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Graded Steinberg algebras
and their representations

Pere Ara, Roozbeh Hazrat, Huanhuan Li and Aidan Sims

We study the category of left unital graded modules over the Steinberg algebra of a graded ample Hausdorff
groupoid. In the first part of the paper, we show that this category is isomorphic to the category of unital
left modules over the Steinberg algebra of the skew-product groupoid arising from the grading. To do this,
we show that the Steinberg algebra of the skew product is graded isomorphic to a natural generalisation
of the Cohen–Montgomery smash product of the Steinberg algebra of the underlying groupoid with the
grading group. In the second part of the paper, we study the minimal (that is, irreducible) representations in
the category of graded modules of a Steinberg algebra, and establish a connection between the annihilator
ideals of these minimal representations, and effectiveness of the groupoid.

Specialising our results, we produce a representation of the monoid of graded finitely generated
projective modules over a Leavitt path algebra. We deduce that the lattice of order-ideals in the K0-group
of the Leavitt path algebra is isomorphic to the lattice of graded ideals of the algebra. We also investigate
the graded monoid for Kumjian–Pask algebras of row-finite k-graphs with no sources. We prove that
these algebras are graded von Neumann regular rings, and record some structural consequences of this.

1. Introduction

There has long been a trend of “algebraisation” of concepts from operator theory into algebra. This trend
seems to have started with von Neumann and Kaplansky and their students Berberian and Rickart to see
what properties in operator algebra theory arise naturally from discrete underlying structures [Kaplansky
1968]. As Berberian [1972] puts it, “if all the functional analysis is stripped away . . . what remains should
stand firmly as a substantial piece of algebra, completely accessible through algebraic avenues”.

In the last decade, Leavitt path algebras [Abrams and Aranda Pino 2005; Ara et al. 2007] were
introduced as an algebraisation of graph C∗-algebras [Kumjian et al. 1997; Raeburn 2005] and in
particular Cuntz–Krieger algebras. Later, Kumjian–Pask algebras [Aranda Pino et al. 2013] arose as
an algebraisation of higher-rank graph C∗-algebras [Kumjian and Pask 2000]. Quite recently Steinberg
algebras were introduced in [Steinberg 2010; Clark et al. 2014] as an algebraisation of the groupoid
C∗-algebras first studied by Renault [1980]. Groupoid C∗-algebras include all graph C∗-algebras and
higher-rank graph C∗-algebras, and Steinberg algebras include Leavitt and Kumjian–Pask algebras as
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well as inverse semigroup algebras. More generally, groupoid C∗-algebras provide a model for inverse-
semigroup C∗-algebras, and the corresponding inverse-semigroup algebras are the Steinberg algebras of
the corresponding groupoids. All of these classes of algebras have been attracting significant attention,
with particular interest in whether K-theoretic data can be used to classify various classes of Leavitt path
algebras, inspired by the Kirchberg–Phillips classification theorem for C∗-algebras [Phillips 2000].

In this note we study graded representations of Steinberg algebras. For a 0-graded groupoid G, (i.e.,
a groupoid G with a cocycle map c : G→ 0) Renault [1980, Theorem 5.7] proved that if 0 is a discrete
abelian group with Pontryagin dual 0̂, then the C∗-algebra C∗(G×c 0) of the skew-product groupoid is
isomorphic to a crossed-product C∗-algebra C∗(G)×0̂. Kumjian and Pask [1999] used Renault’s results to
show that if there is a free action of a group 0 on a graph E , then the crossed product of graph C∗-algebra
by the induced action is strongly Morita equivalent to C∗(E/0), where E/0 is the quotient graph.

Parallelling Renault’s work, we first consider the Steinberg algebras of skew-product groupoids (for
arbitrary discrete groups 0). We extend Cohen and Montgomery’s definition of the smash product of a
graded ring by the grading group (introduced and studied in their seminal paper [Cohen and Montgomery
1984]) to the setting of nonunital rings. We then prove that the Steinberg algebra of the skew-product
groupoid is isomorphic to the corresponding smash product. This allows us to relate the category of
graded modules of the algebra to the category of modules of its smash product. Specialising to Leavitt
path algebras, the smash product by the integers arising from the canonical grading yields an ultramatricial
algebra. This allows us to give a presentation of the monoid of graded finitely generated projective modules
for Leavitt path algebras of arbitrary graphs. In particular, we prove that this monoid is cancellative. The
group completion of this monoid is called the graded Grothendieck group, K gr

0 , which is a crucial invariant
in study of Leavitt path algebras. It is conjectured [Hazrat 2016, §3.9] that the graded Grothendieck group
is a complete invariant for Leavitt path algebras. We study the lattice of order ideals of K gr

0 and establish
a lattice isomorphism between order ideals of K gr

0 and graded ideals of Leavitt path algebras.

We then apply the smash product to Kumjian–Pask algebras KPK (3). Unlike Leavitt path algebras,
Kumjian–Pask algebras of arbitrary higher rank graphs are poorly understood, so we restrict our attention
to row finite k-graphs with no sources. We show that the smash product of KPK (3) by Zk is also an
ultramatricial algebra. This allows us to show that KPK (3) is a graded von Neumann regular ring and, as
in the case of Leavitt path algebras, its graded monoid is cancellative. Several very interesting properties of
Kumjian–Pask algebras follow as a consequence of general results for graded von Neumann regular rings.

We then proceed with a systematic study of the irreducible representations of Steinberg algebras. Chen
[2015] used infinite paths in a graph E to construct an irreducible representation of the Leavitt path
algebra E . These representations were further explored in a series of papers [Abrams et al. 2015; Ara
and Rangaswamy 2014; 2015; Hazrat and Rangaswamy 2016; Rangaswamy 2016]. The infinite path
representations of Kumjian–Pask algebras were also defined in [Aranda Pino et al. 2013]. In the setting of
a groupoid G, the infinite path space becomes the unit space of the groupoid. For any invariant subset W
of the unit space, the free module RW with basis W is a representation of the Steinberg algebra AR(G)
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[Brown et al. 2014]. These representations were used to construct nontrivial ideals of the Steinberg
algebra, and ultimately to characterise simplicity.

For the 0-graded groupoid G, we introduce what we call 0-aperiodic invariant subsets of the unit space
of the groupoid G. We obtain graded (irreducible) representations of the Steinberg algebra via these
0-aperiodic invariant subsets. We then describe the annihilator ideals of these graded representations and es-
tablish a connection between these annihilator ideals and effectiveness of the groupoid. Specialising to the
case of Leavitt and Kumjian–Pask algebras we obtain new results about representations of these algebras.

The paper is organised as follows. In Section 2, we recall the background we need on graded ring
theory, and then introduce the smash product A #0 of an arbitrary 0-graded ring A, possibly without
unit. We establish an isomorphism of categories between the category of unital left A #0-modules and
the category of unital left 0-graded A-modules. This theory is used in Section 3, where we consider the
Steinberg algebra associated to a 0-graded ample groupoid G. We prove that the Steinberg algebra of the
skew-product of G×c 0 is graded isomorphic to the smash product of AR(G) with the group 0.

In Section 4 we collect the facts we need to study the monoid of graded rings with graded local units. In
Section 5 and Section 6, we apply the isomorphism of categories in Section 2 and the graded isomorphism
of Steinberg algebras (Theorem 3.4) on the setting of Leavitt path algebras and Kumjian–Pask algebras.
Although Kumjian–Pask algebras are a generalisation of Leavitt path algebras, we treat these classes
separately as we are able to study Leavitt path algebras associated to any arbitrary graph, whereas for
Kumjian–Pask algebras we consider only row-finite k-graphs with no sources, as the general case is much
more complicated [Raeburn et al. 2004; Sims 2006]. We describe the monoids of graded finitely generated
projective modules over Leavitt path algebras and Kumjian–Pask algebras, and obtain a new description
of their lattices of graded ideals. In Section 7, we turn our attention to the irreducible representations
of Steinberg algebras. We consider what we call 0-aperiodic invariant subset of the groupoid G and
construct graded simple AR(G)-modules. This covers, as a special case, previous work done in the setting
of Leavitt path algebras, and gives new results in the setting of Kumjian–Pask algebras. We describe the
annihilator ideals of the graded modules over a Steinberg algebra and prove that these ideals reflect the
effectiveness of the groupoid.

2. Graded rings and smash products

2A. Graded rings. Let 0 be a group with identity ε. A ring A (possibly without unit) is called a 0-graded
ring if A =

⊕
γ∈0 Aγ such that each Aγ is an additive subgroup of A and Aγ Aδ ⊆ Aγ δ for all γ, δ ∈ 0.

The group Aγ is called the γ -homogeneous component of A. When it is clear from context that a ring A
is graded by group 0, we simply say that A is a graded ring. If A is an algebra over a ring R, then A is
called a graded algebra if A is a graded ring and Aγ is a R-submodule for any γ ∈ 0. A 0-graded ring
A =

⊕
γ∈0 Aγ is called strongly graded if Aγ Aδ = Aγ δ for all γ, δ in 0.

The elements of
⋃
γ∈0 Aγ in a graded ring A are called homogeneous elements of A. The nonzero

elements of Aγ are called homogeneous of degree γ and we write deg(a)= γ for a ∈ Aγ \{0}. The set
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0A = {γ ∈ 0 | Aγ 6= 0} is called the support of A. We say that a 0-graded ring A is trivially graded if
the support of A is the trivial group {ε}— that is, Aε = A, so Aγ = 0 for γ ∈ 0\{ε}. Any ring admits a
trivial grading by any group. If A is a 0-graded ring and s ∈ A, then we write sα, α ∈ 0 for the unique
elements sα ∈ Aα such that s =

∑
α∈0 sα. Note that {α ∈ 0 | sα 6= 0} is finite for every s ∈ A.

We say a 0-graded ring A has graded local units if for any finite set of homogeneous elements
{x1, . . . , xn}⊆ A, there exists a homogeneous idempotent e∈ A such that {x1, . . . , xn}⊆eAe. Equivalently,
A has graded local units, if Aε has local units and AεAγ = Aγ Aε = Aγ for every γ ∈ 0.

Let M be a left A-module. We say M is unital if AM =M and it is 0-graded if there is a decomposition
M =

⊕
γ∈0 Mγ such that AαMγ ⊆ Mαγ for all α, γ ∈0. We denote by A-Mod the category of unital left

A-modules and by A-Gr the category of 0-graded unital left A-modules with morphisms the A-module
homomorphisms that preserve grading.

For a graded left A-module M , we define the α-shifted graded left A-module M(α) as

M(α)=
⊕
γ∈0

M(α)γ , (2-1)

where M(α)γ = Mγα. That is, as an ungraded module, M(α) is a copy of M , but the grading is shifted
by α. For α ∈ 0, the shift functor

Tα : A-Gr→ A-Gr, M 7→ M(α)

is an isomorphism with the property TαTβ = Tαβ for α, β ∈ 0.

2B. Smash products. Let A be a 0-graded unital R-algebra where 0 is a finite group. In an influential
paper, Cohen and Montgomery [1984] introduced the smash product associated to A, denoted by A# R[0]∗.
They proved two main theorems, duality for actions and coactions, which related the smash product to
the ring A. In turn, these theorems relate the graded structure of A to nongraded properties of A. The
construction has been extended to the case of infinite groups (see for example [Beattie 1988; Liu and
Van Oystaeyen 1988; Năstăsescu and Van Oystaeyen 2004, §7]). We need to adopt the construction of
smash products for algebras with local units as the main algebras we will be concerned with are Steinberg
algebras which are not necessarily unital but have local units. The main theorem of Section 3 shows that
the Steinberg algebra of the skew-product of a groupoid by a group can be represented using the smash
product construction (Theorem 3.4).

We start with a general definition of smash product for any ring.

Definition 2.1. For a 0-graded ring A (possibly without unit), the smash product ring A #0 is defined
as the set of all formal sums

∑
γ∈0 r (γ ) pγ , where r (γ ) ∈ A and pγ are symbols. Addition is defined

component-wise and multiplication is defined by linear extension of the rule (r pα)(spβ) = rsαβ−1 pβ ,
where r, s ∈ A and α, β ∈ 0.

It is routine to check that A #0 is a ring. We emphasise that the symbols pγ do not belong to A #0;
however if the ring A has unit, then we regard the pγ as elements of A #0 by identifying 1A pγ with pγ .
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Each pγ is then an idempotent element of A #0. In this case A #0 coincides with the ring A #0∗ of
[Beattie 1988]. If 0 is finite, then A # 0 is the same as the smash product A # k[0]∗ of [Cohen and
Montgomery 1984]. Note that A #0 is always a 0-graded ring with

(A #0)γ =
∑
α∈0

Aγ pα. (2-2)

Next we define a shift functor on A #0-Mod. This functor will coincide with the shift functor on A-Gr
(see Proposition 2.5). This does not seem to be exploited in the literature and will be crucial in our study
of K-theory of Leavitt path algebras (Section 5C).

For each α ∈ 0, there is an algebra automorphism

Sα : A #0→ A #0,

such that Sα(spβ)= spβα, for spβ ∈ A #0 with s ∈ A and β ∈ 0. We sometimes call Sα the shift map
associated to α. For M ∈ A #0-Mod and α ∈ 0, we obtain a shifted A #0-module Sα

∗
M obtained by

setting Sα
∗

M := M as a group, and defining the left action by a ·Sα∗ M m := Sα(a) ·M m. For α ∈ 0, the
shift functor

S̃α : A #0-Mod→ A #0-Mod, M 7→ Sα
∗

M,

is an isomorphism satisfying S̃αS̃β = S̃αβ for α, β ∈ 0.
If A is a unital ring then A #0 has local units [Beattie 1988, Proposition 2.3]. We extend this to rings

with graded local units.

Lemma 2.2. Let A be a 0-graded ring with graded local units. Then the ring A#0 has graded local units.

Proof. Take a finite subset X = {x1, x2, . . . , xn} ⊆ A # 0 such that all xi are homogeneous elements.
Since homogeneous elements of A #0 are sums of elements of the form r pα for r ∈ A a homogeneous
element and α ∈ 0, we may assume that xi = ri pαi , 1≤ i ≤ n, where ri ∈ A are homogeneous of degree
γi and αi ∈ 0. Since A has graded local units, there exists a homogeneous idempotent e ∈ A such that
eri = ri e = ri for all i . Consider the finite set

Y =
{
γ ∈ 0 | γ = αi or γ = γiαi for 1≤ i ≤ n

}
,

and let w =
∑

γ∈Y epγ . Since the idempotent e ∈ A is homogeneous, w is a homogeneous element of
A #0. It is easy now to check that w2

= w and wxi = xi = xiw for all i . �

As we will see in Sections 5 and 6, smash products of Leavitt path algebras or of Kumjian–Pask
algebras are ultramatricial algebras, which are very well-behaved. This allows us to obtain results about
the path algebras via their smash product. For example, ultramatricial algebras are von Neumann regular
rings. The following lemma allows us to exploit this property (see Theorems 6.4 and 6.5). Recall that a
graded ring is called graded von Neumann regular if for any homogeneous element a, there is an element
b such that aba = a.
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Lemma 2.3. Let A be a 0-graded ring ( possibly without unit). Then A # 0 is graded von Neumann
regular if and only if A is graded von Neumann regular.

Proof. Suppose A #0 is graded regular and a ∈ Aγ , for some γ ∈ G. Since ape ∈ (A #0)γ (see (2-2)),
there is an element

∑
α∈0 bγα pα ∈ (A #0)γ−1 with deg(bγα )= γ

−1, α ∈ 0, such that

ape

(∑
α∈0

bγα pα

)
ape = ape.

