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A nonarchimedean Ax—Lindemann theorem
Antoine Chambert-Loir and Francois Loeser

A Daniel Bertrand, en témoignage d’amitié

Motivated by the André—Oort conjecture, Pila has proved an analogue of the Ax—
Lindemann theorem for the uniformization of classical modular curves. In this
paper, we establish a similar theorem in nonarchimedean geometry. Precisely, we
give a geometric description of subvarieties of a product of hyperbolic Mumford
curves such that the irreducible components of their inverse image by the Schottky
uniformization are algebraic, in some sense. Our proof uses a p-adic analogue of
the Pila—Wilkie theorem due to Cluckers, Comte and Loeser, and requires that
the relevant Schottky groups have algebraic entries.

1. Introduction

1.1. The classical Lindemann—Weierstrass theorem states that if algebraic numbers

oy, ..., o, are Q-linearly independent, then their exponentials exp(«1), . . . , exp(ay,)
are algebraically independent over Q. More generally, if «y,...,a, are any
Q-linearly independent complex numbers, no longer assumed to be algebraic,
Schanuel’s conjecture predicts that the field Q(«y, . .., oy, exp(ay), . . ., exp(ay,))

has transcendence degree at least n over Q. Ax [1971] established power series
and differential field versions of Schanuel’s conjecture. In particular, the part of
Ax’s results corresponding to the Lindemann—Weierstrass theorem can be recast
into geometrical terms as follows:

Theorem 1.2 (exponential Ax-Lindemann). Let exp : C" — (C*)" be the mor-
phism (21, ...,2,) — (exp(z1), ..., exp(z,)). Let V be an irreducible algebraic
subvariety of (C*)" and let W be an irreducible component of a maximal algebraic
subvariety of exp~' (V). Then W is geodesic, that is, W is defined by a finite family
of equations of the form Z?:l a;zi =bwithay,...,a,€Qandb e C.

In a breakthrough paper, Pila [2011] succeeded in providing an unconditional
proof of the André—Oort conjecture for products of modular curves. One of his

MSC2010: primary 11G18; secondary 03C98, 11D88, 11J91, 14G22, 14G35.
Keywords: Schottky group, Ax—Lindemann theorem, Pila—Wilkie theorem, nonarchimedean analytic
geometry.
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main ingredients was to prove a hyperbolic version of the above Ax—Lindemann
theorem, which we now state in a simplified version.

Let h denote the complex upper half-plane and j : h — C the elliptic modular
function. By an algebraic subvariety of A", we mean the trace in A" of an algebraic
subvariety of C*. An algebraic subvariety of k" is said to be geodesic if it can
be defined by equations of the form z; = ¢; and z;x = greze, With ¢; € C and
gke € GL(2,Q)".

Theorem 1.3 (hyperbolic Ax-Lindemann). Let j : " — C" be the morphism
Z1y o rzn) > (J(21)s ...y j(Zn)). Let V be an irreducible algebraic subvariety
of C" and let W be an irreducible component of a maximal algebraic subvariety
of Y (V). Then W is geodesic.

Pila’s method to prove this Ax—Lindemann theorem is quite different from the
differential approach of Ax. It follows a strategy initiated by Pila and Zannier
[2008] in their new proof of the Manin—Mumford conjecture for abelian varieties;
that approach makes crucial use of the bound on the number of rational points
of bounded height in the transcendental part of sets definable in an o-minimal
structure obtained in [Pila and Wilkie 2006]. Recently, still using the Pila and
Zannier strategy, Klingler, Ullmo and Yafaev [Klingler et al. 2016] have succeeded
in proving a very general form of the hyperbolic Ax—Lindemann theorem valid for
any arithmetic variety; see also [Ullmo and Yafaev 2014] for the compact case.

1.4. In the recent paper [Cluckers et al. 2015], Cluckers, Comte and Loeser estab-
lished a nonarchimedean analogue of the Pila—Wilkie theorem of [Pila and Wilkie
2006] in its block version of [Pila 2009]. The purpose of this paper is to use
this result to prove a version of Ax—Lindemann for products of algebraic curves
admitting a nonarchimedean uniformization and whose corresponding Schottky
group is “arithmetic” and has rank at least 2 (Theorem 2.7). In particular, this
theorem applies for products of Shimura curves admitting a p-adic uniformization
a la Cerednik-Drinfel’d (see Section 3).

The basic strategy we use is strongly inspired by that of [Pila 2011] (see also
[Pila 2015]), though some new ideas are required in order to adapt it to the nonar-
chimedean setting. Similarly as in Pila’s approach one starts by working on some
neighborhood of the boundary of our space (which, instead of a product of Poincaré
upper half-planes, is a product of open subsets of the Berkovich projective line).
Analytic continuation and monodromy arguments are replaced by more algebraic
ones and explicit matrix computations by group theory considerations. We also take
advantage of the fact that Schottky groups are free and of the geometric description of
their fundamental domains. Compared with Pila’s proof, where parabolic elements
are used in a crucial way, one main difficulty of the nonarchimedean situation lies
in the fact that all nontrivial elements of a Schottky groups are hyperbolic.
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To conclude, let us note that there are cases where p-adic analogues of theorems
in transcendental number theory seem to require other methods than those used to
prove their complex counterparts. For instance, it is still an open problem to prove
a p-adic analogue, for values of the p-adic exponential function, of the classical
Lindemann—Weierstrass theorem.

Since his first works (see, for example, [Bertrand 1976]), Daniel Bertrand has
shown deep insight into p-adic transcendental number theory, and disseminated his
vision within the mathematical community. We are pleased to dedicate this paper
to him.

2. Statement of the theorem

2.1. Nonarchimedean analytic spaces. Given a complete nonarchimedean valued
field F', we consider in this paper F-analytic spaces in the sense of Berkovich [1990;
1993]. However, the statements, and essentially the proofs, can be carried on mutatis
mutandis in the rigid analytic setting. In this context, there is a notion of irreducible
component; see [Ducros 2009], or [Conrad 1999] for the rigid analytic version.

If V is an algebraic variety over F, we denote by V2" the corresponding F-
analytic space. There is a canonical topological embedding of V (F) in V", and its
image is closed if F is locally compact.

If F’ is a complete nonarchimedean extension of F, we denote by Xp the
F’-analytic space deduced from an F-analytic space X by base change to F’.

2.2. Schottky groups. Let p be a prime number; we denote by C,, the completion
of an algebraic closure of Q, and let F' be a finite extension of Q, contained
in C,. The group PGL(2, F) acts by homographies on the F-analytic projective
line P{". In the next paragraphs, we recall from [Gerritzen and van der Put 1980] a
few definitions concerning Schottky groups in PGL(2, F), their limit sets and the
associated uniformizations of algebraic curves.

One says that a discrete subgroup I' of PGL(2, F) is a Schottky group if it is
finitely generated, and if no element (# id) has finite order [Gerritzen and van der
Put 1980, I, (1.6)]. If I is a Schottky group, then I" is free; moreover, any discrete
finitely generated subgroup of PGL(2, F) possesses a normal subgroup of finite
index which is a Schottky group [Gerritzen and van der Put 1980, I, (3.1)].

We say that I" is arithmetic if its elements can be represented by matrices whose
coefficients lie in a number field. In this case, it follows from the hypothesis that I" is
finitely generated that there exists a number field K C F such that I’ € PGL(2, K).

2.3. Limit sets. Let I" be a Schottky subgroup of PGL(2, F). Its limit set is the
set Zr of all points in P1(C),) of the form lim, (y, - x), where (y,) is a sequence of
distinct elements of I" and x € P{(C,) [Gerritzen and van der Put 1980, I, (1.3)].
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By [Gerritzen and van der Put 1980, I, (1.6)], the limit set .4t is a compact subset
of P (F). If the rank of I" is at least 2, then %1 is a perfect (that is, closed and
without isolated points) subset of Py (F); see [Gerritzen and van der Put 1980, I,
(1.6.3) and (1.7.2)].

Let Qr = (P1)* =%t it is a I'-invariant open set of P{". By Lemma 5.4 below,
it is geometrically irreducible.

2.4. Quotients. Letus assume that I" is a Schottky group and let g be its rank. From
the explicit description of the action of the group I" given by [Gerritzen and van der
Put 1980, 1.4] and recalled in Section 6.5 below (see also [Berkovich 1990, p. 86]),
it follows that the group I" acts freely on Qr, and the quotient space Qr/I" admits
a unique structure of an F'-analytic space such that the projection pr : Qr — Qr/ T
is both a topological covering and a local isomorphism. Moreover, Qr/I" is the
F-analytic space associated with a smooth, geometrically connected, projective
F-curve X1 of genus g [Gerritzen and van der Put 1980, III, (2.2); Berkovich 1990,
Theorem 4.4.1, p. 86], canonically determined by the GAGA theorem in this context,
[Berkovich 1990, Theorem 3.4.12, p. 68].

2.5. Let us now consider a finite family (I';)1<;<, of Schottky subgroups of
PGL(2, F) of rank > 2. Let us set Q@ = [[/_, Qr, and X = []'_, Xr,, and let
p 1§ — X*" be the morphism deduced from the morphisms pr, : Qr, — Xp.

2.6. Flat subvarieties. Let K be a complete extension of F' and let W be a closed
analytic subspace of Q.

The following terminology is borrowed from the analogous notions in the differ-
ential geometry of hermitian symmetric domains.

We say that W is irreducible algebraic if there exists a K -algebraic subvariety Y
of (P})k such that W is an irreducible component of the analytic space Qg NY*".
In this case, one can take for Y the Zariski closure of W in (P}); it is irreducible
and satisfies dim(Y) = dim(W); see [Ducros 2009, Proposition 4.22].

We say that W is flat if it can be defined by equations of the following form:

(1) zi =cforsomei €({1,...,n}and c € Qr,(K);

(2) zj = g - z; for some pair (i, j) of distinct elements of {1, ..., n} and some
g € PGL(Q2, F).

Assume that W is flat and let Y be the subvariety of (P})x defined by equations of

this form which define W on Q. There exists a subset 1 of {1, ..., n} such that the

projection gy : P} — P{ given by the coordinates in / induces an isomorphism of Y
to (P{)K. This implies that ¢; induces an isomorphism from W to [[,.; Qi k. In
particular, W is irreducible, even geometrically irreducible, and hence is irreducible
algebraic. Conversely, we observe that if W is geometrically irreducible and if there
exists a complete extension L of K such that Wy is flat, then W is flat.
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We say that W is geodesic if, moreover, the elements g in (2) can be taken such
that gT";¢~ ' and T j are commensurable (i.e., their intersection has finite index in
both of them).

Here is the main result of this paper.

Theorem 2.7 (nonarchimedean Ax—Lindemann theorem). Let F be a finite exten-
sion of Q,, and let (I';)1<;<n be a finite family of arithmetic Schottky subgroups of
PGL(2, F) of ranks > 2. As above, let us set Q=[[/_, Qr, and X =[];_, Xr,, and
let p : Q2 — X be the morphism deduced from the morphisms pr, : Qr, — Xp.

Let V be an irreducible algebraic subvariety of X and let W be an irreducible
algebraic subvariety of Q, maximal among those contained in p~' (V™). Then
every irreducible component of W, is flat.

The proof of this theorem is given in Section 8; it follows the strategy of Pila—
Zannier. In the archimedean setting, this strategy relies crucially on a theorem
of Pila—Wilkie about rational points on definable sets; we recall in Section 4 the
nonarchimedean analogue of this theorem [Cluckers et al. 2015] which is used here.
It is at this point that we need the assumption that the group I" be arithmetic. This
restriction is inherent to Pila—Zannier’s strategy and we do not know whether it can
be bypassed.

In Section 6, we recall a few more facts on p-adic Schottky groups and p-adic
uniformization, essentially borrowed from [Gerritzen and van der Put 1980].

In a final section, we prove a characterization (Theorem 9.2) of geodesic subvari-
eties of 2 as the geometrically irreducible algebraic subvarieties whose projection
to X is algebraic (“bialgebraic subvarieties”), in analogy with what happens in the
context of Ax’s theorem or of Shimura varieties.

3. The example of Shimura curves

We begin by recalling the definition of Shimura curves and their p-adic uniformiza-
tion. The literature is unfortunately rather scattered; we refer to [Boutot and Carayol
1992] for more detail, as well as to [Clark 2003, Chapter 0].

3.1. Complex Shimura curves. Let B be a quaternion division algebra with cen-
ter Q; we assume that it is indefinite, namely B ®g R >~ M(R). Let then 03
be a maximal order of B, that is a maximal subring of B which is isomorphic
to Z* as a Z-module. Let H be the algebraic group of units of ¢, modulo
center, considered as a Z-group scheme. For every field R containing Q, one has
H(R)=(B®qR)*/Z((B ®q R)*); in particular, the group H (R) is isomorphic
to PGL(2, R), and we fix such an isomorphism. Then the group H (R) acts by
homographies on the double Poincaré upper half-plane

ht =C=R.
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Let also A be a congruence subgroup of H(Z); recall that this means that there
exists an integer N > 1 such that A contains the kernel of the canonical morphism
H(Z) - H(Z/NZ). We assume that A has been chosen small enough so that
the stabilizer of every point of h* is trivial. The quotient A*/A has a natural
structure of a compact Riemann surface and the projection p : h* — h* /A is an
étale covering.

This curve parameterizes triples (V/, ¢, v), where V is a complex two-dimensional
abelian variety, ¢ : ©g — End(V) is a faithful action of &g on V and v is a level
structure “of type A” on V. When A is the kernel of H(Z) to H(Z/NZ), for some
integer N > 1, such a level structure corresponds to an equivariant isomorphism
of Vy, the subgroup of N-torsion of V, with g /NC3.

By [Shimura 1961], it admits a canonical structure of an algebraic curve S which
can be defined over a number field £ in C.

3.2. The p-adic uniformization of Shimura curves. Let p be a prime number at
which B ramifies, which means that B ®q Q,, is a division algebra. Let also F be
the completion of the field E at a place dividing p; we denote by C, the p-adic
completion of an algebraic closure of F'. We still denote by S the F-curve deduced
from an E-model of the complex curve S.

Let Q = (P)%' =P(Q,) be the extension of scalars to F of Drinfel’d’s upper
half-plane. According to the theorem of Cerednik and Drinfel’d [Cerednik 1976;
Drinfel’d 1976] (see also [Boutot and Carayol 1992] for a detailed exposition), and
up to replacing F by a finite unramified extension, the F-analytic curve S*" admits
a “p-adic uniformization” which takes the form of a surjective analytic morphism

jiQ— 5§,

identifying $*" with the quotient of 2 by the action of a subgroup I' of PGL(2, Q,,).
Up to replacing A by a smaller congruence subgroup, which replaces S by a finite
(possibly ramified) covering, we may also assume that I" is a p-adic Schottky
subgroup acting freely on €2, and that j is topologically étale. Then the morphism
j 2 — S* is the universal cover of S*".

Let us describe this subgroup. Let A be the quaternion division algebra over Q
with the same invariants as B, except for those invariants at p and co which
are switched. In particular, A ®g R is Hamilton’s quaternion algebra, while
AR®q@Q, =M>(Q,). Let G be the algebraic group of units of A, modulo center;
in particular, G(Q,) ~ PGL(2, Q). As explained in [Boutot and Carayol 1992],
the discrete subgroup I" is the intersection of G(Q) with a compact open subgroup
of G(Ay), the adelic group associated with G where the place at co is omitted.

Lemma 3.3. The group T is conjugate to an arithmetic Schottky subgroup in
PGL(2, Q,), its rank is at least 2, and its limit set is equal to P1(Q,).
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Proof. The group I' is a discrete subgroup of PGL(2, Q,), so its limit set .Zf
is a I'-invariant subset of P;(Q,). In other words, the Drinfeld upper half-plane
Q =P{"=P(Q,) is an open subset of Qr = P{"=_2t. By the theory of Mumford
curves and Schottky groups (see [Gerritzen and van der Put 1980]), the analytic
curve (P{"=_21)/T is algebraic, and admits the analytic curve $* = Q/T" as
an open subset. According to the Cerednik—Drinfel’d theorem, the curve S is
projective. This implies that & = P{" — .21, and hence £ =P(Q)).

After base change to Q,, the algebraic Q-group G becomes isomorphic to
PGL(2)q,. Consequently, there exists a finite algebraic extension K of Q, contained
in Q,, such that Gx >~ PGL(2)g. By such an isomorphism, G(Q) is mapped
into PGL(2, K); this implies that the group I" is conjugate to an arithmetic group.

Since I' is a Schottky group, it is free. Since it is nonabelian, its rank is at
least 2. ]

By this lemma, the following result is a special case of our main theorem
(Theorem 2.7).

Theorem 3.4. Let F be a finite extension of Q,, let Q@ = (P)7 =P1(Q)) and let
j Q" — ™ be the Cerednik—Drinfel’d uniformization of a product of Shimura
curves. Let V be an irreducible algebraic subvariety of S and let W C Q" be
a maximal irreducible algebraic subvariety of j~ (V™). Then every irreducible
component of Wc,, is flat.

3.5. By the same arguments, one can show that Theorem 2.7 also applies to the
uniformizations of Shimura curves associated with quaternion division algebras over
totally real fields, as considered by Cerednik [1976] and Boutot and Zink [1995].

3.6. As suggested by J. Pila and explained to us by Y. André, Theorem 3.4 can
also be deduced from its complex analogue, which is a particular case of [Ullmo
and Yafaev 2014]. The crucial ingredient is a deep theorem of André [2003, III,
4.7.4] stating that the p-adic uniformization and the complex uniformization of
Shimura curves satisfy the same nonlinear differential equation. His proof relies on
a delicate description of the Gauss—Manin equation in terms of convergent crystals
and on the tempered fundamental group introduced by him. From that point on, one
can apply Seidenberg’s embedding theorem [1958] in differential algebra to prove
that both the complex and nonarchimedean Ax-Lindemann theorems are equivalent
to a single statement in differential algebra, in the original spirit of [Ax 1971].

4. Definability —a p-adic Pila—Wilkie theorem

4.1. There are two distinct notions of p-adic analytic geometry: one is “naive”,
and the other rigid analytic. (Regarding rigid analytic geometry, we work in the
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framework defined by Berkovich.) These two notions give rise to three classes of
sets, and we use them all in this paper. Let F' be a finite extension of Q,,.

a) Semialgebraic and subanalytic subsets of Q’;, are defined by Denef and van
den Dries [1988]; see also [Cluckers et al. 2015, p. 26].

Replacing Q,, by a finite extension F, this leads to an analogous notion of
F-semialgebraic, or F-subanalytic, subset of F”". Considering affine charts,
one then defines F'-semialgebraic or F-subanalytic subsets of V (F), for every
(quasiprojective, say) algebraic variety V defined over F'.

On the other hand, the Weil restriction functor assigns to V an alge-
braic variety W defined over Q, together with a canonical identification
V(F) — W(Q)); we say that a subset of V (F) is Q,-semialgebraic or Q-
subanalytic if its image in W(Q),) is Q,-semialgebraic or Q,-subanalytic,
respectively. Observe that F-semialgebraic subsets of V (F) are Q,-semi-
algebraic, and that F'-subanalytic subsets of V (F') are Q,-subanalytic.

Recall that an F-subanalytic subset S is said to be smooth of dimension d
at a point x if it possesses a neighborhood U which is isomorphic to the unit
ball of F¢; then S is smooth of dimension d at every point of U.

b) Lipshitz [1993] defined a notion of rigid subanalytic subset of CZ. We use in
this paper the variant [Lipshitz and Robinson 2000a, Definition 2.1.1] where
the coefficients of all polynomials and power series involved belong to F'; we
call them rigid F-subanalytic. The notion extends to subsets of V(C)), where
V is an algebraic variety defined over F.

These classes of sets are stable under boolean operations and projections [Lipshitz
and Robinson 2000b, Corollary 4.3], admit cell decompositions [Cluckers et al.
2006, Theorem 7.4], a natural notion of dimension (in fact, they are b-minimal in
the sense of [Cluckers and Loeser 2007]), as well as a natural notion of smoothness.

Lemma 4.2. Let F be a finite extension of Q, contained in C,, and let V be an
algebraic variety over F. Let Z be a rigid F-subanalytic subset of V(C)). Then
Z(F)=ZNV(F) is an F-subanalytic subset of V (F).

Proof. We may assume that V = A”. Then Z can be defined by a quantifier-free
formula of the above-mentioned variant of Lipshitz’s analytic language, and our
claim follows from the very definition of this language. (]

4.3. A block in Q, is either empty, or a singleton, or a smooth subanalytic subset
of pure dimension d > 0 which is contained in a smooth semialgebraic subset of
dimension d.

