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Jordan blocks of cuspidal representations
of symplectic groups

Corinne Blondel, Guy Henniart and Shaun Stevens

Let G be a symplectic group over a nonarchimedean local field of characteristic zero and odd residual
characteristic. Given an irreducible cuspidal representation of G, we determine its Langlands parameter
(equivalently, its Jordan blocks in the language of Mœglin) in terms of the local data from which the
representation is explicitly constructed, up to a possible unramified twist in each block of the parameter.
We deduce a ramification theorem for G, giving a bijection between the set of endoparameters for G and
the set of restrictions to wild inertia of discrete Langlands parameters for G, compatible with the local
Langlands correspondence. The main tool consists in analyzing the Hecke algebra of a good cover, in the
sense of Bushnell–Kutzko, for parabolic induction from a cuspidal representation of G×GLn , seen as a
maximal Levi subgroup of a bigger symplectic group, in order to determine reducibility points; a criterion
of Mœglin then relates this to Langlands parameters.
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Introduction

0.1. Let F be a locally compact nonarchimedean local field of odd residual characteristic and denote
by WF the Weil group of F. Let G be the symplectic group preserving a nondegenerate alternating form
on a 2N -dimensional F-vector space. The local Langlands conjectures for G (now a theorem of [Arthur
2013] when F has characteristic zero) stipulate that to an irreducible (smooth, complex) representation π
of G is attached a Langlands parameter, and the representations with a given parameter form a finite set
of isomorphism classes, called an L-packet for G.
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Since the symplectic group is split, Langlands parameters for G are simply continuous homomor-
phisms φ from WF × SL2(C) into the dual group Ĝ = SO2N+1(C), taken up to conjugation, such that
the (2N+1)-dimensional representation ι ◦ φ of WF × SL2(C), obtained from the inclusion ι of Ĝ
into GL2N+1(C), is semisimple. If π is a discrete series representation of G, then its parameter φ is
discrete, that is, the image of φ is not contained in a proper parabolic subgroup of Ĝ; equivalently, ι◦φ is the
direct sum of inequivalent irreducible orthogonal representations of WF ×SL2(C), and has determinant 1.
In that case giving ι ◦φ up to equivalence is the same as giving φ up to conjugation in Ĝ.

On the other hand, we have an explicit description of the cuspidal representations of G via the theory
of types [Stevens 2008], in the spirit of the classification of the irreducible representations of GLn(F)
of [Bushnell and Kutzko 1993]. It is our goal in this paper to describe as much as possible of the
Langlands parameter of a cuspidal representation of G from its explicit construction. We will denote
by Cusp(G) the set of equivalence classes of cuspidal representations of G, and by 8cusp(G) the subset
of discrete Langlands parameters consisting of those parameters with a cuspidal representation in the
corresponding L-packet (see Section 0.5 below for a more detailed description).

0.2. At the technical and arithmetic heart of the construction of cuspidal representations of G and GLn(F)
is the theory of endoclasses of simple characters — families of very special characters of compact open
subgroups. An irreducible cuspidal representation of GLn(F) contains, up to conjugacy, a unique such
simple character and thus determines an endoclass. By considering the endoclasses in its cuspidal support,
an arbitrary irreducible representation of GLn(F) then determines a formal sum of endoclasses (with
multiplicities), which we call an endoparameter of degree n (see Section 2.7). We write EEn(F) for the
set of endoparameters of degree n.

Similarly, an irreducible cuspidal representation of G is constructed from a semisimple character,
and thus also comes from an endoparameter, the weighted formal sum of the endoclasses of its simple
components; moreover, the semisimple character is self-dual so that every endoclass appearing must also
be self-dual. Thus the construction of an irreducible cuspidal representation of G gives rise to a self-dual
endoparameter of degree 2N. We write EEsd

2N (F) for the set of these self-dual endoparameters.

0.3. The notions of endoclass and endoparameter admit an instructive interpretation via the local Langlands
correspondence. Denote by PF the wild ramification subgroup of the Weil group WF . Then the (first)
ramification theorem [Bushnell and Henniart 2003, 8.2, Theorem] says that there is a unique bijection
between the set of endoclasses over F and the set of WF -orbits of irreducible complex representations
of PF , which is compatible with the local Langlands correspondence for general linear groups. This
then induces a bijection, again compatible with the Langlands correspondence, between the set of
endoparameters of degree n and the set of equivalence classes of n-dimensional complex representations
of PF which are invariant under conjugation by WF (see 7.3 Theorem for a precise statement). We call
these representations of PF wild parameters.

Our first main result (or, rather, the last in the scheme of proof) is an analogous ramification theorem
for the symplectic group G. First we see that the bijection above restricts to a bijection between self-dual
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endoclasses and self-dual WF -orbits of irreducible complex representations of PF . (Note that we really
mean that the orbit is self-dual: the only self-dual irreducible complex representation of PF is the trivial
representation, since p is odd.) We say that a (2N+1)-dimensional wild parameter is discrete self-dual if
it is a sum of self-dual WF -orbits of irreducible complex representations of PF , and write 9sd

2N+1(F) for
the set of such wild parameters. These are precisely the restrictions to wild inertia of discrete Langlands
parameters. We prove the following ramification theorem for G (see the end of the Introduction for
remarks on the characteristic).

