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F-signature and Hilbert–Kunz multiplicity:
a combined approach and comparison

Thomas Polstra and Kevin Tucker

We present a unified approach to the study of F-signature, Hilbert–Kunz multiplicity, and related limits
governed by Frobenius and Cartier linear actions in positive characteristic commutative algebra. We
introduce general techniques that give vastly simplified proofs of existence, semicontinuity, and positivity.
Furthermore, we give an affirmative answer to a question of Watanabe and Yoshida allowing the F-
signature to be viewed as the infimum of relative differences in the Hilbert–Kunz multiplicities of the
cofinite ideals in a local ring.

1. Introduction

Throughout this paper, we shall assume all rings R are commutative and Noetherian with prime charac-
teristic p > 0. Central to the study of such rings is the use of the Frobenius or p-th power endomorphism
F : R→ R defined by r 7→ r p for all r ∈ R. Following the result of Kunz [1969] characterizing regularity
by the flatness of Frobenius, it has long been understood that the behavior of Frobenius governs the
singularities of such rings. In this article, we will be primarily concerned with two important numerical
invariants that measure the failure of flatness for the iterated Frobenius: the Hilbert–Kunz multiplicity
[Monsky 1983] and the F-signature [Smith and Van den Bergh 1997; Huneke and Leuschke 2002]. Our
aim is to revisit a number of core results about these invariants — existence [Tucker 2012], semicontinuity
[Smirnov 2016; Polstra 2015], and positivity [Hochster and Huneke 1994; Aberbach and Leuschke 2003] —
and provide vastly simplified proofs, which in turn yield new and important results. In particular, we con-
firm the suspicion of Watanabe and Yoshida [2004, Question 1.10] allowing the F-signature to be viewed
as the infimum of relative differences in the Hilbert–Kunz multiplicities of the cofinite ideals in a local ring.

For the sake of simplicity in introducing Hilbert–Kunz multiplicity and F-signature, assume that
(R,m, k) is a complete local domain of dimension d and k = k1/p is perfect. If I ⊆ R is an ideal
with finite colength `R(R/I ) < ∞, the Hilbert–Kunz multiplicity along I is defined by eHK(I ) =
lime→∞(1/ped)`R(R/I [p

e
]) where I [p

e
]
= (Fe(I )) is the expansion of I along the e-iterated Frobenius.

Note that, unlike for Hilbert–Samuel multiplicity, the function e 7→ `R(R/I [p
e
]) is far from polynomial

in pe [Han and Monsky 1993]. The existence of Hilbert–Kunz limits was shown by Monsky [1983], and

Tucker is grateful to the NSF for partial support under Grants DMS #1419448 and #1602070, and for a fellowship from the
Sloan Foundation.
MSC2010: primary 13A35; secondary 14B05.
Keywords: F-signature, Hilbert–Kunz multiplicity.

61

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2018.12-1
http://dx.doi.org/10.2140/ant.2018.12.61


62 Thomas Polstra and Kevin Tucker

it has recently been shown by Brenner [2013] that there exist irrational Hilbert–Kunz multiplicities. Of
particular interest is the Hilbert–Kunz multiplicity along the maximal ideal m denoted by eHK(R)=eHK(m),
where it is known that eHK(R)≥ 1 with equality if and only if R is regular [Watanabe and Yoshida 2000,
Theorem 1.5]. More generally, if the Hilbert–Kunz multiplicity of R is sufficiently small, then R is
Gorenstein and strongly F-regular [Blickle and Enescu 2004, Proposition 2.5; Aberbach and Enescu
2008, Corollary 3.6]. Recently, it has been shown that the Hilbert–Kunz multiplicity determines an upper
semicontinuous R-valued function on ring spectra [Smirnov 2016].

Another useful perspective comes from viewing the Hilbert–Kunz function `R(R/m[p
e
])= µR(R1/pe

)

as measuring the minimal number of generators of the finitely generated R-module R1/pe
, the ring of

pe-th roots of R inside an algebraic closure of its fraction field. As the rank rkR(R1/pe
) of this torsion-free

R-module is ped , we see immediately that R1/pe
is free — and hence Fe is flat and R is regular — if and

only if µR(R1/pe
)= ped . Similarly, letting ae = frk(R1/pe

) denote the largest rank of a free summand
appearing in an R-module direct sum decomposition of R1/pe

, we have that R1/pe
is free if and only if

ae = ped . The limit s(R) = lime→∞(1/ped) frk(R1/pe
) was first studied in [Smith and Van den Bergh

1997] and revisited in [Huneke and Leuschke 2002], where it was coined the F-signature and shown
to exist for Gorenstein rings; existence in full generality was first shown in [Tucker 2012]. Aberbach
and Leuschke [2003] have shown that the positivity of the F-signature characterizes the notion of strong
F-regularity introduced by Hochster and Huneke [1994] in their celebrated study of tight closure [1990].
In [Polstra 2015] the first author showed that the F-signature determines a lower semicontinuous R-valued
function on ring spectra; an unpublished and independent proof was simultaneously found and shown to
experts by the second author, and has been incorporated into this article.

At the heart of this work is an elementary argument simultaneously proving the existence of Hilbert–
Kunz multiplicity and F-signature (Theorem 3.2), derived from basic properties of the functions µR( )

and frkR( ). Building upon the philosophy introduced in [Tucker 2012], we further attempt to carefully
track the uniform constants controlling convergence in the proof and throughout this article. To that
end, we rely heavily on the uniform bounds for Hilbert–Kunz functions over ring spectra (Theorem 3.3)
shown in [Polstra 2015, Theorem 4.3]. In particular, this also allows us to give vastly simplified proofs of
the upper semicontinuity of Hilbert–Kunz multiplicity (Theorem 3.4) and lower semicontinuity of the
F-signature (Theorem 3.8).

The F-signature has also long been known to be closely related to the relative differences eHK(I )−
eHK(J ) in Hilbert–Kunz multiplicities for ideals I ⊆ J with finite colength [Huneke and Leuschke 2002,
Theorem 15] (see Lemma 6.1). The infimum among these differences was studied independently by
Watanabe and Yoshida [2004], and the connection to F-signature was made by Yao [2006]. Moreover,
Watanabe and Yoshida [2004, Question 1.10] expected and formally questioned if the infimum of the
relative Hilbert–Kunz differences was equal to the F-signature. We confirm their suspicions in Section 6.

Theorem A (Corollary 6.5). If (R,m, k) is an F-finite local ring, then

s(R)= inf
I⊆J⊆R, `R(R/I )<∞

I 6=J, `R(R/J )<∞

eHK(I )− eHK(J )
`R(J/I )

= inf
I⊆R, `R(R/I )<∞

x∈R, (I :x)=m

eHK(I )− eHK((I, x)).
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Much interest in relative differences of Hilbert–Kunz multiplicities stems from the result of Hochster
and Huneke [1990, Theorem 8.17] that such differences can be used to detect instances of tight closure.
Together with the characterization of strong F-regularity in terms of the positivity of the F-signature
[Aberbach and Leuschke 2003], these two results are at the core of the use of asymptotic Frobenius
techniques to measure singularities. Building off of previous work of the second author [Blickle et al.
2012; Schwede and Tucker 2014; 2015], we present new and highly simplified proofs of these results. In
particular, the first proof of Theorem 5.1 gives a readily computable lower bound for the F-signature of a
strongly F-regular ring.

Using standard reduction to characteristic p > 0 techniques, the singularities governed by Frobenius
in positive characteristic commutative algebra have been closely related to those appearing in complex
algebraic geometry. This connection has motivated several important generalized settings for tight closure.
Hara and Watanabe [2002] have defined tight closure for divisor pairs (compare to [Takagi 2004]), and
Hara and Yoshida [2003] have done the same for ideals with a real coefficient; both of these works build
on the important results of Smith [1997], Hara [1998], and Mehta and Srinivas [1997]. Previous work of
the second author [Blickle et al. 2012; 2013] has extended the notion of F-signature to these settings
and beyond, incorporating the notion of a Cartier subalgebra [Blickle and Schwede 2013]. We work
to extend all of our results as far as possible to these settings, including new and simplified proofs of
existence (Theorem 4.7), semicontinuity (Theorems 4.9, 4.11, and 4.12), and positivity (Corollaries 5.12,
5.7(ii), and 5.8(ii)); many of these results have not appeared previously. In particular, while Hilbert–Kunz
theory of divisor and ideal pairs has not been introduced, we are able to give an analogue of relative
Hilbert–Kunz differences in these settings (Corollaries 5.7(i) and 5.8(i)). Once more, the F-signatures
can be viewed as a minimum among the relative Hilbert–Kunz differences (Corollaries 6.9 and 6.10).

To give an overview of our methods, for each e ∈N let I HK
e =m[p

e
] and I F-sig

e = (r ∈ R |ψ(r1/pe
) ∈m

for all ψ ∈ HomR(R1/pe
, R)). As k is perfect, straightforward computations show that (1/ped)µ(R1/pe

)=

(1/ped)`(R/I HK
e ) and (1/ped) frk(R1/pe

) = (1/ped)`(R/I F-sig
e ), so that the Hilbert–Kunz multiplicity

and the F-signature can be understood by studying properties of sequences of ideals {Ie}e∈N satisfying
properties similar to those of {I HK

e }e∈N and {I F-sig
e }e∈N.

Theorem B (Corollary 4.5, Theorem 5.5). Let (R,m, k) be an F-finite local domain of dimension
d, and consider a sequence of ideals {Ie}e∈N such that m[p

e
]
⊆ Ie for each e. Then the limit η =

lime→∞(1/ped)`(R/Ie) exists provided one of the following conditions holds.

(i) There exists 0 6= c ∈ R so that cI [p]e ⊆ Ie+1 for all e ∈ N.

(ii) There exists a nonzero ψ ∈ HomR(R1/p, R) so that ψ(I 1/p
e+1)⊆ Ie for all e ∈ N.

Moreover, in case (ii), we have η > 0 if and only if
⋂

e∈N Ie = 0.

It is easy to check that the sequences {I HK
e }e∈N or {I F-sig

e }e∈N satisfy both conditions (i) and (ii) above
(with any choice of c and ψ). Our results on positivity come from the stated criterion for sequences of
ideals satisfying (ii), while the relative Hilbert–Kunz statements largely come through careful tracking of
uniform constants bounding the growth rates for sequences satisfying (i).
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The article is organized as follows. Section 2 recalls a number of preliminary statements about
rings in positive characteristic; in particular, we review properties of F-finite rings, which will be the
primary setting of this article. We also discuss elementary properties of the maximal free rank (see
Lemma 2.1) which are used in the unified proof of the existence of the Hilbert–Kunz multiplicity and the
F-signature provided in Section 3; new proofs of semicontinuity follow immediately thereafter. Section 4
is the technical heart of the paper, and generalizes the methods of the previous sections for Hilbert–
Kunz multiplicity and F-signature alone to the various sequences of ideals satisfying the conditions in
Theorem B above.

Having dispatched with the results on existence and semicontinuity, we turn in Section 5 to a discussion
of positivity statements. In particular, two simple proofs of the positivity of the F-signature for strongly
F-regular rings appear at the beginning of this section. The relative Hilbert–Kunz criteria for tight closure
along a divisor or ideal pair appear at the end of this section, together with a discussion of the positivity of
the F-splitting ratio. Section 6 is devoted to relating the F-signature with minimal relative Hilbert–Kunz
differences giving a proof of Theorem A, and we conclude in Section 7 with a discussion of a number of
related open questions.

2. Preliminaries

Throughout this paper, we shall assume all rings R are commutative with a unit, Noetherian, and have
prime characteristic p > 0. If p ∈ Spec(R), we let k(p)= Rp/pRp denote the corresponding residue field.
A local ring is a triple (R,m, k) where m is the unique maximal ideal of the ring R and k = k(m)= R/m.

Maximal free rank. For any ring R and R-module M , `R(M) denotes the length of M , and µR(M)
denotes the minimal number of generators of M . When ambiguity is unlikely, we freely omit the subscript
R from these and similar notations. We define the maximal free rank frkR(M) of M to be the maximal
rank of a free R-module quotient of M . As a surjection onto a free module necessarily admits a section,
frkR(M) is also the maximal rank of a free direct summand of M . Equivalently, M admits a direct sum
decomposition M = R⊕ frkR(M)⊕ N where N has no free direct summands — a property characterized by
φ(N ) 6= R for all φ ∈ HomR(N , R). It is immediate that frkR(M)≤ µR(M) with equality if and only if
M is a free R-module.

When R is a domain, we will use rkR(M) to denote the torsion-free rank of M . It is easily checked
that

frkR(M)≤ rkR(M)≤ µR(M) (1)

and the second inequality is strict when M is not free; assuming M is torsion-free but not free, the first
inequality is strict as well. Notice that, whereas µ( ) is subadditive on short exact sequences over local
rings, this is not the case for frk( ) and motivates the following lemma.

Lemma 2.1. Let (R,m, k) be a local ring.

(i) If M1 and M2 are R-modules, then frk(M1⊕M2)= frk(M1)+ frk(M2).
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(ii) If M is an R-module with M ′ ⊆ M a submodule and M ′′ = M/M ′, then

frk(M ′′)≤ frk(M)≤ frk(M ′)+µ(M ′′).

Proof. (i) If M1= R⊕ frkR(M1)⊕N1 and M2= R⊕ frkR(M2)⊕N2 where N1, N2 have no free direct summands,
then M1⊕M2 = R⊕(frkR(M1)+frkR(M2))⊕ (N1⊕ N2). If φ ∈HomR(N1⊕ N2, R), then φ(N1), φ(N2)⊆m

as N1, N2 have no free direct summands. It follows that φ(N1 ⊕ N2) = φ(N1)+ φ(N2) ⊆ m as well,
showing N1⊕ N2 has no free direct summands as desired.

(ii) For the first inequality, a surjection M ′′→ R⊕ frk(M ′′) induces another M→M/M ′=M ′′→ R⊕ frk(M ′′),
showing frk(M ′′)≤ frk(M). To show the final inequality, let n be the maximal rank of a mutual free direct
summand of M and M ′. In other words, simultaneously decompose M = R⊕n

⊕ N and M ′ = R⊕n
⊕ N ′

where M ′ ⊆ M is given by equality on R⊕n and an inclusion N ′ ⊆ N , and we have φ(N ′)⊆m for every
φ : N→ R. Taking a surjection 8 : N→ R⊕ frk(N ), it follows that 8(N ′)⊆m⊕ frk(N ). Thus, 8 induces a
surjection M ′′ = N/N ′→ k⊕ frk(N ) and hence also M ′′/mM ′′→ k⊕ frk(N ), which shows µ(M ′′)≥ frk(N ).
This gives frk(M)= n+ frk(N )≤ frk(M ′)+µ(M ′′) as desired. �

For X any topological space, recall that a function f : X→ R is lower semicontinuous if and only if
for any δ ∈ R the set {x ∈ X | f (x) > δ} is open. Similarly, f : X→ R is upper semicontinuous if and
only if for any δ ∈ R the set {x ∈ X | f (x) < δ} is open.

Lemma 2.2. If M is a finitely generated R-module, the function Spec(R)→ R given by p 7→ frkRp(Mp)

is lower semicontinuous. Similarly, the function Spec(R)→ R given by p 7→ µRp(Mp) is upper semicon-
tinuous.

