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Adams operations on matrix factorizations
Michael K. Brown, Claudia Miller, Peder Thompson and Mark E. Walker

We define Adams operations on matrix factorizations, and we show these op-
erations enjoy analogues of several key properties of the Adams operations on
perfect complexes with support developed by Gillet and Soulé. As an application,
we give a proof of a conjecture of Dao and Kurano concerning the vanishing of
Hochster’s θ pairing.

1. Introduction

We establish a theory of Adams operations on the Grothendieck group of matrix
factorizations and use these operations to prove a conjecture of Dao and Kurano
[2014, Conjecture 3.1(2)] concerning the vanishing of Hochster’s θ pairing for a
pair of modules defined on an isolated hypersurface singularity.

Let Q be a commutative Noetherian ring and let f ∈ Q. A matrix factorization
of f in Q is a Z/2-graded, finitely generated projective Q-module P = P0⊕ P1,
equipped with an odd degree Q-linear endomorphism d satisfying d2

= f idP . In
other words, a matrix factorization is a pair of maps of finitely generated projective
Q-modules, (α : P1→ P0, β : P0→ P1), satisfying αβ = f idP0 and βα = f idP1 .

When f = 0, a matrix factorization of f is the same thing as a Z/2-graded
complex of finitely generated projective Q-modules. In this case, we have the
evident Z/2-graded analogues of chain maps and homotopies of such. These, in fact,
generalize to an arbitrary f . The matrix factorizations of f ∈ Q form the objects of
a category mf(Q, f ), in which a morphism between objects P and P ′ of mf(Q, f )
is a degree zero Q-linear map g : P→ P ′ such that dP ′◦g= g◦dP . In other words, a
morphism is a pair of maps g0 : P0→ P ′0 and g1 : P1→ P ′1 causing the evident pair of
squares to commute. A homotopy joining morphisms g1, g2 : P→ P ′ in mf(Q, f )
is a Q-linear map h : P → P ′ of odd degree such that dP ′h + hdP = g1 − g2.
The homotopy category of mf(Q, f ) is the category [mf(Q, f )] obtained from
mf(Q, f ) by identifying homotopic morphisms. It is well-known that, when Q is
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regular and f is not a zero divisor, [mf(Q, f )] may be equipped with a canonical
triangulated structure (see, for instance, [Orlov 2004] Section 3.1).

Much of the interest in matrix factorizations arises from the following result. For
a Noetherian ring R, let Db(R) denote the bounded derived category of R. Objects
of Db(R) are bounded complexes of finitely generated R-modules, and morphisms
are obtained from chain maps by inverting the collection of quasiisomorphisms. Let
Perf(R) denote the full triangulated subcategory of Db(R) consisting of bounded
complexes of finitely generated and projective R-modules, and let Dsing(R) denote
the Verdier quotient Db(R)/Perf(R), called the singularity category of R. The
following theorem is essentially due to work of Buchweitz [1986] and Eisenbud
[1980]; this particular formulation of the result is proven by Orlov.

Theorem 1 [Orlov 2004, Theorem 3.9] . If Q is regular and f is not a zero divisor,
there is an equivalence of triangulated categories

[mf(Q, f )] −→∼ Dsing(Q/( f ))

determined by sending a matrix factorization (α : P1→ P0, β : P0→ P1) to coker(α).

Remark 1.1. In [Orlov 2004], Orlov assumes Q contains a field and has finite
Krull dimension, but these assumptions are in fact not needed for this theorem
to hold.

Let R := Q/( f ). Under the assumptions of Theorem 1, the Grothendieck group
K0(mf(Q, f )) of the triangulated category [mf(Q, f )] is isomorphic to the quotient
G0(R)/(im(K0(R)→ G0(R))). So, defining a notion of Adams operations on
K0(mf(Q, f )), in this setting, amounts to defining such operations on this quotient.

For a closed subset Z of Spec(Q), define PZ (Q) to be the category of bounded
complexes of finitely generated and projective Q-modules whose homology is sup-
ported on Z . Gillet–Soulé define lambda and Adams operations on the Grothendieck
group K Z

0 (Q) := K0(P
Z (Q)) [Gillet and Soulé 1987, Sections 3 and 4]. It is

tempting to mimic their approach to define Adams operations on K0(mf(Q, f )),
since mf(Q, f ) is somewhat analogous to PV ( f )(Q). But their construction relies on
the Dold–Kan correspondence relating N-graded complexes to simplicial modules;
since matrix factorizations are Z/2-graded, such an approach is not available for
K0(mf(Q, f )).

Instead, we model our approach after the construction of the cyclic Adams
operations ψ p

cyc on K Z
0 (Q) developed by the authors in [BMTW 2017] (see also

[Atiyah 1966; Haution 2009; Köck 1997]). Let us give a brief summary of the
construction of the operations ψ p

cyc and some of their properties.
Fix a prime p. We assume that p is invertible in Q and that Q contains all p-th

roots of unity (when Q is local, the case of primary interest to us, we can find such
a prime p, at least after passing to a faithfully flat extension of Q). For a perfect
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complex of Q-modules X , let T p(X) denote the p-th tensor power of X , which
comes equipped with a canonical left action by the symmetric group 6p. For a
p-th root of unity w ∈ Q, set T p(X)(w) to be the eigenspace of eigenvalue w for
the action of the p-cycle (1 2 · · · p) on T p(X). We define

ψ p
cyc(X)= [T

p(X)(1)] − [T p(X)(ζ )]

where ζ is a primitive p-th root of unity.
In Sections 2 and 3 of [BMTW 2017], it is established that this formula induces

a well-defined operation on K Z
0 (Q) (see also [Haution 2009]). In fact, by Corollary

6.14 of [BMTW 2017], if p! is invertible in Q, then ψ p
cyc agrees with the p-th

Adams operation on K Z
0 (Q) defined by Gillet–Soulé. More generally, we have:

Theorem 2 [BMTW 2017, Theorem 3.7] . If p is a prime, and Q contains 1/p
and all the p-th roots of unity, then the action of ψ p

cyc on K Z
0 (Q) satisfies the four

Gillet–Soulé axioms defining a degree p Adams operation.

We refer the reader to Theorem 3.7 of [BMTW 2017] for a precise statement of
the four Gillet–Soulé axioms. A consequence of Theorem 2 is that the action of ψ p

cyc

on K Z
0 (Q)Q := K Z

0 (Q)⊗Q is diagonalizable: there is a “weight decomposition”

K Z
0 (Q)Q =

d⊕
i=c

K Z
0 (Q)

(i)
Q
,

where K Z
0 (Q)

(i)
Q

is the eigenspace ofψ p
cyc of eigenvalue pi , and c is the codimension

of Z [loc. cit., Corollary 3.12].
In Section 2, we use the operations ψ p

cyc as a model to construct cyclic Adams
operations ψ p

cyc on the Grothendieck group K0(mf(Q, f )), as well as more general
versions for matrix factorizations with a support condition. In Theorem 2.10 and
Proposition 2.13, we prove:

Theorem 3. If p is prime, and Q contains 1/p and all the p-th roots of unity,
the operator ψ p

cyc on K0(mf(Q, f )) satisfies the evident analogues of the four
Gillet–Soulé axioms for a p-th Adams operation.

Moreover, if Q is regular and f ∈Q is not a zero divisor, the canonical surjection

K V ( f )
0 (Q)� K0(mf(Q, f ))

is compatible with the action of ψ p
cyc.

For Q regular, f not a zero divisor, and R = Q/( f ), given a finitely generated
R-module M , let [M]stable ∈ K0(mf(Q, f )) denote the image of [M] ∈G0(R) under
the canonical surjection G0(R)� K0(mf(Q, f )) given by Theorem 1.
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Corollary 4. Assume Q is a regular ring containing 1/p and all the p-th roots of
unity for some prime p, and suppose f ∈ Q is not a zero divisor. The action of ψ p

cyc

induces an eigenspace decomposition

K0(mf(Q, f ))Q =
d⊕

i=1

K0(mf(Q, f ))(i)
Q
.

Moreover, if M is a finitely generated R-module, then

[M]stable ∈

d⊕
i=codimR M+1

K0(mf(Q, f ))(i)
Q
.

In Section 3, we give an application of the above results. For the rest of this
introduction, assume Q is a regular local ring with maximal ideal m, and assume f
is a nonzero element of m. Assume also that R = Q/( f ) is an isolated singularity;
that is, Rp is regular for all p∈Spec(R)\{m}. Then for any pair of finitely generated
R-modules (M, N ), we have

TorR
i (M, N )∼= TorR

i+2(M, N ) and length TorR
i (M, N ) <∞

for i � 0. This motivates the following definition.

