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Topological noetherianity
for cubic polynomials

Harm Derksen, Rob H. Eggermont and Andrew Snowden

Let P3(k∞) be the space of cubic polynomials in infinitely many variables over
the algebraically closed field k (of characteristic 6= 2, 3). We show that this space
is GL∞-noetherian, meaning that any GL∞-stable Zariski closed subset is cut out
by finitely many orbits of equations. Our method relies on a careful analysis of an
invariant of cubics we introduce called q-rank. This result is motivated by recent
work in representation stability, especially the theory of twisted commutative
algebras. It is also connected to uniformity problems in commutative algebra in
the vein of Stillman’s conjecture.

1. Introduction

Let Pd(kn) be the space of degree d polynomials in n variables over an algebraically
closed field k of characteristic 6= 2, 3. Let Pd(k∞) be the inverse limit of the Pd(kn),
equipped with the Zariski topology and its natural GL∞ action (see Section 1G).
This paper is concerned with the following question:

Question 1.1. Is the space Pd(k∞) noetherian with respect to the GL∞ action?
That is, can every Zariski closed GL∞-stable subspace be defined by finitely many
orbits of equations?

This question may seem somewhat esoteric, but it is motivated by recent work in
the field of representation stability, in particular the theory of twisted commutative
algebras; see Section 1C. It is also connected to certain uniformity questions in
commutative algebra in the spirit of (the now resolved) Stillman’s conjecture; see
Section 1B.

For d ≤ 2 the question is easy since one can explicitly determine the GL∞ orbits
on Pd(k∞). For d ≥ 3 this is not possible, and the problem is much harder. The
purpose of this paper is to settle the d = 3 case.
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Theorem 1.2. Question 1.1 has an affirmative answer for d = 3.

In fact, we prove a quantitative result in finitely many variables that implies the
theorem in the limit. This may be of independent interest; see Section 1A for details.

1A. Overview of the proof. The key concept in the proof, and the focus of most
of this paper, is the following notion of rank for cubic forms.

Definition 1.3. Let f ∈ P3(kn) with n ≤∞. We define the q-rank1 of f , denoted
qrk( f ), to be the minimal nonnegative integer r for which there is an expression
f =

∑r
i=1 `i qi with `i ∈ P1(kn) and qi ∈ P2(kn), or∞ if no such r exists (which

can only happen if n =∞).

Example 1.4. For n ≤∞, the cubic

x1 y1z1+ x2 y2z2+ · · ·+ xn ynzn =

n∑
i=1

xi yi zi

has q-rank n. This is proved in Section 4. In particular, infinite q-rank is possible
when n =∞.

Example 1.5. The cubic x3
+ y3 has q-rank 1, as follows from the identity

x3
+ y3
= (x + y)(x2

− xy+ y2).

The cubic
∑2n

i=1 x3
i therefore has q-rank at most n, and we expect it is exactly n.

Remark 1.6. The notion of q-rank is similar to some other invariants in the litera-
ture:

(a) Ananyan and Hochster [2016] defined a homogeneous polynomial to have
strength ≥ k if it does not belong to an ideal generated by k forms of strictly
lower degree. For cubics, q-rank is equal to strength plus one.

(b) A definition similar to strength also appears in [Kazhdan and Ziegler 2017].

(c) Davenport and Lewis [1964] defined an invariant h of cubics that is exactly
q-rank.

(d) Inspired by Tao’s blog post [2016], [Blasiak et al. 2017] introduced the notion
of slice rank for tensors. Q-rank is basically a symmetric version of this.

Let P3(k∞)≤r be the locus of forms f with qrk( f )≤ r . This is the image of the
map

P2(k∞)r × P1(k∞)r → P3(k∞), (q1, . . . , qr , `1, . . . , `r ) 7→

r∑
i=1

`i qi .

The main theorem of [Eggermont 2015] implies that the domain of the above map
is GL∞-noetherian, and so, by standard facts (see [Draisma 2010, §3]), its image

1The q here is meant to indicate the presence of quadrics in the expression for f .
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P3(k∞)≤r is as well. It follows that any GL∞-stable closed subset of P3(k∞) of
bounded q-rank is cut out by finitely many orbits of equations. Theorem 1.2 then
follows from the following result:

Theorem 1.7. Any GL∞-stable subset of P3(k∞) containing forms of arbitrarily
high q-rank is Zariski dense.

To prove this theorem, one must show that if f1, f2, . . . is a sequence in P3(k∞)
of unbounded q-rank then for any d there is a k such that the orbit closure of fk

projects surjectively onto P3(kd). We prove a quantitative version of this statement:

Theorem 1.8. Let f ∈ P3(kn) have q-rank r � 0 (in fact, r > exp(240) suffices),
and suppose d < 1

3 log(r). Then the orbit closure of f surjects onto P3(kd).