Proof. For p ∈ Spec(R), let k(p) = Rp/pRp denote the corresponding residue field. If frkRp(Mp) = n,
we can find a surjection Mp→ R⊕n

p . Without loss of generality, since M is finitely generated, we may
assume this surjection is the localization of an R-module homomorphism M → R⊕n . As it becomes
surjective when localized at p, there is some g ∈ R \ p so that Mg → R⊕n

g is surjective. Localizing at
any q ∈ Spec(R) with g /∈ q yields a surjection Mq→ R⊕n

q , implying frkRq(Mq) ≥ n = frkRp(Mp) for
any q in the Zariski open neighborhood D(g) = {q ∈ Spec(R) | g /∈ q} of p in Spec(R). If δ ∈ R and
frkRp(Mp) > δ, then so also frkRq(Mq) > δ for any q ∈ D(g). This shows the function Spec(R)→ R

given by p 7→ frkR(Mp) is lower semicontinuous. That the function Spec(R)→ R given by p 7→ µ(Mp)

is upper semicontinuous proceeds in an analogous manner. �

F-finite rings. The Frobenius or p-th power endomorphism F : R→ R is defined by r 7→ r p for all
r ∈ R. Similarly, for e ∈N, we have Fe

: R→ R given by r 7→ r pe
. The expansion of an ideal I over Fe

is denoted I [p
e
]
= (Fe(I )). In case R is a domain, we let R1/pe

denote the subring of pe-th roots of R
inside a fixed algebraic closure of the fraction field of R. By taking pe-th roots, R1/pe

is abstractly
isomorphic to R, and the Frobenius map is identified with the ring extension R ⊆ R1/pe

. More generally,
for any R and any R-module M , we will write M1/pe

for the R-module given by restriction of scalars
for Fe; this is an exact functor on the category of R modules. We say that R is F-finite when R1/pe

is
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a finitely generated R-module, which further implies that R is excellent [Kunz 1976, Theorem 2.5]. A
complete local ring (R,m, k) is F-finite if and only if its residue field k is F-finite. When R is F-finite
and M is a finitely generated R-module, M1/pe

is also a finitely generated R-module and

`R(M1/pe
)= [k1/pe

: k] · `R1/pe (M1/pe
)= [k1/pe

: k] · `R(M).

In particular, note that

µR(M1/pe
)= `R(M1/pe

⊗R k)= `R((M/m[p
e
]M)1/pe

)= [k1/pe
: k] · `R(M/m[p

e
]M). (2)

Lemma 2.3. Suppose (R,m, k) is a complete local F-finite domain with coefficient field k and system
of parameters x1, . . . , xd chosen so that R is module finite and generically separable over the regular
subring A = k[[x1, . . . , xd ]]. Then there exists 0 6= c ∈ A so that c · R1/pe

⊆ R[A1/pe
] = R⊗A A1/pe

for
all e ∈ N.

Proof. Note first that, by the Cohen–Gabber structure theorem, every complete local ring admits such a
coefficient field and system of parameters; see [Kurano and Shimomoto 2015] for an elementary proof. Let
K =Frac(A)⊆ L=Frac(R) be the corresponding extension of fraction fields. The separability assumption
implies L and K 1/pe

are linearly disjoint over K , so that L⊗K K 1/pe
= L K 1/pe

is reduced. Since A1/pe
is

a free A-module, R⊗A A1/pe
is a free R-module and injects into its localization L⊗A A1/pe

= L⊗K K 1/pe
.

Thus, R⊗A A1/pe
is also reduced, which gives the equality R⊗A A1/pe

= R[A1/pe
]. If e1, . . . , es ∈ R

generate R as an A-module, it is easy to see c= (det(tr(ei e j )))
2 satisfies c · R1/pe

⊆ R[A1/pe
] where tr is

the trace map; see [Hochster and Huneke 2000, Lemma 4.3] for a proof and [Hochster and Huneke 1990,
§6] for further discussion. �

The corollaries below follow immediately; see [Kunz 1976] for details.

Corollary 2.4. If (R,m, k) is an F-finite local domain of dimension d , then rkR(R1/pe
)= [k1/pe

: k] · ped .

Corollary 2.5. If R is F-finite, for any two prime ideals p⊆ q of R it follows that

[k(p)1/pe
: k(p)] = [k(q)1/pe

: k(q)] · pe dim(Rq/pRq).

If additionally R is locally equidimensional, we have

[k(p)1/pe
: k(p)] · pe dim(Rp) = [k(q)1/pe

: k(q)] · pe dim(Rq)

and the function Spec(R)→ N given by p 7→ [k(p)1/pe
: k(p)] · pe dim(Rp) is constant on the connected

components of Spec(R).

Corollary 2.6. If R is a locally equidimensional F-finite reduced ring with connected spectrum and
pγ = [k(p)1/p

: k(p)] · pdim(Rp) for all p ∈ Spec(R), there exist short exact sequences

0 // R⊕pγ // R1/p // M // 0, (3)

0 // R1/p // R⊕pγ // N // 0 (4)

so that dim(Mp) < dim(Rp) and dim(Np) < dim(Rp) for all p ∈ Spec(R).
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3. F-signature and Hilbert–Kunz multiplicity revisited

The first goal of this section is to provide an elementary proof that simultaneously shows the existence of
the F-signature and Hilbert–Kunz multiplicity for an F-finite local domain (R,m, k). At the heart of all
known proofs of existence is a basic observation on the growth rate of a Hilbert–Kunz function.

Lemma 3.1 [Monsky 1983, Lemma 1.1]. Let (R,m, k) be a local ring and M a finitely generated
R-module. Then there exists a positive constant C(M,m) ∈ R so that

`(M/m[p
e
]M)≤ C(M,m) · pe dim(M)

for each e ∈ N.

Proof. If m is generated by t elements, then mtpe
⊆ m[p

e
] for each e ∈ N. Thus, `(M/m[p

e
]M) ≤

`(M/mtpe
M), which is eventually polynomial of degree dim(M) in the entry pe. �

Theorem 3.2 [Monsky 1983, Theorem 1.8; Tucker 2012, Theorem 4.9]. Suppose that (R,m, k) is an
F-finite local domain and dim(R)= d. Then the limits

eHK(R)= lim
e→∞

µR(R1/pe
)

[k1/pe
: k] · ped , s(R)= lim

e→∞

frkR(R1/pe
)

[k1/pe
: k] · ped

exist.

Proof. Let pγ = [k1/p
: k] · pd

= rkR(R1/pe
) and ν( ) denote either µ( ) or frk( ). Set ηe =

(1/peγ )νR(R1/pe
), and observe using Lemma 3.1 with (1) and (2) that the sequence {ηe}e∈N is bounded

above. Put η+ = lim supe→∞ ηe and η− = lim infe→∞ ηe.
As in (3), fix a short exact sequence

0 // R⊕pγ // R1/p // M // 0

where dim(M) < d . Applying the exact functors ( )1/pe
gives the short exact sequences

0 // (R1/pe
)⊕pγ // R1/pe+1

// M1/pe
// 0,

and Lemma 2.1 implies

ν(R1/pe+1
)≤ pγ · ν(R1/pe

)+µ(M1/pe
)

for each e∈N. By Lemma 3.1 and using (2), there exists a positive constant C(M,m)∈R withµ(M1/pe
)≤

C(M,m)pe dim(M)
≤ C(M,m)pe(d−1). Dividing through by p(e+1)d and setting C = C(M,m)/pd

∈ R

yields ηe+1 ≤ ηe+C/pe. Iterating this inequality gives

ηe+e′ ≤ ηe+
C
pe

(
1+

1
p
+ · · ·+

1
pe′−1

)
≤ ηe+

2C
pe

for all e, e′ ∈ N. For each e, taking lim supe′→∞ then gives η+ ≤ ηe+ 2C/pe. Now taking lim infe→∞

gives η+ ≤ η− as desired. �
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Our next goal is to give a direct proof of the upper semicontinuity of Hilbert–Kunz multiplicity. The
key observation is that the constant appearing in Lemma 3.1 can be taken uniformly on ring spectra.

Theorem 3.3 [Polstra 2015, Theorem 4.3]. For any F-finite ring R and finitely generated module M ,
there exists a positive constant C(M) such that for all p ∈ Spec(R)

`Rp(Mp/p
[pe
]Mp)≤ C(M)pe dim(Mp).

From the proof of Theorem 3.2 above, which is valid without change for a local equidimensional
reduced ring, it follows that there is a positive constant C ∈ R such that

eHK(Rp)≤
µRp(R

1/pe

p )

[k(p)1/pe
: k(p)] · pe dim(Rp)

+
2C
pe , s(Rp)≤

frkRp(R
1/pe

p )

[k(p)1/pe
: k(p)] · pe dim(Rp)

+
2C
pe

for all p ∈ Spec(R) and all e ∈ N.

Theorem 3.4 [Smirnov 2016, Main result]. For any F-finite locally equidimensional reduced ring R, the
function eHK : Spec(R)→ R given by p 7→ eHK(Rp) is upper semicontinuous.

Proof. Restricting to a connected component, we may assume without loss of generality that Spec(R) is
connected and hence pγ = [k(p)1/p

: k(p)] · pdim(Rp) is constant for all p ∈ Spec(R) by Corollary 2.5. If
δ ∈ R and eHK(Rq) < δ for some q ∈ Spec(R), then

µRq(R
1/pe

q )

[k(q)1/pe
: k(q)] · pe dim(Rq)

< δ− ε

for some 0< ε� 1 and some e ∈ N with 2C/pe < ε. By Lemma 2.2, the same holds true for all p in a
neighborhood of q. This yields

eHK(Rp)≤
µRp(R

1/pe

p )

[k(p)1/pe
: k(p)] · pe dim(Rp)

+
2C
pe < δ− ε+

2C
pe < δ

as desired and completes the proof. �

To get a similar argument for lower semicontinuity of F-signature, we need to reverse the estimates
arising in the proof of existence. To that end, we first record the following elementary lemma.

Lemma 3.5. Let p be a prime number, d ∈ N, and {λe}e∈N be a sequence of real numbers so that
{λe/ped

}e∈N is bounded.

(i) If there exists a positive constant C ∈ R so that λe+1/p(e+1)d
≤ λe/ped

+C/pe for all e ∈ N, then
the limit λ= lime→∞ λe/ped exists and λ− λe/ped

≤ 2C/pe for all e ∈ N.

(ii) If there exists a positive constant C ∈ R so that λe/ped
≤ λe+1/p(e+1)d

+C/pe for all e ∈ N, then
the limit λ= lime→∞ λe/ped exists and λe/ped

− λ≤ 2C/pe for all e ∈ N.

(iii) If there exists a positive constant C ∈ R so that |λe+1/p(e+1)d
− λe/ped

| ≤ C/pe for all e ∈ N,
then the limit λ = lime→∞ λe/ped exists and |λe/ped

− λ| ≤ 2C/pe for all e ∈ N. In particular,
λe = λped

+ O(pe(d−1)).
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Proof. Let λ+ = lim supe→∞ λe/ped and λ− = lim infe→∞ λe/ped , which are finite as {λe/ped
}e∈N is

bounded. Iterating the inequality in (i) yields

1
p(e+e′)d λe+e′ ≤

1
ped λe+

C
pe

(
1+

1
p
+ · · ·+

1
pe′−1

)
≤

1
ped λe+

2C
pe

for all e, e′ ∈N. Taking lim supe′→∞ for each fixed e ∈N gives λ+ ≤ λe/ped
+2C/pe, and then applying

lim infe→∞ gives λ+ ≤ λ− so that λ = lime→∞ λe/ped exists and λ− λe/ped
≤ 2C/pe for all e ∈ N.

Similarly, iterating the inequality in (ii) yields

1
ped λe ≤

1
p(e+e′)d λe+e′ +

C
pe

(
1+

1
p
+ · · ·+

1
pe′−1

)
≤

1
p(e+e′)d λe+e′ +

2C
pe

for all e, e′ ∈N. Taking lim infe′→∞ for each fixed e ∈N gives λe/ped
≤ λ−+2C/pe, and then applying

lim supe→∞ gives λ+ ≤ λ− so that λ = lime→∞ λe/ped exists and λe/ped
− λ ≤ 2C/pe for all e ∈ N.

The final statement (iii) follows immediately from a combination of (i) and (ii). �

Theorem 3.6. If R is a locally equidimensional reduced F-finite ring of dimension d , there is a positive
constant C ∈ R so that∣∣∣∣ µRp(R

1/pe

p )

[k(p)1/pe
: k(p)] · pe dim Rp

− eHK(Rp)

∣∣∣∣≤ C
pe ,

∣∣∣∣ frkRp(R
1/pe

p )

[k(p)1/pe
: k(p)] · pe dim Rp

− s(Rp)

∣∣∣∣≤ C
pe

for all e ∈ N and p ∈ Spec(R).

Proof. Restricting to a connected component, we may assume without loss of generality that Spec(R) is
connected and hence pγ = [k(p)1/p

: k(p)] · pdim(Rp) is constant for all p ∈ Spec(R) by Corollary 2.5.
The proofs of Theorems 3.2 and 3.4 above relied on a short exact sequence as in (3) of Corollary 2.6

and produced inequalities as in Lemma 3.5(i). Repeating those same arguments on a short exact sequence
as in (4) of Corollary 2.6 yields inequalities as in Lemma 3.5(ii), which combine to give the desired
result. �

Corollary 3.7. If (R,m, k) is an F-finite local equidimensional reduced ring of dimension d,

µR(R1/pe
)

[k : k pe
]
= eHK(R)ped

+ O(pe(d−1)),
frkR(R1/pe

)

[k : k pe
]
= s(R)ped

+ O(pe(d−1)).

Theorem 3.8 [Polstra 2015, Theorem 5.7]. For any F-finite locally equidimensional reduced ring R, the
function s : Spec(R)→ R given by p 7→ s(Rp) is lower semicontinuous.

Proof. From Theorem 3.6, there is a C ∈ R such that

frkRp(R
1/pe

p )

[k(p)1/pe
: k(p)] · pe dim(Rp)

≤ s(Rp)+
C
pe

for all p ∈ Spec(R) and all e ∈ N. The argument in Theorem 3.4 immediately gives the desired result.
Alternatively, using the whole of Theorem 3.6, both semicontinuity statements follow from the fact that
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the uniform limit of upper [Kunz 1976, Corollary 3.4] or lower [Enescu and Yao 2011, Corollary 2.5]
semicontinuous functions is upper or lower semicontinuous, respectively. �

4. Limits via Frobenius and Cartier linear maps

Background. Suppose that M is an R-module. Recall that an additive map φ ∈ HomZ(M,M) is said
to be Frobenius linear or p-linear if φ(rm) = r pφ(m) for all r ∈ R and m ∈ M . Similarly, we say
that φ ∈ HomZ(M,M) is pe-linear if φ(rm)= r pe

m for all r ∈ R and m ∈ M . The set of all pe-linear
maps on M is denoted Fe(M) and is naturally both a left and right R-module readily identified with
HomR(M,M1/pe

). The composition of a pe1-linear map φ1 and a pe2-linear map φ2 yields a pe1+e2-
linear map φ1 ◦ φ2, so that the ring of Frobenius linear operators F(M) =

⊕
e≥0 Fe(M) on M forms

a noncommutative N-graded ring with R → F0(M) = HomR(M,M). In the case M = R, we have
that every pe-linear map φ ∈ HomR(R, R1/pe

)= R1/pe
is a postmultiple of the Frobenius Fe by some

c1/pe
∈ R.