Definition 1.2. With Q, f, R as above, for a pair of finitely generated R-modules
(M, N ), set

θR(M, N )= length(TorR
2i (M, N ))− length(TorR

2i+1(M, N ))

for i � 0.

The pairing θR(− ,− ) is called Hochster’s theta pairing, since it first appeared
in work of Hochster [1981]. The theta pairing should be regarded as the analogue,
for the singularity category Dsing(R), of the intersection multiplicity pairing that
occurs, for example, in Serre’s multiplicity conjectures. There has been much
recent work on better understanding the theta pairing, including when it vanishes
and how it relates to more classical invariants. Buchweitz and van Straten [2012]
show that, for complex isolated hypersurface singularities, the theta pairing can be
recovered from the linking form on the link of an isolated singularity. In the same
setting, Polishchuk and Vaintrob [2012] relate it to the classical residue pairing
using the boundary bulk map. It was conjectured by Dao that θ vanishes for all
isolated hypersurface singularities R such that dim(R) is even, and this has now
been proven in almost all cases; see [Moore et al. 2011; Buchweitz and Van Straten
2012; Polishchuk and Vaintrob 2012; Walker 2017]. We refer the reader to Section 3
of [Dao and Kurano 2014] for additional history of the theta pairing and a list of
several other conjectures.
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One such conjecture, [Dao and Kurano 2014, Conjecture 3.1(2)], is an analogue
of Serre’s vanishing conjecture (see the remark on page 111 of [Serre 2000]). This
conjecture was proven by Dao in the case where R is excellent and contains a
field, using a geometric approach [Dao 2013, Theorem 3.5]. As an application of
the properties of Adams operations on matrix factorizations that we establish in
Section 2, we prove this conjecture in full generality:

Theorem 5 (see Theorem 3.19). Let (Q,m) be a regular local ring and f ∈m with
f 6= 0. Suppose that R = Q/( f ) is an isolated singularity. If M and N are finitely
generated R-modules such that

dim M + dim N ≤ dim R

then θR(M, N )= 0.

We close this introduction with a sketch of our proof of Theorem 5. We easily
reduce to the case where there is a prime p such that Q contains 1/p and all p-th
roots of unity. Given a matrix factorization P = (α : P1→ P0, β : P0→ P1) of f ,
one may obtain a matrix factorization P◦ of − f by negating β. In Proposition 3.18,
we show

θR(M, N )= χ([M]stable ∪ [N ]◦stable),

where −∪− is the pairing induced by tensor product of matrix factorizations, and
χ denotes the Euler characteristic. The assumptions ensure that [M]stable∪[N ]◦stable
is a class in K0(mfm(Q, 0)), the Grothendieck group of Z/2-graded complexes of
finitely generated projective Q-modules with finite length homology, so that χ is
well-defined. By Corollary 4 and the linearity of χ , we may assume that the classes
[M]stable and [N ]stable lie in eigenspaces K0(mf(Q, 0))(i)

Q
and K0(mf(Q, 0))( j)

Q
, re-

spectively, where i+ j>d=dim Q. By properties of the operationsψ p
cyc established

in Theorem 3, [M]stable ∪ [N ]◦stable ∈ K0(mfm(Q, 0))(i+ j)
Q

.
At this point, one would like to argue that K0(mfm(Q, 0))Q= K0(mfm(Q, 0))(d)

Q
,

which would force [M]stable∪[N ]◦stable=0. Indeed, one might expect K0(mfm(Q, 0))
to be generated by the Z/2-folding of the class of the Koszul complex on a regular
sequence of generators of m, which lies in K0(mfm(Q, 0))(d) by the axioms in
Theorem 3; this would be parallel to what occurs for bounded Z-graded complexes.
The proof of Theorem 5 sketched here would then be almost exactly the same as
Gillet and Soulé’s proof of Serre’s vanishing conjecture.

We are not able to prove K0(mfm(Q, 0)) is generated by the Koszul complex, and
indeed we have come to suspect this might be false (see Example 3.6). Fortunately,
for the proof of Dao and Kurano’s conjecture, one needs only the weaker property
that there is an equality of maps χ ◦ψ p

cyc = pdχ from K0(mfm(Q, 0)) to Z; we
prove this in Theorem 3.8.
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2. Adams operations on matrix factorizations

In this section, we define cyclic Adams operations on matrix factorizations, closely
following the construction of cyclic Adams operations on perfect complexes with
support found in Sections 2 and 3 of [BMTW 2017]. We prove these operations
enjoy analogues of many of the key properties of the operations on perfect complexes
with support constructed in [loc. cit.].

2A. Construction. Let Q be a Noetherian commutative ring, f ∈ Q any element
(including possibly f = 0), and G a finite group. Let mf(Q, f ;G) be the category
of G-equivariant matrix factorizations. When G is the trivial group, this is the
category described in the introduction. More generally, an object of mf(Q, f ;G)
is an object P of mf(Q, f ) equipped with a G-action (i.e., a group homomorphism
G → Autmf(Q, f )(P)), and a morphism is a G-equivariant morphism of matrix
factorizations.

The category mf(Q, f ;G) is an exact category, with the notion of exactness
given degree-wise in the evident manner.

Remark 2.1. We could equivalently define an object of mf(Q, f ;G) to consist
of a pair of Q[G]-modules P0 and P1 that are finitely generated and projective as
Q-modules, together with a pair of morphisms of Q[G]-modules, (α : P1→ P0, β :

P0→ P1), such that αβ and βα are each multiplication by f (which is central in
Q[G]). Moreover, if |G| is invertible in Q, we have mf(Q, f ;G)=mf(Q[G], f ).

Example 2.2. If f = 0 (and G is trivial), mf(Q, 0) is the category of Z/2-graded
complexes of finitely generated projective Q-modules, with morphisms being
chain maps.

A homotopy joining morphisms g1, g2 : P→ P ′ in mf(Q, f ;G) is defined just as
in the introduction, with the added condition that it be G-equivariant. In detail, it is a
Q-linear, G-equivariant map h : P→ P ′ of degree 1 such that dP ′h+hdP = g1−g2.
The homotopy category of mf(Q, f ;G) is the category [mf(Q, f ;G)] obtained
from mf(Q, f ;G) by identifying homotopic morphisms.

Given a ring homomorphism Q→ Q′ sending f to f ′, there is an evident functor
mf(Q, f ;G)→mf(Q′, f ′;G) given by extension of scalars along Q→ Q′. When
Q′ = Qp for p ∈ Spec(Q), we write this functor as P 7→ Pp.

For an object P ∈mf(Q, f ;G), define the support of P to be

supp(P)= {p ∈ Spec(Q) | Pp is not homotopy equivalent to 0 in mf(Qp, f ;G)}.

Given a closed subset Z of Spec(Q), define mf Z (Q, f ;G) to be the full subcat-
egory of mf(Q, f ) consisting of objects P satisfying supp(P) ⊆ Z . Note that
mf Z (Q, f ;G) is a full, exact subcategory of mf(Q, f ;G), and [mf Z (Q, f ;G)] is
a full subcategory of [mf(Q, f ;G)].
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We will mainly use the notion of supports for matrix factorizations when f = 0
and G is trivial, in which case objects of mf(Q, 0) are (Z/2-graded) complexes.
One must be careful in this situation not to conflate the notion of being homotopy
equivalent to 0 with being acyclic. The former implies the latter, but the latter does
not imply the former in general. These conditions are equivalent, however, in the
following case:

Lemma 2.3. If Q is a regular ring, an object P ∈mf(Q, 0) is contractible if and
only if H0(P)= H1(P)= 0.

Proof. Suppose P = (α0 : P0→ P1, α1 : P1→ P0) is acyclic, and set M = ker(α1)=

im(α0) and N =ker(α0)= im(α1). We claim that M and N are projective. It suffices
to prove Mp and Np are free for all primes p. Since

0→ Mp→ (P1)p→ (P0)p→ (P1)p→ · · ·

is exact, we see that, for any d, Mp is a d-th syzygy of some other Qp-module.
Taking d > dim(Qp) gives that Mp is free. Similarly, N is projective.