7.6 Theorem. Suppose F is of characteristic zero. There is a unique bijection EEsd
2N (F)→ 9sd

2N+1(F)
which is compatible with the Langlands correspondence for cuspidal representations of G:

Cusp(G) // //

����

8cusp(G)

����

EEsd
2N (F)

∼
// 9sd

2N+1(F)

The bijection here is not just that in the case of general linear groups (indeed, the degree has changed):
one must first take the square of every endoclass in the support of the endoparameter, then map across
using the bijection for general linear groups, and finally add the trivial representation of PF .

0.4. The ramification theorem for G is in fact a consequence of rather more precise results, proved on
the automorphic side of the Langlands correspondence. To explain the connection, we recall in more
detail the structure of discrete Langlands parameters, and the results of Mœglin.

There is, up to isomorphism, exactly one irreducible m-dimensional representation Stm of SL2(C) for
each m ≥ 1. Thus an irreducible representation of WF×SL2(C) is a tensor product σ⊗Stm , where σ is an
irreducible representation of WF ; moreover it is orthogonal if and only if either σ is self-dual symplectic
and m is even, or σ is self-dual orthogonal and m is odd. By the Langlands correspondence for GLn

[Laumon et al. 1993; Harris and Taylor 2001; Henniart 2000], such a σ is the Langlands parameter of
a (single) cuspidal representation ρ of GLn(F), where n = dim σ . Saying that σ is self-dual is saying
that ρ is self-dual (i.e., isomorphic to its contragredient), and σ is then symplectic (resp. orthogonal) if
the Langlands–Shahidi L-function L(s,32, ρ) (resp. L(s,Sym2, ρ)) has a pole at s = 0 [Henniart 2010],
in which case we say that ρ is of symplectic (resp. orthogonal) type.

Thus, a discrete parameter φ for G can be given by a set of (distinct) pairs (ρi ,mi ), where ρi is an
isomorphism class of irreducible cuspidal representations of GLni (F), with ni and mi positive integers, and

•
∑

i ni mi = 2N + 1,

• each ρi is self-dual, of symplectic type if mi is even and of orthogonal type if mi is odd,

• if ωi is the central character of ρi then
∏

i ω
mi
i = 1.

0.5. If π is an irreducible cuspidal representation of G and φ is its parameter, [Mœglin 2014] gives a
criterion to determine the set attached to φ as above, i.e., the pairs (ρi ,mi ) that she calls the “Jordan
blocks” of π ; we write Jord(π) for this set of pairs. Let us explain her results.
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For any positive integer n, the group GLn(F)× G appears naturally as a standard maximal Levi
subgroup of Sp2(N+n)(F). If ρ is a cuspidal representation of GLn(F), we can form the parabolically
induced representation ρνs o π (we use normalized induction and induce via the standard parabolic),
where s is here a real parameter and ν is the character g 7→ |det g|F of GLn(F). If no unramified twist
of ρ is self-dual then ρνs o π is always irreducible. On the other hand, if ρ is self-dual, there is a
unique sπ (ρ)≥ 0 such that ρνs oπ is reducible if and only if s =±sπ (ρ).

We define the reducibility set Red(π) to be the set of isomorphism classes of cuspidal representations ρ
of some GLn(F), with n ≥ 1, for which 2sπ (ρ)− 1 is a positive integer. Indeed, it is known that 2sπ (ρ)
is an integer [Mœglin and Tadić 2002], so the condition for ρ to lie in Red(π) is that sπ (ρ) is neither 0
nor 1

2 . The Jordan set Jord(π) is then the set of pairs (ρ,m), where ρ ∈Red(π) and 2sπ (ρ)−1=m+2k
for some integer k ≥ 0.

From its construction, Jord(π) is “without holes” in the sense that if it contains (ρ,m) then it also
contains (ρ,m−2) whenever m−2> 0. However there may be discrete series noncuspidal representations
of G with the same parameter as π ; this happens as soon as Jord(π) contains a pair (ρ,m) with m > 1.
For the number of cuspidal representations of G with a given parameter (without holes), see [Mœglin
2011] (recalled in Section 7.4 below).

0.6. The results of Mœglin described in the previous subsection now say that, in order to determine
the Langlands parameter of an irreducible cuspidal representation π of G, we need only compute the
reducibility points sπ (ρ) for ρ an irreducible self-dual representation of some GLn(F). Moreover, we
need only find enough reducibility points sπ (ρ)≥ 1 to fill the parameter.

To compute these reducibility points, we use Bushnell and Kutzko’s theory [1998] of types and covers.
The representation π takes the form c-IndG

Jπ λπ , for some irreducible representation λπ of a compact open
subgroup Jπ ; this pair (Jπ , λπ ) is a type for π . Similarly, we have a Bushnell–Kutzko-type ( J̃ρ, λ̃ρ) for ρ.
Moreover, from [Miyauchi and Stevens 2014] we have a cover (J, λ) in Sp2(N+n)(F) of ( J̃ρ× Jπ , λ̃ρ⊗λπ ).