Dual to p-linear maps are the Cartier linear or p−1-linear maps; an additive map φ ∈ HomZ(M,M) is
said to be p−1-linear if φ(r pm)=rφ(m) for all r ∈ R and m ∈M . Similarly, we say that φ∈HomZ(M,M)
is p−e-linear if φ(r pe

m) = rm for all r ∈ R and m ∈ M . The set of all p−e-linear maps on M is
denoted Ce(M) and is naturally both a left and right R-module readily identified with HomR(M1/pe

,M).
The composition of a p−e1-linear map φ1 and a p−e2-linear map φ2 yields a p−(e1+e2)-linear map φ1 ◦φ2,
so that the ring of Cartier linear operators C(M)=

⊕
e≥0 Ce(M) on M forms a noncommutative N-graded

ring with R→ C0(M)= HomR(M,M).
If we have φ1 ∈ HomR(M1/pe1

,M) and φ2 ∈ HomR(M1/pe2
,M), we write φ1 ·φ2 for the composition

φ1 ◦ (φ2)
1/pe1 , which coincides with their product when viewed as elements of C(M). In particular,

given φ ∈ HomR(M1/p,M) we write φe
∈ HomR(M1/pe

,M) for the corresponding e-th iterate. If
ψ ∈ HomR(M1/pe

,M), we let ψ(r1/pe
· ) denote the R-linear map

M1/pe r1/pe
// M1/pe ψ

// R

given by premultiplying with r1/pe
∈ R1/pe

.

Lemma 4.1. Let R be an F-finite domain of dimension d with rkR(R1/p)= pγ .

(i) If 0 6= c ∈ R, then there exists a short exact sequence

0 // R⊕pγ 8
// R1/p // M // 0

so that dim(M) < R and 8(R⊕pγ )⊆ (cR)1/p.

(ii) Let 0 6= ψ ∈ HomR(R1/p, R) be a nonzero map. There exists a short exact sequence

0 // R1/p 9
// R⊕pγ // N // 0



F-signature and Hilbert–Kunz multiplicity: combined approach and comparison 71

so that every component function of9 is a premultiple of ψ . In other words, there exists r1, . . . , rpγ ∈

R so that 9 = (ψ(r1/p
1 · ), . . . , ψ(r1/p

pγ · )).

Proof. For (i), start with any inclusion R⊕pγ
⊆ R1/p with a torsion quotient as in (3) and postmultiply

by c1/p on R1/p. For (ii), note that rkR1/p(HomR(R1/p, R))= 1 so that there is some nonzero z ∈ R with
z1/p
·HomR(R1/p, R) ⊆ ψ · R1/p. Start with an inclusion R1/p

⊆ R⊕pγ with torsion quotient as in (4)
and premultiply by z1/p on R1/p to achieve the desired sequence. �

If R is an F-finite normal domain and D is a (Weil) divisor on X = Spec(R), we use R(D) to denote
0(X,OX (D)). There is a well known correspondence between p−e-linear maps and certain effective
Q-divisors. Fixing a canonical divisor K R , standard duality arguments for finite extensions show that
HomR(R1/pe

, R) = (R((1 − pe)K R))
1/pe

for each e ∈ N. Thus, to each 0 6= φ ∈ HomR(R1/pe
, R)

we can associate a divisor Dφ so that Dφ ∼Z (1 − pe)K R , and we set 1φ = (1/(pe
− 1))Dφ . If

φ,ψ ∈HomR(R1/pe
, R), then 1φ ≥1ψ if and only if φ( )=ψ(r1/pe

· ) for some 0 6= r ∈ R, in which
case 1φ =1ψ + (1/(pe

− 1)) divR(r). Moreover, if φ1 ∈ HomR(R1/pe1
, R) and φ2 ∈ HomR(R1/pe2

, R)
with φ=φ1 ·φ2=φ1◦(φ2)

1/pe1 , then1φ= (1/(pe1+e2−1))((pe2−1)1φ2+ pe2(pe1−1)1φ1). In particular,
1φ =1φn for all e, n ∈ N and all φ ∈ HomR(R1/pe

, R). If 1 is an effective Q-divisor on X = Spec(R)
and φ ∈ HomR(R1/pe

, R), note that 1φ ≥1 if and only if (pe
− 1)1φ ≥ d(pe

− 1)1e (as (pe
− 1)1φ is

integral), which is equivalent to asking that φ is in the image of the natural restriction mapping

HomR(R(d(pe
− 1)1e)1/pe

, R)→ HomR(R1/pe
, R).

See [Schwede and Tucker 2012, §4] or [2014, §2] for further details.

Lemma 4.2. Let R be an F-finite domain and 0 6=ψ ∈HomR(R1/p, R). There exists an element 0 6= z ∈ R
so that, for any e ∈ N and any φ ∈ HomR(R1/pe

, R), the map z · φ( ) = φ(z · ) = φ((z pe
)1/pe
· ) =

ψe(r1/pe
· ) for some r1/pe

∈ R1/pe
. In other words, zφ is a premultiple of ψe.

Proof. Let R be the normalization of R in its fraction field, and take 0 6= c ∈ R inside the conductor
ideal c = AnnR(R/R). One can show [Blickle and Schwede 2013, Exercise 6.14] that every p−e-
linear map φ : R1/pe

→ R extends uniquely to a p−e-linear map on R compatible with c, which we
denoted here by φ : R1/pe

→ R. Let 0 6= x ∈ R be such that divR(x) ≥ 1ψ , and put z = cx . Then
1xφ =1φ+(p

e/(pe
− 1)) divR(x)≥1ψ =1ψe so that φ(x · )=ψe(r1/pe

· ) for some r ∈ R. Letting
r1/pe

= cr1/pe
∈ R1/pe

and restricting back to R, this gives φ(z · )= ψe(r1/pe
· ) as desired. �

Recall that a Cartier subalgebra on R is a graded subring D ⊆ C(R) of the ring of Cartier linear
operators on R containing C0(R) = HomR(R, R) = R. Cartier subalgebras can be seen as a natural
generalization of a number of commonly studied settings in positive characteristic commutative algebra.
For instance, if R is an F-finite domain and 0 6= a⊆ R is an ideal and t ∈ R≥0, the Cartier subalgebra
Cat
=
⊕

e≥0 Cat

e where

Cat

e = adt (p
e
−1)e/pe

HomR(R1/pe
, R)

= {φ(x1/pe
· ) | x ∈ adt (p

e
−1)e and φ ∈ HomR(R1/pe

, R)}
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recovers the framework of [Hara and Yoshida 2003]. Similarly, if R is an F-finite normal domain and 1
is an effective Q-divisor on Spec(R), the Cartier subalgebra C(R,1) =

⊕
e≥0 C(R,1)e where

C(R,1)e = {φ ∈ HomR(R1/pe
, R) |1φ ≥1}

= im(HomR(R(d(pe
− 1)1e)1/pe

, R)→ HomR(R1/pe
, R))

recovers the setting of [Hara and Watanabe 2002; Takagi 2004]. For more information on Cartier
subalgebras, see [Blickle and Schwede 2013]. We will mainly be interested in the generalization of
F-signature to a Cartier subalgebra D introduced in [Blickle et al. 2012; 2013].

Existence and semicontinuity.

Theorem 4.3. Let (R,m, k) be an F-finite local domain of dimension d , and {Ie}e∈N a sequence of ideals
such that m[p

e
]
⊆ Ie for all e ∈ N.

(i) If there exists 0 6= c ∈ R so that cI [p]e ⊆ Ie+1 for all e ∈N, then η = lime→∞(1/ped)`R(R/Ie) exists.
Moreover, there exists a positive constant C(c) depending only on c ∈R with η−(1/ped)`R(R/Ie)≤

C(c)/pe for all e ∈ N.

(ii) If there exists a nonzero R-linear map ψ : R1/p
→ R so that ψ(I 1/p

e+1) ⊆ Ie for all e ∈ N, then
η= lime→∞(1/ped)`R(R/Ie) exists. Moreover, there exists a positive constant C(ψ) ∈R depending
only on ψ such that (1/ped)`R(R/Ie)− η ≤ C(ψ)/pe for all e ∈ N.

Remark 4.4. The conditions on ideal sequences {Ie}e∈N in Theorem 4.3(i)–(ii) are far more symmetric
when phrased in terms of p-linear and p−1-linear maps. In (i), the requirement is simply that there
exists a p-linear map 0 6= φ ∈ F1(R) on R such that φ(Ie)⊆ Ie+1 for each e ∈ N. Similarly, for (ii) the
requirement is that there exists a p−1-linear map 0 6= φ ∈ C1(R) such that φ(Ie+1)⊆ Ie for each e ∈ N.

Proof of Theorem 4.3. For (i), put rkR(R1/p)= [k1/p
: k] · pd

= pγ and consider a short exact sequence

0 // R⊕pγ 8
// R1/p // M // 0 (5)

as in Lemma 4.1(i) with dim(M)< dim(R) and8(R⊕pγ )⊆ (Rc)1/p. Note that the condition cI [p]e ⊆ Ie+1

for all e ∈ N can be restated as Ie(Rc)1/p
⊆ (Ie+1)

1/p, so that 8(I⊕pγ
e )=8(Ie(R⊕pγ ))⊆ Ie(Rc)1/p

⊆

(Ie+1)
1/p. In particular, 8 induces a quotient map

8 : (R/Ie)
⊕pγ
→ (R/Ie+1)

1/p

and it follows that

[k1/p
: k]`R(R/Ie+1)= `R((R/Ie+1)

1/p)≤ pγ `R(R/Ie)+ `R(coker(8)).

Since m[p
e+1
]
⊆ Ie+1 and coker(8) is a quotient of (R/Ie+1)

1/p, we have m[p
e
]
⊆ AnnR(coker(8)). But

coker(8) is also a quotient of coker(8)= M and thus M/m[p
e
]M , so `R(coker(8))≤ `R(M/m[p

e
]M)≤
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C(M,m)pe(d−1) by Lemma 3.1. Dividing through by [k1/p
: k]p(e+1)d

= pγ+ed yields

1
p(e+1)d `R(R/Ie+1)≤

1
ped `R(R/Ie)+

C(M,m)/pγ

pe ,

and the result now follows from Lemma 3.5 with C(c)= 2C(M,m)/pγ independent of the sequence of
ideals {Ie}e∈N satisfying the condition in (i).

Similarly for (ii), consider a short exact sequence

0 // R1/p 9
// R⊕pγ // N // 0

as in Lemma 4.1(ii) with dim(N ) < dim(R) so that every component function of 9 is a premultiple of ψ .
It follows that 9((Ie+1)

1/p)⊆ I⊕pγ
e , so that 9 induces a quotient map

9 : (R/Ie+1)
1/p
→ (R/Ie)

⊕pγ

and thus
pγ `R(R/Ie)≤ `R((R/Ie+1)

1/p)+ `R(coker(9))

= [k1/p
: k]`R(R/Ie+1)+ `R(coker(9)).

Since m[p
e
]
⊆ Ie and coker(9) is a quotient of (R/Ie)

⊕pγ , we have that m[p
e
]
⊆ AnnR(coker(9)). But

coker(9) is also a quotient of coker(9)= N and thus N/m[p
e
]N , so `R(coker(9))≤ `R(N/m[p

e
]N )≤

C(N ,m)pe(d−1) by Lemma 3.1. Dividing through by [k1/p
: k]p(e+1)d

= pγ+ed yields

1
ped `R(R/Ie)≤

1
p(e+1)d `R(R/Ie+1)+

C(N ,m)/pγ

pe ,

and the result now follows from Lemma 3.5 with C(ψ)= 2C(N ,m)/pγ independent of the sequence of
ideals {Ie}e∈N satisfying the condition in (ii). �

Corollary 4.5. Let (R,m, k) be an F-finite local domain of dimension d, and {Ie}e∈N a sequence of
ideals such that m[p

e
]
⊆ Ie for all e ∈ N. Suppose there exists 0 6= c ∈ R so that cI [p]e ⊆ Ie+1 for

all e ∈ N, and a nonzero R-linear map ψ : R1/p
→ R so that ψ(I 1/p

e+1) ⊆ Ie for all e ∈ N. Then η =
lime→∞(1/ped)`R(R/Ie) exists, and there is a positive constant C ∈R such that |(1/ped)`R(R/Ie)−η| ≤

C/pe for all e ∈N and all such sequence of ideals {Ie}e∈N. In particular, `R(R/Ie)= ηped
+O(pe(d−1)).

Corollary 4.5 gives yet another perspective on the existence proofs for Hilbert–Kunz multiplicity and
F-signature in terms of the properties of certain sequences of ideals. If (R,m, k) is a local domain
and we set I HK

e = m[p
e
] and I F-sig

e = (r ∈ R | φ(r1/pe
) ∈m for all φ ∈ HomR(R1/pe

, R)), it is easy to
see µR(R1/pe

)= `R((R/I HK
e )1/pe

) and frkR(R1/pe
)= `R((R/I F-sig

e )1/pe
). It is shown in [Tucker 2012]

that both sequences satisfy the conditions of Corollary 4.5; in fact, any choice of 0 6= c ∈ R and
0 6= ψ ∈ HomR(R1/p, R) will suffice.

As in [Tucker 2012], in settings such as Theorem 4.3, we have opted to consider sequences of ideals
{Ie}e∈N with m[p

e
]
⊆ Ie. In light of Theorem 3.3, uniformity of constants over Spec(R) would seem more

transparent for such sequences. Nonetheless, for any m-primary ideal J , one could consider sequences
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with J [p
e
]
⊆ Ie. One has m[p

e0 ]
⊆ J for some e0 ∈N, so that m[p

e+e0 ]
⊆ J [p

e
]
⊆ Ie for such sequences. In

particular, our techniques carry over to this setting after allowing for reindexing, and it is straightforward
to recover Monsky’s original limit existence result.

Corollary 4.6 [Monsky 1983]. If (R,m, k) is a local ring of dimension d and J ⊆ R is an m-primary
ideal, then

eHK(R, J )= lim
e→∞

1
ped `R(R/J [p

e
])

exists and there is a positive constant C ∈ R such that∣∣∣∣eHK(R, J )−
1

ped `R(R/J [p
e
])

∣∣∣∣< C
pe

for all e.