This identity reduces to abγγ ape = ape. Thus abγγ a = a. This shows that A is graded regular.
Conversely, suppose A is graded regular and x :=

∑
α∈0 aγα pα ∈ (A#0)γ . By (2-2) we have deg(aγα )=

γ , α ∈ 0. Then there are bγ−1
α
∈ Aγ−1 such that aγαbγ−1

α
aγα = aγα , for α ∈ 0. Consider the element

y :=
∑

α∈0 bγ−1
α

pγα ∈ (A #0)γ−1 . One can then check that xyx = x . Thus A #0 is graded regular. �

2C. An isomorphism of module categories. In this section we first prove that, for a 0-graded ring A with
graded local units, there is an isomorphism between the categories A #0-Mod and A-Gr (Proposition 2.5).
This is a generalisation of [Cohen and Montgomery 1984, Theorem 2.2; Beattie 1988, Theorem 2.6]. We
check that the isomorphism respects the shifting in these categories. This in turn translates the shifting
of modules in the category of graded modules to an action of the group on the category of modules
for the smash-product. Since graded Steinberg algebras have graded local units, using this result and
Theorem 3.4, we obtain a shift preserving isomorphism

AR(G×c 0)-Mod∼= AR(G)-Gr.

In Section 5 we will use this in the setting of Leavitt path algebras to establish an isomorphism between
the category of graded modules of L R(E) and the category of modules of L R(E), where E is the covering
graph of E (Section 5B). This yields a presentation of the monoid of graded finitely generated projective
modules of a Leavitt path algebra.

We start with the following fact, which extends [Beattie 1988, Corollary 2.4] to rings with local units.

Lemma 2.4. Let A be a 0-graded ring with a set of graded local units E. A left A #0-module M is unital
if and only if for every finite subset F of M , there exists w =

∑n
i=1 upγi with γi ∈ 0, and u ∈ E such that

wx = x for all x ∈ F.

Proof. Suppose that M is unital. Then each m ∈ F may be written as m =
∑

n∈Gm
ynn for some finite

Gm ⊆ M and choice of scalars {yn | n ∈ Gm} ⊆ A #0. Let T :=
⋃

m∈F Gm . By Lemma 2.2, there exists
a finite set Y of 0 such that w =

∑
γ∈Y upγ satisfies wy = y for all y ∈ T . So wm = m for all m ∈ F .

Conversely, for m ∈ M , take F = {m}. Then there exists w such that m = wm ∈ (A #0)M ; that is,
(A #0)M = M . �

Proposition 2.5. Let A be a 0-graded ring with graded local units. Then there is an isomorphism of
categories ψ : A-Gr−→ A #0-Mod such that the following diagram commutes for every α ∈ 0.
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A-Gr
ψ
//

Tα
��

A #0-Mod

S̃α
��

A-Gr
ψ
// A #0-Mod

(2-3)

Proof. We first define a functor φ : A #0-Mod→ A-Gr as follows. Fix a set E of graded local units for A.
Let M be a unital left A #0-module. We view M as a 0-graded left A-module M ′ as follows. For each
γ ∈ 0, define

M ′γ :=
∑
u∈E

upγ M.

We first show that for α ∈ 0, we have M ′α ∩
∑

γ∈0,γ 6=α M ′γ = {0}. Suppose this is not the case, so
there exist finite index sets F and {F ′γ | γ ∈ 0} (only finitely many nonempty), elements {ui | i ∈ F} and
{vγ, j | γ ∈ 0 and j ∈ F ′γ } in E , and elements {mi | i ∈ F} and {nγ, j | γ ∈ 0 and j ∈ F ′γ } such that

x =
∑
i∈F

ui pαmi =
∑

γ∈0, γ 6=α

∑
j∈F ′γ

vγ, j pγ nγ, j ,

Fix e ∈ E such that eui = ui = ui e for all i ∈ F . Using that the ui are homogeneous elements of trivial
degree at the second equality, we have

epαx =
∑
i∈F

(epαui pα)mi =
∑
i∈F

eui pαmi = x .

We also have

epαx =
∑

γ∈0\{α}

∑
j∈F ′γ

epαvγ, j pγ nγ, j = 0.

Hence x = 0.
For r ∈ Aγ and m ∈ M ′α, define rm := r pαm. This determines a left A-action on M ′α. For u ∈ E

satisfying ur = r = ru, we have

upγαrm = (upγαr pα)m = ur pαm = rm.

Hence rm ∈ M ′γα . One can easily check the associativity of the A-action. Using Lemma 2.4 we see that
M = M ′ as sets. We claim that M ′ is a unital A-module. For m ∈ M ′γ , we write m =

∑
u∈E ′ upγmu ,

where E ′ ⊆ E is a finite set and mu ∈ M . Since u is a homogeneous idempotent,

u(upγmu)= upγ (upγmu)= upγmu .

Thus u(upγmu)= upγmu ∈ AM ′ implies that m ∈ AM ′ showing that M ′= AM ′. We can therefore define

φ : Obj(A #0-Mod)→ Obj(A-Gr),

by φ(M)= M ′.
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To define φ on morphisms, fix a morphism f in A # 0-Mod. For m =
∑

γ∈0 mγ ∈ M ′ such that
mγ =

∑
u∈Fγ upγmu with Fγ a finite subset of E , we define f ′ : M ′→ N ′ by

f ′(mγ )= f
(∑

u∈Fγ

upγmu

)
=

∑
u∈Fγ

upγ f (mu)= f (m)γ . (2-4)

To see that f ′ is an A-module homomorphism, fix m ∈ M ′γ and r ∈ A. Since f (m) ∈ M ′γ , we have

f ′(rm)= f (r pγm)= r pγ f (m)= r f ′(m).

The definition (2-4) shows that it preserves the gradings. That is, f ′ is a 0-graded A-module homomor-
phism. So we can define φ on morphisms by φ( f )= f ′. It is routine to check that φ is a functor.

Next we define a functor ψ : A-Gr→ A #0-Mod as follows. Let N =
⊕

γ∈0 Nγ be a 0-graded unital
left A-module. Let N ′′ be a copy of N as a group. Fix n ∈ N , and write n =

∑
γ∈0 nγ . Fix r ∈ A and

α ∈ 0, and define

(r pα)n = rnα.

It is straightforward to check that this determines an associative left A #0-action on N ′′. We claim that
N ′′ is a unital A #0-module. To see this, fix n ∈ N ′′. Since AN = N , we can express n =

∑l
i=1 ri ni , with

the ni homogeneous in N and the ri ∈ A, and we can then write each ri as ri =
∑

β∈0 ri,β as a sum of
homogeneous elements ri,β ∈ Aβ . For any γ ∈ 0,

nγ =
∑
i,β

ri,β(ni )β−1γ =

l∑
i,β

(ri,β pβ−1γ )ni ∈ (A #0)N ′′.

So we can define

ψ : Obj(A-Gr)→ Obj(A #0-Mod),

by ψ(N )= N ′′. Since ψ(N )= N ′′ is just a copy of N as a module, we can define ψ on morphisms simply
as the identity map; that is, if f : M→ N is a homomorphism of graded A-modules, then for m ∈ M we
write m′′ for the same element regarded as an element of M ′′, and we have ψ( f )(m′′)= f (m)′′. Again,
it is straightforward to check that ψ is a functor.

To prove thatψ◦φ= IdA#0-Mod and φ◦ψ= IdA-Gr, it suffices to show that (M ′)′′=M for M ∈ A#0-Mod
and (N ′′)′ = N for N ∈ A-Gr; but this is straightforward from the definitions.

To prove the commutativity of the diagram in (2-3), it suffices to show that the A # 0-actions on
(ψ ◦ Tα)(N ) = N (α)′′ and (S̃α ◦ ψ)(N ) = N ′′(α) coincide for any N ∈ A-Gr. Take any n ∈ N and
spβ ∈ A #0 with s ∈ A and β ∈ 0. For n ∈ N ′′(α) and a typical spanning element spβ of A #0, we have
(spβ)n = (spβα)n = snβα . On the other hand, for the same n regarded as an element of N ′′, and the same
spβ ∈ A#0, we have (spβ)n= sn′β = snβα . Since N (α)β = Nβα by definition, this completes the proof. �
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3. The Steinberg algebra of the skew-product

In this section, we consider the skew-product of an ample groupoid G carrying a grading by a discrete
group 0. We prove that the Steinberg algebra of the skew-product is graded isomorphic to the smash
product by 0 of the Steinberg algebra associated to G. This result will be used in Section 5 to study the
category of graded modules over Leavitt path algebras and give a representation of the graded finitely
generated projective modules.

3A. Graded groupoids. A groupoid is a small category in which every morphism is invertible. It can
also be viewed as a generalisation of a group which has partial binary operation. Let G be a groupoid. If
x ∈ G, d(x) = x−1x is the domain of x and r(x) = xx−1 is its range. The pair (x, y) is composable if
and only if r(y)= d(x). The set G(0) := d(G)= r(G) is called the unit space of G. Elements of G(0) are
units in the sense that xd(x)= x and r(x)x = x for all x ∈ G. For U, V ∈ G, we define

U V =
{
αβ | α ∈U, β ∈ V and r(β)= d(α)

}
.

A topological groupoid is a groupoid endowed with a topology under which the inverse map is
continuous, and such that composition is continuous with respect to the relative topology on G(2) :=
{(β, γ ) ∈ G × G | d(β) = r(γ )} inherited from G × G. An étale groupoid is a topological groupoid
G such that the domain map d is a local homeomorphism. In this case, the range map r is also a
local homeomorphism. An open bisection of G is an open subset U ⊆ G such that d|U and r |U are
homeomorphisms onto an open subset of G(0). We say that an étale groupoid G is ample if there is a basis
consisting of compact open bisections for its topology.

Let 0 be a discrete group and G a topological groupoid. A 0-grading of G is a continuous function
c : G→ 0 such that c(α)c(β)= c(αβ) for all (α, β) ∈ G(2); such a function c is called a cocycle on G. In
this paper, we shall also refer to c as the degree map on G. Observe that G decomposes as a topological
disjoint union

⊔
γ∈0 c−1(γ ) of subsets satisfying c−1(β)c−1(γ ) ⊆ c−1(βγ ). We say that G is strongly

graded if c−1(β)c−1(γ )= c−1(βγ ) for all β, γ . For γ ∈0, we say that X ⊆ G is γ -graded if X ⊆ c−1(γ ).
We always have G(0) ⊆ c−1(ε), so G(0) is ε-graded. We write Bco

γ (G) for the collection of all γ -graded
compact open bisections of G and

Bco
∗
(G)=

⋃
γ∈0

Bco
γ (G).

Throughout this note we only consider 0-graded ample Hausdorff groupoids.

3B. Steinberg algebras. Steinberg algebras were introduced in [Steinberg 2010] in the context of discrete
inverse semigroup algebras and independently in [Clark et al. 2014] as a model for Leavitt path algebras.
We recall the notion of the Steinberg algebra as a universal algebra generated by certain compact open
subsets of an ample Hausdorff groupoid.

Definition 3.1. Let G be a 0-graded ample Hausdorff groupoid and Bco
∗
(G)=

⋃
γ∈0 Bco

γ (G) the collection
of all graded compact open bisections. Given a commutative ring R with identity, the Steinberg R-algebra
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associated to G, denoted AR(G), is the algebra generated by the set {tB | B ∈ Bco
∗
(G)} with coefficients in

R, subject to

(R1) t∅ = 0;

(R2) tB tD = tB D for all B, D ∈ Bco
∗
(G); and

(R3) tB+ tD = tB∪D , whenever B and D are disjoint elements of Bco
γ (G) for some γ ∈0 such that B∪D

is a bisection.

Every element f ∈ AR(G) can be expressed as f =
∑

U∈F aU tU , where F is a finite subset of elements
of Bco

∗
(G). It was proved in [Clark and Edie-Michell 2015, Proposition 2.3] (see also [Clark et al. 2014,

Theorem 3.10]) that the Steinberg algebra defined above is isomorphic to the following construction:

AR(G)= span
{
1U |U is a compact open bisection of G

}
,

where 1U : G → R denotes the characteristic function on U . Equivalently, if we give R the discrete
topology, then continuous functions from G to R are exactly locally constant functions from G to R, and
so AR(G)= Cc(G, R), the space of compactly supported continuous functions from G to R. Addition is
point-wise and multiplication is given by convolution

( f ∗ g)(γ )=
∑
{αβ=γ }

f (α)g(β).

It is useful to note that

1U ∗ 1V = 1U V

for compact open bisections U and V (see [Steinberg 2010, Proposition 4.5(3)]) and the isomorphism
between the two constructions is given by tU 7→ 1U on the generators. By [Clark and Edie-Michell 2015,
Lemma 2.2; Clark et al. 2014, Lemma 3.5], every element f ∈ AR(G) can be expressed as

f =
∑
U∈F

aU 1U , (3-1)

where F is a finite subset of mutually disjoint elements of Bco
∗
(G).

Recall from [Clark and Sims 2015, Lemma 3.1] that if c : G→ 0 is a cocycle into a discrete group 0,
then the Steinberg algebra AR(G) is a 0-graded algebra with homogeneous components

AR(G)γ = { f ∈ AR(G) | supp( f )⊆ c−1(γ )}.

The family of all idempotent elements of AR(G(0)) is a set of local units for AR(G) ([Clark et al. 2017,
Lemma 2.6]). Here, AR(G(0))⊆ AR(G) is a subalgebra. Since G(0) ⊆ c−1(ε) is trivially graded, AR(G)
is a graded algebra with graded local units. Note that any ample Hausdorff groupoid admits the trivial
cocycle from G to the trivial group {ε}, which gives rise to a trivial grading on AR(G).
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3C. Skew-products. Let G be an ample Hausdorff groupoid, 0 a discrete group, and c : G→0 a cocycle.
Then G admits a basis B of compact open bisections. Replacing B with B′ = {U ∩c−1(γ ) |U ∈ B, γ ∈0},
we obtain a basis of compact open homogeneous bisections.

To a 0-graded groupoid G one can associate a groupoid called the skew-product of G by 0. The aim of
this section is to relate the Steinberg algebra of the skew-product groupoid to the Steinberg algebra of G.
We recall the notion of skew-product of a groupoid (see [Renault 1980, Definition 1.6]).

Definition 3.2. Let G be an ample Hausdorff groupoid, 0 a discrete group and c : G→ 0 a cocycle. The
skew-product of G by 0 is the groupoid G ×c 0 such that (x, α) and (y, β) are composable if x and y
are composable and α = c(y)β. The composition is then given by (x, c(y)β)(y, β)= (xy, β) with the
inverse (x, α)−1

= (x−1, c(x)α).

Note that our convention for the composition of the skew-product here is slightly different from that
in [Renault 1980, Definition 1.6]. The two determine isomorphic groupoids, but when we establish the
isomorphism of Theorem 3.4, the composition formula given here will be more obviously compatible
with the multiplication in the smash product.

Lemma 3.3. Let G be a 0-graded ample groupoid. Then the skew-product G×c 0 is a 0-graded ample
groupoid under the product topology on G×0 and with degree map c̃(x, γ ) := c(x).

Proof. We can directly check that under the product topology on G ×0, the inverse and composition
of the skew-product G ×c 0 are continuous making it a topological groupoid. Since the domain map
d : G→ G(0) is a local homeomorphism, the domain map (also denoted d) from G ×c 0 to G(0)×0 is
d × id0 so restricts to a homeomorphism on U ×0 for any set U on which d is a homeomorphism. So
d : G×c 0→ (G×c 0)

(0) is a local homeomorphism. Since the inverse map is clearly a homeomorphism,
it follows that the range map is also a local homeomorphism.

