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Regular pairs of quadratic forms
on odd-dimensional spaces in characteristic 2

Igor Dolgachev and Alexander Duncan

We describe a normal form for a smooth intersection of two quadrics in even-dimensional projective
spaces over an arbitrary field of characteristic 2. We use this to obtain a description of the automorphism
group of such a variety. As an application, we show that every quartic del Pezzo surface over a perfect
field of characteristic 2 has a canonical rational point and, thus, is unirational.

1. Introduction

Let (q0, q1) be a pair of quadratic forms on a vector space E over a field k. The common zeros of the
pair define a subvariety X = V (q0, q1) in the projective space |E | = P(E∨) of lines in E . We say the
pair is regular if the variety X is smooth and of codimension 2 in |E |. One may also consider the pencil
of quadrics spanned by V (q0) and V (q1); the pencil is regular if X is smooth.

When k = C, the field of complex numbers, a classical result due to A. Cauchy and C. Jacobi (see
[Muth 2016]) states that any regular pair can be simultaneously diagonalized. When q0 is nondegenerate,
this means that we may find a basis x1, . . . , xn in the dual space E∨ such that

q0 =

n∑
i=1

x2
i , q1 =

n∑
i=1

ai x2
i .

Here the coefficients a1, . . . , an are distinct roots of the discriminant polynomial δ(t)= det(t M0−M1),
where M0 and M1 are symmetric matrices representing the polar symmetric bilinear forms associated
to q0 and q1. When the pair is not necessarily regular, the classification was carried out by K. Weier-
strass [Weierstrass 1868] by considering the elementary divisors of t M0−M1. Over an arbitrary field k of
characteristic not 2, pairs of quadratic forms were classified by L. Kronecker and L. Dickson. A modern
exposition of their theory can be found in [Waterhouse 1976] (see also [Leep and Schueller 1999]).

Unsurprisingly, in characteristic p = 2 the situation is more complicated. The main reason for this
is that one can no longer identify quadratic forms with symmetric bilinear forms. Even worse, when
n = dim(E) is odd the determinant of t M0−M1 is identically zero. One may still consider symmetric
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and alternating bilinear forms in this case (see, for example, [Waterhouse 1977; Leep and Schueller 1999;
Ishitsuka and Ito 2015]), but the connection with quadratic forms is more tenuous.

The geometry of the intersection X of two quadrics differs drastically depending on whether n is even
or odd. Examples when n is even include quartic elliptic curves in P3 and quadratic line complexes in P5.
When n is odd, the first interesting example is a quartic del Pezzo surface in P4 isomorphic to a blowup
of 5 points in the projective plane.

When n = 2m is even and k=C, one can associate to X its intermediate Jacobian J (X). A theorem of
Luc Gauthier and André Weil [Gauthier 1954–55] asserts that J (X) is isomorphic to the Jacobian variety
of a hyperelliptic curve C of genus m− 1 with equation y2

+ δ(t)= 0. Over an algebraically closed field
of characteristic p 6= 2, the Jacobian is isomorphic to the variety of (m− 2)-planes in X (see also [Wang
2013]). If p = 2 and n is even, one should use the Pfaffian P(t) defined so that P(t)2 = δ(t). Under the
condition that the roots α1, . . . , αm of P(t) are distinct, U. Bhosle [1990] provides a normal form

q0 =

m∑
i=1

xi xm+i , q1 =

m∑
i=1

(ai x2
i +αi xi xm+i + bi x2

m+i )

where a1, . . . , am and b1, . . . , bm are in k. The variety of (m−2)-planes is isomorphic to the Jacobian of
a hyperelliptic curve in this case as well.

This paper is concerned with pairs of quadratic forms, and their corresponding pencils, in the case
where k has characteristic 2 and n = dim(E) = 2m + 1 is odd. As mentioned above, the discriminant
polynomial is identically zero in this case. Instead, we use the half-discriminant introduced by M. Kneser
[2002], which we recall in Section 2. This is a homogeneous polynomial of degree n

1(t0, t1) := 1
2 disc(t0q0+ t1q1)= a0tn

0 + a1tn−1
0 t1+ . . .+ antn

1 (1-1)

in k[t0, t1]. This polynomial behaves like the usual discriminant when the characteristic is not 2: the
pencil is regular if and only if the zero subscheme V (1) in P1 is smooth of dimension 0 (we give a
geometric proof; an algebraic proof can be found in [Leep and Schueller 2002]). When k is algebraically
closed, this simply means that 1 6≡ 0 and V (1) consists of n distinct points.

Our first result is the following:

Theorem 1.1. Let (q0, q1) be a regular pair of quadratic forms on a vector space E of dimension
n = 2m+ 1≥ 3 over a field k of characteristic 2. Then there exists a basis (x0, . . . , xm, y0, . . . , ym−1) in
E∨ such that

q0 =

m∑
i=0

a2i x2
i +

m−1∑
i=0

xi+1 yi +

m−1∑
i=0

r2i+1 y2
i , q1 =

m∑
i=0

a2i+1x2
i +

m−1∑
i=0

xi yi +

m−1∑
i=0

r2i y2
i , (1-2)

where the coefficients a0, . . . , an are equal to those of the half-discriminant polynomial (1-1), and
r0, . . . , rn−2 are in k.

To the authors’ surprise, our normal form seems to be new even in the case n = 5 corresponding to
quartic del Pezzo surfaces. At least in retrospect, it can be easily deduced from the classification of pairs
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of alternate bilinear forms (see [Leep and Schueller 1999]). Nevertheless, the existence of the normal
form has the following arithmetic consequence particular to the case of characteristic 2.

Corollary 1.2. Let X be a smooth complete intersection of two quadrics in P2m defined over a perfect
field k of characteristic 2. If dim(X)= 2 (resp. > 2), then X is unirational (resp. rational) over k.

(Note that the unirationality of del Pezzo surfaces of degree 4 is already known for finite fields; see
[Manin and Tsfasman 1986].)

Following [Reid 1972], a generator is a linear subspace of X of dimension m. Over the algebraic
closure, there are exactly 22m generators. Following [Skorobogatov 2010], one says X is quasisplit if it
contains a generator, and X is split if all 22m generators are defined over the base field.

Theorem 1.3. A regular pair (q0, q1) has quasisplit base locus X if and only if the pair has a normal
form such that r0 = · · · = rn−2 = 0. In particular, this is always possible when k is algebraically closed.

If an 6= 0, we assign to the coefficients (r0, . . . , rn−2) an element r of the k-algebra A = k[T ]/( f (T ))
where f (T ) is the dehomogenization of 1 with respect to T = t1/t0. This element, which we call the
r-invariant, determines the normal form (it can also be defined when an = 0, see Remark 4.8). An
isomorphism between pairs (q0, q1), (q ′0, q ′1) of quadratic forms is an element g ∈ GL(E) such that

q ′0(v)= q0(gv) and q ′1(v)= q1(gv)

for all v ∈ E .

Theorem 1.4. Suppose two regular pairs (q0, q1) and (q ′0, q ′1) have the same half-discriminant polynomial
and have normal forms with invariants r and r ′, respectively. The pairs are isomorphic if and only if

r ≡ r ′ mod k+℘(A)

where ℘(s)= s2
+ s is the Artin–Schreier map A→ A.

Denote by Aut(q0, q1) the group of automorphisms of the pair (q0, q1). When X is split, the group of
automorphisms Aut(q0, q1) of a regular pair (q0, q1) is isomorphic to an elementary abelian 2-group of
rank 2m, which acts simply transitively on the set of generators of X. In general, the set of generators
can be viewed as an Aut(q0, q1)-torsor.

Theorem 1.5. Let ℘(s)= s2
+s be the Artin–Schreier map A→ A. There is an isomorphism between the

algebra A/(℘ (A)+k) and the Galois cohomology group H 1(k,Aut(q0, q1)), which takes the r-invariant
to the class of the Aut(q0, q1)-torsor of generators.

This theorem provides a Galois-cohomological interpretation of Theorems 1.3 and 1.4 in the vein
of [Skorobogatov 2010]. Namely, the isomorphism class of a regular pair is determined by its half-
discriminant polynomial 1 and its torsor of generators. Similarly, the base locus X is determined up to
isomorphism by a smooth subscheme V (1) of P1 and the torsor of generators; the variety X is quasisplit
if and only if the torsor is trivial.
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One of the more concrete motivations of this paper is to study the possible groups of automorphisms
of a quartic del Pezzo surface over an algebraically closed field of characteristic 2 (in order to study the
conjugacy classes of finite subgroups of the plane Cremona group over fields of positive characteristic).

Recall that a reflection is an involution of a vector space (or a projective space) which leaves pointwise-
fixed a hyperplane. As a corollary of our main results about the classification of pairs of quadratic forms
we obtain the following.

Theorem 1.6. Let X = V (q0, q1) be a smooth complete intersection of two quadrics in P2m over an
algebraically closed field k of characteristic 2. Then

Aut(X)= Aut(q0, q1)oG,

where Aut(q0, q1) is generated by reflections in canonical bijection with the points of V (1) and G is
isomorphic to the subgroup of Aut(P1) which leaves invariant the points V (1).

This extends to characteristic 2 a classical result on automorphisms of quartic del Pezzo surfaces (see
[Dolgachev 2012]). There is a natural action of the Weyl group W (Dn)∼= 22m oSn on the cohomology
classes of the generators. The automorphism group Aut(X) is naturally a subgroup of the Weyl group
W (Dn) where Aut(q0, q1)∼= 22m and G⊂Sn . Thus, as with quartic del Pezzo surfaces, the automorphism
group is completely determined by its action on the generators.

In writing this paper, the authors tried to resolve a tension between two likely audiences: geometers
who only work over algebraically closed fields, and algebraists without a strong background in geometry.
Hopefully, the paper will appeal to both audiences and we occasionally supply multiple proofs to facilitate
this. For example, while Theorem 1.3 is an immediate consequence of Theorem 1.4, we provide a more
direct geometric proof in Section 4B. Also, while Theorem 1.4 is used in the proof of Theorem 1.6, a
geometric description of the reflection group R can be found in Section 7B.

The remainder of the paper is structured as follows. In Sections 2 and 3 we establish some preliminaries
on pencils of quadratic forms in characteristic 2. In Section 4, we prove Theorem 1.1, Corollary 1.2, and
Theorem 1.3. In Section 5, we define the r-invariant and prove Theorem 1.4. In Section 6, we discuss
possible interpretations for what the r -invariant represents. In Section 7, we determine the automorphism
group of a pair of quadratic forms and use this to prove Theorems 1.5 and 1.6. Finally, in Section 8, we
make some observations about the cohomology of smooth intersections of smooth quadrics extending
results from M. Reid’s thesis [1972] to the case where the characteristic is 2.