The reducibility of the parabolically induced representation ρνs o π for complex s is translated,
via category equivalence, to the reducibility of induction from modules over the spherical Hecke alge-
bra H(GLn(F)×G, λ̃ρ⊗λπ ) to H(Sp2(N+n)(F), λ). The former algebra is isomorphic to C[Z±1

], while
the latter is a Hecke algebra on an infinite dihedral group, with two generators each satisfying a quadratic
relation of the form (T + 1)(T − qr ), with r ≥ 0 an integer and q the cardinality of the residue field of F.
The results of [Blondel 2012] then translate the values of the parameters r for the two generators into the
real parts of those s ∈ C for which ρνs oπ is reducible.

In the inertial class [ρ] = {ρνs
| s ∈ C}, there are precisely two inequivalent self-dual representa-

tions, and we write ρ ′ for the other one. Thus the method described above allows one to compute the
set {sπ (ρ), sπ (ρ ′)} but not to distinguish between the two values if they are distinct. Thus our method com-
putes the inertial Jordan set IJord(π), which is the multiset of pairs ([ρ],m) such that (ρ,m) ∈ Jord(π).

0.7. According to the previous subsection, computing IJord(π) explicitly comes down to computing the
parameters in the quadratic relations for the spherical Hecke algebra of the cover. We do this in two steps.
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First, we consider the special case when the semisimple character θπ in π , from which the type (Jπ , λπ )
is built, is in fact simple. In this case, it determines a self-dual endoclass 2 and we consider only those
irreducible cuspidal representations of some GLn(F) which have endoclass 22. We prove that just these
representations already give us enough to fill the Jordan set (see 2.5 Theorem) and describe an algorithm
to determine IJord(π) (see Section 5.10).

Here the computation of the parameters can be done using results of Lusztig on finite reductive groups:
if 2 is the trivial endoclass 20, so that we are in depth zero, this was done already in [Lust and Stevens
2016]; otherwise, the groups in question are the reductive quotients of maximal parahoric subgroups in
a unitary group (ramified or unramified). There is also an added subtlety which does not arise in the
depth-zero case: two signature characters of certain permutations (coming from a comparison of so-called
beta-extensions) cause an extra twist which must be taken care of in the algorithm and counting.

In the second step, we consider an arbitrary irreducible cuspidal representation π and reduce to the
first case. More precisely, the semisimple character θπ determines by restriction its simple components θi

for 0≤ i≤ l, and hence endoclasses2i . From the construction of the type (Jπ , λπ ), we define types (Ji , λi )

in symplectic groups Sp2Ni
(F), with

∑l
i=0 Ni = N, which induce to irreducible cuspidal representations πi

containing a simple character of endoclass 2i . (See Section 2.6 for details.)
The reduction is obtained by showing that elements of IJord(π) with endoclass 2i can be obtained

from those of IJord(πi ) by a simple twisting process, by a character of order 1 or 2 (see 2.6 Theorem).
This character arises as the comparison of pairs of signature characters as in the first case for π and for πi ;
the point that is both crucial and subtle is that, although we need to make two comparisons, they turn out
to be equal. Now the first case, together with a dimension count, ensures that we have filled the expected
size of IJord(π). If F is of characteristic zero then, by the results of Mœglin, this is indeed the entire
inertial Jordan set (see 2.6 Corollary).

0.8. From our explicit description of the set IJord(π), we know the endoclass of every self-dual irreducible
cuspidal representation of some GLn(F) which appears in Jord(π). From this we deduce the following
result, which gives the compatibility of taking endoparameters with the endoscopic transfer from G
to GL2N+1(F) and from which, via the results of Arthur, we deduce compatibility with the local Langlands
correspondence. In the following, the map ι2N sends a (self-dual) endoparameter

∑
m22 of degree 2N

to the endoparameter
∑

m22
2
+20 of degree 2N + 1, where 20 denotes the trivial endoclass.

2.8 Theorem. Suppose F has characteristic 0. Then the following diagram commutes:

Cusp(G)

��

transfer
// Irr(GL2N+1(F))

��

EEsd
2N (F)

� �

ι2N
// EE2N+1(F)

It is very tempting to think that this result could be an instance of a general theory of endoparameters
for arbitrary reductive groups, which would be in bijection with suitably defined wild parameters and
would be compatible with (twisted) endoscopy.
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0.9. Let π be an irreducible cuspidal representation of G. Having given an explicit description of IJord(π),
we can ask whether we can then determine Jord(π) precisely; that is, given ([ρ],m) ∈ IJord(π), can
we tell whether it is (ρ,m) or (ρ ′,m) in Jord(π), where ρ ′ is the self-dual unramified twist of ρ which
is inequivalent to ρ. In certain cases the answer is yes: often the representations ρ, ρ ′ have opposite
parities (that is, one is symplectic and the other orthogonal) and then we know that we must have the
representation of symplectic type if m is even, and the one of orthogonal type if m is odd. In the
exceptional case where ρ, ρ ′ have the same parity, we can only recover Jord(π) if it happens that both
appear (that is, ([ρ],m) appears in IJord(π) with multiplicity 2); otherwise, we are left with an ambiguity.
(See 4.4 Remark for more on this.)