Choose splittings π0 : P0→ N and π1 : P1→ M of the inclusions N ↪→ P0 and
M ↪→ P1. Define A : P0 → N ⊕ M and B : P1 → N ⊕ M to be given by

(
π0
α0

)
and

(
α1
π1

)
, respectively. Set E :=

( 0
0

0
1

)
and F :=

( 1
0

0
0

)
.

We have the following isomorphism of matrix factorizations

P0
α0

//

A
��

P1

B
��

α1
// P0

A
��

N ⊕M E
// N ⊕M F

// N ⊕M

and the bottom matrix factorization is clearly contractible. �

Remark 2.4. When Q is regular, f is not a zero divisor, and G is trivial, the
support of any object of mf(Q, f ) is a subset of

Sing(R) := {p ∈ Spec(R) | Rp is not regular}

where R = Q/( f ), and where we identify Spec R with its image in Spec Q. Thus,
in this case, we have

mf(Q, f )=mfSing(R)(Q, f ).

Eventually, we will be making the additional assumption that R is an isolated
singularity, meaning Q, and hence R, is local, and Sing(R)= {m}.

Define the Grothendieck group K0(mf Z (Q, f ;G)) to be the abelian monoid
given by isomorphism classes of objects of mf Z (Q, f ;G) under the operation of
direct sum, modulo the relations [P] = [P ′] + [P ′′] if there exists a short exact
sequence 0→ P ′ → P → P ′′ → 0 and [P] = [P ′] if P and P ′ are homotopy
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equivalent. As with the K -theory of complexes, K0(mf Z (Q, f ;G)) is an abelian
group, since [P] + [6(P)] = 0, where 6(P) denotes the suspension of P .

For P ∈mf(Q, f ;G) and P ′ ∈mf(Q, f ′;G ′), the tensor product P⊗Q P ′ is the
usual tensor product of Q-modules, with grading determined by |p⊗ p′|= |p|+|p′|
and differential ∂(p⊗ p′)=dP(p)⊗ p′+(−1)|p| p⊗dP ′(p′). The group G×G ′ acts
in the evident manner, and the resulting object belongs to mf(Q, f + f ′;G×G ′),
since ∂2 is multiplication by f + f ′. Note, in particular, that the n-th tensor power
of an object of mf(Q, f ) belongs to mf(Q, n f ).

We proceed to define cyclic Adams operations on K0(mf Z (Q, f )). The con-
struction is closely parallel to that for K Z

0 (Q) given in [BMTW 2017], with one
minor exception: the need to “divide by p”.

For an integer n ≥ 1, we define a functor

T n
:mf Z (Q, f )→mf Z (Q, n f ;6n)

given, on objects, by sending P ∈mf Z (Q, f ) to the matrix factorization

T n(P)=

n times︷ ︸︸ ︷
P ⊗Q · · · ⊗Q P

equipped with the left action of 6n given by

σ(p1⊗ · · ·⊗ pn)=±pσ−1(1)⊗ · · ·⊗ pσ−1(n).

The sign is uniquely determined by the following rule: if σ is the transposition
(i i + 1) for some 1 ≤ i ≤ n− 1 and p1, . . . , pn are homogenous elements of P ,
then

σ(p1⊗ · · ·⊗ pn)= (−1)|pi ||pi+1|kp1⊗ · · · pi−1⊗ pi+1⊗ pi ⊗ pi+2⊗ · · ·⊗ pn.

The rule for morphisms is the evident one.
Following Section 2 of [BMTW 2017], for any i and j , let 6i, j be the image of

the canonical homomorphism 6i ×6 j ↪→6i+ j , and define a pairing

?i, j : K0(mf Z (Q, i f );6i )×K0(mf Z (Q, j f );6 j )→ K0(mf Z (Q, (i+ j) f );6i+ j )

induced by the bifunctor (P, P ′) 7→ Q[6i+ j ] ⊗Q[6i, j ] P ⊗Q P ′. This pairing is
well-defined, commutative, and associative, by an argument identical to the proof
of Lemma 2.4 in [loc. cit.].

The proof of Theorem 2.2 in [loc. cit.] also holds nearly verbatim for matrix
factorizations and leads to a proof of:

Theorem 2.5. For a commutative Noetherian ring Q, closed subset Z of Spec(Q),
element f ∈ Q, and integer n ≥ 1, there is a function

tn
6 : K0(mf Z (Q, f ))→ K0(mf Z (Q, n f ;6n))
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such that, for an object P ∈mf Z (Q, f ), we have

tn
6([P])= [T

n(P)].

Remark 2.6. As in [BMTW 2017, §5], if k is a positive integer such that k! is
invertible in Q, then one can use Theorem 2.5 to establish an operation λk on
K0(mf Z (Q, f )) that is induced from the k-th exterior power functor. Since we
won’t use such operations in this paper, we omit the details.

We now assume p is a prime that is invertible in Q, and we define C p to be the
subgroup of 6p generated by the p-cycle (1 2 · · · p). For any p-th root of unity
ζ belonging to Q (including the case ζ = 1), let Qζ denote the Q[C p]-module Q
equipped with the C p-action σq = ζq . For P ∈mf Z (Q, p f ;C p), we define

P (ζ ) := HomQ[C p](Qζ , P)= ker(σ − ζ : P→ P).

Since p is invertible and ζ belongs to Q, the module Qζ is a direct summand of
Q[C p], and so P 7→ P (ζ ) is an exact functor. It therefore induces a map

φ
p
ζ : K0(mf Z (Q, p f ;C p))

[P]7→[P(ζ )]
−−−−−−→ K0(mf Z (Q, p f )),

and so we may form the composition

K0(mf Z (Q, f ))
t p
6
−→ K0(mf Z (Q, p f ;6p))

res
−→K0(mf Z (Q, p f ;C p))

φ
p
ζ
−→ K0(mf Z (Q, p f )).

We come upon the need to “divide by p”. In general, if u ∈ Q is a unit, we define
an autoequivalence

multu :mf Z (Q, f )→mf Z (Q, u f )

by sending a matrix factorization (α, β) to (α, uβ). (Its inverse is given by multu−1 .)
For example, in Section 3C, we will employ the functor mult−1, which we will write
as mult−1(P)= P◦. Here, we use mult1/p, and we define t p

ζ to be the composition

K0(mf Z (Q, f ))
φ

p
ζ ◦res ◦t p

6
−−−−−−→ K0(mf Z (Q, p f ))

mult1/p
−−−→ K0(mf Z (Q, f )).

Let Ap denote the subring of C given by Z[1/p, e2π i/p
].

Definition 2.7. Assume p is a prime, Q is a (commutative, Noetherian) Ap-algebra,
f is any element of Q, and Z is a closed subset of Spec(Q). Define

ψ p
cyc =

∑
ζ

ζ t p
ζ : K0(mf Z (Q, f ))→ K0(mf Z (Q, f )),

where the sum ranges over all p-th roots of unity. (In this formula, the ζ occurring
as a coefficient is interpreted as belonging to Z[e2π i/p

] whereas the ζ occurring as
a subscript denotes its image in Q under the map Ap→ Q.)
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Remark 2.8. The image of ψ p
cyc is contained in the group K0(mf Z (Q, f )) ⊗Z

Z[e2π i/p
]. But, by an argument identical to the proof of Corollary 3.5 in [BMTW

2017], we have ∑
ζ

ζ t p
ζ = t p

1 − t p
ζ ′

for any fixed primitive p-th root of unity ζ ′, and thus the image of ψ p
cyc can be

taken to be K0(mf Z (Q, f )).

Remark 2.9. Setting φ p
=
∑

ζ ζφ
p
ζ , one gets another formulation

ψ p
cyc =mult1/p ◦φ

p
◦ res ◦t p

6.

2B. Axioms for Adams operations on matrix factorizations à la Gillet–Soulé. In
this subsection, we show the operations ψ p

cyc satisfy the following analogues of the
axioms of Gillet and Soulé (see Theorem 3.7 in [BMTW 2017]).

Theorem 2.10. Assume p is a prime, Q is a (commutative, Noetherian) Ap-algebra,
f, f1, f2 are any elements of Q, and Z is a closed subset of Spec(Q):

(1) ψ p
cyc is a group endomorphism of K0(mf Z (Q, f )).

(2) For α ∈ K0(mf Z (Q, f1)) and β ∈ K0(mfW (Q, f2)),

ψ p
cyc(α ∪β)= ψ

p
cyc(α)∪ψ

p
cyc(β) ∈ K0(mfZ∩W (Q, f1+ f2)),

where ∪ is the multiplication rule on Grothendieck groups induced by tensor
product. The three operators ψ p

cyc in the equation are, from left to right, acting
on K0(mfZ∩W (Q, f1+ f2)), K0(mf Z (Q, f1)), and K0(mfW (Q, f2)).