2. Preliminaries on quadratic forms

Throughout, k is a field of characteristic 2 and E is a k-vector space of dimension n.

2A. Alternating bilinear forms. Recall that a bilinear form b : E × E→ k is alternating if b(v, v)= 0
for all v ∈ E . We may view b as an element in

∧2 E∨. The radical rad(b) of an alternating bilinear form b
is the kernel of the induced map E→ E∨. A form b is nondegenerate if its radical is trivial. The corank
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of a bilinear form is dim(rad(b)). Every alternating bilinear form is an orthogonal sum of its radical and
a nondegenerate alternating bilinear form.

Every nondegenerate alternating bilinear form has even dimension n = 2m and has a symplectic basis
v1, . . . , vm, w1, . . . , wm satisfying the relations

b(wi , wj ) = 0, b(vi , vj ) = 0, b(wi , vj ) = δi j ,

for 1 ≤ i, j ≤ m. A subspace W of b is totally isotropic if b(v,w) = 0 for all v,w ∈ W. Note that
v1, . . . , vm and w1, . . . , wm are bases for complementary totally isotropic subspaces of E . Conversely,
for any pair of complementary totally isotropic subspaces of E , there exists a basis for each subspace
such that the union is a symplectic basis for E .

When n is even (resp. odd), corank(b) is even (resp. odd). Thus, an alternating bilinear form b on a
vector space of odd dimension n = 2m+ 1 is always degenerate.

Proposition 2.1. Let b be an alternating bilinear form on a vector space E of odd dimension n = 2m+ 1.
Up to a choice of volume form for E , there is a canonical vector ω∈ E which spans rad(b) if corank(b)= 1
and is 0 otherwise. Choosing a basis of e1,...,en in E such that e1 ∧ ··· ∧ en 7→ 1 under the volume form,
we have

ω = (Pf1, . . . ,Pfn), (2-1)

where Pfi is the Pfaffian of the principal submatrix of the matrix of b obtained by deleting the i-th row
and the i-th column.

Proof. It is obvious that such a vector exists; the point is to construct it canonically and find an explicit
formula for its coordinates.

Let us view b ∈
∧2 E∨ as an element of the divided power algebra of E∨. We may thus consider

the m-th divided power b(m) ∈
∧2m E∨. (If k was of characteristic zero, we would have the formula

b(m) = (b∧ · · · ∧ b)/m!.) Under the isomorphism
∧2m E∨ ∼= E defined by the volume form, b(m) maps

to a vector ω in E . We have ω =
∑n

i=1 Pfi ei in coordinates. The rank of an alternating matrix is equal
to the size of the largest nonzero Pfaffian of a principal submatrix of even size. If the rank is equal to
n− 1, then the nullspace is generated by the vector (2-1). All of these well-known facts can be found in
[Buchsbaum and Eisenbud 1977]. �

Note that without a choice of volume form, ω is well defined up to a multiplicative constant. Thus, the
corresponding point in the projective space |E | does not depend on this choice.

2B. Quadratic forms. Recall that a quadratic form q is an element of the symmetric square S2(E∨) of
the dual space E∨. When q 6= 0, one obtains a quadric hypersurface V (q) in the projective space |E |.
The quadratic form is called nondegenerate if V (q) is a smooth hypersurface.

Equivalently, q can be viewed as a function E→ k such that

(1) q(cv)= c2q(v) for all c ∈ k, v ∈ E , and

(2) b(v,w)= q(v+w)− q(v)− q(w) is a symmetric bilinear form.
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The bilinear form b is called the associated polar bilinear form and since char(k)= 2, we observe that b
is alternating. The corank of a quadratic form q is simply the corank of the associated bilinear form.

A nonzero vector v ∈ E is called a singular vector of q if q(v) = 0 and v ∈ rad(b). In geometric
language, this means the corresponding point [v] = kv in |E | is a singular point of the quadric V (q).

A quadratic form is totally singular if its associated bilinear form is trivial; this is equivalent to V (q)
being singular at every geometric point. A quadratic form q is diagonalizable if and only if it is totally sin-
gular. Moreover, if q is diagonalizable, then it is diagonal relative to any basis. A subspace W of E is totally
isotropic (resp. totally singular) with respect to q if the restricted form q|W is trivial (resp. totally singular).

The discriminant disc(q) of a quadratic form is the determinant of the matrix of the polar bilinear form
b. If n is even, then a quadratic form is nondegenerate if and only if disc(q) 6= 0. When n is odd, disc(q)
is always zero since the polar bilinear form has odd corank; thus, we consider another invariant.

We define the half-discriminant of q as

1
2 disc(q) := q(ω)

where ω is the canonical vector from Proposition 2.1. In coordinates, if

q =
∑

1≤i≤ j≤n

ai j xi x j

for a basis x1,...,xn for E∨, then

1
2 disc(q)=

∑
1≤i≤ j≤n

ai j Pfi Pf j . (2-2)

Since each expression Pfi is a homogeneous polynomial of degree m in the coefficients {ai j }, the half-
discriminant is either zero or a homogeneous polynomial of degree n = 2m+ 1 in the coefficients {ai j }.
Recall that ω is only defined up to a multiplicative constant which depends on the choice of volume form.
If we do not make such a choice, then 1

2 disc(q) is only well defined modulo nonzero squares in k.

Proposition 2.2. For n odd, 1
2 disc(q) 6= 0 if and only if V (q) is smooth.

Proof. If dim rad(b) > 1, then the associated projective subspace intersects the quadric Q = V (q); in this
case Q is not smooth, ω = 0, and 1

2 disc(q)= 0. Otherwise, ω spans rad(b) and Q is singular if and only
if q(ω)= 0. �

Remark 2.3. The half-discriminant was first introduced by Kneser. Our definition is equivalent to that of
[Kneser 2002, p. 43]. Indeed, both polynomials define the same reduced hypersurface in the projective
space of the coordinates ai j (they vanish precisely when V (q) is singular). Their degrees are both equal to
n, hence they differ by a constant factor. It remains only to compare their values on a particular quadratic
form to see that they are equal.

Remark 2.4. The half-discriminant was known to Grothendieck as the corrected discriminant, as sug-
gested in his unpublished notes.1 It is also known as the half-determinant (see [Leep and Schueller 2002]),

1See Appendix 17.16 of http://www.jmilne.org/math/Documents/EGA-V.pdf.

http://www.jmilne.org/math/Documents/EGA-V.pdf


Regular pairs of quadratic forms on odd-dimensional spaces in characteristic 2 105

or the determinant (see Remark 13.8 of [Elman et al. 2008]). The notion of the half-discriminant of a
quadratic form can be extended to hypersurfaces of arbitrary degree; see [Demazure 2012].

Example 2.5. If n = 3, we have

1
2 disc(q)= a11a2

23+ a22a2
13+ a33a2

12+ a12a23a13.

The locus of zeros V
( 1

2 disc(q)
)

in |S2 E∨| ∼= P5 is a cubic hypersurface singular along the plane of
double lines a12 = a13 = a23 = 0.

If n = 5, then

1
2 disc(q)= (a11a2

23a2
45+ · · · )+ (a

2
12a34a45a35+ · · · )+ (a12a23a34a45a15+ · · · ).

3. Pencils of quadratic forms

For the rest of the paper, we assume that the k-vector space E has dimension n = 2m+ 1 for a positive
integer m.

Let U be a 2-dimensional k-vector space. A pencil of quadratic forms is an injective linear map

q :U → S2 E∨.

We use subscript notation qu to denote the image of u∈U in order to avoid confusion with the interpretation
of a quadratic form as a map E → k. We will also identify q with its image considering a pencil as
a two-dimensional linear subspace of S2 E∨. The pencil q defines a one-dimensional linear system of
quadric hypersurfaces in |E | (also called a pencil). The corresponding rational map |E | 99K |U∨| has
base subscheme Bs(q) equal to the intersection of quadrics V (qu) over all u ∈U.

We may view the map q as an element of U∨⊗ S2 E∨. Selecting a basis (u0, u1) for U with the dual
basis (t0, t1), we can view q as an element t0q0+ t1q1 ∈U∨⊗ S2 E∨, where

q0 = qu0, q1 = qu1

define a pair of quadratic forms (q0, q1) which form a basis of the pencil. We have Bs(q)= V (q0, q1)=

V (q0)∩ V (q1). Conversely, a pair of nonproportional quadratic forms gives rise to a pencil of quadratic
forms q (along with a choice of basis for U ).

Given a pencil of quadratic forms we obtain an associated pencil of alternating bilinear forms

b :U →
∧2 E∨

by setting bu as the associated bilinear form of qu for each u ∈U. Note that, unlike q, the map b may not
be injective. We may view b as an element of U∨⊗

∧2 E∨.

3A. The radical map and the radical subspace. Fix a volume form on E . For each alternating bilinear
form bu there exists a canonical vector ω as in Proposition 2.1. Thus, we obtain a function

� :U → E (3-1)
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which is defined by polynomials of degree m in view of (2-1). Thus, abusing notation, we may view �

as an element of E ⊗ SmU∨. We call the map (3-1) the radical map of the pencil. As u varies over U,
the �(u) span a subspace W of E which we call the radical subspace of E . Equivalently, � gives rise
to a k-linear map

(SmU∨)∨→ E (3-2)

whose image equals the radical subspace W. (Note that we should not identify (SmU∨)∨ and SmU in
characteristic 2).

We define a function 1 :U → k via the composition

1(u)= qu(�(u))

for u ∈U. We call 1 the half-discriminant of the pencil q since 1(u) is the half-discriminant of each qu .
Since q can be viewed as a linear combination of quadratic forms with linear coefficients in U∨ and � is
defined by polynomials of degree m in U∨, 1 is an element of Sn(U∨). After choosing a basis (t0, t1) in
U∨, it can be identified with a homogeneous polynomial of degree n = 2m+ 1 in t0, t1.

3B. Regular pencils. We say a pencil (or pair) is regular if the base locus X =Bs(q) is a smooth variety
over k.

Remark 3.1. We borrowed the term regular from the classical terminology of regular linear systems of
quadric hypersurfaces. It should not be confused with the regularity of the base scheme Bs(q) since, over
a nonperfect field k, the latter could be a regular scheme but not smooth.

From Theorem 5.1 of [Leep and Schueller 2002], we know that a pencil is regular if and only if 1 is
nonzero and has n distinct linear factors over the algebraic closure. In other words:

Theorem 3.2. A pencil q is regular if and only if , over an algebraic closure of k, there are exactly n
degenerate quadrics in |q|.

We will need the following consequence of this theorem:

Corollary 3.3. If q is a regular pencil, then every nonzero quadratic form in the pencil has corank 1.