If B is a basis of compact open bisections for G, then {B×{γ } | B ∈B and γ ∈0} is a basis of compact
open bisections for the topology on G×c 0. Since composition on G×c 0 agrees with composition in G
in the first coordinate, it is clear that c̃ is a cocycle. �

The Steinberg algebra AR(G ×c 0) associated to G ×c 0 is a 0-graded algebra, with homogeneous
components

AR(G×c 0)γ =
{

f ∈ AR(G×c 0) | supp( f )⊆ c−1(γ )×0
}
,

for γ ∈ 0.
We are in a position to state the main result of this section.

Theorem 3.4. Let G be a 0-graded ample, Hausdorff groupoid and R a unital commutative ring. Then
there is an isomorphism of 0-graded algebras AR(G×c 0)∼= AR(G) #0, assigning 1U×{α} to 1U pα for
each compact open bisection U of G and α ∈ 0.

Proof. We first define a representation {tU |U ∈ Bco
∗
(G×c0)} in the algebra AR(G)#0 (see Definition 3.1).

If U is a graded compact open bisection of G ×c 0, say U ⊆ c̃−1(α), then for each γ ∈ 0, the set
U ∩G×{γ } is a compact open bisection. Since these are mutually disjoint and U is compact, there are
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finitely many (distinct) γ1, . . . , γl ∈ 0 such that U =
⊔l

i=1 U ∩G×{γi }. Each U ∩G×{γi } has the form
Ui × {γi } where Ui ⊆ U is compact open. The Ui have mutually disjoint sources because the domain
map on G×c 0 is just d× id, and U is a bisection. So each Ui ∈ Bco

α (G), and U =
⊔l

i=1 Ui ×{γi }. Using
this decomposition, we define

tU =
l∑

i=1

1Ui pγi .

We show that these elements tU satisfy (R1)–(R3). Certainly if U =∅, then tU = 0, giving (R1). For (R2),
take V ∈ Bco

β (G×c 0), and decompose V =
⋃m

j=1 V j ×{γ
′

j } as above. Then

tU tV =

l∑
i=1

1Ui pγi

m∑
j=1

1V j pγ ′j =
l∑

i=1

m∑
j=1

1Ui pγi 1V j pγ ′j =
m∑

j=1

l∑
i=1

1Ui pγi 1V j pγ ′j

=

m∑
j=1

∑
{1≤i≤l |γi (γ

′

j )
−1=β}

1Ui V j pγ ′j . (3-2)

On the other hand, by the composition of the skew-product G×c 0, we have

U V =
l⋃

i=1

m⋃
j=1

Ui ×{γi } · V j ×{γ
′

j } =

m⋃
j=1

l⋃
i=1

Ui ×{γi } · V j ×{γ
′

j }

=

m⋃
j=1

⋃
{1≤i≤l |γi=βγ

′

j }

Ui V j ×{γ
′

j }.

For each 1≤ j ≤ m, there exists at most one 1≤ i ≤ l such that γi = βγ
′

j and Ui V j ∈ Bco
αβ(G). It follows

that tU V =
∑m

j=1
∑
{1≤i≤l |γi (γ

′

j )
−1=β} 1Ui V j pγ ′j . Comparing this with (3-2), we obtain tU tV = tU V .

To check (R3), suppose that U and V are disjoint elements of Bco
ω (G×c 0) for some ω ∈ 0 such that

U ∪ V is a bisection of G×c 0. Write them as U =
⋃l

i=1 Ui × {γi } and V =
⋃m

j=1 Vi × {γ
′

j } as above.
We have

tU + tV =

l∑
i=1

1Ui pγi +

m∑
j=1

1V j pγ ′j .

On the other hand

U ∪ V =
( l⋃

i=1

Ui ×{γi }

)
∪

( m⋃
j=1

Vi ×{γ
′

j }

)
.

If γi = γ
′

j , then Ui × {γi } ∪ V j × {γ
′

j } = (Ui ∪ V j )× {γi }. Since U and V are disjoint and U ∪ V is a
bisection, we deduce that r(Ui )∩ r(V j )=∅= d(Ui )∩ d(V j ) so that Ui ∪ V j is a bisection. So

tUi×{γi }∪V j×{γ
′

j }
= tUi∪V j×{γi }

= 1Ui∪V j
pγi
= 1Ui

pγi + 1V j
pγi
= 1Ui

pγi + 1V j
p
γ ′j
.

This shows that after combining pairs where γi = γ
′

j as above, we obtain tU + tV = tU∪V .
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By the universality of Steinberg algebras, we have an R-homomorphism,

φ : AR(G×c 0)→ AR(G) #0

such that φ(1U×{α})= 1U pα for each compact open bisection U of G and α ∈ 0. From the definition of
φ, it is evident that φ preserves the grading. Hence, φ is a homomorphism of 0-graded algebras.

Next we prove that φ is an isomorphism. For any element apγ ∈ AR(G)#0 with a ∈ AR(G) and γ ∈ 0,
there is a finite index set T , elements {ri | i ∈ T } of R, and compact open bisections Ki ∈ Bco

∗
(G) such

that

apγ =
∑
i∈T

ri 1Ki pγ =
∑
i∈T

riφ(1Ki×{γ }) ∈ Imφ.

So φ is surjective. It remains to prove that φ is injective. Take an element x ∈ AR(G ×c 0) such that
φ(x)= 0. Since φ is graded, we can assume that x is homogeneous, say x ∈ AR(G×c0)γ . By (3-1), there
is a finite set F , mutually disjoint Bi ∈ Bco

γ (G×c 0) indexed by i ∈ F and coefficients ri ∈ R indexed by
i ∈ F such that

x =
∑
i∈F

ri 1Bi .

For each Bi , we write Bi =
⋃

k∈Fi
Bik ×{δik} such that Fi is a finite set and the δik indexed by k ∈ Fi are

distinct. Set

1= {δik | i ∈ F, k ∈ Fi }.

For each δ ∈1, let Fδ ⊆ F be the collection Fδ =
{
i ∈ F | δ ∈ {δik | k ∈ Fi }

}
. Then

φ(x)=
∑
i∈F

riφ(1Bi )=
∑
i∈F

∑
k∈Fi

ri 1Bik pδik =

∑
δ∈1

∑
i∈Fδ

ri 1Bi,k(δ) pδ = 0.

For any δ ∈1, we obtain
∑

i∈Fδ ri 1Bi,k(δ) = 0. Since the Bi are mutually disjoint, for any element g ∈ G,
we have (∑

i∈Fδ

ri 1Bi,k(δ)

)
(g)=

{
ri if g ∈ Bi,k(δ) for some i ∈ Fδ,
0 otherwise.

Then ri = 0 for any i ∈ Fδ, giving x = 0. �

3D. C∗-algebras and crossed-products. In the groupoid-C∗-algebra literature, it is well-known that if G
is a 0-graded groupoid, and 0 is abelian, then the C∗-algebra C∗(G×0) of the skew-product groupoid is
isomorphic to the crossed product C∗-algebra C∗(G)×αc 0̂, where αc is the action of the Pontryagin dual
0̂ such that αc

χ ( f )(g) = χ(c(g)) f (g) for f ∈ Cc(G), χ ∈ 0̂, and g ∈ G. This extends to nonabelian 0
via the theory of C∗-algebraic coactions.

In this subsection, we reconcile this result with Theorem 3.4 by showing that there is a natural
embedding of AC(G) #0 into C∗(G)×αc 0̂ when 0 is abelian.
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Lemma 3.5. Suppose that 0 is a discrete abelian group and that G is a 0-graded groupoid with grading
cocycle c : G→ 0. For a ∈ AC(G) and γ ∈ 0, define a · γ̂ ∈ C(0̂,C∗(G))⊆ C∗(G)×αc 0̂ by

(a · γ̂ )(χ)= χ(γ )a.

Then there is a homomorphism AC(G) #0 ↪→ C∗(G)×αc 0̂ that carries apγ to a · γ̂ .

Proof. The multiplication in the crossed-product C∗-algebra is given on elements of C(0̂,C∗(G)) by
(F ∗G)(χ)=

∫
0̂

F(ρ)αc
ρ(G(ρ

−1χ)) dµ(ρ), where µ is Haar measure on 0̂.
The action of 0̂ induces a 0-grading of C∗(G)×αc 0̂ such that for a ∈ C∗(G)×αc 0̂ and γ ∈ 0, the

corresponding homogeneous component aγ of a is given by

aγ =
∫
0̂

χ(γ )αc
χ (a) dµ(χ).

There is certainly a linear map i : AC(G)#0→ C∗(G)×αc 0̂ satisfying i(apγ )= a · γ̂ ; we just have to
check that it is multiplicative. For this, fix a, b ∈ AC(G) and γ, β ∈ 0 and χ ∈ 0̂, and calculate(

i(apγ )i(bpβ)
)
(χ)=

∫
0̂

i(apγ )(ρ)αc
ρ(i(bpβ)(ρ−1χ)) dµ(ρ)=

∫
0̂

a · γ̂ (ρ)αc
ρ(bβ̂(ρ

−1χ)) dµ(ρ)

=

∫
0̂

ρ(γ )a(ρ−1χ)(β)αc
ρ(b) dµ(ρ)= χ(β)a

∫
0̂

ρ(γ−1β)αc
ρ(b) dµ(ρ)

= χ(β)abγ−1β = (abγ−1β) · β̂ = i(abγ−1β pβ)= i(apγ bpβ).

So i is multiplicative as required. �

4. Nonstable graded K-theory

For a unital ring A, we denote by V(A) the abelian monoid of isomorphism classes of finitely generated
projective left A-modules under direct sum. In general for an abelian monoid M and elements x, y ∈ M ,
we write x ≤ y if y = x + z for some z ∈ M . An element d ∈ M is called distinguished (or an order unit)
if for any x ∈ M , we have x ≤ nd for some n ∈ N. A monoid is called conical, if x + y = 0 implies
x = y = 0. Clearly V(A) is conical with a distinguished element [A]. For a finitely generated conical
abelian monoid M containing a distinguished element d , Bergman constructed a “universal” K-algebra B
(here K is a field) for which there is an isomorphism φ : V(B)→ M , such that φ([B])→ d ([Bergman
1974, Theorem 6.2]).

For a (finite) directed graph E , one defines an abelian monoid ME generated by the vertices, identifying
a vertex with the sum of vertices connected to it by edges (see Section 5C). The Bergman universal algebra
associated to this monoid (with the sum of vertices as a distinguished element) is the Leavitt path algebra
L K (E) associated to the graph E , i.e., V(L K (E))∼= ME . Leavitt path algebras of directed graphs have
been studied intensively since their introduction [Abrams and Aranda Pino 2005; Ara et al. 2007]. The
classification of such algebras is still a major open topic and one would like to find a complete invariant
for such algebras. Due to the success of K-theory in the classification of graph C∗-algebras [Phillips
2000], one would hope that the Grothendieck group K0 with relevant ingredients might act as a complete
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invariant for Leavitt path algebras; particularly since K0(L K (E)) is the group completion of V(L K (E)).
However, unless the graph consists of only cycles with no exit, V(L K (E)) is not a cancellative monoid
(Lemma 5.5) and thus V(L K (E))→ K0(L K (E)) is not injective, reflecting that K0 might not capture all
the properties of L K (E).

For a graded ring A one can consider the abelian monoid of isomorphism classes of graded finitely
generated projective modules denoted by Vgr(A). Since a Leavitt path algebra has a canonical Z-graded
structure, one can consider Vgr(L K (E)). One of the main aims of this paper is to show that the graded
monoid carries substantial information about the algebra.

In Sections 5 and 6 we will use the results on smash products obtained in Section 3 to study the graded
monoid of Leavitt path algebras and Kumjian–Pask algebras. In this section we collect the facts we need
on the graded monoid of a graded ring with graded local units.

4A. The monoid of a graded ring with graded local units. For a ring A with unit, the monoid V(A) is
defined as the set of isomorphism classes [P] of finitely generated projective A-modules P , with addition
given by [P] + [Q] = [P ⊕ Q].

For a nonunital ring A, we consider a unital ring Ã containing A as a two-sided ideal and define

V(A)=
{
[P] | P is a finitely generated projective Ã-module and P = AP

}
. (4-1)

This construction does not depend on the choice of Ã, as can be seen from the following alternative
description: V(A) is the set of equivalence classes of idempotents in M∞(A), where e ∼ f in M∞(A) if
and only if there are x, y ∈ M∞(A) such that e = xy and f = yx ([Menal and Moncasi 1987, p. 296]).

When A has local units,

V(A)=
{
[P] | P is a finitely generated projective A-module in A-Mod

}
. (4-2)

To see this, recall that the unitisation ring Ã of a ring A is a copy of Z× A with componentwise
addition, and with multiplication given by

(n, a)(m, b)= (nm,ma+ nb+ ab) for all n,m ∈ Z and a, b ∈ A.

The forgetful functor provides a category isomorphism from Ã-Mod to the category of arbitrary left
A-modules [Faith 1973, Proposition 8.29B]. Any A-module N can be viewed as a Ã-module via (m, b)x =
mx + bx for (m, b) ∈ Ã and x ∈ N . By [Ara and Goodearl 2012, Lemma 10.2], the projective objects in
A-Mod are precisely those which are projective as Ã-modules; that is, the projective Ã-modules P such
that AP = P . Any finitely generated Ã-module M with AM = M is a finitely generated A-module. In
fact, suppose that M is generated as an Ã-module by x1, . . . , xn . Since AM = M , each xi can be written
as xi =

∑ti
j=1 b j xi j for some b j ∈ A and xi j ∈ M . Now any m ∈ M can be written

m =
n∑

i=1

ai xi =

n∑
i=1

ti∑
j=1

ai b j xi j
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So {xi j | 1≤ i ≤ n and 1≤ j ≤ ti } generates M as an A-module. Clearly any finitely generated A-module
is a finitely generated Ã-module. So the definitions of V(A) in (4-1) and (4-2) coincide.

We need a graded version of (4-2) as this presentation will be used to study the monoid associated to
the Leavitt path algebras of arbitrary graphs.

Recall that for a group 0 and a 0-graded ring A with unit, the monoid Vgr(A) consists of isomorphism
classes [P] of graded finitely generated projective A-modules with the direct sum [P]+ [Q] = [P ⊕ Q]
as the addition operation.

For a nonunital graded ring A, a similar construction as in (4-1) can be carried over to the graded
setting (see [Hazrat 2016, §3.5]). Let Ã be a 0-graded ring with identity such that A is a graded two-sided
ideal of A. For example, consider Ã = Z× A. Then Ã is 0-graded with

Ã0 = Z× A0, and Ãγ = 0× Aγ for γ 6= 0.

Define

Vgr(A)=
{
[P] | P is a graded finitely generated projective Ã-module and AP = P

}
, (4-3)

where [P] is the class of graded Ã-modules, graded isomorphic to P , and addition is defined via direct
sum. Then Vgr(A) is isomorphic to the monoid of equivalence classes of graded idempotent matrices
over A [Hazrat 2016, p. 146].

Let A be a 0-graded ring with graded local units. We will show that

Vgr(A)=
{
[P] | P is a graded finitely generated projective A-module in A-Gr

}
. (4-4)

For this we need to relate the graded projective modules to modules which are projective. A graded
A-module P in A-Gr is called a graded projective A-module if for any epimorphism π : M → N of
graded A-modules in A-Gr and any morphism f : P→ N of graded A-modules in A-Gr, there exists a
morphism h : P→ M of graded A-modules such that π ◦ h = f .

In the case of unital rings, a module is graded projective if and only if it is graded and projective
[Hazrat 2016, Proposition 1.2.15]. We need a similar statement in the setting of rings with local units.