(3) ψ p
cyc is functorial in the following sense: Suppose ρ : Q → Q′ is map of

Ap-algebras, f ′ = ρ( f ), and ρ̃−1(Z) ⊆ Z ′ where ρ̃ : Spec Q′→ Spec Q is
the induced map on spectra. Then extension of scalars along ρ induces a map
K0(mf Z (Q, f ))→ K0(mfZ ′(Q′, f ′)) that commutes with the actions of ψ p

cyc.

(4) If f = gh, so that (g, h) := (Q g
−→Q, Q h

−→Q) is an object of mfV (g,h)(Q, f ),
we have

ψ p
cyc[(g, h)] = p[(g, h)].

Proof. The proofs of (1)–(3) are essentially identical to the proofs of parts (1)–(3) of
Theorem 3.7 in [BMTW 2017]. As for (4), let (0, 0) denote the matrix factorization
(Q 0
−→ Q, Q 0

−→ Q) of 0, and let X denote the tensor product

(g, ph)⊗Q (0, 0)⊗Q · · · ⊗Q (0, 0).

Set ζ := e2π i/p and σ := (1 2 · · · p) ∈ C p. We equip X with a C p action by
letting σ act on the i-th factor of X in the following way: If x has odd degree,
σ · x = ζ i−1x . If x has even degree, σ · x = x .
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We claim that there is an isomorphism

T p([g, h])∼= (g, ph)⊗Q (0, 0)⊗Q · · · ⊗Q (0, 0)

in mfV (g,h)(Q, p f ;C p). To prove the claim, let V be a free Q-module of rank p with
a fixed basis {e0, . . . , ep−1}. We identify the underlying Q-modules of T p((g, h))
and X with the exterior algebra

∧
V of V ; under this identification, the action of

C p on T p((g, h)) is given by

σ(ei1 ∧ · · · ∧ ein )= eσ−1(i1) ∧ · · · ∧ eσ−1(in),

and the action of C p on X is given by

σ(ei1 ∧ · · · ∧ ein )= ζ
i1+···+in ei1 ∧ · · · ∧ ein .

For 0≤ i≤ p−1, define vi :=1/p
∑

j ζ
i j e j . Then v0, . . . , vp−1 form a basis of V .

Let α :
∧

V →
∧

V denote the Q-algebra automorphism given by ei 7→ vi . Then
α yields an isomorphism T p((g, h))−→∼ X of C p-equivariant matrix factorizations;
this proves the claim.

(In checking the details here, it is useful to note the following: The “differential”
on T p((g, h)) is given by s0+s1, where s0 is left-multiplication by h(e0+· · ·+ep−1),
and s1 is given by the Koszul differential on the sequence (g, g, . . . , g). Similarly,
the “differential” on X is given by t0+ t1, where t0 is left-multiplication by phe0

and t1 is given by the Koszul differential on the sequence (g, 0, . . . , 0).)
By Remark 2.9, and the result analogous to Lemma 3.11 of [BMTW 2017] for

matrix factorizations (with essentially the same proof), we have

ψ p
cyc([(g, h)])=mult1/p

(
φ p([(g, ph)])∪φ p([(0, 0)])∪ · · · ∪φ p([(0, 0)])

)
.

Here, φ p acts as the identity on the first factor, which is equipped with the trivial
action of C p. Furthermore, direct calculation on the (i+1)-st factor yields

φ p([(0, 0])= [I ] + ζ i
[6 I ] = (1− ζ i )[I ]

where I denotes the unit matrix factorization (0 0
−→Q, Q 0

−→0). Thus, one obtains

ψ p
cyc([(g, h)])=mult1/p([(g, ph)] ∪ [I ] ∪ · · · ∪ [I ])

p−1∏
i=1

(1− ζ i )= p[(g, h)],

since
∏p−1

i=1 (1− ζ
i )= p. �

Corollary 2.11. If a = (a1, . . . , an) is a sequence of elements in an Ap-algebra Q
and K (a) is the associated Z/2-folded Koszul complex, regarded as an object of
mfV (a1,...,an)(Q, 0), then

ψ p
cyc([K (a)])= pn

[K (a)] ∈ K0(mfV (a1,...,an)(Q, 0)).
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Proof. This follows from parts (2) and (4) of the theorem, because K (a) is the
tensor product of the matrix factorizations (ai , 0) and Z/2-folding commutes with
tensor product. �

2C. Diagonalizability. Suppose Q is a regular ring and f ∈ Q is a not a zero
divisor. Recall, from the introduction, that PV ( f )(Q) denotes the category of
bounded complexes of finitely generated and projective Q-modules whose homology
is supported on V ( f ), and K V ( f )

0 (Q) denotes its Grothendieck group. In this
subsection, we construct a surjection

ρ f : K
V ( f )
0 (Q)� K0(mf(Q, f ))

that commutes with the actions of ψ p
cyc. Using this, and Corollary 3.12 of [BMTW

2017] (the proof of which is really due to Gillet–Soulé), we deduce that the action
of ψ p

cyc on K0(mf(Q, f ))Q decomposes the latter into eigenspaces of the expected
weights.

Let K f denote the Koszul dga associated to f , so that, as a Q-algebra, K f =

Q[ε]/(ε2) with |ε| = 1, and it is equipped with the Q-linear differential d satisfying
d(ε) = f . Let P(K f /Q) denote the full subcategory of the category of dg-K f -
modules consisting of those that are finitely generated and projective as Q-modules.
An object of P(K f /Q) is thus a bounded complex P of finitely generated projective
Q-modules equipped with a degree one Q-linear map s : P· → P·+1 satisfying
dPs+sdP = f and s2

= 0. (The map s is given by multiplication by ε.) A morphism
from (P, dP , s) to (P ′, dP ′, s ′) is a chain map g such that gs = s ′g. A homotopy
from g1 to g2 is a degree one map h such that dP ′h+ hdP = g1− g2 and hs = s ′h.

There are functors

PV ( f )(Q) F
←− P(K f /Q) Fold

−−−→mf(Q, f ),

where F is the forgetful functor that sends (P, dP , s) to (P, dP), and Fold sends
(P, d, s) to the following matrix factorization: the even degree part is

⊕
i P2i , the

odd degree part is
⊕

i P2i+1 and the degree one endomorphism is ∂ := d + s.
Define K0(P(K f /Q)) to be the Grothendieck group of objects modulo relations

coming from short exact sequences and homotopy equivalences as usual.

Lemma 2.12. If f is not a zero divisorin a regular ring Q, the functor F induces
an isomorphism

K0(P(K f /Q))−→∼ K V ( f )
0 (Q).

Proof. Let R = Q/( f ). One has an evident quasiisomorphism K f −→
∼ R of dga’s,

and hence an equivalence of triangulated categories Db(R)−→∼ Db(K f ) induced
by restriction of scalars. Thus, one has an isomorphism

G0(R)= K0(Db(R))−→∼ K0(Db(K f )).
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We may model Db(K f ) by semiprojective K f -modules with finitely generated
homology. Since Q is regular, the good truncation of such a complex in sufficiently
high degree is a complex of projective Q-modules. It thus follows from Quillen’s
resolution theorem that the inclusion map determines an isomorphism

K0(P(K f /Q))−→∼ K0(Db(K f )).

We thus obtain an isomorphism G0(R)−→∼ K0(P(K f /Q)), which we can describe
explicitly as follows: If M is a finitely generated R-module, form a (possibly
infinite) K f -semiprojective resolution P −→∼ M of M . Then the map sends [M] to
[P ′] where P ′ is a good truncation of P in sufficiently high degree.

We also have the more classical isomorphism G0(R)−→∼ K V ( f )
0 (Q), sending [M]

to the class of a Q-projective resolution of M . Since the complex P ′ constructed
above is an example of such a resolution, it is clear that the triangle

K0(P(K f /Q)) F
// K V ( f )

0 (Q)

G0(R)

∼=

ff

∼=

99

commutes. �

The functor Fold induces a map from K0(P(K f /Q)) to K0(mf(Q, f )), and
thus, using the lemma, we obtain the desired map ρ f : K

V ( f )
0 (Q)→ K0(mf(Q, f )).