Proof. It suffices to assume k is algebraically closed. Suppose the corank of some nonzero q in q is > 1.
Then the radical rad(b) of the associated bilinear form b is of dimension ≥ 3. This implies that |rad(b)|
contains a plane intersecting X nontrivially. This shows that V (q) has a singular point x in X. The base
locus X is smooth, so the tangent space of X at x is of codimension 2. We have X = V (q)∩ V (q ′) for
some q ′ ∈ q. Thus, the tangent spaces of V (q) and V (q ′) at x intersect along a subspace of codimension 2.
This implies that V (q) is smooth at x , a contradiction. �

3C. Alternate proof of Theorem 3.2. In the remainder of this section, we present a geometric proof
that works in arbitrary characteristic which we believe is of independent interest. It is not necessary for
the rest of the paper. Note that Theorem 3.2 is well known when the characteristic of k is odd. Unlike



Regular pairs of quadratic forms on odd-dimensional spaces in characteristic 2 107

the situation for the rest of the paper, in this section we assume k is algebraically closed of arbitrary
characteristic and that the integer n is odd only if the characteristic is even.

Let D be the subvariety of singular quadrics in S2 E∨ (this is just defined by the discriminant or
half-discriminant). Let D0 be the open subvariety of D consisting of quadrics which have a unique isolated
singular point (an open condition since it is determined by the rank of the matrix of the associated bilinear
form).

Lemma 3.4. Let L be a linear subspace of S2 E∨ of dimension r > 0. Then the tangent space of D∩ L at
a point q ∈ D0 ∩ L with singular vector v0 ∈ E is the linear space {q ∈ L : q(v0)= 0}.

Proof. Let

D̃= {(q, v) ∈ S2 E∨ \ {0}× E \ {0} : [v] ∈ Sing(V (q))}.

Consider the maps p1 : D̃→ S2 E∨ and p2 : D̃→ E obtained from the projections. For any v∈ E\{0}, let Fv
be the closure of p1(p−1

2 (v)) in S2 E∨. By choosing a basis in E such that v= (1, 0, . . . , 0), the subvariety
Fv consists of quadratic forms that do not contain the first variable. Thus, Fv is a linear subspace of
S2 E∨ of codimension n. In particular, D̃ is a fibration over E \ {0} with fibers isomorphic to linear spaces
of the same dimension. It follows that D̃ is smooth and of dimension n+ dim S2 E∨− n = dim S2 E∨.

The variety p2(p−1
1 (q)) is, set-theoretically, the linear space of singular vectors. Passing to the map

of the associated projective varieties π : |D̃| → |S2 E∨|, we expect that the map π induces a birational
isomorphism with the subvariety |D0| of quadrics with isolated singular point.

We will compute the differential of the map p1 : D̃→ S2 E∨ at a point (q0, v0) represented by a
quadratic form q0 with one-dimensional space of singular vectors generated by v0.

Let t1, . . . , tn be coordinates in E and let Ai j be coordinates in S2 E∨ corresponding to the coefficients
of a quadratic form. Then D̃ is given by n+ 1 equations:

Fk =

n∑
j=1

Bk j tj = 0, k = 1, . . . , n, (3-3)

Fn+1 =
∑

1≤i≤ j≤n

Ai j ti tj = 0, (3-4)

where Bi i = 2Ai i and Bi j = B j i = Ai j if i < j.
Let q0 =

∑
1≤i≤ j≤n ai j ti tj and v0 = (c1, . . . , cn). The embedded tangent space Tq0,v0(D̃) of D̃ is a

subspace of Tq0(S
2 E∨)⊕ Tv0(E)= S2 E∨⊕ E given by a system of linear equations in variables ti , Ai j

with matrix of coefficients [M1 M2](ai j , ci ), where

M1 =

(
∂Fk

∂tj

)
1≤k≤n+1
1≤ j≤n

and M2 =

(
∂Fk

∂Ai j

)
1≤k≤n+1
1≤i≤ j≤n

. (3-5)

Computing the partial derivatives, we find that Tq0,v0(D̃) consists of pairs (q, v) satisfying the conditions

b0(v,w)+ b(v0, w)= 0, b0(v0, v)+ q(v0)= q(v0)= 0, (3-6)
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for all w ∈W, where b and b0 are the associated bilinear forms of q and q0.
The kernel of the differential of the map D̃→ D, (q, v) 7→ q obtained from the projection can be

identified with the linear space of vectors v ∈ E such that b0(v,w)= 0 for all w ∈ E ; this is the radical
of the bilinear form b0. The map

T(q0,v0)D̃→ {q : q(v0)= 0}, (q, v)→ q

is linear and has kernel rad(b0). Since the tangent space of D0 at q0 is isomorphic to the quotient space
T(q0,v0)D̃/ rad(b0), we obtain that

Tq0D= {q ∈ S2 E∨ : q(v0)= 0}.

Note that rad(b0) is one-dimensional (this does not hold when n is even and k has characteristic 2).
This is equal to the dimension of the fiber p−1

1 (q0). This shows that the differential of p1 is of maximal
rank, and hence π is an isomorphism over |D0|. Now let L ⊂ S2 E∨ be a linear nonzero subspace of
S2 E∨, then the variety of quadratic forms in L with one-dimensional space of singular vectors is equal to
L ∩D0. We have

Tq0(L ∩D)= Tq0 L ∩ Tq0D= L ∩ Tq0D= {q ∈ L : q(v0)= 0}.

This proves the assertion. �

Proof of Theorem 3.2. We may assume k is algebraically closed. Consider L := q(U ), the two-dimensional
linear subspace of S2 E∨. First, we claim that x is a singular point of X if and only if x is a singular
point of Q = V (q) for some q ∈ L . The tangent space Tx X is the intersection of the tangent spaces
Tx Q ∩ Tx Q′, for any two distinct quadrics Q, Q′ from L . If x is a singular point of Q, then Tx Q = |E |.
Thus codim Tx X ≤ 1 and x is a singular point of X. If x is a singular point of X, then either Tx Q= |E | for
some quadric Q, or Tx Q= Tx Q′ for any two quadrics Q, Q′ from L . In the first case, x is a singular point
of Q. In the latter case, if b, b′ are the corresponding bilinear forms, then the tangent spaces are defined
by linear forms b(v,−) and b′(v,−) where v ∈ E represents x . Since the linear forms are proportional
by assumption, some nontrivial linear combination (λb+µb′)(v,−) is trivial. The quadric corresponding
to that linear combination is therefore singular at x . This establishes the claim.

As an immediate consequence, if a quadric Q in L has corank > 1, then X is not smooth; indeed, in
this case, the singular locus of Q has nontrivial intersection with some other quadric in the pencil since it
is positive dimensional.

Assume q is regular; in other words, that X is smooth. Suppose q0 is a degenerate quadratic form in L
with corresponding quadric Q0. Since X is smooth, Q0 has corank ≤ 1, so q0 must be in D0. Let v0 ∈ E
represent the unique singular point |v0| of Q0. Since |v0| /∈ X, the space

|{q ∈ L : q(v0)= 0}|
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is just the point |q0|. By Lemma 3.4, we conclude that the tangent space of |D ∩ L| at the point |q0| is
0-dimensional. Thus |L| and |D| meet transversally at each intersection point and |L ∩ D| consists of
exactly n distinct points as desired.

Now, suppose |L ∩ D| consists of exactly n distinct points. This is equivalent to |L| intersecting
transversally the hypersurface |D|. From the proof of Lemma 3.4, the differential of D̃→ D at a point
(q, v) has kernel equal to the radical of the associated bilinear form b. The dimension of this radical is
minimal precisely for D0; so D0 is the smooth locus of D. Since |L| intersects |D| transversally at every
intersection point, in fact |L ∩D| = |L ∩D0|. If q0 ∈ L ∩D, then, by Lemma 3.4, |{q ∈ L : q(v0)= 0}| is
a single point. Thus, the unique singular point of the quadric Q0 corresponding to q0 does not lie in X.
Since none of the singular points of the quadrics lie in X, we conclude from above that X is smooth. �

4. Normal forms

4A. Kronecker basis. In this section, we prove Theorem 1.1 and discuss some of its consequences. At
least in retrospect, the theorem follows quite easily using known techniques regarding pairs of bilinear
forms going back to Kronecker. Throughout, E is a vector space of dimension n = 2m+ 1≥ 3 over a
field of characteristic 2.

Given a pair of alternating bilinear forms (b0, b1) on E , we say that a direct sum E = E1 ⊕ E2

is orthogonal if it is orthogonal with respect to both b0 and b1. A pair of alternating bilinear forms
is nonsingular if the corresponding determinant polynomial is nonzero. For a positive integer k, a
basic singular pair is a pair of alternating bilinear forms (b0, b1) such that there exists a basis B =
(w0, . . . , wk, v0, . . . , vk−1) of the underlying vector space such that

b0(wi , wj )= 0, b0(vi , vj )= 0, b0(wi , vj )= δi( j+1),

b1(wi , wj )= 0, b1(vi , vj )= 0, b1(wi , vj )= δi j ,

(4-1)

for all valid i, j. We call a basis B as above a Kronecker basis.

Theorem 4.1. Let (b0, b1) be a pair of alternating bilinear forms on a vector space E. Then E can be
written as an orthogonal direct sum of a nonsingular pair and a set of basic singular pairs.

Theorem 4.1 is a special case of Theorem 3.3(1) of [Leep and Schueller 1999]. The statement and its
proof are essentially due to Kronecker, although his version applies to symmetric bilinear forms in charac-
teristic 6= 2; see Theorem 3.1 of [Waterhouse 1976]. The proof there carries over to the case of alternating
bilinear forms in characteristic 2 as observed before the statement of Theorem 9 of [Waterhouse 1977].

Corollary 4.2. Let (q0, q1) be a regular pair of quadratic forms and let (b0, b1) be the associated pair of
alternating bilinear forms. Then (b0, b1) is a basic singular pair and the vector

�=

m∑
i=0

λm−iµiwi (4-2)

spans rad(λb0+µb1), where wi are basis elements in a Kronecker basis (4-1).
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Proof. By a straightforward calculation (see Lemma 3.2 of [Leep and Schueller 1999]), for a basic singular
pair (b′0, b′1) on a vector space of dimension 2k+ 1, the radical of λb′0+µb′1 is spanned by the vector

�′ =

k∑
i=0

λk−iµiwi .

By Corollary 3.3, any nonzero bilinear form from the family λb0+µb1 has corank 1. Thus there is
exactly one basic singular pair in the decomposition from Theorem 4.1 and its radical is given by �=�′.
It remains only to establish that k = m, and thus there is no nonsingular summand in the decomposition.