Proof. The reindexing argument preceding the statement together with Theorem 4.3 yields the desired
conclusion when R is an F-finite domain, which can be used to deduce the general case. For completeness,
we include the reduction from [Monsky 1983]. First, passing to a faithfully flat unramified local extension,
we may assume that R is complete with perfect residue field (and hence F-finite). Suppose p1, . . . , ps are
the minimal primes of R with dimension d . Take e0� 0 so that (

√
0)[p

e0 ]
= 0, and put Ni = `Rpi

(Fe0
∗ Rpi )

for i = 1, . . . , s. If

M =
s⊕

i=1

((R/pi )
⊕Ni ),

then M and Fe0
∗ R agree upon localization to any of the pi , and it follows that there exist R-module

homomorphisms M→ Fe0
∗ R and Fe0

∗ R→ M with cokernels of dimension strictly less than d . Applying
R/I [p

e
]
⊗ and using Lemma 3.1 yields a positive constant C ′ so that

|`R(R/I [p
e+e0 ])− `R(M/I [p

e
]M)| ≤ C ′ pe(d−1)

for all e ∈ N. Dividing through by p(e+e0)d and using

`R(M/I [p
e
]M)=

s∑
i=1

Ni · `R

(
R/pi

I [pe]R/pi

)
,

the statement for R now follows from that of the R/pi , which are F-finite complete domains. �

Another useful modification of the setup of Theorem 4.3 proceeds in the following manner. Fixing
e0 ∈ N, one can modify the condition on the sequences of ideals {Ie}e∈N of Theorem 4.3(i) to require
that cI [p

e0 ]
e ⊆ Ie+e0 for all e ∈ N. Similarly, in Theorem 4.3(ii), one can ask that there exists 0 6= ψ ∈

HomR(R1/pe0
, R) such that ψ((Ie+e0)

1/pe0
)⊆ Ie for all e ∈ N. In both cases, after reindexing, the same

methods apply to yield analogous results.
For example, this last generalization is particularly relevant when working with an arbitrary Cartier

subalgebra D on a local F-finite domain (R,m, k). As D is closed under composition, it is easily verified
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that

0D = {e ∈ N | De 6= 0}

is a subsemigroup of (N,+), and is called the semigroup of D. For e∈0D, one defines the e-th F-splitting
number aD

e of R along D to be the maximal number of copies of R with projection maps in De appearing
in an R-module direct sum decomposition of R1/pe

. In other words, aD
e is the largest integer so that there

is a surjection R1/pe
→ R⊕aD

e where the induced map HomR(R⊕aD
e , R)→ HomR(R1/pe

, R) = Ce(R)
has image inside of De. See [Blickle et al. 2012, §3.1] for further details. Setting I D

e = (r ∈ R |
φ(r1/pe

) ∈m for all φ ∈ De), it is again easy to check that aD
e = `R((R/I D

e )
1/pe

), and the method of
Theorem 4.3(ii) yields the following result.

Theorem 4.7. Let (R,m, k) be an F-finite local domain of dimension d and D a Cartier subalgebra
on R. Then the F-signature s(R,D)= lime→∞

e∈0D
(1/([k1/pe

: k] · ped))aD
e of R along D exists, and there is

a positive constant C ∈ R so that

1
[k1/pe

: k] · ped aD
e ≤ s(R,D)+

C
pe

for all e ∈ 0D.

Proof. Let pγ = rkR(R1/p)= [k1/p
: k] · pd , and take a set1 of generators e1, . . . , es for the semigroup 0D.

Fixing 0 6= ψi ∈ Dei for each i = 1, . . . , s, we can find a short exact sequence of R-modules

0 // R1/pei 9i
// R⊕pγ ei // Mi // 0 (6)

where dim(Mi ) < d and every component function of 9i is a premultiple of ψi as in Lemma 4.1(ii). Since
the Cartier linear maps in D are closed under composition, it follows readily that ψi ((I D

e+ei
)1/pei

)⊆ I D
e for

any e ∈ 0D. In particular, 9i ((I D
e+ei

)1/pei
)⊆ (I D

e )
⊕pγ ei and proceeding as in Theorem 4.3(ii), we see that

1
peγ aD

e ≤
1

p(e+ei )γ
aD

e+ei
+

C ′

pe

for any i = 1, . . . , s and e ∈ 0D where C ′ = max{C(M1,m)/pe1γ , . . . ,C(Ms,m)/pesγ }. It follows as
in Lemma 3.5(ii) that s(R,D) = lime→∞

e∈0D
(1/peγ )aD

e exists and s(R,D)− (1/peγ )aD
e ≤ 2C ′/pe for all

e ∈ 0D as desired. �

Remark 4.8 (compare to [Polstra 2015, Condition (1)]). Consider a Cartier subalgebra D on an F-finite
local domain (R,m, k) with the following property: if φ ∈ De+1 for some e ∈ N, then φ|R1/pe ∈ De. It is
easy to check (I D

e )
[p]
⊆ I D

e+1 for all e ∈N= 0D, and Theorem 4.3(i) gives that there is a positive constant
C ∈ R so that ∣∣∣∣s(R,D)−

1
[k1/pe

: k] · ped aD
e

∣∣∣∣≤ C
pe (7)

1Every subsemigroup of N is finitely generated [Grillet 2001, Proposition 4.1].
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for all e ∈N. Arbitrary Cartier subalgebras will not satisfy such properties, and we know of no reason to
expect (7) to hold in general. However, we will see below in Theorems 4.11 and 4.12 that the Cartier
subalgebras constructed using ideals and divisors do satisfy (7) by showing they enjoy a perturbation of
the above property.

The proof of Theorem 4.3 made use of positive constants arising from Lemma 3.1. However, in case
R is not local and the p-linear map in (i) or p−1-linear map in (ii) extend to R, one can make these
constants spread uniformly over Spec(R) using Theorem 3.3 instead. In the case of Theorem 4.7, this
immediately yields the following result.

Theorem 4.9. Let R be an F-finite domain and D a Cartier subalgebra on R. There is a positive constant
C ∈ R so that

1
[k(p)1/pe

: k(p)] · pe ht(p) a
Dp
e ≤ s(Rp,Dp)+

C
pe

for all e ∈ 0D and all p ∈ Spec(R). Moreover, the function Spec(R)→ R given by p 7→ s(Rp,Dp) is
lower semicontinuous.

Note that, for the lower semicontinuity property, one can relax the above requirement that R is a
domain — any F-finite ring will suffice. The F-signature function is identically zero off of the strongly
F-regular locus of R, so that s(Rp,Dp)= 0 for any p ∈ Spec(R) where Rp is not a normal domain. Thus,
it suffices to check lower semicontinuity on the normal locus U ⊆ Spec(R), which follows from the lower
semicontinuity on each Spec(R f ) for each f ∈ R where R f is a normal domain.

Proof. Following along in the proof of Theorem 4.7, observe that sequences in (6) can be taken to be
global and then localized to each p ∈ Spec(R). By Theorem 3.3, we may then take the positive constant
C =max{2C(M1)/pe1γ , . . . , 2C(Ms)/pesγ } independent of p ∈ Spec(R). For the remainder, first note
the argument of Lemma 2.2 readily adapts to show the function Spec(R)→R given by p 7→ a

Dp
e is lower

semicontinuous. The lower semicontinuity of the F-signatures thus follows from the argument given in
Theorem 3.8. �

Remark 4.10. Analogous to the argument above, for an R-valued function on Spec(R) governed locally
by sequences of ideals as in Theorem 4.3(i), upper semicontinuity passes from the individual terms in the
sequences to the limit as in Theorem 3.4. However, we are unaware of any such functions that are not
directly related to Hilbert–Kunz multiplicity itself.

Theorem 4.11. Let R be an F-finite domain, a⊆ R a nonzero ideal, t ∈ R≥0, and p ∈ Spec(R). Then the
F-signature

s(Rp, a
t
p)= s(Rp,Cat

p)= lim
e→∞

1
[k(p)1/pe

: k(p)] · pe ht(p) a
at
p

e
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of Rp along at
p exists and determines a lower semicontinuous R-valued function on Spec(R). Moreover,

there is a positive constant C ∈ R so that∣∣∣∣s(Rp, a
t
p)−

a
at
p

e

[k(p)1/pe
: k(p)] · pe ht(p)

∣∣∣∣≤ C
pe (8)

for all e ∈ N, all p ∈ Spec(R), and all t ∈ R≥0. In particular, a
at
p

e /[k(p)1/pe
: k(p)] = s(Rp, a

t
p)p

e ht(p)
+

O(pe(ht(p)−1)).

Proof. The existence and semicontinuity statements follow immediately from Theorems 4.7 and 4.9
above. Let f1, . . . , fs be a set of generators for a. If t > s, then a

at
p

e = 0 for all e ∈N and any p∈ Spec(R).
Thus, we are free to assume t ≤ s going forward.

For a fixed t ∈ R≥0, one inequality in (8) also follows from Theorem 4.7 above; however, it remains
to show that the positive constant C can be chosen independent of t ∈ R≥0. To that end, fix a choice of
0 6= x ∈ as(p−1) and φ ∈ HomR(R1/p, R). Then ψ( ) = φ(x1/p

· ) ∈ Cat

1 for any t ≤ s. The desired
independence follows from the observation that a short exact sequence as in Lemma 4.1(ii) can be used
for (6) in the proof of Theorem 4.7 for any t ≤ s.

To show the reverse inequality, choose an element 0 6= c ∈ R that satisfies cadt (p
e+1
−1)e
⊆ (adt (p

e
−1)e)[p]

for all e ∈ N and any t ∈ R≥0; one can check that c = f p
1 · · · f p

s will suffice. We will show that
c(I

at
p

e )
[p]
⊆ I

at
p

e+1 for all t ∈ R≥0 and p ∈ Spec(R), after which the result follows by using a short exact
sequence as in Lemma 4.1(i) for (5) in the proof of Theorem 4.3(i) for any t ≤ s and p ∈ Spec(R) with
C(Mp, pRp)= C(M) from Theorem 3.3. Supposing that φ ∈ HomRp(R

1/pe+1

p , Rp) and y ∈ adt (p
e+1
−1)e

p ,
we must show φ((yc(I

at
p

e )
[p])1/pe+1

)⊆ pRp. Write cy=
∑n

i=1 g p
i ri where each ri ∈ Rp and gi ∈ a

dt (pe
−1)e

p .
Let φi ∈ HomRp(R

1/pe

p , Rp) be the map defined by φi (z1/pe
)= φ(r1/pe+1

i z1/pe
) for all z ∈ Rp. If x ∈ I

at
p

e ,
then φ((ycx p)1/pe+1

)=
∑n

i=1 φ(r
1/pe+1

i (gi x)1/pe
)=

∑n
i=1 φi ((gi x)1/pe

) ∈ pRp as φi (g
1/pe

i · ) ∈C
at
p

e for
i = 1, . . . , n. �

Theorem 4.12. Let R be an F-finite normal domain, 1 an effective Q-divisor on Spec(R), and p ∈

Spec(R). Then the F-signature

s(Rp,1)= s(Rp,C(Rp,1))= lim
e→∞

1
[k(p)1/pe

: k(p)] · pe ht(p) a
(Rp,1)
e

of Rp along 1 exists and determines a lower semicontinuous R-valued function on Spec(R). Moreover, if
1 is a fixed effective integral divisor on Spec(R), there exists a positive constant C ∈ R so that∣∣∣∣s(Rp,1)−

a(Rp,1)
e

[k(p)1/pe
: k(p)] · pe ht(p)

∣∣∣∣≤ C
pe (9)

for all e ∈ N, all p ∈ Spec(R), and all effective Q-divisors 1 with 1 ≤ 1. In particular, we have that
a(Rp,1)

e /[k(p)1/pe
: k(p)] = s(Rp,1)pe ht(p)

+ O(pe(d−1)).

Proof. The existence and semicontinuity statements follow immediately from Theorems 4.7 and 4.9
above. For a fixed 1, one inequality in (9) also follows from Theorem 4.7 above; however, it remains
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to show that the positive constant C can be chosen independent of 1≤1. To that end, fix a choice of
0 6= ψ ∈ C(R,1)1 . Since C(R,1)1 ⊆ C(R,1)1 , the desired independence follows from the observation that a
short exact sequence as in Lemma 4.1(ii) can be used for (6) in the proof of Theorem 4.7 for any 1≤1.

For the reverse inequality, choose 0 6= c ∈ R so that divR(c)≥ p1. We will show that c(I (Rp,1)
e )[p] ⊆

I (Rp,1)

e+1 for all 1≤1, after which the result follows by using a short exact sequence as in Lemma 4.1(i)
for (5) in the proof of Theorem 4.3(i) for any 1 ≤ 1 and p ∈ Spec(R) with C(Mp, pRp) = C(M)
from Theorem 3.3. Supposing p ∈ Spec(R) and φ ∈ C

(Rp,1)

e+1 , we must show φ((c(I (Rp,1)
e )[p])1/pe+1

)⊆

pRp. Let ψ ∈ HomRp(R
1/pe+1

p , Rp) be the map given by ψ( ) = φ(c1/pe+1
· ), and ψe = ψ |R1/pe

p
∈

HomRp(R
1/pe

p , Rp) be the restriction to R1/pe

p . It suffices to show that1ψe ≥1, so that for any x ∈ I (Rp,1)
e

we have φ((cx p)1/pe+1
)= ψe(x1/pe

) ∈ pRp.
To that end, consider the inclusions for each e ∈ N

R1/pe
⊆ R1/pe+1

⊆ ⊆

(R(d(pe
− 1)1)e)1/pe

⊆ (R(pd(pe
− 1)1e))1/pe+1

⊆

(R(d(pe+1
− 1)1e+ divR(c)))1/pe+1

which hold because d(pe
− 1)1e ≤ (pe

− 1)1+1 implies

pd(pe
− 1)1e ≤ (pe+1

− p)1+ p1

≤ (pe+1
− 1)1+ p1

≤ d(pe+1
− 1)1e+ divR(c).

We know that ψ is the restriction to R1/pe+1

p of a map in

HomRp((Rp(d(pe+1
− 1)1e+ divR(c)))1/pe+1

, Rp),

and by localizing the above inclusions at p, we see that ψe = ψ |R1/pe
p

can be extended to a map in
HomRp((Rp(d(pe

− 1)1)e)1/pe
, Rp). It follows immediately that 1ψe ≥1. �

As the above examples demonstrate, Theorem 4.3 can be used to show the existence of limits in a large
number of important settings. Moreover, the following well known lemma allows similar techniques to
be used more broadly still.

Lemma 4.13. Let (R,m, k) be an F-finite local domain of dimension d and 0 6= c ∈ R. Suppose {Ie}e∈N

and {Je}e∈N are two sequences of ideals in R so that

m[p
e
]
⊆ Ie ⊆ Je ⊆ (Ie : c)

for all e ∈ N. Then there exists a positive constant C ∈ R so that∣∣∣∣ 1
ped `R(R/Ie)−

1
ped `R(R/Je)

∣∣∣∣= 1
ped `R(Je/Ie)≤

C
pe
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for all e∈N and so lime→∞((1/ped)`R(R/Ie)−(1/ped)`R(R/Je))=0. Hence, lime→∞(1/ped)`R(R/Je)

exists if and only if lime→∞(1/ped)`R(R/Ie) exists, in which case they are equal.

Proof. Since (Ie : c)/Ie is the kernel and R/(Ie, c) the cokernel of multiplication by c on R/Ie, their
lengths are equal. Thus,

1
ped `R(Je/Ie)≤

1
ped `R((Ie : x)/Ie)=

1
ped `R(R/(Ie, c))≤

1
ped `R(R/(m[p

e
], c))≤

C
pe

by applying Lemma 3.1 with M = R/(c). �

Once again, the constant C in the above lemma depends only on the choice of 0 6= c ∈ R and not on any
particular sequence of ideals; moreover, in case R is not local, the constant C can be chosen uniformly
over Spec(R) using Theorem 3.3.

5. Positivity

Positivity of the F-signature. Recall that an F-finite ring R is said to be strongly F-regular if and only
if, for all x ∈ R not contained in any minimal prime (e.g., x 6= 0 when R is a domain), there exist
some e ∈ N and φ ∈ HomR(R1/pe

, R) with φ(x1/pe
)= 1. Strongly F-regular rings are always products

of Cohen–Macaulay normal domains. Moreover, a strongly F-regular local domain remains so after
completion.

Theorem 5.1 [Aberbach and Leuschke 2003, Main Result]. Suppose (R,m, k) is a local F-finite domain.
Then R is strongly F-regular if and only if s(R) > 0.

We will give two new proofs of Theorem 5.1. The first proof is notable in that it gives a readily
computable lower bound for the F-signature.