A family of blocks in Q), x Qj, is a subanalytic subset W such that there exists an
integer 7 > 0 and a semialgebraic set Z C Q) x Q; such that for every o € Q;,, there
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exists T € Q; such that the fibers W, and Z, are smooth of the same dimension,
and W, C Z.. (In particular, the sets W,, for o € Q% , are blocks in Q;@.)

Let F be a finite extension of Q. Considering Weil restriction, we deduce from
these notions the definition of a block in F”, or of a family of blocks in F" x Q;.

4.4. Let H be the standard height function on Q; for x € Q, written as a fraction
a/b in lowest terms, one has H (x) = max(|a|, |b|). We also write H for the height
function on (_)" defined by H (x1, ..., x,;) = max; (H (x;)). Viewing GL(d, 6) asa
subspace of (_de, it defines a height function on GL(d, Q). There exists a strictly
positive real number ¢ such that H(gg’) < cH(g)H(g’) for every g, g’ € GL(d, Q),
and H(g™") « H(g)* for every g € GL(d, Q). When d =2 and g € SL(2, Q), one
even has H(g~!) = H(g).

Consider g € GL(d, Q). If g is diagonal, then H(g") = H(g)" for every
n € Z. More generally, if g is semisimple, then we have upper and lower bounds
H(g)" < H(g") < H(g)" for every n € Z.

By abuse of language, if G is a linear algebraic Q-group, we implicitly choose
an embedding in some linear group, which furnishes a height function H on G (Q).

The actual choice of this height function depends on the chosen embedding,
but any other height function H' is equivalent, in the sense that there is a strictly
positive real number ¢ such that H )¢ <« H'(x) < H(x)¢ for every x € G(Q).

4.5. Let Z be a subset of F" and let K be a finite extension of Q contained in F.
We write Z(K) = ZN K" (K -rational points of Z). For every real number T, we
define Z(K; T) ={x € Z(K) : H(x) < T}; for every integer D, we also define
Z(D; T) to be the set of points x € Z(F) such that [Q(x;) : Q] < D for every
ie{l,...,n}and H(x) < T. These are finite sets.

We say that Z has many K -rational points if there exist strictly positive real

numbers ¢, « such that
Card(Z(K; T)) > cT*

for all T large enough. This notion only depends on the equivalence class of the
height.

4.6. In [Cluckers et al. 2015], Cluckers, Comte and Loeser established a p-adic
analogue of a theorem of Pila and Wilkie [2006] concerning the rational points
of a definable set. We will use the following variant of [Cluckers et al. 2015,
Theorem 4.2.3].

Theorem 4.7. Let F be a finite extension of Q, and let K be a finite extension
of Q contained in F. Let Z C F" be a Q,-subanalytic subset. Let ¢ > 0. There
exist s € N, ¢ € R and a family of blocks W C Z x Q,, satisfying the following
property: for every T > 1, there exists a subset St C Q), of cardinality < c¢T* such
that Z(K; T) C Uyes, Wo-
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Proof. Letd =[F :Q,]. By Krasner’s lemma, there exists an algebraic number e € F
of degree d such that F = Q,(e). Then the basis (1,e, ..., e~ 1) defines a Q,-
linear bijection v : Qf, S F, X1, ..., xq) — inei_l. Letg: F ~ Q;’) be its
inverse.

By construction, if K is a number field contained in F and x € K¢, then
¥ (x) € K(e); in particular, [Q(¥(x)) : Q] < d[Q(x) : Q]. Conversely, if x € K,
then the coordinates of ¢(x) in Qf, belong to the Galois closure K (e¢) of the
compositum K - Q(e), hence are algebraic numbers of degrees < D = [K (e)" : Q].
In other words, ¢ and ¥ induce bijections at the level of algebraic points. Since
these maps are linear, there exists a positive real number a > 0 such that a ' H (x) <
H(p(x)) <aH(x) for every x € K.

We deduce from ¢ a Q)-linear isomorphism ¢ : F" — Q’;d . In particular,
Z' = ¢(Z) is a subanalytic subset of Q;’,d. The morphism ¢ maps algebraic points
of given degree to algebraic points of uniformly bounded degree, and there exists
a positive real number a > 0 such that a ' H(x) < H(¢(x)) < aH (x) for every
x € Z(K).

The definition of a family of blocks that we have adopted here is slightly stronger
than the one used in Theorem 4.2.3 of [Cluckers et al. 2015]. However, all proofs go
over without any modification, so that there exists a family of blocks W' C Z’ x Q,
such that for any T' > 1, there exists a subset Sy C Qj, of cardinality < ¢T*
such that Z'(D; T) C U,es, Wy- Let ¢ 1 F" x Q}, — Q’l‘f’ x QS, be the map
(x, )~ (¢(x),y) and let W = Y I (W) C F* x Q;. By definition, W is a family
of blocks in Z. Moreover, for any T > 1, one has

Z(F; Ty cy " (Z'(D;aTy C | o7 W)= W
oES,T oE€Sar
Since Card(S,7) < ca®T?, the family of blocks W satisfies the requirements of the
theorem. ([l

5. Zariski closures and analytic functions

5.1. Let F be a complete nonarchimedean valued field. Let V be an F-scheme
of finite type. One says that a subset K of V" is sparse if there exist a set T and
asubset Z of V¥ x T such that foreveryt € T, Z, ={x e V¥ : (x,1) € Z}isa
Zariski-closed subset of V" with empty interior, and K =, Z;.

Lemma 5.2. A sparse set has empty interior.

Proof. Let us say that a point x € V" is maximally Abhyankar if the rational
rank of the value group of 7 (x) is equal to dim, (V?"). If V is irreducible, then
maximally Abhyankar points are dense in V?"; moreover, each of them is Zariski
dense. Let K be a sparse set in V"; write K = [ J, Z; as above. Let us argue by
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contradiction and let U be a nonempty subset of V2" contained in K. By what
precedes, there exists a maximally Abhyankar point x € U. Let t € T be such that
x € Z;. Then Z, contains the Zariski closure of x in V2", so that Z, contains an
irreducible component of V", contradicting the definition of a sparse set. U

Lemma 5.3. Let F' be an algebraically closed complete extension of F and
q : Vi — V2 the base change morphism. Let K be a closed sparse subset of V"
and let K’ = g~ (K). Then K’ is sparse.

Proof. Indeed, if K = |J,.; ZM is a description of the sparse set K, then the
equality K’ = | J,.7(Z,)% shows that K’ is sparse as well. O

Lemma 5.4. Let us assume that K is sparse, and let C C V be a geometrically
irreducible curve such that C*™ ¢ K. Then C* =K is connected.

Proof. Using Lemma 5.3, we reduce to the case where F is algebraically closed;
moreover, we may assume that C is reduced. Let K =, Z{" be a description
of K as above. Up to adding the singular locus of C to K, we may assume that
C is smooth. By assumption, for every t € T, C ¢ Z*"; consequently, Z*" N C*"
consists of rigid points of C?", and hence K N C?" consists of rigid points of C?".
In the topological description of smooth geometrically irreducible analytic curves
as real graphs [Berkovich 1990, Chapter 4], their rigid points are endpoints, so
C™ = (K NC™) is connected as well. O

Proposition 5.5. Let F be a complete nonarchimedean valued field. Let V be
an F-scheme of finite type which is geometrically connected (resp. geometrically
irreducible) and let K be a closed sparse subset of V*". Then V¥ =K is a
geometrically connected (resp. geometrically irreducible) analytic space.

The particular case K = @ implies the “GAGA”-type consequence that if V is
geometrically connected (or geometrically irreducible), then so is V2".

Proof. Using Lemma 5.3, we reduce to the case where F is algebraically closed.
By assumption, V is connected. Let us prove that V¥ — K is connected. Let
x,y € V¥ =K. Let F' an algebraically closed complete valued field containing
both #°(x) and #(y), and view x, y as elements of V(F'). Let ¢ : Vi — V" be
the base change morphism and let K’ = ¢~!(K); by Lemma 5.3, this is a sparse
subset of VI?I,‘. By [Mumford 1970, p. 56], there exists an irreducible curve C C Vg
which passes through x and y. Then C*" is connected. One has C ¢ K’, by
definition of K’; it follows from Lemma 5.4 that C*" = (K’ N C*") is connected.
Consequently, x and y belong to the same component of V' =K', and hence their
images in V" = K belong to the same connected component. This proves that
Va — K is connected.

Let us now assume that V is geometrically irreducible. The normalization
morphism p : W — V is finite, and W is geometrically connected. Since p~!(K) is
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a sparse subset of W, it follows from the first part of the lemma that W= p~!(K)
is geometrically connected. Since W?" is the normalization of V" [Ducros 2016,
Lemma 2.7.15], then Wa=p~1(K) = p~!(V®=K) is the normalization of V=K .
By Theorem 5.17 of [Ducros 2009], this implies that V" — K is geometrically
irreducible. U

Corollary 5.6. Let F be a complete valued field, let V be an F-scheme of finite
type and let K be a closed sparse subset of V*". The set of irreducible com-
ponents of V¥ = K is finite. If V is equidimensional, then each of them has
dimension dim(V).

Proof. We may assume that V is irreducible. Let Q2 = V¥ =K. Let E be the
completion of an algebraic closure of F. By Proposition 5.5, Qg N Z*" is irreducible
for every irreducible component Z of Vg, and the family of these intersections is
the family of irreducible components of Q2. The finiteness statement then follows
from [Ducros 2009, Lemme 4.25], while the one about dimension follows from
[Ducros 2009, Proposition 4.22]. O

Corollary 5.7. Let F be a complete valued field, let V be an irreducible F-scheme
of finite type and let K be a closed sparse subset of V*. Let W be an irreducible
component of V¥ =K. If W is geometrically irreducible, then V is geometrically
irreducible as well, one has W = V* — K and W is topologically dense in V",

Proof. Let E be a complete algebraically closed extension of F, and let V1, ..., V,
be the irreducible components of Vg. Let L be the preimage of K in Vg;itis a
closed sparse subset of V2" (Lemma 5.3). Consequently, L ; = Vj'fm N L is a closed
sparse subset of VJ?‘“, for every j. By Proposition 5.5, W; = V;‘“—L j 1s geometri-
cally irreducible. The automorphism group Aut(E/F) acts transitively on the set
{V1,..., V,} of irreducible components of Vg, hence on the set {Wy, ..., W,} of
irreducible components of Vj"=— L. Since Vg is geometrically irreducible, there
exists an index j such that Wg = W;; then Aut(E/F) fixes W}, so that n =1 and
Jj = 1. This proves that V is geometrically irreducible. By Proposition 5.5, one has
W =V¥ =K. By Lemma 5.2, W is topologically dense in V2", O

Proposition 5.8. Let F be a finite extension of Q. Let A be an affine scheme of
finite type over F and let Q2 C A*™ be the complement of a closed sparse subset. Let X
be a closed analytic subspace of 2. Let V be a Q,-semialgebraic subset of A(F),
contained in X (F), and let W be its Zariski closure in A. Then W N Q C X.

Proof. This proof is inspired by that of [Pila and Tsimerman 2013, Lemma 4.1].

We argue by noetherian induction on W, assuming that if W’ is the Zariski closure
of a Q,-semialgebraic subset V' of A(F) contained in X (F), and if W' C W, then
wHTmNQcX.
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First assume that W is not irreducible. Then any irreducible component W' of W
is the Zariski closure in A of V. N W/(F), a Q,-semialgebraic subset of A(F); by
induction, (W)™ NQ C X, so that W NQ C X.

We may thus assume that W is irreducible; since its subset W (F') of F-rational
points contains V/, it is Zariski-dense in W, so that W is geometrically irreducible.

Let K = A* = Q. By assumption, K is closed and sparse. Let K = J S*" be
a presentation of K, where for every ¢, S; is a Zariski-closed subset with empty
interior of A. Since W is irreducible and not contained in S;, W N §; is a strict
Zariski-closed subset of W. Consequently, W2 N K is a sparse subset of W2". By
Proposition 5.5, W2" N Q is thus a geometrically irreducible analytic space.

Let R be the Weil restriction functor from F to Q,. By definition, A(F) is
identified with R(A)(Q)) and we write R(V') for the image of V' inside R(A)(Q)).
Let then Z be the Zariski closure of R(V) inside R(A).

Let Z’ be an irreducible component of Z. Then Z' NR(V) is a semialgebraic
subset of R(A), of the form R(V’), for a unique Q,-semialgebraic subset V' of V.
When Z’ varies, the corresponding subsets V' cover V; we may thus choose Z’
such that V' is Zariski dense in W. Replacing V by V', we may assume that Z
is irreducible; then it is geometrically irreducible, because its set of Q,-points is
Zariski dense.

Since V is Q-semialgebraic, the subset R(V) of R(A)(Q)) is semialgebraic;
hence, the dimension of Z coincides with the dimension of V as a Q ,-semialgebraic
subset of A(F). Consequently, dimz,(Z) = dim(Z(Q))) = dim(R(V)).

Since W is a Zariski closed subset of A containing V, the subscheme R(W) is
Zariski closed in R(A) and contains R(V), so that Z C R(W). By Weil restriction,
the inclusion Z — R(W) corresponds to a morphism g : Zp — W. Let x € A(F)
and let x € R(A)(Q),) be the corresponding point; if x € V, then x e R(V) C Z(Q)),
and hence x € Zp(F). By the definition of the Weil restriction functor, one has
g(xX) = x. In particular, the image of Zr(F') under g contains V. Hence, g is
dominant, by definition of W.

The morphism g induces an analytic morphism g : ZF' — W C A*™". The
inverse image of W N is the complement of a closed sparse subset of Z3; since
Z3 is geometrically irreducible, Corollary 5.6 implies that (g*")~1(W™ N Q) is
geometrically irreducible, of dimension dim(Z%"). Let Y = (@™~ '(W™NX);itis
a Zariski closed analytic subset of (g*)~!(W* N Q).

Let us admit for a moment that dim(Y) = dim(Zr) and let us conclude that
W NQ C X. Since dim(Z%") =dim(Zp) = dim((g®™) "' (W2 N Q)), we see that

Y =)' WmNX) = (") I (WPNQ).

The morphism g : Zr — W being dominant, its image contains a nonempty open
subset W' of W. Since W is geometrically irreducible, (W')*" is dense in W?";



1980 Antoine Chambert-Loir and Francois Loeser

in particular, the image of g®" meets any nonempty open subset of W?". Since
(g™~ (W3 N (= X)) is empty, by the preceding equality, this implies that
wa N (2=X) is empty; hence, W N Q = Wa"N X.

It remains to prove the equality dim(Y) = dim(ZF).

Let us consider a semialgebraic cell decomposition of R(A)(Q,,) which is adapted
toR(V), Z(Q,), Zsing(Q)), and to their singular loci: a finite partition of R(A)(Q,)
into “open cells” such that these Q,-semialgebraic subsets are unions of cells; see
[Denef 1986] and also [Cluckers and Loeser 2007].

Let C be a cell of dimension dim(R(V))) which is contained in R(V). Since

dim(Zing (Qp)) < dim(Zing) < dim(Z) = dim(R(V)),

the cell C is disjoint from Zjne (Q,). By definition of a cellular decomposition, C
is open in R(V) and in (Z = Z5)(Q)).

Let C be the subset of V corresponding to C. Since the identification of C
with C provided by the Weil restriction functor is a homeomorphism which respects
the singular loci, C is an open subset of V.

Let x be a point of C and let X be the corresponding point of C. By what precedes,
R(V), Z(Qp) and Z are smooth at x, so that T; (R(V)) = Tz(Z(Q,)) = Tz (Z).
In particular, these three Q,-vector spaces have the same dimension, equal to
dim(7,(V)) = dim(V).

Since g(X¥) = x € X, one has X € Y; more generally, C CY.The tangent space
T;z(Y) of Y at X is an F-vector subspace of Tz (Zr) = (T3(Z))r which contains
T; (5) = T3 (Z). Consequently, Tz(Y) = Tz(ZF). This implies that the analytic
space Y has dimension dim(Z ), and concludes the proof. U

6. Complements on p-adic Schottky groups and uniformization

Let F be a finite extension of Q. Unless specified otherwise, analytic spaces are
F-analytic spaces.

6.1. Leta € F and r € R.; as usual, we let B(a, r) and E(a, r) be the subsets
of (A1) of points x such that |7 (x) —a| < r and |T(x) —a| < r, respectively.
The subspace B(a, r) is called a bounded open disk; we say that E(a, r) is the
corresponding bounded closed disk. If B is a bounded open disk, we write B
for the corresponding bounded closed disk. We say that such a disk is strict if its
radius r belongs to |F*|Q.

To these disks, we also add the unbounded open disks P{" — E(a, r) and the
unbounded closed disks P{" — B(a, r). An unbounded disk is said to be strict if its
complementary disk is strict.

The image by an homography y € PGL(2, F) of an open (resp. closed, strict)
disk is again an open (resp. closed, strict) disk.
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6.2. We endow P;(C,) with the distance given by

lx —yl
max(1, [x]) max(1, |y])

8(x,y) =

for x, y € C,—it is invariant under the action of PGL(2, ﬁcp). Moreover, an
elementary calculation shows that every element g € PGL(2, C),) is Lipschitz for
this distance; see also Theorem 1.1.1 of [Rumely 1989].

6.3. Let I" be a Schottky group in PGL(2, F), 4 C P (F) its limit set and Qp =
P{" = 2. For any rigid point x € Qr, let 5r(x) be the §-distance of x to .

For every y € PGL(2, F), there exists a real number ¢ > 1 such that ¢ =!8 (z) <
dr(y - z) < cdr(z) for every rigid point z € Qr-.

Lemma 6.4. Let & be a compact subset of Qr. There exists a strictly positive real
number ¢ such that 5+ (x) > c for every rigid point x € ®.

Proof. Arguing by contradiction, we assume that there exists a sequence (x;)
of rigid points of & such that dr(x,) — 0. For every n, let &, € 4T such that
dr(xp) = 8(x,, &y); it exists since 4T is compact. Extracting a subsequence if
necessary, we assume that the sequence (£,) converges to a point & of 4. Then
8(x,, &) — 0. This implies that the sequence (x,) converges to £ in the Berkovich
space Pi". Since & is compact, one has £ € &, a contradiction. (]

6.5. Let I" be a Schottky subgroup of PGL(2, F). Let us assume that the point at
infinity oo does not belong to its limit set 1. Then, by [Gerritzen and van der Put
1980, I, (4.3)], the group I" admits a basis (y1, ..., ¥¢) and a good fundamental
domain §t with respect to this basis, in the following sense:

(1) There exists a finite family (B, ..., By, Cy, ..., Cy) of strict bounded open
disks in P§" such that §r =P{"—= (I B; UJ ;).
(2) The corresponding bounded closed disks Bl+, R B;, C1+, R C; are pair-
wise disjoint.
Let then 3} = P{"—= (U B UJ C}).
(3) The elements y1, ..., y, satisfy y; (P{"=B;) = Cf and y; (P{"— Bf ) = C; for
everyi e {l,...,g}.
With this notation, let W = Pﬁm—U B;; this is an affinoid domain of P" containing §,
stable under each y;. Indeed, one has W C P{"=B;. Hence, y; W C y; (P{"=B;) = Cl.+,
and hence the claim since C;f is disjoint from each B;.
Moreover, the following properties are satisfied:
(4) One has UyeF y-§r=P1—%A.
(5) For y € I', one has §r Ny - §r # @ if and only if y € {id, ylﬂ, e ygil}.
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(6) For every y € I'={id}, one has §-. Ny - §r = <.

In this context, we identify an element y of I" with a reduced word in the letters
{yli, e, gi} and denote its length by £ (y).

For every y € I' = {id}, [Gerritzen and van der Put 1980, I, §4, p. 29] define
a bounded open disk B(y), equal either to y - (P?“—B;r) or to y - (lem—C;r ),
according to whether the last letter of the reduced word representing y is y; or yfl;
in any case, one has y - oo € B(y). Moreover, they prove:

(7) B(y") C B(y) if and only if y is an initial subword of .

(8) For every integer n, one has

Pr— ) v3= | Bw.
Lr(y)<n Lr(y)=n

(9) There exists a real number ¢ > 1 such that for every y, the radius of the
disk B(y) is < ¢~r®),

(10) The intersection of every decreasing sequence of open disks (B(y;)), where
Lr(yy) = n, is reduced to a limit point of I', and every limit point can be
obtained in this way.

Proposition 6.6. Let I" be a Schottky group in PGL(2, F) and let & be a compact
analytic domain of Qr. There exist positive real numbers a, b such that for every
y € I" and every rigid point x € y - &, one has

Lr(y) <a—blog(dr(x)).