The proof of this theorem is really the heart of the paper. The idea is as follows.
Suppose that f =

∑m
i=1 `i qi has large q-rank. We establish two key facts. First,

after possibly degenerating f (i.e., passing to a form in the orbit closure) one can
assume that the `i and the qi are in separate sets of variables, while maintaining the
assumption that f has large q-rank. This is useful when studying the orbit closure,
as it allows us to move the `i and the qi independently. Second, we show that the
qi have large rank in a very strong sense: namely, that within the linear span of the
qi there is a large-dimensional subspace such that every nonzero element of it has
large rank. The results of [Eggermont 2015] then imply that the orbit closure of
(q1, . . . , qm; `1, . . . , `m) in P2(kn)m × P1(kn)m surjects onto P2(kd)m × P1(kd)m ,
and this yields the theorem.

1B. Uniformity in commutative algebra. We now explain one source of motiva-
tion for Question 1.1. An ideal invariant is a rule that assigns to each homogeneous
ideal I in each standard-graded polynomial k-algebra A (in finitely many variables)
a quantity νA(I )∈Z∪{∞}, such that νA(I ) only depends on the pair (A, I ) up to iso-
morphism. We say that ν is cone-stable if νA[x](I [x])= νA(I ), i.e., adjoining a new
variable does not affect ν. The main theorem of [Erman et al. ≥ 2017] is (in part):

Theorem 1.9 [Erman et al. ≥ 2017]. The following are equivalent:

(a) Let ν be a cone-stable ideal invariant that is upper semicontinuous in flat
families, and let d = (d1, . . . , dr ) be a tuple of nonnegative integers. Then
there exists an integer B such that νA(I ) is either infinite or at most B whenever
I is an ideal generated by r elements of degrees d1, . . . , dr . (Crucially, B does
not depend on A.)

(b) For every d as above, the space

Pd1(k
∞)× · · ·× Pdr (k

∞)

is GL-noetherian.
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Remark 1.10. Define an ideal invariant ν by taking νA(I ) to be the projective
dimension of I as an A-module. This is cone-stable and upper semicontinuous in
flat families. The boundedness in Theorem 1.9(a) for this ν is exactly Stillman’s
conjecture, proved in [Ananyan and Hochster 2016].

Theorem 1.9 shows that Question 1.1 is intimately connected to uniformity
questions in commutative algebra in the style of Stillman’s conjecture. The results
of [Erman et al. ≥ 2017] are actually more precise: if (b) holds for a single d then
(a) holds for the corresponding d. Thus, combined with Theorem 1.2, we obtain:

Theorem 1.11. Let ν be a cone-stable ideal invariant that is upper semicontinuous
in flat families. Then there exists an integer B such that ν(I ) is either infinite or at
most B, whenever I is generated by a single cubic form.

The following two consequences of Theorem 1.11 are taken from [Erman et al.
≥ 2017].

Corollary 1.12. Given a positive integer c there is an integer B such that the
following holds: if Y ⊂ Pn−1 is a cubic hypersurface containing finitely many
codimension c linear subspaces then it contains at most B such subspaces.

Corollary 1.13. Given a positive integer c there is an integer B such that the
following holds: if Y ⊂ Pn−1 is a cubic hypersurface whose singular locus has
codimension c then its singular locus has degree at most B.

It would be interesting if these results could be proved by means of classical
algebraic geometry. It would also be interesting to determine the bound B for some
small values of c.

1C. Twisted commutative algebras. In this section we put k=C. Our original mo-
tivation for considering Question 1.1 came from the theory of twisted commutative
algebras. Recall that a twisted commutative algebra (tca) over the complex numbers
is a commutative unital associative C-algebra A equipped with a polynomial action
of GL∞; see [Sam and Snowden 2012] for background. The easiest examples of
tca’s come by taking the symmetric algebra on a polynomial representation of GL∞,
for example Sym(C∞) or Sym(Sym2(C∞)).

In recent years, tca’s have appeared in several applications, for instance:

• Modules over the tca Sym(C∞) are equivalent to FI-modules, as studied in
[Church et al. 2015]. The structure of the module category was worked out in
great detail in [Sam and Snowden 2016].

• Finite length modules over the tca Sym(Sym2(C∞)) are equivalent to algebraic
representations of the infinite orthogonal group [Sam and Snowden 2015].

• Modules over tca’s generated in degree 1 were used to study 1-modules in
[Snowden 2013], with applications to syzygies of Segre embeddings.
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A tca A is noetherian if its module category is locally noetherian; explicitly, this
means that any submodule of a finitely generated A-module is finitely generated. A
major open question in the theory, first raised in [Snowden 2013], is as follows:

Question 1.14. Is every finitely generated tca noetherian?

So far, our knowledge on this question is extremely limited. For tca’s generated
in degrees ≤ 1 (or more generally, “bounded” tca’s), noetherianity was proved in
[Snowden 2013]. (It was later reproved in the special case of FI-modules in [Church
et al. 2015].) For the tca’s Sym(Sym2(C∞)) and Sym

(∧2
(C∞)

)
, noetherianity

was proved in [Nagpal et al. 2016]. No other cases are known. We remark that
these known cases of noetherianity, limited though they are, have been crucial in
applications.