First proof of Theorem 5.1. We will assume for simplicity in the exposition that k = k p is perfect —
the proof is easily adapted to arbitrary k. Suppose first that R is not strongly F-regular, so that there
exists some 0 6= x ∈ R with φ(x1/pe

) ∈m for all e ∈ N and all φ ∈ HomR(R1/pe
, R). Take a surjection

8 : R1/pe
→ R⊕ frkR(R1/pe

) of R-modules. It follows that 8((x R)1/pe
)⊆m⊕ frkR(R1/pe

), so that 8 induces
a surjection of R-modules (R/x R)1/pe

→ k⊕ frkR(R1/pe
) and hence frkR(R1/pe

) ≤ µR((R/x R)1/pe
) ≤

C(R/x R,m)pe(d−1) using (2) and Lemma 3.1 for some positive constant C(R/x R,m) ∈ R. Dividing
through by ped and taking lime→∞ then gives s(R) = 0. Thus, s(R) > 0 implies that R is strongly
F-regular.

Conversely, suppose that R is strongly F-regular. The F-signature remains unchanged upon completion,
so we may assume R is complete and choose a coefficient field k and system of parameters x1, . . . , xd

so that R is module finite and generically separable over the regular subring A = k[[x1, . . . , xd ]]. Take
0 6= c ∈ A so that cR1/pe

⊆ R[A1/pe
] = R ⊗A A1/pe

as in Lemma 2.3 for all e ∈ N. Since R is
strongly F-regular, we can find e0 ∈ N and φ ∈ HomR(R1/pe0

, R) with φ(c1/pe0
) = 1. We will show

s(R)≥ 1/pe0d > 0.
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For any α = (α1, . . . , αd) ∈ Zd and e ∈ N, we write xα/pe
for xα1/pe

1 · · · xαd/pe

d . Let Ie = {α =

(α1, . . . , αd) ∈ Zd
| 0≤ αi < pe for i = 1, . . . , d}. The monomials xα/pe

for α ∈ Ie are a free basis for
A1/pe

over A. As such, for each α ∈ Ie, we can find an A-linear map πα : A1/pe
→ A with πα(xα/pe

)= 1
and πα(xβ/pe

) = 0 for all α 6= β ∈ Ie. Applying R ⊗A gives an R-linear map π̃α : R[A1/pe
] → R

with π̃α(xα/pe
) = 1 and π̃α(xβ/pe

) = 0 for all α 6= β ∈ Ie. Multiplication by c gives an R-linear
map R1/pe

→ R[A1/pe
], and composing with π̃α gives an R-linear map π̃α(c · ) : R1/pe

→ R so that
π̃α(cxα/pe

)= cπ̃α(xα/pe
)= c and π̃α(cxβ/pe

)= cπ̃α(xβ/pe
)= 0 for all α 6= β ∈ Ie (since c ∈ A). Setting

ψα( ) = φ ◦ (π̃α(c · ))1/pe0
: R1/pe+e0

→ R, we have ψα ∈ HomR(R1/pe+e0
, R) with ψα(xα/pe+e0

) = 1
and ψα(xβ/pe+e0

) = 0 for all α 6= β ∈ Ie. It follows that 9 =
⊕

α∈Ie
ψα : R1/pe+e0

→ R⊕ped
is an

R-module surjection and hence frkR(R1/pe+e0
)≥ ped . Dividing through by p(e+e0)d and taking lime→∞

yields s(R)≥ (1/pe0d) > 0 as desired. �

For the second proof, we will need the following lemma, which should be compared with [Hochster
and Huneke 1991, Theorem 3.3]. In the next subsection, we will show how to adapt this proof to arbitrary
sequences of ideals as in Theorem 4.3(ii).

Lemma 5.2. Let (R,m, k) be a complete local F-finite Cohen–Macaulay domain of dimension d. There
exists N ∈ N with the following property: for any e ∈ N and all x ∈ R \ m[p

e
], there exists a map

φ ∈ HomR(R1/pe
, R) with φ(x1/pe

) /∈mN .

Proof. Choosing a coefficient field k and system of parameters x1, . . . , xd , we have that R is a finitely
generated free module over A = k[[x1, . . . , xd ]] [Bruns and Herzog 1993, Proposition 2.2.11]; let mA

denote the maximal ideal of A. Fix a nonzero map τ ∈ HomA(R, A). Since HomA(R, A) is a rank-one
torsion-free R-module, we can find 0 6= y ∈AnnR(HomA(R, A)/(Rτ)); replacing by a nonzero multiple,
we may further assume 0 6= y ∈ A. If N ′, N ∈ N are sufficiently large so that y /∈mN ′

A and mN
⊆mN ′

A R,
we will show N satisfies the desired property.

Fix e ∈N and x ∈ R \m[p
e
], so also x /∈m[p

e
]

A R. Since R1/pe
is a free A-module and x1/pe

/∈mA R1/pe
,

x1/pe
can be taken as part of a free basis and there exists an A-linear map χ : R1/pe

→ A with χ(x1/pe
)= 1.

If Tr : HomA(R, A)→ A is the A-linear map given by evaluation at 1, there is a commutative diagram

R1/pe

χ

++

χ̃
// HomA(R1/pe

, A) // HomA(R, A)
·y

//

Tr
��

Rτ '
//

Tr
��

R

τ

��

A
·y

// A =
// A

(10)

where χ̃ is the R1/pe
-linear map sending 1 7→ χ and where HomA(R1/pe

, A)→ HomA(R, A) is the
R-linear map given by restriction to R ⊆ R1/pe

. Let φ ∈ HomR(R1/pe
, R) be the composition along the

top row of this diagram, so that yχ = τ ◦ φ. We have τ(φ(x1/pe
)) = yχ(x1/pe

) = y /∈ mN ′
A , and thus

φ(x1/pe
) /∈mN ′

A R as τ is A-linear. In particular, since mN
⊆mN ′

A R, we have φ(x1/pe
) /∈mN as desired. �

Second proof of Theorem 5.1. Suppose that R is strongly F-regular, and as such Cohen–Macaulay. As
before, without loss of generality, we may assume R is complete. If I F-sig

e = (r ∈ R | φ(r1/pe
) ∈ m
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for all φ ∈ HomR(R1/pe
, R)) and ψ ∈HomR(R1/pe′

, R), it is easy to check that ψ((I F-sig
e+e′ )

1/pe′

)⊆ I F-sig
e

for all e, e′ ∈ N. Since R is F-split, we may conclude I F-sig
e+1 ⊆ I F-sig

e for all e ∈ N; moreover, by the
definition of strong F-regularity, we have

⋂
e∈N I F-sig

e = 0. Thus, for N as in Lemma 5.2, Chevalley’s
lemma [1943, Lemma 7] gives e0 ∈ N with I F-sig

e0 ⊆mN . It follows from Lemma 5.2 that I F-sig
e+e0
⊆m[p

e
]

for all e ∈ N. Indeed for each x ∈ R \m[p
e
] there is some φ ∈ HomR(R1/pe

, R) with φ(x1/pe
) /∈mN and

hence φ(x1/pe
) /∈ I F-sig

e0 ; as φ((I F-sig
e+e0

)1/pe
)⊆ I F-sig

e0 we must have x /∈ I F-sig
e+e0

. Thus, we compute

s(R)= lim
e→∞

1
p(e+e0)d

`R(R/I F-sig
e+e0

)≥ lim
e→∞

1
p(e+e0)d

`R(R/m[p
e
])=

1
pe0d eHK(R)≥

1
pe0d > 0

as desired. �

Positivity via a Cartier linear map. In this section, we generalize the method of the second proof of
Theorem 5.1 to examine the positivity of the limits appearing in Theorem 4.3(ii). The essential technique
is to exploit the following generalization of Lemma 5.2, which should again be compared with [Hochster
and Huneke 1991, Theorem 3.3].

Proposition 5.3. Let (R,m, k) be a complete local F-finite domain of dimension d, and suppose that
0 6= ψ ∈ HomR(R1/p, R). There exist N ∈ N and 0 6= c ∈ R so that ψe((x R)1/pe

) 6⊆ mN for any e ∈ N

and all x ∈ R \ (m[p
e
]
: c).

Proof. Choose a coefficient field k and system of parameters x1, . . . , xd so that R is module finite over
the regular subring A = k[[x1, . . . , xd ]]. As R is a torsion-free A-module, choose a free A-submodule
G = A⊕ rankA(R) ⊆ R of maximal rank and take 0 6= c ∈AnnA(R/G). In particular, c1/pe

R1/pe
⊆G1/pe

⊆

R1/pe
for all e ∈ N.

Fixing a nonzero map τ ∈HomA(R, A), we can find 0 6= y∈AnnR(HomA(R, A)/(Rτ)) as HomA(R, A)
is a rank-one torsion-free R-module. Let 0 6= z ∈ R be as in Lemma 4.2; replacing by nonzero multiples,
we may further assume both 0 6= y ∈ A and 0 6= z ∈ A. Let N ′, N ∈N be sufficiently large so that yz /∈mN ′

A

and mN
⊆mN ′

A R; we will show that the integer N and element c = yz satisfy the desired property.
Suppose e ∈ N and x ∈ R \ (m[p

e
]
: c). Since xc /∈m[p

e
]

A R ⊆m[p
e
], we have (xc)1/pe

/∈mA R1/pe
and

so also (xc)1/pe
/∈ mAG1/pe

⊆ mA R1/pe
. As G1/pe

= (A1/pe
)⊕ rankA(R) is a free A-module, there is a

χ ′ ∈ HomA(G1/pe
, A) with χ ′((xc)1/pe

)= 1. Let χ ∈ HomA(R1/pe
, A) be the composition

R1/pe ·c1/pe
// G1/pe χ ′

// A

which satisfies χ(x1/pe
) = 1. If Tr : HomA(R, A)→ A is the A-linear map given by evaluation at 1,

the same diagram (10) from Lemma 5.2 commutes where χ̃ is the R1/pe
-linear map sending 1 7→ χ

and HomA(R1/pe
, A) → HomA(R, A) is the R-linear map given by restriction to R ⊆ R1/pe

. Let
φ ∈ HomR(R1/pe

, R) be the composition along the top row of this diagram, so that yχ = τ ◦ φ. By
Lemma 4.2, we can find r ∈ R so that zφ( )= ψe(r1/pe

· ). We compute

τ(ψe((r x)1/pe
))= τ(zφ(x1/pe

))= zτ(φ(x1/pe
))= yzχ(x1/pe

)= yz /∈mN ′
A
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and conclude ψe((r x)1/pe
) /∈ mN ′

A R as τ is A-linear. In particular, since mN
⊆ mN ′

A R, we have that
ψe((x R)1/pe

) 6⊆mN as desired. �

In the proof of the main result of this section, we will need to use a well known result on the
stabilization of the images of an iterated p−1-linear map. Rooted in the work of Hartshorne and Speiser
[1977, Proposition 1.11] and later generalized by Lyubeznik [1997], the following version is due to
Gabber [2004].

Theorem 5.4 [Gabber 2004, Lemma 13.1; Blickle and Böckle 2011, Proposition 2.14]. Let M be a
finitely generated module over an F-finite ring R and 0 6= φ ∈ HomR(M1/p,M). Then the descending
chain of R-modules

M ⊇ φ(M1/p)⊇ φ2(M1/p2
)⊇ · · · ⊇ φe(M1/pe

)⊇ · · ·

stabilizes for e� 0.

Theorem 5.5. Let (R,m, k) be a complete local F-finite domain of dimension d and {Ie}e∈N a sequence
of ideals so that m[p

e
]
⊆ Ie for all e ∈ N. Suppose there exists a nonzero ψ ∈ HomR(R1/p, R) so

that ψ((Ie+1)
1/p) ⊆ Ie for all e ∈ N. Then the limit lime→∞(1/ped)`R(R/Ie) is positive if and only if⋂

e∈N Ie = 0.

Proof. By Lemma 3.1, if 0 6= c ∈
⋂

e∈N Ie, then `R(R/Ie)≤ `R(R/(m[p
e
], c))≤ C(R/(c),m)pe(d−1) for

all e ∈ N. It follows that
⋂

e∈N Ie 6= 0 implies that lime→∞(1/ped)`R(R/Ie)= 0.
For the converse, suppose

⋂
e∈N Ie = 0. If 0 6= σ =ψe(R1/pe

) for e� 0 is the stable image of ψ as in
Theorem 5.4, we also have

⋂
e∈N(Ie : σ)= 0 as σ

(⋂
e∈N(Ie : σ)

)
⊆
⋂

e∈N Ie = 0 and R is a domain. In
addition, it follows from ψ(σ 1/p)= σ that (Ie+1 : σ)⊆ (Ie : σ) for all e ∈ N as

(Ie+1 : σ)σ = (Ie+1 : σ)ψ(σ
1/p)= ψ(((Ie+1 : σ)

[p]σ)1/p)⊆ ψ(((Ie+1 : σ)σ)
1/p)⊆ ψ(I 1/p

e+1)⊆ Ie.

Take N ∈ N and 0 6= c ∈ R as in Proposition 5.3. By Chevalley’s lemma [1943, Lemma 7], there is some
e0 ∈ N with Ie0 ⊆ (Ie0 : σ) ⊆ mN . It follows from Proposition 5.3 that Ie+e0 ⊆ (m

[pe
]
: c) for all e ∈ N.

Indeed for each x ∈ R \ (mpe
: c) we have ψe((x R)1/pe

) 6⊆ mN and hence ψe((x R)1/pe
) 6⊆ Ie0 ; since

ψe((Ie+e0)
1/pe

)⊆ Ie0 we must have x /∈ Ie+e0 . Using Lemma 4.13, we compute

lim
e→∞

1
p(e+e0)d

`R(R/Ie+e0)≥
1

pe0d lim
e→∞

1
ped `R(R/(m[p

e
]
: c))

=
1

pe0d lim
e→∞

1
ped `R(R/m[p

e
])

=
1

pe0d eHK(R)≥
1

pe0d > 0.
�

Theorem 5.5 is quite powerful and allows one to show positivity of the limits appearing in Theorem 4.3(ii)
in a number of different situations. One should view this result not only as a generalization of the work
done by Aberbach and Leuschke [2003], but also the work of Hochster and Huneke [1990]. If R is a
domain and I ⊆ R, recall that x ∈ R is in the tight closure I ∗ of I if there exists an element 0 6= c ∈ R
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such that cx pe
∈ I [p

e
] for all e ∈ N. The tight closure I ∗ is an ideal containing I , and I ∗∗ = I . A ring is

said to be weakly F-regular if all ideals I of R are tightly closed, i.e., satisfy I ∗ = I . See [Huneke 1996]
or [Hochster 2007] for further details.

Corollary 5.6 [Hochster and Huneke 1990, Theorem 8.17] (length criterion for tight closure). Let
(R,m, k) be a complete local F-finite domain of dimension d. Suppose that I ⊆ J is an inclusion of
m-primary ideals in R. Then I ∗ = J ∗ if and only if eHK(I )= eHK(J ).