Lemma 4.1. Let A be a 0-graded ring with graded local units and P a graded unital left A-module.
Then P is a graded projective left A-module in A-Gr if and only if P is a graded left A-module which is
projective in A-Mod.

Proof. First suppose that P is a graded projective A-module in A-Gr. It suffices to prove that P is
projective in A-Mod. For any homogeneous element p ∈ P of degree δp, there exists a homogeneous
idempotent ep ∈ A such that ep p = p. Let

⊕
p∈Ph Aep(−δp) be the direct sum of graded A-modules

where deg(ep) = δp and Ph is the set of homogeneous elements of P . Then there exists a surjective
graded A-module homomorphism

f :
⊕
p∈Ph

Aep(−δp)→ P
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such that f (aep)= aep p= ap for a ∈ Aep. Since P is graded projective, there exists a graded A-module
homomorphism g : P →

⊕
p∈Ph Aep(−δp) such that f g = IdP . Forgetting the grading, P is a direct

summand of
⊕

p∈Ph Aep as an A-module. By [Wisbauer 1991, §49.2(3)],
⊕

p∈Ph Aep is projective in
A-Mod. So P is projective in A-Mod.

Conversely, suppose that P is a graded and projective A-module. Let π :M→ N be an epimorphism of
graded A-modules in A-Gr and f : P→ N a morphism of graded A-modules in A-Gr. We first claim that
any epimorphism π : M→ N of graded A-modules in A-Gr is surjective. To prove the claim, write Ah

for the set of all homogeneous elements of A. Let X = {x ∈ N | Ah x ⊆ π(M)} ⊆ N (compare [Goodearl
2009, §5.3]). Then X is a graded submodule of N . We denote by q : N → N/X the quotient map. Then
q ◦π = 0. Hence, q = 0, giving N = X . It follows that N = π(M). So the epimorphism π : M→ N of
graded A-modules in A-Gr is surjective. Forgetting the grading, π : M→ N is a surjective morphism
of A-modules in A-Mod. Since P is projective in A-Mod, there exists h : P→ M such that π ◦ h = f .
By [Hazrat 2016, Lemma 1.2.14], there exists a morphism h′ : P→ M of graded A-modules such that
π ◦ h′ = f . Thus, P is a graded projective left A-module in A-Gr. �

Thus for a 0-graded ring A with graded local units, combining Lemma 4.1 with [Ara and Goodearl
2012, Lemma 10.2] (i.e., projective objects in A-Mod are precisely those that are projective as Ã-modules),
P is a graded finitely generated projective Ã-module with AP = P if and only if P is a finitely generated
A-module which is graded projective in A-Gr. This shows that the definitions of Vgr(A) by (4-3) and
(4-4) coincide.

5. Application: Leavitt path algebras

In this section we study the monoid Vgr(L K (E)) of the Leavitt path algebra of a graph E (4-4). Using
the results on smash products of Steinberg algebras obtained in Section 3, we give a presentation for
this monoid in line with ME (see Section 5C). Using this presentation we show that Vgr(L K (E)) is a
cancellative monoid and thus the natural map Vgr(L K (E))→ K gr

0 (L K (E)) is injective (Corollary 5.8).
It follows that there is a lattice correspondence between the graded ideals of L K (E) and the graded
ordered ideals of K gr

0 (L K (E)) (Theorem 5.11). This is further evidence for the conjecture that the graded
Grothendieck group K gr

0 may be a complete invariant for Leavitt path algebras [Hazrat 2013b].

5A. Leavitt path algebras modelled as Steinberg algebras. We briefly recall the definition of Leavitt
path algebras and establish notation.

A directed graph E is a tuple (E0, E1, r, s), where E0 and E1 are sets and r, s are maps from E1 to E0.
We think of each e ∈ E1 as an arrow pointing from s(e) to r(e). We use the convention that a (finite)
path p in E is a sequence p = α1α2 · · ·αn of edges αi in E such that r(αi )= s(αi+1) for 1≤ i ≤ n− 1.
We define s(p)= s(α1), and r(p)= r(αn). If s(p)= r(p), then p is said to be closed. If p is closed and
s(αi ) 6= s(α j ) for i 6= j , then p is called a cycle. An edge α is an exit of a path p = α1 · · ·αn if there
exists i such that s(α)= s(αi ) and α 6= αi . A graph E is called acyclic if there is no closed path in E .
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A directed graph E is said to be row-finite if for each vertex u ∈ E0, there are at most finitely many
edges in s−1(u). A vertex u for which s−1(u) is empty is called a sink, whereas u ∈ E0 is called an
infinite emitter if s−1(u) is infinite. If u ∈ E0 is neither a sink nor an infinite emitter, then it is called a
regular vertex.

Definition 5.1. Let E be a directed graph and R a commutative ring with unit. The Leavitt path algebra
L R(E) of E is the R-algebra generated by the set {v | v ∈ E0

}∪ {e | e ∈ E1
}∪ {e∗ | e ∈ E1

} subject to the
following relations:

(1) uv = δu,vv for every u, v ∈ E0;

(2) s(e)e = er(e)= e for all e ∈ E1;

(3) r(e)e∗ = e∗ = e∗s(e) for all e ∈ E1;

(4) e∗ f = δe, f r(e) for all e, f ∈ E1; and

(5) v =
∑

e∈s−1(v) ee∗ for every regular vertex v ∈ E0.

Let 0 be a group with identity ε, and let w : E1
→ 0 be a function. Extend w to vertices and ghost

edges by defining w(v)= ε for v ∈ E0 and w(e∗)= w(e)−1 for e ∈ E1. The relations in Definition 5.1
are compatible with w, so there is a 0-grading on L R(E) such that e ∈ L R(E)w(e) and e∗ ∈ L R(E)w(e)−1 ,
for all e ∈ E1, and v ∈ L R(E)ε, for all v ∈ E0. The set of all finite sums of distinct elements of E0 is a
set of graded local units for L R(E) [Abrams and Aranda Pino 2005, Lemma 1.6]. Furthermore, L R(E) is
unital if and only if E0 is finite.

Leavitt path algebras associated to arbitrary graphs can be realised as Steinberg algebras. We recall
from [Clark and Sims 2015, Example 2.1] the construction of the groupoid GE from an arbitrary graph E ,
which was introduced in [Kumjian et al. 1997] for row-finite graphs and generalised to arbitrary graphs in
[Paterson 2002]. We then realise the Leavitt path algebra L R(E) as the Steinberg algebra AR(G). This
allows us to apply Theorem 3.4 to the setting of Leavitt path algebras.

Let E = (E0, E1, r, s) be a directed graph. We denote by E∞ the set of infinite paths in E and by E∗

the set of finite paths in E . Set

X := E∞ ∪ {µ ∈ E∗ | r(µ) is not a regular vertex}.

Let

GE :=
{
(αx, |α| − |β|, βx) | α, β ∈ E∗, x ∈ X, r(α)= r(β)= s(x)

}
.

We view each (x, k, y) ∈ GE as a morphism with range x and source y. The formulas (x, k, y)(y, l, z)=
(x, k+l, z) and (x, k, y)−1

= (y,−k, x) define composition and inverse maps on GE making it a groupoid
with G(0)E = {(x, 0, x) | x ∈ X} which we identify with the set X .

Next, we describe a topology on GE . For µ ∈ E∗ define

Z(µ)= {µx | x ∈ X, r(µ)= s(x)} ⊆ X.
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For µ ∈ E∗ and a finite F ⊆ s−1(r(µ)), define

Z(µ\F)= Z(µ) \
⋃
α∈F

Z(µα).

The sets Z(µ\F) constitute a basis of compact open sets for a locally compact Hausdorff topology on
X = G(0)E (see [Webster 2014, Theorem 2.1]).

For µ, ν ∈ E∗ with r(µ)= r(ν), and for a finite F ⊆ E∗ such that r(µ)= s(α) for α ∈ F , we define

Z(µ, ν)= {(µx, |µ| − |ν|, νx) | x ∈ X, r(µ)= s(x)},

and then

Z((µ, ν)\F)= Z(µ, ν) \
⋃
α∈F

Z(µα, να).

The sets Z((µ, ν)\F) constitute a basis of compact open bisections for a topology under which GE is a
Hausdorff ample groupoid. By [Clark and Sims 2015, Example 3.2], the map

πE : L R(E)→ AR(GE) (5-1)

defined by πE
(
µν∗ −

∑
α∈F µαα

∗ν∗
)
= 1Z((µ,ν)\F) extends to a Z-graded algebra isomorphism. We

observe that the isomorphism of algebras in (5-1) satisfies

πE(v)= 1Z(v), πE(e)= 1Z(e,r(e)), πE(e∗)= 1Z(r(e),e), (5-2)

for each v ∈ E0 and e ∈ E1.
If w : E1

→ 0 is a function, we extend w to E∗ by defining w(v)= 0 for v ∈ E0, and w(α1 · · ·αn)=

w(α1) · · ·w(αn). Thus L R(E) is a 0-graded ring. On the other hand, defining w̃ : GE → 0 by

w̃(αx, |α| − |β|, βx)= w(α)w(β)−1, (5-3)

gives a cocycle ([Kumjian and Pask 1999, Lemma 2.3]) and thus AR(G) is a 0-graded ring as well. A
quick inspection of isomorphism (5-1) shows that πE respects the 0-grading.

5B. Covering of a graph. In this section we show that the smash product of a Leavitt path algebra is
graded isomorphic to the Leavitt path algebra of its covering graph. We briefly recall the concept of skew
product or covering of a graph (see [Green 1983, §2; Kumjian and Pask 1999, Definition 2.1]).

Let 0 be a group and w : E1
→ 0 a function. As in [Green 1983, §2], the covering graph E of E with

respect to w is given by

E0
= {vα | v ∈ E0 and α ∈ 0}, E1

= {eα | e ∈ E1 and α ∈ 0},

s(eα)= s(e)α, r(eα)= r(e)w(e)−1α.
(5-4)
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Example 5.2. Let E be a graph and define w : E1
→ Z by w(e)= 1 for all e ∈ E1. Then E (sometimes

denoted E ×1 Z) is given by

E0
= {vn | v ∈ E0 and n ∈ Z}, E1

=
{
en | e ∈ E1 and n ∈ Z

}
,

s(en)= s(e)n, r(en)= r(e)n−1.

As examples, consider the following graphs

E : ue
99

f
""
v

g
cc

F : u e
ee

f

rr

Then

E : · · · u1
e1

//

f1 ''

u0
e0

//

f0 ''

u−1
e−1

//

f−1 ''

· · ·

· · · v1
g1

77

v0
g0

77

v−1
g−1

77

· · ·

and

F : · · · u1

f1
%%

e1

88
u0

f0
$$

e0

66
u−1

f−1

&&

e−1

88
· · ·

Since w̃ : GE → 0 is a cocycle (5-3), by Lemma 3.3 the skew-product groupoid GE ×0 is a 0-graded
ample groupoid. For each (possibly infinite) path x = e1e2e3

· · · of E and each γ ∈ 0, there is a path xγ
of E given by

xγ = e1
γ e2
w(e1)−1γ

e3
w(e1e2)−1γ

· · · . (5-5)

There is an isomorphism

f : GE ×0→ GE (5-6)

of groupoids such that f ((x, k, y), γ )= (xw̃(x,k,y)γ , k, yγ ) (see [Kumjian and Pask 1999, Theorem 2.4]).
The grading of the skew-product GE ×0 induces a grading of GE , and the isomorphism f respects the
gradings of the two groupoids, and so induces a 0-graded isomorphism of Steinberg algebras

f̃ : AR(GE ×0)→ AR(GE).

Set g = f̃ −1
: AR(GE)→ AR(GE ×0). Then

g(1Z(vγ ))= 1Z(v)×{γ } for v ∈ E0 and γ ∈ 0,

g(1Z(eα,r(e)w(e)−1α)
)= 1Z(e,r(e))×{w(e)−1α} for e ∈ E1 and α ∈ 0,

g(1Z(r(e)
w(e)−1α,eα))= 1Z(r(e),e)×{α} for e ∈ E1 and α ∈ 0.

(5-7)

Let φ : AR(GE×0)→ AR(GE)#0 be the isomorphism of Theorem 3.4, let g : AR(GE)→ AR(GE×0)

be the isomorphism (5-7), let πE : L R(E)→ AR(GE) and πE : L R(E)→ AR(GE) be as in (5-1), and
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let π̃E : L R(E) #0→ AR(GE) #0 be given by π̃E(xpγ )= πE(x)pγ , for x ∈ L R(E) and γ ∈ 0. Define
φ′ := π̃−1

E ◦φ ◦ g ◦πE . Then we have the following commuting diagram of 0-graded isomorphisms:

L R(E)
φ′

//

πE

��

L R(E) #0

π̃E

��

AR(GE)
φ◦g
// AR(GE) #0

(5-8)

Recall from (5-6) that GE is 0-graded. Then the Steinberg algebra AR(GE) is 0-graded. By the algebra
isomorphism πE : L R(E)∼= AR(GE), L R(E) has a 0-grading such that the grading map w′ : E

1
→ 0 is

given by w′(eα)= w(e), for e ∈ E1 and α ∈ 0.

Corollary 5.3. The map φ′ : L R(E)→ L R(E) #0 is an isomorphism of 0-graded algebras such that
φ′(vβ)= vpβ , φ′(eα)= epw(e)−1α and φ′(e∗α)= e∗ pα, for v ∈ E0, e ∈ E1, and α, β ∈ 0.

Proof. Since all the homomorphisms in the diagram (5-8) preserve gradings of algebras, the map
φ′ : L R(E)→ L R(E) #0 is an isomorphism of 0-graded algebras. For each vertex vγ ∈ E0 and each
edge eα ∈ E1, we have

φ′(vγ )= (π̃
−1
E ◦φ ◦ g)(1Z(vγ ))= (π̃

−1
E ◦φ)(1Z(v)×{γ })= π̃

−1
E (1Z(v) pγ )= vpγ ,

φ′(eα)= (π̃−1
E ◦φ ◦ g)(1Z(eα,r(e)w(e)−1α)

)= (π̃−1
E ◦φ)(1Z(e,r(e))×{w(e)−1α})= π̃

−1
E (1Z(e,r(e)) pw(e)−1α)

= epw(e)−1α,

φ′(e∗α)= (π̃
−1
E ◦φ ◦ g)(1Z(r(e)

w(e)−1α,eα))= (π̃
−1
E ◦φ)(1Z(r(e),e)×{α})= π̃

−1
E (1Z(r(e),e) pα)= e∗ pα. �

Kumjian and Pask [1999] show that given a free action of a group 0 on a graph E , the crossed product
C∗(E)×0 by the induced action is strongly Morita equivalent to C∗(E/0), where E/0 is the quotient
graph and obtained an isomorphism similar to Corollary 5.3 for graph C∗-algebras. Corollary 5.3 shows
that this isomorphism already occurs on the algebraic level (see Section 3D), so the following diagram
commutes:

LC(E)

��

// LC(E) #0

��

C∗(E) // C∗(E)×0

Remark 5.4. Green [1983] showed that the theory of coverings of graphs with relations and the theory
of graded algebras are essentially the same. For a 0-graded path algebra A, Green constructed a covering
of the quiver of A and showed that the category of representations of the covering satisfying a certain set
of relations is equivalent to the category of finite dimensional graded A-modules.

For any graph E and a function w : E1
→ 0, we consider the smash product of a quotient algebra

of the path algebra of E with the group 0. Let K be a field, E a graph and w : E1
→ 0 a weight map.

Denote by K E the path algebra of E . A relation in E is a K-linear combination
∑

i ki qi with qi paths in
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E having the same source and range. Let r be a set of relations in E and 〈r〉 the two sided ideal of K E
generated by r . Set

Ar (E)= K E/〈r〉.