Since noetherianity is such a difficult property to study, it is useful to consider
a weaker notion. A tca A is topologically noetherian if every radical ideal is the
radical of a finitely generated ideal. The results of [Eggermont 2015] show that tca’s
generated in degrees ≤ 2 are topologically noetherian. Topological noetherianity
of the tca Sym(Symd(C∞)) is equivalent to the noetherianity of the space Pd(C

∞)

appearing in Question 1.1. Thus Theorem 1.2 can be restated as follows:

Theorem 1.15. The tca Sym(Sym3(C∞)) is topologically noetherian.

This is the first noetherianity result for an unbounded tca generated in degrees≥3.

1D. A result for tensors. Using similar methods, we can prove the following result:

Theorem 1.16. The space P1(k∞) ⊗̂ P1(k∞) ⊗̂ P1(k∞) is noetherian with respect
to the action of the group GL∞×GL∞×GL∞, where ⊗̂ denotes the completed
tensor product.

We plan to write a short note containing the proof.

1E. Draisma’s theorem. After this paper appeared, Draisma [2017] answered
Question 1.1 affirmatively for all d; in fact, he proved topological noetherianity
of all polynomial representations, not just symmetric powers. While this result
subsumes our Theorem 1.2, his proof does not give the more precise results found
in Theorems 1.7 and 1.8. We believe these more precise results should hold in
greater generality, and that they could be quite useful. We plan to pursue this matter
in future work.

1F. Outline of paper. In Section 2 we establish a number of basic facts about
q-rank. In Section 3 we use these facts to prove the main theorem. Finally, in
Section 4, we compute the q-rank of the cubic in Example 1.4. This example is not
used in the proof of the main theorem, but we thought it worthwhile to include one
nontrivial computation of our fundamental invariant.
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1G. Notation and terminology. Throughout we let k be an algebraically closed
field of characteristic 6= 2, 3. The symbols E , V , and W always denote k-vector
spaces, perhaps infinite dimensional. We write Pd(V )= Symd(V )∗ for the space
of degree d polynomials on V equipped with the Zariski topology. Precisely, we
identify Pd(V ) with the k-points of the spectrum of the ring Sym(Symd(V )). When
V is infinite dimensional the elements of Pd(V ) are certain infinite series and the
functions on Pd(V ) are polynomials in coefficients. Whenever we speak of the
orbit of an element of Pd(V ), we mean its GL(V ) orbit.

2. Basic properties of q-rank

In this section, we establish a number of basic facts about q-rank. Throughout, V
denotes a vector space and f a cubic in P3(V ). Initially we allow V to be infinite
dimensional, but following Proposition 2.5 it will be finite dimensional (though this
is often not necessary).

Our first result is immediate, but worthwhile to write out explicitly.

Proposition 2.1 (subadditivity). Suppose f, g ∈ P3(V ). Then

qrk( f + g)≤ qrk( f )+ qrk(g).

We defined q-rank from an algebraic point of view (number of terms in a certain
sum). We now give a geometric characterization of q-rank that can, at times, be
more useful.

Proposition 2.2. We have qrk( f )≤ r if and only if there exists a linear subspace
W of V of codimension at most r such that f |W = 0.

Proof. First suppose qrk( f ) ≤ r , and write f =
∑r

i=1 `i qi . Then we can take
W =

⋂r
i=1 ker(`i ). This clearly has the requisite properties.

Now suppose W of codimension r is given. Let vr+1, vr+2, . . . be a basis for W,
and complete it to a basis of V be adding vectors v1, . . . , vr . Let xi ∈ P1(V ) be
dual to vi . We can then write f = g+ h, where every term in g uses one of the
variables x1, . . . , xr , and these variables do not appear in h. Since f |W = 0 by
assumption and g|W = 0 by its definition, we find h|W = 0. But h only uses the
variables xr+1, xr+2, . . . , and these are coordinates on W, so we must have h = 0.
Thus every term of f has one of the variables {x1, . . . , xr } in it, and so we can
write f =

∑r
i=1 xi qi for appropriate qi ∈ P2(V ), which shows qrk( f )≤ r . �

Remark 2.3. In the above proposition, f |W = 0 means that the image of f in
P3(W ) is 0. It is equivalent to ask that f (w)= 0 for all w ∈W.

The next result shows that one does not lose too much q-rank when passing to
subspaces.
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Proposition 2.4. Suppose W ⊂ V has codimension d. Then for f ∈ P3(V ) we have

qrk( f )− d ≤ qrk( f |W )≤ qrk( f ).

Proof. If f =
∑r

i=1 `i qi then we obtain a similar expression for f |W , which shows
that qrk( f |W ) ≤ qrk( f ). Suppose now that qrk( f |W ) = r , and let W ′ ⊂ W be
a codimension r subspace such that f |W ′ = 0 (Proposition 2.2). Then W ′ has
codimension r + d in V , and so qrk( f )≤ r + d (Proposition 2.2 again). �

Our next result shows that if V is infinite dimensional, then the q-rank of
f ∈ P3(V ) can be approximated by the q-rank of f |W for a large finite dimensional
subspace W of V . This will be used at a key juncture to move from an infinite
dimensional space down to a finite dimensional one.