Proof. Applying the criterion to each term of a composition series of J/I , we may assume J = (I, x) for
some x ∈ R with (I : x)=m. Consider the sequence of ideals (I [p

e
]
: x pe

) for each e ∈ N. We have that
(I [p

e
]
: x pe

)[p] ⊆ (I [p
e+1
]
: x pe+1

) for all e ≥ 0, so that in particular m[p
e
]
⊆ (I [p

e
]
: x pe

) for each e ∈ N.
Moreover, for any nonzero ψ ∈ HomR(R1/p, R) it is easy to check ψ((I [p

e+1
]
: x pe+1

)1/p)⊆ (I [p
e
]
: x pe

).
Since (I, x)[p

e
]/I [p

e
]
' R/(I [p

e
]
: x pe

), we see by Theorem 5.5 that

eHK(I )− eHK((I, x))= lim
e→∞

1
ped `R(R/(I [p

e
]
: x pe

)) (11)

is zero if and only if
⋂

e∈N(I
[pe
]
: x pe

) 6= 0, which is equivalent to x ∈ I ∗ by definition. �

Recall that there are also a number of well known generalizations of tight closure and strong F-
regularity [Hara and Yoshida 2003; Hara and Watanabe 2002; Takagi 2004]. If R is an F-finite local
domain, a is a nonzero ideal of R, and t ∈R≥0, one can speak of the at -tight closure I ∗a

t
of an ideal I ⊆ R.

By definition, if x ∈ R, then x ∈ I ∗a
t

if and only if there exists 0 6= c ∈ R with cadt (p
e
−1)ex pe

∈ I [p
e
] for all

e ∈ N. The pair (R, at) is strongly F-regular provided for any 0 6= x ∈ R there exists e ∈ N and φ ∈ Cat

e

with φ(x1/pe
) = 1. Similarly, if R is an F-finite normal local domain and 1 is an effective Q-divisor

on Spec(R), we have the 1-tight closure I ∗1 of an ideal I ⊆ R. By definition, if x ∈ R, then x ∈ I ∗1

if and only if there exists 0 6= c ∈ R with cx pe
∈ I [p

e
](R(d(pe

− 1)1e)) for all e ∈ N. The pair (R,1)
is strongly F-regular provided for any 0 6= x ∈ R there exists e ∈ N and φ ∈ C(R,1)e with φ(x1/pe

)= 1.
As of yet, there does not exist a well formed theory of Hilbert–Kunz multiplicity for an ideal or divisor;
nonetheless, one can use Theorem 5.5 to give analogues of Corollary 5.6 for these operations.

Corollary 5.7 (length criterion for at -tight closure). Let (R,m, k) be a complete local F-finite domain of
dimension d, a a nonzero ideal of R, and t ∈ R≥0.

(i) For any m-primary ideal I and x ∈ R, lime→∞(1/ped)`R(R/(I [p
e
]
: adt (p

e
−1)ex pe

)) exists; moreover,
this limit equals zero if and only if x ∈ I ∗a

t
.

(ii) The F-signature s(R, at)= lime→∞(1/ped)`R(R/I a
t

e ) of R along at is positive if and only if (R, at)

is strongly F-regular.

Proof. For (i), take 0 6= ψ ∈ Cat

1 = (a
dt (p−1)e)1/p

·HomR(R1/p, R), and consider the sequence of ideals
(I [p

e
]
:adt (p

e
−1)ex pe

) for e∈N. It is easy to checkψ((I [p
e+1
]
:adt (p

e+1
−1)ex pe+1

)1/p)⊆ (I [p
e
]
:adt (p

e
−1)ex pe

)

for all e ∈N. If e0 ∈N is sufficiently large that m[p
e0 ]
⊆ I , then we have m[p

e+e0 ]
⊆ (I [p

e
]
: adt (p

e
−1)ex pe

)

for all e ∈ N. After shifting the index, Theorem 4.3(ii) and Theorem 5.5 apply, giving the existence
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of the limit and showing that it equals zero if and only if
⋂

e∈N(I
[pe
]
: adt (p

e
−1)ex pe

) 6= 0, which is
equivalent to x ∈ I ∗a

t
by definition. To see (ii), simply note once more that ψ((I a

t

e+1)
1/p)⊆ I a

t

e and apply
Theorem 5.5. �

Corollary 5.8 (length criterion for 1-tight closure). Let (R,m, k) be a complete local F-finite normal
domain of dimension d, and 1 an effective Q-divisor on Spec(R).

(i) For any m-primary ideal I ⊆ R and x ∈ R, lime→∞(1/ped)`R(R/(I [p
e
]R(d(pe

− 1)1e) : x pe
))

exists; moreover, this limit equals zero if and only if x ∈ I ∗1.

(ii) The F-signature s(R,1) = lime→∞(1/ped)`R(R/I (R,1)e ) of R along 1 is positive if and only if
(R,1) is strongly F-regular.

Proof. Let 0 6=ψ ∈C11 = im(HomR((R(d(p−1)1e))1/p, R)→HomR(R1/p, R)). That is, identifying ψ
with its unique extension to a p−1-linear map on K = Frac(R), we have that ψ((R(d(p−1)1e))1/p)⊆ R.
Twisting by d(pe

− 1)1e and using the fact that pd(pe
− 1)1e+ d(p− 1)1e ≥ d(pe+1

− 1)1e, observe
ψ((R(d(pe+1

− 1)1e))1/p)⊆ R(d(pe
− 1)1e) for all e ∈ N.

For (i), consider the sequence of ideals (I [p
e
]R(d(pe

− 1)1e) : x pe
) for e ∈ N. It is easy to check

ψ((I [p
e+1
]R(d(pe+1

− 1)1e) : x pe+1
)1/p) ⊆ (I [p

e
]R(d(pe

− 1)1e) : x pe
) for all e ∈ N. If e0 ∈ N is

sufficiently large that m[p
e0 ]
⊆ I , then we have m[p

e+e0 ]
⊆ (I [p

e
]R(d(pe

−1)1e) : x pe
) for all e ∈N. After

shifting the index, Theorems 4.3(ii) and 5.5 apply, giving the existence of the limit and showing that
it equals zero if and only if

⋂
e∈N(I

[pe
]R(d(pe

− 1)1e) : x pe
) 6= 0, which is equivalent to x ∈ I ∗1 by

definition. For (ii), simply note once more that ψ((I (R,1)e+1 )1/p)⊆ I (R,1)e and apply Theorem 5.5. �

Remark 5.9. The analogue of Theorem 5.5 for sequences of ideals satisfying Theorem 4.3(i) instead of
(ii) is false. Here is an easy counterexample. Let (R,m, k) be a complete regular local ring of dimension
d , and consider the sequence of ideals Ie=m[p

be/2c
] for e∈N. Then m[p

e
]
⊆ Ie and I [p]e ⊆ Ie+1 for all e∈N

and certainly
⋂

e∈N Ie = 0. However, we have lime→∞(1/ped)`R(R/Ie)= lime→∞ 1/p(e−be/2c)d = 0.

To see yet another application of Theorem 5.5, suppose that (R,m, k) is an F-split F-finite local
ring. If I F-sig

e = (r ∈ R | φ(r1/pe
) ∈m for all φ ∈ HomR(R1/pe

, R)), it is straightforward to check that
P=

⋂
e∈N I F-sig

e is a prime ideal [Tucker 2012, Lemma 4.7], coined the F-splitting prime by Aberbach
and Enescu [2005]. Furthermore, they suspected that the dimension of the F-splitting prime governed the
growth rate of frkR(R1/pe

) when R is not strongly F-regular; this observation was verified in joint work
of the second author with Blickle and Schwede.

Theorem 5.10 [Blickle et al. 2012]. Suppose (R,m, k) is an F-split F-finite local ring and P is the F-
splitting prime. If n = dim(R/P), the limit rF (R)= lime→∞ 1/(([k1/pe

: k] · pen)) frkR(R1/pe
) exists and

is positive, called the F-splitting ratio. Moreover, (1/[k1/pe
: k]) frkR(R1/pe

)= rF (R)pen
+ O(pe(n−1)).

Proof. Without loss of generality, we may assume R is complete. If I F-sig
e = 〈r ∈ R | φ(r1/pe

) ∈ m

for all φ ∈ HomR(R1/pe
, R)〉, we have m[p

e
]
⊆ I F-sig

e and (I F-sig
e )[p] ⊆ I F-sig

e+1 for all e ∈ N. Fixing
a surjective map ψ ∈ HomR(R1/p, R), we have ψ((I F-sig

e+1 )
1/p) ⊆ I F-sig

e . In particular, this implies
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ψ(P1/p)⊆P and so ψ induces a map ψ ∈HomR(R
1/p, R) where R= R/P. Note that ψ is still surjective

and hence nonzero. Thus, passing to the sequence of ideals Ie= I F-sig
e R, we have m[p

e
]R⊆ Ie, Ie

[p]
⊆ Ie+1,

andψ((Ie+1)
1/p)⊆ Ie for all e∈N. Moreover,

⋂
e∈N Ie=0 in R. The result now follows immediately from

Corollary 4.5 together with Theorem 5.5, using that frkR(R1/pe
)/[k1/pe

: k] = `R(R/I F-sig
e )= `R(R/Ie)

for all e ∈ N. �

Remark 5.11. It is straightforward to generalize the notions of F-splitting prime and F-splitting ratio
to arbitrary Cartier subalgebras; see [Blickle et al. 2012] for further details. In all cases, the argument
from Theorem 5.10 applies and greatly simplifies the proofs. In particular, the methods of the proofs of
Theorems 4.7 and 5.5 immediately give an alternative proof of the following result. Recall that a Cartier
subalgebra D on a domain R is said to be strongly F-regular provided that for any 0 6= x ∈ R there exists
an e ∈ N and φ ∈ De with φ(x1/pe

)= 1. This definition is compatible with the generalizations of strong
F-regularity to ideal and divisor pairs discussed prior to Corollary 5.7 as well.

Corollary 5.12 [Blickle et al. 2012, Theorem 3.18]. Let (R,m, k) be an F-finite local domain of dimen-
sion d and D a Cartier subalgebra on R. Then the F-signature s(R,D)= lime→∞

e∈0D
(1/([k1/pe

: k]· ped))aD
e

of R along D is positive if and only if (R,D) is strongly F-regular.

As in the proof of Theorem 4.7, certain reindexing arguments are required in order to deduce
Corollary 5.12 from Theorem 5.5. More generally, it is straightforward to modify Theorems 4.3(ii)
and 5.5 for sequences of m-primary ideals governed by a nonzero p−e0-linear map for some e0 ∈ N.
Rather than requiring the reader to trace through the various arguments above, we provide a simpler direct
proof.

Corollary 5.13. Let (R,m, k) be a complete local F-finite domain of dimension d and e0 ∈N. Suppose
{In}n∈N is a sequence of ideals with m[p

ne0 ]
⊆ In for all n∈N, and there is a nonzeroψ ∈HomR(R1/pe0

, R)
so that ψ((In+1)

1/pe0
) ⊆ In for all n ∈ N. Then the limit limn→∞(1/pne0d)`R(R/In) exists, and it is

positive if and only if
⋂

n∈N In = 0.

Proof. Replacing with a premultiple and using Lemma 4.2, we may assume there is a nonzero φ ∈
HomR(R1/p, R) so that ψ = φe0 . Define a new sequence of ideals {Je}e∈N by

Je = φ
r ((Ide/e0e)

1/pr
)+m[p

e
] where r = de/e0ee0− e

so that Jne0 = In for all n ∈ N. By construction, we have that φ(J 1/p
e+1) ⊆ Je for all e ∈ N so that

Theorem 4.3(ii) applies directly to show the limits

lim
e→∞

1
ped `R(R/Je)= lim

n→∞

1
pne0d `R(R/Jne0)= lim

n→∞

1
pne0d `R(R/In)

exist. For the positivity statement, if
⋂

n∈N In = 0, then so too
⋂

e∈N Je = 0 as
⋂

e∈N Je ⊆
⋂

n∈N In .
Thus, Theorem 5.5 gives that the limits above are positive. Else, if 0 6= c ∈

⋂
n∈N In , then `R(R/In)≤

`R(R/(m[p
ne0 ], c))≤ C(R/(c),m)pne0(d−1) for all n ∈ N by Lemma 3.1, so limn→∞(1/pne0d)`R(R/In)

vanishes as desired. �
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6. F-signature and minimal relative Hilbert–Kunz multiplicity

Our next aim is to realize the F-signature as the infimum of relative differences in the Hilbert–Kunz
multiplicities of the cofinite ideals in a local ring (Corollary 6.5). After first bounding such differences
from below by the F-signature (Lemma 6.1), we will make use of approximately Gorenstein sequences
to find differences arbitrarily close to the F-signature. The crucial step and main technical result is
Theorem 6.3, which uses the uniformity of the constants tracked above to swap limits between iterations
of Frobenius and progression in an approximately Gorenstein sequence.

The remainder of the section is reserved for constructions of explicit sequences of relative Hilbert–Kunz
differences that approach the F-signature (Corollary 6.6); we also analyze when the infimum is known to
be achieved (Corollary 6.8). Generalizations to divisor and ideal pairs are also given (Corollaries 6.9 and
6.10).

Lemma 6.1. Suppose that (R,m, k) is an F-finite local ring and I F-sig
e = (r ∈ R | φ(r1/pe

) ∈ m

for all φ ∈ HomR(R1/pe
, R)) for e ∈ N. Then

I F-sig
e ⊇

∑
I⊆J⊆R

0<`R(J/I )<∞

(I [p
e
]
: J [p

e
])⊇

∑
I⊆R, `R(R/I )<∞

x∈R, (I :x)=m

(I [p
e
]
: x pe

) (12)

and we have

s(R)≤ inf
I⊆J⊆R, `R(R/I )<∞

I 6=J, `R(R/J )<∞

eHK(I )− eHK(J )
`R(J/I )

≤ inf
I⊆R, `R(R/I )<∞

x∈R, (I :x)=m

eHK(I )− eHK((I, x)). (13)

Proof. If I ( J is a proper inclusion of ideals with `R(J/I ) <∞ and φ ∈ HomR(R1/pe
, R), we have

that φ((I [p
e
]
: J [p

e
])1/pe

)⊆ (I : J )⊆m. It follows that∑
I⊆J⊆R

0<`R(J/I )<∞

(I [p
e
]
: J [p

e
])⊆ I F-sig

e .

Since the sum on the right is over a smaller set of proper inclusions, (12) follows immediately.
For (13), if I ⊆ R is m-primary and x ∈ R with (I : x) = m, then (I [p

e
]
: x pe

) ⊆ I F-sig
e for all

e ∈ N implies eHK(I )− eHK((I, x)) ≥ s(R) using (11). Moreover, if I ( J is a proper inclusion of
m-primary ideals, summing up this inequality for each factor in a composition series of J/I shows
`R(J/I )s(R)≤ (eHK(I )− eHK(J )). The inequalities in (13) now follow immediately, noting again that
the infimum on the right is over a smaller set of proper inclusions. �

Recall that a local ring (R,m, k) is said to be approximately Gorenstein if there exists a descending
chain of irreducible ideals {Jt }t∈N cofinal with powers of the maximal ideal. In particular, each R/Jt is a
zero-dimensional Gorenstein local ring and has a one-dimensional socle. By [Hochster 1977, Theorem
1.6], a reduced excellent local ring is always approximately Gorenstein. It is easy to check that equality
holds throughout (12) for such rings.
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Lemma 6.2. Suppose that (R,m, k) is an approximately Gorenstein F-finite local ring, and {Jt }t∈N is a
descending chain of irreducible ideals cofinal with the powers of m. If δt ∈ R generates the socle of R/Jt ,
then for all e ∈ N we have (J [p

e
]

t : δ
pe

t )⊆ (J
[pe
]

t+1 : δ
pe

t+1) and

I F-sig
e = 〈r ∈ R | φ(r1/pe

) ∈m for all φ ∈ HomR(R1/pe
, R)〉

=

∑
t∈N

(J [p
e
]

t : δ
pe

t )

=

⋃
t∈N

(J [p
e
]

t : δ
pe

t )

= (J [p
e
]

te : δ
pe

te ) for all te� 0 sufficiently large.

