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Rationality does not specialize
among terminal fourfolds

Alexander Perry

We show that rationality does not specialize in flat projective families of complex
fourfolds with terminal singularities. This answers a question of Totaro, who
established the corresponding result in dimensions greater than 4.

1. Introduction

Rationality behaves subtly in families of complex algebraic varieties. In general,
given a flat projective family, the locus of rational fibers forms a countable union
of locally closed subsets of the base [de Fernex and Fusi 2013, Proposition 2.3].
Recently, Hassett, Pirutka, and Tschinkel [2016] produced a smooth projective
family of fourfolds where none of these locally closed subsets is dense, but their
union is dense (even in the Euclidean topology). In particular, rationality is neither
an open nor closed condition in smooth families.

This paper concerns the question of whether the locally closed subsets parametriz-
ing the rational fibers of a family are actually closed, i.e., whether rationality
specializes.

Question 1. Given a flat projective family of complex varieties, does geometric
rationality of the generic fiber imply the same of every fiber?

Without further restrictions, the answer is negative: specializations of rational
varieties need not even be rationally connected, as shown by a family of smooth
cubic surfaces degenerating to a cone over a smooth cubic curve. However, if the
fibers of the family are required to be smooth of dimension at most 3, Timmerscheidt
[1982] proved the answer is positive. In fact, as Totaro observed, it follows from
the results of de Fernex and Fusi [2013] and Hacon and Mckernan [2007] that the
answer remains positive if the fibers are allowed to have log terminal singularities
and dimension at most 3.

In higher dimensions, however, Totaro [2016b] showed that rationality does not
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specialize among varieties with mild singularities. Namely, specialization fails
in every dimension greater than 4 if terminal singularities (the mildest type of
singularity arising from the minimal model program) are allowed, and in dimension
4 if canonical singularities (the second mildest type of singularity) are allowed.
This left open the possibility that rationality specializes among terminal fourfolds.
The purpose of this paper is to show that this fails too.

Theorem 2. There is a flat projective family of fourfolds over a Zariski open
neighborhood U of the origin 0 ∈ A1 in the complex affine line such that:

(1) All the fibers have terminal singularities.

(2) The fibers over U \ {0} are rational.

(3) The fiber over 0 is stably irrational.

Our proof of Theorem 2 closely follows [Totaro 2016b]. There, starting from a
stably irrational smooth quartic fourfold Y ⊂P5 (known to exist by [Totaro 2016a]),
Totaro constructs a family of fivefolds satisfying conditions (1)–(3) in Theorem 2
by deforming the cone over Y to rational fivefolds. More generally, starting from
any smooth hypersurface Y ⊂Pn which is Fano of index at least 2, his construction
produces a family of n-folds satisfying (1) and (2), whose fiber over 0 is birational
to Y ×P1. It is thus tempting to take Y ⊂ P4. However, then the only potential
candidate for Y is a cubic threefold such that Y ×P1 is irrational, the existence of
which is a difficult open problem.

Our idea is to instead take Y to be a quartic double solid. Then Y is a Fano three-
fold of index 2, and can be chosen to be stably irrational by Voisin’s seminal work
[2015]. Although Y is not a hypersurface in projective space, it is a hypersurface in
a weighted projective space, which we show is enough to run Totaro’s argument.

The natural question left open by this paper is whether rationality specializes
among smooth varieties of dimension greater than 3.

Conventions. We work over the field of complex numbers C. For positive inte-
gers a0, . . . , an , we denote by P(a0, . . . , an) the weighted projective space with
weights ai . We use superscripts to denote that a weight is repeated with multiplicity,
e.g., P(14, 2)=P(1, 1, 1, 1, 2). For a vector bundle E on a scheme S, the associated
projective bundle is P(E)= ProjS(Sym(E∨)).

2. Proof of Theorem 2

Let Y → P3 be a quartic double solid, i.e., a double cover of P3 branched along a
smooth quartic surface. We regard Y as a hypersurface in the weighted projective
space P(14, 2), cut out by a polynomial of the form

f4(x0, . . . , x4)= x2
4 − h4(x0, . . . , x3),
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where h4(x0, . . . , x3) is a quartic. Let X ⊂ P(14, 2, 1) be the cone over Y defined
by the same polynomial f4(x0, . . . , x4) in the bigger weighted projective space
P(14, 2, 1). For a stably irrational choice of Y , the variety X will form the central
fiber in the promised family of fourfolds.

Lemma 3. X is birational to Y ×P1, and has terminal singularities.

Proof. This can be deduced from a general result on cones (see [Kollár 2013, §3.1]),
but we give a direct argument. Let H denote the pullback of the hyperplane class
on P3 to Y . Define

π : X̃ = P(OY (−H)⊕OY )→ Y.

There is a natural morphism X̃ → P(14, 2, 1) given as follows. Let ζ denote the
divisor corresponding to the relative O(1) line bundle on X̃ . Then

π∗(OX̃ (ζ ))= OY (H)⊕OY and π∗(OX̃ (2ζ ))= OY (2H)⊕OY (H)⊕OY .

Hence H0(X̃ ,OX̃ (ζ ))
∼=C4
⊕C, and H0(X̃ ,OX̃ (2ζ )) has a canonical 1-dimensional

subspace corresponding to the canonical section of OY (2H). This data specifies the
morphism X̃→ P(14, 2, 1). In fact, this morphism factors through X ⊂P(14, 2, 1)
and gives a resolution of singularities f : X̃→ X with a single exceptional divisor

E = P(OY )⊂ X̃ ,

which is contracted to [0, 0, 0, 0, 0, 1] ∈ X . Thus the first claim of the lemma holds.
Note that X is normal with Q-Cartier canonical divisor. We show that the discrep-

ancy of the exceptional divisor E above is 1, so that X has terminal singularities,
completing the proof. Write K X̃ = f ∗(K X )+ aE . Then by adjunction

KE = (K X̃ + E)|E = (a+ 1)E |E .

Observe that E ∼= Y , so KE = −2H , and E = ζ − π∗H , so E |E = −H . We
conclude a = 1. �

Next, choose a nonzero polynomial g3(x0, . . . , x4) ∈ H0(P(14, 2),O(3)) of
weighted degree 3. We consider the flat family X → A1 over the affine line
whose fiber Xt ⊂ P(14, 2, 1) over t ∈ A1 is given by

f4(x0, . . . , x4)+ tg3(x0, . . . , x4)x5 = 0.

Note that X = X0.

Lemma 4. There is a Zariski open neighborhood U of 0 ∈ A1 such that:

(1) Xt has terminal singularities for all t ∈U.

(2) Xt is rational for t ∈U \ {0}.
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Proof. The fiber X0 has terminal singularities by Lemma 3. Since this condition is
Zariski open in families [Nakayama 2004, Corollary VI.5.3], there is a Zariski open
neighborhood U of 0 ∈ A1 such that all fibers of XU → U are terminal. Further,
observe that for t 6= 0, projection away from the x5-coordinate gives a birational
map from Xt to P(14, 2). Indeed, this map is an isomorphism over the locus where
g3(x0, . . . x4) 6= 0 in P(14, 2). Hence Xt is rational for t 6= 0. �

Now we can prove Theorem 2. By [Voisin 2015, Theorem 1.1], a very general
quartic double solid is stably irrational. Taking such a Y in the above construction
and combining Lemmas 3 and 4, we conclude that XU→U is a family of fourfolds
satisfying all of the required conditions. �
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