The vector � can be viewed as a homogeneous polynomial function U → E of degree m. Thus, if
k < m then in any choice of basis the entries of � must all be divisible by a homogeneous polynomial
g(λ, µ) of positive degree. But 1(u)= qu(�(u)) for all u ∈U, so the half-discriminant would then be
divisible by g(λ, µ)2. This contradicts that the roots of 1 are distinct and so k = m as desired. �

It follows that the map� :U→ E is injective and its image spans the same subspace W as that spanned
by w0, . . . , wm . Since � does not depend on any choice of coordinates, we see that W is canonical.
Any (m + 1)-dimensional totally isotropic subspace of an alternating bilinear form of rank 2m on a
(2m+1)-dimensional space must contain the radical. Since W is the minimal space containing the radical
of the associated bilinear form to every quadratic form in the pencil, we obtain the following2:

Corollary 4.3. The space W spanned by w0, . . . , wm is canonical. It is the unique common (m + 1)-
dimensional totally singular subspace of all quadratic forms in the pencil.

Note that choice of basis w0, . . . , wm is determined by the choice of basis u0, u1 in U (or, equivalently,
the choice of pair (q0, q1) corresponding to the pencil |q|). We also see that a choice of a basis u0, u1 in
U and the canonical isomorphism W with (SmU∨)∨ defines a basis in W equal to the image of the dual
basis to the monomial basis (tm

0 , tm−1
0 t1, . . . , tm

1 ) in SmU∨.
Another consequence of the Kronecker theorem is that the map � :U→ E is equal to the composition

of the map U → (SmU∨)∨→ E , where the second map is injective. This implies that the image of U is
equal to the affine cone over a Veronese curve Rm of degree m in |W | ∼= |(SmU∨)∨| ∼= Pm. Recall that a
Veronese curve in Pm is a smooth rational curve of degree m equal to the image of P1 under a map given
by linearly independent homogeneous polynomials of degree m. By choosing a monomial basis tm−i

0 t i
1 of

such polynomials, it is projectively equivalent to a curve Rm in Pm given by equations expressing the
condition that

rank
(

x0 x1 · · · xm−1

x1 x2 · · · xm

)
= 1. (4-3)

For example, when m = 2, this is a smooth conic in P2. In a coordinate-free way, the Veronese curve is
the image of P1

= |U | in |(SmU∨)∨| under the complete linear system |O|U |(m)| = |SmU∨|. The image
of the scheme V (1) of roots of the half-discriminant 1 of the pencil under the map � : |U | → |W | is a

2The existence of such a subspace for any pencil of alternating forms is a known fact; see the Lemma in [Beauville 2005].
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0-dimensional closed subscheme Z of the Veronese curve Rm of length n. Over an algebraically closed
extension of k it becomes a union of n distinct points.

We now prove the main theorem:

Proof of Theorem 1.1. Choose a Kronecker basis w0, . . . , wm, v0, . . . , vm−1 and the corresponding
coordinates x0, . . . , xm, y0, . . . , ym−1 in E . Let W be the span of w0, . . . , wm and let L be the span of
v0, . . . , vm−1. Thus E =W ⊕ L is a direct sum of totally singular subspaces for all quadrics in the pencil
|q| (since they are totally isotropic for the associated alternating bilinear forms). This implies that the
restrictions of q0, q1 to W (resp. L) is equal to a linear combination of squares of xi (resp. yi ). So, we
have reduced q0, q1 to the expressions from the Theorem. It remains to prove the assertion about the
coefficients {ai }. We use the expression of � computed above to find the half-discriminant. Let u0, u1 be
the basis of U corresponding to q0, q1 and t0, t1 be the dual basis. Then

1(t0, t1)= (t0q0+ t1q1)(tm
0 , tm−1

0 t1, . . . , tm
1 , 0, . . . , 0)

= t0

( m∑
i=0

a2i t
2(m−i)
0 t2i

1

)
+ t1

( m∑
i=0

a2i+1t2(m−i)
0 t2i

1

)

=

2m+1∑
i=0

ai t2m+1−i
0 t i

1

as desired. �

We say that a regular pair of quadratic forms is in normal form if it is written in coordinates corre-
sponding to a Kronecker basis in E .

Note that, given a specific choice of pair (q0, q1), the basis w0, . . . , wm in a Kronecker basis is
canonical. However, given only a pencil |q|, only the vector space W spanned by w0, . . . , wm is canonical.
This has some strong consequences which we discuss now. In the following X denotes the base scheme
Bs(q) of a regular pencil of quadrics |q| in |E |.

Theorem 4.4. Assume m≥ 2. If k is a perfect field, then the variety X contains a canonical (m−2)-plane
5 defined over k. In particular, a del Pezzo surface of degree 4 over a perfect field of characteristic 2 has
a canonical point.

Proof. Note that the ideal of the subscheme X ∩ |W | is generated by

q0|W =

m∑
i=0

a2i x2
i , q1|W =

m∑
i=0

a2i+1x2
i

in projective coordinates for |W |. Over a perfect field, the radical ideal is 〈l0, l1〉 where l2
0 = q0|W and

l2
1 = q1|W. If l0 = cl1 for some c ∈ k, then a2i = c2a2i+1 for all i in 0, . . . ,m. But this implies that

1(T, 1)= (T + c2)g(T 2)

for some polynomial g ∈ k[T ], contradicting the separability of 1(T, 1). Thus the subspace {l0 = l1 = 0}
in X has codimension 2 in |W | as desired. �
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The vector space L spanned by v0, . . . , vm−1 is not canonical; in fact, we have the following.

Lemma 4.5. Let (q0, q1) be a regular pair of quadratic forms and (b0, b1) the associated bilinear forms.
Let W be the canonical subspace spanned by (w0,...,wm) in a Kronecker basis. Suppose L is a totally
isotropic subspace for both b0 and b1 and that E =W ⊕ L. Then there exists a basis (v0,...,vm−1) in L
that, together with the canonical basis (w0,...,wm) in W, forms a Kronecker basis in E.

Proof. Since b1 has a 1-dimensional radical spanned by wm , the alternating bilinear form induced on the
quotient space Ē = E/〈wm〉 is a direct sum of m hyperbolic planes. Since wm ∈W, the images of W and
L in Ē are complementary totally isotropic subspaces of Ē ; and thus provide a pair of complementary
maximal totally isotropic subspaces. Thus, we may find a basis v0, . . . , vm−1 for L such that it satisfies
the desired equations for b1 from (4-1).

We have established all desired equations from (4-1) except for b0(wi , vj ) = δi( j+1). We know that
some Kronecker basis (w0, . . . , wm, v

′

0, . . . , v
′

m−1) exists with corresponding splitting E =W ⊕ L ′. For
any v ∈ L we can write v=w+v′ forw∈W , v′ ∈ L ′. For all i = 0, . . . ,m, we have b0(wi , v)= b0(wi , v

′)

since b0(wi , w) = 0; and similarly for b1. From (4-1), we have that b1(wi , v
′

j ) = δi j = b0(wi+1, v
′

j )

for all valid i, j. From this we conclude that b1(wi , v)= b0(wi+1, v) for any v ∈ L . We conclude that
b0(wi , vj ) = b1(wi−1, vj ) = δi( j+1) for all i, j except when i = 0. This last case follows from the fact
that w0 is in the radical of b0. �

We have identified the radical subspace W with (SmU∨)∨. The next proposition tells that we can
identify any complement L as in Lemma 4.5 with the space Sm−1U∨.

Proposition 4.6. Let (q0, q1) be a regular pair of quadratic forms on E. Up to a choice of volume form
on E , there is a canonical isomorphism ι :U →U∨ and a canonical isomorphism L ∼= Sm−1(U∨), such
that

bu(v,w)= ψ1(ι(u) f2)+ψ2(ι(u) f1), (4-4)

where v = (ψ1, f1) and w = (ψ2, f2) are elements of W ⊕ L = (SmU∨)∨⊕ Sm−1U∨ and we note that
ι(u) fi can be viewed as an element of Sm(U∨) via the multiplication map U∨⊗ Sm−1U∨→ SmU∨.

Proof. Let u0, u1 be the basis for U such that qu0=q0 and qu1=q1, and let t0, t1 be the dual basis. The map ι
is defined to satisfy t0= ι(u1) and t1= ι(u0). We use the canonical isomorphism between W and (SmU∨)∨

which we deduced from formula (4-2); more concretely: wi 7→ (tm−i
0 t i

1)
∨ (this is where we use the volume

form on W ). Consider the isomorphism L ∼= Sm−1(U∨) given by vi 7→ t (m−1)−i
0 t i

1 for i in 0, . . . ,m− 1.
A direct comparison of (4-4) and (4-1) in coordinates for U, W, and L establishes the result. �

Proposition 4.6 allows us to compare normal forms for different choices of pairs in the same pencil.

Lemma 4.7. Suppose u, u′ ∈U are linearly independent and let (w0, . . . , wm, v0, . . . , vm−1) be a Kro-
necker basis for the pair (qu, qu′). For any g ∈ GL(U ), there exists an h ∈ GL(W )×GL(L) such that
(h(w0), . . . , h(vm−1)) is a Kronecker basis for (qg(u), qg(u′))).
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Proof. There exists some c ∈ k such that ι(gu) = c(g∨)−1ι(u) for all u ∈ U. Using the isomorphisms
from Proposition 4.6, consider

h = ((Sm g∨)∨, c−1Sm−1(g∨)−1)

in GL(W )×GL(L). Using the shorthand notation g∗ = (Sk g∨)∨ and g∗ = Sk−1(g∨) for all positive
integers k, we find

(hψ)(ι(gu)(h f ))= (g∗ψ)((ι(gu))(c−1(g∗)−1 f ))

= ψ(g∗((g∗)−1ι(u))((g∗)−1 f ))

= ψ(g∗(g∗)−1(ι(u) f ))= ψ(ι(u) f )

for all ψ ∈W ∼= (SmU∨)∨, f ∈ L ∼= Sm−1(U∨), and u ∈U. From this we conclude that

bgu(hv, hw)= bu(v,w)

for all v,w ∈ E and u ∈ U. Thus, (bgu, bgu′) is in Kronecker normal form relative to the basis
h(w0), . . . , h(vm−1). �

Remark 4.8. It is frequently convenient to assume that an 6= 0 in the half-discriminant polynomial or,
equivalently, that the quadratic form q1 is nondegenerate. Lemma 4.7 shows that this is often a harmless
assumption.

4B. The quasisplit case. Following the classical terminology in geometry of ruled varieties, a generator
of the variety X is a linear subspace of X of maximal possible dimension (over the algebraic closure). In
the spirit of [Skorobogatov 2010], we say that X is quasisplit if X = Bs(q) has a generator defined over
k. We say X is split if all generators of X are defined over k. We shall see in Corollary 7.5 below that,
when k is algebraically closed, every X has exactly 22m generators. (For two general quadrics, this also
follows by Example 14.7.15 of [Fulton 1998].)