Proof. To prove this proposition, we may extend the scalars to a finite extension of F
and henceforth assume that the limit set £t is not equal to P; (F). Placing a point of
P (F)=4t at infinity, Section 6.5 furnishes a basis (y1, ..., ¥¢) and a good funda-
mental domain with respect to this basis of the form § = P4"— ((J%_, B; UU5_, Ci).
Let b and ¢ > 1 be positive real numbers such that the diameter of B(y) is bounded
by b= ™), for every y € I' ={id}.

Let x € Qr and let y € I" be such that x € y - §. Let £ € 41 (x) be such that
Sr(x) =8(x, ). As the disk B(y) contains both x and £, one has 8 (x) < b= ),
that is,

fr(y) < (—log(3r(x)) +log(h)),

log(c)
since log(c) > 0. This proves the proposition in the particular case where & = §.
Let us now prove the general case. Let a be a real number such that 6, (x) >a >0
for every rigid point of & (Lemma 6.4). The preceding inequality shows that there
exists a finite subset S of I' such that & meets y - § if and only if y € S. It then
follows from property (8) that & is contained in the finite union | J, ¢ s - §. To
conclude the proof, we observe that if x € y - &, then there exists s € S such that
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x € ys - §. The proposition then follows from the particular case already treated
and from the inequality £r(y) < r(ys) +£r(s). U

Corollary 6.7. Let & and &' be compact analytic domains of Qr. The set of y € T’
such that y - & NG’ # & is finite.

Proof. Let S be this set. For y € S, the intersection y - &N &’ is a nonempty affinoid
domain of P%{"; hence, it contains a rigid point x,,. With a and b as in the statement
of Proposition 6.6, one has ¢r(y) < a — blog(dr(x,)). Since x, € &', 8r(x,) is
bounded from below by Lemma 6.4. This shows that £1-(y) is bounded above when
y runs over S. U

Proposition 6.8. Let " be a Schottky group in PGL(2, F) and let g be its rank. Let
& € £t and let U be an open neighborhood of & in P{".

There exist an open neighborhood U’ of &, contained in U, a basis yi, ..., Vg
of I, an affinoid domain § C Qr such that the following properties hold:

(1) OnehasFC U'.
(2) Foreveryi, one has y;(U') C U'.
(3) One has Uyer y3S = Qr.
Such an affinoid domain will be called a fundamental set.

Proof. We first treat the case where 4 # P (F'). Placing a point of P (F)—_%t at
infinity, Section 6.5 furnishes a basis (y1, . . ., ¥,) and a good fundamental domain §
with respect to this basis of the form § =Pj"— (U5, B; UL, Ci).

By (10), for every integer n > 1, there is an element y € I" of length n such that
£ € B(y); if n is large enough, one has B(y)* C U, because the diameter of B(y)™"
tends to O when n = £ (y) tends to oo. Since y - § C B(y)T, this implies that
y-§CU.

Up to changing the basis (y1, ..., y,) into (yl_l, e yg_l), and exchanging B;
and C; for every i, we may assume that the last letter of y is y,, for some
sefl,....,g}. Set W =Pj"= Ule B;; recall that W is an affinoid domain
of Pi‘“ containing § and stable under y, ..., y,. By definition, one has

B(y)" =y -(P{"=B) Dy W,
since W C P{" = B;.

Letusnowset§ =y -§ W =y -Wandy/ =yyy ' forie{l,..., g} By
construction, §' and W are affinoid domains of P{" such that §' C W' C B(y)* C U,
the translates of §’ under I' cover Qr, and W' is stable under the basis (y, ..., yé)
of I'.

This almost proves (1-3), except that W’ is affinoid and not open. To conclude
the construction, one sets U’ to be the interior of W’ and redoes the construction
starting from U’ instead of U. The second paragraph of the proof shows that there
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exists ¥’ € ' such that y’ - § is contained in U’. The affinoid y’ - §, the open
subset U’ and the basis (y7, ..., y,) satisfy the requirements of the proposition.
Let us now treat the case where 4 = P (F). Let F’ be a finite extension of F
of degree > 1. The preceding construction can be applied starting with a point of
P (F') = 4% and furnishes an open neighborhood V' of & in (P{")f/, contained
in Up/, a basis (y1,...,¥,) of I and an affinoid domain §" of Qr ' satisfying
properties (1-3). The images U’ of V' and § of § by the projection (P{") pr — P{"
satisfy the required properties. ([l

Lemma 6.9. Let I" be an arithmetic Schottky group in PGL(2, F) and let H be
a height function on PGL(2, Q). There exists a positive real number ¢ such that
H(y) <c"OH forevery y eT.

Proof. Let (y1,...,¥,) be a basis of I' as above. Let ¢; be a positive real
number such that H(hh') < ciH(h)H(h') for every h,h’ € PGL(2,Q). Let
c=cysup(H(@d), H(y1), ..., H(yg)). One proves by induction on £r(y) that

ctH(y) <sup(ctH(yi), ..., clH(y)) ™ Ve H(id) < ¢y T
for every y € I', as was to be shown. O

Lemma 6.10. Let I' be a Schottky subgroup of PGL(2, F) and let A be a subset of
P, (F) of cardinality 2. Let K be a number field contained in F. The stabilizer of A
inside I does not have many K -rational points.

Proof. Let S be this stabilizer; we may assume that S #~ {id}. Let g € S={id}. Then
g is hyperbolic (see [Gerritzen and van der Put 1980, p. 7, line 2]), and hence has
exactly two rational fixed points in P;(F). Up to a change of projective coordinates,
we may thus assume that A = {0, co}. Then every element & of S is of the form
Z + A(h)z, for some unique element A(h) € K*; moreover, unless & = id, any
such £ is hyperbolic and thus is represented by a matrix having two eigenvalues
with distinct absolute values, so that |A(#)| # 1. Let us choose & € S={id} such
that |A(h)| is > 1 and minimal. By euclidean division, one has S = (h).

Then SNPGL(2, K) is generated by an element of the form 4“ for some a € Z.
Since A is semisimple, we have H (h®)" <« H(h"") < H(h*)", for every n € Z
(see Section 4.4). This shows that S N PGL(2, K) does not have many rational
points. ([

In Section 8, we will need the following lemma.

Lemma 6.11. Let r be a positive real number, f € C,[z]l a power series which
converges on the closed disk E(0, r), and Ly and L; closed subsets of C, such that
f‘l(Lz) C Ly. Forevery x € C,, let §(x; L) and §(x; Ly) be the distances of x
to L1 and Ly, respectively. Then there exist real numbers m > 0, ¢ > 0 and s such
that 0 < s < r and such that §(f(x); Ly) > c§(x; L1)™ for every x € E(0, s).
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Proof. Write f =) ¢,z". We may assume that there exists a € C, such thatr =lal;
composing f with homographies which map E (0, r) to E(0, 1) and f(E(0,r))
into the disk E(0, 1), we assume that r = 1 and that |¢,| < 1 for all n. (Recall
from Section 6.2 that homographies are Lipschitz for the distance §.)

Let us first treat the case where f(0) ¢ L,. Then there exists a real number s > 0
such that E(f(0),s) N L, = &. For every x € E(0, 1) such that |x| < s, one has
| f(x)— f(0)] <s; hence, §(f(x); L) > s. It suffices to set m =0 and ¢ = s.

We now assume that f(0) € L,, and hence 0 € L. Let m = ordo(f — f(0)).
Since f'(2) =) ,om ne,z" 1, there exists a real number s such that 0 < s < 1 and
such that | f/(z)| = [mcp| |z~ provided |z| < s. Moreover, | f ™ (z)/n!| < 1 for
every n > 0 and any z € E(0, 1). Considering the Taylor expansion

fo) =Y L 0@ -,

n>0

we then see that there exists a real number s’ such that

FEG,w) = E(f(x), |f'(x)|u)

for every real number u such that 0 < u <s” and x € E(0, 1) such that 0 < |x| <.
If u < &8(x;Ly), then E(x,u) N Ly = &; hence, E(f(x), |f (x)|u) N L, = &.
Consequently, §(f(x); L2) >|f'(x)| 8(x; L1). Since 0 € Ly, one has |x| > &(x; Ly).
Consequently,

8(f(x); La) > |mey|x|™ '8 (x; L1) > Imcy| 8(x; Li)™.

This concludes the proof. ([

7. Automorphisms of curves

The following result is already present in [Pila 2013]. For the clarity of exposition,
we isolate it as a lemma.

Lemma 7.1. Let k be an algebraically closed field of characteristic zero, B a
smooth connected projective k-curve and f : B — P a nonconstant morphism. Let
R C B be the ramification locus of f (the set of points of B at which f is not étale)
and let Ay = f(Ry) be its discriminant locus.

Assume that there exist automorphisms g € Aut(Py) and h € Aut(B) such that
foh=go f,andthat g has infinite order. Then B is isomorphic to Py, and one of
the following cases holds:

o The morphism f is an isomorphism (and A y = ).
e One has Card(Ry) =2 and g(Ay) = Ay.
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Proof. By construction, f induces a finite étale covering of Py =— A .

Letb € Ry. One has df (b) =0; hence, d(f oh)(b) =d(go f)(b) =0. Since A is
an automorphism of B, this implies that d f (h(b)) = 0; hence, h(b) € Ry. We thus
have h(Ry) C Ry; hence, h(Ry) = Ry, because h is an isomorphism. Consequently,
g(Ar) = Ay, so that some power of g fixes Ay pointwise. Since the identity is
the only homography that fixes 3 points and g has infinite order, this implies that
Card(Ayr) <2.

If Card(A ) <1, then Py=—A f is simply connected. Hence, f is an isomorphism
(and Ay = 2).

Otherwise, one has Card(A r) =2. Let n = deg( f). Up to a change of projective
coordinates in Py, we may assume that Ay = {0, 0o}. Then g is a homothety,
because it leaves A ¢ invariant and has infinite order (otherwise, it would be of the
form g(z) = a/z). Since all finite étale coverings of P; — A s are of Kummer type
(equivalently, 71 (P; = A ) =Z), one has B >~ P and the morphism f is conjugate
to the morphism z +— z" from P; to itself.

We then remark that 4 is a homography of infinite order. Indeed, if 2 = idp,
then f = g¢o f. Hence, g¢ = id since f is surjective. Hence ¢ = 0, since g has
infinite order. As above, the formula 7(R ) = Ry then implies that Card(R ) < 2.
On the other hand, Card(Ry) > Card(A y) = 2. Hence, Card(Ry) = 2. [l

Proposition 7.2. Let k be a field of characteristic zero. Let B be an integral k-
curve in P possessing a smooth k-rational point. Let I'g be the stabilizer of B in
(Aut(Py))" and let 'y C Aut(Py) be its image under the first projection. Assume
that T'| contains an element of infinite order. Then one of the following cases holds:

(1) The morphism p||p is constant.

(2) The morphism p|p is an isomorphism and the components of its inverse are
either constant or homographies.

(3) There is a subset of Py(k) of cardinality 2 which is invariant under every
element of T'y.

Proof. Assume that pq|p is not constant. Let v : B’ — B be the normalization of B
and let p| = pjov:B'—P;. Letg=(g1, ..., gx) be an element of I' 5. There exists
a unique automorphism / of B’ that lifts g, so pj o h = g; o p}. Since the curve B
has smooth rational points, the curve B’ is geometrically integral. Choosing g such
that g; has infinite order, the preceding lemma implies that Card(R p) € {0, 2}.
Let us first assume that Card(R p) = 2. Then Card(A p) = 2 as well. Moreover,
the relation pj oh = gy o p| implies that g; (Ap) C Ay, so that case (3) holds.
Letus now assume that Card(R ) = 0 and fix g such that g; has infinite order. By
the preceding lemma, p| is an isomorphism; this implies that p;|p is an isomorphism
as well. Let f be its inverse and let fi, ..., f, be its components. Assume that
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case (2) does not hold, that is, for some j, the rational map f; is neither constant,
nor a homography; its ramification locus R; is nonempty. Since g; has infinite
order, the relation g; o f; = f; o g| implies that g; has infinite order as well. By
the preceding lemma, one has Card(R;) = 2. Let then g’ = (g}, ..., g,,) be any
element of I'p. The relation g’ o f; = f; o g implies that g{(R;) C R;, so that
case (3) holds. O

8. Proof of Theorem 2.7

We will reduce the proof of Theorem 2.7 to the following variant:

Proposition 8.1. Let F be a finite extension of Q, and let (I';)1<i<, be a finite
family of arithmetic Schottky subgroups of PGL(2, F) of ranks > 2. As above, let
us set @ =[[/_, Qr, and X =[];_, Xr,, and let p : Q — X*" be the morphism
deduced from the morphisms pr, : Qr, — Xp..

Let V be an irreducible algebraic subvariety of X and let W be an irreducible
algebraic subvariety of Q, maximal among those contained in p~ (V™). If W is
geometrically irreducible, then it is flat.

Lemma 8.2. Proposition 8.1 implies Theorem 2.7.

Proof. Let Y be the Zariski closure of W in P; by assumption, W is an irre-
ducible component of Y** N 2. Let Wy be an irreducible component of W¢,. By
[Ducros 2009, Théoreme 7.16(v)], there exists a finite extension F’ of F, contained
in C,, and an irreducible component W’ of Wy such that Wy = W(’:p. Then W’
is geometrically irreducible, as well as its Zariski closure Y’. By Proposition 5.5,
QNY'is geometrically irreducible. The inclusion W C N Y’ and the inequality
dim(W’) = dim(Wy) = dim(W) = dim(Y) > dim(Y’) imply that W' =QNY’. In
particular, W' is irreducible algebraic and is contained in p*I(V;“,’). Let us show
that it is maximal. Let W C Qp be an irreducible algebraic subvariety contained
in p‘l(V;?I,‘) such that W' C W{, and let Y| C (P])f be the Zariski closure of W7.
The image Y of Y 1’ in (P})F is Zariski closed, because F " is a finite extension
of F, and Yl’ C (Y1) . Moreover, Y C Y;. There exists a unique irreducible
component Wy of 2 NY; that contains W, and W/ is an irreducible component
of Wi . Necessarily, Wy is contained in p~'(V"), because W C p_l(V;‘?); this
contradicts the maximality of W.

Applying Proposition 8.1 to W', we conclude that W’ is flat. Consequently,
Wo = Wép is flat, as was to be shown. O

8.3. To prove Proposition 8.1, we argue by induction and assume that it holds if
there are less that n factors. Let W be an irreducible algebraic subvariety of €2,
maximal among those contained in p~! (V") and geometrically irreducible. Let
Y be an irreducible subvariety of P} such that W is an irreducible component
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of Y*" N Q. By Corollary 5.7, Y is geometrically irreducible, W = Y*" N Q and W
is topologically dense in Y.

The proof that W is flat requires intermediate steps and will be concluded in
Proposition 8.11.

A crucial step will consist in proving that the stabilizer of W inside I" has many
points of bounded heights (Proposition 8.10). To that aim, we define in Section 8.7
an F-subanalytic subset R of PGL(2, F)". The definition, close to that of a similar
set in [Pila 2011; 2015], guarantees the following important property (Lemma 8.8):
if B is a small enough subset of R then, for every g € B, the translate (g - Y*") N Q2
is contained in p~!(V), and is independent of g. At this point, the maximality
of W is invoked.

The existence of such blocks is established by applying the p-adic Pila—Wilkie
theorem of [Cluckers et al. 2015]. We thus prove that R has many rational points
(Lemma 8.9); these points are constructed using the action of the Schottky groups
in a neighborhood of a boundary point &, applying material recalled in Section 6.
The construction of such a point &, performed in Lemma 8.5, is actually the starting
point of the proof.

The actual statement of Proposition 8.10 furnishes elements in I" of a precise
form. Using Proposition 7.2, we will finally conclude the proof of Proposition 8.1.

8.4. By assumption, W = Y*'NQ; consequently, the j-th projection g; : (P1)" — P
is constant on Y if and only if it is constant on W, if and only if the j-th projection
from X to X is constant on V, and in this case, its image is an F-rational point
of Py, because W is geometrically irreducible. Deleting these constant factors, we
thus assume that there does not exist j € {1, ..., n} such that the j-th projection
qj: (P)" — Py is constant on Y. Consequently, g;|y : Y — Pj is surjective for
every j; in particular, Y*" meets qj_l (<1;)-
Let m = dim(Y); by what precedes, we have m > 0, and Y*" ¢ Q.

Lemma 8.5. Up to reordering the coordinates, there exists a smooth rigid point

& € Y* and a connected open neighborhood U of & in (P})*" such that the following
properties hold:

(1) The first component q1(§) of & belongs to the limit set 1, of I'1.

(2) Letting J = {1, ..., m}, the projection q; : P| — PIJ induces a finite étale
morphism from U NY? to its image in (Plj )2n,
(3) Forevery j €{l,...,n}and every point'y € UNY™ such that q;(y) € Zr,,
one has q1(y) € 2r,.
Proof. For every subset V of Y?", let us define a relation <y on {1,...,n} as

follows: i <y j if and only if, for every y € V such that g;(y) € 4 ,, one has
q;(y) € Zr;. This is a preordering relation. If U CV C Y™ and i <y j, theni <y j.
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We define a decreasing sequence (Vy, Vi, ..., V,,) of nonempty open subsets
of Y and a sequence (jo, ji,--., ju) of elements of {1, ..., n}, such that for
every k, g, (Vi) meets fpjk and 1, ...,k <y, jk.

We start with V) = Y*". We have reduced to the case where g;(Y*") = P for
every j. In particular, g;(Y™") meets .Z1,. We may take jo = 1.

Letk>0besuchthat Vg, Vi, ..., Vyand jo, ji, ..., jr are defined. If k41 <y, ji,
we set Vi1 = Vi and ji4+1 = jik. Otherwise, one has k+1 Ay, ji. Hence, there exists
y € Vi such that gx41(y) € Zry,, and g, (¥) € Zr, - Let Vier = ViN(g;) ' (Qr, );
this is an open neighborhood of y in Vj such that g, , (Vi41) meets .ZFMI . By
construction, no element z of Vi satisfies ¢, (z) € frjk, so that jx <vy,,, k+ 1.
We then set jiy; =k+ 1.

Let V=V, andi = j,, and let y € V be such that g; (y) € ZT,. Let Z be the dense
open subscheme of Y consisting of smooth points at which dg; does not vanish.
Then Z*" is open and dense in Y?", and V N Z*" is open and dense in V; hence,
qi (VN Z*) is dense in g; (V). Since .7, has no isolated points, we may assume
that y € Z*". Rigid points are dense in qi_l (g () NV N Z*™,; there exists a rigid
point £ in (g "gi(»))NVNZ™. Since ¢;(y) is a rigid point, the point £ is a rigid
point of V' N Z*" (and not only of its fiber of g;). Moreover, g;(§) = q;(y) € ;.

Since dg; does not vanish at &, there exists a subset J of {1, ..., n} containing i
such that the projection g from V to (PIJ )" is finite étale at £. One has Card(J) =
dim(V) = m. Consequently, there exists an open neighborhood U of & in (P})*"
such that g induces a finite étale morphism from U N Y?" to its image in (Plf ),

Reordering the coordinates, we may assume that i = 1 and J = {1, ..., m},
hence the lemma.

8.6. Choose &, J = {1,...,m} and U as in the previous lemma; we may even
assume that U is of the form U; x --- x U,, where, for each i, U; is an open
neighborhood of ¢; (§) in Pi".

Let F’ be a finite extension of F such that & € Y (F’). Since W is geometrically
irreducible, Wg is an irreducible algebraic subvariety of €2. It is also maximal.
Note that the flatness of Wy implies the flatness of W. Replacing F by F’, we
thus may assume that & € Y (F); then ¢, induces a local isomorphism at &.

Leto =(¢1,...,9,): O — Y*NU be an analytic section of ¢;|ya=ny, defined
on an open neighborhood O of g;(£); we may assume that O = Uy X - -+ X Up,.

By condition (3) of Lemma 8.5, ql(go;l(,i”rj)) C %, forevery jef{l,...,n}.

8.7. Let G be the Q-algebraic group PGL(2)", and let G be the algebraic subgroup
of G defined by

(g1,...,81)€Gy & g=---=g,=1. (8.7.1)

We denote by ¢qi, ..., g, the projections of G to PGL(2). For every compact
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analytic domain § of €2, we define a subset Rz of Go(F) by
geR; & dim(g-Y"NFNp L(V™) =m. (8.7.2)
Lemma 8.8. Let § be an affinoid domain of 2.