Explicitly, the construction shows that if an object P ∈ PV ( f )(Q) admits a degree
one map s satisfying ds+ sd = f and s2

= 0, then ρ f ([P])= [Fold(P, d, s)]. In
particular, the map ρ f is surjective, since for a matrix factorization (α : P1→ P0, β :

P0→ P1) ∈mf(Q, f ), we have (α, β)= Fold(P, α, β).
Since there exists an isomorphism G0(Q/( f ))−→∼ K V ( f )

0 (Q) which sends the
class of a finitely generated Q/( f )-module to the class of a chosen Q-projective
resolution of it, we obtain a surjective map

G0(Q/( f ))� K0(mf(Q, f )).

Note that this surjection agrees with the one induced by the inverse of the equivalence
[mf(Q, f )] −→∼ Dsing(Q/( f )) from Theorem 1 of the introduction.

Given a finitely generated Q/( f )-module M , let [M]stable ∈ K0(mf(Q, f )) de-
note the image of [M] under the above surjection G0(Q/( f ))� K0(mf(Q, f )).
Explicitly, for such an M , one may find a Q-projective resolution (P, d) of it for
which there exists a degree one endomorphism s of P satisfying ds+ sd = f and
s2
= 0 (by taking, for instance as above, a good truncation in sufficiently high degree

of a K f -semiprojective resolution P −→∼ M). Then [M]stable = [Fold(P, d, s)].
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We will use the following result to deduce the diagonalizability of ψ p
cyc on the

Grothendieck group of matrix factorizations from the corresponding result for
complexes.

Proposition 2.13. Assume Q is a regular Ap-algebra and f ∈ Q is a not a zero
divisor. The map ρ f commutes with the Adams operations ψ p

cyc.

Proof. We need to show the diagram

K V ( f )
0 (Q)

ρ f
//

ψ
p
cyc
��

K0(mf(Q, f ))

[Y ]7→[T p(Y )(1)]−[T p(Y )(ζ )]
��

K V ( f )
0 (Q)

ρp f
//

=

��

K0(mf(Q, p f ))

mult1/p

��

K V ( f )
0 (Q)

ρ f
// K0(mf(Q, f ))

commutes.
It suffices to check the commutativity of the top square on classes [P] for which

there exists an s with ds+ sd = f and s2
= 0. Recall that the induced differential

T p(d) on T p(P) is given by

T p(d)(x1⊗ · · ·⊗ x p)=

p∑
i=1

(−1)|x1|+···+|xi−1|x1⊗ · · ·⊗ d(xi )⊗ · · ·⊗ x p,

and we define T p(s) to be the degree one map given by the same formula with s in
place of d. Then T p(d)T p(s)+ T p(s)T p(d)= p f and T p(s)2 = 0. Moreover, it
follows from the definitions that there is a canonical isomorphism

T p(Fold(P, d, s))∼= Fold(T p(P), T p(d), T p(s)) ∈mf(Q, p f ),

and this isomorphism is equivariant for the action of 6p. The commutativity of the
top square in the diagram follows.

The bottom square commutes by the more general lemma below. �

Lemma 2.14. If Q is a regular, f ∈ Q is not a zero divisor, and u ∈ Q is a unit,
the triangle

K0(mf(Q, f ))

multu

��

K V ( f )
0 (Q)

ρ f 33 33

ρu f

++ ++

K0(mf(Q, u f ))

commutes.
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Proof. Again, it suffices to check the commutativity of the diagram on classes
[P] such that P is a complex with differential d for which there exists an s with
ds+ sd = f and s2

= 0. If [P] is such a class, ρ f ([P])= [Fold(P, d, s)].
Before applying ρu f , first replace (P, d) by the isomorphic complex (P ′, d ′)

with P ′i = Pi for all i and with d ′i = di for i odd and d ′i = udi for i even. Defining
s ′ as s ′i = si for i odd and s ′i = usi for i even, one has d ′s ′ + s ′d ′ = u f . Then
ρu f ([P])= [Fold(P,′ d ′, s ′)] =multu([Fold(P, d, s)])= (multu ◦ρ f )([P]). �

Theorem 2.15. Assume Q is a regular Ap-algebra of dimension d and f ∈ Q is
not a zero divisor. There is a decomposition

K0(mf(Q, f ))Q =
d⊕

i=1

K0(mf(Q, f ))(i)
Q
,

which is independent of p, such that ψ p
cyc acts on K0(mf(Q, f ))(i)

Q
as multiplication

by pi . Moreover, for a finitely generated Q/( f )-module M , we have

[M]stable ∈

d⊕
i=codimQ/( f ) M+1

K0(mf(Q, f ))(i)
Q
.

Proof. This follows from Corollary 3.12 of [BMTW 2017] and Proposition 2.13 by
defining K0(mf(Q, f ))(i)

Q
to be the image of K V ( f )

0 (Q)(i)
Q

under ρ f ⊗Q. �

We close this subsection with a technical result needed below.

Corollary 2.16. If Q is a regular Ap-algebra for a prime p, f ∈ Q is not a zero
divisor, and u ∈ Q is a unit, we have an equality of maps ψ p

cyc◦multu =multu ◦ψ
p
cyc

from K0(mf(Q, f )) to K0(mf(Q, u f )).

Proof. By Proposition 2.13, the diagonal maps in the commutative diagram of
Lemma 2.14 commute with the action of ψ p

cyc, and these maps are surjective. �

3. Dao and Kurano’s Conjecture

In this section, we apply the results of Section 2 to give a proof of Theorem 5 from
the introduction.

3A. Some properties of Z/2-graded complexes. We will need some general re-
sults about Z/2-graded complexes. Much of what we need holds in great generality,
and so we start by working over a Noetherian commutative ring B.

Let LF(B, 0) denote the abelian category of all Z/2-graded complexes of B-
modules (“LF” stands for “linear factorization”), and let lf(B, 0) denote the full
subcategory of LF(B, 0) consisting of complexes whose components are finitely
generated B-modules. An object of LF(B, 0) consists of a pair of B-modules,
M0 and M1, together with maps d0

: M0
→ M1 and d1

: M1
→ M0 such that
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d1
◦ d0
= 0= d0

◦ d1. Morphisms are given by the evident Z/2-graded analogues
of chain maps. We also have the evident Z/2-versions of quasiisomorphisms
and homotopies of chain maps. For objects X, Y ∈ LF(B, 0), let HomLF(X, Y )
denote the Z/2-analogue of the mapping complex construction. So HomLF(X, Y )∈
LF(B, 0) with HomLF(X, Y )ε =

⊕
ε′+ε′′=ε HomB(X ε′, Y ε

′′

). Note that the zero
cycles in HomLF(X, Y ) are, by definition, the set of morphisms from X to Y in
LF(B, 0), and H 0 HomLF(X, Y ) is the set of morphisms modulo homotopy.

We write X ⊗LF Y ∈ LF(B, 0) for the evident Z/2-graded analogue of the tensor
product of complexes, so that

(X ⊗LF Y )ε =
⊕

ε=ε′+ε′′

X ε′
⊗B Y ε

′′

.

We will also need the notion of the totalization Tot(X ·) of a bounded complex

X · := (0→ Xm→ · · · → X0→ 0)

of objects of LF(B, 0), defined in a manner similar to the Z-graded setting. In more
detail, we have

Tot(X ·)ε =
m⊕

i=0

X i+ε
i ,

with superscripts taken modulo 2. Moreover, if

0→ Xm→ · · · → X0→ M→ 0

is an exact sequence in LF(B, 0), then there is a natural quasiisomorphism

Tot(X ·)−→∼ M

in LF(B, 0).
For M ∈ LF(B, 0), define Z(M) to be the Z/2-graded module consisting of

the kernels of the two maps comprising the complex M , and define B(M) to be
the Z/2-graded module given by the images of the two maps comprising M . Let
H(M) denote the Z/2-graded module consisting of the homology modules of M .
Each of B, Z , and H can be interpreted as a functor from LF(B, 0) to itself, and
they restrict to functors from lf(B, 0) to itself. Note that B(M) ⊆ Z(M) and
H(M)= Z(M)/B(M).

Recall that mf(B, 0) is the full subcategory of lf(B, 0) consisting of complexes
whose components are projective B-modules.

Definition 3.1. An object X ∈mf(B, 0) is called proper if Z(X), B(X) and H(X)
are all projective R-modules.

