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Local positivity of linear series on surfaces
Alex Küronya and Victor Lozovanu

We study asymptotic invariants of linear series on surfaces with the help of Newton–Okounkov polygons.
Our primary aim is to understand local positivity of line bundles in terms of convex geometry. We work
out characterizations of ample and nef line bundles in terms of their Newton–Okounkov bodies, treating
the infinitesimal case as well. One of the main results is a description of moving Seshadri constants
via infinitesimal Newton–Okounkov polygons. As an illustration of our ideas we reprove results of
Ein–Lazarsfeld on Seshadri constants on surfaces.

Introduction

The main purpose of this paper is to understand local positivity of line bundles on surfaces, by making
use of the theory of Newton–Okounkov bodies. More precisely, we find ampleness and nefness criteria in
terms of convex geometry, and relate the information obtained this way to Seshadri-type invariants.

For the past thirty-odd years there has been an increasing interest in describing positivity of line bundles
around single points of varieties. Starting with the work of Demailly on Fujita’s conjecture, where he
introduced Seshadri constants, the topic developed quickly due to the work of Demailly [1992], Ein and
Lazarsfeld [Ein et al. 1995; Ein et al. 2009], Nakamaye [2003; 2005], and others. In spite of all the effort,
our understanding is still very limited, simple questions that remain unanswered to this day abound.

We aim at translating existing invariants of local positivity to the language of Newton–Okounkov bodies,
thus enriching them with extra structure. Our model is the relationship between Newton–Okounkov
bodies and the volume of a divisor: we intend to replace numbers functioning as invariants by collections
of convex bodies. We would like to emphasize the special nature of linear series on surfaces, most of the
time we will employ elementary surface-specific tools, Zariski decomposition will play a crucial role for
instance.

Originating in the work of Khovanskii from the late seventies, and Okounkov’s construction [1996] in
representation theory, Newton–Okounkov bodies are a not-quite-straightforward generalization of Newton
polytopes to the setting of arbitrary projective varieties. For an n-dimensional projective variety X , a full
flag of subvarieties Y•, and a big divisor D on X , the Newton–Okounkov body 1Y•(D)⊆ Rn is a convex
set, encoding the set of all normalized valuation vectors coming from sections of multiples of D, where
the rank n valuation of the function field of X is determined by Y•.

MSC2010: primary 14C20; secondary 14J99, 32Q15, 52B99.
Keywords: Newton–Okounkov bodies, linear series on surfaces, local positivity.
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These convex bodies display surprisingly good properties, and gave rise to a flurry of activities in
projective geometry, combinatorics, and representation theory. For detailed descriptions and proofs the
reader is referred to the original sources [Kaveh and Khovanskii 2012; Lazarsfeld and Mustat,ă 2009]
and the recent review [Boucksom 2014]. The main idea is that Newton–Okounkov bodies capture the
vanishing behavior of all sections of all multiples of D at the same time.

Our philosophical starting point is the work of Jow [2010] observing that the collection of all Newton–
Okounkov bodies attached to a given line bundle serves as a universal numerical invariant: whenever all
the Newton–Okounkov bodies agree for two divisors D and D′, then in fact they must be numerically
equivalent. Jow’s result leads to the expectation that one should be able to read off numerical properties
of line bundles from the collection of attached Newton–Okounkov bodies.

Once we focus on local positivity, the above principle modifies it in the following manner: we expect
that the local positivity of a Cartier divisor D at a point x ∈ X to be governed by the collection (for
definitions see Section 1B)

K (D; x)=def {
1Y•(D)⊆ Rn

+
| Y• is an admissible flag centered at x

}
.

It turns out that, whenever X is a smooth projective surface, the above collection K (D; x) is independent
of x away from a countable union of proper subvarieties.

We always work on smooth projective surfaces over the complex number field, unless otherwise
mentioned. Our first main result is a version of the combinatorial characterization of torus-invariant
ample/nef divisors on toric varieties valid on all surfaces. We go one step further and offer an analogous
description in terms of infinitesimal Newton–Okounkov bodies.

Let us introduce some notation. For positive real number λ, λ′, ξ > 0 we set

1λ,λ′ =
def
{(t, y) ∈ R2

+
| λ′t + λy 6 λλ′},

1−1
ξ =

def
{(t, y) ∈ R2

+
| 06 t 6 ξ, 06 y 6 t}.

If λ= λ′, then denote by 1λ =
def
1λ,λ, which is the standard simplex of side length λ.

We offer the following convex geometric characterization of ampleness and nefness.

Theorem A (nefness and ampleness criteria). Let X be a smooth projective surface, D a big R-divisor on
X , and π : X ′→ X the blow-up of x ∈ X with exceptional divisor E. Then:

(i) D is nef ⇔ for all x ∈ X there is a flag (C, x) such that (0, 0) ∈1(C,x)(D)
⇔ for all x ∈ X there is a z ∈ E such that (0, 0) ∈1(E,z)(π∗(D)).

(ii) D is ample ⇔ for all x ∈ X there is a flag (C, x) and λ > 0 such that 1λ ⊆1(C,x)(D)
⇔ for all x ∈ X there is a z ∈ E and ξ > 0 such that 1−1

ξ ⊆1(E,z)(π
∗(D)).

Theorem A is a particular case of more general results. In Theorem 2.4 we prove the corresponding
criteria for a point x ∈ X not to be contained either in the negative or null locus of D in terms of
Newton–Okounkov bodies defined on X . Furthermore, in Theorem 3.8 we connect these loci to the shape
of infinitesimal Newton–Okounkov bodies, defined on the blow-up X ′.
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As mentioned above, the Newton–Okounkov body of a big Q-divisor D encodes how all the sections
of all powers of D vanish along a fixed flag. Conversely, it is a very exciting problem to find out exactly
which points in the plane R2

⊇1Y•(D) are given by valuations of sections, whether these points lie in the
interior or the boundary of the Newton–Okounkov body. This is expressed by saying that a rational point
of 1Y•(D) is “valuative”. Finding valuative points in Newton–Okounkov bodies is a recurring theme of
this article, some partial answers are summarized in the following corollary.

Corollary B (valuative points). Let X be a smooth projective surface, D a big Q-divisor, (C, x) a flag
on X , and π : X ′→ X the blow-up of X at x with exceptional divisor E. Then:

(i) Any rational point in the interior of 1(C,x)(D) is valuative.

(ii) Suppose 1λ,λ′ ⊆1(C,x)(D) for some λ, λ′ > 0. Then any rational point on the horizontal segment
[0, λ)×{0} and the vertical one {0}× [0, λ′) is valuative.

(iii) Suppose that 1−1
ξ ⊆ 1(E,z0)(π

∗(D)) for some ξ > 0 and z0 ∈ E. Then any rational point on the
diagonal segment {(t, t) | 06 t < ξ} and on the horizontal segment [0, ξ)×{0} is valuative.

It is interesting to note that statement (ii) can be obtained via restricted volumes (see [Ein et al. 2009]
for the basic theory). However, we present here a different proof for the surface case, that relies only
on ideas of convex geometric nature and Theorem A. As for statement (iii), the rational points on the
diagonal are valuative due to the fact that the exceptional divisor E is a rational curve.

As a consequence of Theorem A, all Newton–Okounkov bodies of an ample divisor A are bound to
contain a standard simplex 1λ of some size. By choosing the curve in the flag to be very positive, one
can make the size of the maximal such simplex as small as we wish. Therefore the exciting question to
ask is how large it can become. This leads to the definition of the largest simplex constant:

λ(A; x)=def sup
(C,x)

sup{λ > 0 |1λ ⊆1(C,x)(A)},

where the first supremum runs through all admissible flags centered at the point x ∈ X .
As expected of asymptotic invariants, the largest simplex constant is homogeneous in A, invariant

with respect to numerical equivalence of divisors; moreover it is a superadditive function of A. In
Proposition 4.7 we observe that ε(A; x)> λ(A; x), where the left-hand side denotes the classical Seshadri
constant of A at x . We illustrate in Remark 4.9 that λ(A; x) 6= ε(A; x) in general.

Using Diophantine approximation we establish the uniform positivity of largest simplex constants
assuming the rational polyhedrality of the nef cone.

Theorem C (positivity of the largest simplex constant). Let X be a smooth projective surface with a
rational polyhedral nef cone. Then there exists a strictly positive constant λ(X) > 0 such that

ε(A; x)> λ(A; x)> λ(X),

for any x ∈ X and any ample Cartier divisor A on X.
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Even further, we show the existence of strictly positive lower bound on Seshadri constants for any
smooth projective variety X of any dimension, whenever the nef cone of X is rational polyhedral.

By turning our attention to the collection of infinitesimal Newton–Okounkov bodies we can take a
closer look at Seshadri constants. As it happens, infinitesimal Newton–Okounkov bodies seem to capture
the local positivity of divisors more precisely. Hence one can expect them to determine (moving) Seshadri
constants as well. This is indeed the case, as we will immediately explain.

Here again, the key geometric invariant is the largest “inverted” standard simplex that fits inside an
infinitesimal Newton–Okounkov body. With notation as above, if D is a big R-divisor on X , π : X̃→ X
the blow-up of X at x with exceptional divisor E , then we set

ξ(π∗(D); z)=def sup{ξ > 0 |1−1
ξ ⊆1(E,z)(π

∗(D))}.

It is not hard to see that this invariant does not depend on the choice of the point z ∈ E , as seen in
Theorem 3.8. So, if we denote by ξ(D; x)=def

ξ(π∗(D); z) for some z ∈ E , then the following theorem
says that this invariant is actually the moving Seshadri constant of D at point x .

Theorem D (characterization of moving Seshadri constants). Let D be a big R-divisor on X. If x /∈
Neg(D), then

ε(‖D‖; x)= ξ(D; x).

For the definition of Neg(D) see Section 1A. As a further application of infinitesimal Newton–Okounkov
bodies, we translate ideas of Nakamaye and Cascini into the language of convex geometry to provide a new
proof of the Ein–Lazarsfeld lower bound on Seshadri constants at very general points (see Corollary 3.17).

A few words about the organization of this paper. Section 1 hosts a quick recap of Newton–Okounkov
bodies and Zariski decomposition, here several small new observations have been added that we will use
repeatedly later on. Section 2 is devoted to our main results on Newton–Okounkov bodies on surfaces,
while Section 3 is given over to the treatment of infinitesimal Newton–Okounkov bodies and their relation
to moving Seshadri constants. In Section 4 we present various applications of the material developed so
far.

1. Notation and introductory remarks

We introduce the notation that will be used throughout this paper, and give a brief introduction to Zariski
decomposition and to the construction of Newton–Okounkov polygons for the sake of the reader. In
addition, for the lack of a suitable reference, we include some remarks that are probably known to experts.

1A. Zariski decomposition. Let X be a smooth complex projective surface. As proven in [Fujita 1979]
(see also [Bădescu 2001, Theorem 14.14] or [Zariski 1962] for the case of Q-divisors), every pseudoef-
fective R-divisor D on X has a Zariski decomposition, i.e., D can be written uniquely as a sum

D = PD + ND.
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of R-divisors, such that PD is nef, ND is either zero or an effective divisor with negative definite intersection
matrix, and (PD · ND)= 0. The divisor PD is called the positive part, ND the negative part of D. Note
that PD and ND will be Q-divisors whenever D is such. Furthermore, when D is a Q-divisor, Zariski
decomposition is an equality of divisors and not merely of numerical equivalence classes.

A crucial property of Zariski decomposition is that the positive part carries all the sections, more
precisely (see [Lazarsfeld 2004, Proposition 2.3.21] for instance), assuming that m D, m PD and m ND are all
integral, the natural inclusion map H 0(X,OX (m PD))→ H 0(X,OX (m D)), defined by the multiplication
with the divisor m ND , is an isomorphism.

Following [Bauer et al. 2004], one can associate to D the loci

Null(D)=def
⋃

PD .E=0

E and Neg(D)=def
⋃

E⊆Supp(ND)

E,

where the unions are taken over irreducible curves on X . The orthogonality property of Zariski decompo-
sition yields Neg(D)⊆ Null(D).

In higher dimensions, these correspond to the augmented and restricted base loci of D introduced in
[Ein et al. 2006]. We do not rely on the higher dimensional definition of these loci, but it is nevertheless
important to keep in mind that B+(D)=Null(D) and B−(D)=Neg(D) as observed in [Ein et al. 2006].
Vaguely speaking Null(D) consists of those points where D is locally not ample while Neg(D) is the
locus of points where D is locally not nef.