Theorem 4.9. A generator of X has dimension m − 1. If k is algebraically closed, then X contains a
generator.

Proof. Assume k is algebraically closed. Let Fr (X) be the subscheme of the Grassmannian Gr (P
n−1)

of r-dimensional subspaces in Pn−1 which are contained in X. From [Debarre and Manivel 1998,
Theorem 2.1], we know Fr (X) is nonempty if and only if r ≤ m− 1. Thus, X has a generator (which is
of dimension m− 1). �

Remark 4.10. We shall see below that all X are quasisplit precisely when k is closed under separable
quadratic extensions.

This brings us to the main theorem of this section. Since X is always quasisplit over an algebraically
closed field, Theorem 1.3 follows immediately from the following.

Theorem 4.11. X is quasisplit if and only if there exists a normal form for the pencil q with r1 = . . .=

r2m = 0.
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Proof. Note that a generator 3 is equal to |L|, where L is totally isotropic for all quadrics in the pencil.
When ri = 0 in the normal form defined by a Kronecker basis (w0, . . . , wm, v0, . . . , vm−1), the span of
v0, . . . , vm−1 provides such a subspace. Conversely, given such a subspace L , Lemma 4.5 provides the
desired normal form under the condition that L is complementary to W.

Thus, the difficulty is proving that |L| ∩ |W | =∅ (in other words, that L ∩W = 0). We may assume
without loss of generality that k is algebraically closed.

Let 5= |W |∩ X be the canonical subspace from Theorem 4.4. Let S = |L|∩ |W | = |L|∩5. Suppose
dim S = k ≥ 0. Let P be the span of |W | and |L|, its dimension is equal to 2m− k−1. Let Q = V (q) be
a quadric from the pencil. The restriction of Q to |W | is a linear subspace Y of dimension m− 1 (taken
with multiplicity 2). The quadric Q also contains the linear subspace |L| of the same dimension. They
intersect along the k-dimensional subspace S. We claim that Q must be singular along S.

To see this, choose coordinates x0, . . . , x2m−k−1 for P in such a way that |L| is given by xm = · · · =

x2m−k−1=0 and |W | is given by x0=· · ·= xm−k−2=0, so that S is given by xi=0, i 6=m−k−1, . . . ,m−1.
The restriction Q|P of Q to P must have an equation of the form

L(xm, . . . , x2m−k−1)
2
+

m−k−2∑
i=0

xi Mi (xm, . . . , x2m−k−1)= 0,

where L and M1,...,Mm−k−2 are linear homogeneous polynomials. Since the polynomial defining this
equation does not contain the variables xi , i 6= m − k − 1,...,m − 1, the quadric is singular along the
subspace S. In other words, the subspace P is tangent to the quadric Q along S. Thus any hyperplane
containing P is tangent to Q along S. Since S and P do not depend on Q, we can find a hyperplane
tangent to any Q along S. Since the tangent space of X at any point is of codimension 2, and it is equal
to the intersection of tangent hyperplanes of quadrics in the pencil, we find a contradiction with the
assumption that X is smooth. �

The proof of the preceding theorem has the following useful consequence:

Corollary 4.12. If 3 is a generator of X, then there is a Kronecker normal form with decomposition
E =W ⊕ L such that |L| =3.

4C. Applications to rationality. This canonical subspace 5 from Theorem 4.4 allows us to prove
Corollary 1.2 from the introduction:

Proof of Corollary 1.2. First we consider the case m = 2, where we are dealing with quartic del Pezzo
surfaces in |E | ∼= P4. The canonical (m− 2)-plane 5 is thus a canonical point. It is known that any del
Pezzo surface of degree ≥ 3 with a rational point is unirational over the base field (see Theorem 3.5.1
of [Manin and Tsfasman 1986]).

Now we consider the case where m > 2. Consider the projection p : X \5→ Pm+1 with center at
5. Since 5 is defined over k, the projection is defined over k. The morphism p extends to a morphism
p′ : X5→ Pm+1 where X5 is the blowup of X at center 5.
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Let x be a point in X \5. Let Fx be the closure of p−1(p(x)) in Pn−1. We claim that Fx is the span
〈x,5∩Tx X〉 where Tx X is the embedded tangent space to X at x . Let v ∈ E be a vector such that x = [v]
and let e0, . . . , em−2 be a basis of 5. The subvariety Fx is equal to the closure of the intersection of X \5
and the span 〈5, x〉 of 5 and x . The span 〈5, x〉 is equal to

[
tv+

∑m−2
i=0 si ei

]
, where [s0, . . . , sm−2, t]

are projective coordinates in 〈5, x〉. Plugging in the equations q0 = q1 = 0 of X we get, for k = 0, 1, that

qk

(
tv+

m−2∑
i=0

si ei

)
= t2qk(v)+ qk

(m−2∑
i=0

si ei

)
+ t

m−2∑
i=0

si bk(ei , v)= t
m−2∑
i=0

si bk(ei , v).

This shows that Fx is the span 〈x,5∩ Tx(X)〉 as claimed.
First, assume that k is algebraically closed. We know that if5∩Tx(X) is nonempty then dim5∩Tx(X)

is m− 2− r(x), where r(x) is the rank of the matrix(
b0(e1, v) · · · b0(em−2, v)

b1(e1, v) · · · b1(em−2, v)

)
.

Let C be the set of points x ∈ X where r(x) < 2: these are the points such that, for some quadric Q given
by λq0+µq1 = 0, the associated bilinear form b satisfies b(w, v)= 0 for all w ∈ E representing [w] ∈5.
Suppose C is equal to all of X. By Theorem 4.9, the space X contains a (m− 1)-dimensional projective
subspace 3. Choose a point x from 3. Note that the tangent space Tx(Q) is defined by the fact that
b(w, v) = 0 for all w ∈ E . Thus Tx(Q) contains the (m − 1)-dimensional projective subspace 3 and
the (m− 2)-dimensional projective subspace 5. Since 3∩5=∅, we obtain that Tx(Q)∩ Q contains
a projective subspace of dimension 2m− 2. However, by Corollary 3.3, the corank of any quadric in the
pencil is equal to 1. Hence Q cannot contain projective subspaces of dimension greater than m− 1. This
contradicts C being the whole space. Thus, for a general point x ∈ X, we have r(x)= 2.

Consequently, 5∩ Tx(X) is empty if m ≤ 3, or of dimension ≥ m − 4 if m ≥ 4. This implies that
Fx = 〈x,5∩ Tx(X)〉 consists of x if m ≤ 3 and dim(Fx)= m− 3 if m ≥ 4. If m = 2, X is a del Pezzo
surface of degree 4 and the projection p is a birational map onto a cubic surface in P3. If m = 3, we obtain
that the projection p is a birational map onto P4. If m > 3, we obtain that the general fiber (p′)−1(p(x))
of the projection map p′ : X5→ Pm+1 is isomorphic to the blowup of the (m− 3)-dimensional subspace
〈x,5∩Tx(X)〉 along the (m−4)-dimensional subspace 5∩Tx(X). Thus the general fiber is a projective
space of dimension m− 3. Thus, X is birationally isomorphic to a projective (m− 3)-bundle over Pm+1.

Now, assume k is any perfect field. Since the projection is a k-rational map, we immediately get that
X is rational if m = 3. It remains to consider m > 3. By construction, X5 is a subvariety of a projective
bundle P(E) over Pm+1. Moreover, the general fibers of X5→Pm+1 are linear subspaces of the fibers of
P(E)→ Pm+1. Thus, over some open subscheme S of Pm+1, the subvariety X5 restricts to a projective
bundle over S (not just a Severi–Brauer scheme over S). Thus X5 is rational. �

Y. Prokhorov asked us for a geometric interpretation of the canonical point 5 in the plane model of a
del Pezzo surface of degree 4. We consider this question in Remark 8.4.
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5. Isomorphisms of normal forms

The main goal of this section is to prove Theorem 1.4. In order to do this, we need to study isomorphisms
between pairs of quadratic forms in Kronecker normal form. The associated bilinear form of any such
pair is always the same, so any isomorphism of pairs of quadratic forms is an automorphism of a basic
singular pair of alternating bilinear forms.

Thus, our first task is to compute the automorphisms of a basic singular pair of alternating bilinear
forms. Next, we collect some results about the finite dimensional algebra A from the introduction. We
then use this algebra to determine which automorphisms of basic singular pairs correspond to which
isomorphisms of pairs of quadratic forms.

5A. Automorphisms of basic singular pairs. Let (b0, b1) be a basic singular pair of alternating bilinear
forms (for example, obtained from a regular pair of quadratic forms), and let w0, . . . , wm, v0, . . . , vm−1

be a Kronecker basis for the underlying vector space E of dimension n = 2m+ 1.
An automorphism of the pair (b0, b1) is an element g ∈ GL(E) such that

b0(gv, gv)= b0(v, v) and b1(gv, gv)= b1(v, v)

for any v ∈ V.

Lemma 5.1. The group of automorphisms Aut(b0, b1) of the pair (b0, b1) consists of elements g ∈GL(E)
of the form

g(wi )= wi , g(vi )= vi +

m∑
k=0

si+kwk, (5-1)

where s0, . . . , sn−2 are any elements in k.

Explicitly, the automorphisms have the form

g =
(

Im+1 S
0m,m+1 Im

)
, where S =


s0 s1 · · · sm−1

s1 s2 · · · sm
...

...
...

...

sm sm+1 · · · s2m−1


is a catalecticant matrix Catm−1(s0, . . . , s2m−1) (see [Dolgachev 2012, 1.4.1]).

Proof. One checks directly that the given elements are automorphisms of (b0, b1) via (4-1). It remains to
check that these are the only automorphisms.

Let g be an automorphism of (b0, b1). Note that g must fix each wi since they are canonical. It remains
to consider v0, . . . , vm−1. Thus

g(vi )= h(vi )+

m∑
k=0

likwk
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for some h ∈ GL(L) and elements lik in k. Since

δi j = b1(gvi , gwj )= b1(hvi , wj )

we conclude that h is the identity. Since

0= b1(gvi , gvj )=

m∑
k=0

l jkb1(vi , wk)+

m∑
k=0

likb1(wk, vj )= li j + l j i

we conclude that li j = l j i . Similarly, using b0 we conclude that l j (i+1) = li( j+1). We obtain that
li( j+1) = l(i+1) j and thus the values of li j depend only on the sum of their indices: lik = si+k . �

5B. Results on k-algebras. Here we collect some facts about finite k-algebras which we will need later.
All are standard results except for Lemma 5.3.

Consider a separable polynomial

f (T )= anT n
+ · · ·+ a1T + a0

in k[T ] of degree n. Consider the k-algebra A= k[T ]/( f (T )) and let t be the image of T under the map
k[T ] → A.