Moreover, R is weakly F-regular if and only if J ∗t = Jt is tightly closed for all t ∈ N.

Proof. Since each R/Jt is an Artinian Gorenstein local ring, we have AnnE(Jt)' R/Jt where E = ER(k)
is the injective hull of the residue field of R. Thus, we may view E = ER(k)= lim

−−→
R/Jt as the direct limit

of inclusions R/Jt → R/Jt+1 mapping (the class of) δt 7→ δt+1. In particular, after applying ⊗R R1/pe
,

one sees that (J [p
e
]

t : δ
pe

t )⊆ (J
[pe
]

t+1 : δ
pe

t+1) for all t ∈ N. It follows immediately that∑
t∈N

(J [p
e
]

t : δ
pe

t )=
⋃
t∈N

(J [p
e
]

t : δ
pe

t )= (J
[pe
]

te : δ
pe

te ) for all te� 0.

An inclusion R→ M to a finitely generated R-module M determined by 1 7→ m splits if and only if
E → E ⊗R M remains injective, which is equivalent to δt m /∈ Jt M for all t ∈ N. See [Hochster 2007,
p. 155] for further details. In particular, if x ∈ R, applying this splitting criterion to the map R→ R1/pe

with 1 7→ x1/pe
gives that x ∈ R \ I F-sig

e if and only if x ∈ R \ (J [p
e
]

t : δ
pe

t ) for all t ∈ N, and so we have
that I F-sig

e = (J [p
e
]

te : δ
pe

te ) for te� 0.
Lastly, suppose there is an ideal I ⊆ R that is not tightly closed. Then I =

⋂
n∈N(I +mn) is an

intersection of m-primary ideals. The arbitrary intersection of tightly closed ideals is tightly closed
[Hochster and Huneke 1990, Proposition 4.1(b)]. Hence, we may replace I with an m-primary ideal
which is not tightly closed and choose x ∈ I ∗ with m= (I : x). Since R/I injects into a direct sum of
copies of E , we can find an R-module homomorphism R/I → E so that x + I has nonzero image in E
and hence must generate the socle k ⊆ E . Using that E = lim

−−→
R/Jt , we may assume R/I → R/Jt and

x+ I 7→ δt+ Jt for some t ∈N. For each e∈N, applying ⊗R R1/pe
and viewing as an R1/pe

-module gives
R/I [p

e
]
→ R/J [p

e
]

t where x pe
+ I [p

e
]
7→ δ

pe

t + J [p
e
]

t . In particular, it follows that (I [p
e
]
: x pe

)⊆ (J [p
e
]

t : δ
pe

t ).
Thus,

⋂
e∈N(I

[pe
]
: x pe

)⊆
⋂

e∈N(J
[pe
]

t : δ
pe

t ) is not contained in any minimal prime of R; it follows that
δt ∈ J ∗t and hence Jt is not tightly closed (compare to [Hochster and Huneke 1990, Proposition 8.23(f)]). �

In the next result, we show how to make use of the uniformity of constants from Theorem 4.3 together
with approximately Gorenstein sequences in order to compare F-signature and Hilbert–Kunz multiplicity.
As an application, we answer a question posed by Watanabe and Yoshida [2004, Question 1.10].
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Theorem 6.3. Let (R,m, k) be a complete local F-finite domain of dimension d, and fix 0 6= c ∈ R.
Suppose we are given sequences of ideals {It,e}t,e∈N satisfying m[p

e
]
⊆ It,e, c(I [p]t,e ) ⊆ It,e+1, and It,e ⊆

It+1,e for all t, e ∈ N. Then

lim
e→∞

lim
t→∞

1
ped `R(R/It,e)= lim

e→∞

1
ped `R(R/Ie)= lim

t→∞
lim

e→∞

1
ped `R(R/It,e)

where Ie =
∑

t∈N It,e.

Proof. For each fixed t ∈ N, as m[p
e
]
⊆ It,e and c(I [p]t,e )⊆ It,e+1 for e ∈ N, Theorem 4.3(i) guarantees the

existence of ηt = lime→∞(1/ped)`R(R/It,e) and provides a uniform positive constant C ∈ R so that

ηt ≤
1

ped `R(R/It,e)+
C
pe (14)

for all t, e ∈ N. The sequence {Ie}e∈N inherits the properties m[p
e
]
⊆ Ie and c(I [p]e ) ⊆ Ie+1 for e ∈ N;

hence, lime→∞(1/ped)`R(R/Ie) exists as well. Since It,e ⊆ Ie and so `R(R/Ie) ≤ `R(R/It,e) for all
t, e ∈ N, applying lime→∞ gives

lim
e→∞

1
ped `R(R/Ie)≤ ηt (15)

for all t ∈ N.
Since It,e ⊆ It+1,e is increasing in t for fixed e, it follows that ηt ≥ ηt+1 ≥ 0 for all t ∈ N and

hence limt→∞ ηt exists. We also have Ie = Ite,e for te� 0, so that lime→∞ limt→∞(1/ped)`R(R/It,e)=

lime→∞(1/ped)`R(R/Ie). Applying limt→∞ to (14) and (15) gives

lim
e→∞

1
ped `R(R/Ie)≤ lim

t→∞
ηt ≤

1
ped `R(R/Ie)+

C
pe

for all e ∈ N. Further taking lime→∞ gives limt→∞ ηt = lime→∞(1/ped)`R(R/Ie) and completes the
proof. �

Theorem 6.4. Let (R,m, k) be an approximately Gorenstein F-finite local ring of dimension d. Suppose
{Jt }t∈N is a descending chain of irreducible ideals cofinal with the powers of m, and δt ∈ R generates the
socle of R/Jt . Then s(R)= limt→∞ eHK(Jt)− eHK((Jt , δt)).

Proof. Both invariants are unchanged after completion, so we may assume R is complete. Suppose first that
R is not weakly F-regular, so that δt ∈ J ∗t for some t ∈N and (J [p

e
]

t : δ
pe

t )⊆ (J
[pe
]

t+1 : δ
pe

t+1)⊆ · · · ⊆ (J
[pe
]

t+t ′ :

δ
pe

t+t ′)⊆ · · · for all e, t ′ ∈ N by Lemma 6.2. If c ∈
⋂

e∈N(J
[pe
]

t : δ
pe

t )⊆
⋂

e∈N(J
[pe
]

t+t ′ : δ
pe

t+t ′) is not in any
minimal prime, then we have 0≤ eHK(Jt+t ′)−eHK((Jt+t ′, δt+t ′))≤ lime→∞(1/ped)`R(R/(c,m[p

e
]))= 0

using (11) from Corollary 5.6 and applying Lemma 3.1 with M = R/(c). Using Lemma 6.1, we have
that s(R)= limt ′→∞ eHK(Jt+t ′)− eHK((Jt+t ′, δt+t ′))= 0 as desired.
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Thus, we assume for the remainder that R is weakly F-regular and hence a domain. Consider the
sequences of ideals It,e = (J

[pe
]

t : δ
pe

t ) for t, e ∈ N. We check

m[p
e
]
= (Jt : δt)

[pe
]
⊆ (J [p

e
]

t : δ
pe

t )= It,e,

I [p]t,e = (Jt : δt)
[pe
]
⊆ (J [p

e
]

t : δ
pe

t )
[p]
⊆ (J [p

e+1
]

t : δ
pe+1

t )= It,e+1,

It,e = (J
[pe
]

t : δ
pe

t )⊆ (J
[pe
]

t+1 : δ
pe

t+1)= It+1,e,

so Theorem 6.3 applies with c = 1. Using Lemma 6.2 and (11) from Corollary 5.6, we conclude

s(R)= lim
e→∞

1
ped `R(R/I F-sig

e ) = lim
e→∞

lim
t→∞

1
ped `R(R/It,e)

= lim
t→∞

lim
e→∞

1
ped `R(R/It,e)= lim

t→∞
eHK(Jt)− eHK((Jt , δt)). �

Theorem 6.4 provides a positive answer to [Watanabe and Yoshida 2004, Question 1.10].

Corollary 6.5. If (R,m, k) is an F-finite local ring, then

s(R)= inf
I⊆J⊆R, `R(R/I )<∞

I 6=J, `R(R/J )<∞

eHK(I )− eHK(J )
`R(J/I )

= inf
I⊆R, `R(R/I )<∞

x∈R, (I :x)=m

eHK(I )− eHK((I, x)).

Proof. If R is not reduced, we can find some 0 6= x ∈ R with x p
= 0. For n� 0, we have x /∈ mn and

can find an ideal I with mn
⊆ I ⊆ (mn, x) where (I : x) = m. Since x pe

= 0 for all e ∈ N, we have
I [p

e
]
= (I, x)[p

e
], and thus eHK(I )= eHK((I, x)). It follows from Lemma 6.1 that s(R)= 0 and equality

holds throughout (13). Thus, we may assume R is reduced. By [Hochster 1977, Theorem 1.7], R is
approximately Gorenstein and Theorem 6.4 implies equality holds throughout (13) as desired. �

When (R,m, k) is a complete Cohen–Macaulay local F-finite domain of dimension d , one can make
Theorem 6.4 more explicit still. Recall that a canonical ideal J ⊆ R is an ideal such that J is isomorphic
to a canonical module ωR , which exists as R is assumed complete. A canonical ideal J is necessarily
unmixed with height 1, and moreover, R/J will be Gorenstein of dimension d − 1 [Bruns and Herzog
1993, Proposition 3.3.18]. When R is also normal, fixing a canonical ideal is equivalent to fixing a choice
of effective anticanonical divisor.

Corollary 6.6. Suppose that (R,m, k) is a complete Cohen–Macaulay local F-finite domain of dimension
d, and J is a canonical ideal of R. Let x1 ∈ J and x2, . . . , xd ∈ R be chosen so that x1, . . . , xd give a
system of parameters for R, and suppose δ ∈ R generates the socle of R/(J, x2, . . . , xd). Then

s(R)= lim
t→∞

eHK((J, x t
2, . . . , x t

d))− eHK((J, x t
2, . . . , x t

d , (x
t−1
2 · · · x t−1

d δ))).

Proof. Note that x t−1
1 J is yet another canonical ideal for any t ∈ N, and x t

2, . . . , x t
d give a system of

parameters for R/(x t−1
1 J ). Thus, the sequence Jt = (x t−1

1 J, x t
2, . . . , x t

d) gives a descending chain of
irreducible ideals cofinal with the powers of m. It is easy to check that δt = x t−1

1 x t−1
2 · · · x t−1

d δ generates
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the socle of R/Jt using that x1, . . . , xd form a regular sequence, which further implies (J pe

t : δ
pe

t ) =

((J, x t
2, . . . , x t

d)
[pe
]
: (x t−1

2 · · · x t−1
d δ)pe

) for all t, e ∈ N. Thus, Theorem 6.4 gives

s(R)= lim
t→∞

1
ped `R(R/(J

pe

t : δ
pe

t ))

= lim
t→∞

eHK((x t−1
1 J, x t

2, . . . , x t
d))− eHK((x t−1

1 J, x t
2, . . . , x t

d , (x
t−1
1 x t−1

2 · · · x t−1
d δ)))

= lim
t→∞

1
ped `R(R/((J, x t

2, . . . , x t
d)
[pe
]
: (x t−1

2 · · · x t−1
d δ)pe

))

= lim
t→∞

eHK((J, x t
2, . . . , x t

d))− eHK((J, x t
2, . . . , x t

d , (x
t−1
2 · · · x t−1

d δ)))

using the relation in (11) once more. �

One can push the above analysis further still. In the notation of the previous proof, when R is normal
x2 can be chosen so that Rx2 is Gorenstein and Jx2 is principal. This allows one to remove the exponent t
on x2 in the limit above using (i) from the subsequent lemma. Following the methods of [Aberbach
2002] (compare to [Aberbach and Enescu 2006; MacCrimmon 1996; Yao 2006]), we present a complete
treatment in Corollary 6.8 below.

Lemma 6.7. Suppose that (R,m, k) is a complete Cohen–Macaulay local F-finite normal domain of
dimension d , and D an effective Weil divisor on Spec(R). Put J = R(−D)⊆ R so that J (n) = R(−nD)
for n ∈ N. Let x1 ∈ J and x2, . . . , xd ∈ R be chosen so that x1, . . . , xd give a system of parameters for R,
and fix e ∈ N.

(i) If x2 J ⊆ a2 R for some a2 ∈ J , there exists b2 ∈ J so that a2, x2 + b2, x3, . . . , xd give a system of
parameters for R. Moreover, for any nonnegative integers N2, . . . , Nd with N2 ≥ 2, we have that

((J (p
e), x N2 pe

2 , x N3 pe

3 , . . . , x Nd pe

d ) : x (N2−1)pe

2 )= ((J [p
e
], x N2 pe

2 , x N3 pe

3 , . . . , x Nd pe

d ) : x (N2−1)pe

2 )

= ((J [p
e
], x2pe

2 , x N3 pe

3 , . . . , x Nd pe

d ) : x pe

2 ).

(ii) Suppose xn
d J (n) ⊆ ad R for some n ∈ N and ad ∈ J (n). Then there exists bd ∈ J such that

ad , x2, . . . , xd−1, xd + bd give a system of parameters for R. Moreover, for any nonnegative integers
N2, . . . , Nd with Nd ≥ 2, we have that

((J (p
e), x N2 pe

2 , . . . , x Nd−1 pe

d−1 , x Nd pe

d ) : x (Nd−1)pe

d )⊆ ((J (p
e), x N2 pe

2 , . . . , x Nd−1 pe

d−1 , x2pe

d ) : xn
1 x pe

d )

Proof. For (i), note first a2 is a nonzero divisor on R/(x3, . . . , xd) as its multiple x1x2 ∈ x2 J is a nonzero
divisor. Hence, dim(R/(x3, . . . , xd , a2))= d− 1. Since `R(R/(J, x2, . . . , xd))≤ `R(R/(x1, . . . , xd)) <

∞, we know that (x2, J ) is not contained in any minimal prime ideal of (x3, . . . , xd , a2). In particular,
using standard prime avoidance arguments, one can find b2 ∈ J so that x2 + b2 also avoids all of the
minimal primes of (x3, . . . , xd , a2); it follows that the sequence x3, . . . , xd , a2, x2 + b2 is a system of
parameters for R.

Since R(− div(x2) − D) = x2 J ⊆ a2 R = R(− div(a2)), we have that D + div(x2) ≥ div(a2) and
hence also pe D+ div(x pe

2 ) ≥ div(a pe

2 ); it follows that x pe

2 J (p
e)
⊆ a pe

2 R. The ideals inclusions ⊇ in (i)
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are clear, so we need only check the reverse. Let I = (x N3 pe

3 , . . . , x Nd pe

d ), and suppose that we have
cx (N2−1)pe

2 ∈ (J (p
e), x N2 pe

2 , I ) for some c ∈ R. We can find r2 ∈ R with (c− r2x pe

2 )x
(N2−1)pe

2 ∈ (J (p
e), I ).