In Section 6, we explore this exceptional case on the Galois side — that is, we look at the self-dual
irreducible representations of WF which have the same parity as their self-dual unramified twist. It turns out
that they have quite a special structure and that one can determine their parity (see 6.6 Proposition). This
also translates to a criterion for determining the parity of a self-dual cuspidal representation ρ (such that ρ
and its self-dual unramified twist ρ ′ have the same parity), in terms of the type it contains (see Section 6.8).

It is also possible, at least in certain cases, to be more precise in the analysis of the category equivalences
and reducibility, in order to elucidate the ambiguity and recover Jord(π) completely. We hope to come
back to this in the case of Sp4(F) in a sequel to this paper.

0.10. As one of the referees has pointed out, given a generic cuspidal representation π of G, it follows
from the results of Arthur and Mœglin that, for every (ρ,m) appearing in Jord(π), we have m = 1; we
say that the Jordan set (or the corresponding L-packet) is regular in this case.

In general, determining the genericity of a cuspidal representation of G from the data used in its
construction is difficult, as the example of Sp4(F) shows; see [Blondel and Stevens 2009]. However, the
principal difficulties occur when trying to determine which cuspidal representations in a regular L-packet
are generic, rather than in proving that the cuspidals in a nonregular L-packet are nongeneric. Moreover,
the case of depth-zero representations is much simpler. Since the appearance of a pair (ρ,m) in Jord(π)
with m > 1 arises from the “depth-zero data” used in the construction of π , it may be possible to use
the techniques of [Blondel and Stevens 2009] to prove that any cuspidal in a nonregular L-packet is
nongeneric. We leave this as an interesting question to return to later.

A remark on characteristic. The bulk of our work is on the representation theory of symplectic groups;
for this, while we require that the residual characteristic be odd, we have no further conditions on the
characteristic — that is, we do not require F to be of characteristic zero. In particular, our description of
the inertial Jordan set in 2.5 Theorem and 2.6 Theorem does not require characteristic zero. It is only when
interpreting these results in terms of the Langlands correspondence (or the endoscopic transfer map) where,
until these results have been proved with F of positive characteristic, we require characteristic zero.

Structure of the paper. In Section 1, we recall the basic structure of types for cuspidal representations,
in particular semisimple characters and beta-extensions, including the choice of a base point for beta-
extensions. Section 2 contains the statements of the main results on (inertial) Jordan sets, remaining
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entirely on the automorphic side, while the following three sections are devoted to their proofs: in
Section 3, we recall the theory of covers and the results of [Blondel 2012; Miyauchi and Stevens 2014]
on their Hecke algebras and reducibility of parabolic induction; in Section 4 we prove the reduction to
the simple case which is at the heart of our method; and in Section 5 we prove the result in the simple
case. The exploration of self-dual irreducible representations of WF is given in Section 6 and finally, in
Section 7, we interpret our results via the local Langlands correspondence.

Notation

Throughout the paper, F will be a locally compact nonarchimedean local field, with ring of integers oF ,
maximal ideal pF , and residue field kF = oF/pF of cardinality q = qF and odd characteristic p; similar
notation will be used for extensions of F. The absolute value | · |F on F is normalized to have image qZ

and we write ν for the character g 7→ |det g|F of GLn(F).
All representations we consider here will be smooth and complex. By a cuspidal representation of

the group of rational points of a connected reductive group over F, we mean a representation which is
smooth, irreducible and cuspidal (i.e., killed by all proper Jacquet functors).

1. Cuspidal types and primary beta-extensions

In this section we fix notation following mostly [Stevens 2008]. We recall, in the first sections, the main
features of the construction of cuspidal representations of symplectic groups achieved in that paper, to
which we refer for relevant definitions. We do not give references for the by now classical definitions
and constructions previously made for general linear groups by Bushnell and Kutzko. One of the key
steps in the construction is the existence of a so-called beta-extension. We will have to compare such
beta-extensions across different groups but, unfortunately, they are not uniquely defined. Here, following
[Bushnell and Henniart 2005], we explain one way of picking out a particular beta-extension (which we
call p-primary, see 1.8 Definition) in each case, giving a base point to make comparisons.

1.1. We recall the notation for skew semisimple strata and related objects. Let V be a finite-dimensional
symplectic space over F of dimension 2N. We denote by h the symplectic form on V, by x 7→ x̄ the
corresponding adjoint (anti-)involution on EndF (V ) and by σ the corresponding involution on GLF (V ).
We put G = SpF (V )' Sp2N (F), where SpF (V ) is the isometry group of h, which is the group of fixed
points of σ in GLF (V ).

Let [3, n, 0, β] be a skew semisimple stratum in EndF (V ) [Stevens 2008, Definitions 2.4 and 2.5].
In particular 3 is a self-dual oF -lattice sequence and β = −β̄ belongs to the Lie algebra spF (V ). We
write B for the commuting algebra of β in EndF (V ).