We denote by r̄ the lifting of r in E (see (5-4)): For each finite path p= e1e2
· · · en in E and γ ∈ 0, there

is a path pγ of E given by

pγ = e1∏n
i=1 w(ei )γ

· · · en−1∏n
i=n−1 w(ei )γ

en
w(en)γ ,

similar to (5-5). Then for each relation
∑

i ki qi ∈ r and each γ ∈ 0, we have∑
i ki q

γ

i ∈ r̄ .

Now set
Ar̄ (E)= K E/〈r̄〉.

We prove that Ar̄ (E)∼=Ar (E)#0. Define h : K E→Ar (E)#0 by h(vγ )= vpγ and h(eα)= epw(e)−1α ,
for v ∈ E0, e ∈ E1 and α, γ ∈ 0. Since h annihilates the relations r̄ , it induces a homomorphism

h̄ :Ar̄ (E)→Ar (E) #0.

We show that h̄ is an isomorphism. For injectivity, suppose that x =
∑m

i=1 λiξi ∈Ar̄ (E) with λi ∈ K and
ξi pairwise distinct paths in E . Each ξi has the form of (ξ ′i )

αi for some ξ ′i ∈ E∗ and αi ∈ 0. If h̄(x)= 0,
then h(x)=

∑m
i=1 λiξ

′

i pαi = 0. Suppose that the αi are not distinct; so by rearranging, we can assume
that α1 = · · · = αk for some k ≤m. Then

∑k
i=1 λiξ

′

i = 0 in Ar (E). Observe that
∑k

i=1 λiξ
′

i = 0 in Ar (E)
implies

∑k
i=1 λiξi = 0 in Ar̄ (E). Hence x = 0, implying h̄ is injective. For surjectivity, fix η in E∗ and

γ ∈ 0. Then h(ηγ )= ηpγ by definition. Since the elements {ηpγ | η ∈ E∗, γ ∈ 0} span Ar (E) #0, we
deduce that h̄ is surjective. Thus h̄ is an isomorphism as claimed.

5C. The monoid Vgr(L K (E)). In this subsection, we consider the Leavitt path algebra L K (E) over a
field K . Ara, Moreno and Pardo [Ara et al. 2007] showed that for a Leavitt path algebra associated to the
graph E , the monoid V(L K (E)) is entirely determined by elementary graph-theoretic data. Specifically,
for a row-finite graph E , we define ME to be the abelian monoid generated by E0 subject to

v =
∑

e∈s−1(v)

r(e), (5-9)

for every v ∈ E0 that is not a sink. Theorem 3.5 of [Ara et al. 2007] says that V(L K (E))∼= ME .
There is an explicit description [Ara et al. 2007, §4] of the congruence on the free abelian monoid

given by the defining relations of ME . Let F be the free abelian monoid on the set E0. The nonzero
elements of F can be written in a unique form up to permutation as

∑n
i=1 vi , where vi ∈ E0. Define a

binary relation→1 on F \ {0} by
∑n

i=1 vi →1
∑

i 6= j vi +
∑

e∈s−1(v j )
r(e), whenever j ∈ {1, . . . , n} and

v j is not a sink. Let→ be the transitive and reflexive closure of→1 on F \ {0} and ∼ the congruence on
F generated by the relation→. Then ME = F/∼.
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Ara and Goodearl [2012, Theorem 4.3] defined analogous monoids M(E,C, S) and constructed
natural isomorphisms M(E,C, S)∼= V(CLK (E,C, S)) for arbitrary separated graphs. The nonseparated
case reduces to that of ordinary Leavitt path algebras, and extends the result of [Ara et al. 2007] to
non-row-finite graphs.

Following [Ara and Goodearl 2012; 2015], we recall the definition of ME when E is not necessarily
row-finite. In [Ara and Goodearl 2015, §4.1] the generators v ∈ E0 of the abelian monoid ME for E
are supplemented by generators qZ as Z runs through all nonempty finite subsets of s−1(v) for infinite
emitters v. The relations are

(1) v =
∑

e∈s−1(v) r(e) for all regular vertices v ∈ E0;

(2) v =
∑

e∈Z r(e)+ qZ for all infinite emitters v ∈ E0; and

(3) qZ1 =
∑

e∈Z2\Z1
r(e)+qZ2 for all nonempty finite sets Z1⊆ Z2⊆ s−1(v), where v ∈ E0 is an infinite

emitter.

An abelian monoid M is cancellative if it satisfies full cancellation, namely, x + z = y + z implies
x = y, for any x, y, z ∈ M . In order to prove that the graded monoid associated to any Leavitt path
algebra is cancellative (Corollary 5.8), we will need to know that the monoid associated to Leavitt path
algebras of acyclic graphs are cancellative.

Lemma 5.5. Let E be an arbitrary graph. The monoid ME is cancellative if and only if no cycle in E has
an exit. In particular, if E is acyclic, then ME is cancellative.

Proof. We first claim that ME is cancellative for any row-finite acyclic graph E . By [Ara et al. 2007,
Lemma 3.1], the row-finite graph E is a direct limit of a directed system of its finite complete subgraphs
{Ei }i∈X . In turn, the monoid ME is the direct limit of {MEi }i∈X ([Ara et al. 2007, Lemma 3.4]). We claim
that ME is cancellative. Let x + u = y+ u in ME , where x, y, u are sum of vertices in E . By [Ara et al.
2007, Lemma 4.3], there exists b ∈ F (sum of vertices in E) such that x+u→ b and y+u→ b. Observe
that vertices involved in this transformations are finite. Thus there is a finite graph Ei such that all these
vertices are in Ei . It follows that in MEi we have x+u→b and y+u→b. Thus x+u= y+u in MEi . Since
the subgraph Ei of E is finite and acyclic, MEi is a direct sum of copies of N (as L K (Ei ) is a semisimple
ring) and thus is cancellative. So x = y in MEi and so the same in ME . Hence, ME is cancellative.

We now show that it suffices to consider the case where E is a row-finite graph in which no cycle has
an exit. To see this, let E be any graph, and let Ed be its Drinen–Tomforde desingularisation [Drinen and
Tomforde 2005], which is row-finite. Then L K (E) and L K (Ed) are Morita equivalent, and so ME ∼= MEd

[Abrams and Aranda Pino 2008, Theorem 5.6]. So ME has cancellation if and only if MEd has cancellation.
Since no cycle in E has an exit if and only if Ed has the same property, it therefore suffices to prove the
result for row-finite graph E in which no cycle has an exit.

Finally, we show that for any row-finite graph E in which no cycle has an exit, the monoid ME is
cancellative. For this, fix a set C ⊆ E1 such that C contains exactly one edge from every cycle in
E [Sims 2010]. Let F be the subgraph of E obtained by removing all the edges in C . We claim that
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MF ∼=ME . To see this, observe that they have the same generating set F0
= E0, and the generating relation

F
→1 is contained in E

→1. So it suffices to show that E
→1 ⊆

F
→. For this, note that for v ∈ E0, we have

s−1
E (v)= s−1

F (v) unless v= s(e) for some e∈C , in which case s−1
E (v)={e} and s−1

F (v)=∅. So it suffices
to show that for e ∈ C , we have s(e) F

→ r(e). Let p = eα2α3 · · ·αn be the cycle in E containing e. Then

r(e)
F
→1 s(α2)

F
→1 r(α2)

F
→1 s(α3)

F
→1 r(α3)

F
→1 · · ·

F
→1 s(αn)

F
→1 r(αn)

F
→1 s(e).

So MF ∼= ME as claimed. So the preceding paragraphs show that ME is cancellative.
Now suppose that E has a cycle with an exit; say p=α1 · · ·αn has an exit α. Without loss of generality,

s(α)= s(αn) and α 6= αn . Write

s(p)E≤n
=
{
q ∈ E∗ | s(q)= s(p), and |q| = n or |q|< n and r(q) is not regular

}
.

Let p′ := α1 · · ·αn−1α and X := s(p)E≤n
\{p, p′}. A simple induction shows that

s(p)→
∑

q∈s(α)E≤n

r(q)= r(p)+ r(p′)+
∑
q∈X

r(q)= s(p)+ r(p′)+
∑
q∈X

r(q).

Since r(p′) 6= 0 in ME , it follows that ME does not have cancellation. �

In order to compute the monoid Vgr(L K (E)) for an arbitrary graph E , we define an abelian monoid
Mgr

E such that the generators {av(γ ) | v ∈ E0, γ ∈ 0} are supplemented by generators bZ (γ ) as γ ∈ 0
and Z runs through all nonempty finite subsets of s−1(u) for infinite emitters u ∈ E0. The relations are:

(1) av(γ )=
∑

e∈s−1(v) ar(e)(w(e)−1γ ) for all regular vertices v ∈ E0 and γ ∈ 0;

(2) au(γ )=
∑

e∈Z ar(e)(w(e)−1γ )+ bZ (γ ) for all γ ∈ 0, infinite emitters u ∈ E0 and nonempty finite
subsets Z ⊆ s−1(u);

(3) bZ1(γ )=
∑

e∈Z2\Z1
ar(e)(w(e)−1γ )+ bZ2(γ ) for all γ ∈ 0, infinite emitters u ∈ E0 and nonempty

finite subsets Z1 ⊆ Z2 ⊆ s−1(u).

The group 0 acts on the monoid Mgr
E as follows. For any β ∈ 0,

β · av(γ )= av(βγ ) and β · bZ (γ )= bZ (βγ ). (5-10)

There is a surjective monoid homomorphism π : Mgr
E →ME such that π(av(γ ))=v and π(bZ (γ ))=qZ

for v ∈ E0 and nonempty finite subset Z ⊂ s−1(u), where u is an infinite emitter. π is 0-equivariant in
the sense that π(β · x)= π(x) for all β ∈ 0 and x ∈ Mgr

E .
Recall the covering graph E from Section 5B. Let L K (E)-Mod be the category of unital left L K (E)-

modules and L K (E)-Gr the category of graded unital left L K (E)-modules. The isomorphism φ′ :

L K (E)−→∼ L K (E) #0 of Corollary 5.3 and Proposition 2.5 yield an isomorphism of categories

8 : L K (E)-Gr→ L K (E)-Mod. (5-11)

Lemma 5.6. Let E be an arbitrary graph, 0 a group and w : E1
→ 0 a function.
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(1) Fix a path η in E , and β ∈ 0, and let η = ηβ−1 be the path in E defined at (5-5). Then

8
(
(L K (E)ηη∗)(β)

)
∼= L K (E)ηη∗.

In particular, 8((L K (E)v)(β))∼= L K (E)vβ−1 .

(2) Let u ∈ E0 be an infinite emitter, and let Z ⊆ s−1
E (u) be a nonempty finite set. Fix β ∈ 0, and

let Z = {eβ−1 | e ∈ Z}. Then uβ−1 is an infinite emitter in E and Z is a nonempty finite subset of
s−1

E
(uβ−1). Moreover, 8(L K (E)(u−

∑
e∈Z ee∗)(β))∼= L K (E)(uβ−1 −

∑
f ∈Z f f ∗).

Proof. We prove (1). By the isomorphism of algebras in Corollary 5.3, we have

L K (E)ηη∗ ∼= (L K (E) #0)ηη∗ pβ−1 .

We claim that f :8((L K (E)ηη∗)(β))→ (L K (E)#0)ηη∗ pβ−1 given by f (y)= ypβ−1 is an isomorphism
of left L K (E)-modules. It is clearly a group isomorphism. To see that it is an L K (E)-module morphism,
note that (r pγ )y= r yγ for y ∈ (L K (E)ηη∗)(β) and yγ a homogeneous element of degree γ . We have y ∈
L K (E)γβηη∗, yielding f ((r pγ )y)= r yγ pβ−1= (r pγ )(ypβ−1)= r pγ f (y). The proof for (2) is similar. �

Recall from Section 2B that there is a shift functor S̃α on L K (E) # 0-Mod for each α ∈ 0. So the
isomorphism φ′ : L K (E)−→∼ L K (E)#0 of Corollary 5.3 yields a shift functor Tα on L K (E)-Mod. This in
turn induces a homomorphism Tα : V(L K (E))→ V(L K (E)), giving a 0-action on the monoid V(L K (E)).

Fix vγ ∈ E0, an infinite emitter uβ ∈ E0, and a finite Z ⊆ s−1
E
(uβ). Write Z ·α−1

= {eβα−1 | eβ ∈ Z}.
We claim that

Tα([L K (E)vγ ])= [L K (E)vγα−1] and Tα([L K (E)(uβ −
∑
e∈Z

ee∗)])= [L K (E)(uβα−1 −

∑
f ∈Z ·a−1

f f ∗)].

(5-12)
To establish the first equality in (5-12), we use Lemma 5.6 to see that

8(L K (E)v(γ−1))= L K (E)vγ and 8(L K (E)v(αγ−1))= L K (E)vγα−1 .

Using the commutative diagram (2-3) at the second equality, we see that

Tα(L K (E)vγ )= (Tα ◦8)(L K (E)v(γ−1))= (8 ◦ Tα)(L K (E)v(γ−1))=8(L K (E)v(αγ−1))

= L K (E)vγα−1 .

The proof for the second equality in (5-12) is similar.
The group 0 acts on the monoid ME as follows. Again fix vγ ∈ E0, an infinite emitter uβ ∈ E0, and a

finite Z ⊆ s−1
E
(uβ), and write Z ·α−1

= {eβα−1 | eβ ∈ Z}. Then

α · vγ = vγα−1 and α · qZ = qZ ·α−1 . (5-13)

Proposition 5.7. Let E be an arbitrary graph, K a field, 0 a group and w : E1
→ 0 a function. Let

A= L K (E) and A= L K (E). Then the monoid Vgr(A) is generated by [Av(α)] and [A(u−
∑

e∈Z ee∗)(β)],
where v ∈ E0, α, β ∈ 0 and Z runs through all nonempty finite subsets of s−1(u) for infinite emitters
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u ∈ E0. Given an infinite emitter u ∈ E0, a finite nonempty set Z ⊆ s−1(u), and β ∈ 0, write Zβ−1 :=

{eβ−1 : e ∈ Z} ⊆ s−1
E
(uβ−1). Then there are 0-module isomorphisms

Vgr(A)∼= V(A)∼= ME
∼= Mgr

E , (5-14)

that satisfy

[Av(α)] 7→ [Avα−1] 7→ [vα−1] 7→ [av(α)],

for all v ∈ E0 and α ∈ 0, and[
A(u−

∑
e∈Z

ee∗)(β)
]
7→

[
A(uβ−1 −

∑
ē∈Z

β−1

ēē∗)
]
7→ [qZ

β−1 ] 7→ [bZ (β)],

for every infinite emitter u, finite nonempty Z ⊆ s−1(u), and β ∈ 0.

Proof. Let P be a graded finitely generated projective left A-module. We claim that the isomorphism
8 :A-Gr→A-Mod in (5-11) preserves the finitely generated projective objects. Since8 is an isomorphism
of categories,8(P) is projective. Observe that P has finite number of homogeneous generators x1, . . . , xn

of degree γi . By the A-action of 8(P), we have the following equalities:

(1) if v ∈ E0 and γ ∈ 0, then

vγ xi = vpγ xi =

{
vxi if γi = γ,

0 otherwise;
(5-15)

(2) if e : u→ v ∈ E1, w(e)= β and γ ∈ 0, then

eγ xi = epβ−1γ xi =

{
exi if γi = β

−1γ,

0 otherwise; and
(5-16)

(3) if e : u→ v ∈ E1, w(e)= β and γ ∈ 0, then

e∗γ xi = e∗ pγ xi =

{
e∗xi if γi = γ,

0 otherwise.
(5-17)

So for y ∈8(P), we can express y =
∑n

i=1 ri xi for some ri ∈A. Fix i ≤ n and paths η, τ in E satisfying
r(η)= r(τ ). Then (5-15), (5-16), and (5-17) give

τη∗xi = τw(τ)w(η)−1γi (ηγi )
∗xi . (5-18)

Since y =
∑n

i=1 ri xi =
∑n

i=1
∑

h∈0 ri,h xi with ri,h a homogeneous element of degree h, Equation (5-18)
gives y ∈A(8(P)). Thus 8(P) is a finitely generated projective A-module.