(1) The set Ry is an F-subanalytic subset of Go(F).
(2) Forevery g € Ry, one has (g-Y*™)NQ C p~lvam,

(3) Let M C Rz be a subset whose Zariski closure is irreducible; for every g, he M,
onehasg-Y=nh-Y.

Proof. (1) The sets V and Y are algebraic over F; hence, V(C,) and Y (C,)
are rigid F-subanalytic. Since § is affinoid, the morphism p|z defines a rigid
F-subanalytic map from §(C,) to V(C,), so that (N p‘l(Va“))(Cp) is a rigid
F-subanalytic set. Consequently, taking C,-points, (g - Y*" N F N p*I(V‘m))g
furnishes a rigid F-subanalytic family of rigid F-subanalytic subsets of Q(C)),
parameterized by Go(C,). By b-minimality, the set of points g € Go(C,,) such that
dim(g- Y*™NFNp L (V™) =misa rigid F-subanalytic subset of Go(C)). It then
follows from Lemma 4.2 that Ry is an F-subanalytic subset of Go(F).

(2) Let g € Rz and let us prove that (g-Y*")NQ C p~1(Va). Since g - Y™ is
irreducible and g - Y*" N § has dimension m = dim(g - Y?"), this intersection is
Zariski dense in g - Y*". Moreover, there exists a finite extension F’ of F such that
g-Y¥ NF(F') is Zariski dense in Y (it suffices that g - Y*" N § admits a smooth
F’-point), so that the Zariski closure of g - Y*" NF(F') in (P})f is equal to g - Y.
Moreover, g - Y (F') NF(F’) is F’'-semialgebraic. Hence, Proposition 5.8 implies
that g- Y3 NQp C p;/l (VEM. Since p is defined over F and g € G(F), this implies
that (g- Y™ NQ c p~ (V).

(3) As a subset, (M - Y2) N Q is contained in p~' (V). By Proposition 5.8, its
Zariski closure Y’ satisfies (Y)®NQ C p~' (V) as well. Since Y and the Zariski
closure of M are geometrically irreducible, Y’ is geometrically irreducible.
Letge M;thenY™ C g~ 'M.Y*™ C g=!.(Y")®™, and hence W C g~!- (Y™ NQ.
By maximality of W, one has W = g~! - (Y/)® N Q. This implies g - ¥ = Y’. Thus
g-Y=h-Yforevery g, h e M. U
We return to the context of Section 8.6. In particular, & is a point of Y (F) such

that g1 (§) € 4T,, and the restriction to Y of the projection to the first m coordinates
is étale at £, with a local analytic section ¢ defined on U; X - - - X Uy,.

Lemma 8.9. There exist a real number ¢ > 0, fundamental sets §; C Qr, and a
subset Y of Rz N\ T, where § = [ | i, such that the following hold:

(1) Forall T large enough, one has Card(Y7) > T¢, where Y denotes the set of
ally € Y suchthat H(y) <T.
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(2) The projection q is injective on Y.
(3) Forall j €{l,...,n}suchthat q;(§) & <T;, one has Card(q; (7)) = 1.

Recall that there exists a number field K contained in F such that I' CPGL(2, K)",
and H is induced by a fixed height function on PGL(2, Q)". In particular, Lemma 8.9
implies that the subset Rz of PGL(2, F))" has many K -rational points, in the sense
of Section 4.5.

Proof. Let g be the genus of Xr,; by Proposition 6.8, there exists a basis a, ..., ay
of I'1, an open neighborhood U { of ¢ (§) which is contained in U; and stable under
the action of a1, ..., a4, and a fundamental set §; for I'y contained in U{. For

simplicity of notation, we now assume that Uy = Uj.
We have introduced in Section 8.6 a local analytic section

o=(Q1,...,00): Uy x---xU, - Y"NU; x---x U,

of the projection gy : ¥ — P{, where J ={1,...,m}. Let j € {1, ..., n} be such
that g;(§) ¢ <r;. Then g;(§) has a compact analytic neighborhood U J’ contained
in Qr;. Shrinking Uy, ..., Uy if necessary, we assume that the image of ¢; is
contained in U J/ for every such j.

Leta’ = (ay,...,a,) € W be arigid point that belongs to the image of ¢ and
such that a; € §1. Leta = (ay, ..., an); we have a’ = ¢(a). For j € {2,...,n},
we also choose a fundamental set §; that contains a;.

We claim that we can complete any element y; € F; which is a positive word y;
inaj,...,a, to an element y € I" such that y‘l € Ryand H(y) K et for
some real number c.

Let us now prove the asserted claim. For any positive word y in aq, ..., a4, one
has y -a; € Uy; in particular, we can consider the pointa(y;) = (y1-ai, az, ..., an)
of Uy x --- x Uy, and its image ¢(a(y;)) under the section ¢.

By Section 6.3, there exists a real number ¢; > 1 such that §(a; - ay; £t,) >
cf18(a1; 27,), uniformly in a;. By induction on the length £, (y;) of the positive
word y1, this implies the inequality

—Lry, (y1)

d(y1-ar; £r)) = ¢ (8.9.1)

We firstset y, =--- =y, = 1.
Let j >m. Lety; : Uy — U; be the analytic map with ¢ (x) =¢;(x, a2, ..., an).
By construction (Lemma 8.5), if ¥;(x) = ¢;(x,az,...,an) € “r;, one has

x=gqi(x,as,...,ay) € Zr,. In other words, one has wj_] (“r;) C “r,. Applying
Lemma 6.11 to v/, we obtain an inequality of the form

8(pj(x,a, ..., am); L)) > 8(x; Zr)),
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for some integer k > 0 and all x € U;. In particular,
8(pia(yD)s L) > 8(yi - ar; £k (8.9.2)

By Proposition 6.8, there exists y; € I'; such that ¢;(a(y1)) € y; - §;. By
Proposition 6.6 and Lemma 6.9, one has

H(y)) <é(pjlaly)); £r)™", (8.9.3)

where « is a positive real number, independent of y;. By equations (8.9.1), (8.9.2)
and (8.9.3), we thus have

fry (YDke

H(yj) <8(n-ai: £) ™™ < ¢ (8.9.4)

Let c = c'l"‘.

Let y = (y1,...,y,) € ' By what precedes, H(y) < ctri - Moreover,
@jla(yr)) € yj -§; for every j; this follows from the fact that a; € §; if j < m,
and from the construction of y; if j > m.

Let us prove ¥ ~! € Rz. One has W C p~!' (V) by assumption; since y € T,
this implies y ~' - W c p~1(V). Consequently,

y Yt ngnp v oy wngnp (v =y~ wng.
The analytic morphism
UlXXUm_>W’ (x17"'9xm)|_)¢)(y1'xl’x2"“’xn'l)

is an immersion and maps the point a = (ay, ..., a,,) to the point ¢(a(y1)) €y - §.
Since a is a rigid point, this morphism maps a neighborhood of a into y - §, so that
dim(W Ny -§) > m. This proves y ! € R3.

Applying Lemma 6.9 to estimate H (y;), we thus have shown the existence of
a positive real number ¢ such that for every positive word y; in «y, ..., oy, there
exists an element y = (y, ..., y,) completing y; such that H(y) < ¢"1"") and
)/71 € RzNT.

Let Y’ be the set of all such elements y~
inai,...,a,. Itis asubset of RzNI". By construction, the projection g is injective
on Y’. Moreover, since the number of positive words of length ¢ in «y, ..., Qg
is g*, the cardinality of Y is bounded from below by gloe(1/log(©) — log(@)/log(c)
and the exponent of T is strictly positive, since ¢ > 2. Finally, let j be such
that g;(§) ¢ <r;. By construction, ¢;(a(y1)) € y;3§;; hence y;§; meets UJ’.. By
Corollary 6.7, the set S; of such elements y; in I'; is finite. It follows that there is
a subset Y of Y’ that satisfies the conclusion of the proposition. (]

! where | ranges over positive words

Proposition 8.10. Let G, be the subgroup of G consisting of elements (g;) such
that g; =1d if q;(§) & £r,;. Both the stabilizer of W inside G, NT and its image
in 'y under the first projection have many rational points.
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Proof. Let ¢, Y, §;, § =[] 3 and R = R3 be as given by Lemma 8.9; let 7 > 1
be such that Card(Y'7) > T¢ for T > Ty.

Let K be a number field contained in F such that all groups I'; are contained
in PGL(2, K); the points of RN T are K-rational points. Recall that for every real
number 7', we denote by R(K; T') the set of K-rational points of R of height < T'.
Onehas Yr =TNR(K; T).

Since R is F-subanalytic (Lemma 8.8), it is also Q-subanalytic and we may
apply the p-adic Pila—Wilkie theorem of [Cluckers et al. 2015], as stated in
Theorem 4.7. Thuslets e N, d €e R, e >0and B C R x Q‘;, be a family of
blocks such that for every T > 1, there exists a subset X7 € Qj, of cardinality
<dT® suchthat R(K; T) C U(,E}: B,. Letalsot e Nand Z C Gy(F) x Q;, be
a semialgebraic subset such that for every o € Q),, there exists t € Q;, such that
B, C Z; and dim(B,) = dim(Z;). Let finally r be an upper bound for the number
of irreducible components of the Zariski closure of the sets Z., for 7 € Qi,.

Let T > Ty. Since Yr C R(K; T), by the pigeonhole principle, there exists

o € Xr such that

Card(Y7)
Card(Y7 N By) > W():;)

c—¢&

Moreover, the Zariski closure of B, in PGL(2)’ has at most r irreducible com-
ponents. Consequently, we may choose such an irreducible component M whose
trace M on B, satisfies

1
Card(Yr N M) > — T 8.
dr

(Observe that M is indeed the Zariski closure of M.)

Let g € Yr N M. Since the Zariski closure of M is irreducible and M C Ry, it
follows from Lemma 8.8 that the stabilizer of W inside GoNI" contains g_l M ; hence
g~ '(Y7 N M). By construction, the image of g~! (Y7 N M) under the projection
of index j is {id} if ¢;(§) & Z1;. This shows in particular that the stabilizer of W
inside G, N T contains g~ '(Y7 N M). This set contains > T¢~¢/dr points, and
their heights are < T2; the same holds for its image by the first projection, since
this projection is injective on g~!(Y N M).

We thus have shown that the stabilizer of W inside G;; N I" has many rational
points, as well as its image under the first projection, concluding the proof. ([

Proposition 8.11. The subvariety W is flat.

Proof. We have constructed in Section 8.6 an analyticmap ¢ : Uy X -+ - x U, = Y,
which is a local section of the projection to the m first coordinates.

Let a € [[/,(Q2r, NU;); let us denote by W, the fiber of W over a under the
projection to [ [/_, P{", and Y, similarly. When a varies, the number of irreducible
components of Y, is uniformly bounded.
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Let ¥, : (U1) @) — Y" be the analytic morphism deduced from ¢. We claim
that the components of ¥, are either constant or homographies.

Let g € Go N T be an element such that g- W = W, g1 #id and g; = id if
q;(&) & Zr; (Proposition 8.10). Since g- W = W, one has g-Y =Y. Hence
g-W,=W,and g-Y, =Y,. The element g induces a commutative diagram

Ya;)ya

A X
wa(l l;wa

P1) .z L1 P1) .z

where the section ¥, is analytic and defined over the open subset (U1) ) of
P, a;;ﬁ( )" Let Y be the irreducible component of Y, that contains v/, (&;); it is
geometrically irreducible. Recall that g; has infinite order; replacing g; and g by
some fixed power, we may thus assume that g- Y, =Y.

By Proposition 7.2, either Y, — (P1)#(4) is an isomorphism and the components
of its inverse are constant or homographies, or there exists a subset A of Py (A (a))
such that Card(A) =2 and g (A) = A for every element g = (g1, ..., g,) € GyNI
such that g- W =W and g- Y, =Y. Let us assume that we are in the latter case.
Using that I'y C PGL(2, F), we see that A C P, (F). By Lemma 6.10, the projection
to I'; of the stabilizer of W inside G, N T" has few rational points, contradicting
Proposition 8.10.

We thus have shown that the components of the analytic map ¥, are either
constant or given by homographies.

Letje{m+1,...,n}

First assume that g (§) € 2r;. Then g; =id, whence the relation ¥, ; =4 j0g1.
Since g # id, this implies that v, ; is constant, i.e., ¢; does not depend on the
coordinate x;. Since U is reduced, the morphism ¢; is deduced by pull-back of an
analytic map 6, : [ /L, U; — P{™.

Let us then assume that g;(§) € ;. Since the j-th component of ¢ takes the
value g;(§), the section v, ; cannot be constant. It is thus a homography 7, ,.

A priori, one has t; , € PGL(2, 7 (a)) for every a. However, by condition (3)
of Lemma 8.5, one has gaj_l (<r;) C 2r,. The limit sets 4T, and £, are contained
in P;(F) and have no isolated points, so that rj_; maps an infinite subset of P (F)
into Py (F); this implies that 7; , € PGL(2, F).

Observe that for x € Uy NP (F), one has 7, -x = ¥, j(x) = ¢(x,a). In
particular, the assignment a — T, , is induced by an analytic morphism. Since it
takes its values in PGL(2, F), it is constant.

Let J' and J" be the set of all j € {m+1, ..., n} such that g;(§) belongs to .,
and Qr, respectively. Let Q' = Qr, x ]_[‘/-EJ/ Qr; and Q" = [TL, Qr, x ]_[J-GJ,, Qr;;
similarly, write X" =X x[];., X; and X" =[T]/L, X; x[[;c;» X ;, and decompose
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the projection p: Q — X as (p/, p”), where p': Q" — X" and p” : Q" — X" are
the natural projections.

Let Z' be the graph in (P} x [lier P1)an of (7j)je; and Z” the graph in
(TT7~2 Py X [T, P1)™ of (6))jesr. Let Y’ and Y” be the Zariski closure of
Z' and Z”, let W' and W” be their traces in Q" and Q”, and let V' and V" be
the Zariski closures of p’(Z’) and p”(Z"). It is clear that Y’ = Z’ is the curve
inP; x[] jes P1 (with coordinates x; and x; for j € J ") given by the equations
xj =1;(x;), and W’ is its trace on . In particular, W’ is flat.

By construction, Z’ x Z” is a subspace of Y which meets W in a Zariski dense
subset of itself; hence Y =Y x Y and W = QNY* = W' x W”. Moreover,
p(W) = p (W) x p”"(W’) C V; hence V' x V” C V. Consequently, W” is a
maximal algebraic irreducible subset of (p”)~!((V”)2). By induction, W” is flat.

Consequently, W = W’ x W” is flat, as was to be shown. O

9. A characterization of geodesic subvarieties

9.1. Let F be a finite extension of Q, and let (I';)i1<;<, be a finite family of
arithmetic Schottky subgroups of ranks > 2 in PGL(2, F') Let us set Q2 = ]_[f’=1 Qr;,
X =TT'_, Xr,, and let p : Q@ — X" be the morphism deduced from the morphisms
pr; : Qr, > Xp.

Theorem 9.2. Let W be a Zariski closed subvariety of 2, geometrically irreducible.
Then the following properties are equivalent:

(1) The variety W is geodesic.
(ii) Its projection p(W) is algebraic.
(iii) The dimension of the Zariski closure of p(W) in X is equal to dim(W).

Proof. Let us assume that W is geodesic and show that p(W) is algebraic.

We may assume that no projection pr; is constant on W. Define a relation ~ on
{1,...,n} given by i ~ j if there exists g € PGL(2, F) (necessarily unique) such
that gT;g~! and I"; are commensurable and z; = g - z; for every z € W. This is an
equivalence relation. Fix an element j in each equivalence class; for i such that
~1 and assume that zj=zionW.
This shows that W and €2 decompose as a product indexed by the set of equivalence
classes of the following particular situation: all the subgroups I'; are commensurable,
and W is the diagonal of €2. It thus suffices to treat this particular case.

Let I'o =(),; I'; and X be the algebraic curve associated with Qr,/ I'y. Then, for
every i, the morphism f; : W — X" deduced from f = p|w factors as the composi-
tion of the uniformization pg : Qr, — X" and of a finite morphism X§" — X. By
GAGA [Berkovich 1990, Corollary 3.5.2; Poineau 2010, Appendix], a finite analytic

i ~ j, we may replace I'; by its conjugate gI'; g
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morphism of algebraic curves is algebraic; consequently, there exists a finite mor-
phism g; : Xo — X; such that f; =g o po. Then p(W) is the image of X by the fi-
nite morphism ¢ = (g1, . .., g») : Xo — X, hence is algebraic. This shows that (i) im-
plies (ii). Since it is clear that (ii) implies (iii), it remains to prove that (iii) implies (i).

Let us assume now that the dimension of the Zariski closure V of p(W) in X is
equal to the dimension of W. By construction, W is a maximal irreducible algebraic
subvariety of p~! (V). By Proposition 8.1, W is flat. A similar analysis as in the
proof of the first implication shows that there is a partition of the indices {1, ..., n}
under which W decomposes as a product of flat curves and points. Since it suffices
to prove that each of these curves is geodesic, we may assume that W is a flat curve

of the form
W={(z82....,8 2N,

where g7, ..., g, € PGL(2, F).

First assume that n = 2. Let then g € PGL(2, F) be such that W ={(z, g-2)} N
and let us prove that I'; and gI';g~! are commensurable, a property which is
equivalent to the finiteness of both orbit sets I';\I',gI"; and T'|\I" g~ 'T,.

Let us argue by contradiction and assume that I'\I">¢I"; is infinite. (The other
finiteness is analogous, or follows by symmetry.) Fix a rigid point z € Qr,. Let
A C T be aset such that gA is a set of representatives of [';\I",gI"1; by assumption,
A is infinite. Since ['\W C V2", the algebraic variety V contains the infinite set of
points p(a -z, g-az) = (p1(2), p2(ga - z)), for a € A; hence it contains its Zariski
closure {p1(z)} x X». Since this holds for every z € W, we deduce that V contains
X1 x X», contradicting the assumption that dim(W) = 1.

Let us now return to the general case. To prove that W is geodesic, it suffices
to establish that the subgroups I'; and g jl"lgj_l are commensurable for every
Jj €1{2, ..., n}. Up to renumbering the indices, it suffices to treat the case j =2. Let
Q' =Qr, xQr,, let p’: Q" — X’ = X x X, be the uniformization map, and denote
by 7 the projections from 2 to Q" and from X to X'. Let W =n (W) and V' =7n (V).
By Chevalley’s theorem, V' is an algebraic curve in X’. Obviously, W’ is a flat curve
contained in (p")~'((V’)®), and hence is a maximal irreducible algebraic subset of
(P)~' (V™) N Q. By the case n = 2, the Schottky groups I'; and nglgz_l are
commensurable, as was to be shown. This concludes the proof of Theorem 9.2. [J

Corollary 9.3. Let V be an irreducible curve in X. Then every irreducible alge-
braic subvariety of S2c, which is maximal among those contained in p~! (Véi) is
geodesic.

Proof. Let Wy be an irreducible algebraic subvariety of Q¢,,
those contained in p‘l(Vé‘;); let us prove that Wy is geodesic. We may as-
sume that dim(Wj) > 0. Since p is surjective and has discrete fibers, one has
dim(p_l(Vé’;)) = dim(VCa‘;), hence dim(Wp) = 1, so that Wy is an irreducible

maximal among
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component of p‘1 (V"‘“)Cp. By Theorem 7.16 of [Ducros 2009], there exists a
finite extension E of F and an irreducible component W of p~ 1 (V@) such that
Wo = Wc,.