Proposition 2.5. Suppose V =
⋃

i∈I Vi (directed union). Then

qrk( f )= sup
i∈I

qrk( f |Vi ).

We first give two lemmas. In what follows, for a finite dimensional vector space
W we write Grr (W ) for the Grassmannian of codimension r subspaces of W. For
a k-point x of Grr (W ), we write Ex for the corresponding subspace of W. By
“variety” we mean a reduced scheme of finite type over k.

Lemma 2.6. Let W ⊂ V be finite dimensional vector spaces, and let Z ⊂ Grr (V )
be a closed subvariety. Suppose that for every k-point z of Z , the space Ez ∩W has
codimension r in W. Then there is a unique map of varieties Z→ Grr (W ) that on
k-points is given by the formula E 7→ E ∩W.

Proof. Let Hom(V, kr ) be the scheme of all linear maps V→ kr, and let Surj(V, kr )

be the open subscheme of surjective linear maps. We identify Grr (V ) with the
quotient of Surj(V, kr ) by the group GLr . The quotient map Surj(V, kr )→Grr (V )
sends a surjection to its kernel. Let Z̃⊂Surj(V, kr ) be the inverse image of Z . There
is a natural map Hom(V, kr )→ Hom(W, kr ) given by restricting. By assumption,
every closed point of Z̃ maps into Surj(W, kr ) under this map. Since Surj(W, kr )

is open, it follows that the map Z̃→ Hom(W, kr ) factors through a unique map of
schemes Z̃→ Surj(W, kr ). Since this map is GLr -equivariant, it descends to the
desired map Z → Grr (W ). If z is a k-point of Z then it lifts to a k-point z̃ of Z̃ ,
and the corresponding map ϕ : V → kr has ker(ϕ)= Ez . The image of z in Grr (W )

is ker(ϕ|W )= Ez ∩W, which establishes the stated formula for our map. �

Lemma 2.7. Let {Zi }i∈I be an inverse system of nonempty proper varieties over k.
Then lim

←−−
Zi (k) is nonempty.

Proof. If k = C then Zi (C) is a nonempty compact Hausdorff space, and the result
follows from the well-known (and easy) fact that an inverse limit of nonempty
compact Hausdorff spaces is nonempty.
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For a general field k, we argue as follows. (We thank Bhargav Bhatt for this
argument.) Let |Zi | be the Zariski topological space underlying the scheme Zi ,
and let Z be the inverse limit of the |Zi |. Since each |Zi | is a nonempty spectral
space and the transition maps |Zi | → |Z j | are spectral (being induced from a map
of varieties), Z is also a nonempty spectral space [Stacks 2005–, Lemmas 5.24.2
and 5.24.5]. It therefore has some closed point z. Let zi be the image of z in |Zi |.

We claim that zi is closed for all i . Suppose not, and let 0∈ I be such that z0 is not
closed. Passing to a cofinal set in I , we may as well assume 0 is the unique minimal
element. Let k(zi ) be the residue field of zi , and let K be the direct limit of the k(zi ).
The point zi is then the image of a canonical map of schemes ai : Spec(K )→ Zi .
Since z0 is not closed, it admits some specialization, so we may choose a valuation
ring R in K and a nonconstant map of schemes b0 : Spec(R)→ Z0 extending a0.
Since Zi is proper, the map ai extends uniquely to a map bi : Spec(R) → Zi .
By uniqueness, the bi are compatible with the transition maps, and so we get an
induced map b : |Spec(R)|→ Z extending the map a : |Spec(K )|→ Z . Since |b0|

is induced from b, it follows that b is nonconstant. The image of the closed point in
Spec(R) under b is then a specialization of z, contradicting the fact that z is closed.
This completes the claim that zi is closed.

Since zi is closed, it is the image of a unique map Spec(k)→ Zi of k-schemes.
By uniqueness, these maps are compatible, and so give an element of lim

←−−
Zi (k). �

Proof of Proposition 2.5. First suppose that Vi is finite dimensional for all i . For i≤ j
we have qrk( f |Vi )≤ qrk( f |V j ) by Proposition 2.4, and so either qrk( f |Vi )→∞ or
qrk( f |Vi ) stabilizes. If qrk( f |Vi )→∞ then qrk( f )=∞ by Proposition 2.4 and we
are done. Thus suppose qrk( f |Vi ) stabilizes. Replacing I with a cofinal subset, we
may as well assume qrk( f |Vi ) is constant, say equal to r , for all i . We must show
qrk( f )= r . Proposition 2.4 shows that r ≤ qrk( f ), so it suffices to show qrk( f )≤ r .