In [Bauer et al. 2004] the main goal is to prove the variation of Zariski decomposition inside the big
cone. Based on the description of Zariski chambers given there (see [Bauer et al. 2004, p. 214]), we prove
a statement that can be seen as a more precise version of Kodaira’s lemma.

Lemma 1.1. Let P be a big and nef R-divisor on X , and let Null(P)= E1 ∪ · · · ∪ Er . Then there exists
a maximal-dimensional rational polyhedral cone C ⊆ Rr

>0 such that P +α · (E1, . . . , Er )
T is ample for

all α ∈ −int C of sufficiently small norm.

Remark 1.2. Under the assumptions of Lemma 1.1, it is an easy consequence of the Hodge index
theorem that the intersection matrix of the curves E1, . . . , Er is negative definite: take a nontrivial divisor
M =

∑
i ai Ei ; notice that (P ·M)= 0. Thus, by Hodge, we see that M2 < 0, since M is not numerically

trivial. This last fact holds as the classes of the curves E1, . . . , Er are linearly independent in N1(X)R.

Proof. The claim is immediate if P is ample, hence we can assume that P ∈ ∂ Nef(X)∩Big(X). By
[Bauer et al. 2004, Corollary 1.3], there exists an open neighborhood U of P and the curves C1, . . . ,Cs

such that the boundary of the Zariski chamber decomposition inside U is given by the hyperplanes
C⊥i ⊆ N1(X)R.

If (P ·Ci ) 6= 0 for a curve Ci , then by shrinking U if need be, we can arrange that U lies on one side
of C⊥i . Therefore, we can assume without loss of generality that

U ∩Amp(X)= E>0
1 ∩ · · · ∩ E>0

r ∩U .
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By possibly shrinking U , we assume also that the self-intersection form is strictly positive on it.
The Nakai–Moishezon criterion then says that a divisor P −

∑r
i=1 ai Ei ∈ U is ample if and only if(

P −
r∑

i=1

ai Ei

)
· E j > 0 for every 16 j 6 r .

As (P · E j )= 0, by assumption, for all 16 j 6 r , then this is equivalent to

r∑
i=1

ai (Ei · E j ) > 0 for all 16 j 6 r . (1.2.1)

We are left with looking for a sufficient condition on α = (a1, . . . , ar ) ∈ Rr
>0 such that (1.2.1) holds; not

surprisingly, this ends up being a linear algebra question.
Let A be the intersection matrix of the curves E1, . . . , Er . This matrix is negative definite by Remark 1.2.

Then [Bauer et al. 2004, Lemma 4.1] shows that A−1 is a nonsingular matrix with nonpositive entries.
In this notation, the statement (1.2.1) is then equivalent to asking that A · (a1, . . . , ar )

T has only strictly
positive coefficients.

Let e1, . . . , er be the standard basis of Rr and v1 =
def A−1e1, . . . , vr =

def A−1er . We claim that the
cone C spanned by v1, . . . , vr has the required property. Indeed, since the elements of A−1 are all
nonpositive, then −C ⊆ Rr

>0. Thus, every v ∈ −int C has only positive coefficients. Furthermore, if
v =

∑r
i=1 aivi ∈ int C , then Av =

∑r
i=1 ai A(A−1ei )=

∑r
i=1 ai ei > 0, hence (1.2.1) is satisfied. �

Remark 1.3. Let x ∈ X be a point and π : X ′ → X be the blow-up of X at x . Suppose D is a
pseudoeffective R-divisor on X and D = PD + ND its Zariski decomposition. If x /∈ Neg(D), then
π∗D = π∗PD +π

∗ND is the Zariski decomposition of π∗D. To see this, it suffices, by uniqueness of
Zariski decomposition, to check that the right-hand side has the right properties. So, π∗PD remains nef,
and (π∗PD ·π

∗ND)= (PD · ND)= 0. Since x /∈ Neg(D), π∗ND equals the strict transform of ND , and
the respective intersection matrices agree.

1B. Newton–Okounkov polygons. For the general theory of Newton–Okounkov bodies the reader is
referred to [Kaveh and Khovanskii 2012; Lazarsfeld and Mustat,ă 2009] or the excellent expository work
[Boucksom 2014]. Here we only summarize some surface-specific facts.

As before, let X be a smooth projective surface, and D be a big Q-divisor on X . We say that the pair
(C, x) is an admissible flag on X if C ⊆ X is an irreducible curve and x ∈ C is a smooth point. Then the
Newton–Okounkov body associated to this date is defined via

1(C,x)(D)=
def
ν(C,x)

(
{D′ | D′ ∼Q D effective Q-divisor}

)
,

where the rank-two valuation ν(C,x)(D′)= (ν1(D′), ν2(D′)) is given by

ν1(D′)= ordC(D′) and ν2(D′)= ordx((D′− ν1(D′)C)|C).
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Making use of [Lazarsfeld and Mustat,ă 2009, Proposition 4.1], one can replace Q-linear equivalence
by numerical equivalence (denoted by ≡). If D is a big R-divisor, one can also associate the Newton–
Okounkov body 1(C,x)(D), where Q-linear equivalence is replaced by numerical equivalence in the
definition.

Drawing on Zariski decomposition on surfaces, [Lazarsfeld and Mustat,ă 2009, Theorem 6.4] gives a
practical description of Newton–Okounkov bodies in the surface case. Following [Lazarsfeld and Mustat,ă
2009, Section 6], let ν be the coefficient of C in the negative part N (D) and set

µ= µ(D;C)=def sup{t > 0 | D− tC is big}.

Whenever there is no risk of confusion we will write µ(D).
For any t ∈ [ν, µ] we set Dt =

def D− tC . Let Dt = Pt+Nt be the Zariski decomposition of Dt . Consider
the functions α, β : [ν, µ] → R+ defined as follows:

α(t)=def ordx(Nt |C), β(t)=def ordx(Nt |C)+ Pt ·C.

Then Lazarsfeld and Mustat,ă show that the Newton–Okounkov body is described as follows:

Theorem 1.4 [Lazarsfeld and Mustat,ă 2009, Theorem 6.4]. Let D be a big R-divisor, and (C, x) an
admissible flag on a smooth projective surface. Then

1(C,x)(D)=
{
(t, y) ∈ R2

+
| ν 6 t 6 µ, α(t)6 y 6 β(t)

}
.

Remark 1.5. The Newton–Okounkov body1(C,x)(D)⊆R2
+

has been shown to be a polygon in [Küronya
et al. 2012, Section 2]. The results of [Küronya et al. 2012] reveal further properties of 1(C,x)(D). The
function t 7→ Nt is increasing on the interval [ν, µ] ⊆ R, i.e., for any ν 6 t1 6 t2 6 µ the difference
Nt2−Nt1 is an effective divisor. This implies that a vertex of1(C,x)(D)may only occur for those t ∈ [ν, µ],
where a new curve appears in Neg(Dt).

Remark 1.6. It was observed in [Bauer et al. 2004, Proposition 1.14] that Zariski decomposition is
continuous inside the big cone but not in general when the limiting divisor class is only pseudoeffective.
It turns out that there exists another important situation where continuity holds.

Let C be an irreducible curve on X and as before let µ(D)= µ(D;C). From [Küronya et al. 2012,
Proposition 2.1] and the ideas of the proof of Proposition 1.14 from [Bauer et al. 2004], it follows that

ND−tC → ND−µ(D)C and PD−tC → PD−µ(D)C

whenever t→µ(D). If x ∈C is a smooth point, then this says in particular that the segment 1(C,x)(D)∩
(µ(D)×R) is computed from actual divisors on X , i.e., Pµ(D) and Nµ(D).

Remark 1.7. The above description of Newton–Okounkov polygons gives rise to the equality

1(C,x)(D)t>t0 =1(C,x)(D− t0C)+ (t0, 0).
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for any t0 ∈ R. In [Lazarsfeld and Mustat,ă 2009, Theorem 4.24], this is proved under the additional
assumption that C * Supp(Null(D)). As it turns out, this condition is not necessary.

Remark 1.8. Going back to the initial definition of Newton–Okounkov polygons, one remarks that the
valuation map can be seen through local intersection numbers. Let D be a big Q-divisor, (C, x) an
admissible flag, and D′ ∼Q D an effective divisor. Note that C * Supp(D′− ν1(D′)C), thus

ν2(D′)=
(
(D′− ν1(D)C).C

)
x ,

where the right-hand side is the local intersection number of the effective Q-divisor D− ν1(D)C and the
curve C at the point x . As it is well known, one has

(C ′.C ′′)=
∑
P∈X

(C ′.C ′′)P ,

for distinct irreducible curves C ′,C ′′ ⊆ X . In particular, one has the inequality(
(D− ν1(D′)C).C

)
> ν2(D′)

as D ≡ D′. These ideas give rise to a somewhat different construction of Newton–Okounkov polygons in
the surface case that is based on local intersection numbers.

Remark 1.9. For a Newton–Okounkov polygon 1(C,x)(D), the lengths of the vertical slices are indepen-
dent of the point x . To see this, let

1(C,x)(D)t=ξ =
def
1(C,x)(D)

⋂
{t = ξ}×R

for any ξ ∈ [ν, µ]. Then

length(1(C,x)(D)t=ξ )= β(ξ)−α(ξ)= (PD−ξC . ·C),

hence the observation.

The following lemma helps reduce the problem of computing the Newton–Okounkov polygon of a
divisor to the computation of the polygon of its positive part. This is implicitly contained in [Łuszcz-
Świdecka and Schmitz 2014] for Q-divisors; here we give a proof of the R-divisor case.

Lemma 1.10. Let D be a big R-divisor on a smooth projective surface X and (C, x) an admissible flag
on X. If x /∈ Neg(D), then

1(C,x)(D)=1(C,x)(PD).

Proof. We first prove the statement for Q-divisors and then use a continuity argument for the general
case. If D is a big Q-divisor, then by the homogeneity of Newton–Okounkov polygons and Zariski
decomposition we can assume that D, PD and ND are all integral Cartier divisors. The multiplications
maps

H 0(X,OX (m PD))→ H 0(X,OX (m D))
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by m ND are isomorphisms (see [Lazarsfeld 2004, Proposition 2.3.21]). Hence the definition of Newton–
Okounkov polygons and the condition x /∈ Supp(ND) imply the statement.

For the general case, fix a norm ‖ · ‖ on the finite-dimensional vector space N1(X)R. Let D be a big
R-divisor, and (An)n∈N a sequence of ample R-divisors such that limn→∞(‖An‖)= 0, An+1− An is an
ample Q-divisor, and D+ An is a Q-divisor for any n ∈N. By the proof of [Anderson et al. 2014, Lemma
8]1, one has the equality

1(C,x)(D)=
∞⋂

n∈N

1(C,x)(D+ An).

This reduces the proof to the Q-divisor case via the continuity of Zariski decomposition (see [Bauer et al.
2004, Proposition 1.14]). �

2. Newton–Okounkov polygons and special loci associated to divisors

2A. Local constancy of Newton–Okounkov polygons. The goal of this subsection is to prove that the
set of all Newton–Okounkov polygons, where the flags are taken to be centered at a very generic point x ,
is independent of the point.

Let X be a smooth projective surface, x ∈ X a point and D a big R-divisor on X . Denote by

K (D, x)=
{
1⊆ R2

+
| ∃(C, x), an admissible flag, such that 1=1(C,x)(D)

}
,

the set of all Newton–Okounkov polygons of D, where the flags are based at x . By [Küronya et al. 2012],
this set is countable. Our goal is to figure out how this set varies with the point x .

Theorem 2.1. With notation as above, there exists a subset F =
⋃

m∈N Fm ⊆ X consisting of a countable
union of Zariski-closed proper subsets Fm ( X such that the set K (D, x) is independent of x ∈ X \ F.

The proof relies on the following observation.

Lemma 2.2. Let D be a big R-divisor on X , U ⊆ X be a subset with the following properties:

(1) U is disjoint from all negative curves on X.

(2) For every x, x ′ ∈ U and (C, x) an admissible flag on X , there exists an irreducible curve C ′ such
that (C ′, x ′) is again admissible, and C ′ ≡ C.

Then K (D, x) is independent of x ∈U.