By Theorem 9.2, W is geodesic. Consequently, W is geodesic. U

Remark 9.4. This corollary suggests that the main results of the paper extend to
maximal algebraic irreducible subvarieties of p*1 (Van)cp, without assuming that
they are defined over a finite extension of F.
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A modular description of 2y(n)

Kestutis Cesnavicius

As we explain, when a positive integer n is not squarefree, even over C the moduli
stack that parametrizes generalized elliptic curves equipped with an ample cyclic
subgroup of order n does not agree at the cusps with the I'g(n)-level modular
stack Zy(n) defined by Deligne and Rapoport via normalization. Following
a suggestion of Deligne, we present a refined moduli stack of ample cyclic
subgroups of order n that does recover Zy(n) over Z for all n. The resulting
modular description enables us to extend the regularity theorem of Katz and
Mazur: Zy(n) is also regular at the cusps. We also prove such regularity for 27 (n)
and several other modular stacks, some of which have been treated by Conrad
by a different method. For the proofs we introduce a tower of compactifications
&eL,, of the stack €¢¢ that parametrizes elliptic curves—the ability to vary m in
the tower permits robust reductions of the analysis of Drinfeld level structures on
generalized elliptic curves to elliptic curve cases via congruences.
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Chapter 1. Introduction

1.1. Algebraic stacks that refine Xo(n). The study of the compactification X¢(n)
of the coarse moduli space of the algebraic stack %,(n) that parametrizes elliptic
curves equipped with a cyclic subgroup of order n is key for many arithmetic
problems, so one seeks to understand the arithmetic properties of X¢(n), especially
over Z. For this, it is desirable to conceptualize the construction of Xg(n) by
realizing it as a coarse moduli space of an algebraic stack that compactifies #y(n).
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2001


http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2017.11-9
http://dx.doi.org/10.2140/ant.2017.11.2001

2002 Kestutis Cesnavicius

The sought compactifying stack Z(n) was defined by Deligne and Rapoport
[1973, IV.3.3] via a normalization procedure. However, Z(n) lacks an a priori
moduli interpretation, so instead one often considers the stack 2{(n)""¢ that
parametrizes generalized elliptic curves whose smooth locus is equipped with a
cyclic subgroup of order n that is ample, i.e., meets every irreducible component of
every geometric fiber. Even though Zo(n)Maive jg algebraic, has X¢(n) as its coarse
moduli space, and agrees with Z((n) on the elliptic curve locus, it seems to have
been overlooked that

If n is not squarefree, then 2((n) and 25 (n)"*"¢ are genuinely different,
even over C.

1.2. Pathologies of 2,(p)™"°. To explain the difference, we set n := p? for
some prime p, let 2°(1) denote the stack that parametrizes those generalized elliptic
curves whose geometric fibers are integral, and consider the structure morphism

e Zo(p?)™™ — 271)

which in terms of the moduli interpretation forgets the subgroup and contracts the
generalized elliptic curve with respect to the identity section. We claim that the
morphism c is not representable.

To see this, let E be the standard p-gon over C and let ¢, € C* be a primitive
root of unity of order p?. Then E*™ = G,, x Z/pZ and each of the p worth of
automorphisms of E fixing Gy, x {0} stabilizes the cyclic subgroup ((¢,2, 1)) of
order p?. Each such automorphism contracts to the identity, so c is not representable.

In contrast, the morphism

20(p?) — 2(1)

is representable by construction, so the 2°(1)-stacks 27 (p?)"" and 25 (p?) are not
isomorphic. The same p-gon example carried out over F » shows that 2 ( p)naive
is not even Deligne-Mumford (whereas 2;(p?) is), a pathology that has already
been pointed out in [Edixhoven 1990, 1.1.1.1; Conrad 2007].

1.3. A modular description of 2y(n). One of the main goals of this paper is to
refine the definition of 24 (n)""¢ to obtain a moduli interpretation of 24 (n) even
when n is not squarefree. The elliptic curve locus needs no refinement, so the
issue is to incorporate the cusps in a way that avoids the nonrepresentability of
¢ phenomenon. For this, we follow a suggestion of Deligne [2015]. To present
Deligne’s idea, we assume that n = p? for a prime p and work over Z[1/p].

In vague terms, the idea is to subsume the automorphisms causing the nonrep-
resentability of ¢ into the moduli problem. To make this possible, the data being
parametrized will involve algebraic stacks and not merely schemes. In precise
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terms, the moduli problem that in Chapter 5 will be proved to recover 2o(p?)z(1 /]
assigns to every Z[1/p]-scheme S the groupoid of tuples

(E—> S, G, Say, Sipys Sip2ys 91> G(p)> Q(pZ))
consisting of:
« a generalized elliptic curve £ — S;

« acyclic subgroup G C Eg_g~ of order p? over the elliptic curve locus S — §°°;

* open subschemes S(1), S(;), and S(,2) of § that cover S, have § — §° as their
pairwise intersections, and such that the degenerate geometric fibers of Es,
and Eg , are 1-gons and those of E 5,2, are p?-gons;

« ample cyclic subgroups G(1y C E;ﬁ‘) and G2y C E;‘(“z) of order p? that recover
G over § — §%; '

e an ample cyclic subgroup G,y C 52;; of order p? of the universal generalized
elliptic curve £(,) whose degenerate geometric fibers are p-gons and whose
contraction is E,, , subject to the requirement that G ) recovers G over §—S§°
(over which &) is identified with E).

In essence, the moduli problem parametrizes generalized elliptic curves equipped
with an ample cyclic subgroup of order p? with the caveat that over the part
of the degeneracy locus prone to the nonrepresentability of ¢ the subgroup has
been upgraded to live inside a suitable universal “decontraction” &£,y (which is
an algebraic stack and not a scheme). The role of the S, is to remember the
subdivision of the degeneracy locus $°° — without S(1) and S(,) we cannot single
out those 1-gon degenerate geometric fibers of E that were “meant” to be p-gons
but had to be “upgraded” in order to avoid the nonrepresentability of c.

1.4. Incorporating bad characteristics. After the work of Drinfeld and of Katz and
Mazur, the extension of the above modular description of Z( pz) z11/p) 0 Zo( p2)
is a matter of technique. However, new difficulties at the cusps in characteristic
p force us to impose an additional coherence requirement on G, a requirement
that holds automatically away from p and also on the elliptic curve locus (see
Section 5.5 and Lemma 5.6) and that seems well suited for the analysis of G, even
over Z[1/p]. With this proviso, we prove that for any n the analogue of the moduli
problem described in Section 1.3 gives a moduli interpretation for Zp(n). We
then use this moduli interpretation to prove the following extension of a regularity
theorem of Katz and Mazur:

Theorem 1.5 (Theorem 5.13(a)). The Deligne—Mumford stack Zy(n) is regular.

In fact, Zo(n)z(1/x) is even Z[1/n]-smooth by [Deligne and Rapoport 1973,
IV.6.7], whereas the elliptic curve locus %y (n) is regular by [Katz and Mazur 1985,
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5.1.1], so Theorem 1.5 was known away from the closed substack of the cusps that
lies in characteristics dividing 7.

In the proof of Theorem 1.5, the eventual source of regularity is the combination
of [Deligne and Rapoport 1973, V.4.13] and [Katz and Mazur 1985, 5.1.1] that
proves the regularity of another modular stack 2°(n). The reduction to Z(n) rests
on the moduli interpretation of 2y(n) and on the regularity of #4(n). In particular,
no stage of the argument requires any computations with universal deformation
rings, other than what comes in from [Katz and Mazur 1985, Chapters 5—6] through
our reliance on the regularity of % (n) and #4(n).

We use Theorem 1.5 and the moduli interpretation of Zy(n) to prove that
the coarse moduli space Xg(n) is regular in a neighborhood of the cusps (see
Theorem 6.7). This regularity is not new (see the introduction of Chapter 6) but our
proof seems more conceptual.

1.6. The compactifications €¢(,,. We have been vague about the base of the uni-
versal “decontraction” &,). For the construction of this base in general (beyond
n= pz), it is natural to fix an m € Z>; and to consider the Z-stack €ee,, that
parametrizes those generalized elliptic curves whose degenerate geometric fibers
are m-gons. We prove in Theorem 3.1.6 that €¢¢,, is algebraic, as well as proper
and smooth over Z, albeit is not Deligne-Mumford unless m = 1. Thus, each
€L, compactifies the stack €£¢ that parametrizes elliptic curves, and €¢¢; is the
compactification that is sometimes called /\_/11,1.

As we describe in Section 3.2, the compactifications %Tﬂm form an infinite tower,
with transition maps given by contractions of generalized elliptic curves. This tower
is the backbone of our study of Zy(n) and of several other “classical” modular
curves. For these curves, the most important moduli-theoretic phenomenon that is
not seen on the elliptic curve locus is the fact that “forgetful” contractions change
generalized elliptic curves that underlie level structures. The ability to vary m in the
tower {%ﬂm }min allows us to isolate the part of this phenomenon that has nothing
to do with level structures. The remaining part that is specific to the level structure
at hand may then be studied via “congruences” that reduce to the elliptic curve
case.

1.7. Other modular curves. To illustrate the utility of €¢¢,,, let us consider the
stack .2'(n)"V¢ that parametrizes pairs consisting of a generalized elliptic curve
E — S with n-gon degenerate geometric fibers and a Drinfeld (Z/nZ)?-structure
on ES[n]. (In the end, 2 (n)"ive agrees with 2'(n) mentioned earlier and gives
Z'(n) a moduli interpretation.) Using the work of Katz and Mazur, we prove via
“mod n congruences with elliptic curves” that the forgetful map

Z(n)"ve > e,
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is representable and finite locally free of rank #GL,(Z/nZ). It follows that
2 (n)""¢ is algebraic, proper and flat over Z, and even Cohen—Macaulay. Other
proofs of these properties of .2'(n)"4" have been given by Conrad [2007]: the proof
of the algebraicity used Hilbert schemes via tricanonical embeddings, whereas the
Cohen—Macaulay property required a detailed analysis of the universal deformation
rings at the cusps (in addition to the work of Katz and Mazur on the elliptic
curve locus).

The relations with €¢¢,, together with the “congruence method” that crucially
uses the work of Katz and Mazur allow us to reprove the main results of [Conrad
2007] in Chapter 4. These include the moduli interpretations and the regularity of
the modular stacks Z°(n) and 27 (n) (as well as some variants) and the construction
of Hecke correspondences for .27 (n). The latter takes advantage of the theory of
isogenies of generalized elliptic curves developed in Chapter 2. Away from the
level, the moduli interpretations and the regularity have been proved by Deligne and
Rapoport [1973, IV.3.5 and 1V.4.14]; away from the cusps, they have been proved
by Katz and Mazur [1985, 5.1.1]. Prior to the work of Conrad, [2007], the moduli
interpretations and the regularity of Z(n) and £7(n) (among others) have been
considered in an unfinished manuscript of Edixhoven [2001, especially 2.1.2].

1.8. Reliance on the literature. For what concerns generalized elliptic curves and
Drinfeld level structures on them, we wish to explicate the logical dependence of
our work on the three main references that we use: [Deligne and Rapoport 1973;
Katz and Mazur 1985; Conrad 2007].

» We rely on [Deligne and Rapoport 1973] almost in its entirety; the sections of
[op. cit.] that are logically independent from the work of this paper are 11.§3,
V.§2-3, VI.§2-6, and VIIL.§3-4.

* We make essential use of the results of [Katz and Mazur 1985, Chapters 1-6]
and extend some of them to generalized elliptic curves (see, in particular,
Section 4.2), but have no need for the results of [Katz and Mazur 1985,
Chapters 7-14] (other than for comparison in Proposition 6.3 and Remarks 6.5
and 6.8).

o We use some auxiliary general results from sections 2.1 and 2.2 of [Conrad
2007] but the rest of [op. cit.] is logically independent from our work (as
mentioned in Section 1.7, we give different proofs to the main results of
[Conrad 2007]).

1.9. Notation and conventions. We let €¢¢ denote the Z-stack that, for variable
schemes S, parametrizes elliptic curves E — S. More precisely, for a scheme S,
the objects (resp. the morphisms) of the groupoid €€£(S) are the elliptic curves
E — S (resp. the isomorphisms between elliptic curves over S) and, for a scheme
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morphism §” — S, the induced functor €££(S) — €£L(S") is E+— E x5 S’. We use
the analogous meaning of “parametrizes” when defining other stacks. Other than
in the introduction, we use the notation 21, (resp. 2T, ), etc.) introduced in
Section 4.1.2 for stacky modular curves defined via normalization and the notation
Zo(n) (resp. Z1(n), etc.) for stacks defined in terms of a moduli problem; once
we prove that 21 = Zo(n) (and similarly in the other cases), we use the two
notations interchangeably.

We use the definition of an fpqc cover for which all Zariski covers are fpqc;
explicitly, " — § is an fpqc cover if it is flat and every affine open U C S is the
union of images of finitely many affine opens of §’. An S-scheme S’ is an fppf
cover (or simply fppf) if S — S is faithfully flat and locally of finite presentation.
For a scheme S, we let $™¢ denote its associated reduced scheme. For an S-group
algebraic space G, we let G° denote the subsheaf of sections that fiberwise factor
through the identity component. We let 27" and A »-/s denote the smooth locus
and the diagonal of a morphism .2° — S. For a field k, we let k denote a choice of
its algebraic closure. A geometric point is the spectrum of an algebraically closed
field. For ann € Z>1, we set ¢ (n) :=#(Z/nZ)>.

For what concerns algebraic stack and algebraic space conventions, we follow [SP
2005-], except that “representable” stands for “representable by algebraic spaces.”
In particular, quasicompactness or separatedness of the diagonal are not part of the
definition, but in practice end up being present (along with even stronger properties).
An algebraic stack is Deligne—-Mumford if its diagonal is unramified — for the
equivalence with the étale atlas definition in the presence of quasicompactness
and separatedness of the diagonal, see [Laumon and Moret-Bailly 2000, 8.1]. The
relative dimension (at a point) of a smooth morphism of algebraic stacks is the
difference of the relative dimensions (at a lift of the point) of the morphisms from a
smooth atlas of the source, cf. [Laumon and Moret-Bailly 2000, bottom of p. 98].

Chapter 2. Isogenies of generalized elliptic curves

The main goal of this chapter is to expose a robust theory of isogenies of generalized
elliptic curves. This theory is the subject of Section 2.2 and will be useful on several
occasions, particularly, for algebraizing homomorphisms of formal generalized
elliptic curves in Section 3.4 and for constructing Hecke correspondences for 27 (n)
in Section 4.7. In order to prepare for the study of isogenies, in Section 2.1 we review
several basic concepts, such as that of a homomorphism of generalized elliptic
curves, and record some general results that will be useful throughout the paper.

2.1. Homomorphisms between generalized elliptic curves

In this section, we review basic definitions and properties of generalized elliptic
curves, building up to the notion of a homomorphism, which will be studied in
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Section 2.2. We assume that the reviewed concepts are familiar, so we concentrate
on those aspects that will be used later. We begin with the notion of an n-gon,
which is needed in order to define generalized elliptic curves. Informally, an n-gon
is the curve obtained by gluing n-copies of P! in a cyclic manner: the point 0 of
the i-th copy gets identified with the point co of the (i41)-st copy.

Definition 2.1.1. For an n € Z~ and an scheme S, the standard n-gon over S is

the coequalizer of
Liz/nz S <:§ Llz/nz Ps.

where the top (resp. the bottom) closed immersion includes the i-th copy of S as
the O (resp. the oo) section of the i-th (resp. (i+1)-st) copy of [P’IS. A Néron n-gon
over S (or an n-gon over S) is an S-scheme isomorphic to the standard n-gon over
S. (We often omit “over S” if the base is implicit.)

Remark 2.1.2. Even though colimits usually do not exist in the category of schemes,
the ones used in Definition 2.1.1 do exist and their formation commutes with base
change in S. To see this, one checks directly (or with the help of [Ferrand 2003,
4.3]) that for n > 2 the sought coequalizer is the base change to S of the gluing of

Liez/nz Spec(Z[X;, Y;1/(X;Y}))
obtained by identifying the opens
Spec(Z[Yi, YL,]) and Spec(Z[XiH, ﬁ])

via Y; = 1/X;4 forevery i € Z/nZ, and one treats the n = 1 case by realizing the
standard 1-gon as the Z/nZ-quotient of the standard n-gon, cf. [Conrad 2007, top
of p. 215].

We recall the definition of a generalized elliptic curve, which is a central notion
for this paper.

Definition 2.1.3. A generalized elliptic curve over a scheme S is the data of

« a proper, flat, finitely presented morphism £ — S each of whose geometric
fibers is either a smooth connected curve of genus 1 or a Néron n-gon for some
n>1,and

. + . .
e an S-morphism E*" x ¢ E — E that restricts to a commutative S-group scheme
structure on E°™ for which 4 becomes an S-group action,
such that via pullback of line bundles the action + induces the trivial action of E*™
on Pic?, /s

Remark 2.1.4. Our definition of a generalized elliptic curve is equivalent to the
one given in [Deligne and Rapoport 1973, 11.1.12]: the difference is that we have
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imposed the requirement that £5™ acts trivially on Pic?E /s at the outset. In [loc. cit.]
this is replaced with the a priori milder requirement that on degenerate geometric
fibers every translation by a smooth point induces a rotation on the underlying
n-gon, which ends up being equivalent due to [Deligne and Rapoport 1973, I1.1.7(ii)
and I1.1.13].

The requirement about the triviality of the induced action on Pic% /s holds auto-
matically on a large part of £, namely, it always holds on the relative identity
component (E*™)? —to see this, we apply [Deligne and Rapoport 1973, I1.1.14]"
to Pic) E/s x s ES™ to get the openness of the locus of E5™ where the induced action
on Pic} E/s 1s trivial, note that this locus is closed under the group law of E* M and
conclude by noting that it contains the zero section. In particular, every elhptlc
curve is a generalized elliptic curve, and a generalized elliptic curve E — S is an
elliptic curve over the open of S over which E is smooth.

Remark 2.1.5. The standard n-gon is canonically a generalized elliptic curve: due
to its description recalled in Remark 2.1.2, its smooth locus is G, X Z/nZ and the
translation action of this group scheme on itself extends to an action on the n-gon.
By the previous remark, the triviality of the induced action on Pic® may be checked
on the geometric fibers using [Deligne and Rapoport 1973, 11.1.7(ii)]. For later use,
we now describe the automorphism functor of this generalized elliptic curve.

Lemma 2.1.6. For a fixed n € Z>,, let E — Spec Z be the standard n-gon general-
ized elliptic curve. There is the following identification of the automorphism functor
of E:

Aut(E) = u, x 227,
where the generator of Z /27 acts as inversion on ES™ and, for a scheme S and an
indexi € Z/nZ, a section { € u,(S) acts on the i-th component of

Eg" = (Gu)s x Z/nZ

as scaling by ¢'.
Proof. By [Deligne and Rapoport 1973, 11.1.10], we have

AUt(E) = p, ¥ Z/27

IWe could also apply [Conrad 2007, 2.2.1] to avoid using the representability of Pic% gbya
scheme. On the other hand, such representability may be proved as follows: by [Artin 1969, 7.3], the
functor Pic% /S is an algebraic space, so [Deligne and Rapoport 1973, I1.2.6(i)] proves that the map

(ES™)0 — Picl ) definedby 1 () ® Og(e)”!

is an open immersion (where e € E(S) denotes the identity section), and the representability of Pic? E/S
by a scheme follows from [BLR90 1990, 6.6/2(b)] applied to PICE/S acting on itself by translation
(see also Remark 2.1.16).
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with u, and Z/27Z acting as described above, so we need to argue that Z/27 is
central in Aut(FE). For this, due to the Z-universal schematic density of E5™ in E
supplied by [EGA IV3 1966, 11.10.10], it suffices to note that every generalized
elliptic curve automorphism of a base change of £ must commute with inversion
on ES™. (]

We turn to the closed subschemes ES" C E and $°°7 C S that measure the
degeneration of E.

Definition 2.1.7. The subscheme of nonsmoothness of a generalized elliptic curve
E Z> S is the closed subscheme E*"¢ C E defined by the first Fitting ideal sheaf
Fittl(Q}E /S) C 0Og. The degeneracy locus of E %> S is the schematic image
§°0T C S of ESINE.

Remark 2.1.8. The closed subscheme E*"¢ is supported at those points of E at
which 7 is not smooth and its formation commutes with arbitrary base change
in S, see [SGA 71 1972, VI, 5.3 and 5.4]. Even though the formation of schematic
images often does not commute with nonflat base change, the formation of §*°"
does commute with arbitrary base change, see [Conrad 2007, 2.1.12].

Remark 2.1.9. By [Deligne and Rapoport 1973, 11.1.15], we have
Soo,r[ — I_lnzl Soo,r[,n

for closed subschemes S°7" C S such that only finitely many of the $°™" meet
a given affine open of S and such that E g is fppf locally on S°°™" isomorphic
to the standard n-gon (which was discussed in Remark 2.1.5). In particular, every
generalized elliptic curve E %> S is, Zariski locally on S, projective because, by
[Deligne and Rapoport 1973, 11.1.20; Katz and Mazur 1985, 1.2.3], over the open

S = Ly 27"

the n’-torsion subscheme E™[n'] C E is a w-ample relative effective Cartier divisor.

We record a basic relationship between E*"2 and its schematic image S°>7 in
the following lemma:

Lemma 2.1.10. For a generalized elliptic curve E — S, the map
Esing — §OOT

is finite étale; it has degree n over S°7".