Remark. Following [Stevens 2008] we always normalize self-dual lattice sequences such that their period
over any relevant field is even and their duality invariant d is 1. With this convention, for any self-dual
lattice sequence 3 and any multiple s of the period e of 3, there is a unique self-dual lattice sequence
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of period s having the form t 7→ 3((t + a)/(s/e)). There is thus a well-defined way of summing two
self-dual lattice sequences, by first transforming both so that they have the same period; see [Bushnell
and Kutzko 1999]. When performing such transformations, the valuation n of β relative to the lattice
sequence 3 undergoes changes that are of no importance to us, since the associated groups H 1, J 1, J and
characters (see Sections 1.2 and 1.4 below) are left unchanged; we will thus ignore this parameter and
write the stratum in the form [3,−, 0, β].

The characteristic spaces of β determine a canonical orthogonal splitting V =⊥
l
i=0 V i for the

stratum [3,−, 0, β] such that, letting3i
=3∩V i (that is,3i (t)=3(t)∩V i for any t ∈Z) and β i

=β|V i ,
the strata [3i ,−, 0, β i

], 0 ≤ i ≤ l, are skew simple strata which are “sufficiently distant” in the sense
of [Stevens 2008, Definition 2.4]. We put E = F[β] =

⊕l
i=1 E i, where E i

= F[β i
], and write oi

E for
the ring of integers of E i. We recall that 3 is an oE -lattice sequence, by which we mean that each 3i is
an oi

E -lattice sequence in V i.

Convention. In this paper we also take the convention that, for any skew semisimple stratum [3, n, 0, β]
with splitting V =⊥

l
i=0 V i, we have β0

= 0. When 0 is not an eigenvalue of β, this can be achieved by
taking V 0 to be the zero-dimensional space over F ; since, in that case, dimF V 0

= 0, it does not affect
any of the following constructions. The reason for this convention will become apparent later.

1.2. From the datum [3,−, 0, β] are built open compact subrings

• H̃1(β,3)⊆ J̃1(β,3) of EndF (V ),

• H1(β,3) ⊆ J1(β,3) of spF (V ), the fixed points of the former ones under the adjoint involution
on EndF (V ),

and open compact subgroups

• H̃ 1(β,3)⊆ J̃ 1(β,3)⊂ J̃ (β,3) of GLF (V ),

• H 1(β,3)⊆ J 1(β,3)⊂ J (β,3) of G, the subgroups of fixed points of the former ones under the
adjoint involution on GLF (V ).

We will frequently write H 1
3 = H 1(β,3) and so on.

1.3. We introduce more notation relative to 3. For n ∈ Z we write

an(3)= {x ∈ EndF (V ) | ∀t ∈ Z, x3(t)⊆3(t + n)}, bn(3)= an(3)∩ B.

In particular a0(3) is a hereditary oF -order in EndF (V ) with Jacobson radical a1(3). Let P̃(3)= a0(3)
×

and P̃1(3) = 1+ a1(3). Then P1(3) = P̃1(3) ∩ G is the pro-p-radical of P(3) = P̃(3) ∩ G. The
quotient groups

G̃(3)= P̃(3)/P̃1(3) and G(3)= P(3)/P1(3)

are (the groups of rational points of) finite reductive groups over kF . The latter may be disconnected so
we let G0(3) be (the group of rational points of) its neutral component and call P0(3) the inverse image
of G0(3) in P(3); this is a parahoric subgroup of G.
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Actually we will mainly work with b0(3)= a0(3)∩ B and with P(3oE ) := P(3)∩ B, with G(3oE )=

P(3oE )/P1(3oE ) and its neutral component G0(3oE ), and with the parahoric subgroup P0(3oE ) of G E :=

B ∩G, inverse image of G0(3oE ) in P(3oE ). Indeed we have

J (β,3)= P(3oE )J
1(β,3) and J (β,3)/J 1(β,3)' P(3oE )/P1(3oE )= G(3oE ).

Moreover, we have natural isomorphisms

G(3oE )'

l∏
i=0

G(3i
oi

E
) and G0(3oE )'

l∏
i=0

G0(3i
oi

E
).

Note that, writing E i
o for the field of fixed points of E i under the adjoint involution x 7→ x̄ and ki

o for its
residue field, the groups on the right-hand side here are reductive groups over ki

o. We also have similar
decompositions and isomorphisms for the group J̃ (β,3).

1.4. On the group H̃ 1(β,3) lives a family of one-dimensional representations endowed with very strong
properties, called semisimple characters [Stevens 2008, §3.1], that restricts to a family of skew semisimple
characters on H 1(β,3). In particular, a skew semisimple character of H 1(β,3), say θ , restricts to a skew
simple character θi of H 1(β,3)∩SpF (V

i )= H 1(β i ,3i ) for 0≤ i ≤ l. Among the properties of these
families, the “transfer property” is especially important. It asserts that if [3′,−, 0, β] is another skew
semisimple stratum in EndF (V ), then there is a canonical bijection between the sets of skew semisimple
characters on H 1(β,3) and H 1(β,3′) [loc. cit., Proposition 3.2]. The image of θ under this bijection is
called the transfer of θ .