Proof. Let x, x ′ ∈ U , and (C, x) as in the statement. Fix an admissible flag (C ′, x ′), such that C ′ ≡ C .
Observe that ν(C,x)(D)= ν(C ′,x ′)(D)= 0, since both curves are not negative ones by (1). Furthermore,
since C ≡ C ′, we have D− tC ≡ D− tC ′, and therefore µ(C,x)(D)= µ(C ′,x ′)(D) as well.

Again, as U avoids all negative curves, α(C,x)(t)= α(C ′,x ′)(t)= 0 for all 06 t 6 µ(D). Finally, since
Zariski decomposition respects numerical equivalence, PD−tC ≡ PD−tC ′ for all 06 t 6 µD(t), therefore
β(C,x)(t)= β(C ′,x ′)(t) for all 06 t 6 µ(D), hence 1(C,x)(D)=1(C ′,x ′)(D), as required. �

1The same statement works when each An is taken to be big and semiample. This will be used in Section 3.
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Remark 2.3. Roughly speaking the main idea of the proof of Theorem 2.1 is that whenever x ∈ X is a
very general point then any cycle passing through this point can be deformed nontrivially in its numerical
equivalence class. The source for this material is [Kollár 1995, Chapter 2].

To be more precise, [Kollár 1995, Proposition 2.5] says that there exists a countable union of proper
closed subvarieties F ⊆ X such that for any x ∈ V G(X)=def X \ F and any proper birational morphism
w0 : C→ X , where C is a smooth irreducible curve with x ∈ Im(w0), there exists a topologically trivial
family of normal cycles

U u
//

p
��

X

T

(2.3.2)

where T is irreducible, p is smooth (any fiber is smooth irreducible curve), u is dominant, for any t ∈ T
the morphism u|Ut : Ut = p−1(t)→ X is a birational morphism, and there exists t0 ∈ T , such that
u|Ut0
:Ut0 → X is the map w0.

Proof of Theorem 2.1. First let us make the following definition. For every element γ ∈ N1(X), the
Néron–Severi group, let

Sing(γ )=def {x ∈ X | x ∈ Sing(C) for every curve C ∈ γ with x ∈ X
}
.

Note that Sing(γ ) is always a proper subvariety of X . Let V G(X)⊆ X be the very general subset from
Remark 2.3; for every γ ∈N1(X), fix a topologically trivial family of normal cycles uγ with fiber class γ
(as in Remark 2.3), and set

Defect(uγ )=
def X \ Im(uγ ).

Since uγ is dominant, Defect(uγ ) is contained in a proper closed subvariety of X . Let

S =def
⋃

γ∈N1(X)

Sing(γ ) and D =def
⋃

γ∈N1(X)

Defect(uγ ).

We will apply Lemma 2.2 with

U =def V G(X)
∖(

S ∪D ∪

( ⋃
C is a negative curve

C
))
.

Observe that by construction U is disjoint from all negative curves on X .
Let x, x ′ ∈U , and (C, x) be an admissible flag. Then x /∈ Defect(uγ ), hence uγ has a fiber through x ,

whose image is C , and the same applies to x ′, let us call this curve C ′. By construction C ′ is irreducible.
Although C ′ might itself be singular at x ′, there will be a curve numerically equivalent to it which is
smooth at x ′, as x ′ /∈ Sing([C]) by the construction of U . �

2B. Null and negative loci versus Newton–Okounkov polygons. As mentioned above, the complements
of the null or the negative loci describe the set of points on X where D is positive locally. The following
theorem explains this philosophy in the language of Newton–Okounkov polygons.
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Theorem 2.4. Let X be a smooth projective surface, D be a big R-divisor on X and x ∈ X be an arbitrary
point. Then:

(i) x /∈ Neg(D) if and only if there exists an admissible flag (C, x) such that the Newton–Okounkov
polygon 1(C,x)(D) contains the origin (0, 0) ∈ R2.

(ii) x /∈ Null(D) if and only if there exists an admissible flag (C, x) and a positive real number λ > 0
such that 1λ ⊆1(C,x)(D).

Remark 2.5. It is immediate to see that D is nef if and only if Neg(D)=∅, while D is ample if and only
if Null(D)=∅. Thus the corresponding nefness and ampleness criteria of Theorem A follow immediately
from Theorem 2.4.

Remark 2.6. Theorem 2.4 implies that whenever (0, 0) ∈ 1(C,x)(D) for some admissible flag (C, x),
then the same holds for all admissible flags centered at x . The analogous statement about points not
contained in Null(D) is true as well.

Example 2.7. We discuss an example of a Newton–Okounkov polygon that does not contain verti-
cal/horizontal edges emanating from the origin, but the origin is contained in it. Let X = BlP(P

2) be the
blow-up of the projective plane P2 at the point P, H the pull-back of OP2(1), E the exceptional curve,
and x ∈ E be a point. Furthermore, let π : X ′→ X be the blow-up of X at a point x ∈ E . Denote by E1

the exceptional divisor of π , by E2 the proper transform of E on X ′, and E3 the proper transform of the
line in P2 passing through P with the tangent direction given by the point x ∈ E .

It is not hard to see that (E2
1)= (E

2
3)=−1 and (E2

2)=−2. Notice in addition that E1 intersects both
E2 and E3 at different points transversally, while the pair E2 and E3 does not intersect. The classes E1,
E2 and E3 generate the space N1(X ′)R. A quick computation gives π∗(H)= 2E1+ E2+ E3. Thus

(π∗(D)− t E1 · E2)= ((2− t)E1+ E2+ E3 · E2)=−t,

hence E2 ⊆ Neg(π∗(D)− E1) for all 0< t � 1.
Let {y} =def E1 ∩ E2. Comparing with [Lazarsfeld and Mustat,ă 2009, Theorem 6.4], note that α(t) > 0

for any 0< t � 1 with respect to the flag (E1, y). Furthermore, by Proposition 3.1 and the above, one
sees easily that the Newton–Okounkov polygon 1(E1,y)(π

∗(H)) does not contain either a horizontal or a
vertical edge starting at the origin, but contains the origin. This convex polygon is what we call in the
next section the infinitesimal Newton–Okounkov polygon of the divisor H on X at the point x .

It is interesting to note that X ′ has three negative curves E1, E2 and E3, but the nef cone is minimally
generated by four classes: π∗(H), π∗(H)+ E3, π∗(H)+ E1+ E3 and E1+ E3

Proof of Theorem 2.4. (i) By [Lazarsfeld and Mustat,ă 2009, Theorem 6.4] we obtain the following
sequence of equivalences:

(0, 0) ∈1(C,x)(D)⇔ ν = 0 and α(0)= 0

⇔ C * Neg(D) and x /∈ Neg(D)

⇔ x /∈ Neg(D),
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which is what we wanted.

(ii) “⇒”: Let us assume that x /∈ Null(D). Since Neg(D) ⊆ Null(D), this implies x /∈ Neg(D). By
Lemma 1.10 we can also assume without loss of generality that D = PD , that is, D is big and nef. These
conditions yield that (D.C) > 0 for any irreducible curve C ⊆ X passing through x . In particular the
convex polygon 1(C,x)(D) contains the origin (0, 0) and the vertical segment {0} × [0, (D.C)] with
nonempty interior for any admissible flag (C, x).

By fixing an admissible flag (C, x), it remains then to show that the polygon 1(C,x)(D) contains a
horizontal segment with nonempty interior starting at the origin. On the other hand, by the convexity of
Newton–Okounkov polygons, statement (i), and Remark 1.7, in order to prove the latter condition, it is
enough to show that there exists t > 0, such that x /∈ Neg(D− tC).

By [Bauer et al. 2004, Theorem 1.1], the divisor D has an open neighborhood U inside the big
cone, which intersects only finitely many Zariski chambers. Thus, there exist finitely many curves
01, . . . , 0s, 0

′

s+1, . . . , 0
′
r such that

Neg(D− tC)⊆
( i=s⋃

i=1

0i

)
∪

( j=r⋃
j=s+1

0′j

)
, whenever D− tC ∈ U ,

where 0i are the curves containing x and 0′j are those which don’t contain this point. By the above
γi =

def
(D ·0i ) > 0 and thus γ =def min16i6s γi > 0.

Observe that by possibly shrinking U , we can arrange that even its closure intersects only finitely
many Zariski chambers and remains inside the big cone. Let

D− tC = Pt +

( s∑
i=1

at
i0i +

r∑
j=s+1

bt
j0
′

j

)

be the Zariski decomposition of D− tC . By [Küronya et al. 2012, Proposition 2.1], the functions at
i and

bt
j depend continuously on t as long as D− tC ∈ U . Also, a0

i = b0
j = 0 for all i and j , since D is nef.

Consider now the divisor

D′t =
def D− tC −

r∑
j=s+1

bt
j0
′

j = Pt +

s∑
i=1

at
i0i .

Notice that the right-hand side is the Zariski decomposition of D′t . For every 16 i 6 s one has

(D′t ·0i )= (D ·0i )− t (C ·0i )−

( r∑
j=s+1

bt
j0
′

j

)
·0i > γ − t (C ·0i )−

r∑
j=s+1

bt
j (0
′

j ·0i ).

By taking t sufficiently small and by the continuity of bt
j as a function of t , then (D′t ·0i ) > 0 for all

16 i 6 s. On the other hand these negative curves are the only candidates for components of Neg(D′t).
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Consequently, all the at
i ’s are zero, and

D− tC = Pt +

r∑
j=s+1

bt
j0
′

j

is the Zariski decomposition of D− tC . Since the curves 0′j are exactly the ones not containing x , we
arrive at the desired conclusion x /∈ Neg(D− tC) for small t .

“⇐”: We consider first the case when D is a big and nef divisor, i.e., D = PD and ND = 0. Suppose for a
contradiction that there exists a curve E ⊆ Null(D) such that x ∈ E . If C = E , then, by the description
of the Newton–Okounkov polygon of D, β(0)= 0, as (D.E)= 0. Thus,

1(C,x)(D)∩ ({0}×R)= (0, 0).

Consequently, 1(C,x)(D) cannot contain a small standard simplex.
If C 6= E , then C ·E > 0, as both C and E contain the point x . Therefor, (D− tC) ·E < 0 for any t� 1,

This implies that E ⊆ Supp(Nt) and consequently that α(t)= ordx(Nt |C) > 0 for t � 1. Therefore,

1(C,x)(D)∩ (R×{0})= (0, 0),

and again 1(C,x)(D) does not contain a standard simplex of any size. This leads to a contradiction to the
existence of the curve E .

The general case, when D is big, follows immediately from Lemma 1.10 and the observation that the
condition x /∈ Neg(D) is implied by the equivalence in statement (i). �

2C. Valuative points. By the definition given by Lazarsfeld and Mustat,ă, the Newton–Okounkov polygon
of a big Q-divisor D encodes how all the sections of all powers of D vanish along a fixed flag. Although
not observed in [Lazarsfeld and Mustat,ă 2009], the points that come from evaluating sections form a
dense subset in the Newton–Okounkov polygon (hence, a posteriori there is no need for forming the
convex hull in the construction).

Conversely, it is a very exciting problem to find out exactly which points in the plane are given by
valuations of sections, whether these points lie in the interior or the boundary of the Newton–Okounkov
polygon. To provide a partial answer, we start with the following definition:

Definition 2.8. Let D be a big Q (R)-divisor and (C, x) an admissible flag on X . We say that a point
(t, y) ∈1(C,x)(D)∩Q2 (or (t, y) ∈1(C,x)(D)∩R2 in the case of real divisors) is a valuative point of
D with respect to the flag (C, x), if there exists an effective Q-divisor D′ ∼Q D (an effective R-divisor
D′ ≡ D) satisfying the property ν(C,x)(D′)= (t, y).

Remark 2.9. The fact that certain rational points in a Newton–Okounkov polygon are valuative is
equivalent to the existence of sections with prescribed vanishing behavior along the given flag in a linear
series |m D| for m� 0.

Corollary 2.10. Let D be a big Q-divisor and (C, x) be an admissible flag on X. Then:
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(i) Any rational point in int(1(C,x)(D)) is a valuative point.

(ii) Suppose 1λ,λ′ ⊆1(C,x)(D) for some λ, λ′ > 0. Then any rational point on the horizontal segment
[0, λ)×{0} and the vertical one {0}× [0, λ′) is a valuative point.