Note that since f is a separable polynomial, we may also write A as a direct sum A= A1⊕· · ·⊕Al where
each Ai is a separable field extension of k. Indeed, we have isomorphisms Ai ∼=k[T ]/( fi (T ))∼= A/( fi (t))
where fi is an irreducible polynomial dividing f .

Define polynomials g1, . . . , gl in k[T ] via f (T )= fi (T )gi (T ). Since the polynomials gi are coprime,
we may write

1= ε1+ · · ·+ εl (5-2)

where εi ∈ (gi (t)) and they satisfy relations εiε j = 0 when i 6= j, and ε2
i = εi . In other words, ε1, . . . , εl

form an orthogonal set of idempotents in A.
Multiplication by an idempotent εi defines a homomorphism from A into the corresponding summand

Ai . Specifically, if h is any polynomial in k[T ] we have

εi h(t)≡ h(t) mod ( fi (t)) (5-3)

in Ai ∼= A/( fi (t)). If fi is of degree 1 with root αi , then multiplication by εi corresponds to the k-algebra
homomorphism A→ Ai ' k determined by t 7→ αi .

For any a ∈ A, the linear map x 7→ ax is an endomorphism of the vector space A over k, we denote by
TrA/k(a) its trace. The formula

〈a, b〉 = TrA/k(ab)

defines a symmetric bilinear form on A. Its restriction to each summand Ai is the usual trace for a
separable extension of fields. Since A is separable, the trace form is nondegenerate. In particular, the
natural homomorphism

A→ A∨, a 7→ (x 7→ TrA/k(ax))
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of vector spaces over k is a bijection.
If f splits completely into linear factors (for example, if k is separably closed), then A ∼= kn. If

α1, . . . , αn are the roots of f , then a canonical isomorphism A ∼= kn is defined via

h(t) 7→ (h(α1), . . . , h(αn))

for any polynomial h in k[T ]. In this case, the trace can be computed as

TrA/k(h(t))=
n∑

i=1

h(αi ).

By passing to a separable closure, one can compute the trace even when f does not split into linear
factors over the original field.

Consider a basis of A given by the elements

di = ai+1+ ai+2t + · · ·+ antn−1−i for i = 0, . . . , n− 1. (5-4)

Using the recurrence relation di = tdi+1+ ai+1, we get the identity in A[X ]

f (X)= (X − t)(d0+ d1 X + · · ·+ dn−1 Xn−1). (5-5)

Note that dn−1 spans the “constant” subalgebra k⊂ A.
Let f ′(T ) denote the formal derivative of f (T ). Since f (T ) is a separable polynomial, f ′(T ) is

coprime to f (T ) and thus f ′(t) is an invertible element in A.
The following proposition shows that the elements di/ f ′(t) form the dual basis of the basis 1, t, . . . , tn−1

with respect to the trace form.

Proposition 5.2. TrA/k

(
di

t j

f ′(t)

)
= δi j for i, j in 0, . . . , n− 1.

Proof. In the case when A is a field, this can be found in, for example, [Lang 1994, Proposition III.1.2].
We give the proof here since it is short and uses formulas that we will need later. We may assume without
loss of generality that k is separably closed.

Let α1, . . . , αn be the roots of f . We use the following Euler’s identity:

X k
−

n∑
i=1

f (X)
X −αi

αk
i

f ′(αi )
= 0, k = 0, . . . , n− 1 (5-6)

in the ring A[[X ]]. To see this, one uses that f ′(αi ) =
∏

j 6=i (αi − α j ), then checks that the expression
on the left-hand side is a polynomial of degree < n and has n roots α1, . . . , αn , hence it must be zero.

One can extend the trace TrA/k to a k-linear function A[[X ]] → k[[X ]] by applying the trace function
to each coefficient of X i. Thus, using (5-5), we obtain

TrA/k

( f (X)
X − t

tk

f ′(t)

)
= TrA/k

((n−1∑
i=0

di X i
)

tk

f ′(t)

)
= X k,

for every k in 0, . . . , n− 1. Comparing the coefficients, we get the assertion. �
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We need an explicit formula for squaring an element with respect to the basis {d0, . . . , dn−1}.

Lemma 5.3. Given the equation

r0d0+ · · ·+ rn−1dn−1 = (s0d0+ · · ·+ sn−1dn−1)
2

for some coefficients s0, . . . , sn−1 in k, we have

rk =

n−1∑
j=0

s2
j a2 j+1−k

for all k in 0, . . . , n− 1. (We assume by convention ai = 0 when i < 0 or i > n.)

Proof. Using Proposition 5.2, it suffices to show that

TrA/k

(
d2

j
tk

f ′(t)

)
= a2 j+1−k

for all j, k in 0, . . . , n− 1.
Rearranging Euler’s equation (5-6) we obtain

X k

f (X)
=

n∑
i=1

1
X −αi

αk
i

f ′(αi )
.

Now, differentiating with respect to X, we have

k X k−1 f (X)− X k f ′(X)
f (X)2

=

n∑
i=1

−1
(X −αi )2

αk
i

f ′(αi )

∂

∂X
(X k f (X))=

n∑
i=1

( f (X)
X −αi

)2 αk
i

f ′(αi )
.

Using (5-5), we conclude

∂

∂X

( n∑
i=0

ai X k+i
)
= TrA/k

(( n−1∑
j=0

d2
j X2 j

)
tk

f ′(t)

)
,

∑
j

a2 j+1−k X2 j
=

n−1∑
j=0

TrA/k

(
d2

j
tk

f ′(t)

)
X2 j

as desired. Note that the assumption that k has characteristic 2 is essential! �

5C. Isomorphisms of pairs of quadratic forms. Let (q0, q1) be a regular pair of quadratic forms in
normal form with respect to a Kronecker basis B = (w0, . . . , wm, v0, . . . , vm−1) for E . Note that since
w0, . . . , wm are canonical, the polynomial 1 and its coefficients a0, . . . , an are the same regardless of
the choice of basis B. However, the coefficients r0, . . . , rn−2 from Theorem 1.1 are more subtle.

Assume that an 6= 0 in 1 or, equivalently, that q1 is nondegenerate (see Remark 4.8). Define

f (T ) :=1(1, T )= a0+ · · ·+ anT n.

Setting A = k[T ]/( f (T )), we have an algebra as in the previous section.
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The r-invariant of the normal form is the element r ∈ A given by

r = r0d0+ · · ·+ rn−2dn−2 (5-7)

where d0, . . . , dn−1 is the basis for A defined in (5-4). Note that the basis element dn−1 spanning k does
not appear in the expression (5-7), so the set of possible r-invariants are in bijection with the quotient
space A/k.

For g ∈ GL(E), let (q ′0, q ′1) be the pair given by

q ′0(v)= q0(gv) and q ′1(v)= q1(gv)

for v ∈ E . Note that the half-discriminant polynomial of (q ′0, q ′1) remains the same. Let r ′ be the
r -invariant of the new normal form.

We assume, without loss of generality, that (q ′0, q ′1) is also in Kronecker normal form with respect to
the basis B. Consequently, both pairs have the same pair (b0, b1) of associated bilinear forms and we may
take g ∈ Aut(b0, b1).

Any g ∈ Aut(b0, b1) is determined by the elements s0, . . . , sn−2 from (5-1). We construct an element

s = s0d0+ · · ·+ sn−2dn−2 (5-8)

in A as with the r -invariant above.
Reversing the process, one checks that this gives rise to a group homomorphism

φ : A→ Aut(b0, b1)⊂ GL(E), (5-9)

where A is viewed as an additive group. Note that the kernel of φ is the subgroup k since dn−1 spans k.
Theorem 1.4 is a consequence of the following.

Theorem 5.4. If g = φ(s) for some s ∈ A, then

r ′ ≡ r +℘(s) mod k,

where ℘ : A→ A is the Artin–Schreier map s 7→ s2
+ s.

Proof. Recall that g(wi )= wi and g(vi )= vi +
∑m

k=0 si+kwk . We need to compute q j (gvi ) for j = 0, 1
and i = 0, . . . ,m− 1. We find

q0(gvi )= q0

(
vi +

m∑
k=0

si+kwk

)

= q0(vi )+ b0

(
vi ,

m∑
k=0

si+kwk

)
+ q0

( m∑
k=0

si+kwk

)

= r2i+1+ s2i+1+

m∑
k=0

s2
i+ka2k,
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and similarly that

q1(gvi )= r2i + s2i +

m+i∑
j=i

s2
j a2 j+1−2i .

By Lemma 5.3, we conclude that the new invariant is r + s+ s2 as desired. �

6. Relations to the Arf invariant

The following theorem was suggested to us by A. Efimov.
Recall that any nondegenerate quadratic form in 2m variables over a field k of characteristic 2 can be

reduced to the form

q =
m∑

i=1

ai x2
i + xi yi + bi y2

i

for some basis x1, . . . , xm, y1, . . . , ym . The Arf invariant of q is

Arf(q)=
m∑

i=1

ai bi ∈ k/℘ (k).

It is independent of a choice of a canonical form from above.
Let (q0, q1) be a regular pair of quadratic forms in normal form with invariants 1 and r . We assume

that an 6= 0 and define A = k[T ]/( f (T )) with t the image of T as in previous sections. The pair gives
rise to a quadratic form qA on the module E A = E ⊗k A by defining

qA = q0+ tq1

as an element S2(E∨A). Since A is a sum of fields A1, . . . Al , we may define the Arf invariant of qA to be
the sum of the Arf invariants of the restrictions qAi .

Theorem 6.1. The form qA is an orthogonal sum of a 1-dimensional trivial form and a nondegenerate
2m-dimensional form whose Arf invariant is r modulo ℘(A)+ k.

Proof. We select a new basis for E A = E ⊗k A as follows:{
w′i =

∑m
k=i wi ⊗ tk−i for i in 0, . . . ,m,

v′i = vi ⊗ 1 for i in 0, . . . ,m− 1
and find that

bA(w
′

i , w
′

j )= 0, bA(v
′

i , v
′

j )= 0, bA(v
′

i , w
′

j )= δ(i+1) j ,

where bA is the bilinear form associated to qA. In particular, w′0 is the image of � in E A and we see that
it spans a 1-dimensional form where qA(w

′

0)= 0.
The remaining vectors span a subspace which decomposes into an orthogonal sum of 2-dimensional

subspaces 〈w′i+1, v
′

i 〉 on which qA is isomorphic to the quadratic form

qA(w
′

i+1)x
2
+ xy+ qA(v

′

i )y
2
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for appropriate coordinates x and y.
Note that

qA(w
′

i+1)=

m∑
k=i

(a2i + a2i+1t)t2(k−i)
= d2i+1

while
qA(v

′

i )= r2i t + r2i+1.