By (4-2) and (4-4), there exists a homomorphism Vgr(A)→ V(A) sending [P] to [8(P)] for a graded
finitely generated projective left A-module P . Applying [Ara and Goodearl 2012, Theorem 4.3] for the
nonseparated case, we obtain the second monoid isomorphism V(A)−→∼ ME in (5-14). Then for each
graded finitely generated projective left A-module P , the module 8(P) in A-Mod is generated by the
elements Avα and A(uβ −

∑
e∈Z ′ ee∗) that it contains. Combining this with Lemma 5.6 gives the first
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isomorphism of monoids. The last monoid isomorphism ME
∼= Mgr

E follows directly by their definitions.
By (5-10), (5-12) and (5-13), the monoid isomorphisms in (5-14) are 0-module isomorphisms. �

Recall the following classification conjecture [Abrams 2015; Ara and Pardo 2014; Hazrat 2013b].
Let E and F be finite graphs. Then there is an order preserving Z[x, x−1

]-module isomorphism φ :

K gr
0 (L K (E))→ K gr

0 (L K (F)) if and only if L K (E) is graded Morita equivalent to L K (F). Furthermore,
if φ([L K (E)] = [L K (F)] then L K (E)∼=gr L K (F).

Note that K0(L K (E)) and K gr
0 (L K (E)) are the group completions of V(L K (E)) and Vgr(L K (E)),

respectively. Let 0=Z and let w : E1
→Z be the function assigning 1 to each edge. Then Proposition 5.7

implies that there is an order preserving Z[x, x−1
]-module isomorphism K gr

0 (L K (E)) ∼= K0(L K (E)),
thus relating the study of a Leavitt path algebra over an arbitrary graph to the case of acyclic graphs (see
Example 5.2).

The following corollary is the first evidence that K gr
0 (L K (E)) preserves all the information of the

graded monoid.

Corollary 5.8. Let E be an arbitrary graph. Consider L K (E) as a graded ring with the grading
determined by the function w : E1

→ Z such that w(e)= 1 for all e. Then Vgr(L K (E)) is cancellative.

Proof. By Proposition 5.7, we have Vgr(L K (E))∼= ME . Since E = E×Z is an acyclic graph, the monoid
ME is cancellative by Lemma 5.5. Hence Vgr(L K (E)) is cancellative. �

For the next result we need to recall the notion of order-ideals of a monoid. An order-ideal of a
monoid M is a submonoid I of M such that x + y ∈ I implies x, y ∈ I . Equivalently, an order-ideal is a
submonoid I of M that is hereditary in the sense that x ≤ y and y ∈ I implies x ∈ I . The set L(M) of
order-ideals of M forms a (complete) lattice (see [Ara et al. 2007, §5]). Given a subgroup I of K gr

0 (A),
we write I+ = I ∩ K gr

0 (A)
+. We say that I is a graded ordered ideal if I is closed under the action of

Z[x, x−1
], I = I+− I+, and I+ is an order-ideal.

Let E be a graph. Recall that a subset H ⊆ E0 is said to be hereditary if for any e ∈ E1 we
have that s(e) ∈ H implies r(e) ∈ H . A hereditary subset H ⊆ E0 is called saturated if whenever
0< |s−1(v)|<∞, then {r(e) | e ∈ E1 and s(e)= v} ⊆ H implies v ∈ H . If H is a hereditary subset, a
breaking vertex of H is a vertex v ∈ E0

\H such that |s−1(v)| =∞ but 0< |s−1(v)\r−1(H)|<∞. We
write BH := {v ∈ E0

\H | v is a breaking vertex of H}. We call (H, S) an admissible pair in E0 if H is
a saturated hereditary subset of E0 and S ⊆ BH .

Let E be a row-finite graph. Isomorphisms between the lattice of saturated hereditary subsets of
E0, the lattice L(ME), and the lattice of graded ideals of L K (E) were established in [Ara et al. 2007,
Theorem 5.3]. Tomforde [2007, Theorem 5.7] used the admissible pairs (H, S) of vertices to parametrise
the graded ideals of L K (E) for a graph E which is not row-finite. In analogy, Ara and Goodearl [2012]
proved that the lattice of those ideals of Cohn–Leavitt algebras CLK (E,C, S) generated by idempotents
is isomorphic to a certain lattice AC,S of admissible pairs (H,G), where H ⊆ E0 and G ⊆ C (see [Ara
and Goodearl 2012, Definition 6.5] for the precise definition). There is also a lattice isomorphism between
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AC,S and the lattice L(M(E,C, S)) of order-ideals of M(E,C, S). Specialising to the nonseparated
graph E , there is a lattice isomorphism

H∼= L(ME) (5-19)

between the lattice H of admissible pairs (H, S) of E0 and the lattice L(ME) of order-ideals of the
monoid ME.

Let E be a finite graph with no sinks. There is a one-to-one correspondence [Hazrat 2013a, Theorem 12]
between the set of hereditary and saturated subsets of E0 and the set of graded ordered ideals of
K gr

0 (L K (E)). The main theorem of this section describes a one-to-one correspondence between the set of
admissible pairs (H, S) of vertices and the set of graded ordered ideals of K gr

0 (L K (E)) for an arbitrary
graph E . To prove it, we first need to extend [Ara et al. 2007, Lemma 4.3] to arbitrary graphs. This may
also be useful in other situations.

Lemma 5.9. Let E be an arbitrary graph and denote by F the free abelian group generated by E0
∪{qZ },

where Z ranges over all the nonempty finite subsets of s−1(v) for infinite emitters v. Let ∼ be the
congruence on F such that F/∼=ME . Let→1 be the relation on F defined by v+α→1

∑
e∈s−1(v) r(e)+α

if v is a regular vertex in E , v+α→1 r(z)+ q{z}+α if v ∈ E0 is an infinite emitter and z ∈ s−1(v), and
also qZ +α→1 r(z)+ qZ∪{z}+α, if Z is a nonempty finite subset of s−1(v) for an infinite emitter v and
z ∈ s−1(v) \ Z. Let→ be the transitive and reflexive closure of→1. Then α ∼ β in F if and only if there
is a γ ∈ F such that α→ γ and β→ γ .

Proof. As in [Ara and Goodearl 2015, Alternative proof of Theorem 4.1], we write ME= lim M(E ′,C ′, T ′),
where E ′ ranges over all the finite complete subgraphs of E and

C ′ =
{
s−1

E ′ (v)
∣∣ v ∈ (E ′)0, |s−1

E ′ (v)|> 0
}
, T ′ =

{
s−1

E ′ (v) ∈ C ′
∣∣ v ∈ (E ′)0, 0< |s−1

E (v)|<∞
}
.

Applying [Ara and Goodearl 2012, Construction 5.3], we get that M(E ′,C ′, T ′)= MẼ for some finite
graph Ẽ . The vertices of Ẽ are the vertices of E and the elements of the form qZ , where Z ∈ C ′ \ T ′,
and there is a new edge eZ : v→ qZ if the source of Z is v. If α ∼ β in F , then [α] = [β] in ME , and so
there is (E ′,C ′, T ′) as above such that [α] = [β] in M(E ′,C ′, T ′). But since M(E ′,C ′, T ′)= MẼ , and
Ẽ is finite, we conclude from [Ara et al. 2007, Lemma 4.3] that there is an element γ in the free monoid
on (E ′)0∪{qZ | Z ∈ C ′ \ T ′} such that α→ γ and β→ γ . This implies that α→ γ and β→ γ in F . �

Lemma 5.10. Let E be an arbitrary graph and K a field. Consider L K (E) as a graded ring with the
grading determined by the function w : E1

→ Z such that w(e)= 1 for all e. Let Lc(Mgr
E ) be the set of

order-ideals of Mgr
E which are closed under the Z-action. Let π : Mgr

E → ME be the canonical surjective
homomorphism. Then the map φ : L(ME)→ Lc(Mgr

E ) defined by φ(I )= π−1(I ) is a lattice isomorphism.

Proof. It is easy to show that the map φ is well-defined. The key to show the result is to prove the equality
π−1(π(J )) = J for any J ∈ Lc(Mgr

E ). The inclusion J ⊆ π−1(π(J )) is obvious. To show the reverse
inclusion π−1(π(J ))⊆ J , denote by F the free abelian group on E0

∪ {qZ }, where Z ranges over all the
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nonempty finite subsets of s−1(v) for infinite emitters v. Take z ∈ π−1(π(J )). Then there is y ∈ J such
that π(z)= π(y). Now write

z =
∑

i

avi (γi )+
∑

j

bZ j (λ j ), y =
∑

i

av′i (γ
′

i )+
∑

j

bZ ′j (λ
′

j ).

Then we have
∑

i vi +
∑

j qZ j = π(z) = π(y) =
∑

i v
′

i +
∑

j qZ ′j . By Lemma 5.9, there is x =∑
i wi +

∑
j qW j such that π(z)→ x and π(y)→ x in F . Now using the same changes than in the paths

π(y)→ x and π(z)→ x , but lifted to Mgr
E , we obtain that y =

∑
i awi (ηi )+

∑
j bW j (ν j ) in Mgr

E and
z =

∑
i awi (η

′

i )+
∑

j bW j (ν
′

j ) in Mgr
E . But now y ∈ J and J is an order ideal of Mgr

E , so it follows that
awi (ηi ) ∈ J for all i and bW j (ν j ) ∈ J for all j . Using that J is invariant, we obtain awi (η

′

i ) ∈ J for all i
and bW j (ν

′

j ) ∈ J for all j . Thus z =
∑

i awi (η
′

i )+
∑

j bW j (ν
′

j ) ∈ J and we conclude the proof.
Now using that J = π−1(π(J )), we can easily show that π(J ) is an order-ideal of ME and that the

map φ is bijective, with φ−1(J )= π(J ). �

We can now state the main theorem of this section, which indicates that the graded K0-group captures
the lattice structure of graded ideals of a Leavitt path algebra.

Theorem 5.11. Let E be an arbitrary graph and K a field. Consider L K (E) as a graded ring with the
grading determined by the function w : E1

→ Z such that w(e)= 1 for all e. Then there is a one-to-one
correspondence between the admissible pairs of E0 and the graded ordered ideals of K gr

0 (L K (E)).

Proof. Let H be the set of all admissible pairs of E0 and L(K gr
0 (A)) the set of all graded ordered ideals

of K gr
0 (A), where A = L K (E). We first claim that there is a one-to-one correspondence between the

order-ideals of ME and order-ideals of Mgr
E which are closed under the Z-action. Let Lc(Mgr

E ) be the set
of order-ideals of Mgr

E which are closed under the Z-action.
The map φ : L(ME)→ Lc(Mgr

E ) has been defined in Lemma 5.10, where it is proved that it is a lattice
isomorphism.

By Corollary 5.8, we have an injective homomorphism Vgr(A)→ K gr
0 (A). By Proposition 5.7, there

is a one-to-one correspondence between the order-ideals of Mgr
E which are closed under the Z-action and

the graded ordered ideals of K gr
0 (A). Finally by (5-19), we have lattice isomorphisms

H∼= L(ME)∼= Lc(Mgr
E )
∼= L(K gr

0 (A)). �

6. Application: Kumjian–Pask algebras

In this section we will use our result on smash products (Theorem 3.4) to study the structure of Kumjian–
Pask algebras [Aranda Pino et al. 2013] and their graded K-groups. We will see that the graded K0-group
remains a useful invariant for studying Kumjian–Pask algebras. We deal exclusively with row-finite
k-graphs with no sources: our analysis for arbitrary graphs relied on constructions like desingularisation
that are not available in general for k-graphs. We briefly recall the definition of Kumjian–Pask algebras
and establish our notation. We follow the conventions used in the literature of this topic (in particular the
paths are written from right to left).
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Recall that a graph of rank k or k-graph is a countable category 3 = (30,3, r, s) together with a
functor d : 3→ Nk , called the degree map, satisfying the following factorisation property: if λ ∈ 3
and d(λ) = m + n for some m, n ∈ Nk , then there are unique µ, ν ∈ 3 such that d(µ) = m, d(ν) = n,
and λ= µν. We say that 3 is row finite if r−1(v)∩ d−1(n), abbreviated v3n is finite for all v ∈30 and
n ∈ Nk ; we say that 3 has no sources if each v3n is nonempty.

An important example is the k-graph �k defined as a set by �k = {(m, n) ∈ Nk
×Nk

| m ≤ n} with
d(m, n)= n−m, �0

k = Nk , r(m, n)= m, s(m, n)= n and (m, n)(n, p)= (m, p).

Definition 6.1. Let3 be a row-finite k-graph without sources and K a field. The Kumjian–Pask K-algebra
of 3 is the K-algebra KPK (3) generated by 3∪3∗ subject to the relations

(KP1) {v ∈30
} is a family of mutually orthogonal idempotents satisfying v = v∗,

(KP2) for all λ,µ ∈3 with r(µ)= s(λ), we have

λµ= λ ◦µ, µ∗λ∗ = (λ ◦µ)∗, r(λ)λ= λ= λs(λ), s(λ)λ∗ = λ∗ = λ∗r(λ),

(KP3) for all λ,µ ∈3 with d(λ)= d(µ), we have

λ∗µ= δλ,µs(λ),

(KP4) for all v ∈30 and all n ∈ Nk
\ {0}, we have

v =
∑
λ∈v3n

λλ∗.

Let 3 be a row-finite k-graph without sources and KPK (3) the Kumjian–Pask algebra of 3. Following
[Kumjian and Pask 2000, §2], an infinite path in 3 is a degree-preserving functor x :�k→3. Denote
the set of all infinite paths by 3∞. We define the relation of tail equivalence on the space of infinite path
3∞ as follows: for x, y ∈3∞, we say x is tail equivalent to y, denoted, x ∼ y, if x(n,∞)= y(m,∞),
for some n,m ∈Nk . This is an equivalence relation. For x ∈3∞, we denote by [x] the equivalence class
of x , i.e., the set of all infinite paths which are tail equivalent to x . An infinite path x is called aperiodic
if x(n,∞)= x(m,∞), n,m ∈ Nk , implies n = m.

We can form the skew-product k-graph, or covering graph, 3̄ = 3×d Zk which is equal as a set
to 3× Zk , has degree map given by d̄(λ, n) = d(λ), range and source maps r(λ, n) = (r(λ), n) and
s(λ, n)= (s(λ), n+ d(λ)) and composition given by (λ, n)(µ, n+ d(λ))= (λµ, n).

As in the theory of Leavitt path algebras, one can model Kumjian–Pask algebras as Steinberg algebras
via the infinite-path groupoid of the k-graph (see [Clark and Pangalela 2017, Proposition 5.4]). For the
k-graph 3,

G3 =
{
(x, l −m, y) ∈3∞×Zk

×3∞ | x(l,∞)= y(m,∞)
}
.