Remark 2.11. Observe that Corollary 2.10 remains valid if we take D to be a big R-divisor with the
appropriate notion of a valuative point (in this case a point α ∈ 1Y•(D) is valuative if there exists an
effective R-divisor D′ ∼ m D for some m ∈ N and νY•(D

′)= α.

Remark 2.12. For the vertical segment {0} × [0, λ′), one can obtain the statement as a consequence
of [Ein et al. 2009, Theorem 2.13], as illustrated in Example 2.13 of the same paper, along with the
restriction theorem [Lazarsfeld and Mustat,ă 2009, Theorem 4.24] for Newton–Okounkov bodies. Here
we give a different proof for the surface case, relying only on ideas of a convex geometric nature arising
from the theory developed so far.

Remark 2.13. Let A be an ample Q-divisor on X , C ⊆ X be a smooth rational curve, x ∈ C , and set
d = (A ·C). Then (0, d), the highest vertex of the polygon 1(C,x)(A) on the y-axis, is also a valuative
point. The argument follows from Serre vanishing and the rationality of C .

Since A is ample, H 1(X,OX (m A−C))= 0 for all m� 0 by Serre vanishing. Therefore, the restriction
maps H 0(X,OX (m A)) → H 0(C,OC(md)) are all surjective. As C is a rational curve, there exists
s̄ ∈ H 0(C,OC(md)) such that multx(s̄)= md. By the surjectivity of the restriction maps there exists a
section s ∈ H 0(X,OX (m A)) whose image is s̄. In particular, ν(C,x)(s)= (0, d).

The proof shows that in fact all rational points on the edge of 1(C,x)(A) with vertices at (0, 0) and
(0, d) are valuative points. In this sense Corollary 2.10 serves as a local restriction theorem, and Newton–
Okounkov polygons give us some elbow room to obtain local statements without having to rely on
vanishing theorems.

As explained in [Anderson et al. 2014, Proposition 14], if C is not rational, then there exist line bundles
L of degree d > 0 on C , so that no section s ∈ H 0(C,mL) has ordx(s)= md for any m > 0. Thus, the
rationality of C is crucial.

If we take A to be big (and C still rational), then the highest vertex of the polygon 1(C,x)(D) on the
y-axis is a valuative point if we assume additionally that Null(D)∩C =∅. This can be deduced using
the ideas from the proof of Corollary 3.15.

Proof of Corollary 2.10. (i) The following remark will be used repeatedly throughout this proof: given
two valuative points A= (t, y), B = (t ′, y′) ∈1(C,x)(D), any rational point contained in the line segment
[AB], connecting the point A with B, is again a valuative point. This is due to the fact that ν(C,x) is a
valuation map.

Let (t0, y0) ∈ int(1(C,x)(D)) be a point with rational coordinates. The idea is to show that there exist
valuative points on the vertical line t = t0 above and below (t0, y0). We verify the existence of a valuative
point lying above (t0, y0), the other case being completely analogous. Consider the interior of the shape
1(C,x)(D) ∩ {(t, y) | y > y0}, which is divided into two nonempty subsets by the line t = t0. Since
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valuative points are dense in each subset, we can choose a point in each of them. The line segment
connecting these two points intersects the line t = t0 in a rational point that is above (t0, y0). Hence by
the above observations this point is also valuative.

(ii) We check first the assertion on the horizontal line segment. Let δ ∈ [0, λ) be a rational number.
By Remark 1.7, the polygon 1(C,x)(D− δC) contains a nonzero simplex. By Theorem 2.4 this latter
condition implies that x /∈ Null(D − δC). Since B(D − δC) ⊆ Null(D − δC), then x /∈ B(D − δC).
Thus, the origin (0, 0) ∈1(C,x)(D− δC) is a valuative point with respect to the divisor D− δC . Using
Remark 1.7, then the point (δ, 0) ∈1(C,x)(D) is also valuative with respect now to D.

It remains to show that all rational points on the open line segment {0}× (0, λ′) are valuative as well.
To this end, observe by Remark 1.7 that

1(C,x)(D+ εC)t>ε = (ε, 0)+1(C,x)(D) for any ε > 0. (2.13.3)

So, if we show that volX (D+ εC) > volX (D) for some rational ε > 0, then there will exist a valuative
point in the area 1(C,x)(D+ εC)∩ (0, ε)×R. On the other hand this implies that the open line segment
{ε}×(0, λ′) is inside1(C,x)(D+εC). By statement (i), any rational point on this line segment is valuative
for the Q-divisor D+ εC . Applying (2.13.3) again along with Lazarsfeld and Mustat,ă’s definition of
Newton–Okounkov polygons yields that the same can be said about all the rational points on the vertical
segment {0}× (0, λ′) in the polygon 1(C,x)(D).

It remains to prove that volX (D+ εC) > volX (D) for some 0< ε� 1. To this end, assume first that
D = P is big and nef. Since 1(C,x)(D) contains a standard simplex, then by Theorem 2.4 we know that
C * Null(D). This latter condition implies that (D ·C) > 0. Thus, D+ εC is also nef for ε� 1, and we
have the following inequality

volX (D+ εC)=
(D+εC)2

2
>

D2

2
= volX (D),

whenever ε � 1, settling the claim for D big and nef. For the general case, let D = P + N and
D+ εC = Pε + Nε be the respective Zariski decompositions of D and D+ εC . By the previous step we
know that P + εC is nef for all 0 < ε� 1, hence one can write D+ εC = (P + εC)+ N , and by the
minimality of the Zariski decomposition we see that N − Nε is effective. Consequently, Pε− (P+ εC) is
also effective. Using the statement in the big and nef case, proved just above, we deduce that

volX (D+ εC)= volX (Pε)> volX (P + εC) > volX (P)= volX (D)

for all 0< ε� 1. This also proves the corollary in the big case. �

3. Moving Seshadri constants and infinitesimal Newton–Okounkov polygons

The goal that we pursue in this section is to study the relationship between the positivity properties of a
big divisor and the geometry of its Newton–Okounkov polygons that can be defined on the blow-up of a
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point. We show how moving Seshadri constants can be read off from these polygons, and study which of
their boundary points are valuative.

As before, we assume X to be a smooth projective surface, D a big Q (or R) divisor on X , and x ∈ X
a point. We denote by π : X ′→ X the blow-up of X at x with E the exceptional divisor. For any point
z ∈ E , we call the polygon 1(E,z)(π∗(D)) the infinitesimal Newton–Okounkov polygon of D attached to
the admissible flag (E, z). This concept originates in [Lazarsfeld and Mustat,ă 2009, Section 5] (note the
deviation from the terminology of [Lazarsfeld and Mustat,ă 2009]). The goal of this section is to explore
the relationship between the positivity properties of the divisor D and the geometry of the polygons
1(E,z)(π

∗(D)).

3A. Infinitesimal Newton–Okounkov polygons. In this subsection, we study the basic properties of the
infinitesimal Newton–Okounkov polygons. For a big R-divisor D, write

µ′ = µ′(D, x)= µ(π∗(D), E)=def sup{t > 0 | π∗(D)− t E is big}.

It follows from [Lazarsfeld and Mustat,ă 2009, Theorem 6.4] and the definition of µ′ that1(E,z)(π∗(D)) ⊆
R+×[0, µ′].

Furthermore, for all x ∈ X , we associate to the divisor D the set of all infinitesimal Newton–Okounkov
polygons rooted at x :

K ′(D, x)=def {
1⊆ R2

+
| ∃z ∈ E, such that 1=1(E,z)(π∗(D))

}
.

Proposition 3.1. With notation as above, we have:

(i) The polygon 1(E,z)(π∗(D)) is contained in 1−1
µ′(D,x) for any z ∈ E ;

(ii) there exist finitely many points z1, . . . , zk ∈ E such that 1(E,z)(π∗(D)) is independent of z ∈
E \ {z1, . . . , zk}, with base the whole line segment [0, µ′]× {0}.

Remark 3.2. The constant µ′(D′; x) can be computed on X . If |V | is a linear series on X , define

multx(|V |)=
def sup{multx(F) | F ∈ |V |}.

If D is a big Cartier divisor, set

multx(‖D‖)=
def lim sup

m→∞

multx(|pD|)
p

.

Thenµ′=multx(‖D‖), by simple properties of the multiplicity (cf. [Dumnicki et al. 2013, Proposition 3.2]).
The same holds whenever D is a big Q-divisor and by continuity (cf. [Ein et al. 2006, Theorem A]) the
statement extends to R-divisors.

Proof of Proposition 3.1. (i) Based on the second part of the proof of Lemma 1.10, it is not hard to see
that it suffices to show the statement when D is merely a big Cartier divisor. It was pointed out above that
1(E,z)(π

∗(D))⊆R×[0, µ′(D, x)]. Thus, it remains to show that 1(E,z)(π∗(D)) lies below the diagonal
y = t .



Local positivity of linear series on surfaces 17

By Zariski’s main theorem (see [Hartshorne 1977, Theorem III.11.4]) one has the isomorphisms

H 0(X ′,OX ′(m ·π∗(D)))' H 0(X,OX (m D)) for all m > 0.

Hence all the sections of π∗(D) can be seen as pull-backs of sections from X . Let D′ ∈ |m D| for some
m > 0. In order to end the proof it is sufficient to check the inequality

multx(D′)= ordE(π
∗(D′))> ordz

((
π∗(D′)−multx(D′)E

)
|E
)
.

Here we use that the multiplicity of a tangent direction of a given curve at x cannot exceed the multiplicity
at this point. This can in fact be checked locally: Let {u1, u2} be a local system of parameters in a
neighborhood U ⊆ X of the point x . Then a section s ∈ H 0(X,OX (m D)) restricted to U can be written
in terms of the local coordinates u1 and u2 as

s|U = fd(u1, u2)+ fd+1(u1, u2)+ · · ·+ fd+l(u1, u2),

where each fi is a homogeneous polynomial of degree i with d =multx(s). Since we are working over
the complex numbers and the polynomial fd is homogeneous, we can write it as follows

fd(u1, u2)= (u1−α1u2)
i1 · (u1−α2u2)

i2 · · · (u1−αku2)
ik ,

where i j ∈ N, αi ∈ C, and
∑ j=k

j=1 i j = d.
Now, let

π |U :U ′ =
def
{u1v1 = u2v2} ⊆U ×P1

→U

be the blow-up of U at x . The form of the decomposition of fd implies that it is enough to do the
computations on the open subset U ′1 = {v1 = 1} ⊆U ′. Then

π∗(s)|U ′1 = ud
2 ·
(

fd(v2, 1)+ u2 fd+1(v2, 1)+ · · ·+ ul
2 fd+l(v2, 1)

)
=
def ud

2 · F(u2, v2).

The first term of the right-hand side yields ordE(π
∗(s))= d. The shape of the second one gives us

ν2(π
∗(s))= ord[1:α](F(0, v2))=

{
i j if α = α j , for some i = 1, . . . , l,
0 otherwise.

Since d > i j for all 16 j 6 k by construction, we are done.

(ii) Let
D′t =

def
π∗(D)− t E = P ′t + N ′t

be the appropriate Zariski decomposition. Neither of the coefficient ν ′ of E in the negative part N ′0 and
µ′(D, x) depend on the choice of z ∈ E , hence 1(E,z)(π∗(D))⊆ [ν ′, µ′]×R+ for any z ∈ E .

For any ξ ∈ [ν ′, µ′] the length of the vertical slice 1(E,z)(π∗(D))t=ξ is independent of z ∈ E , by
Remark 1.9. Thus, to finish up, it suffices to show that there exist finitely many points z1, . . . , zk ∈ E
such that [ν ′, µ′]× {0} ⊆1(E,z)(π∗(D)) for all z ∈ E \ {z1, . . . , zk}.

This, however, is a consequence of [Küronya et al. 2012, Proposition 2.1] which states that the function
t ∈ [ν ′, µ′]→ N ′t is increasing, i.e., if ν ′6 t16 t26µ′ then the divisor N ′t2−N ′t1 is effective. In particular,
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the divisor N ′µ′ − N ′t is effective for any t ∈ [ν ′, µ′]. Consequently, the function α is identically zero on
the whole interval [ν ′, µ′] whenever x /∈ Supp(N ′µ′)∩ E , as stated. �

It now makes good sense to introduce the following definition:

Definition 3.3. With notation as above, for a big R-divisor D on X , we call the polygon 1(E,z)(π∗(D)),
where the point z ∈ E is chosen to be general, the generic infinitesimal Newton–Okounkov polygon2 of D
at x . We denote this polygon by 1(D, x).

