUDIA MILLER, PEDER THOMPSON and

MARK E. WALKER

2193Rationality does not specialize among terminal fourfolds
ALEXANDER PERRY

2197Topological noetherianity for cubic polynomials
HARM DERKSEN, ROB H. EGGERMONT and ANDREW SNOWDEN

A
lgebra

&
N

um
ber

Theory
2017

Vol.11,
N

o.9

http://dx.doi.org/10.2140/ant.2017.11.1967
http://dx.doi.org/10.2140/ant.2017.11.2001
http://dx.doi.org/10.2140/ant.2017.11.2091
http://dx.doi.org/10.2140/ant.2017.11.2113
http://dx.doi.org/10.2140/ant.2017.11.2131
http://dx.doi.org/10.2140/ant.2017.11.2165
http://dx.doi.org/10.2140/ant.2017.11.2193
http://dx.doi.org/10.2140/ant.2017.11.2197

	1. Introduction
	2. Radii of convexity of power series
	3. On some distribution functions
	4. Zeros of sums of two Euler products
	5. c-values of sums of at least three Euler products
	6. Dirichlet series with vertical strips without zeros
	Proof of 0=theorem.31=Theorem 1.1
	Proof of 0=theorem.51=Theorem 1.2
	Proof of 0=theorem.241=Theorem 1.8

	Acknowledgments
	References
	
	