Proof. The map in question exists by the definition of S°" and its formation
commutes with base change in S by Remark 2.1.8. We may therefore assume that
S = §°7™" and that E is the standard n-gon. But in this case E®" is a disjoint
union of n copies of S and there is nothing to prove. (]
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Degenerate generalized curves possess canonical finite subgroups of multiplica-
tive type and their torsion subgroups are amenable to scrutiny. We make this precise
in the following lemma:

Lemma 2.1.11. For every generalized elliptic curve E Z> S with §™4 = (§°°7)red

and every d € 71, the d-torsion (ES™)°[d] is a finite locally free S-group scheme
of order d that is étale locally on S isomorphic to . The S-group scheme

E™[d]/(E™™)°[d]

is étale and if m € Z> divides both d and the number of irreducible components
of each geometric fiber of E, then (E*™[d]/(E smyO[g)[m] is étale locally on S
isomorphic to Z/mZ.

Proof. Due to the fibral criterion for flatness [EGA IV3 1966, 11.3.11], the quasifi-
nite, finitely presented, separated S-groups (E*™)°[d] and E*™[d] are flat. The
fibers of (ES™)°[d] — S have degree d, so, due to [Deligne and Rapoport 1973,
11.1.19], the S-group (E smy0[4] is finite locally free of rank d. Due to [Conrad 2014,
B.4.1 and B.3.4], the claim about the étale local structure of (ES™)°[d] reduces to
case of geometric fibers.

Thanks to the settled claims about (E™)°[d], [EGAIV; 1966, 8.11.2] and
[SGA 314wy 2011, V, 4.1] imply that ES™[d]/(ES™)°[d] is a separated, quasifi-
nite, finitely presented, flat S-scheme. By inspecting geometric fibers we see that
ES™[d]/(ES™)°[d] is étale. The étale local structure of

(ES™[d]/(E™)°[d])[m]

may be seen over the strict Henselizations of S, and hence even on geometric
fibers. O

The focus of Chapter 2 is generalized elliptic curve homomorphisms. We recall
their definition.

Definition 2.1.12. A homomorphism between generalized elliptic curves £ — S
and E’ — S is an S-morphism

f:E— E with f(E™)CE"

that intertwines the group laws of E*™ and E"*™. Its kernel is the S-subscheme
Ker f:=E X g, S of E, where X 7, g o denotes the base change along f of the
identity section e’ : S — E’.

Remark 2.1.13. Due to the S-universal schematic density of E*™ in E supplied by
[EGATV3 1966, 11.10.10] and the separatedness of E’ — S, a homomorphism f
necessarily also intertwines the group actions ES™ x £ — E and E"" x E' — E’.
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Remark 2.1.14. If a homomorphism f is surjective, then f|gsm is flat and Ker f is
contained in E%™, as may be checked on geometric fibers using the fibral criterion
for flatness [EGA IV3 1966, 11.3.11]. In this case, Ker f is a finite locally free
S-subgroup scheme of E5™.

Example 2.1.15. The constant morphism that factors through e’ is a homomor-
phism, the “zero homomorphism.” Any elliptic curve isogeny is also a homomor-
phism. For a d € Z-, the map

[Ij’}9 — [IJ’}g given on homogeneous coordinates by [x : y] — [xd : yd]
respects 0 and oo, so it induces an S-morphism from the standard 1-gon over S to
itself. This morphism restricts to the d-th power map on the (G,,)s of the smooth
locus of the 1-gon, so it is a homomorphism with kernel (4)s.

Remark 2.1.16. Generalized elliptic curves are susceptible to limit arguments
that reduce to a Noetherian base. More precisely, by [EGA IV, 1965, 8.8.2(ii),
8.10.5(xii), 11.2.6(ii)], Zariski locally on S, the underlying relative curve £ — S
is the base change of a proper and flat relative curve Eg — Sp for which Sy is of
finite type over Z. Thus, since the formation of Ej™ commutes with base change,
E’™ is necessarily of finite presentation. Moreover, by [EGA IV, 1965, 8.8.2(1)],
after enlarging Sop, the commutative S-group action

+ . . +
E*"xsE — E descends to a commutative So-group action Eg" x5, Eg = Ej.

The degenerate geometric fibers of Ey — Sy are Néron n-gons: indeed, [Deligne
and Rapoport 1973, II.1.3] applies because the condition of having only ordinary
double points as singularities is equivalent to the unramifiedness of Egmg, whose
formation commutes with base change (see Remark 2.1.8), whereas the triviality of
the relative dualizing sheaf may be descended from an overfield using specialization
techniques. Using Remark 2.1.4 to infer the triviality of the induced action of
EJ™ on Pic%o /s,» We conclude that Eg — Sp is a generalized elliptic curve that
descends E — S to a Noetherian base. Similarly, Zariski locally on S, elliptic curve
homomorphisms are defined over a base that is of finite type over Z.

By the limit arguments above, the open immersion S — $°7 < § is always
quasicompact.

2.2. Quotients of generalized elliptic curves by finite locally free subgroups

Even though homomorphisms between generalized elliptic curves are useful in
practice, their structural properties are not immediately apparent. Moreover, guided
by the theory of isogenies of elliptic curves, one suspects that for any finite locally
free S-subgroup scheme G C ES™ with E — S a generalized elliptic curve, there
should be an essentially unique homomorphism E — E’ with kernel G. If G
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intersects the identity components of the degenerate geometric fibers of £ — S
trivially, then the translation action of G on E is free, the fppf sheaf quotient £/G
is a generalized elliptic curve, and

E—E/G

is the sought “isogeny.” This special case is already useful — for instance, such
isogenies are discussed in [Conrad 2007, 2.1.6] and exploited in several key proofs
of [op. cit.].

The goal of this section is to explain how to make sense of isogenies of generalized
elliptic curves in general. Theorem 2.2.4 and its proof explain how to build the
desired “quotient by G” homomorphism £ — E /G, and we arrive at the concept of
an isogeny in Definition 2.2.8. With Theorem 2.2.4 in hand, structural properties of
arbitrary homomorphisms are susceptible to scrutiny and are detailed in Propositions
2.2.9 and 2.2.10.

We begin with an example that illustrates what £/G should be in a certain
degenerate situation.

Example 2.2.1. Let E be the standard n-gon over Z, and consider the subgroup
wg C (ES™)0 for some d € Z>1. We would like to build a generalized elliptic curve
homomorphism

fa: E— E' with kernel u .

By Remark 2.1.13, any such f; is ug-equivariant, so it factors through the categori-
cal quotient E /g, which exists because E is projective and w4 is finite. We claim
that

E— E/ua

is already the desired f;: E — E’.
This claim follows from the description of E recalled in Remark 2.1.2. More
precisely, if n > 2, then on Spec(Z[X;, Y;1/(X;Y;)) the action of

pa = Spec(ZIT1/(T? — 1))
is determined by
X~ X;,®T and Y, —~ Y, QT,

so the ring of invariants is the Z-subalgebra of Z[X;, Y;]/(X;Y;) generated by X f
and Yl.d, and hence E/u 4 is the standard n-gon with the quotient map £ — E /gy
induced by the d-th power map on each IP%. The same description holds if n =1,
as the same computation performed Z/mZ-equivariantly on the m-gon cover for
some m > 2 proves. Thus, the map E — E/u4 is a homomorphism whose kernel
is (g, and it is initial among such homomorphisms, so it is the desired f;.
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Remark 2.2.2. Example 2.2.1 may be carried out over any base scheme S, which
shows that the formation of f; commutes with arbitrary base change. In particular,
the formation of the categorical quotient E/u; commutes with arbitrary (possibly
nonflat) base change.

Remark 2.2.3. For d > 1, the “isogeny” E — E/uq4 constructed in Example 2.2.1
is not flat at the singular points, as the formal criterion for flatness [Bourbaki 1965,
III, §5, n° 2, Theorem 1] reveals. In contrast, every isogeny between elliptic curves
is flat.

Example 2.2.1 suggests that over an arbitrary base S, the desired quotient of
a generalized elliptic curve E — S by a finite locally free S-subgroup G C ES™
may simply be the categorical quotient £/G. In Theorem 2.2.4 we prove that this
indeed the case. The main issue that needs to be addressed is that the formation of
categorical quotients does not in general commute with nonflat base change (as in
the special case of forming the ring of invariants under the action of a finite group).
Such phenomena do not occur for generalized elliptic curves because the analysis
of E/G may be reduced to the cases when G is either diagonalizable or acts freely
on E.

Theorem 2.2.4. Let S be a scheme, E Z> S a generalized elliptic curve, and
G C E’™ an S-subgroup scheme that is finite locally free over S. There is an
S-scheme morphism

q:E—E/G

that is initial among G-equivariant S-morphisms from E to an S-scheme equipped
with the trivial G-action (E is equipped with the translation action of G). Moreover,
q has the following properties.

(1) The formation of g commutes with arbitrary base change in S, and E/G is
S-flat.

(i) The map q : E — E /G is surjective, finite, and universally open.

(iii) There is a unique structure of a generalized elliptic curve on
E/G— S

for which q is a homomorphism. For this structure, q induces an S-group
isomorphism
Esm/G >~ (E/G)sm’
where ES™ / G is the fppf sheaf quotient; in particular, E sm 4, (E/G)™ is finite
locally free.
(iv) If E is an elliptic curve, then q : E — E /G is an isogeny with kernel G.
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Proof. Zariski locally on S the map 7 is projective (see Remark 2.1.9), so every finite
set of points of any r-fiber is contained in an affine open of E (see [EGAII 1961,
4.5.4]). Therefore, by [SGA 314wy 2011, V, 4.1(1)] and its proof, E is covered by
G-invariant affine opens and the initial g is nothing but the categorical quotient that
is glued together from the rings of invariants of such G-invariant affines; moreover,
this ¢ is automatically a quotient map on the underlying topological spaces.

Since G acts freely on E*, by [SGA 3 uew 2011, V, 4.1(iv)], the open S-
subscheme

E™/GCE/G

that results from the G-invariance of E*™ is identified with the fppf sheaf quotient
of E*™ by G, the map E sm 4, psm /G is finite locally free, and the formation of
E’™/G commutes with base change.

(i) The formation of £/G commutes with flat base change, so we may first assume
that § is affine and then use Remark 2.1.16 to assume that S = Spec R for some
Noetherian R. Moreover, by the previous paragraph, the claim is clear on the elliptic
curve locus, so we may replace R by its completion along the ideal I C R that cuts
out the degeneracy locus §°7 C S to assume that R is /-adically complete and
separated.

For such R, the intersections

GpriiN (E;gn/ln)o forj>1

are finite locally free R/I/-subgroup schemes of G. By Grothendieck’s existence
theorem [Illusie 2005, 8.4.5, 8.4.7], these subgroups algebraize to a finite locally
free R-subgroup

HcG with HcC (E™)C,

The R/I-fibers of H are of multiplicative type, so H itself is of multiplicative type.
At the cost of replacing R by a finite locally free cover we may assume that H is
diagonalizable.

By [SGA 31ew) 2011, 1, 4.7.3], any R-module M equipped with an action of a
diagonalizable H is a direct sum of x-isotypic submodules for characters x of H, so
the submodule M# of H-invariants is of formation compatible with arbitrary base
change and is R-flat if M is. In particular, the categorical quotient E/H is R-flat
and of formation compatible with base change. As may be checked on geometric
R-fibers, G/ H acts freely on E/H, so the further quotient £E/G = (E/H)/(G/H)
is also R-flat and of formation compatible with base change.

(i1) The surjectivity of g follows from the first paragraph of the proof. By [SGA 3 ew)
2011, V, 4.1(i1)], the morphism g is integral, and hence even finite because it inherits
the property of being of finite type from E — S. In particular, ¢ is universally
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closed, so it is also universally open by [Rydh 2013, 2.4] (which applies due to the
bottom of p. 636 there and [SGA 31w 2011, V, 4.1(i1)]).

(iii)) We begin by arguing that E/ G possesses the S-scheme properties required in
Definition 2.1.3.

Due to [Atiyah and Macdonald 1969, 7.8], the morphism E/G — S inherits
finite presentation from E — S thanks to the finiteness of £ — E/G (and an initial
reduction to Noetherian S based on (i)). By (ii),

E— E/G, andhencealso E xsE — E/G x5 E/G,

is a finite surjection, so the image of Ag/s(E) in E/G xsE/G,i.e., Ay s(E/G),
is closed. In other words, the finite type morphism E/G — § inherits separatedness
from E — S, so it also inherits properness by [EGAII 1961, 5.4.3 (ii)]. Finally,
E/G — § is flat by (i). For the fibral properties, due to (i), we may assume that S
is a geometric point.

If S is a geometric point and E is an elliptic curve, then E/G is its isogenous
quotient. If S is a geometric point and E is the standard N-gon, then we set

H ::Gﬂ(Esm)O, so H = u, for some d > 1.

By Example 2.2.1, E — E/H is a “self-isogeny” of the standard N-gon, and, by
construction, G/ H acts freely on E/H. Therefore, E /G, which is identified with
(E/H)/(G/H), is the standard n-gon with n = N/#(G/H). This analysis also
shows that g (E*™) = (E/G)S™.

Due to the paragraph preceding the proof of (i), all that remains to be shown is
that the S-group scheme structure of (E/G)*™ = E*™/G extends to a unique action
of (E/G)S™ on E/G; indeed, the induced action on Pic(()E /G)/S will automatically
be trivial due to the fibral analysis of the previous paragraph and Remark 2.1.4. The
uniqueness follows from the separatedness of E/G and the universal schematic
density of (E/G)*™ in E/G supplied by [EGAIV3 1966, 11.10.10]. For the same
reason, for the existence we only need to produce a morphism

(E/G)™xsE/G— E/G

that extends the group law of (E/G)*™ — the relevant diagrams that encode the
property of being a group scheme will automatically commute. To build this
morphism from the one for E, it suffices to prove that

E™/G x5 E/G=(E™ x5 E)/(G x5G),

where the quotients are categorical. For this isomorphism, it suffices to form the
quotient on the right in stages and to note that the formation of E5™/G commutes
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with base change along E — S whereas the formation of £ /G commutes with base
change along E*"/G — S.

(iv) By (iii), ¢ : E — E/G is a finite locally free homomorphism between elliptic
curves over S and its kernel is G, i.e., g is an isogeny with kernel G. (]

Remark 2.2.5. The categorical quotient £/G may also be analyzed with the tame
stack formalism of Abramovich, Olsson, and Vistoli [AOV08 2008]. For this, the
key point is that the quotient stack [E/G] is tame by [AOV0S8 2008, Theorem 3.2]
because the automorphism functors of its geometric points are of multiplicative
type. Then, since E/G is the coarse moduli space of [E/G] (see [Conrad 2005,
Theorem 3.1]), E/G is S-flat and of formation compatible with arbitrary base
change by [AOV08 2008, Corollary 3.3].

2.2.6. The quotient notation. In the sequel, whenever E — S is a generalized
elliptic curve and G C E*™ is a finite locally free S-subgroup, we write E/G for the
generalized elliptic curve constructed in Theorem 2.2.4. In the following corollary,
we record some further properties of this quotient construction that follow from
Theorem 2.2.4 and its proof.

Corollary 2.2.7. Let E — S (resp. E' — S) be a fixed (resp. variable) generalized
elliptic curve over a scheme S.

(a) If G C E®™ is finite locally free S-subgroup, then the homomorphism E — E /G
is initial among homomorphisms f : E — E' with G C Ker f.

(b) If f : E — E' is a surjective homomorphism, then Ker f is a finite locally free
S-subgroup of E®™, and Ker f determines f up to an isomorphism in the sense
that f induces an isomorphism

E/(Ker f)= E'.
(¢) If G; C G, C E3™ are finite locally free S-subgroups, then
(E/G1)/(G2/G1) = E/Ga.

Proof. (a) The map f is G-equivariant for the trivial G-action on E’, so it uniquely
factors through the categorical quotient £ — E/G. It remains to note that the
induced map (E/G)*™ — (E’)*™ intertwines the group laws, as may be checked
on the fppf cover ES™ — (E/G)*™.

(b) The first claim was proved in Remark 2.1.14. Due to (a), f induces a homomor-
phism E /(Ker f) — E’ that is an isomorphism on the smooth loci. Due to [EGATV4
1967, 17.9.5] and the S-flatness of E/(Ker f), checking that E/(Ker f) — E’ is an
isomorphism may be done on geometric fibers, where it follows from the fact that
an endomorphism of the standard n-gon that is an automorphism on the smooth
locus must be an automorphism.
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(c) The claim follows from the universal property of E — E /G, recorded in (a). U

Corollary 2.2.7(b) and the analogy with elliptic curves justify the following
definition:

Definition 2.2.8. Anisogeny between generalized elliptic curves E — S and E' — S
is a surjective homomorphism f : E — E’ (so, by Corollary 2.2.7(b), it induces an
isomorphism E’' = E /(Ker f)). The degree of an isogeny f is the locally constant
function on S given by the order of Ker f.

The principal difference with the elliptic curve case is that an isogeny between
generalized elliptic curves is not necessarily flat (see Remark 2.2.3). As we explain
in Proposition 2.2.9 (whose elliptic curve case is [Katz and Mazur 1985, 2.4.2]), the
structure of an arbitrary homomorphism may be completely understood in terms of
isogenies (in turn, by Corollary 2.2.7(b), the structure of an isogeny is completely
determined by its kernel).

Proposition 2.2.9. Every homomorphism f : E — E’ between generalized elliptic
curves E — S and E' — S is Zariski locally on S either an isogeny or the zero
homomorphism.

Proof. Limit arguments described in Remark 2.1.16 allow us to reduce to the case
when S is Noetherian, so the claim follows from [MFK94 1994, Proposition 6.1],
which proves that on each connected component of S the map f is either surjective
(i.e., an isogeny) or the zero homomorphism. U

Due to Proposition 2.2.9, the following result describes how homomorphisms
interact with the degeneracy loci of Definition 2.1.7 and the subschemes of nons-
moothness:

Proposition 2.2.10. If f : E — E’ is an isogeny between generalized elliptic curves
E Z> S and E' =5 S, then f| gsne factors through E'"€ and §%°7 C §°7,

Proof. The second claim follows from the first because S*" (resp. 8§07y g
the schematic image of E*" — S (resp. of E™" — §). Moreover, since the
formation of all the subschemes in question commutes with base change in S (see
Remark 2.1.8), we may use Remark 2.1.9 to assume that § = §°7™" and that E is
the standard n-gon.

The intersection G of Ker f with the relative identity component (ES™)? = G,),
is a finite locally free S-subgroup scheme of both Ker f and G,,. By parts (b) and
(c) of Corollary 2.2.7, f is identified with the composite

E—E/G— (E/G)/((Ker f)/G)

of isogenies. Therefore, since the assertion about f|gsing is compatible with compo-
sition, it suffices to treat the cases G = Ker f and G = 0 separately.
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Since Gy, has a unique finite locally free S-subgroup of a given order, Zariski
locally on § we have G = 4 for some d € Zs. Thus, if G = Ker f, then we may
assume that f is the f; described in Example 2.2.1 (see also Remark 2.2.2). For
this fy, the claim is clear:

ES" s identified with ||, /nz S used in Definition 2.1.1

and f; is induced by the d-th power map on every [P’}q so maps E*"2 to itself.

If G =0, then f is étale, so that Q¢ = f*Q}E//S. By [SGA 7; 1972, VI, 5.1(a)],
the formation of the closed subscheme cut out by a Fitting ideal of a finite type
quasicoherent module commutes with pullback to another scheme, so this relation
between the sheaves of differentials gives ES"e = f~1(E"ing), O

The inclusion S°7 C §°7" of Proposition 2.2.10 may be sharpened to a
precise relation between the corresponding ideal sheaves. We record this in
Proposition 2.2.11 and Remark 2.2.12.

Proposition 2.2.11. If f : E — E' is an isogeny between generalized elliptic curves
and if there is a d € Z> such that for every degenerate geometric fiber E; the
intersection (Ker f); N (E;m)0 has rank d, then the ideal sheaves in Og of the
degeneracy loci S and $°7 of E and E' are related by

jsoo,rr/ = ng,n .

Remark 2.2.12. For any f, Zariski locally on S there exists a required d. In order
to prove this, we may assume that § = §°”" and may work fppf locally on S,
so Remark 2.1.9 reduces to the case when E is the standard n-gon. In this case
Ker f N (E™) is an open and closed S-subgroup of Ker f, and the claim follows
from the local constancy of its rank over S.

Proof of Proposition 2.2.11. It suffices to treat the case when S = Spec R for
some Artinian local ring (R, m) that has a separably closed residue field R/m. The
elliptic curve case is clear, so we assume that Egy, is degenerate. Moreover, by
Corollary 2.2.7(c), quotients may be taken in stages, so we assume that either

Ker f c (E™)" or Ker fN(E™=0.