The set of polygons K ′(D, x) as we have seen above is finite. Furthermore, by [Lazarsfeld and
Mustat,ă 2009, Theorem A], we also know that all the polygons in this set have the same area equal to
volX (D). Whence it is natural to ask what other data remains invariant for all polygons in the finite set
K ′(D, x), thus giving rise to natural invariants of D and the point x .

Proposition 3.4. The set of all t-coordinates of the vertices of the infinitesimal Newton–Okounkov polygon
1(E,z)(π

∗(D)) does not depend on z.

Remark 3.5. As we shall see in Theorem 3.8 and Theorem 3.10 below, whenever x /∈ Null(D), then
the origin (0, 0), (ε, ε) and (ε, 0) are all vertices of the polygon 1(E,z)(π∗(D)) for any z ∈ E , where
ε = ε(‖D‖, x) is the moving Seshadri constant.

Proof. The main idea for the proof is that the function α, defining the lower bound of the Newton–
Okounkov polygon, is increasing and concave-up and β, defining the upper bound, is concave-down.
So, let t0 = ν ′ < t1 < · · ·< tk−1 < tk = µ′ be the sequence of the t-coordinates of all the vertices of the
generic infinitesimal Newton–Okounkov polygon 1(D, x). By Proposition 3.1, these coordinates come
from the vertices sitting on the upper boundary defined by the function β.

So, let 1 be another infinitesimal Newton–Okounkov polygon that is not equal to 1(D, x). Suppose
there is an intermediate point t ′ ∈ (ti , ti+1), for some i = 1, . . . , k, which is the t-coordinate of some
vertex on 1. Assume first that this vertex is on the lower bound of this polygon. By Remark 1.9 we
know that for any t ′′ ∈ [ν ′, µ′] the length of the vertical segment 1(E,z)(π∗(D))t=t ′′ does not depend on
z. Furthermore the upper bound of 1(D, x) is a straight segment in a neighborhood of the line t = t ′.
These two facts force the upper bound of 1 in a neighborhood of the vertex defining the coordinate t ′

to be concave up. This leads to a contradiction since the upper bound is actually concave down. Also,
the vertex on 1 giving t ′ cannot be either on the upper bound of this polygon. This is due to the fact
that the trapezoid in 1(D, x)∩ [ti , ti+1]×R is transformed into the shape 1∩ [ti , ti+1]×R by an affine
transformation, thus inducing lines into lines.

The same reasoning implies that if ti is the t-coordinate of some vertex on1(D, x) then this coordinate
is also the t-coordinate for some vertex of 1. �

2In [Lazarsfeld and Mustat,ă 2009] this was originally named the infinitesimal Okounkov body.
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3B. Local constancy of generic infinitesimal Newton–Okounkov polygons. In the previous subsection
we have attached a generic infinitesimal Newton–Okounkov polygon 1(D; x) to a big R-divisor D and a
point x ∈ X . In light of Theorem 2.1 it is then natural to study how 1(D; x) varies when the point x ∈ X
moves around.

Theorem 3.6. Let D be a big R-divisor on a smooth projective surface X. Then there exists a subset
F ′ =

⋃
m∈N F ′m ⊆ X consisting of a countable union of Zariski-closed proper subsets F ′m ( X such that

the polygon 1(D, x)⊆ R2 is independent of x ∈ X \ F ′.

Remark 3.7. Suppose A is an ample Cartier divisor on X . Proposition 4.2 below says that the polygon
1(A, x), as explained in Theorem 3.6 does not depend on x for very general choices, is contained in an
area determined by the global Seshadri constant ε(A)= sup{ε(A, x) | x ∈ X}.

Proof of Theorem 3.6. By an argument similar to the second part of proof of Lemma 1.10, we can assume
without loss of generality that D is a big Cartier divisor.

Denote by p1, p2 : X × X → X the respective projections onto the first and the second factors, let
1X ⊆ X × X be the diagonal. Write π : Y =def Bl1X (X × X)→ X × X for the blow-up along the diagonal
with exceptional divisor EX ⊆ Y , and projection morphisms π1, π2 : Y → X .

We will study the family π1 : Y → X , which has the property that for x ∈ X the fiber π−1
1 (x)=Blx(X)

is the blow-up of X at x . Let D = π∗2 (D) and notice that D |π−1
1 (x) = π

∗
x (D), where πx = π |π−1(x×X) :

Blx(X)→ X . Consider the incomplete flag

Y0 = Y ⊇ Y1 = EX ⊇ Y2,

where Y2 is defined as follows: because the diagonal in X × X is smooth, EX is a projective bundle
over 1X ; now let Y2 be an arbitrary section of EX →1X . It is worth noting here that EX as a projective
bundle might not have sections, but one can take an open subset U ⊆1X and work throughout on the
family Bl1U (U ×U )→U . We will explain the picture in the global case, when we assume that Y2 is a
section of π1, as the local case follows by the same ideas. Denote by Ex =

def EX ∩π
−1
1 (x), the exceptional

divisor of the map πx , and by zx = Y2 ∩π
−1
1 (x) ∈ Ex .

Thus the goal is to understand the family of Newton–Okounkov polygons 1(Ex ,zx )(π
∗
x (D)) for x ∈ X .

Applying [Lazarsfeld and Mustat,ă 2009, Theorem 5.1] to the flat family π1 : Y → X , one deduces
that there exists a countable family F ′ = ∪m∈N F ′m ⊆ X , where each F ′m ⊆ X is a proper Zariski closed
subvariety, satisfying the property that

1(Ex ,zx )(π
∗

x (D))⊆ R2 is independent of x for x ∈ X \ F ′.

Let [ν ′, µ′] be the support on the t-axis of the polygon 1 =def
1(Ex ,zx )(π

∗
x (D)) for x ∈ X \ F ′. If

[ν ′, µ′]× {0} ⊆1, then, by Proposition 3.1, the set 1(Ex ,zx )(π
∗
x (D)) is the generic infinitesimal Newton–

Okounkov polygon of D at x for any x ∈ X \ F ′.
Otherwise, by Proposition 3.4, we know that the t-coordinates of the vertices of 1 are the t-coordinates

of the generic infinitesimal Newton–Okounkov polygon 1(D, x) for any x ∈ X \ F ′.
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Furthermore, by Remark 1.9 for any t ∈ [ν ′, µ′] the length of the vertical segment 1 ∩ {t} × R is
equal to the length of the vertical segment 1(D, x) for any x ∈ X \ F ′. The two latter facts imply that
1(D, x)⊆ R2 is independent of x ∈ X \ F ′, which concludes the proof. �

3C. Infinitesimal Newton–Okounkov polygons and base loci. In this subsection, we are trying to ex-
plore how certain ideas of Nakamaye [2003], connecting augmented base loci and blow-ups can be seen
in the language of infinitesimal Newton–Okounkov polygons.

Returning to Example 2.7, we remark that the infinitesimal Newton–Okounkov polygon considered
there does not contain a triangle of the form the 1−1

ξ for any ξ > 0. Notice also that the base point was
taken to be contained in the null locus. These observations lead to our first goal, namely, to find conditions
under which all infinitesimal Newton–Okounkov polygons contain a triangle 1−1

ξ for some ξ > 0. We
shall see below that this information suffices to describe the complement of the null locus.

Furthermore, we discuss here how the points of the negative locus can be read from infinitesimal data.
This kind of connection has not been looked at before and completes the picture that started in [Nakamaye
2003] in a clean way, at least in the case of surfaces.

Theorem 3.8. Let D be a big R-divisor on a smooth projective surface X. Then:

(1) x /∈ Neg(D) if and only if (0, 0) ∈1(E,z)(π∗(D)) for any z ∈ E.

(2) x /∈ Null(D) if and only if there exists ξ > 0 such that 1−1
ξ ⊆1(E,z)(π

∗(D)) for any z ∈ E.

(3) With notation as above, the function

E 3 z 7→ ξ(π∗(D); z)

is constant. We denote then ξ(π∗(D); z) by ξ(D; x). In particular, it suffices to check the conditions
above for just one point z ∈ E.

Proof. (1) Based on the ideas from the second part of the proof of Lemma 1.10, it is not hard to see that
it suffices to check the statement in the case when D is a big Q-divisor.

Assume first that x /∈ Neg(D), and let D = PD + ND be the corresponding Zariski decomposition.
Then by Remark 1.3 implies that π∗(D)= π∗(PD)+π

∗(ND) is the Zariski decomposition of π∗D. In
particular, Neg(π∗(D))∩ E =∅, and Theorem 2.4 yields (0, 0) ∈1(E,z)(π∗(D)).

For the reverse implication suppose on the contrary that x ∈ Neg(D). By scaling we can assume
that D, PD , and ND are all integral. Let x ∈C⊆ X be an irreducible curve appearing in ND with a strictly
positive coefficient a > 0. By [Lazarsfeld 2004, Proposition 2.3.21] we know that for any natural number
m > 0 and any effective divisor D′ ∈ |m D| there exists another effective divisor P ′ ∈ |m PD| for which
D′ = P ′+ ND . Therefore, multC(D′)> m · a.

On the other hand, as the polygon 1(E,z)(π∗(D)) is the closure of all normalized valuation vectors of
the effective divisors π∗(D′), for any D′ ∈ |m D| and any m > 0, we obtain by the above that

ν1(π
∗(D′))=multE(π

∗(D′))> ma ·multx(C).
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Consequently, by the definition of the Newton–Okounkov polygons we obtain that (0, 0) /∈1(E,z)(π∗(D)),
contradicting our initial assumption.

(2) We start with the direct implication. Since x /∈ Null(D), Theorem 2.4 implies that the polygon
1(C,x)(D) contains a small standard simplex for any flag (C, x).

Let C1,C2 ⊆ X be two irreducible curves intersecting transversally at x (in particular x is a smooth
point of both). Then there exists λ > 0, such that 1λ is contained both in 1(C1,x)(D) and 1(C2,x)(D).
Now, for any given real number 0< ξ < λ, the point (ξ, 0) is a valuative point of D with respect to both
flags (C1, x) and (C2, x) according to Corollary 2.10, as pointed out in Remark 2.11. In particular, there
exist effective R-divisors D1 and D2, both numerically equivalent to D, such that Di = ξCi + D′i , where
x /∈ Supp(D′i ), for any i = 1, 2. Since each Ci is smooth at x , we have π∗(Ci ) = C i + E , where C i is
the proper transform of Ci . Set yi = C i ∩ E ; as C1 and C2 intersect transversally at x , one has z1 6= z2.
Note also that each π∗(Di ) contributes to the Newton–Okounkov polygon 1(E,z)(π∗(D)). Therefore,
Remark 1.8 yields that

ν(E,y)(π
∗(Di ))=

{
(ξ, 0) if z 6= zi ,

(ξ, ξ) if z = zi

for any i = 1, 2. Since z1 6= z2, we obtain that 1−1
ξ ⊆1(E,z)(π

∗(D)) for any z ∈ E .
For the reverse implication, assume that there exists ξ > 0 with

1−1
ξ ⊆1(E,z)(π

∗(D)) for any z ∈ E .

By Remark 1.7, the infinitesimal polygon 1(E,z)(π∗(D)− t E) contains a small simplex for any real
number 0< t < ξ and any z ∈ E . As a consequence, Theorem 2.4 gives that

Null(π∗(D)− t E)∩ E =∅ (3.8.4)

for any rational 0< t � 1.
We intend to reduce the problem to the case when D = PD is big and nef. As (0, 0) ∈1(E,z)(π∗(D)),

then x /∈ Neg(D). Thus, by Remark 1.3, we know that π∗(D) = π∗(PD) + π
∗(ND) is the Zariski

decomposition of π∗(D). This in turn implies that Supp(π∗(ND))∩ E =∅. Now, by Lemma 1.10, this
yields that

1(E,z)(π
∗(D))=1(E,z)(π∗(PD))

for any z ∈ E , which allows us to reduce the problem to the big and nef case.
Assume now that D= PD is big and nef; aiming at a contradiction suppose that there exists an irreducible

curve C ⊆Null(D) containing x . This implies that (D ·C)= 0. If we denote by C =def
π∗(C)−multx(C)E

the proper transform of C , then for all 0< t � 1 one has(
(π∗(D)− t E) ·C

)
= (D ·C)− t ·multx(C) < 0.