To any semisimple character θ̃ of H̃ 1(β,3) is associated the unique (up to equivalence) irreducible
representation η̃ of J̃ 1(β,3) that contains θ̃ upon restriction; actually η̃ restricts to a multiple of θ̃
on H̃ 1(β,3). Now H̃ 1

3 and J̃ 1
3 are pro-p-groups with p odd, on which the adjoint involution σ acts. The

Glauberman correspondence hence relates their representations to those of the fixed point subgroups H 1
3

and J 1
3. Indeed if θ̃ is fixed under the involution σ so is η̃ and its image η under the Glauberman

correspondence is the unique (up to equivalence) irreducible representation of J 1(β,3) that contains θ ;
it actually restricts to a multiple of θ on H 1(β,3).

1.5. In turn the representation η̃ has special extensions to J̃ (β,3) called beta-extensions and denoted
by κ̃ . These beta-extensions in GLF (V ) are characterized by the fact that they are intertwined by B×

[Bushnell and Kutzko 1993, (5.2.1)].

Remark. In the literature, these extensions are usually called β-extensions. However, the simple
stratum [3,−, 0, β] giving rise to a particular simple character θ is not unique, while the notion of
beta-extension turns out to be independent of the choice of β. It is thus convenient to write beta-extension,
especially since we also have strata indexed by i so we would otherwise need to talk about βi -extensions etc.

The definition of beta-extensions in classical groups is more delicate [Stevens 2008, §4]. A skew
semisimple stratum as above is called maximal if b0(3) is a maximal self-dual oE -order in B. If [3,−,0,β]
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is a maximal skew semisimple stratum, a beta-extension of η is an extension κ of η to J (β,3) such that
the restriction of κ to any pro-p-Sylow subgroup is intertwined by G E [Stevens 2008, Corollary 3.11,
Theorem 4.1]. In the general case, the notion of beta-extension is a relative one. Given a maximal
skew semisimple stratum [M,−, 0, β] in EndF (V ) such that b0(M) ⊃ b0(3), given the transfer θM
of θ to H 1

M and the representation ηM of J 1
M determined by θM, there is a canonical way to associate

to a beta-extension κM of ηM, an extension κ of η, called the beta-extension of η to J3 relative to M,
compatible with κM [Stevens 2008, Lemma 4.3, Definition 4.5]. (We can also call κ a beta-extension of θ .)

Note that the groups J̃ (β,3) and J (β,3) are not pro-p-groups: the notation κ here should not call to
mind a Glauberman-like connection with the former κ̃ .

1.6. Let J = J (β,3), for a skew semisimple stratum [3,−, 0, β] as above, let θ be a skew semisimple
character of H 1(β,3) and let λ be an irreducible representation of J of the form λ = κ ⊗ τ , with κ
some beta-extension of θ , and τ the inflation of a cuspidal representation of J/J 1

' G(3oE ). Under the
additional assumptions that the group G E has compact centre and that P0(3oE ) is a maximal parahoric
subgroup of G E , the pair (J, λ) is called a cuspidal type for G. Recall from [Stevens 2008] (see also
[Miyauchi and Stevens 2014] for complements):

Theorem [Stevens 2008, Corollary 6.19, Theorem 7.14]. A cuspidal type in G induces to a cuspidal
representation of G and any cuspidal representation of G is thus obtained.

1.7. There is of course a similar result for the group GLF (V ). Here we let J̃ = J̃ (β,3) for a simple
stratum [3,−, 0, β] (so that E = F[β] is a field) and let λ̃ be an irreducible representation of J̃ of the
form λ̃= κ̃⊗ τ̃ , with κ̃ some beta-extension of θ̃ , and τ̃ the inflation of a cuspidal representation of J̃/ J̃ 1.
Under the additional assumptions that P̃(3)∩ B is a maximal parahoric subgroup of B×, the pair ( J̃ , λ̃)
is called a maximal simple type for GLF (V ).

Theorem [Bushnell and Kutzko 1993, Definition 5.5.10, Theorems 6.2.4 and 8.4.1]. A maximal simple
type in GLF (V ) extends to an irreducible representation of its normalizer, which then induces to a
cuspidal representation of GLF (V ); any cuspidal representation ρ of GLF (V ) is thus obtained and the
maximal simple type yielding ρ is unique up to conjugacy in GLF (V ).

Remark. This theorem includes depth-zero representations, by formally considering the null stra-
tum [3,−, 0, 0] to be simple.

1.8. In order to compare representations across different groups, we need a way to compare beta-extensions.
(The transfer of semisimple characters already allows a comparison.) Two beta-extensions only differ by
a character (of a specific shape); however we will need to choose beta-extensions in a unique way as in
[Bushnell and Henniart 2005, §2.3, Lemma 1], which amounts to the GL-case in the following lemma.

Lemma. (i) Let [3, n, 0, β] be a simple stratum in EndF (V ), let θ̃ be a simple character of H̃ 1(β,3),
and let η̃ be the irreducible representation of J̃ 1(β,3) containing θ̃ . There exists one and only one
beta-extension κ̃ of η̃ to J̃ (β,3) whose determinant has order a power of p.
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(ii) With notation as in (i), assume the stratum and the simple character are skew so that the involution σ
on GLF (V ) stabilizes H̃ 1(β,3), J̃ 1(β,3), J̃ (β,3) and θ̃ . The beta-extension κ̃ in (i) satisfies κ̃ ' κ̃ ◦σ .