We begin with the case Ker f N (E™)? = 0, when f is finite étale of rank
#(Ker f), so that ES"8 = f~1(E"sin2) by [SGA 7; 1972, VI, 5.1(a)]. Lemma 2.1.10
then gives the desired §°°7 = §°°7,

In the remaining case when Ker f C (ES™)°, we first replace S by a flat cover to be
able to assume that there is a finite étale S-subgroup G C E®" such that G g/, maps
isomorphically to the component group of £ %}‘m. Due to the settled Ker fN(ES™)" =
0 case, passage to E/G and E’/f (G) does not affect the degeneracy loci. Therefore,
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we may replace
Eby E/G and E'byE'/f(G)

to reduce to the case when E is irreducible.
In this situation, since S is Artinian local and strictly Henselian, [Deligne and
Rapoport 1973, VII.2.1] ensures that E is a base change of the Tate curve

Tate; — Spec Z[q]

[loc. cit.] proves that Tate, realizes Spec Z[q] as an étale double cover of the formal
completion of é¢¢; along €£¢°; in the notation of [loc. cit.], Tate; = %, /¢%). If,
moreover, Ker f C (E*™)°, then Ker f = s(ker f) inside (E*™)° (see Lemma 2.1.11),
so that we are reduced to the case when

E— S is Tate; — SpecZ[q] and Ker f = jg.

However, in this case the quotient map2 Tate; — Tate; /g is identified with the
map

Tate; — Tate;(¢%) induced by “raising the coordinates to the d-th power,”

as in Example 2.2.1 (compare with [Conrad 2007, 2.5.1]). It remains to recall from
[Deligne and Rapoport 1973, VII.1.11] that the degeneracy locus of Tate; (resp. of
Tate; (¢%)) is cut out by the principal ideal (¢) C Z[q] (resp. (¢¥) C Z[q]). O

Chapter 3. Compactifications of the stack of elliptic curves

Our approach to the study of level structures on generalized elliptic curves makes
essential use of the tower {%ﬁn}nln’ of compactifications of the stack €¢¢ that
parametrizes elliptic curves. The purpose of this chapter is to construct this tower
and to detail its properties. We begin with the construction of the individual com-
pactifications €£¢,, in Section 3.1, and proceed to expose the transition morphisms
€l — €00, in Section 3.2. Section 3.3 proves that the coarse moduli space of
(€lL,)s is the “j-line” I]J’Llg for every n and every scheme S, whereas Section 3.4
uses the global structure of the stacks €€¢,, to algebraize formal generalized elliptic
curves and their homomorphisms.

3.1. The compactification ¢¢¢,, obtained by allowing 7-gons for a fixed

The goal of this section is to detail algebro-geometric properties of the Z-stack
€L, obtained from the stack of elliptic curves €£¢ by “adjoining Néron n-gons”
(see Definition 3.1.1). We prove in Theorem 3.1.6 that €L, is a proper and smooth

_d
2In the notation of [Deligne and Rapoport 1973, VII.1.10], we have Tate; (qd) =%/ (qd)Z over
A=17[q].



2020 Kestutis Cesnavicius

compactification of €€¢. This result has already been proved over Z[1/n] in [Deligne
and Rapoport 1973, IV.2.2], which uses deformation-theoretic methods through
its reliance on [Deligne and Rapoport 1973, III.1.2]. These methods require the
number of the irreducible components of each geometric fiber of the generalized
elliptic curve in question to be prime to the characteristic, so they do not seem
to work without inverting n. A related difficulty is that even though the stack
€L, is algebraic, outside the elliptic curve locus it is not Deligne—Mumford in
characteristics dividing n (see Theorem 3.1.6(b)), so €, may not possess universal
deformation rings at some of its geometric points. To overcome these difficulties,
we proceed indirectly by exploiting a convenient auxiliary algebraic stack %, whose
relationship to ‘€¢¢,, is described in Proposition 3.1.5.
We begin by defining the stack €£¢,, that we are going to study and later use.

Definition 3.1.1. For an n € Z-, let €€, denote the Z-stack parametrizing those
generalized elliptic curves £ > S whose degenerate geometric fibers are n-gons.
Let €£€2° denote the closed substack of €¢¢,, cut out by the degeneracy loci §°7
(defined in Definition 2.1.7).

Remark 3.1.2. The effectivity of descent data that is needed for €€¢, to be a Z-
stack (for the fpqc topology) results from the S-ampleness of the relative effective
Cartier divisor E*™[n] C E.

Remark 3.1.3. The well-definedness of the closed substack %TEZO rests on the
compatibility (recalled in Remark 2.1.8) of the formation of the degeneracy locus
S$°°7 with base change.

We turn to the auxiliary stack 4, and to its relation to €el,,.

3.1.4. The stack %,. Following [Deligne and Rapoport 1973, V.1.3], foran n €
Z> we let %, be the Z-stack that, for variable schemes S, parametrizes the pairs
(E, G) consisting of a generalized elliptic curve E — S whose degenerate geometric
fibers are n-gons and a finite étale subgroup G C E*™ that is étale locally on §
isomorphic to Z/nZ and meets every irreducible component of every geometric
fiber of E — S. If n = 1, then G is the zero subgroup, so %) = €€¢;.

Proposition 3.1.5. Fixann € Z5,.
(a) The Z-stack %, is Deligne—Mumford and Z-smooth of relative dimension 1.
(b) The morphism
B, — €,

that forgets G factors through the open substack %ﬂz ord —¢¢¢, obtained by
removing the supersingular elliptic curves in characteristics dividing n. The
induced morphism

B, — %ﬁz- ord
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is representable by schemes, separated, quasifinite, faithfully flat, and of finite
presentation.

(c) The stack @ﬁ'ord is algebraic and Z-smooth of relative dimension 1.
Proof. (a) Both claims follow from [Deligne and Rapoport 1973, V.1.4].
(b) The morphism

q €, — €, is well defined by ¢(E) = E/E"™[n]

(see Section 2.2.6), and, as in [Deligne and Rapoport 1973, VI.1.1], the j-invariant
gives the morphism j : €6¢; — [P’%. Since %ﬂﬁ'ord is the preimage under j o g of
the open subscheme of [P’lZ obtained by removing the supersingular j-invariants in
characteristics dividing n, it is indeed an open substack of €¢¢,,.

The morphism %, — €£¢, factors through €£€"° because a supersingular
elliptic curve over an algebraically closed field of positive characteristic p cannot
have Z/pZ as a subgroup. Therefore, our task is to prove that for any generalized
elliptic curve E — § whose geometric fibers are n-gons, ordinary elliptic curves in
characteristic dividing n, or arbitrary elliptic curves in characteristic not dividing 7,
the functor

Fo: 8"+ {S'-ample subgroups G C E3" that are
étale locally on " isomorphic to Z/nZ}

on the category of S-schemes is representable by a separated, quasifinite, faithfully
flat S-scheme B of finite presentation (the S’-ampleness of G as a relative effective
Cartier divisor on Eg is equivalent to the condition that G meets every irreducible
component of every geometric fiber of Eg — S§’). In fact, it suffices to prove
the same statement with “faithfully flat” replaced by “flat” and for the functor
F obtained by dropping the S’-ampleness requirement from the definition of Fy:
indeed, the surjectivity of B — § will follow from the imposed fibral assumptions
on E — §, whereas [EGA IV3 1966, 9.6.4] together with limit arguments ensures
that the inclusion Fy C F{] is representable by quasicompact open immersions.
We analyze F{j by studying the related functor

Fi: 8"+ {P e E*™[n](S') that define
a closed immersion Z/nZ < E§"'[n] by 1 — P}.

The map F; — F; that sends P to the copy of Z/nZ that P generates is repre-
sentable by schemes and finite étale of rank ¢ (n). Therefore, once we prove that
F is representable by a finitely presented, separated, quasifinite (and hence also
quasiaffine, see [EGA IV3 1966, 8.11.2]), flat S-scheme, the desired claim about
Fj will follow from [SGA 34 2011, V, 4.1] (combined with [EGATV; 1965,
2.2.11(ii); EGA1V4 1967, 17.7.5]).
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The S-scheme E*™[n] represents the functor of S’-homomorphisms
Z/nZ — E"[n].

Such a homomorphism is a closed immersion if and only if its corresponding map
f of finite locally free &s-algebras is surjective, which is an open condition on
S’ because Coker( f) is a finitely generated ¢'s-module. Therefore, the inclusion
F| C E®™[n] is representable by open immersions, and is quasicompact by limit
arguments, so the claims about F; follow.

(c) Both claims follow from (b). More precisely, if X — %, is a smooth atlas, then
the composed morphism

X — Egr-od

is representable by algebraic spaces, faithfully flat, and locally of finite presentation,
SO %Z'Ord is algebraic by [SP 2005—, 06DC] (see also [Laumon and Moret-Bailly
2000, 10.6] for a related result), whereas, due to [EGA1V4 1967, 17.7.7], the Z-
smoothness of %ﬁﬁ"’rd follows from that of 4, (for the relative dimension aspect,
one may use [EGA TV, 1965, 6.1.2]). O

With Proposition 3.1.5 in hand, we are ready to address algebro-geometric
properties of €¢¢,, (see Proposition 3.3.2 for some further properties).

Theorem 3.1.6. Fixann € Z>;.
(a) The Z-stack €tL, is algebraic with finite diagonal, proper, and smooth of
relative dimension 1.

(b) The largest open substack of €L, that is Deligne—Mumford is
€L, — (€LU°)z/nz-

(¢c) The morphism Spec Z — %ﬁ;’lo that corresponds to the standard n-gon is
surjective, representable, and finite locally free of rank 2n. In particular, the
proper Z-algebraic stack %Tﬂflo is irreducible, has geometrically irreducible
Z-fibers, and is Z-smooth of relative dimension 0.

(d) The closed substack %Wflo C €U, is a reduced relative effective Cartier divisor
over Spec Z.

Remark 3.1.7. In (b), the largest Deligne-Mumford open substack of the separated
Z-algebraic stack €0¢,, does make sense a priori. Indeed, the proof of [Conrad
2007, 2.2.5(2)] shows that if S is a scheme and 2" is an S-algebraic stack that is
covered by S-separated open substacks, then there is a unique open substack

U Cx


http://stacks.math.columbia.edu/tag/06DC

A modular description of 24(n) 2023

containing exactly those geometric points of 2 that have an unramified auto-
morphism functor. (Equivalently, %/ contains those S-scheme valued points of
Z whose automorphism functors are unramified.) By Nakayama’s lemma (or
simply by [SP 2005—, 02GF (1)4>(2)]), the diagonal Ay s is unramified, so %
is Deligne-Mumford, and, by construction, % contains every Deligne—-Mumford
open substack of 2". Even though we take the unramifiedness of the diagonal as
our definition of being Deligne-Mumford (see Section 1.9), in the case in hand %
inherits separatedness from %ﬁn, so, by [Laumon and Moret-Bailly 2000, 8.1], it
also satisfies the étale atlas definition of a Deligne-Mumford stack.

Proof of Theorem 3.1.6. (a) The stack €€, is a union of open substacks €£¢
and €¢¢"-°", both of which are algebraic and Z-smooth of relative dimension 1
by Proposition 3.1.5. Therefore, €¢¢, is also algebraic and Z-smooth of relative
dimension 1.

By [Conrad 2007, 3.2.4], the isomorphism functor of two generalized elliptic
curves E — S and E’ — S whose degenerate geometric fibers are n-gons is
representable by a finite S-scheme,’ so Agg, /7 1 finite and, in particular, €L, is
separated. The morphism

€00 L Spec Z — €L,

whose restriction to Spec Z corresponds to the standard n-gon is surjective on
underlying topological spaces, so €€, is quasicompact, and hence is of finite
type over Z. Its properness therefore results from the valuative criterion [Laumon
and Moret-Bailly 2000, 7.10], which is satisfied due to the semistable reduction
theorem for elliptic curves (and the availability of contractions, which are reviewed
in Section 3.2.1).

(b) In the view of Remark 3.1.7, we only need to show that
€L, — (BN 7 nz

contains those geometric points x of €£¢, whose automorphism functor is un-
ramified. If x lies in €4 = €¢¢, — %ﬂ;’f’, then Aut(x) is unramified by [Deligne
1975, 5.3(D] (or by [MFK94 1994, Corollary 6.2]). If x lies in %ﬂg", then, by

3 Here is a sketch for a proof of this representability that bypasses blowups used in [Conrad 2007,
3.2.2 and 3.2.4]: as in the proof of [Deligne and Rapoport 1973, 111.2.5], one uses Hilbert schemes to
get representability by a quasifinite, separated S-scheme; then, due to the valuative criterion, the key
point is to check that if S is the spectrum of a strictly Henselian discrete valuation ring and E and E’
are degenerating elliptic curves with identified generic fibers: £y = E ;’, then E = E’; for this, the
theory of Néron models (especially, [BLR90 1990, 7.4/3]) identifies (E sm)0 with (E’S™)0 and, since
the reductions of n-rational points are dense in the special fibers, also ES™ with E’S™; then Zariski’s
main theorem [BLR90 1990, 2.3/2'] produces the graph of the sought identification E = E’.
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Lemma 2.1.6, Aut(x) is unramified if and only if x lies in
€LY — (LU z /7.

(c) For the asserted properties of the morphism, it suffices to note that for a
generalized elliptic curve E % S with §°7™" = §, the functor of isomorphisms
between E and the standard n-gon is representable by a finite locally free S-scheme
of rank 2n, as may be checked fppf locally on S with the help of Remark 2.1.9
and Lemma 2.1.6. The asserted properties of %ﬁflo then follow by using [EGAIV4
1967, 17.7.7; EGA IV, 1965, 6.1.2] for the smoothness aspect.

(d) By (c), the stack %@2‘3 is Z-smooth, so it is also reduced. For the Cartier divisor
claim, we may work over a smooth finite type scheme cover

X — éle,, with X*° C X being the preimage of €£¢°°.

By [Katz and Mazur 1985, 1.1.5.2], we may also base change from Z to an alge-
braically closed field. Then, for a point x € X*°, by (a) and (c¢), both X and X*°
are smooth at x and

dim, X*° =dim, X — 1.

Thus, X*° C X is a Weil divisor and, since X is regular, also a desired Cartier
divisor. m

For later use we record the following proposition from [Conrad 2007, 3.2.4].

Proposition 3.1.8. Let E %> S and E' Z> S be generalized elliptic curves such
that
§OOT1 M §T M — o5 \uhenever n # m.
(a) The fppf sheaf Isom(E, E') that parametrizes generalized elliptic curve iso-
morphisms is representable by a finite S-scheme of finite presentation.

(b) If S is integral and normal and n is its generic point, then any n-isomorphism
E,~E, extends to a unique S-isomorphism E >~ E'.

Proof. Part (a) has essentially been proved in footnote 3. Alternatively, Zariski
locally on S there is an n € Z-; such that E and E’ correspond to objects of
€el,, so (a) is a reformulation of the finiteness of the diagonal of €el,, proved
in Theorem 3.1.6(a). To obtain (b) one combines (a) with the following useful
lemma. ([l

Lemma 3.1.9. If S is an integral normal scheme, 0 is its generic point, and F is a
finite S-scheme, then the pullback map F(S) — F(n) is bijective.
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Proof. The injectivity follows from the schematic dominance of n — S and the
separatedness of F — §. For the surjectivity, we may work Zariski locally on S
to assume that S = Spec A. Then the schematic image in F of an x € F(n) is
Spec B for some finite A-subalgebra B C Frac A. Since A is normal, A = B, so
the schematic image is the sought extension of x to an element of F(S). ([

3.2. The tower of compactifications

The compactifications €00, introduced in the previous section are related to each
other: they form an infinite tower in which the transition morphisms

Ell py — €L,

encode contractions of generalized elliptic curves. The goal of this section is to use
the already established results about €¢¢,, to prove several basic properties, such as
flatness, of these transition morphisms (see Theorem 3.2.4) and to deduce some
concrete results about the generalized elliptic curves themselves (see Corollaries
3.2.5 and 3.2.6). We begin with a brief review of contractions.

3.2.1. Contraction with respect to a finite locally free subgroup. As is justified
in [Conrad 2007, top of p. 218] (which is based on [Deligne and Rapoport 1973,
IV.1.2]), if E — S is a generalized elliptic curve and G C E*™ is a finite locally
free S-subgroup, then there is a generalized elliptic curve

cg(E) — S equipped with a surjective S-scheme morphism E — c¢g(E)
(3.2.1.1)
such that:

o the image under £ — cg(E) of each disjoint from G irreducible component
of a geometric fiber of £ — S is a single point, and

e the map E — cg(E) restricts to a group isomorphism between the open
complement of the union of such components and (cg(E))S™.

In particular, if E is an elliptic curve, then E = cg(E).

These conditions ensure that G is identified with an S-subgroup of cg(E)*™
that meets every irreducible component of every geometric fiber of cg(E) — S.
Due to [Deligne and Rapoport 1973, IV.1.2], they also determine the data (3.2.1.1)
uniquely up to a unique isomorphism. In particular, whenever G’ C E*™ is another
finite locally free S-subgroup that meets the same irreducible components of the
geometric fibers of £ — S as G, one gets a canonical identification

CG(E) = CG/(E). (3212)

For the same reason, the formation of £ — ¢ (E) commutes with arbitrary base
change in S.
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We call this ¢ (E) the contraction of E with respect to G. The compatibility
of the formation of cg (E) with base change shows that for every n, m € Z-1, the
identity map on é¢¢ extends to the “contraction” Z-morphism

€l — €l, defined by E > cpmpy(E).

Also, if (E, G) is classified by the stack %,,,, of Section 3.1.4, then (cgn(E), G[n])
is classified by the stack %, so there is the “contraction” Z-morphism

Bym — B, defined by (E, G) = (cgn(E), Gln)).

These and similar morphisms will be called contractions or contraction morphisms
in the sequel (a slight abuse of terminology because it is not substacks of £, or
PB,m that are getting contracted).

In many situations, we will need a robust criterion for recognizing algebraic
spaces and morphisms that are representable by algebraic spaces. The following
lemma, which paraphrases [Conrad 2007, 2.2.5(1) and 2.2.7] and may be traced
back to [Deligne and Rapoport 1973, 1V.2.6], is well suited for this task.

Lemma 3.2.2. Let S be a scheme and let 2" and % be S-algebraic stacks whose
diagonals A 5 /s and Ay s are quasicompact and separated.

(a) The stack % is an algebraic space if and only if for every algebraically
closed field k whose spectrum is equipped with a morphism to S, every object
£ of 2(k), and every Artinian local k-algebra A, the pullback of & to the
groupoid Z'(A) has no nonidentity automorphism; if 2" is Deligne—Mumford,
then A = k suffices.

(b) An S-morphism
[ X >

is representable by algebraic spaces if and only if for every algebraically
closed field k whose spectrum is equipped with a morphism to S, every object &
of 2°(k), and every Artinian local k-algebra A, no nonidentity automorphism
of the pullback of & to Z'(A) is sent to an identity automorphism in % (A); if
2 is Deligne-Mumford, then A = k suffices.

Proof. (a) The necessity is clear. For the sufficiency, due to [Conrad 2007, 2.2.5(1)],
it is enough to argue that the assumed condition implies the triviality of the auto-
morphism functor of every &. This functor is a separated k-group algebraic space
G of finite type, so is necessarily a scheme due to [Artin 1969, 4.2], and is even
k-étale if 2" is Deligne-Mumford. The triviality of G is therefore equivalent to
that of all the G(A), with A = k being sufficient if 2 is Deligne-Mumford.

(b) The failure of the condition on & implies that the groupoid of A-points of some
A-fiber of f has a nonidentity automorphism, and the necessity follows. For the
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sufficiency, due to [Conrad 2007, 2.2.7], it is enough to argue that the assumed
condition implies that each k-fiber X of f is an algebraic space, so it remains to
observe that this condition ensures that X meets the criterion of (a). U

To infer further representability by schemes, we will often use the following
well-known lemma:

Lemma 3.2.3. For stacks 2 and % over a scheme S, an S-morphism f : X — %
that is representable by algebraic spaces, separated, and locally quasifinite is
representable by schemes; if , in addition, f is proper, then f is finite.

Proof. This follows from [Laumon and Moret-Bailly 2000, A.2] (see also [Conrad
2007, 2.2.6]) and [EGA 1V, 1967, 18.12.4]. O

We are ready to exploit the relationship between the two contractions introduced
in Section 3.2.1 to extract further information about the stacks €¢¢,,.