Let Zi ⊂ Grr (Vi ) be the closed subvariety consisting of all codimension r
subspaces E ⊂ Vi such that f |E = 0. This is nonempty by Proposition 2.2 since
f |Vi has q-rank r . Suppose i ≤ j and z is a k-point of Z j , that is, Ez is a codimension
r subspace of V j on which f vanishes. Of course, f then vanishes on Vi ∩ Ez ,
which has codimension at most r in Vi . Since f |Vi has q-rank exactly r , it cannot
vanish on a subspace of codimension less than r (Proposition 2.2), and so Vi ∩ Ez

must have codimension exactly r . Thus by Lemma 2.6, intersecting with Vi defines
a map of varieties Z j → Grr (Vi ). This maps into Zi , and so for i ≤ j we have a
map Z j → Zi . These maps clearly define an inverse system.

Appealing to Lemma 2.7 we see that lim
←−−

Zi (k) is nonempty. Let {zi }i∈I be a
point in this inverse limit, and put Ei = Ezi . Thus Ei is a codimension r subspace
of Vi on which f vanishes, and for i ≤ j we have E j ∩ Vi = Ei . It follows that
E =

⋃
i∈I Ei is a codimension r subspace of V on which f vanishes, which shows

qrk( f )≤ r (Proposition 2.2).
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We now treat the general case, where the Vi may not be finite dimensional. Write
Vi =

⋃
j∈Ji

W j with W j finite dimensional. Then V =
⋃

i∈I
⋃

j∈Ji
W j , so

qrk( f )= sup
i∈I

sup
j∈Ji

qrk( f |W j )= sup
i∈I

qrk( f |Vi ).

This completes the proof. �

For the remainder of this section we assume that V is finite dimensional. If V is
d-dimensional then the q-rank of any cubic in P3(V ) is obviously bounded above
by d . The next result gives an improved bound, and will be crucial in what follows.

Proposition 2.8. Suppose dim(V )= d. Then qrk( f )≤ d − ξ(d), where

ξ(d)=
⌊√

8d + 17− 3
2

⌋
.

Note that ξ(d)≈
√

2d.

Proof. Let k be the largest integer such that
(k+1

2

)
+k−1≤ d . Then the hypersurface

f = 0 contains a linear subspace of dimension at least k by [Harris et al. 1998,
Lemma 3.9]. It follows from Proposition 2.2 that qrk( f ) ≤ d − k. Some simple
algebra shows that k = ξ(d). �

Suppose that f =
∑n

i=1 `i qi is a cubic. Eventually, we want to show that if f has
large q-rank then its orbit under GL(V ) is large. For studying the orbit, it would be
convenient if the `i and the qi were in separate sets of variables, as then they could
be moved independently under the group. This motivates the following definition.

Definition 2.9. We say that a cubic f ∈ P3(V ) is separable2 if there is a direct sum
decomposition V = V1⊕ V2 and an expression f =

∑n
i=1 `i qi with `i ∈ P1(V1)

and qi ∈ P2(V2).

Now, if we have a cubic f of high q-rank we cannot conclude, simply based on
its high q-rank, that it is separable. Fortunately, the following result shows that if
we are willing to degenerate f a bit (which is fine for our ultimate applications),
then we can make it separable while retaining high q-rank.

Proposition 2.10. Suppose that f ∈ P3(V ) has q-rank r . Then the orbit closure of
f contains a separable cubic g satisfying 1

2ξ(r)≤ qrk(g).

Proof. Let {xi } be a basis for P1(V ). After possibly making a linear change of
variables, we can write f =

∑r
i=1 xi qi . Write f = f1 + f2 + f3, where fi is

homogeneous of degree i in the variables {x1, . . . , xr }. Since f3 has degree 3 in the
variables {x1, . . . , xr }, it can contain no other variables, and can thus be regarded as
an element of P3(kr ). Therefore, by Proposition 2.8, we have qrk( f3)≤ r − ξ(r).

2This notion of separable is unrelated to the notion of separability of univariate polynomials. We
do not expect this to cause confusion.
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After possibly making a linear change of variables in {x1, . . . , xr }, we can write
f3 =

∑r
i=ξ(r)+1 xi q ′i for some q ′i . Let f ′ and f ′j be the result of setting xi = 0 in f

and f j , respectively, for ξ(r) < i ≤ r . We have qrk( f ′)≥ ξ(r) by Proposition 2.4.
Of course, f ′3 = 0, so f ′ = f ′1+ f ′2. By subadditivity (Proposition 2.1), at least one
of f ′1 or f ′2 has q-rank ≥ 1

2ξ(r).
We have f1 =

∑r
i=1 xi q ′′i , where q ′′i is a quadratic form in the variables xi with

i > r . Thus f1 and f ′1 are separable. We have f2 =
∑

1≤i≤ j≤r xi x j`i, j , where `i, j

is a linear form in the variables xi with i > r . Thus f2 and f ′2 are separable.
To complete the proof, it suffices to show that f ′1 and f ′2 belong to the orbit

closure of f , as we can then take g = f ′1 or g = f ′2. It is clear that f ′ is in the orbit
closure of f , so it suffices to show that f ′1 and f ′2 are in the orbit closure of f ′.
Consider the element γt of GLn defined by

γt(xi )=

{
t2xi , 1≤ i ≤ r,
t−1xi , r < i ≤ n.