(iii) Let [3, n, 0, β] be a maximal skew semisimple stratum in EndF (V ), let θ be a skew semisimple
character of H 1(β,3), and let η be the irreducible representation of J 1(β,3) containing θ . There exists
one and only one beta-extension of η to J (β,3) whose determinant has order a power of p.

Proof. (i) The reference is [Bushnell and Kutzko 1993, Theorem 5.2.2], which we imitate below to
conclude the proof of (iii).

(ii) Self-duality with respect to σ follows from uniqueness. Indeed η̃ ◦ σ is equivalent to η so there is an
intertwining operator T such that η̃(x)= T (η̃◦σ(x))T−1 for x ∈ J̃ 1(β,3). Since σ stabilizes GLF[β](V ),
the representation T (κ̃ ◦ σ(x))T−1 for x ∈ J̃ (β,3) is a beta-extension of η̃ by [Bushnell and Kutzko
1993, Definition 5.2.1]; its determinant is a power of p, so it is equal to κ̃ .

(iii) Let κ be a beta-extension of η and let 8 = det(κ|P(3oE )
). The main point is to prove that the

character 8 of P(3oE ) factors through the determinant detE . By this we mean, as usual, that 8|P(3
oi

E
)

factors through detE i for 0≤ i ≤ l; the remainder of the proof uses this convention.
Since θ is equal to χ ◦ detE on P1(3oE ) for some character χ of 1+ pE , we have that κ|P1(3oE )

is the
sum of dim η copies of χ ◦detE . Now χ extends to a character χ̃ of o×E and8′= (χ̃ ◦detE)

− dim η8 is then
a character of P(3oE )/P1(3oE ). From [Stevens 2008, Lemma 3.10, Corollary 3.11 and Theorem 4.1],
the character 8′ is trivial on all p-Sylow subgroups of P(3oE )/P1(3oE ) and so factors as 8′ =ψ ◦detE ,
where ψ is a character of o×E trivial on 1+ pE (and depends on the choice of extension χ̃ ).

Let us write o×E =µ
′

E(1+pE), where µ′E is the group of roots of unity in E× of order prime to p, and,
in the above, let us choose χ̃ trivial on µ′E so that the order of χ̃ is a power of p. The corresponding
character ψ has order prime to p, so prime to dim η, and there is a character α of o×E (trivial on 1+ pE )
such that ψ = αdim η.

The representation κ = (α ◦ detE)
−1κ satisfies the required condition. It is unique since any other

beta-extension has the form (ψ ◦ detE)κ , with ψ as above, and if ψ is nontrivial then no pi -th power
of ψ can be trivial. �

Definition. With the notations of (i) above, we denote by κ̃ the unique beta-extension of η̃ whose
determinant has order a power of p. We call κ̃ the p-primary beta-extension of η̃.

With the notations of (iii) above, we denote by κ the unique beta-extension of η whose determinant
has order a power of p. We call κ the p-primary beta-extension of η.

We remark that, while the p-primary beta-extensions give a useful way of picking a base point amongst
the beta-extensions, sufficient for our needs here, it is not clear whether this is the best choice of base point.

2. Inertial Jordan blocks

In this section, we state the main results on Jordan blocks and the consequences for the endoscopic
transfer map. We continue with the notation from the previous section.



2338 Corinne Blondel, Guy Henniart and Shaun Stevens

2.1. Let π be a cuspidal representation of G ' Sp2N (F). We recall the reducibility set Red(π) and the
Jordan set Jord(π) from the Introduction. For any positive integer n, the group GLn(F)×G appears
naturally as a standard maximal Levi subgroup of Sp2(N+n)(F). If ρ is a cuspidal representation of GLn(F)
we can form the normalized parabolically induced representation ρνs oπ (we use normalized induction
and induce via the standard parabolic), where s is here a real parameter and ν is the character g 7→ |det g|F
of GLn(F). If no unramified twist of ρ is self-dual (i.e., isomorphic to its contragredient) then ρνs oπ is
always irreducible. On the other hand, if ρ is self-dual, there is a unique sπ (ρ)≥ 0 such that ρνs oπ is
reducible if and only if s =±sπ (ρ).

Definition. Let π be a cuspidal representation of G:

• The reducibility set Red(π) is the set of isomorphism classes of self-dual cuspidal representations ρ
of some GLn(F), with n ≥ 1, for which sπ (ρ)≥ 1.

• The Jordan set Jord(π) is the set of pairs (ρ,m), where ρ ∈ Red(π) and m is a positive integer such
that 2sπ (ρ)− 1−m is a nonnegative even integer.

Note that, if ρ ∈ Red(π) then 2sπ (ρ)− 1 is a positive integer by [Mœglin and Tadić 2002], so that
there is a positive integer m such that (ρ,m) ∈ Jord(π).