The algorithm for finding Zariski decompositions then yields C ⊆ Neg(π∗(D) − t E), hence C ⊆
Null(π∗(D)− t E). Since C ∩ E 6=∅, this contradicts (3.8.4), and we are done.
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(3) To begin with, the length of the vertical segment 1(E,z)(π∗(D))t=ξ is independent of z ∈ E for any
ξ ∈ [0, µ′], by Remark 1.9. Furthermore,

1(E,z)(π
∗(D))t=ξ ⊆ {ξ}× [0, ξ ],

by Proposition 3.1. Hence whenever {ξ}× [0, ξ ] ⊆1(E,z)(π∗(D)) for some z ∈ E , the same holds for
all points of E . Since x /∈ Neg(D), we have (0, 0) ∈ 1(E,z)(π∗(D)) for any z ∈ E , via part (1) of the
theorem. Therefore 1−1

ξ ⊆1(E,z)(π
∗(D)) for all z ∈ E , assuming that the same property is known for

just one point in E . Thus ξ(π∗(D), z) does not depend on z. �

An interesting consequence of the above statement is the following criterion for a point not to be in the
null locus of a big real divisor.

Corollary 3.9. In the setting of Theorem 3.8, one has x /∈ Null(D) if and only if there exist irreducible
curves C1,C2 ⊆ X that intersect transversally at x , and a positive number λ > 0 such that the horizontal
segment [0, λ]× {0} is contained both in 1(C1,x)(D) and 1(C2,x)(D).

Proof. Choose a positive real number λ′ ∈ (0, λ). Each 1(Ci ,x)(D− λ
′Ci ) contains a small simplex, by

Remark 1.7. By Corollary 2.10 the origin (0, 0) is a valuative point in each of these polygons. Applying
Remark 1.7 again, we see that the point (λ′, 0) is a valuative point in each 1(Ci ,x)(D). Using this fact
and the last part of the proof of the direct implication of Theorem 3.8, one deduces that the polygon
1(E,z)(π

∗(D)) contains the triangle 1−1
λ′ for any z ∈ E . By Theorem 3.8, this implies that z /∈ Null(D).

The reverse implication is an easy consequence of Theorem 2.4. �

3D. Moving Seshadri constants. It has been long known (and has been illustrated in the previous section
in connection with Newton–Okounkov polygons) that many important positivity aspects can be observed
infinitesimally. The philosophy dates back at least to Demailly’s work [1992], where he introduces
Seshadri constants in order to capture the local positivity of a divisor.

These ideas were further developed in [Nakamaye 2003], which introduced moving Seshadri constants,
and then generalized to a large extent in [Ein et al. 2009]. In fact, one of the highlights of [Ein et al. 2009]
is the description of the connection between augmented base loci and moving Seshadri constants.

The goal of the current subsection is to find a similar relation between infinitesimal Newton–Okounkov
polygons and moving Seshadri constants.

Let D be a big and nef Q-divisor on a smooth projective surface X , x ∈ X a closed point. The Seshadri
constant of D at x is defined to be the nonnegative real number

ε(D; x)=def inf
x∈C⊆X

{
(D.C)

multx(C)

}
,

where the infimum is taken over all reduced irreducible curves C ⊆ X passing through x . If π : X ′→ X
denotes the blow-up of X at x , then

ε(D; x)=max{ε > 0 | π∗(D)− εE is nef}.
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For basic properties of Seshadri constants and further references the reader is invited to consult [Lazarsfeld
2004, Section 5.1].

Moving Seshadri constants were initially introduced by Nakamaye [2003] with the purpose of encoding
local positivity of the Q-divisor D, when it is merely big. For nef divisors moving Seshadri constants
agree with Seshadri constants as defined above. If x /∈ Null(D), then the moving Seshadri constant of D
at x is defined to be

ε(‖D‖; x) =def sup
f ∗(D)=A+E

ε(A, f −1(x)),

where the supremum is taken over all birational morphisms f : X ′′→ X with X ′′ smooth which are
isomorphisms over a neighborhood of x , and all decompositions f ∗(D) = A + E , with A an ample
Q-divisor, E effective. If x ∈ Null(D), then we put ε(‖D‖, x)= 0. This construction works well when
D is a real divisor and by Theorem 6.2 from [Ein et al. 2009], the function ε(‖ · ‖; x) : N1(X)R→ R+ is
continuous.

Suppose that D is a big R-divisor on X and that x /∈ Neg(D). By Theorem 3.8 one can introduce the
following invariant for points z ∈ E :

ξ(π∗(D); z)=def sup{ξ > 0 |1−1
ξ ⊆1(E,z)(π

∗(D))}.

The main goal of this subsection is to prove the following theorem connecting moving Seshadri constants
to infinitesimal Newton–Okounkov polygons.

Theorem 3.10. Let D be a big R-divisor on X. If x /∈ Neg(D), then

ε(‖D‖; x)= ξ(π∗(D); z)

for any closed point z ∈ E = π−1(x).

Remark 3.11. Via Theorem 3.10 and Theorem 3.8, we have a very good (convex-geometric) explanation
for why ε(‖D‖; x)= 0 for a divisor D when

x ∈ Null(D) \Neg(D).

Thus, one can redefine the moving Seshadri constant for a big R-divisor D as follows

ε(‖D‖; x)=def
{
ξ(π∗(D), z) if x /∈ Null(D) \Neg(D) and any z ∈ E,
0 if x ∈ Neg(D).

where we have set the Seshadri constant to be zero, whenever the point x ∈ Neg(D). This was done in
order to have the moving Seshadri function ε(‖·; x‖) :N1(X)R→R+ to be continuous as in Theorem 6.2
from [Ein et al. 2009].

It is also important to point out that Theorem 3.10 explains how this constant can be computed directly
on the blow-up of X at x instead of taking into account all the blow-ups as we have seen in the original
definition of moving Seshadri constant.
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Remark 3.12. Our proof of Theorem 3.10 is self-contained in the sense that it does not make use of
nontrivial material beside the content of this article. Admittedly, it could be streamlined by relying on the
fact that moving Seshadri constants describe the asymptotic rate of growth of jet separation at x , but this
requires the introduction of restricted volumes, and as such goes against our intentions.

First we move on to give a proof of Theorem 3.10 in the big and nef case.

Proposition 3.13. Let P be a big and nef R-divisor on X. Then ε(P, x)= ξ(P; x) for any x ∈ X.

Proof. We verify first that ε(D; x) 6 ξ(D; x). By the definition of Seshadri constants it is enough to
show that if π∗(P)− t E is nef for all 06 t 6 ε, then ε < ξ(π∗(P); z) for some z ∈ E .

Recall from Section 2A that

1(E,z)(π
∗(P))= {(t, z) ∈ R2

+
| ν 6 t 6 µ, α(t)6 z 6 β(t)},

where α(t) = ordz(Nt |E), β(t) = α(t)+ Pt · E , and π∗(P)− t E = Pt + Nt is the appropriate Zariski
decomposition. Note that π∗(P)− t E is nef, and thus Nt = 0 for all 06 t 6 ε. In particular, α(t)= 0
and β(t)= t . Hence 1−1

ε ⊆1(E,z)(π
∗(P)) and consequently, ε 6 ξ(π∗(P); x).

For the reverse inequality, we show that if ξ < ξ(P; x) then π∗(P)− t E is nef for all 06 t 6 ξ . By
Remark 1.7, then (0, 0) ∈1(E,z)(π∗(D)− t E) for any t ∈ [0, ξ ] and all z ∈ E . Thus, Theorem 2.4 yields

Neg(π∗(P)− t E)∩ E =∅ for all t ∈ [0, ξ ]. (3.13.5)

We prove that this condition forces π∗(P)− t E to be nef. Let π∗(P)− t E = Pt +
∑

ai E t
i be its Zariski

decomposition. Since P is nef, (3.13.5) implies that (π∗(P)− t E) · E t
i > 0 for all i . On the other hand,

by the construction of Zariski decomposition we must have (π∗(P)− t E) · E t
i < 0 for some i . Thus, each

ai = 0 and π∗(P)− t E is big and nef for each t ∈ [0, ξ ]. This ends the proof. �

Proof of Theorem 3.10. By Proposition 3.13, it suffices to show that

ξ(D; x)= sup
f ∗(D)=A+E

{ξ(A, f −1(x))}, whenever x /∈ Neg(D),

where the supremum is taken over all birational morphisms f : X ′′ → X with X ′′ smooth that are
isomorphisms over a neighborhood of x , and all decompositions f ∗(D) = A + E , with A an ample
R-divisor, E effective, and x /∈ Supp(E).

For a given such map f it is not hard to see that ξ(D, x)= ξ( f ∗(D), f −1(x)) as a consequence of a
stronger statement saying that K ′(D, x)=K ′( f ∗(D), f −1(x)), proved in Lemma 3.14 below.

Granting this, it only remains to show that if D is a big R-divisor on X , then

ξ(D, x)= sup
{
ξ(A, x) | D = A+ E, A ample, E effective and x /∈ Supp(E)

}
. (3.13.6)

To this end, let D = A+ E be a decomposition as in (3.13.6), and let π : X ′→ X the blow-up of X at
the point x . Since x /∈ Supp(E), it follows quickly that

1(E,z)(π
∗(A))⊆1(E,z)(π∗(D))
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for any point z ∈ E : namely, if D′ ≡ A is an effective R-divisor, then D′+ E ≡ D is also R-effective.
Furthermore, since x /∈ Supp(E), one has

ν(E,z)(π
∗(D′+ E))= ν(E,z)(π∗(D′)), for all z ∈ E .

Using the definition of Lazarsfeld and Mustat,ă for Newton–Okounkov polygons of R-divisors, one obtains
the inclusion of the polygons above. This proves the inequality “>” in (3.13.6).

For the inequality “6” in (3.13.6), let D = PD + ND be the corresponding Zariski decomposition.
Since x /∈ Supp(ND), then, by Remark 1.3, we know that π∗(D) = π∗(PD)+ π

∗(ND) is the Zariski
decomposition of π∗(D). This condition also implies that Supp(π∗(ND))∩E =∅. Thus, by Lemma 1.10,
we have

1(E,z)(π
∗(D))=1(E,z)(π∗(PD)) for any z ∈ E .

This reduces our problem to case when D = P is big and nef. However, by Lemma 1.1 there exists
an effective divisor E , such that P − 1

k E is ample R-divisor for any natural k� 0. Using this and the
continuity property of the Newton–Okounkov polygons inside the big cone, the direct inequality takes
places when D = P is big and nef, which finishes the proof of the theorem. �

Lemma 3.14. With notation as above,

K ′(D, x)=K ′( f ∗(D), f −1(x)).

Proof. Applying the ideas from the last part of the proof of Lemma 1.10, i.e., Lemma 8 from [Anderson
et al. 2014], where the classes An forming the limit are big and semiample, it is enough to show the
statement in the case when D is a big Q-divisor.

Now, by Zariski’s main theorem pulling back sections defines the isomorphisms

H 0(X,OX (m D))' H 0(X ′′,OX ′′(m f ∗(D)))

for all m > 0. As f is an isomorphism over a neighborhood of x , the computations of the infinitesimal
Newton–Okounkov polygons on both sides of f can be done on two isomorphic neighborhoods containing
the corresponding exceptional divisors. Thus, the two sets of polygons are equal. �

3E. Applications to questions about Seshadri constants. In this subsection we discuss some interesting
applications to questions about Seshadri constants using the material above. We start with an observation
regarding valuative points on the boundary of infinitesimal Newton–Okounkov polygons.

Corollary 3.15. Let D be a big Q-divisor on X. Fix a point x /∈ Null(D) and suppose that

1−1
ξ ⊆1(E,z0)(π

∗(D))

for some ξ > 0 and z0 ∈ E. Then any rational point on the diagonal segment {(t, t) | 06 t < ξ} and on
the horizontal segment [0, ξ)×{0} is valuative.
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Remark 3.16. It is somewhat surprising that the rational points on the diagonal segment are valuative.
As it was pointed out in Remark 2.13, the reason is that the curve E is rational.

Proof. The statement for the horizontal line segment (0, ξ)×{0} can be obtained analogously as in the
first part of the proof of Corollary 2.10. Furthermore, since x /∈ Null(D), we have x /∈ B(D) (where the
latter is the asymptotic base locus associated to the divisor D). This implies that the origin (0, 0) is a
valuative point.