Then γt( f ′1)= f ′1 and γt( f ′2)= t3 f ′2. Thus limt→0 γt( f ′)= f ′1. A similar construc-
tion shows that f ′2 is in the orbit closure of f ′. �

Suppose that f =
∑n

i=1 `i qi is a cubic of high q-rank. One would like to be able
to conclude that the qi then have high ranks as well. We now prove two results along
this line. For a linear subspace Q ⊂ P2(V ), we let maxrank(Q) be the maximum
of the ranks of elements of Q, and we let minrank(Q) be the minimum of the ranks
of the nonzero elements of Q (or 0 if Q = 0).

Proposition 2.11. Suppose f =
∑n

i=1 `i qi has q-rank r , and let Q ⊂ P2(V ) be the
span of the qi . Then for every subspace Q′ of Q we have

codim(Q : Q′)+maxrank(Q′)≥ r.

Proof. We may as well assume that `i and qi are linearly independent. Thus
dim(Q) = n. Let Q′ be a subspace of dimension n − d. After making a linear
change of variables in the qi and `i , we may as well assume that Q′ is the span
of q1, . . . , qn−d . Let t =maxrank(Q′). We must show that d + t ≥ r . Let q ′ ∈ Q′

have rank t . Choose a basis {xi } of P1(V ) so that q ′ = x2
1 + · · · + x2

t . If some
qi for 1 ≤ i ≤ n − d had a term of the form x j xk with j, k > t then some linear
combination of qi and q ′ would have rank> t , a contradiction. Thus every term of qi ,
for 1≤ i ≤ n−d , has a variable of index≤ t , and so we can write qi =

∑t
j=1 x j mi, j ,

where mi, j ∈ P1(V ). But now

f =
n−d∑
i=1

`i qi +

n∑
i=n−d+1

`i qi =

t∑
j=1

x j q ′j +
n∑

i=n−d+1

`i qi ,

where q ′j =
∑n−d

i=1 `i mi, j . This shows r = qrk( f )≤ t+d , completing the proof. �
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In our eventual application, it is actually minrank that is more important than
maxrank. Fortunately, the above result on maxrank automatically gives a result for
minrank, thanks to the following general proposition.

Proposition 2.12. Let Q ⊂ P2(V ) be a linear subspace and let r be a positive
integer. Suppose that

codim(Q : Q′)+maxrank(Q′)≥ r

holds for all linear subspaces Q′ ⊂ Q. Let k and s be positive integers satisfying

(2k
− 1)(s− 1)+ k ≤ r. (2.13)

Then there exists a k-dimensional linear subspace Q′ ⊂ Q with minrank(Q′)≥ s.

Lemma 2.14. Let q1, . . . , qn ∈ P2(V ) be quadratic forms of rank < s. Suppose
there is a linear combination of the qi that has rank at least t . Then there is a linear
combination q ′ of the qi satisfying t ≤ rank(q ′)≤ t + s− 2.

Proof. Let q ′ =
∑k

i=1 ai qi be a linear combination of the qi with rank ≥ t and k
minimal. Since rank(qk)≤ s−1, it follows that rank(q ′−akqk)≥ rank(q ′)−(s−1).
Thus if rank(q ′)≥ t+ s−1 then

∑k−1
i=1 ai qi would have rank ≥ t , contradicting the

minimality of k. Therefore rank(q ′)≤ t + s− 2. �

Proof of Proposition 2.12. Suppose that q1, . . . , qn forms a basis for Q such that
(rank(q1), . . . , rank(qn)) is lexicographically minimal. In particular, this implies
that rank(q1) ≤ · · · ≤ rank(qn). If rank(qn−k+1) ≥ s, then lexicographic minimal-
ity ensures that any nontrivial linear combination of qn−k+1, . . . , qn has rank at
least s, and so we can take Q′ to be the span of these forms. Thus suppose that
rank(qn−k+1) < s. In what follows, we put mi = (2i

− 1)(s − 1)+ 1. Note that
mk ≤ r . In fact, n− r +mk ≤ n− k+ 1, and so rank(qn−r+mk ) < s.

For 1≤ `≤ k, consider the following statement:

(S`) There exist linearly independent p1, . . . , p` such that: (i) pi is a linear combi-
nation of q1, . . . , qn−r+mi ; (ii) mi ≤ rank(pi )≤ mi + s− 2; and (iii) the span
of p1, . . . , p` has minrank at least s.

We prove (S`) by induction on `. Of course, (Sk) implies the proposition.
First consider the case `=1. The statement (S1) asserts that there exists a nonzero

linear combination p of q1, . . . , qn−r+s such that s ≤ rank(p)≤ 2s− 2. Since the
span of q1, . . . , qn−r+s has codimension r− s in Q, our assumption guarantees that
some linear combination p of these forms has rank at least s. Since each form has
rank < s, Lemma 2.14 ensures we can find p with rank(p)≤ s+ (s− 2).