For M ∈ lf(B, 0), an exact sequence of the form

· · · → Xm→ · · · → X1→ X0→ M→ 0
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such that X i ∈mf(B, 0) is proper for all i and each of the induced sequences

· · · → B(Xm)→ · · · → B(X1)→ B(X0)→ B(M)→ 0,

· · · → Z(Xm)→ · · · → Z(X1)→ Z(X0)→ Z(M)→ 0,

· · · → H(Xm)→ · · · → H(X1)→ H(X0)→ H(M)→ 0

is also exact is called a Cartan–Eilenberg resolution of M . Such a resolution is
bounded if X j = 0 for all j � 0.

Lemma 3.2. If B is a Noetherian commutative ring, and at least one of X, Y ∈
mf(B, 0) is proper, then there is a natural isomorphism

H(X)⊗LF H(Y )−→∼ H(X ⊗LF Y ).

Proof. The proof is the same as for the classical Künneth Theorem. �

Lemma 3.3. If B is a Noetherian commutative ring, then every M ∈ lf(B, 0) admits
a Cartan–Eilenberg resolution. If B is regular, every M ∈ lf(B, 0) admits a bounded
Cartan–Eilenberg resolution.

Proof. Choose projective resolutions of B0(M), B1(M), H0(M) and H1(M), and
make repeated use of the horseshoe lemma, just as in the proof of the classical
version of this result. If B is regular, all of the chosen projective resolutions in the
proof may be chosen to be bounded. �

Recall that [mf(B, 0)] denotes the category with the same objects as mf(B, 0)
and with morphism sets given by Hom[mf(B,0)](X, Y ) := H 0(HomLF(X, Y )). We
write D(lf(B, 0)) for the category obtained from lf(B, 0) by inverting all quasiiso-
morphisms.

Proposition 3.4. If B is regular, the canonical functor

[mf(B, 0)] −→∼ D(lf(B, 0))

is an equivalence.

Proof. Let M be an object in D(lf(B, 0)). Applying Lemma 3.3, choose a bounded
Cartan–Eilenberg resolution X · of M . Then the canonical map Tot(X ·)→ M is
a quasiisomorphism, and Tot(X ·) is an object of mf(B, 0); thus, the functor is
essentially surjective. It is fully faithful by Lemma 2.3. �

We are especially interested in complexes with finite length homology. Let
lf fl(B, 0) and mf fl(B, 0) denote the full subcategories of lf(B, 0) and mf(B, 0)
consisting of those complexes M such that H 0(M) and H 1(M) are finite length
B-modules. Since this condition is preserved by quasiisomorphism, we may form
[mf fl(B, 0)] and D(lf fl(B, 0)), and they may be identified as full subcategories of
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[mf(B, 0)] and D(lf(B, 0)). Moreover, it follows from Proposition 3.4 that the
canonical functor induces an equivalence

[mf fl(B, 0)] −→∼ D(lf fl(B, 0)),

provided B is regular.
It will be convenient to give an alternative description of the category LF(B, 0)

and of the constructions just described. Fix a degree two indeterminate t and form
the Z-graded algebra B̃ := B[t, t−1

], which we regard as a dg-ring with trivial
differential. Recall that a dg-B̃-module is a graded B̃-module M equipped with a
degree one B̃-linear map d : M → M such that d2

= 0. Since t is a degree two
invertible element, a dg-B̃-module is the same things as a Z-graded complex of
B-modules M together with a specified isomorphism t : M −→∼ M[2] of complexes.
A morphism between two such pairs, say from (M, t) to (M ′, t ′), is a chain map
from M to M ′ that commutes with t and t ′. There is an evident equivalence of
abelian categories

dg -B̃- Mod−→∼ LF(B, 0)

that sends a dg-B̃-module M to the object

(M0 d
−→M1 t−1d

−−−→M0)

of LF(B, 0). Moreover, the notions of mapping complex, tensor product, quasi-
isomorphism, homotopy equivalence and totalization defined above for LF(B, 0)
correspond to the standard notions for dg-modules. This equivalence thus allows us
to employ standard results from differential graded algebra.

3B. Adams operations on Z/2-graded complexes with finite length homology.
Let Q be a regular local ring with maximal ideal m. Recall that mfm(Q, 0) is the
category of Z/2-graded complexes of finite rank free Q-modules whose homology
has support in {m}; notice that mfm(Q, 0)=mf fl(Q, 0), where the right-hand side
is as defined in Section 3A.

Recall that Km
0 (Q) is the Grothendieck group of the category of bounded Z-

graded complexes of projective Q-modules whose homology has support in {m}. It
is easy to prove that Km

0 (Q) is a free abelian group of rank one, generated by the
class of the Koszul complex on a regular system of generators of m. One might
thus expect the answer to the following question to be positive:

Question 3.5. For a regular local ring (Q,m), is K0(mfm(Q, 0)) a free abelian
group of rank one, generated by the Z/2-folded Koszul complex?

We know the answer to be “yes” if dim(Q)≤ 2, but the general situation remains
unknown. The following example illustrates the difficulty:
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Example 3.6. Let (Q,m) be a regular local ring of dimension three, and suppose
x, y, z form a regular sequence of generators for the maximal ideal m. Let

0→ Q i
−→ Q3 A

−→ Q3 p
−→ Q→ 0

be the usual Koszul complex on x, y, z (so that, for example, p is given by the row
matrix (x, y, z)). The Z/2-folding of this Koszul complex,

K :=

(
Q3
⊕ Q

[
A
0

0
0

]
−−−→ Q3

⊕ Q

[
0
p

i
0

]
−−−→ Q3

⊕ Q

)
,

determines a class [K ] in K0(mfm(Q, 0)).
Now define B : Q3

→ Q3 to be the map i ◦ p. Then AB = 0 = B A, so that
X = (Q3 A

−→ Q3 B
−→ Q3) is a Z/2-graded complex. Moreover, ker(B) = im(A)

and ker(A)/ im(B)∼= Q/m, so that X ∈mfm(Q, 0). We do not know whether [X ]
is a multiple of [K ] in K0(mfm(Q, 0)).

To explain the relevance of Question 3.5, let us define the Euler characteristic
of an object X ∈mfm(Q, 0) to be

χ(X)= length H 0(X)− length H 1(X).

Then χ determines a group homomorphism

χ : K0(mfm(Q, 0))→ Z.

For example, if K is the Z/2-folded Koszul complex on a regular system of genera-
tors for m, then χ(K )= 1. Assume now that Q is a regular local Ap-algebra for a
prime p (that is, assume p is invertible in Q and that Q contains a primitive p-th
root of unity), so that the cyclic Adams operation ψ p

cyc acts on K0(mfm(Q, 0)). We
have ψ p

cyc([K ])= pd
[K ], where d = dim(Q), by Corollary 2.11. If the answer to

Question 3.5 were affirmative, we would obtain as an immediate consequence the
identity

χ ◦ψ p
cyc = pdχ (3.7)

of maps from K0(mfm(Q, 0)) to Z. Moreover, this equation plays a key role in the
proof of Theorem 5.

Although we are unable to answer Question 3.5, we are nevertheless able to
prove an analogue to [Gillet and Soulé 1987, Proposition 7.1].

Theorem 3.8. For a regular local ring Q of dimension d that is an Ap-algebra for
some prime p, (3.7) holds.

The proof of this theorem occupies the remainder of this subsection.
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Fix a prime p, and let B be a commutative Noetherian Ap-algebra. Recall the
functor t p

ζ defined on mf(B, 0) that sends X to T p(X)(ζ ), where ζ is a p-th root of
unity. It will be useful to interpret this functor as a composition

mf(B, 0) T p
−→mf(B ′, 0) Y 7→Y (ζ )

−−−→mf(B, 0)

where we set B ′ = B[C p] = B[σ ]/(σ p
− 1). Since B is an Ap-algebra, B ′ is

isomorphic to a product of p copies of B equipped with an action of C p. So, an
object of mf(B ′, 0) is the same thing as an object of mf(B, 0) equipped with an
action of C p, and if B is regular, then so is B ′.

The functors above preserve the condition that homology has finite length, and
they send homotopic maps to homotopic maps, so that we have an induced functor

t p
ζ : [mf fl(B, 0)] → [mf fl(B, 0)]

given as the composition of functors

[mf fl(B, 0)] T p
−→[mf fl(B ′, 0)] Y 7→Y (ζ )

−−−→[mf fl(B, 0)].