For the points on the diagonal, let t ∈ [0, ξ) be a rational number. Our goal is to prove that (t, t) is
a valuative point. By Remark 1.7, it is enough to show that (0, t) ∈1(E,z0)(π

∗(D)− t E) is a valuative
point for the divisor π∗(D)− t E .

By Theorem 3.10, we know that 1−1
ξ ⊆ 1(E,z)(π

∗(D)) for all z ∈ E . Thus, 1(E,z)(π∗(D)− t E)
contains a small simplex for any z ∈ E , if we make use of Remark 1.7. This implies via Theorem 2.4 that

Null(π∗(D)− t E)∩ E =∅. (3.16.7)

In what follows we reduce the statement to the case of ample divisors. Let π∗(D)− t E = Pt + Nt be the
appropriate Zariski decomposition, and assume that all the divisors involved are integral. By (3.16.7), we
know that z0 /∈ Supp(Nt). Thus, by Lemma 1.10,

1(E,z0)(π
∗(D)− t E)=1(E,z0)(Pt).

Recall that [Lazarsfeld 2004, Proposition 2.3.21] shows that the inclusion map

H 0(X ′, sOX ′(m P)
)
→ H 0(X ′,OX ′(m(π∗(D)− t E))

)
,

defined by the multiplication by the divisor m Nt , is an isomorphism. Hence, we reduced the problem to
the case when π∗(D)− t E = Pt is big and nef and the point of interest is (0, t)= (0, (Pt .E)).

By Remark 1.3, there exist irreducible curves Ci ⊆Null(Pt) and rational numbers εi >0 for i=1, . . . , k,
such that At =

def Pt −
∑i=k

i=1 εi Ci is an ample Q-divisor. By (3.16.7), we have that Ci ∩ E = ∅ for all
i = 1, . . . , k. Thus the point (0, t)= (0, (At .E)) belongs to 1(E,z0)(At), and it suffices to treat the case
of ample Q-divisors. However, this situation has already been discussed in Remark 2.13, which finishes
the proof. �

As a consequence, we obtain criteria for finding lower bounds for Seshadri constants.

Corollary 3.17. Let X be a smooth surface, x ∈ X a point, A an ample Q-divisor on X and q > 0 a
rational number. Then the following conditions are equivalent:

(1) The Seshadri constant ε(A, x) is > q.

(2) There exists a point z ∈ E such that 1(E,z)(π∗(A)) contains both the points (q, 0) and (q, q).

(3) For all z ∈ E , (q, 0) ∈1(E,z)(π∗(A)).

(4) For all z ∈ E , (q, q) ∈1(E,z)(π∗(A)).

(5) There exists z1 6= z2 ∈ E such that the point (q, q) ∈1(E,zi )(π
∗(A)) for any i = 1, 2.
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Remark 3.18. As q ∈Q, Corollary 3.15 implies that the conditions in the statement can be translated to
ones about linear series on X itself. For example, the point (q, 0) lies in 1(E,z)(π∗(A)), provided there
exists an effective Q-divisor D′ ∼Q A for which multx(D′)> q and the tangent direction of each branch
of D′ is distinct from the one defined by z ∈ E .

Similarly, the point (q, q) ∈ 1(E,z)(π∗(A)) whenever there exists an effective Q-divisor D′′ ∼Q A
such that multx(D′′)> q and the tangent direction of each branch of D′′ is the same as the one defined
by the point z.

Proof. For starters, we observe that (1) implies conditions (2)-(5) via Theorem 3.10. Therefore we are
left with proving the reverse implications.

First, (2) implies (1) follows again from Theorem 3.10 and the fact that (0, 0) ∈1(E,z)(π∗(A)), as A
is ample. Notice that (4) implies (5) is immediate, and (3) implies (1) follows word by word from the
second part of the proof of Proposition 3.13.

We are left to prove (5)⇒ (1). Fix t ∈ (0, q) and the goal is to show that π∗(A)− t E is nef. Let
π∗(A)− t E = P + N be the corresponding Zariski decomposition. Since both points (0, 0) and (q, q)
are contained in 1(E,zi )(π

∗(A)) for any i = 1, 2, by convexity the point (t, t) is also contained in these
polygons. By the formula for Newton–Okounkov polygons from Section 2A, this implies that

ordzi (N |E)+ (P.E)= t for any i = 1, 2.

On the other hand, (π∗(A)− t E).E = (P + N ).E = t . In particular,

(N · E)= ordz1(N |E)= ordz2(N |E).

By the same token as in Remark 1.8, the first equality implies that the effective divisors N and E intersect
only at z1, while the second one implies that they intersect only at z2. Since z1 6= z2, necessarily N = 0,
i.e., π∗(A)− t E is nef. �

4. Applications

We present some applications to questions regarding Seshadri constants seen through the lenses of the
theory of Newton–Okounkov polygons developed in the previous sections.

First, we give a new proof of a lower bound for very generic points by Ein and Lazarsfeld that relied
originally on deformation theory; our argumentation is based on earlier work of Nakamaye. Second,
based on Theorem 2.4, we introduce a new invariant that encodes the size of the largest simplex that can
be included in some Newton–Okounkov polygon of a given divisor by varying the curve flag. We connect
this invariant to the Seshadri constant. Lastly, using Diophantine approximation, we show that whenever
the surface has a rational polyhedral nef cone, the global Seshadri constant at any point is strictly positive.

4A. Generic infinitesimal Newton–Okounkov polygon. Let A be an ample Cartier divisor on a smooth
projective surface X . Ein and Lazarsfeld proved [1993] that ε(A, x)> 1 for very general point x ∈ X .
Later, Cascini and Nakamaye [2014], gave a different proof avoiding deformation theory based on ideas



28 Alex Küronya and Victor Lozovanu

developed previously by Nakamaye [2005]. Here we translate the line of thought of Cascini and Nakamaye
to the language of infinitesimal Newton–Okounkov polygons.

The main extra ingredient is the following observation of Nakamaye (see [Nakamaye 2005, Lemma 1.3]).
As he points out, the result is an easy consequence of a statement about the smoothing divisors in families
as seen in [Lazarsfeld 2004, Proposition 5.2.13]. This claim initially appears in [Nakamaye 2005], and
it is used both in [Nakamaye 2005] and [Cascini and Nakamaye 2014] to establish lower bounds on
Seshadri constants in higher dimensions.

Lemma 4.1. Let x ∈ X be a very general point and D be an effective integral divisor on X. Suppose
W ⊆ X is an irreducible curve passing through x. Let W be the proper transform of W through the
blow-up π : X ′→ X of the point x. Also, define

α(W )= inf
β∈Q
{W ⊆ Null(π∗(D)−βE)}.

Then multW (‖π
∗(D)−βE‖)> β −α(W ) for all β > α(W ).

Lemma 4.1 forces the generic infinitesimal Newton–Okounkov polygon of very generic points to land
in a certain area of the plane containing it, depending on the Seshadri constant.

Proposition 4.2. Let A be an ample Cartier divisor on X and let x ∈ X be a very general point. Then the
following mutually exclusive cases can occur:

(1) µ′(A, x)= ε(A, x): then 1(A, x)=1−1
ε(A,x).

(2) µ′(A, x) > ε(A, x): then there exists an irreducible curve C ⊆ X with (A ·C)= p and multx(C)= q
such that ε(A, x)= p/q. Under these circumstances,

(a) whenever q > 2, 1(A, x)⊆4ODB , where O = (0, 0), D = (p/q, p/q) and B = (p/(q−1), 0);
(b) whenever q = 1, the polygon 1(A, x) is contained in the area below the line y = t and between

the horizontal lines y = 0 and y = ε(A, x).

Corollary 4.3. Let A be an ample line bundle on a smooth projective surface. Then ε(A, x)> 1 for very
generic points x ∈ X.

Proof. By the definition of Seshadri constants and Proposition 4.2, it suffices to consider the case (2a).
Thus, we know that 1(A; x)⊆4ODB , and as a consequence

area(1(A; x))= A2

2
6 area(ODB)=

p2

2q(q − 1)
.

In particular, ε(A, x) >
√

(A2)(1− 1/q). Hence, if we assume ε(A, x) < 1, then by the rationality of
ε(A; x), we also have ε(A, x)6 (q−1)/q . Using the inequality between the areas, we arrive at (A2) < 1,
which stands in contradiction with the assumption that A is an ample Cartier divisor. �

Proof of Proposition 4.2. If ε(A, x) = µ′(A, x), then automatically 1 = 1−1
µ′(A,x). Therefore we can

assume without loss of generality that µ′(A, x) > ε(A, x). In particular, there exists a curve C ⊆ X with
(A ·C)= p and multx(C)= q such that ε(A, x)= p/q .
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Let C be the proper transform of C on X ′. The idea of the proof is to calculate the length of the vertical
segment in the polygon 1(A, x) at t = t0 for any t0 > ε(A, x):

length(1(A)t=t0)= (Pt0 · E)= t0− (Nt0 · E),

where π∗(A)− t0 E = Pt0 + Nt0 is the corresponding Zariski decomposition. By Lemma 4.1, one can
write Nt0 = (t0− ε(A, x))C + N ′t0 , where N ′t0 remains effective. This implies the following inequality

length(1(A)t=t0)= t0−
(
(t0− ε(A, x))C + N ′t0 · E

)
6 t0− (t0− ε(A, x))q. (4.3.8)

By Proposition 3.1, the vertical line segment 1(A; x)t=t0 starts on the t-axis at the point (t0, 0) for any
t0 > 0. Therefore, by (4.3.8), the polygon sits below the line

y = t0− (t0− ε(A, x))q = (1− q)t0+ ε(A, x)q.

When q = 1, this line is the horizontal line y = ε(A, x) and when q > 2, it is the line passing through the
points D = (p/q, p/q) and B = (p/(q − 1), 0). �

We conclude this subsection with a lower bound on Seshadri constants of quintic surfaces. While the
bound might be known to experts, we include it here since it is an illustration of the use of infinitesimal
Newton–Okounkov bodies.

Example 4.4. Inspired by the work of Nakamaye, we show that for any smooth quintic surface X ⊆ P3,
if A is the line bundle defining the embedding, then we have ε(A; x)> 2 for a very generic point x ∈ X .

The main ingredient is Proposition 4.2; suppose that ε(A; x) < 2. Then there exists an irreducible
curve C ⊆ X containing the point x such that multx(C)= q , (A ·C)= p and ε(A; x)= p/q .

If q = 1, then p = 1 as well, and this implies that through a very general point of X there passes a line.
This forces X to be uniruled, which is not the case for quintic surfaces.

Thus we can assume q > 2. Then the generic infinitesimal Newton–Okounkov polygon 1(A, x)
is contained in the triangle 4ODB , where O = (0, 0), D = (p/q, p/q), and B = (p/(q − 1), 0) by
Proposition 4.2. As a consequence we have the following inequality

area(4ODB)=
p
q
·

p
q − 1

> area(1(A, x))= 5.

If q > 5, then this yields p > 2q , which contradicts our initial assumption that ε(A; x) < 2. On the other
hand, if 26 q 6 4, then we find that the list of remaining choices to tackle is

p
q
=

2
2
,

3
3
,

4
4
,

3
2
,

4
3
,

5
3
,

5
4
,

7
4
,

since p < 2q . However, none of these pairs satisfy the area inequality above, hence we are done.
The same line of thought implies that whenever Pic(X) = ZA, then ε(A; x) = 2 for a very generic

point x ∈ X if and only if there is a curve C ∈ |2A| with the property that multx(C)= 5.
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4B. The largest simplex constant. It was established in Section 3 that all Newton–Okounkov polygons
of ample line bundles contain a standard simplex of some size that depends on the choice of the flag.
If the curve in the flag is chosen to be very positive, the sizes of these standard simplices can become
arbitrarily small. Thus, the exciting question to ask is how large they can become.

Definition 4.5 (largest simplex constant). Let A be an ample Q-divisor on X and let (C, x) be an
admissible flag. We define

λ(A;C, x)=def sup{λ> 0 |1λ ⊆1(C,x)(A)}.

The largest simplex constant of A at the point x is defined to be

λ(A; x)=def sup
{
λ(A;C, x) | C ⊆ X is an irreducible curve that is smooth at x

}
.