The Arf invariant of the 2m-dimensional subspace is thus

m−1∑
i=0

qA(w
′

i+1)qA(v
′

i )=

m−1∑
i=0

(r2i t + r2i+1)d2i+1 =

(n−2∑
i=0

ri di

)
+

(m−1∑
i=0

r2i a2i+1

)
,

which is equal to r mod k. �

7. Automorphisms of pencils of quadratic forms

7A. Arithmetic description of automorphisms of a pair. Let A be the k-algebra from the previous two
sections. Since the characteristic is 2, the set of idempotents Idem(A) form a subgroup of the additive
group of A. Recall that an idempotent a in A is an element such that a2

= a. Consequently, the group
Idem(A) can be characterized as the kernel of the Artin–Schreier map

℘ : A→ A, a 7→ a2
+ a.

Let Aut(q0, q1) be the set of automorphisms of the pair (q0, q1); in other words, the subgroup of
GL(E) whose elements induce an isomorphism of the pair with itself. From Theorem 5.4, we see that
every automorphism comes from an idempotent via (5-1). Conversely, the only nontrivial idempotent
which gives rise to a trivial automorphism is the multiplicative identity 1 ∈ k ⊂ A. Thus we have the
following:

Theorem 7.1. There is a canonical isomorphism

Aut(q0, q1)∼= Idem(A)/〈1〉,

where 〈1〉 is the additive subgroup of A generated by the unit element 1 ∈ A.

The group Idem(A) is generated by the orthogonal set of idempotents ε1, . . . , εl from (5-2). Since
the additive subgroup of A is commutative and every element has order 2, we see that Idem(A) is an
elementary abelian 2-group of order 2l.

Consequently, Aut(q0, q1) is an elementary abelian 2-group of order 2l−1 where l is the number of
irreducible factors in f (T ). When A is a field (equivalent to f (T ) being irreducible), then the only
idempotent is 1 and thus Aut(q0, q1) is trivial. At the other extreme, when f (T ) splits completely,
Aut(q0, q1) has order 22m and we will see below that the idempotents ε1, . . . , εn correspond to reflections.

Idem(A), respectively Aut(q0, q1), can be viewed as the set of k-points of a finite étale group scheme
Idem(A), respectively Aut(q0, q1), over k. The group scheme Idem(A) is simply the Weil restriction
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of scalars RA/k((Z/2Z)A) where Z/2Z is the constant group scheme of order 2. The group scheme
Aut(q0, q1) is the quotient in the exact sequence

0→ Z/2Z
ι
→RA/k((Z/2Z)A)→ Aut(q0, q1)→ 0, (7-1)

where ι is the natural monomorphism.

Proposition 7.2. There is a canonical isomorphism between H 1(k,Aut(q0, q1)), the Galois cohomology
group, and the group A/(℘ (A)+ k).

Proof. This follows the same reasoning as §1 of [Skorobogatov 2010]. The composition

H 2(k,Z/2Z)→ H 2(k,RA/k((Z/2Z)A))= H 2(A,Z/2Z)

factors through the restriction-corestriction map, which is multiplication by the odd number dimk(A).
Since Z/2Z and RA/k((Z/2Z)A) have an even number of elements over a separable closure, the coho-
mology groups are 2-primary. Thus the map H 2(k,Z/2Z)→ H 2(k,RA/k((Z/2Z)A)) is injective. Thus
from (7-1), the group H 1(k,Aut(q0, q1) is the cokernel of the map

H 1(k,Z/2Z)→ H 1(k,RA/k((Z/2Z)A)).

The characteristic is 2, thus H 1(k,Z/2Z)∼= k/℘ (k) and

H 1(k,RA/k((Z/2Z)A))= H 1(A, (Z/2Z)A))∼= A/℘ (A),

so the result follows. �

Remark 7.3. The above proposition could be used to recover a weak form of Theorem 5.4. Of course, this
argument would be circular in our presentation since Theorem 5.4 was used to determine the automorphism
group.

7B. Geometric description of automorphisms of a pair. In this subsection we assume that k is alge-
braically closed.

Let x1, . . . , xn be vectors in U representing the points x1, . . . , xn in the zero locus of V (1) on |U |.
Recall that V (qx1), . . . , V (qxn ) are precisely the singular quadrics of the pencil |q|.

Fix i in 1, . . . , n. Since V (qxi ) is of corank 1, it contains a unique singular point zi ∈ |E | represented
by the vector zi =�(xi ) in E .

For any u ∈U such that |u| 6= |xi | in |U | consider the following linear automorphism of E

ρi (v)= v+
bu(zi , v)

qu(zi )
zi , (7-2)

where v ∈ E . A priori, the formula for ρi depends on the choice of u ∈ U. However, one can check
that ρi does not depend on the choice of u as long as it is not a multiple of xi (use that qxi (zi )= 0 and
bxi (zi , v)= 0 for any choice of v ∈ E).
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Theorem 7.4. The automorphism group Aut(q0, q1) is an elementary abelian 2-group of order 22m

generated by the reflections ρ1, . . . , ρn subject to the relation ρ1 · · · ρn = 1.

Proof. It is clear that the reflections {ρi } are automorphisms, that they are of order 2, and that they
commute. It remains to show that there are no other automorphisms and to show that they satisfy the
desired relations and no others. We will show that the reflections ρ1, . . . , ρn correspond to a set of
orthogonal idempotents of A. The result then follows by Theorem 7.1.

The remainder of the proof is simply a direct calculation. In view of Remark 4.8, we may assume
without loss of generality that q0 is nondegenerate and each vector xi has coordinates (αi , 1), where αi is
a root of f (T ). Let εi be the idempotent corresponding to αi ; in other words, multiplication by εi gives
rise to a map A→ k such that t 7→ αi as in (5-3).

We will establish that φ(εi )= ρi , where φ : A→ GL(E) is the map (5-9). To do this, we determine
the values of s0, . . . , sn−2 in (5-1). From (5-8), these are the first n − 1 coordinates of εi in the basis
d0, . . . , dn−1 of A defined in (5-4). Thus, by Proposition 5.2, we have

sj = TrA/k

(
εi

t i

f ′(t)

)
=

α
j
i

f ′(αi )

for each j in 0, . . . , n− 2.
Now, note that zi =

∑m
i=0 α

iwi . Since f ′(T ) =
∑m

k=0 a2i+1T 2i, we have f ′(αi ) = q1(zi ). We have
b1(vj , zi )= α

j
i for j in 0,...,m− 1, where w0,...,wm,v0,...,vm−1 is the Kronecker basis for E .

Putting these observations together, we see that

φ(εi )(vj )− vj =

m∑
k=0

s j+kwk =
α

j
i

f ′(αi )

m∑
k=0

αkwk =
b1(zi , vj )

q1(zi )
zi

for all j in 0, . . . ,m− 1. Since, additionally, φ(εi )(wj )= ρ(wj )= wj for j in 0, . . . ,m, we conclude
that φ(εi )(v)= ρ(v) for all v ∈ E . �

With this description of the automorphism group, we have:

Corollary 7.5. There are exactly 22m generators permuted simply transitively by the group Aut(q0, q1).

Proof. By Corollary 4.12, the generators are in bijective correspondence with subspaces L occurring
in a Kronecker normal form such that L is totally isotropic with respect to every quadratic form in the
pencil. The group Aut(q0, q1) permutes such spaces. The subspace L is never invariant under a nontrivial
automorphism as in (5-1); thus the action is simply transitive. The number of generators is 22m since that
is the order of the group. �

From the above corollary, we prove Theorem 1.5 from the introduction:

Proof of Theorem 1.5. The set of generators of X corresponds to a smooth 0-dimensional subscheme of an
appropriate Grassmannian. In view of Corollary 7.5, over a nonclosed field this is an Aut(q0, q1)-torsor.
From Proposition 7.2 we have that A/(℘ (A) + k) ∼= H 1(k,Aut(q0, q1)). Thus the r-invariant in A
naturally gives rise to a class in H 1(k,Aut(q0, q1). �
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7C. Automorphisms of the base locus. The goal of this section is to prove Theorem 1.6, which describes
the automorphisms of the base scheme Bs(q)= V (q0, q1) in Pn−1.

Lemma 7.6. Two smooth complete intersections of pairs of quadrics in P2m are isomorphic if and only if
there is an element of PGL2m+1 inducing the isomorphism.

Proof. If m = 1 then the two varieties are smooth subschemes of P2, of dimension 0 of degree 4; the result
is clear in this case. Otherwise, when m ≥ 2, the adjunction formula gives that the canonical sheaf ωX

is isomorphic to OX (−n+ 4). Since n = 2m+ 1≥ 5, the anticanonical divisor class −K X is a positive
multiple of the hyperplane section. Hence the embedding of X in P2m comes from a multiple of the
anticanonical sheaf. Any isomorphism between the varieties induces isomorphisms of the corresponding
anticanonical sheaves, and the result follows. �

Theorem 1.6 follows immediately from the following.

Theorem 7.7. Assume X is quasisplit. The automorphism group of X , Aut(X), is isomorphic to
Aut(q0, q1)oG where G is the subgroup of PGL(U ) which leaves invariant the scheme V (1) of zeros of
the half-discriminant.

Proof. By Lemma 7.6, any automorphism of X can be represented by an element of PGL(E).
Recall that |W | is a canonical subspace and must be invariant under any automorphism of X. From

Proposition 4.6, W is canonically isomorphic to Sm(U∨)∨. Thus an automorphism h ∈ PGL(E) fixes |W |
pointwise if and only if it fixes |U | pointwise. Thus there is a group homomorphism π :Aut(X)→PGL(U )
whose kernel is precisely the group Aut(q1, q2) of automorphisms of the pair (q1, q2).

Note that since the zeroes of 1 correspond to the singular quadrics of the pencil, all automorphisms
must leave invariant the zeroes of 1. Thus the image of π is contained in G. It remains to show that any
element g ∈ GL(U ) representing an element of G can be lifted to Aut(X).

Since X is quasisplit, we have a normal form for the pair (qu1, qu2) where r = 0. We may scale our
representative g ∈ GL(U ) such that g∗1=1. By Lemma 4.7, there is an h ∈ GL(W )×GL(L) so that
(qgu0, qgu1) has a normal form with respect to the basis h(v1), . . . , h(wm). Since g∗1 = 1, we have
qg(ui )(wj )= qui (wj ) for i = 0, 1 and j = 0, . . . ,m. Since L is totally isotropic, qg(ui )(vj )= qui (vj )= 0 for
i = 0, 1 and j = 0, . . . ,m− 1. Thus the normal forms are equal and g is an automorphism as desired. �

Remark 7.8. Note in the last step of the proof, we required that r = 0 in order to lift automorphisms from
g ∈ PGL(U ) to Aut(X). Thus, when X is not quasisplit, the automorphism group may not surject onto G.