We now prove (S`) assuming (S`−1). Let (p1, . . . , p`−1) be the tuple given by
(S`−1). The span of q1, . . . , qn−r+m`

has codimension r −m` in Q, and so our
assumption guarantees that some linear combination p` has rank at least m`. By
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Lemma 2.14, we can ensure that this p` has rank at most m`+ s− 2. Thus (i) and
(ii) in (S`) are established.

We now show that any nontrivial linear combination
∑`

i=1 λi pi has rank at
least s, which will show that the pi are linearly independent and establish (iii)
in (S`). If λ` = 0 then the rank is at least s by the assumption on (p1, . . . , p`−1).
Thus assume λ` 6= 0. We have

rank
( `−1∑

i=1

λi pi

)
≤

`−1∑
i=1

rank(pi )≤

`−1∑
i=1

(mi + s− 2)= m`− s.

Since rank(p`)≥m`, we thus see that
∑`

i=1 λi pi has rank at least s, which completes
the proof. �

Remark 2.15. Proposition 2.12 is not specific to ranks of quadratic forms; it applies
to any subadditive invariant on a vector space.

Combining the Propositions 2.11 and 2.12, we obtain:

Corollary 2.16. Suppose f =
∑n

i=1 `i qi has q-rank r , let Q be the span of the qi ,
and let k and s be positive integers such that (2.13) holds. Then there exists a
k-dimensional linear subspace Q′ ⊂ Q with minrank(Q′)≥ s.

3. Proof of Theorem 1.2

We now prove the main theorems of the paper. We require the following result; see
[Eggermont 2015, Proposition 3.3] and its proof.

Theorem 3.1. Let x be a point in P2(V )n × P1(V )m , with V finite dimensional.
Write x as (q1, . . . , qn; `1, . . . , `m), and let Q ⊂ P2(V ) be the span of the qi .
Let W be a d-dimensional subspace of V. Suppose that `1, . . . , `m are linearly
independent and that minrank(Q)≥ dn2n

+ 2(n+ 1)m. Then the orbit closure of x
surjects onto P2(W )n × P1(W )m .

We begin by proving an analog of the above theorem for P3(V ).

Theorem 3.2. Suppose V is finite dimensional. Let f ∈ P3(V ) have q-rank r and
let W be a d-dimensional subspace of V with

(2d
− 1)(d22d

+ 2(d + 1)d − 1)+ d ≤ 1
2ξ(r).

Then the orbit closure of f surjects onto P3(W ).

Proof. Applying Proposition 2.10, let g be a separable cubic in the orbit closure
of f satisfying 1

2ξ(r) ≤ qrk(g). Write g =
∑n

i=1 `i qi , where `i ∈ P1(V1) and
qi ∈ P2(V2), with V = V1⊕ V2, and the `i and qi are linearly independent. Let Q
be the span of the qi . Put s = d22d

+ 2(d + 1)d and k = d . Note that

(2k
− 1)(s− 1)+ k ≤ 1

2ξ(r).
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By Corollary 2.16 we can therefore find a k = d dimensional subspace Q′ of Q
with minrank(Q′)≥ s. Making a linear change of variables, we can assume Q′ is
the span of q1, . . . , qd . Let g′ =

∑d
i=1 `i qi . This is in the orbit closure of g (and

thus f ) since it is obtained by setting `i = 0 for i > d . It is crucial here that the qi

and the `i are in different sets of variables, so that setting some of the `i to 0 does
not change the qi . By Theorem 3.1, the orbit closure of (q1, . . . , qd; `1, . . . , `d)

in P2(V )d × P1(V )d surjects onto P2(W )d × P1(W )d . Now let h ∈ P3(W ). Since
dim(W )= d we can write h =

∑d
i=1 `

′

i q
′

i with `′i ∈ P1(W ) and q ′i ∈ P2(W ). Pick
γt ∈ GL(V ) such that (q ′1, . . . , q ′d; `

′

1, . . . , `
′

d) is in the image of

lim
t→0

γt · (q1, . . . , qd; `1 . . . , `d).

Then h is the image of limt→0 γt · g′, which completes the proof. �

Corollary 3.3 (Theorem 1.8). Suppose that f ∈ P3(V ) has q-rank r > exp(240)
and let W be a subspace of V of dimension d with d < 1

3 log r . Then the orbit
closure of f surjects onto P3(W ).

Proof. By definition of ξ , we have a ≤ ξ(r) (for an integer a) if and only if(a+1
2

)
+a−1≤ r . So the condition in Theorem 3.2 is equivalent to

(D+1
2

)
+D−1≤ r ,

where
D = 2(2d

− 1)(d22d
+ 2(d + 1)d − 1)+ 2d

is twice the left side of the inequality in Theorem 3.2. Now,
(D+1

2

)
+ D− 1 is equal

to 4 · d4
· 16d plus lower order terms, and is therefore less than 20d for d � 0;

in fact, d > 80 is sufficient. Thus for d > 80 it is enough that d < log r/log 20;
since log(20) < 3, it is enough that d < 1

3 log(r). Thus for 80< d < 1
3 log(r), the

orbit closure of f surjects onto P3(W ). But it obviously then surjects onto smaller
subspaces as well, so we only need to assume 80< 1

3 log(r). �

Theorem 3.4 (Theorem 1.7). Let V be infinite dimensional. Suppose Z ⊂ P3(V )
is Zariski closed, GL(V )-stable, and contains elements of arbitrarily high q-rank.
Then Z = P3(V ).