Remark 4.6. Not unexpectedly, one can define the largest simplex constant for big divisors in general,
assuming that the point x is not contained in the null locus of the divisor. All formal properties of λ(A; x)
go through almost verbatim, hence the details are left to the (interested) reader.

The goal of this subsection is to relate the largest simplex constant to Seshadri constants.

Proposition 4.7. With the notation as above, ε(A; x)> λ(A; x).

Remark 4.8. Proposition 4.7 implies that there is no uniform lower bound on the largest simplex constant
holding at every point of every surface. This follows from the nonexistence of the analogous bound for
Seshadri constants as seen in Miranda’s example in [Lazarsfeld 2004, Example 5.2.1].

Remark 4.9. It is a natural question after Proposition 4.7 whether there are examples with λ(A; x) 6=
ε(A; x). One such example is Mumford’s fake projective plane (for the actual construction see [Mumford
1979]).

The surface X is of general type with ample canonical class K X , (K 2
X ) = 9, and geometric genus

pg = H 0(X,OX (K X ))= 0. Since Pic(X)= ZH , these conditions imply that H 0(X,OX (H))= 0. This
means that whenever (C, x) is an admissible flag, we have C ∈ |dH | with d> 2, hence clearly λ(H, x)6 1

2
for any x ∈ X . On the other hand, we know by Corollary 4.3 that ε(H, x) > 1 when x ∈ X is a very
general point.

Proof of Proposition 4.7. Theorem 2.4 yields that λ=def
λ(A;C; x) > 0 for any admissible flag (C, x). By

fixing the flag (C, x), it is enough to show that ε(A, x)> λ.
By Corollary 3.15 there exist sequences of real numbers εvn and εh

n with both λ−εvn and λ−εh
n rational,

and sequences of effective Q-divisors (Dv
n) and (Dh

n ) with Dv
n , Dh

n =num D for any n ∈ N such that

ν(C,x)(Dv
n)= (0, λ− ε

v
n ) and ν(C,x)(Dh

n )= (λ− ε
h
n , 0).

This yields C * Supp(Dv
n) for any n ∈ N, and by Remark 1.8, we obtain that

(D ·C)=
(Dv

n ·C)
multx(C)

> λ− εvn , (4.9.9)
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where we took into account that C is smooth at x . By looking at the valuation vector of Dh
n , we can

write Dh
n = (λ− ε

h
n )C + Nn , where Nn is effective and multx(Nn)= 0. Thus, for any irreducible curve

F 6= C passing through x , we have that F * Supp(Dh
n ). As a consequence we get the following string of

inequalities
(D · F)

multx(F)
=
(Dh

n · F)
multx(F)

>
(λ− εh

n )(C · F)
multx(F)

> λ− εh
n , (4.9.10)

where the last inequality follows from the fact that (C · F)>multx(F) ·multx(C) whenever F 6= C .
Observing the definition of Seshadri constants, and taking the limit in both equations (4.9.9) and (4.9.10),

we arrive at ε(D; x)> λ, as required. �

4C. Diophantine approximation. Here we show via Diophantine approximation that the largest simplex
constant of a surface is strictly positive whenever it has a rational polyhedral nef cone. It is important to
note that the semigroup of ample line bundles of X is not necessarily finitely generated even if the nef
cone is rational polyhedral: the lattice semigroup N2

∩R2
>0 is one such example. Furthermore, the line

bundles sitting on the boundary of the nef cone might not even have sections asymptotically as seen in
examples provided in [Ottem 2015].

It was Nadel who first stressed the relevance of Diophantine approximation to local positivity issues
(see [Ein et al. 1995]). This train of thought was further explored by Nakamaye. Very recently a deep
connection between Diophantine approximation and Seshadri constants was established by McKinnon
and Roth [2015].

Theorem 4.10. Let X be an irreducible projective variety with a rational polyhedral nef cone. Then there
exists a natural number m > 0 such that the linear series |m A| is base-point free for any ample Cartier
divisor A on X.

Remark 4.11. Theorem C follows easily as a consequence of Theorem 4.10 and Proposition 4.7. Further-
more, the above theorem implies that whenever X is a smooth projective variety with a rational polyhedral
nef cone, then there exists a strictly positive constant ε(X) > 0 such that ε(A; x)> ε(X) for any x ∈ X
and any ample Cartier divisor A on X . This is due to the fact that whenever B is an ample and base-point
free divisor, then ε(B; x)> 1 for any x ∈ X .

We will need the following statement during the proof.

Lemma 4.12 [Fujita 1983, Corollary 3]. Let X be an irreducible projective variety. Then there exists a
Cartier divisor B such that the divisor B+ P is base-point free for any nef Cartier divisor P on X.

Remark 4.13. When X is a smooth projective variety, one can be more specific about the divisor B. By
the Anghern–Siu theorem, the divisor K X + n(n+ 1)/2A+ A+ P defines a base-point free linear series
for any ample A and nef P . Thus, B can be taken to be K X + n(n+ 1)/2A+ A for instance.

In the general case, assuming that one does not need a specific B, then one obtains Lemma 4.12 by
making use of Fujita’s vanishing theorem and Castelnuovo–Mumford regularity as in [Fujita 1983] or
[Lazarsfeld 2004, Theorem 2.3.9].
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Proof of Theorem 4.10. Note first that in the language of cones, Lemma 4.12 says that there exists a
nef divisor B so that any Cartier divisor whose class lands in the pointed cone B+Nef(X)R, defines a
base-point free linear series. In particular, the statement follows provided we can prove that there exists a
constant m > 0 such that m A ∈ B+Nef(X)R for any ample Cartier divisor A on X .

This reduces the problem to a question about convex cones. So, consider a bijective linear map
f :N1(X)R→ Rρ whose matrix has integral entries, i.e., f (L) ∈ Zρ ⊆ Rρ for any class L given by some
Cartier divisor on X . Let C = f (Nef(X)R) and b = f (B). Then it suffices to check that there exists a
natural number m > 0 having the property that mξ ∈ b+C for any ξ ∈ int(C )∩Zρ .

Let H ⊆ Rρ be a hyperplane given by an equation with integral coefficients, that is, we assume that
there exists a vector u ∈ Zρ such that H = {x ∈ Rρ |< x, u >= 0}. If P /∈ H , then the distance from P to
the hyperplane H is given by the formula

distance(P, H)=
|〈P, u〉|
‖u‖

.

If we ask for P ∈ Zρ , then |〈P, u〉|> 1, and in particular, distance(P, H)> 1/‖u‖. This yields that there
exists a constant c > 0 such that distance(P, H)> c for any integral point P /∈ H .

Going back to our setup, the conditions in the statement imply that the cone C ⊆ Rρ is rational
polyhedral, i.e., the support hyperplanes for each face are given by an equation with integral coefficients.
Thus there exists a constant c > 0 such that

distance(P, ∂C )> c for any point P ∈ int(C )∩Zρ,

where ∂C denotes the boundary in Rρ of the cone C .
Pick P ∈ int(C ), and let 3 be the plane determined by b, P and the origin 0= (0, . . . , 0) ∈ Rρ. Let

C3 = C ∩3. This is a cone in R2, thus it is generated by two rays R+l1 and R+l2, where both l1 and l2

can be taken to be rational vectors since the boundary ∂C is supported by rational hyperplanes, and the
plane 3 is also defined by an equation with rational coefficients.

Furthermore, the set (b+ C )∩3 is the cone R+l1 +R+l2 shifted by b. Without loss of generality,
suppose that the ray R+OP intersects first the half line b+R+l1 at point D. Then, taking into account
what was said above, it is enough to find C > 0, that does not depend on the choice of the point P , so
that the quotient ‖OD‖/‖OP‖< C . Using similar triangles arguments, one has

‖OD‖
‖OP‖

=
distance(D, l1)

distance(P, l1)
6
‖OB‖

c
,

where the latter inequality follows from the Diophantine approximation statement we proved above. �
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[Ein et al. 2009] L. Ein, R. Lazarsfeld, M. Mustat,ă, M. Nakamaye, and M. Popa, “Restricted volumes and base loci of linear
series”, Amer. J. Math. 131:3 (2009), 607–651. MR Zbl

[Fujita 1979] T. Fujita, “On Zariski problem”, Proc. Japan Acad. Ser. A Math. Sci. 55:3 (1979), 106–110. MR Zbl

[Fujita 1983] T. Fujita, “Vanishing theorems for semipositive line bundles”, pp. 519–528 in Algebraic geometry (Tokyo/Kyoto,
1982), edited by M. Raynaud and T. Shioda, Lecture Notes in Math. 1016, Springer, 1983. MR Zbl

[Hartshorne 1977] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer, 1977. MR Zbl

[Jow 2010] S.-Y. Jow, “Okounkov bodies and restricted volumes along very general curves”, Adv. Math. 223:4 (2010), 1356–1371.
MR Zbl

[Kaveh and Khovanskii 2012] K. Kaveh and A. G. Khovanskii, “Newton–Okounkov bodies, semigroups of integral points,
graded algebras and intersection theory”, Ann. of Math. (2) 176:2 (2012), 925–978. MR Zbl

[Kollár 1995] J. Kollár, Shafarevich maps and automorphic forms, Princeton University Press, 1995. MR Zbl

[Küronya et al. 2012] A. Küronya, V. Lozovanu, and C. Maclean, “Convex bodies appearing as Okounkov bodies of divisors”,
Adv. Math. 229:5 (2012), 2622–2639. MR Zbl

[Lazarsfeld 2004] R. Lazarsfeld, Positivity in algebraic geometry, I: Classical setting: line bundles and linear series, Ergebnisse
der Mathematik (3) 48, Springer, 2004. MR Zbl

http://dx.doi.org/10.1093/imrn/rns286
http://msp.org/idx/mr/3207370
http://msp.org/idx/zbl/1316.14013
http://dx.doi.org/10.1515/crll.2004.090
http://msp.org/idx/mr/2099205
http://msp.org/idx/zbl/1055.14007
http://msp.org/idx/mr/3289276
http://msp.org/idx/zbl/1365.14059
http://dx.doi.org/10.1007/978-1-4757-3512-3
http://msp.org/idx/mr/1805816
http://msp.org/idx/zbl/0965.14001
http://dx.doi.org/10.1515/advgeom-2013-0012
http://msp.org/idx/mr/3159092
http://msp.org/idx/zbl/1286.14009
http://dx.doi.org/10.1007/BFb0094512
http://msp.org/idx/mr/1178721
http://msp.org/idx/zbl/0784.32024
http://msp.org/idx/arx/1304.0249
http://msp.org/idx/mr/1265313
http://msp.org/idx/zbl/0812.14027
http://dx.doi.org/10.4310/jdg/1214457231
http://msp.org/idx/mr/1366545
http://msp.org/idx/zbl/0866.14004
http://dx.doi.org/10.5802/aif.2225
http://msp.org/idx/mr/2282673
http://msp.org/idx/zbl/1127.14010
http://dx.doi.org/10.1353/ajm.0.0054
http://dx.doi.org/10.1353/ajm.0.0054
http://msp.org/idx/mr/2530849
http://msp.org/idx/zbl/1179.14006
http://dx.doi.org/10.3792/pjaa.55.106
http://msp.org/idx/mr/531454
http://msp.org/idx/zbl/0444.14026
http://dx.doi.org/10.1007/BFb0099977
http://msp.org/idx/mr/726440
http://msp.org/idx/zbl/0522.14010
http://msp.org/idx/mr/0463157
http://msp.org/idx/zbl/0367.14001
http://dx.doi.org/10.1016/j.aim.2009.09.015
http://msp.org/idx/mr/2581374
http://msp.org/idx/zbl/1187.14012
http://dx.doi.org/10.4007/annals.2012.176.2.5
http://dx.doi.org/10.4007/annals.2012.176.2.5
http://msp.org/idx/mr/2950767
http://msp.org/idx/zbl/1270.14022
http://dx.doi.org/10.1515/9781400864195
http://msp.org/idx/mr/1341589
http://msp.org/idx/zbl/0871.14015
http://dx.doi.org/10.1016/j.aim.2012.01.013
http://msp.org/idx/mr/2889138
http://msp.org/idx/zbl/1253.14008
http://dx.doi.org/10.1007/978-3-642-18808-4
http://msp.org/idx/mr/2095471
http://msp.org/idx/zbl/1066.14021


34 Alex Küronya and Victor Lozovanu
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