8. Cohomology of intersection of two quadrics in P2m

Let X be a smooth intersection of two quadrics in P2m over an algebraically closed field of characteristic
p ≥ 0. Recall that in the case m = 2 when X is a del Pezzo surface of degree 4, the Picard group
Pic(X) of algebraic 2-cycles on X is a free abelian group of rank 6 and the cycle homomorphism
Pic(X)Z` → H 2(X,Z`) to the `-adic cohomology is an isomorphism. It is also compatible with the
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intersection pairing Pic(X)× Pic(X)→ Z and the cup product H 2(X,Z`)× H 2(X,Z`)→ Z` on the
cohomology. This well-known result follows from the fact that X is isomorphic to the blowup of 5 points
p1, . . . , p5 in the projective plane P2, no three of which are collinear. In the anticanonical model, the
exceptional curves of the blowup are 5 disjoint lines on X. The remaining eleven lines come from the
proper transforms of lines pi , pj and the conic passing through the five points.

Let e1, . . . , e5 be the classes of the exceptional curves, and e0 be the class of the preimage of a line in
the plane under the blowup. Then Pic(X) is freely generated by e0, . . . , e5 and the canonical class of X
is equal to −3e0+ e1+ · · ·+ e5. Its orthogonal complement in Pic(X) is isomorphic to the negative root
lattice of type D5. The group of automorphisms of X is faithfully represented in the Weyl group of this
lattice and is a subgroup to 24 oS5, where S5 denotes the symmetric group on 5 letters.

In this section we extend these well known facts to the case of arbitrary m (for char(k) 6= 2 see [Reid
1972]). Throughout, X will be the base locus of a regular pencil q of quadrics and P will denote the
projectivized radical subspace |W | of |E |.

Fix a generator3=|L| in X. Let X3→ X be the blowup of X with center at3. Consider the projection
map p3 : X3→ Pm from 3. We have E =W ⊕ L so we may take p3 to be the projectivization of the
projection E→W and thus identify Pm with P= |W |. For any point x ∈ X \3, p3(x)= 〈3, x〉 ∩ |W |.
The base locus of the restriction of the pencil q to the subspace 〈3, x〉 ∼=Pm contains 3. Thus the residual
pencil consists of hyperplanes in 〈3, x〉 containing x . Its base locus is a codimension 2 linear subspace of
〈3, x〉 containing x unless one of the quadrics contains 〈3, x〉 and hence the two quadrics intersect along
a hyperplane 3′ in 〈3, x〉. If 3′ exists, then it is a generator in X intersecting 3 along a hyperplane.
Note that 3′ = ρi (3) for some reflection ρi ∈ Aut(q0, q1) and 3′ ∩3 is the intersection of the fixed
hyperplane Fi of ρi with 3′.

The image of each such generator under the projection map p3 is the point yi = [vi ] in |W | which is the
singular point of one of the singular quadrics in the pencil. In particular, we found 2m+ 1 generators that
do not intersect each other outside 3 but each intersects 3 along a hyperplane. Their proper transforms
on the blowup are disjoint subvarieties each isomorphic to Pm−1. This gives the following birational
picture of X.

Let P2m
3 → P2m be the blowup of P2m along 3. The projection from 3 defines an isomorphism from

P2m
3 to the projective bundle P(E), where E =O⊕m

Pm ⊕OPm (−1).

Proposition 8.1. X3 is isomorphic over P∼= Pm to a closed subvariety of the projective (m+ 1)-bundle
P(E) over P. Let 6 = {y1, . . . , y2m+1} be the images in |W | of the vertices of singular quadrics in the
pencil. If x 6∈ 6 (resp. x ∈ 6), then the fiber p−1

3 (x) is a codimension 2 (resp. codimension 1) linear
subspace in the fiber of the projective bundle.

The inclusion X3 ↪→ P(E) is given by a surjective homomorphism of coherent sheaves E→ F such
that X3 ∼= P(F) := Proj S•(F). The set 6 is equal to the singular set Sing(F), the set of points x ∈ Pm

such that dimk(F(x)) > rank(F). In our case rank(F)= m− 1 and dimk F(x)= m for x ∈ Sing(F).
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Let U = Pm
\6 and j : U ↪→ Pm be the open inclusion. Since codim6 ≥ 2, the sheaf j∗ j∗F is a

locally free sheaf of rank m − 1 and F is its subsheaf; in particular, it is a reflexive sheaf [Hartshorne
1980]. Thus, we obtain

Proposition 8.2. X3 ∼= P(F),

where F is a reflexive sheaf of rank m− 1 with Sing(F)=6. In particular, X is birationally equivalent
to a projective (m− 2)-bundle over Pm.

Example 8.3. Assume m = 2, then p3 is the projection of the quartic del Pezzo surface X from a line. It
is isomorphic to the blowup P(F), where F is the ideal sheaf I6 of the set 6 of five points in the plane.

Remark 8.4. Recall that, over an algebraically closed field, a del Pezzo surface of degree 4 is obtained
by blowing up 5 general points in the plane P2 which lie on a unique conic C = V (q), where q is a
nondegenerate quadratic form. Prokhorov asked us for a geometric interpretation in the plane model of
the canonical point 5 from Theorem 4.4.

A natural guess is that it is the strange point of the conic. It has the property that any line through
this point is tangent to C. This turns out to be false. In fact, our conic depends only on the pencil of the
associated alternate bilinear forms. In a Kronecker basis it can be given by equation x1x3+ x2

2 = 0. The
equation of 5 depends on the coefficients (a0, . . . , a5) of the half-discriminant, and coincides with the
strange point only in the case when a2a5 = a3a4, a0a3 = a1a2.

The following is well known when the characteristic is not 2; see Chapter 3 of [Reid 1972] for a proof
over C.

Proposition 8.5. Let Am−1(X) be the Chow group of algebraic (m − 1)-cycles on X equipped with a
structure of a quadratic lattice with respect to the intersection of algebraic cycles on X. Then

Am−1(X)∼= Z2m+2.

Let Am−1(X)0 denote the orthogonal complement of K m−1
X in Am−1(X). Then it is isomorphic to the roots

lattice of type D2m+1 taken with the sign (−1)m−1.

Proof. Let U =Pm
\6, let Y6 = p−1

3 (6), and let XU = p−1
3 (U ). By Proposition 1.8 from [Fulton 1998],

we have the following exact sequence of Chow groups Ak of algebraic k-cycles:

Ak(Y6)→ Ak(X3)→ Ak(XU )→ 0.

For a vector bundle E of rank e+ 1 over a base Z , the Chow groups of the projective bundle P(E) are
well known. By Theorem 3.3 of the same work, we have

Ak(P(E))=
e⊕

i=0

Ak−e+i (Z).

It follows that
Am−1(XU )∼= Zm−1, Am−1(Y6)∼= Z2m+1.
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The homomorphism Am−1(Y6)→ Am−1(X6) is injective because Y6 is the union of disjoint subvarieties
of dimension m−1. This shows that Am−1(X3)∼=Z3m. It remains to use [Fulton 1998], Proposition 6.7(e)
that computes the cohomology of the blowup. We have Am−1(X3) = Am−1(X)⊕ Zm−2. This gives
Am−1(X)∼= Z2m+2.

The rest of the arguments can be borrowed from Chapter 3 of [Reid 1972] since they do not depend on
the characteristic of the ground field. We include this for completeness sake. First, we fix one generator 3
and use Corollary 7.5 to index generators by subsets of the set [1, 2m+ 1] = {1, 2, . . . , 2m+ 1} modulo
taking the complementary subset. Here 3∅ :=3 is the generator corresponding to the empty set, and
each 3{i} := ρi (3) is the generator corresponding to the image of 3 under the reflection ρi .

We equip Am−1(X) with a structure of a nondegenerate quadratic lattice with respect to the intersection
pairing Am−1(X)× Am−1(X)→ Z. We have

[3I ] · [3J ] = (−1)r
(⌊r

2

⌋
+ 1

)
,

where r = dim3I ∩3J . In particular,

[3I ]
2
= (−1)m−1

(⌊m−1
2

⌋
+ 1

)
(8-1)

and, if dim3I ∩3J = m− 3,

([3I ] − [3J ])
2
= 2(−1)m−1. (8-2)

Let η be the class of a hyperplane section of X. We have

ηm−1
· [3I ] = 1.

Since K X = (3− 2m)η, we have K m−1
X = (3− 2m)m−1ηm−1, hence

Am−1(X)0 := (K m−1
X )⊥ = (ηm−1)⊥.

We may assume that the generators 3i , i = 1, . . . , 2m+ 1, are the preimages of the points yi ∈6 under
the projection map p3 : X3→ |W |. Let ei = [3i ] be their classes in Am−1(X). Let

e0 = η
m−1
− [3∅]

(note that in the case m = 2 it coincides with the class of the pre-image of a line in P2). One checks that
the classes e0, e1, . . . , e2m+1 freely generate Am−1(X) and the classes

α0 =−e0+ [3∅] + e2m + e2m+1, αi = ei − ei+1, i = 1, . . . 2m,

freely generate Am−1(X)0. In fact they form a root basis of type D2m+1 in Am−1(X)0 (taken with the
sign (−1)m−1). �

Recall that the Weyl group W (Dn) of the root lattice of type Dn generated by reflections in simple
roots αi is isomorphic to 2n−1 oSn . The group Aut(X) acts naturally on Am−1(X) leaving K X invariant.
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This defines a homomorphism

ρ : Aut(X)→ Or(Am−1(X)0)∼= Or(Dn)

to the orthogonal group of the quadratic lattice Dn defined by the Cartan matrix of the root system of type
Dn . The image is contained in the subgroup of Or(Dn) of isometries that can be lifted to Am−1(X). It
follows from the theory of quadratic lattices that this subgroup is of index 2 and coincides with the Weyl
group W (Dn). Thus, we have defined a homomorphism

ρ : Aut(X)→W (Dn)∼= 2n−1 oSn.

Theorem 8.6. The homomorphism ρ is injective and sends the subgroup Aut(q0, q1) to the subgroup
2n−1 of W (Dn).

Proof. An element g of the kernel fixes all generators. Assume p 6= 2. We know that any generator 3
intersects n = 2m+1 other generators that intersect 3 along a hyperplane. We know from the description
of the projection map p3 : X3→|W | given in the beginning of this section that 3 intersects n generators
3i that are projected to the singular points yi ∈ |W | of n singular fibers from the pencil. Thus g in its
action in |W | fixes these points, and since they generate |W | fixes |W | pointwise. Thus the projection of
g to G from Theorem 7.7 is the identity, hence g is the identity. �
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