Define range and source maps r, s : G3 → 3∞ by r(x, n, y) = x and s(x, n, y) = y. The multi-
plication and inverse are given for (x, n, y), (y, l, z) ∈ G3, by (x, n, y)(y, l, z) = (x, n + l, z) and
(x, n, y)−1

= (y,−n, x). G3 is a groupoid with 3∞ = G(0)3 under the identification x 7→ (x, 0, x). For



Graded Steinberg algebras and their representations 161

µ, ν ∈ 3 with s(µ) = s(ν), let Z(µ, ν) := {(µx, d(µ)− d(ν), νx) | x ∈ 3∞, x(0) = s(µ)}. Then the
sets Z(µ, ν) comprise a basis of compact open sets for an ample Hausdorff topology on G3. There is a
cocycle c : G3→ Zk given by c(x,m, y)= m.

For the skew-product k-graph 3̄=3×d Zk , we have G3̄ ∼= G3×c Zk (see [Kumjian and Pask 2000,
Theorem 5.2]). Thus specialising Theorem 3.4 to this setting, we have

KPK (3̄)∼= KPK (3) # Zk . (6-1)

We will show that KPK (3̄) is an ultramatricial algebra.
Given a set X and a ring R, MX (R) denotes the collection of finitely supported X × X matrices with

values in R; that is, MX (R) consists of finitely supported functions from X × X to R such that the
multiplication is given by (ab)(x, y)=

∑
z∈X a(x, z)b(z, y).

Lemma 6.2. For n ∈ Zk define Bn ⊆ KPK (3̄) by

Bn = spanK
{
(λ, n− d(λ))(µ, n− d(µ))∗ | λ,µ ∈3, s(λ)= s(µ)

}
.

Then Bn is a subalgebra of KPK (3̄) and there is an isomorphism Bn ∼=
⊕

v∈30 M3v(K ) that carries
(λ, n− d(λ))(µ, n− d(µ))∗ to the matrix unit eλ,µ.

Proof. For the first statement we just have to show that for any λ,µ, η, ζ ∈3 we have

(λ, n− d(λ))(µ, n− d(µ))∗(η, n− d(η))(ζ, n− d(ζ ))∗ ∈ Bn.

This follows from the argument of [Kumjian and Pask 2000, Lemma 5.4]. To wit, we have

(µ, n− d(µ))∗(η, n− d(η))= 0 unless r(µ, n− d(µ))= r(η, n− d(η)),

which in turn forces d(µ)= d(η). But then d̄(µ, n−d(µ))= d̄(η, n−d(η)), and then the Cuntz–Krieger
relation forces (µ, n− d(µ))∗(η, n− d(η))= δµ,η(s(µ), n). Hence

(λ, n− d(λ))(µ, n− d(µ))∗(η, n− d(η))(ζ, n− d(ζ ))∗ = δµ,η(λ, n− d(λ))(ζ, n− d(ζ ))∗ ∈ Bn.

For each v ∈30, M3̄(v,n)(K )∼= M3v(K ). So the elements (λ, n− d(λ))(µ, n− d(µ))∗ satisfy the same
multiplication formula as the matrix units eλ,µ in

⊕
v∈30 M3v(K ). Hence the uniqueness of the latter

shows that there is an isomorphism as claimed. �

Lemma 6.3. For m ≤ n ∈ Zk , we have Bm ⊆ Bn , and in particular for each v ∈ 30, we have (v,m) =∑
α∈v3n−m (α,m)(α,m)∗.

Proof. Again, this follows from the proof of [Kumjian and Pask 2000, Lemma 5.4]. We just apply the
Cuntz–Krieger relation, using at the first equality that 3 has no sources:

(λ,m− d(λ))(µ,m− d(µ))∗ = (λ,m− d(λ))
( ∑
α∈s(λ)3n−m

(α,m)(α,m)∗
)
(µ,m− d(µ))∗

=

∑
α∈s(λ)3n−m

(λα,m− d(λ))(µα,m− d(µ))∗ ∈ Bn.
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This gives the first assertion, and the second follows by taking λ= µ= v. �

Theorem 6.4. Let 3 be a row-finite k-graph with no sources and K a field. Then the Kumjian–Pask
algebra KPK (3) is a graded von Neumann regular ring.

Proof. Lemma 2.3 shows that KPK (3) is graded regular if and only if KPK (3) # Zk is graded regular.
By (6-1) KPK (3) # Zk ∼= KPK (3̄) and the latter is an ultramatricial algebra by Lemma 6.3. Since
ultramatricial algebras are regular, the theorem follows. �

Since KPK (3) is graded von Neumann regular, we immediately obtain the following statements.

Theorem 6.5. Let 3 be a row-finite k-graph with no sources and K a field. Then the Kumjian–Pask
algebra A = KPK (3) has the following properties:

(1) any finitely generated right (left) graded ideal of A is generated by one homogeneous idempotent;

(2) any graded right (left) ideal of A is idempotent;

(3) any graded ideal is graded semiprime;

(4) J (A)= J gr(A)= 0; and

(5) there is a one-to-one correspondence between the graded right (left) ideals of A and the right (left)
ideals of A0.

Proof. All the assertions are the properties of a graded von Neumann regular ring [Hazrat 2016, §1.1.9],
so the result follows from Theorem 6.4. �

For the next result, given a k-graph 3, and given m ≤ n ∈ Zk , we define φm,n : N30
→ N30 by

φm,n(v)=
∑

w∈30 |v3n−mw|w. Here, N30 is the abelian monoid freely generated by 30, and φm,n is the
unique monoid homomorphism determined by the above rule.

Corollary 6.6. Let 3 be a row-finite k-graph with no sources and K a field. There is an isomorphism

V(KPK (3̄))∼= lim
−−→Zk

(
N30, φm,n)

that carries [(v, n)] to the copy of v in the n-th copy of N30. Furthermore, the monoid V(KPK (3̄)) is
cancellative.

Proof. It is standard that there is an isomorphism V
(⊕

v∈30 M3v(K )
)
∼=N30 that takes eλ,λ to s(λ) for all λ.

So Lemma 6.2 implies that there is an isomorphism V(Bn)→N30 that carries [(λ, n−d(λ))(λ, n−d(λ))∗]
to s(λ) for all λ. Let Sn be a copy N30

×{n} of the monoid N30 (so (a, n)+ (b, n)= (a+ b, n) in Sn).
Lemma 6.3 shows that these isomorphisms of monoids carry the inclusions Bm ↪→ Bn to the maps
(v,m) 7→

∑
λ∈v3n−m (s(λ), n), which is precisely given by the formula φm,n for m ≤ n ∈ Zk . Since the

monoid of a direct limit is the direct limit of the monoids of the approximating algebras, we have an
isomorphism V(KPK (3̄))∼= lim

−−→Zk Sn , which sends [(v, n)] to (v, n) ∈ Sn .
Suppose that x + z = y+ z in V(KPK (3̄)). By the isomorphism V(KPK (3̄))∼= lim

−−→Zk Sn , there exist
images x ′, y′, z′ of x, y, z, respectively, in Sn0 =N30

×{n0} for some n0 ∈ Zk such that x ′+ z′ = y′+ z′.
The monoid N30 is cancellative, so V(KPK (3̄)) is too. �
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Corollary 6.7. Let 3 be a row-finite k-graph with no sources and K a field. Then

Vgr(KPK (3))∼= lim
−−→
Zk

(N30, φm,n).

Proof. Recall from (6-1) that KPK (3̄)∼= KPK (3) # Zk . Specialising Proposition 2.5 to Kumjian–Pask
algebras, we have the isomorphism of categories 9 : KPK (3)-Gr−→∼ KPK (3̄)-Mod. We argue as in the
directed-graph situation that 9 preserves finitely generated projective objects. By (4-2) and (4-4), we
have Vgr(KPK (3))∼= V(KPK (3̄)). �

7. The graded representations of the Steinberg algebra

In this section, for a 0-graded groupoid G and its associated Steinberg algebra AR(G), we construct graded
simple AR(G)-modules. Specialising our results to the trivial grading, we obtain irreducible representations
of (ungraded) Steinberg algebras. We determine the ideals arising from these representations and prove
that these ideals relate to the effectiveness or otherwise of the groupoid.

7A. Representations of a Steinberg algebra. Let G be an ample Hausdorff groupoid, let 0 be a discrete
group with identity ε, and let c : G→ 0 be a cocycle. A subset U of the unit space G(0) of G is invariant
if d(γ ) ∈U implies r(γ ) ∈U ; equivalently,

r(d−1(U ))=U = d(r−1(U )).

Given an element u ∈ G(0), we denote by [u] the smallest invariant subset of G(0) which contains u.
Then

r(d−1(u))= [u] = d(r−1(u)).

That is, for any v ∈ [u], there exists x ∈ G such that d(x)= u and r(x)= v; equivalently, for any w ∈ [u],
there exists y ∈ G such that d(y)=w and r(y)= u. Thus for any v,w ∈ [u], there exists x ∈ G such that
d(x)= v and r(x)=w. We call [u] an orbit. Observe that an invariant subset U ⊆ G(0) is an orbit if and
only if for any v,w ∈U , there exists x ∈ G such that d(x)= v and r(x)= w.

Lemma 7.1. Let u1, u2, . . . , un be pairwise distinct elements of G(0) with n ≥ 2. Then there exist disjoint
compact open bisections Bi ⊆ G(0) such that ui ∈ Bi for each i = 1, . . . , n.

Proof. Since G(0) is a Hausdorff space, there exist disjoint open subsets X i of G(0) such that ui ∈ X i for
all i . Since G is ample, we can choose compact open bisections Bi ⊆ X i such that ui ∈ Bi for all i . �

The isotropy group at a unit u of G is the group Iso(u)= {γ ∈ G | d(γ )= r(γ )= u}. A unit u ∈ G(0) is
called 0-aperiodic if Iso(u)⊆ c−1(ε), otherwise u is called 0-periodic. For an invariant subset W ⊆ G(0),
we denote by Wap the collection of 0-aperiodic elements of W and by Wp the collection of 0-periodic
elements of W . Then

W =Wap
⊔

Wp.

If W =Wap, we say that W is 0-aperiodic; If W =Wp, we say that W is 0-periodic.
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Remark 7.2. Let E be a directed graph. Let GE be the associated graph groupoid and c : GE → Z

the canonical cocycle c(x,m, y)= m. It was shown in [Kumjian et al. 1997] that c−1(0) is a principal
groupoid, in the sense that Iso(c−1(0)) = G(0)E . Hence x ∈ G(0)E = E∞ is Z-aperiodic if and only if
Iso(x) = {x}. It is standard that Iso(x) = {x} if and only if x 6= µλ∞ for any cycle λ in E . So x is
Z-aperiodic if and only if x 6= µλ∞ for any cycle λ.

Lemma 7.3. Let W ⊆ G(0) be an invariant subset. Then Wap and Wp are both invariant subsets of G(0).

Proof. For x ∈ G, let u = d(x) and v = r(x). Suppose that u ∈ Wap. If c(y) 6= ε for some y ∈ Iso(v),
then x−1 yx ∈ Iso(u) and ε 6= c(y)= c(x)c(x−1 yx)c(x)−1, forcing c(x−1 yx) 6= ε, a contradiction. Hence,
v= r(x) is 0-aperiodic. Since W is invariant, we have v ∈Wap. So Wap is invariant. Since W =WaptWp,
it follows that Wp is also invariant. �

By the proof of Lemma 7.3, u ∈ G(0) is 0-aperiodic if and only if its orbit [u] is 0-aperiodic.

Example 7.4. In this example we construct a Z-aperiodic invariant subset which is neither open nor
closed in G(0). Let E be the following directed graph.

1·
β

++

α

33
λ

// 2·
γ

ss

δ

kk

Let u be the infinite path αβα2βα3β · · · . Then u is an element in G(0)E . The orbit [u] consists of all
infinite paths tail equivalent to u. So αnu ∈ [u] for all n ∈ N. The sequence αnu converges to α∞, which
does not belong to [u]. So [u] is not closed. Similarly, the points un := αβα

2β · · ·αnβα∞ all belong to
G(0) \ [u], but un→ u, so [u] is not open. In particular, neither [u] nor its complement is the invariant
subset of G(0) corresponding to any saturated hereditary subset of E0.

We will employ 0-aperiodic invariant subsets of G(0) to obtain graded representations for the Steinberg
algebra AR(G). For any invariant subset U ⊆ G(0) and a unital commutative ring R, we denote by RU the
free R-module with basis U . For every compact open bisection B ⊆ G, there is a function fB : G(0)→ RU
which has support contained in d(B)∩U and fB(d(γ ))= r(γ ) for all γ ∈ B∩d−1(U ). There is a unique
representation πU : AR(G)→ EndR(RU ) such that

πU (1B)(u)= fB(u), (7-1)

for every compact open bisection B and u ∈U . This representation makes RU an AR(G)-module (see
[Brown et al. 2014, Proposition 4.3]). An AR(G)-submodule V ⊆ RU is called a basic submodule of RU
if whenever r ∈ R \ {0} and ru ∈ V , we have u ∈ V . We say an AR(G)-module is basic simple if it has no
nontrivial basic submodules.

We can state one of the main results of this section.

Theorem 7.5. Let U be an invariant subset of G(0). Then U is a 0-aperiodic orbit if and only if RU is a
graded basic simple AR(G)-module. Furthermore, RU is a graded basic simple AR(G)-module if and
only if it is graded and basic simple.
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Proof. Suppose that u ∈ G(0) satisfies U = [u], and that [u] is a 0-aperiodic orbit. We first show that R[u]
is a 0-graded AR(G)-module. For any γ ∈ 0, set

[u]γ =
{
v ∈ [u] | there exists x ∈ G such that c(x)= γ, d(x)= u and r(x)= v

}
.

We claim that [u]γ ∩[u]γ ′ 6=∅ implies γ = γ ′. Indeed, if v ∈ [u]γ ∩[u]γ ′ , then there exist x ∈ c−1(γ ) and
y ∈ c−1(γ ′) such that d(x)= d(y)= u and r(x)= r(y)= v. Now x−1 y ∈ Iso(u). Since u is 0-aperiodic
this forces γ−1γ ′ = c(x−1 y) = ε, and so γ = γ ′. This gives a partition [u] =

⊔
γ∈0[u]γ . Therefore

AR(G)-module R[u] has a decomposition of R-modules

R[u] =
⊕
γ∈0

(R[u])γ ,

where (R[u])γ is a free R-module with basis [u]γ .
We show that AR(G)α · (R[u])γ ⊆ (R[u])αγ , for α, γ ∈ 0. Fix v ∈ [u]γ and B ∈ Bco

α (G). We use · to
denote the action of AR(G) on RU . We have

1B · v =

{
r(b) if b ∈ B satisfies d(b)= v,
0 if v 6∈ d(B).

Clearly 0 ∈ (R[u])αγ , so suppose that b ∈ B satisfies d(b)= v. Since v ∈ [u]γ , there exists x ∈ G such
that c(x) = γ , d(x) = u, and r(x) = v. Now d(bx) = u, r(bx) = r(b), and c(bx) = c(b)c(x) = αγ .
So r(b) ∈ [u]αγ . Since elements of the form 1B where B ∈ Bco

α (G) span AR(G)α, we deduce that
AR(G)α · (R[u])γ ⊆ (R[u])αγ as claimed.

Next we show that R[u] is a basic simple AR(G)-module. Suppose that V 6= 0 is a basic AR(G)-
submodule of R[u]. Take a nonzero element x ∈ V . Fix nonzero elements ri ∈ R and pairwise distinct
ui ∈ [u] such that x =

∑m
i=1 ri ui . By Lemma 7.1, there exist disjoint compact open bisections Bi ⊆ G(0)

such that ui ∈ Bi for all i = 1, . . . ,m. Now

1B1 · x = 1B1 ·

m∑
i=1

ri ui =

m∑
i=1

ri (1B1 · ui )= r1 fB1(u1).