Since b2 ∈ J , we have bpe
∈ J (p

e) and so (c− r2x pe

2 )(x2+ b2)
(N2−1)pe

∈ (J (p
e), I ). Multiplying through

by x pe

2 and using that x pe

2 J (p
e)
⊆ a pe

2 gives (cx pe

2 − r2x2pe

2 )(x2 + b2)
(N2−1)pe

∈ (a pe

2 , I ). Using that
a2, x2+ b2, x3, . . . , xd give a system of parameters for R, we see (cx pe

2 − r2x2pe

2 ) ∈ (a pe

2 , I )⊆ (J [p
e
], I )

and conclude cx pe

2 ∈ (J
[pe
], x2pe

2 , I ) as desired.
Statement (ii) proceeds similarly. We have that ad is a nonzero divisor on R/(x2, . . . , xd−1) as

its multiple xn
d xn

1 is a nonzero divisor, and again (xd , J ) is not contained in any minimal prime of
(ad , x2, . . . , xd−1). We can find bd ∈ J so that xd + bd is not in any minimal prime of (ad , x2, . . . , xd−1)

and thus ad , x2, . . . , xd−1, xd + bd is a system of parameters for R. From xn
d J (n) ⊆ ad R, we have

nD + div(xn
d ) ≥ div(ad) and it follows that x pe

d J (p
e)
⊆ abp

e/nc
d R. To see the final inclusion, let I =

(x N2 pe

2 , . . . , x Nd−1 pe

d−1 ) and suppose cx (Nd−1)pe

d ∈ (J (p
e), I, x Nd pe

d ) for some c ∈ R. We can find rd ∈ R so
that (c−rd x pe

d )x
(Nd−1)pe

d ∈ (J (p
e), I ). As bd ∈ J so bpe

d ∈ J (p
e), hence also (c−rd x pe

d )(xd+bd)
(Nd−1)pe

∈

(J (p
e), I ). Multiplying through by x pe

d gives (cx pe

d − rd x2pe

d )(xd + bd)
(Nd−1)pe

∈ (abp
e/nc

d , I ). Using
that ad , x2, . . . , xd−1, xd + bd are a system of parameters, we see that (cx pe

d − rd x2pe

d ) ∈ (abp
e/nc

d , I ).
Multiplying through by xn

1 and using that abp
e/nc

d xn
1 ∈ (J

(n))bp
e/nc+1

⊆ J (p
e) gives (cxn

1 x pe

d −rd xn
1 x2pe

d ) ∈

(J (p
e), I ) and in particular cxn

1 x pe

d ∈ (J
(pe), I, x2pe

d ) as desired. �

Corollary 6.8. Suppose (R,m, k) is a complete Cohen–Macaulay local F-finite domain of dimension d.

(i) If R is Gorenstein and x1, . . . , xd are any system of parameters for R and δ ∈ R generates the socle of
R/(x1, . . . , xd), then I F-sig

e = ((x1, . . . , xd)
[pe
]
: δ pe

) for all e ∈ N and s(R)= eHK((x1, . . . , xd))−

eHK((x1, . . . , xd , δ)) [Huneke and Leuschke 2002].

(ii) If the punctured spectrum Spec(R) \ {m} is Q-Gorenstein, there exists an m-primary ideal I and
x ∈ R with (I : x)=m so that s(R)= eHK(I )− eHK((I, x)) and moreover I F-sig

e ⊆ ((I [p
e
])∗ : x pe

)

for all e ∈ N. In particular, if R is weakly F-regular, I F-sig
e = (I [p

e
]
: x pe

) for all e ∈ N.

Proof. (i) Since R is Gorenstein, we may take J = (x1) to be the canonical ideal above in Corollary 6.6.
For fixed e ∈N, we have that I F-sig

e = ((x tpe

1 , . . . , x tpe

d ) : (x (t−1)pe

1 · · · x (t−1)pe

d δ pe
)) for all t� 0. However,

since x1, . . . , xd are a regular sequence on R, it follows that ((x tpe

1 , . . . , x tpe

d ) : (x (t−1)pe

1 · · · x (t−1)pe

d δ pe
))=

((x pe

1 , . . . , x pe

d ) : δ
pe
) for any t ∈N. The final statement follows again using the relation in (11) once more.

For (ii), we begin with the following construction. Let J be a canonical ideal of R, and choose
0 6= x1 ∈ J . Let U2 be the complement of the minimal primes of x1, which are all height one and contain
the set of minimal primes of J . We have that U−1

2 J is principal (as U−1
2 R is a semilocal Dedekind

domain) and can choose x2 ∈U2 and a2 ∈ J so that Jx2 = a2 Rx2 and x2 J ⊆ a2 R.
As Rp is Q-Gorenstein for all p ∈ Spec(R) \ {m}, we may choose n ∈N so that J (n)p is principal for all

p ∈ Spec(R)\ {m}. Assuming x1, . . . , xi−1 have already been chosen, let Ui be the complement of the set
of minimal primes of x1, . . . , xi−1. Again, U−1

i J (n) is principal (as U−1
i R is a semilocal domain, every

locally principal ideal is principal by [Kaplansky 1974, Theorem 60]), so we can choose xi ∈ Ui and
ai ∈ J (n) so that J (n)xi = ai Rxi and xn

i J (n) ⊆ ai R. Continuing in this manner gives a system of parameters
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x1, . . . , xd of R with x1 ∈ J , and a sequence of elements a3, . . . , ad ∈ J (n) so that xn
i J (n) ⊆ ai R for

each i = 3, . . . , d. For fixed e ∈ N and t � 0, we have from Corollary 6.6 and repeated application of
Lemma 6.7(ii) for xd , . . . , x3 and then Lemma 6.7(i) for x2 that

I F-sig
e = ((J [p

e
], x tpe

2 , . . . , x tpe

d−1, x tpe

d ) : (x (t−1)pe

2 · · · x (t−1)pe

d−1 x (t−1)pe

d δ pe
))

⊆ ((J (p
e), x tpe

2 , . . . , x tpe

d−1, x tpe

d ) : (x (t−1)pe

2 · · · x (t−1)pe

d−1 x (t−1)pe

d δ pe
))

⊆ ((J (p
e), x tpe

2 , . . . , x tpe

d−1, x2pe

d ) : (xn
1 x (t−1)pe

2 · · · x (t−1)pe

d−1 x pe

d δ
pe
))

...

⊆ ((J (p
e), x tpe

2 , x2pe

3 , . . . , x2pe

d ) : (x (d−2)n
1 x (t−1)pe

2 x pe

3 · · · x
pe

d δ
pe
))

= ((J [p
e
], x2pe

2 , x2pe

3 , . . . , x2pe

d ) : (x (d−2)n
1 x pe

2 x pe

3 · · · x
pe

d δ
pe
))

= (((J [p
e
], x2pe

2 , . . . , x2pe

d ) : (x pe

2 · · · x
pe

d δ
pe
)) : x (d−2)n

1 ), (16)

so setting I = (J, x2
2 , . . . , x2

d) and x = x2 · · · xdδ gives s(R)= eHK(I )− eHK((I, x)) using Lemma 4.13
(with Ie = ((J [p

e
], x2pe

2 , . . . , x2pe

d ) : (x pe

2 · · · x
pe

d δ
pe
)), Je = I F-sig

e , and c = x (d−2)n
1 ).

For the final statement, since (I F-sig
e )[p

e′
]
⊆ I F-sig

e+e′ for all e, e′ ∈ N, it follows from (16) that

0 6= x (d−2)n
1 ∈

⋂
e′∈N

(I [p
e+e′
]
: (x pe

I F-sig
e )[p

e′
])

so that x pe
I F-sig
e ⊆ (I [p

e
])∗ or I F-sig

e ⊆ ((I [p
e
])∗ : x pe

) as claimed. In particular, if R is weakly F-regular,
we have that I F-sig

e ⊆ ((I [p
e
]) : x pe

) and equality follows from Lemma 6.1. �

One can also use Theorem 6.3 to show that the length criteria in Corollaries 5.7 and 5.8 also determine
the F-signatures in those settings.

Corollary 6.9. Let (R,m, k) be a complete F-finite local domain of dimension d. Let a⊆ R be a nonzero
ideal and ξ ∈R≥0. Suppose that {Jt }t∈N is a descending chain of irreducible ideals cofinal with the powers
of m, and δt ∈ R generates the socle of R/Jt . Then

s(R, aξ )= lim
t→∞

lim
e→∞

(1/ped)`R · (R/(J
[pe
]

t : adξ(p
e
−1)eδ

pe

t )).

Proof. It is straightforward to check for each e ∈ N that

I a
ξ

e = (x ∈ R | φ(x1/pe
) ∈m for all φ ∈ Caξ

e )

= (x ∈ R | (xy)1/pe
R ⊆ R1/pe

is not split for any y ∈ adξ(p
e
−1)e),

and it follows that I a
ξ

e =
∑

t∈N I a
ξ

t,e where I a
ξ

t,e = (J
[pe
]

t : δ
pe

t ad(p
e
−1)ξe) for t, e ∈ N. Choosing an element

0 6= c ∈ R such that cadξ(p
e+1
−1)e
⊆ (adξ(p

e
−1)e)[p] for all e ∈N as in the proof of Theorem 4.11, we have

that m[p
e
]
⊆ I a

ξ

t,e, c((I a
ξ

t,e)
[p])⊆ I a

ξ

t,e+1, and I a
ξ

t,e ⊆ I a
ξ

t+1,e for all t, e ∈N. The result now follows immediately
from Theorem 6.3 as we know s(R, aξ )= lime→∞(1/ped)`R(R/I a

ξ

e ). �
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Corollary 6.10. Let (R,m, k) be a complete F-finite local normal domain of dimension d. Suppose
{Jt }t∈N is a descending chain of irreducible ideals cofinal with the powers of m, and δt ∈ R generates
the socle of R/Jt . If 1 is an effective Q-divisor on Spec(R), then s(R,1)= limt→∞ lime→∞(1/ped)`R ·

(R/(J [p
e
]

t R(d(pe
− 1)1e) : δ pe

t )).

Proof. Again it is straightforward to check for each e ∈ N that

I (R,1)e = (x ∈ R | φ(x1/pe
) ∈m for all φ ∈ C(R,1)e )

= (x ∈ R | (x)1/pe
R ⊆ (R(d(pe

− 1)1e))1/pe
is not split),

and it follows that I (R,1)e =
∑

t∈N I (R,1)t,e where I (R,1)t,e = (J [p
e
]

t R(d(pe
− 1)1e) : δ pe

t ) for t, e ∈ N.
Choosing an element 0 6= c ∈ R so that divR(c) ≥ pd1e as in the proof of Theorem 4.12, we have
that m[p

e
]
⊆ I (R,1)t,e , c((I (R,1)t,e )[p])⊆ I (R,1)t,e+1 , and I (R,1)t,e ⊆ I a

ξ

t+1,e for all t, e ∈ N. The result now follows

immediately from Theorem 6.3 as we know s(R,1)= lime→∞(1/ped)`R(R/I (R,1)e ). �

Lastly, note that Theorem 6.3 can also be applied outside the context of descending chains of irreducible
ideals, and gives yet another perspective on the original proof of the existence of the F-signature.

Corollary 6.11 [Tucker 2012, Proof of Theorem 4.9]. Let (R,m, k) be a complete F-finite local do-
main of dimension d and I F-sig

e = (r ∈ R | φ(r1/pe
) ∈m for all φ ∈ HomR(R1/pe

, R)). Then s(R) =
limt→∞(1/ptd)eHK(I

F-sig
t ).

Proof. Let

It,e =

{
(I F-sig

t )[p
e−t
], t < e,

I F-sig
e , t ≥ e.

It is easily checked that m[p
e
]
⊆ It,e, I [p]t,e ⊆ It,e+1, and It,e⊆ It+1,e for all t, e ∈N using that m[p

e
]
⊆ I F-sig

e

and (I F-sig
e )[p] ⊆ I F-sig

e+1 for all e ∈ N. The result now follows immediately from Theorem 6.3, as we have

s(R)= lim
e→∞

1
ped `R(I F-sig

e )= lim
e→∞

lim
t→∞

1
ped `R(R/It,e)= lim

t→∞
lim

e→∞

1
ped `R(R/It,e)

= lim
t→∞

lim
e→∞

1
ped `R(R/(I

F-sig
t )[p

e−t
])= lim

t→∞

1
ptd eHK(I

F-sig
t )

as desired. �

7. Open questions

In this section, we collect together some information on the important questions left unanswered in this
article. We have seen that Hilbert–Kunz multiplicity and the F-signature enjoy semicontinuity properties
for F-finite rings; it is not difficult to extend these results to rings which are essentially of finite type over
an excellent local ring. More generally, however, this raises the following question.

Question 7.1. If R is an excellent domain that is not F-finite or essentially of finite type over an excellent
local ring, do the Hilbert–Kunz multiplicity and F-signature determine semicontinuous R-valued functions
on Spec(R)?
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In the case of F-signature, a positive answer would imply the openness of the strongly F-regular
locus for such a ring. Note that this question would seem closely related to the existence of (locally and
completely stable) test elements for excellent domains, which also remains unanswered.

Perhaps the most important question left open in this article regarding the relationship between Hilbert–
Kunz multiplicity and F-signature is the following, which (in light of the results of the previous section)
is attributed to Watanabe and Yoshida [2004].

Question 7.2. Let (R,m, k) be a complete local F-finite normal domain. Do there exist m-primary ideals
I ( J so that eHK(I )− eHK(J )= s(R)?

For any ring such that Question 7.2 has a positive answer, it that weak F-regularity is equivalent to
strong F-regularity by the length criterion for tight closure [Hochster and Huneke 1994, Theorem 8.17]
(Corollary 5.6 above).

We see from Corollary 6.8 that Question 7.2 is true provided R is Q-Gorenstein on the punctured
spectrum. When in addition R is weakly F-regular, the stronger condition below is satisfied as well.

Question 7.3. Let (R,m, k) be a complete local F-finite normal domain. Do there exist m-primary ideals
I ( J so that

frkR(R1/pe
)

[k1/pe
: k]
=
`R(R/I [p

e
])− `R(R/J [p

e
])

`R(J/I )

for all e ∈ N?

The importance of Question 7.3 stems from the observation that it allows one to apply the results
of Huneke, McDermott, and Monsky [Huneke et al. 2004]; for an m-primary ideal I ⊆ R, they show
the existence of a constant α(I ) ∈ R so that `(R/I [p

e
]) = eHK(I )ped

+ α(I )pe(d−1)
+ O(pe(d−2)). In

other words, Hilbert–Kunz functions in normal local F-finite domains are polynomial in pe to an extra
degree. In particular, for any ring such that Question 7.3 has a positive answer, so also does the following
question.

Question 7.4. If (R,m, k) is a complete local F-finite normal domain, when does there exist a positive
constant α(R) ∈ R so that frkR(R1/pe

)/[k1/pe
: k] = s(R)ped

+α(R)pe(d−1)
+ O(pe(d−2))?

Finally, we have tried to emphasize the applicability of our techniques to the settings of divisor and
ideal pairs throughout, and the questions above are readily generalized to those settings. Moreover, it
may well be the case that answers to the questions above require the use of such pairs (particularly to
remove Gorenstein or Q-Gorenstein hypotheses). In this direction, and in view of [Schwede 2011], one
could imagine a positive and constructive answer to the question below could prove quite useful.

Question 7.5. Suppose (R,m, k) is an F-finite local normal domain and X = Spec(R). For each ε > 0,
does there exist an effective Q-divisor 1 on X such that K X +1 is Q-Cartier with index prime to p and
so that s(R)− s(R,1) < ε? In case R is not local, can 1 be chosen globally to have this property locally
over Spec(R)?
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