We will need a “derived” version of the functor t p
ζ . When B is regular, then we

may use the equivalence of Proposition 3.4 to obtain a functor

tp
ζ : D(lf

fl(B, 0))→ [mf fl(B, 0)].

Explicitly, for M ∈ lf fl(B, 0), tp
ζ (M)= t p

ζ (P) where P is any object of mf fl(B, 0)
for which there exists a quasiisomorphism P −→∼ M .

Given M ∈ lf(B, 0), recall that H(M) denotes the object of lf(B, 0) given by
the Z/2-graded B-module with components H 0(M) and H 1(M), regarded as a
complex with trivial differential. In terms of the dg-ring B̃, H(M) corresponds to
the homology of a dg-B̃-module, which is naturally a dg-B̃-module with trivial
differential (since B̃ has trivial differential). If M ∈ lf fl(B, 0), we define its Euler
characteristic by

χ(M) := length H 0(M)− length H 1(M),

as above.

Lemma 3.9. If B is a regular Ap-algebra, then for any M ∈ lf fl(B, 0) and any p-th
root of unity ζ , we have

χ(tp
ζ (M))= χ(t

p
ζ (H(M))).

Theorem 3.8 is a relatively easy consequence of Lemma 3.9. Before proving
Lemma 3.9, we must introduce the following notation and establish one more
preliminary result. For a bounded complex

X · = (0→ Xm→ Xm−1→ · · · → X1→ X0→ 0)
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of objects of LF(B, 0), we write Hq(X ·) ∈ LF(B, 0) for its homology taken in the
abelian category LF(B, 0); that is,

Hq(X ·)= ker(Xq → Xq−1)/ im(Xq+1→ Xq).

We write H(X ·) for the complex of objects of LF(B, 0) obtained by applying H
term-wise

H(X ·) := (0→ H(Xd)→ · · · → H(X0)→ 0).

Note that H(X ·) is a complex of Z/2-graded modules, and we regard it as another
complex of objects in LF(B, 0).

Lemma 3.10. For a Noetherian commutative ring B, assume

Y· := (0→ Ym→ · · · → Y0→ 0)

is a complex in lf(B, 0) such that both Hq H(Y·) and H Hq(Y·) have finite length for
all q. Then Tot(Y·) belongs to lf fl(B, 0), and we have

χ(Tot(Y·))=
∑

q∈Z,ε∈Z/2

(−1)q+ε length Hq(Hε(Y·))

=

∑
q∈Z,ε∈Z/2

(−1)q+ε length Hε(Hq(Y·)).

Proof. Our proof uses spectral sequences and is similar to the proof of the analogous
fact concerning Z-graded bicomplexes, but some care is needed to deal with the
Z/2-grading.

We find it most convenient to work in the setting of dg-B̃-modules. Recall
that a dg-B̃-module is the same thing as pair consisting of a Z-graded complex of
B-modules and a degree 2 automorphism. A graded B̃-module is a dg-B̃-module
with trivial differential.

Let us say that a graded B̃-module H has finite length if H i has finite length as
a B-module for each i ∈ Z (or, equivalently, for i = 0, 1). In this case, we define

χ̃(H)= lengthB(H
0)− lengthB(H

1).

(Note that χ̃(H)= lengthB(H
2m)− lengthB(H

2n+1) for any m, n ∈ Z.) It is clear
that if Y ∈ lf fl(B, 0), then

χ(Y )= χ̃(H̃(Y ))

where χ is as defined before, and H̃(Y ) denotes the homology of Y regarded in the
canonical way as a graded B̃-module.

We will need the following fact. If (M, d) is a dg-B̃-module such that the under-
lying graded B̃-module M has finite length, then H(M, d) also has finite length,
and χ̃(H(M, d))= χ̃(M). This is seen to hold by a straightforward calculation.
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We view Y· as a bicomplex Y ·
·

with m+1 rows, whose m-th row, for 0≤ j ≤m, is

· · · → Y−1
j → Y 0

j → Y 1
j → · · · ,

along with a degree (2, 0) isomorphism of bicomplexes t : Y ·
·
−→∼ Y ·+2

·
. Since this

bicomplex is uniformly bounded in the vertical direction, we have two strongly
convergent spectral sequences of the form

′E p,−q
2 = Hq(H p(Y ·

·
))H⇒ H p−q(Tot(Y ·

·
)) and

′′E p,−q
2 = H p(Hq(Y ·· ))H⇒ H p−q(Tot(Y ·

·
)).

Let E∗,∗r , for r ≥ 2, refer to either of these two spectral sequences. The isomor-
phism t : Y ·

·
−→∼ Y ·+2

·
induces isomorphisms

t : E p,−q
r −→∼ E p+2,−q

r

for each r ≥ 2, and similarly on the underlying Dr -terms, and these isomorphisms
commute with all the maps of the exact couple.

For any r , define a Z-graded B-module Tot(Er ) by

Tot(Er )
n
:=

⊕
p+q=n

E p,q
r .

The isomorphism t induces an isomorphism of degree 2 on Tot(Er ) making it into
a graded B̃-module. For each r , the differential dr on the Er ’s induces a degree one
map (which we will also write as dr ) on Tot(Er ), and since this map commutes
with t , we have that (Tot(Er ), dr ) is a dg-B̃-module. Finally, we have an identity

Tot(Er+1)= H(Tot(Er ), dr )

of graded B̃-modules.
Returning to the two specific instances of this spectral sequence, the assumptions

give that each of Tot(′E2) and Tot(′′E2) has finite length, and that we have

χ̃(Tot(′E2))=
∑

q∈Z,ε∈Z/2

(−1)q+ε length Hq(Hε(Y·))

χ̃(Tot(′′E2))=
∑

q∈Z,ε∈Z/2

(−1)q+ε length Hε(Hq(Y·)).
(3.11)

By the general fact mentioned above, we get that each of Tot(E3),Tot(E4), . . . also
has finite length, and, moreover,

χ̃(Tot(E2))= χ̃(Tot(E3))= · · · = χ̃(Tot(E∞)).

(Note that the spectral sequence degenerates after at most m + 2 steps, so that
Em+2 = Em+3 = · · · = E∞.)



Adams operations on matrix factorizations 2187

Now, for ε = 0, 1, the B-module H ε Tot(Y ) admits a filtration by B-submodules
whose subquotients are Eε,0

∞
, Eε−1,1
∞

, . . . , Eε−m,m
∞

, and hence

χ(Tot(Y ))= χ̃(H(Tot(Y ))

=

∑
q

length E−q,q
∞
−

∑
q

length E1−q,q
∞

= χ̃(Tot(E∞))= χ̃(Tot(E2)).

By (3.11), the proof is complete. �

Proof of Lemma 3.9. We may assume, without loss of generality, that M = P
belongs to mf fl(B, 0). Let

· · · → 0→ Xm→ Xm−1→ · · · → X1→ X0→ P→ 0

be a bounded Cartan–Eilenberg resolution of P . Since P is an object of mf(B, 0),
the induced quasiisomorphism Tot(X ·) −→∼ P is a homotopy equivalence, a fact
that will be used below.

Recall that X i is proper. In particular, H(X i ) is projective for all i , and the
induced complex

· · · → 0→ H(Xm)→ H(Xm−1)→ · · · → H(X1)→ H(X0)→ H(P)→ 0

is also exact. The latter gives, by definition,

tp
ζ (H(P))= t p

ζ (Tot(H(X ·)))= T p(Tot(H(X ·)))(ζ ). (3.12)

For any bounded complex Y· of objects of mf(B, 0), write T p(Y·) for the complex
of objects in mf(B, 0) that, in degree j , is

T p(Y·) j =
⊕

i1+···+i p= j

Yi1 ⊗LF · · · ⊗LF Yi p .

For example, if p = 2, then T 2(Y·) is the complex

· · · → (Y2⊗ Y0⊕ Y1⊗ Y1⊕ Y0⊗ Y2)→ (Y1⊗ Y0⊕ Y0⊗ Y1)→ Y0⊗ Y0→ 0.

Each term of the complex T p(Y ) admits an evident signed action by C p, and the
maps of this complex respect these actions, so that we may regard T p(Y·) as a
complex in mf(B ′, 0), where B ′ := B[C p]. We have an identity

T p(Tot(Y·))= Tot(T p(Y·)) (3.13)

of objects of mf(B ′, 0).
Since B is an Ap-algebra, (−)(ζ ) is an exact functor from lf(B ′, 0) to lf(B, 0).