Theorem 3.2.4. For %, as in Section 3.1.4 and any n,m € Zs|, consider the
commutative diagram L
Bum —— €l

By, #%ﬁn

in which ¢ and ¢’ are the contraction morphisms of Section 3.2.1 and a and b forget
the subgroup G.

(a) The contractions ¢ and ¢" are flat and of finite presentation. Moreover, c is
proper, with finite diagonal, and surjective, whereas ¢’ is representable by
schemes, separated, and quasifinite.

(b) The closed substack
T x5, Gl C Fllom
is a relative_ejfective Cartier divisor over Spec Z that is a positive integer
multiple of €LL5 .
(c) The multiple needed in (b) is m, i.e.,
[€L° X gz . Ellnm] =m - [€LLYy,]

as Cartier divisors on €4L,,,.

Proof. The commutativity of the diagram follows from the identification discussed
in Section 3.2.1.

By Proposition 3.1.5(b), the maps a and b are representable by schemes, separated,
quasifinite, of finite presentation, flat, and faithfully flat onto %ﬁﬁ’n’ford and %ﬁﬁ'ord,
respectively.
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(a) By Theorem 3.1.6(a), the stacks €, and €L, are Z-proper with finite
diagonal, so c is also proper, with finite diagonal, and of finite presentation. Since
the contraction of the standard nm-gon with respect to its n-torsion is the standard
n-gon, c is surjective. Moreover, c|,, is the identity, €¢¢ and €0erm-ord cover €00,
and, by Proposition 3.1.5(b), a is falthfully flat onto €€€"°" 5o the flatness of ¢
will follow once we establish that of ¢’.

It remains to establish the claims about ¢’. For the representability of ¢’ by
algebraic spaces, due to Lemma 3.2.2(b), it suffices to observe that if E is the
standard nm-gon over an algebraically closed field and

G~7/nmZ

is a subgroup of E®" that meets every irreducible component of E, then, by
Lemma 2.1.6, no nonidentity automorphism of (E, G) restricts to the identity map
on (ES™)Y. The separatedness of ¢’ follows from the separatedness of boc' =coa
and of b, and similarly for the finite presentation of ¢’. For the quasifiniteness of ¢’
it therefore suffices to observe that a generalized elliptic curve over an algebraically
closed field has finitely many subgroups of order nm. The representability of ¢’ by
schemes follows from Lemma 3.2.3.

Finally, since ¢’ is a quasifinite map between separated Deligne-Mumford stacks
that are smooth of relative dimension 1 over Z, it is flat by [EGA IV, 1965, 6.1.5].

(b) Since c is flat by (a) and %@ff’ C €L, is a relative effective Cartier divisor over
Spec Z by Theorem 3.1.6(d), the pullback in question is also a relative effective
Cartier divisor over Spec Z. Both

%ﬂ;’lo X%ﬁn,c%nm and %ﬁ,ﬁ

are supported on the same closed subset of the underlying topological space of
€l and, by Theorem 3.1.6(c)—(d), this subset is irreducible and has %ﬁflfn as its
associated reduced closed substack (see [Laumon and Moret-Bailly 2000, 5.6.1(ii)]).
Moreover, €££,,, is regular, so on any of its scheme atlases Cartier divisors identify
with Weil divisors. Passage to such an atlas then shows that %EEOO X0, ¢ Gl is
a positive integer multiple of %EZ ~, — the global constancy of the needed factor
across the irreducible components of the pullback of ‘éﬁ(ﬁo" to the atlas follows
from the irreducibility of %EZ >, (to check that the generic points of such irreducible
components map to the generic point of €£€2° , one uses the fact that generizations
lift along a flat morphism; see [Laumon and Moret-Bailly 2000, 5.8]).

(c) Due to (b) and the moduli interpretation, it suffices to find a single general-
ized elliptic curve E &> § with nm-gon degenerate geometric fibers such that its
contraction E’ &> § with respect to E*™[n] satisfies the equality

Fgoont = I&en  0f Os-ideal sheaves for d = m,
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but does not satisfy this equality for any other d € Z> (here .Zg~.» C O is the ideal
sheaf that cuts out the degeneracy locus $°*” C §, and likewise for .7 /). Tate
curves supply such E, see [Deligne and Rapoport 1973, VII.1.11 and VII.1.14]. [J

We now record some concrete consequences of our analysis of the contraction
c:Clly,, — €,.

Corollary 3.2.5. For a generalized elliptic curve E % S, let Isox C Og be the
ideal sheaf that cuts out the degeneracy locus S°°" C S. If the degenerate geometric
fibers of E > S are nm-gons and cgsmp,)(E) I S is the contraction of E-S S
with respect to ES™[n], then

jsoo.rr’ - jgnoon .
Proof. This is a reformulation of Theorem 3.2.4(c). O

Corollary 3.2.6. For each n € 7>, every generalized elliptic curve E — S is fppf
locally on S the contraction (with respect to some subgroup) of a generalized elliptic
curve E' — S for which the number of irreducible components of each degenerate
geometric fiber is divisible by n. An fppf cover of S over which such an E’ exists
may be chosen to be locally quasifinite over S.

Proof. We may assume that there is a d € Z> such that the degenerate geometric
fibers of E are d-gons (see Remark 2.1.9). The ﬁrst claim then follows from flatness,
surjectivity, and finite presentation of &l 5 €0,. The second claim follows
from the first and [EGA IV, 1967, 17.16.2]. O

We conclude the section by using Corollary 3.2.6 to analyze the torsion subgroups
of a generalized elliptic curve in a formal neighborhood of the degeneracy locus.
Similar analysis in the case of Tate curves has been carried out in [Deligne and
Rapoport 1973, VII.1.13-VIIL.1.15].

Proposition 3.2.7. Let E > S be a generalized elliptic curve with S = Spec R for
a Noetherian R that is complete and separated with respect to the ideal I C R that
cuts out §°7 C S.

(a) For every n € Z1, the S-group (E*™)° has a unique finite locally free S-
subgroup B, C (E*™? of order n, and B, ~ ., étale locally on S. If an
m € Zs divides both n and the number of irreducible components of each
degenerate geometric fiber of E, then ES™[n] has a unique finite locally free
S-subgroup A, , that meets precisely m irreducible components of every
degenerate geometric fiber of E, contains every other finite locally free S-
subgroup of ES™[n] with this property, is of order nm, and fits into a short
exact sequence

0—=>B,— Ay m—>Cp—0
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with Cy, isomorphic to Z/mZ étale locally on S.

(b) Foreveryn € Z>y, over S — S°7 the group B, from () fits into a short exact
sequence

0— (Bn)S_Soc,rr —> ES_Soo,ﬂ [I’l] — C’/l —0

with C), an (S — S°7)-group scheme that is isomorphic to Z/nZ étale locally
on S — §°%7,

Proof. (a) If S is an infinitesimal thickening of S°7, then Lemma 2.1.11 gives the
claim. Therefore, the uniqueness and the existence of B, and A, ,, follow from
[EGATII; 1961, 5.1.4 and 5.4.1] (the S-group structure of B, may be read off
from the action morphism B,, xg E — E, so the nonproperness of E*" does not
intervene, and likewise for A, ,,). The étale local structure of B, translates into
that of its Cartier dual, so it may be read off on geometric fibers at points in S°7,
and likewise for the étale local structure of C,,.

(b) In the case when n divides the number of irreducible components of each
degenerate geometric fiber of E, the claim follows from (a). In general, C), is a
finite locally free (S — S°7)-group scheme of order n and it suffices to check
that its geometric fibers are isomorphic to Z/nZ. In order to check this at a point
n € 8§ — 8", we choose a specialization s € S°” of n and use [EGAII 1961,
7.1.9] to find an S-scheme T that is the spectrum of a complete discrete valuation
ring whose generic (resp. closed) point maps to 1 (resp. s). Due to the uniqueness of
B, the formation of C, commutes with base change of E to T, so we are reduced
to the case when S = Spec R for some complete discrete valuation ring R and
I C R is a nonzero power of the maximal ideal. In this case, Corollary 3.2.6 and
[EGA1V4 1967, 18.5.11 (a)<(c)] supply a finite faithfully flat R-algebra R’ such
that Eg is the contraction of a generalized elliptic curve E’ — Spec R’ for which
n divides the number of irreducible components of each degenerate geometric fiber.
Base change to R’ reduces the claim to the settled case of E’. U

3.3. The coarse moduli space of (¢,

We seek to prove in Proposition 3.3.2 that for any scheme S and any n € Z the
coarse moduli space of (%ﬁn) s 1s isomorphic to PL, the « j-line.” Of course, this is
hardly surprising, but even in the n = 1 case we are not aware of a reference that
would treat arbitrary S —for n = 1, [Deligne and Rapoport 1973, VI.1.1] settles
the basic case S = Spec Z, whereas [Fulton and Olsson 2010, 2.1] handles general
locally Noetherian S (the formation of the coarse moduli space need not commute
with nonflat base change, so the S = Spec Z case does not automatically imply the
general case). We will build on the above result of Deligne and Rapoport through
the following lemma.
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The existence of all the coarse moduli spaces that we will consider in this section
is guaranteed by [Keel and Mori 1997, 1.3(1)] (see also [Conrad 2005, 1.1; Rydh
2013, 6.12]).

Lemma 3.3.1. Let & be a Deligne—Mumford stack that is separated, flat, and
locally of finite type over Z, and let

[ X=X

be its coarse moduli space map. If fr, : 2r, — X, is the coarse moduli space
map of 2, for every prime p, then fs: Zs — Xg is the coarse moduli space map
of Xy for every scheme S.

Proof. The formation of the coarse moduli space f : 2" — X commutes with
flat base change in X, and we may work fppf locally on Xg when checking that
fs 1 Zs — Xg is the coarse moduli space of Z5. We may therefore assume that
S = Spec R for some ring R and, by [Abramovich and Vistoli 2002, 2.2.3 and its
proof], that

X =SpecA and 2 =|[(SpecB)/G]

for some finite A-algebra B equipped with an action of a finite group G. In this
situation, as is explained in [Conrad 2005, 3.1], we have A = B9, the coarse moduli
space of 2 is Spec((B ®z R)?), and we seek to prove that the map

jr:B°®z R — (B®z R)°

is an isomorphism granted that it is an isomorphism whenever R = [, for any p.

The Z-flatness of 2" ensures that B is torsion-free, so the abelian group B/B¢
is also torsion-free. Therefore, B¢ ® 7 R — B ®7 R, and hence also JRr, 1s injective
for every Z-module R. In order to conclude, we will prove that jg is also surjective
for every Z-module R.

By passage to a filtered direct limit, we may assume that the Z-module R is
finitely generated. Thus, since the case R = Z is clear, we may assume that
R = 7Z/nZ for some n € Z>. To then finally reduce to the assumed R = Z/pZ
case by dévissage, it remains to use the commutative diagram

0——B°® R —— B°®@ R—B@ R ——0

jR’[ J'RJ/A jR”[

0—— (B®z R —— (B®zR)’ —— (B®z R")°

that is in place whenever one has a short exact sequence 0 > R"— R — R” — 0
of Z-modules. ]
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We are ready for the promised conclusion about the coarse moduli space of
(Cmn)S .

Proposition 3.3.2. For any n € 7~1, the coarse moduli space of €L, (resp. of
the open substack €00 C €EL,) is isomorphic to P% (resp. to Aé C PL, with the
map €L — A% being given by the j-invariant) and its formation commutes with
base change to an arbitrary scheme S. In particular, €L, is irreducible and has
geometrically irreducible 7-fibers.

Proof. The last assertion follows from the rest because the map to the coarse moduli
space induces a homeomorphism on topological spaces.

We begin with the n = 1 case, for which the base S = Spec Z has been treated in
[Deligne and Rapoport 1973, VI.1.1 and VI.1.3] and we only need to prove that the
formation of the coarse moduli space of €£¢; commutes with arbitrary base change.
Let

% C %1

be the preimage of the open subscheme of [P’lZ obtained by removing the sections
j=0and j =1728. By [Deligne 1975, 5.3(III)], the automorphism functor of every
generalized elliptic curve classified by ¢ is the constant group {*1}. Therefore,
as is explained in [ACV03 2003, §5.1], [Romagny 2005, §5], or [AOV08 2008,
Appendix A], we may “quotient out” this constant group from the automorphism
functors to obtain the algebraic stack ¢//{£1} that is a “rigidification” of ¢". By,
for instance, [AOVO08 2008, A.1], the rigidification map

¢ — Cf{£1}

induces an isomorphism on coarse moduli spaces. However, by [Laumon and
Moret-Bailly 2000, 8.1.1], the algebraic stack ¢//{£1} is its own coarse moduli
space. Thus, since the formation of ¢/{Z1} commutes with arbitrary base change,
so does that of the coarse moduli space of €. In particular, for every prime p, the
map from the coarse moduli space of (€€€,)r , to [P’ép is an isomorphism on a dense
open subscheme. However, this map is finite locally free due to the normality of
its source inherited from the [ ,-smooth (€0))F »» S0 1t 1 an isomorphism globally.
This settles the n = 1 case for § = Spec [F,, and the general n =1 case then follows
from Lemma 3.3.1.

For general n, we begin by arguing that the coarse moduli space Y of €€£,, is
Z-flat and that its formation commutes with arbitrary base change. By the settled
n = 1 case, this is true on the elliptic curve locus, so we may focus on the open
substack ¢, C ¢, that is the preimage of ¥. By [Deligne and Rapoport 1973,
I1.2.8], every generalized elliptic curve has the automorphism —1 that restricts to
inversion on the smooth locus. In particular, the constant group scheme {£1} is
a canonical subgroup functor of the automorphism functor of every generalized
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elliptic curve classified by ¢, so we may pass to the rigidification 4, /{£1} and
need to argue that its coarse moduli space is Z-flat and of formation compatible
with base change. This follows from [AOVO08 2008, 3.3] because the algebraic
stack €, //{£1} is tame by Lemma 2.1.6 and [Deligne 1975, 5.3(II)].

It remains to prove that the map f:Y — IP’% between the coarse moduli spaces
of €€¢, and é¢¢; is an isomorphism. By [Rydh 2013, 6.12], the coarse moduli
space Y is Z-proper, so the map in question is proper and quasifinite, and hence also
finite by Lemma 3.2.3. Once we prove its flatness, and hence also local freeness,
it will remain to inspect the elliptic curve locus to see that it is an isomorphism.
Due to the Z-flatness of ¥ and [EGA IV3 1966, 11.3.11], for the remaining flatness
of f we may work Z-fiberwise, and hence conclude with the help of [EGA IV,
1965, 6.1.5] after observing that for every field &, the reducedness of the k-smooth
(€Le,); ensures the reducedness, and hence also the Cohen-Macaulay property, of
its 1-dimensional coarse moduli space Y. ([

3.4. Algebraization of formal generalized elliptic curves and of their
homomorphisms

The goal of this section is to prove that a formal generalized elliptic curve that is
adic over an affine Noetherian formal scheme and whose number of irreducible
components of a degenerate geometric fiber is constant may be uniquely algebraized,
and likewise for generalized elliptic curve homomorphisms — see Theorem 3.4.2
for a precise statement. Such algebraizability does not immediately follow from
Grothendieck’s formal GAGA formalism because the loci of smoothness may not
be proper over the base, but it nevertheless is not surprising: if this formalism
applied to the Z-proper stack €€¢,, as it does in the scheme case, then the pullback
map
00, (R) — lim,, ‘€00, (R/I™)

would be an equivalence for every adic Noetherian ring R with an ideal of definition
I, and Theorem 3.4.2(a) would follow. The key difference from the scheme case is
that a section of (€€,)r — Spec R is not a closed immersion. Nevertheless, an
argument that we have extracted from [Olsson 2006, 5.4] proves a suitable formal
GAGA statement recorded in Lemma 3.4.1 (see also [Aoki 2006b, §3.4; Aoki
2006a] for a similar argument).

Lemma 3.4.1. Let R be a Noetherian ring that is complete and separated with
respect to an ideal I C R. For every proper R-algebraic stack % with finite
diagonal A 4 /g (for instance, for every proper Deligne-Mumford R-stack Z°), the
Jfunctor

Z(R) — lim, Z(R/I™) (3.4.1.1)

is an equivalence of categories.
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Proof. If x, x’ € 2°(R), then the isomorphism functor Isom(x, x’) is a finite R-
scheme, so

Isom(x, x")(R) — lim,, Isom(x, x")(R/I™)

is bijective by formal GAGA for schemes [EGA III; 1961, 5.1.6]. In other words,
the functor (3.4.1.1) is fully faithful. For its essential surjectivity, suppose that

{xm € Z(R/T")}m=1
is a compatible sequence of objects. Due to the finiteness of A 4-/g, each map
Spec(R/I™) 2 LR/

is representable by schemes and finite. Therefore, x,, corresponds to a coherent
O 1 -algebra «,. By formal GAGA for Artin stacks, i.e., by [Olsson 2006, A.1],
the compatible system {<,},,>1 comes via base change from a unique coherent
Oq-algebra o/. It remains to argue that the composition of the finite morphism
XS 2 corresponding to </ and the structure morphism 2" — Spec R is an
isomorphism. By construction, xg/m = x;, for every m > 1, so the claim will
follow from [EGAIII; 1961, 5.1.6] once we prove that the proper R-algebraic stack
X is a finite R-scheme.

By [Conrad 2007, 2.2.5(2)], the algebraic space locus of X is open and contains
XR/1, so it must coincide with X. Since the relative dimension of X over R may
be computed étale locally on X, [EGAIV3 1966, 13.1.3] proves that the relative
dimension 0 locus of X is open, and hence must equal X because it contains Xg/;.
To conclude that X — Spec R is finite one then applies Lemma 3.2.3. ]

The algebraization Theorem 3.4.2(a) has already been proved in [Conrad 2007,
2.2.4] by a different argument that does not use formal GAGA for Artin stacks
(a similar argument had previously been used in [Deligne and Rapoport 1973,
VII.1.10] to construct Tate curves), but it seems worthwhile to put this result in the
context of Lemma 3.4.1. In contrast, the method of [Conrad 2007, 2.2.4] does not
seem to suffice for the proof of the algebraizability of homomorphisms (beyond the
case of isomorphisms), i.e., for Theorem 3.4.2(b). To algebraize homomorphisms
we exploit their structure detailed in Section 2.2.

Theorem 3.4.2. Let R be a Noetherian ring, complete and separated with respect
to an ideal I C R.

(a) Foreachn € Z>, every compatible under pullback sequence

{Em - SpeC(R/Im)}mzl
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of generalized elliptic curves whose degenerate geometric fibers are n-gons is
isomorphic to the sequence obtained via base change from a unique generalized
elliptic curve E — Spec R.

(b) For generalized elliptic curves E — Spec R and E' — Spec R, every compati-
ble sequence

{fn  ERjim — ERjpnlm=1

of generalized elliptic curve homomorphisms (defined in Definition 2.1.12)
comes via base change from a unique generalized elliptic curve homomorphism

f:E—E.

Proof. (a) Lemma 3.4.1 applied to ¢, proves the claim (for the uniqueness,
Remark 2.1.9 ensures that the degenerate geometric fibers of E are n-gons).

(b) We begin with the case when all the f;,, are isomorphisms (Lemma 3.4.1
does not apply because E need not correspond to an object of €¢¢, for any n).
Due to Remark 2.1.9, there is no geometric point s of Spec R for which E; and
E’ are both degenerate but have distinct numbers of irreducible components, so
Proposition 3.1.8(a) shows that the isomorphism functor Isom(E, E’) is a finite
R-scheme. Therefore, by [EGA III; 1961, 5.1.6], the sequence

(fw) € lim, Isom(E, E")(R/I™)
is induced by a desired unique
f €lsom(E, E")(R).
In the general case, by [EGAIII; 1961, 5.4.1], the f,, algebraize to a unique
R-morphism
f:E—E,
and our task is to show that f is a generalized elliptic curve homomorphism. Since

idempotents of R/I lift uniquely to R (see [EGA IV, 1967, 18.5.16(ii)]), we may
use Proposition 2.2.9 to write

R=R' xR’ and I=1Ix1"

in such a way that (f1) g/ is the zero homomorphism and ( f1) g/~ is an isogeny.
Then R’ (resp. R”) is complete and separated with respect to I’ (resp. I”) and each
(fm)rrjrm (xesp. (fi)rr/1m) is the zero homomorphism (resp. an isogeny). Thus,
fr must be the zero homomorphism, and we are reduced to the case when all the
[fm are isogenies.
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Let K,, C Eg/n be the kernel of the isogeny f,,. The group law of K, is the
restriction of the action morphism

Km X ER/[m —> ER/I”‘,

so [EGAIIL; 1961, 5.1.4 and 5.4.1] supply a