Thus u1= fB1(u1)∈ V , because V is a basic submodule. Fix v ∈ [u] and choose x ∈G such that d(x)= u1

and r(x) = v. Fix a compact open bisection D containing x . Then 1D · u1 = fD(u1) = r(x) = v ∈ V ,
giving V = R[u]. Thus R[u] is basic simple, and consequently graded basic simple.

For the converse suppose that RU is a graded basic simple AR(G)-module. We first show that U
is 0-aperiodic. Let u ∈ U . We claim that there exists r ∈ R \ {0} such that ru is a homogeneous
element of RU . To see this, express u =

∑l
i=1 hi , where hi 6= u are homogeneous elements. For

each i , express hi =
∑si

j=1 λi j ui j with λi j ∈ R \{0} and the ui j ∈U pairwise distinct. We first show that
u ∈ {ui j | i = 1, . . . , l; j = 1, . . . , si }; for if not, then Lemma 7.1 gives compact open bisections B, Bi j

such that u ∈ B and u /∈ Bi j for all i, j . So 1B · u 6= 0, whereas

1B · u = 1B ·

l∑
i=1

hi = 1B ·

l∑
i=1

si∑
j=1

λi j ui j =

l∑
i=1

si∑
j=1

λi j 1B · ui j = 0.
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This is a contradiction. So u = ui j for some i, j as claimed; without loss of generality, u = u11. Hence
h1 = λ11u+

∑s1
j=2 λ1 j u1 j . There exist compact open bisections B ′, B ′1 j ⊆ G(0) ⊆ c−1(ε) such that u ∈ B ′

but u /∈ B ′1 j for j 6= 1. Hence r := λ11 belongs to R \ {0}, and

ru = λ111B ′ · u = 1B ′ · h1

is homogeneous as claimed. Now suppose that u is not 0-aperiodic. Then there exists x ∈ Iso(u) with
c(x) 6= ε. Fix D ∈ Bco

c(x)(G) containing x . Then 1D ·ru= r1D ·u= ru is homogeneous. Thus 1D ∈ AR(G)ε,
forcing c(x)= ε. This is a contradiction. Thus U is 0-aperiodic.

For the last part of the theorem we prove that U is an orbit. If not then there exist u, v ∈ G(0) with
[u]∩ [v] =∅ and [u] t [v] ⊆U . Hence R[u] ⊆ RU \ R[v] is a nontrivial proper graded basic submodule
of RU by the first part of the theorem. This is a contradiction. So U is an orbit. The last statement of the
theorem follows from the first part of the proof. �

Corollary 7.6. Let G be an ample Hausdorff groupoid, and U be an invariant subset of G(0). Then U is
an orbit of G(0) if and only if RU is a basic simple AR(G)-module.

Proof. Apply Theorem 7.5 with c : G→ {ε} the trivial grading. �

Specialising Theorem 7.5 to the case of Leavitt path algebras we obtain irreducible representations for
these algebras.

Let K be a field. For an infinite path p in a graph E , Chen constructed the left L K (E)-module
F[p] of the space of infinite paths tail-equivalent to p and proved that it is an irreducible representation
of the Leavitt path algebra (see [Chen 2015, Theorem 3.3]). These were subsequently called Chen
simple modules and further studied in [Abrams et al. 2015; Ara and Rangaswamy 2014; 2015; Hazrat
and Rangaswamy 2016; Rangaswamy 2016]. In the groupoid setting, the infinite path p is an element
in G(0)E . Thus q belongs to the orbit [p] if and only if q is tail-equivalent to p. Applying Corollary 7.6,
we immediately obtain that K [p] = F[p] is an irreducible representation of the Leavitt path algebra.
Furthermore, by Theorem 7.5, p is an aperiodic infinite path (irrational path) if and only if F[p] is a
graded module (see [Hazrat and Rangaswamy 2016, Proposition 3.6]).

Recall from [Chen 2015, Theorem 3.3] that EndL K (E)(F[p])∼= K . We claim that EndAR(G)(R[u])∼= R
for u ∈ G(0)E . Indeed, let f : R[u] → R[u] be a nonzero homomorphism of AR(G)-modules. Then Ker f
is a basic submodule of R[u]. Since R[u] is basic simple, we deduce that f is injective. For v ∈ [u],
we write f (v) =

∑n
i=1 rivi with 0 6= ri ∈ R and vi are distinct. We prove that n = 1 and v = v1. For

if not, then we may assume that v 6= v1. By Lemma 7.1, there exist disjoint compact open bisections
B, B1 ⊆ G(0) such that v ∈ B, v1 ∈ B1 and vi /∈ B1 for i 6= 1. Then 1B1 · f (v) = f (1B1 · v) = 0. But,
1B1 · f (v)= 1B1 ·

∑n
i=1 rivi = r1v1 which is a contradiction.

Likewise, Theorem 7.5 specialises to k-graph groupoids, giving new information about Kumjian–Pask
algebras.

Corollary 7.7. Let 3 be a row-finite k-graph without sources and KPK (3) the Kumjian–Pask algebra
of 3. Then:
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(1) for an infinite path x ∈3∞, K [x] is a simple left KPK (3)-module;

(2) for x, y ∈3∞, we have K [x] ∼= K [y] if and only if x ∼ y; and

(3) for x ∈3∞, K [x] is a graded module if and only if x is an aperiodic path.

Proof. For (1), the equivalence class of x is the orbit of G(0)3 which contains x . By (7-1) and Corollary 7.6,
the statement follows directly. For (2), let φ : F([x])→ F([y]) be an isomorphism. Write φ(x) =∑l

i=1 ri yi , where yi ∼ y are all distinct. If x = yi , for some i , then by transitivity of ∼, x ∼ y and
we are done. Otherwise one can choose n ∈ Nk such that all yi (0, n) and x(0, n) are distinct. Setting
a = y1(0, n), we have 0= φ(a∗x)= a∗φ(x)= y1(n,∞), which is not possible unless x = y1 and l = 1.
This gives that x ∼ y. The converse is clear. The statement (3) follows immediately by Theorem 7.5. �

7B. The annihilator ideals and effectiveness of groupoids. In this section, we describe the annihilator
ideals of the graded modules over a Steinberg algebra and prove that these ideals reflect the effectiveness
of the groupoid.

As in previous sections, we assume that G is a 0-graded ample Hausdorff groupoid which has a basis
of graded compact open bisections. Let R be a commutative ring with identity and AR(G) the 0-graded
Steinberg algebra associated to G.

Let W ⊆ G(0) be an invariant subset. We write GW := d−1(W ) which coincides with the restriction
G|W = {x ∈ G | d(x) ∈W, r(x) ∈W }. Notice that GW is a groupoid with unit space W .

Observe that the interior W ◦ of an invariant subset W is invariant. Indeed, r(d−1(W ◦)) is an open
subset of G(0), since W ◦ is an open subset of G(0). Since W is invariant, r(d−1(W ◦)) ⊆ W . Thus
r(d−1(W ◦)) ⊆ W ◦. It follows that the closure W− of W is also an invariant subset of G(0), since
W− = G(0) \ (G(0) \W )◦.

Recall from (7-1) that

πW : AR(G)→ EndR(RW )

makes RW an AR(G)-module.

Lemma 7.8. Let W ⊆ G(0) be an invariant subset of the unit space of G, and let U = (G(0) \W )◦. Then

AR(GU )⊆ AnnAR(G)(RW ).

Proof. For any f ∈ AR(GU ), we write f =
∑m

k=1 rk1Bk with Bk ⊆ GU compact open bisections of G and
rk ∈ R nonzero scalars. Since d(Bk)⊆U , we have d(Bk)∩W =∅. Thus f ·w = 0 for any w ∈W , and
hence f ∈ AnnAR(G)(RW ). �

From now on, W ⊆ G(0) is a 0-aperiodic invariant subset. We have

W =
⋃
u∈W

[u].

Of course, two elements of W may belong to the same orbit.
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Recall from Theorem 7.5 that if u ∈ G(0) is 0-aperiodic, then R[u] is a 0-graded AR(G)-module.
Therefore RW is a 0-graded AR(G)-module. In order to construct graded representations for AR(G),
we need to consider the “closed” subgroups of EndR(FW ) defined in (7-1). Namely, we consider the
subgroup ENDR(RW )=

⊕
γ∈0 HomR(RW, RW )γ , where each component HomR(RW, RW )γ consists

of R-maps of degree γ .
Then the map

πW : AR(G)→ ENDR(RW ) (7-2)

given by the AR(G)-module action is a homomorphism of 0-graded algebras. To prove that πW preserves
the grading, fix α ∈ 0 and B ∈ Bco

α (G). Take u ∈W and v ∈ [u]. Fix x ∈ G with d(x)= u and r(x)= v,
and put β = c(x) so that v ∈ [u]β . Then

πW (1B)(v)=

{
r(γ ) if v = d(γ ) for some γ ∈ B,
0 otherwise.

Since c(γ x)= αβ, we obtain πW (1B) ∈ HomR(RW, RW )α.
Recall that an ample Hausdorff groupoid G is effective if Iso(G)◦=G(0), where Iso(G)=

⊔
u∈G(0) Iso(u).

It follows that G is effective if and only if for any nonempty B ∈ Bco
∗
(G) with B ∩ G(0) = ∅, we have

B 6⊆ Iso(G) (see [Brown et al. 2014, Lemma 3.1] for other equivalent conditions).
We need the following graded uniqueness theorem for Steinberg algebras.

Lemma 7.9 [Clark and Edie-Michell 2015, Theorem 3.4]. Let G be a 0-graded ample Hausdorff groupoid
such that c−1(ε) is effective. If π : AR(G)→ A is a graded R-algebra homomorphism with Ker(π) 6= 0
then there is a compact open subset B ⊆ G(0) and r ∈ R \ {0} such that π(r1B)= 0.

The following key lemma will be used to determine the annihilator ideal of the AR(G)-module RW .
This is a generalisation of [Brown et al. 2014, Proposition 4.4] adapted to the graded setting. Recall that
if G is a graded groupoid with grading given by the cocycle c : G→ 0, then c−1(ε) is a (trivially graded)
clopen subgroupoid of G.

Lemma 7.10. Let W ⊆ G(0) be a 0-aperiodic invariant subset and πW : AR(G)→ ENDR(RW ) the
homomorphism of 0-graded algebras given in (7-2). Then πW is injective if and only if W is dense in G(0)

and c−1(ε) is effective.

Proof. Suppose πW is injective and there exists an open subset K of G(0) such that K ∩W =∅. We have
K =

⋃
i Bi , where Bi are compact open bisections of G. So Bi ∩W =∅ for each i , giving πW (1Bi )= 0,

a contradiction. Thus for any open subset K of G(0), K ∩W 6=∅. Therefore W is dense in G(0).
Suppose now that c−1(ε) is not effective. Then there exists a nonempty compact open bisection

B ⊆ c−1(ε) \G(0) such that d(b)= r(b) for all b ∈ B. We have that d(B) 6= B and that B is a compact
open bisection of G. Thus 1B − 1d(B) ∈ Ker(πW ). This is a contradiction. Hence, c−1(ε) is effective.

For the converse, Lemma 7.9 implies that it suffices to prove that for any compact open subset B ⊆ G(0)

and r ∈ R \ {0}, πW (r1B) 6= 0. Since W is dense in G(0), we have B ∩W 6=∅. There exists w ∈ B ∩W
such that πW (r1B)(w) 6= 0, proving πW (r1B) 6= 0. �
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If the group 0 is trivial, then by Lemma 7.10, for an invariant subset W ⊆ G(0), the homomorphism
πW : AR(G)→ EndR(RW ) is injective if and only if W is dense in G(0) and the groupoid G is effective.

The following is the main result of this section.

Theorem 7.11. Let G be a 0-graded ample Hausdorff groupoid, R a commutative ring with identity and
AR(G) the Steinberg algebra associated to G. The following statements are equivalent:

(i) Let W ⊆ G(0) be a 0-aperiodic invariant subset and W− the closure of W . Then the groupoid
(c|GW−

)−1(ε) is effective;

(ii) For any 0-aperiodic invariant subset W ⊆ G(0),

AnnAR(G)(RW )= AR(GU ),

where U = (G(0) \W )◦ is the interior of the invariant subset G(0) \W .

Proof. (i)⇒ (ii). Let W ⊆ G(0) be a 0-aperiodic invariant subset. By Theorem 7.5, RW is a graded
AR(G)-module. By Lemma 7.8, we have AR(GU ) ⊆ AnnAR(G)(RW ) with U = (G(0) \W )◦. It follows
that RW is an AR(G)/AR(GU )-module. By [Clark et al. 2016, Lemma 3.6], we have an exact sequence
of canonical ring homomorphisms

0→ AR(GU )→ AR(G)→ AR(GD)→ 0,

where D = G(0) \U . The homomorphisms are induced by extensions from GU to G and restrictions from
G to GD , respectively. One can easily check that the homomorphisms are graded. It therefore follows that
the quotient algebra AR(G)/AR(GU ) is graded isomorphic to AR(GD). It follows that RW is a 0-graded
AR(GD)-module (this also follows from Theorem 7.5). We denote by π̂W : AR(GD)→ ENDR(RW ) the
induced graded homomorphism. Observe that (GD)

(0)
= D is the closure of W. Thus by Lemma 7.10,

the homomorphism π̂W is injective. This implies that RW is a faithful AR(GD)-module. Hence, the
annihilator ideal of RW as an AR(G)-module is AR(GU ).

(ii)⇐ (i). Let D denote the closure of W in G(0). Then RW is a faithful AR(GD)-module. So the result
follows from Lemma 7.10. �

Recall that a groupoid G is strongly effective if for every nonempty closed invariant subset D of G(0),
the groupoid GD is effective.

Remark 7.12. (1) If c−1(ε) is strongly effective, then Theorem 7.11(i) holds. In fact, a closed invariant
subset D of the unit space of G is in particular a closed c−1(ε)-invariant subset of G(0). We have
c−1(ε)D = c−1(ε) ∩ GD = (c|GD )

−1(ε). Hence, Theorem 7.11(i) follows directly. Example 7.13
below, on the other hand, shows that Theorem 7.11(i) does not imply that c−1(ε) is strongly effective.

(2) Resume the notation of Example 7.4, so u = αβα2β · · · ∈ E∞. Let D be the closure of the Z-
aperiodic invariant subset [u] ⊆ G(0)E . As we saw in that example, D is not itself Z-aperiodic, because
it contains α∞.
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Example 7.13. It is easy to construct examples of 0-graded groupoids with no 0-aperiodic points. For
example, let X be the Cantor set. Regard G = X×Z2 as a groupoid with unit space X×{0} identified with
X by setting r(x,m)= x = d(x,m) and defining composition and inverses by (x, n)(x,m)= (x,m+ n)
and (x,m)−1

= (x,−m). The map c : G → Z given by c(x, (m1,m2)) = m1 is a cocycle. We have
c−1(0) = X × ({0} ×Z), which is not effective (for example X × {(0, 1)} is a compact open bisection
contained in the isotropy subgroupoid of c−1(0)). Moreover, G(0) has no Z-aperiodic points because
{u}× (Z×{0})⊆ Iso(u) \ c−1(0) for all u ∈ G(0); so every u ∈ G(0) is Z-periodic.

Applying Theorem 7.11 to the trivial grading, we obtain a new characterisation of strong effectiveness.

Corollary 7.14. Let G be an ample Hausdorff groupoid, and R be a commutative ring with identity. Then
G is strongly effective if and only if for any invariant subset W of G(0), the annihilator of the AR(G)-module
RW is AR(GU ), where U = (G(0) \W )◦.
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