In fact, B ′ is a product of copies of B, and this functor is given by extension of
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scalars along one of the canonical projections B ′� B. In particular, we have

Tot(Y
·
)(ζ ) = Tot(Y (ζ )

·
) (3.14)

for any bounded complex Y· of objects of lf(B ′, 0), and

H(Y )(ζ ) = H(Y (ζ )) (3.15)

for any object Y ∈ lf(B ′, 0).
Since each X i is proper, Lemma 3.2 implies that we have canonical isomorphisms

H(X i1)⊗LF · · · ⊗LF H(X i p)−→
∼ H(X i1 ⊗LF · · · ⊗LF X i p)

which combine to give an isomorphism

T p(H(X ·))−→∼ H(T p(X ·)) (3.16)

of complexes of objects of mf(B ′, 0).
Combining these facts gives

tp
ζ (H(P))= T p(Tot(H(X ·)))(ζ ), by (3.12),

= (Tot(T p(H(X ·))))(ζ ), by (3.13),

= Tot(T p(H(X ·))(ζ )), by (3.14),

= Tot(H(T p(X ·))(ζ )), by (3.16),

= Tot(H(T p(X ·)(ζ ))), by (3.15).

We now apply Lemma 3.10 to the complex Y· :=T p(X ·)(ζ ) of objects in mf(B, 0),
which gives∑

q,ε

(−1)q+ε length Hq(Hε(Y·))=
∑
q,ε

(−1)q+ε length Hε(Hq(Y·)). (3.17)

Since we have shown that Tot(H(Y·)) ∼= tp
ζ (H(P)), the left-hand side of (3.17) is

χ(tp
ζ (H(P))).

Recall that, since P belongs to mf(B, 0), the quasiisomorphism Tot(X ·)−→∼ P
is a homotopy equivalence. It follows that the map

Tot(Y·)∼= T p(Tot(X ·))(ζ )→ T p(P)(ζ ).

is also a homotopy equivalence. We get

Hε(Hq(Y·))∼=
{

Hε(t p
ζ (P)) if q = 0,

0 otherwise,

which shows that the right-hand side of (3.17) is χ(t p
ζ (P)). �
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Proof of Theorem 3.8. Let P ∈mfm(Q, 0)=mf fl(Q, 0). By definition,

χ(ψ p
cyc([P]))=

∑
ζ

ζχ(t p
ζ (P)).

By Lemma 3.9, the value of the right-hand side of this equation coincides with∑
ζ ζχ(t

p
ζ (H(P))). Since H(P) has trivial differential, the class

[H(P)] ∈ K0(D(lf fl(Q, 0)))∼= K0(mfm(Q, 0))

is an integer multiple of the class of the residue field k = Q/m, which in turn
coincides with the class of the folded Koszul complex K ∈mfm(Q, 0). This proves
that the equation of Theorem 3.8 holds in general provided it holds for the class
[K ], and that special case is known to hold by Corollary 2.11. �

3C. Proof of the conjecture. Throughout this section, we assume (Q,m) is a
regular local ring and f is a nonzero element of m, and we set R = Q/( f ). We
also assume R is an isolated singularity; that is, we assume Rp is regular for all
p ∈ Spec(R) \ {m}. Recall from the introduction that these conditions lead to a
well-defined invariant for a pair (M, N ) of finitely generated R-modules:

θR(M, N )= length(TorR
2n(M, N ))− length(TorR

2n+1(M, N ))

for n� 0.
For a finitely generated R-module M , [M]stable denotes its associated class

in K0(mf(Q, f )), given by the surjection G0(R)� K0(mf(Q, f )) described in
Section 2C. Recall that [M]stable = [Fold(P, d, s)], where P is a Q-projective
resolution of M admitting a degree one endomorphism s that satisfies ds+ sd = f
and s2

= 0, that is, a Koszul resolution.
For a matrix factorization X ∈mf(Q, f ), write X◦ for mult−1 X ∈mf(Q,− f ).

That is, if X = (α : P1→ P0, β : P0→ P1), then X◦= (α,−β). We also use the no-
tation (−)◦ to denote the induced isomorphism K0(mf(Q, f ))−→∼ K0(mf(Q,− f )).
For a finitely generated R-module N , the class [N ]◦stable is the image of [N ] under
G0(R)� K0(mf(Q,− f )), using that Q/( f )= Q/(− f ).

Proposition 3.18. For Q,m, f, R,M and N as in Definition 1.2,

θR(M, N )= χ([M]stable ∪ [N ]◦stable).

Proof. First note that, since f is an isolated singularity, one has

K0(mf(Q,± f ))= K0(mfm(Q,± f ))

and hence

[M]stable ∪ [N ]◦stable ∈ K0(mfm(Q, f + (− f )))= K0(mfm(Q, 0)).
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Choose matrix factorizations X = (d1 : X1→ X0, d0 : X0→ X1) and Y = (d ′1 :
Y1 → Y0, d ′0 : Y0 → Y1) such that [X ] = [M]stable and [Y ] = [N ]◦stable. Assume,
without loss of generality, that N is maximal Cohen–Macaulay, and N = coker(d ′1).

Let Z denote the object (0→ N , N→ 0) of lf(Q,− f ); here, 0 is in odd degree
and N is in even degree. Let α : Y → Z be the morphism in lf(Q,− f ) given by
the canonical surjection in even degree and, of course, the zero map in odd degree.
Since θ(M, N ) clearly coincides with the Euler characteristic of X ⊗ Z , it suffices
to show that the morphism

id⊗α : X ⊗ Y → X ⊗ Z

in lf(Q, 0) is a quasiisomorphism. The map id⊗α is clearly surjective, so it suffices
to show that its kernel is acyclic. An easy calculation shows that ker(id⊗α)∼= X⊗T ,
where T is the object (Y1

id
−→ Y1, Y1

− f
−→ Y1) ∈ lf(Q,− f ). Since T is contractible,

X ⊗ T is contractible; thus, id⊗α is a quasiisomorphism. �

We now prove the conjecture of Dao and Kurano:

Theorem 3.19. Let (Q,m) be a regular local ring and f ∈m a nonzero element,
and assume R :=Q/( f ) is an isolated singularity. If M and N are finitely generated
R-modules such that

dim M + dim N ≤ dim R

then θR(M, N )= 0.

Proof. Let p be any prime that is invertible in Q. We start by reducing to the case
where Q contains a primitive p-th root of unity. If not, we form the faithfully flat
extension Q ⊆ Q′ where Q′ is the localization of Q[x]/(x p

− 1) at any one of the
maximal ideals lying over m, and set R′ = Q′/ f ∼= R⊗Q Q′. Note that R ⊆ R′ is
also faithfully flat, and thus

TorR
i (M, N )⊗R R′ ∼= TorR′

i (M ⊗R R′, N ⊗R R′).

It follows that

θR′(M ⊗R R′, N ⊗R R′)= [R′/m′ : R/m] · θR(M, N ),

and so we may replace Q with Q′.
Set d = dim Q, cM = codimQ M and cN = codimQ N . The hypothesis that

dim M + dim N ≤ dim R = d − 1 yields cM + cN ≥ d + 1. By Theorem 2.15, the
classes [M]stable, [N ]stable ∈ K0(mf(Q, f ))⊗Q decompose uniquely as

[M]stable =

d∑
i=cM

X i and [N ]stable =

d∑
j=cN

Y j ,
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where X i and Y j are such that ψ p
cyc(X i )= pi X i and ψ p

cyc(Y j )= p j Y j . Then

[N ]◦stable =

d∑
j=cN

Y ◦j

and, by Corollary 2.16, ψ p
cyc(Y ◦j )= p j Y ◦j for all j .

By Proposition 3.18, we have

θR(M, N )= χ([M]stable ∪ [N ]◦stable)=
∑
i, j

χ(X i ∪ Y ◦j ),

and so it suffices to prove χ(X i ∪ Y ◦j )= 0 for all i and j . For any i and j ,

pdχ(X i ∪ Y ◦j )= χ(ψ
p
cyc(X i ∪ Y ◦j ))

= χ(ψ p
cyc(X i )∪ψ

p
cyc(Y

◦

j ))

= χ(pi X i ∪ p j Y ◦j )

= pi+ jχ(X i ∪ Y ◦j ),

where the first equality is by Theorem 3.8, the second is by Theorem 2.10, and
the third is by definition of X i and Y j . Since Theorem 2.15 yields that i + j ≥
cM + cN > d , we conclude that χ(X i ∪ Y ◦j )= 0. �
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