Proof. It suffices to show that Z surjects onto P3(W ) for all finite dimensional
W ⊂ V . Thus let W of dimension d be given. Let r be sufficiently large so that
the inequality in Theorem 3.2 is satisfied and let f ∈ Z have q-rank at least r . By
Proposition 2.5, there exists a finite dimensional subspace V ′ of V containing W
such that f |V ′ has q-rank at least r . Theorem 3.2 implies that the orbit closure of
f |V ′ surjects onto P3(W ). Since Z surjects onto the orbit closure of f |V ′ , the result
follows. �

It was explained in the introduction how this implies Theorem 1.2, so the proof
is now complete.
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4. A computation of q-rank

Fix a positive integer n, and consider the cubic

f = x1 y1z1+ · · ·+ xn ynzn

in the polynomial ring k[xi , yi , zi ]1≤i≤n introduced in Example 1.4. We now show:

Proposition 4.1. The above cubic f has q-rank n.

It is clear that qrk( f ) ≤ n. To prove equality, it suffices by Proposition 2.2 to
show that f |V 6= 0 if V is a codimension n− 1 subspace of k3n . This is exactly the
content of the following proposition.

Proposition 4.2. Let V be a vector space of dimension 2n+ 1 and (xi , yi , zi )1≤i≤n

a collection of elements that span P1(V ). Then f = x1 y1z1+· · ·+ xn ynzn ∈ P3(V )
is nonzero.

Proof. Arrange the given elements in a matrix as follows:x1 y1 z1
...

...
...

xn yn zn

.
Note that we are free to permute the rows and apply permutations within a row
without changing the value of f , e.g., we can switch the values of x1 and y1, or
switch (x1, y1, z1) with (x2, y2, z2), without changing f . We now proceed to find a
basis for V among the elements in the matrix according to the following three-phase
procedure.

Phase 1. Find a nonzero element of the matrix, and move it (using the permutations
mentioned above) to the x1 position. Now in rows 2, . . . , n find an element that is
not in the span of x1 (if one exists) and move it to the x2 position. Now in rows
3, . . . , n find an element that is not in the span of x1 and x2 (if one exists) and move
it to the x3 position. Continue in this manner until it is no longer possible; suppose
we go r steps. At this point, x1, . . . , xr are linearly independent, and xi , yi , and zi ,
for r < i all belong to their span.

Phase 2. From rows 1, . . . , r find an element in the second or third column not in
the span of x1, . . . , xr and move it (using permutations that fix the set {x1, . . . , xr })
to the y1 position. Next, from rows 2, . . . , r find an element in the second or third
column not in the span of x1, . . . , xr , y1 and move it to the y2 position. Continue
in this manner until it is no longer possible; suppose we go s steps. At this point,
x1, . . . , xr , y1, . . . , ys form a linearly independent set, and the elements yi , zi for
s < i ≤ r belong to their span. The conclusion from Phase 1 still holds as well.
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Phase 3. Now carry out the same procedure in the third column. That is, from rows
1, . . . , s find an element in the third column not in the span of x1, . . . , xr , y1, . . . , ys

and move it (by permuting rows) to the z1 position. Then from rows 2, . . . , s find an
element in the third column not in the span of x1, . . . , xr , y1, . . . , ys, z1 and move
it to the z2 position. Continue in this manner until it is no longer possible; suppose
we go t steps. At this point, x1, . . . , xr , y1, . . . , ys, z1, . . . , zt forms a basis of V .
The conclusions from Phases 1 and 2 still hold.

For clarity, we write X1, . . . , Xr , Y1, . . . , Ys, Z1, . . . , Z t for our basis. We note
that because dim(V ) > 2n we must have t ≥ 1. The ring Sym(V ∗) is identified with
the polynomial ring in the X , Y , Z variables. We now determine the coefficient of
X1Y1 Z1 in mi = xi yi zi . If i > r then mi has degree 3 in the X variables, and so the
coefficient is 0. If s < i ≤ r then mi has degree 0 in the Z variables, and so again
the coefficient is 0. Finally, suppose that i ≤ s. Then mi = X i Yi zi . The only way
this can contain X1Y1 Z1 is if i = 1. We thus see that the coefficient of X1Y1 Z1 in
mi is 0 except for i = 1, in which case it is 1, and so f =

∑n
i=1 mi is nonzero. �

Remark 4.3. It follows from the above results and Proposition 2.5 that the cubic∑
∞

i=1 xi yi zi has infinite q-rank.
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