2.2. For ρ an irreducible representation of some GLn(F), we write n = deg ρ. Recall that the inertial
class [ρ] of a cuspidal representation ρ of GLn(F) is the equivalence class of ρ under the equivalence
relation defined by twisting by an unramified character (that is, twisting by ω ◦ det where ω is a character
of F× trivial on o×F ). If ρ is self-dual then the inertial class [ρ] contains precisely two self-dual represen-
tations: if t (ρ) denotes the number of unramified characters χ of GLn(F) such that ρ⊗χ ' ρ, and if χ ′

is an unramified character of order 2t (ρ), then ρ ′ = ρ⊗χ ′ is the other self-dual representation in [ρ].

Definition. Let π be a cuspidal representation of G. The inertial Jordan set of π is the multiset IJord(π)
consisting of all pairs ([ρ],m) with (ρ,m) ∈ Jord(π).

Note that, if ([ρ],m) ∈ IJord(π), with ρ a self-dual cuspidal representation of GLn(F), then ei-
ther (ρ,m) ∈ Jord(π) or (ρ ′,m) ∈ Jord(π), where ρ ′ as above is the second self-dual representation in
the inertial class [ρ]. As discussed in the Introduction, if one of ρ, ρ ′ is of symplectic type and the other
of orthogonal type, then which occurs in Jord(π) is determined by the parity of m. On the other hand,
if ρ, ρ ′ are both of the same parity then the inertial Jordan set IJord(π) does not distinguish them; of
course, if ([ρ],m) occurs with multiplicity 2 in IJord(π), then both (ρ,m) and (ρ ′,m) occur in Jord(π)
and there is no ambiguity; see 4.4 Remark for more on this.

2.3. In order to refine further the (inertial) Jordan set, we need to use the notion of the endoclass of a
simple character, as defined in [Bushnell and Henniart 1996]. To any cuspidal representation ρ of GLn(F)
is attached in [Bushnell and Henniart 2003, §1.4] an endoclass of simple characters, denoted by 2(ρ), as
follows. As recalled in 1.7 Theorem, there is a maximal simple type ( J̃ , λ̃) in GLn(F) which occurs in ρ,
and ρ determines the GLn(F)-conjugacy class of ( J̃ , λ̃). This maximal simple type is built from a simple
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character θ̃ and we define 2(ρ) to be the endoclass of θ̃ . (In fact, this is also the endoclass of any simple
character contained in ρ.) Note that we are allowing here the case of depth-zero representations (where ρ
contains the trivial character of P̃1(3) for some lattice sequence 3), in which case 2(ρ)=2F

0 is the
trivial endoclass over F.

Definition. Let π be a cuspidal representation of G and let2 be an endoclass of simple characters over F.
The inertial Jordan set of π relative to 2 is the multiset IJord(π,2) consisting of all pairs ([ρ],m)
with (ρ,m) ∈ Jord(π) and 2(ρ)=2.

2.4. We will also need to twist inertial Jordan blocks as follows. With notation as in the previous subsection,
the GLn(F)-conjugacy class of ( J̃ , λ̃) depends only on the inertial class [ρ]; it also determines [ρ] by
[Bushnell and Kutzko 1998, (5.5)]. The quotient group J̃/ J̃ 1 is a linear group over a finite field,
say GL(m[ρ], k[ρ]). We define the twist of the inertial class [ρ] by a character χ of k×

[ρ] to be the inertial
class [ρ]χ determined by the maximal simple type ( J̃ , λ̃⊗χ◦det)— that is, in the decomposition λ̃= κ̃⊗τ̃
with κ̃ a beta-extension, we replace the cuspidal representation τ̃ by τ̃ ⊗χ ◦ det.

Let 2 be an endoclass of simple characters. By [Bushnell and Henniart 1996, Proposition 8.11], it
determines a finite extension k2 of kF such that, for any cuspidal representation ρ of some GLn(F)
satisfying 2(ρ) =2, if ( J̃ , λ̃) is a maximal simple type in ρ then the quotient group J̃/ J̃ 1 is a linear
group over k2 (that is, k[ρ] = k2 in the notation above). It is thus meaningful to give the following
definition:

Definition. Let π be a cuspidal representation of G, let 2 be an endoclass of simple characters, and let χ
be a character of k×2. The χ-twisted inertial Jordan set of π relative to 2 is the multiset IJord(π,2)χ
consisting of all pairs ([ρ]χ ,m) with (ρ,m) ∈ Jord(π) and 2(ρ)=2.

The relevant case for us will be the case where χ is quadratic (that is, of order dividing 2).

Remark. Since p is odd, we have a squaring map2 7→22 on endoclasses: if θ is a simple character with
endoclass2, associated to a simple stratum [3,−, 0, β], then the character θ2 is a simple character for the
stratum [3,−, 0, 2β] and22 is the endoclass corresponding to θ2. This is well-defined and moreover gives
a bijection on the set of endoclasses (again, since p is odd). We note also that the fields k2 and k22 coincide.

2.5. We begin the computation of the inertial Jordan set with a special case, to which we will reduce in
the next subsection. We call a cuspidal representation of G simple if it contains a simple character; that is,
it contains a semisimple character θ of H 1(β,3) associated to a skew semisimple stratum [3,−, 0, β]
such that E = F[β] is a field. We allow the degenerate case β = 0, in which case π is of depth zero (and
every depth-zero representation is simple with β = 0); we also allow, in the case β = 0, the degenerate
case that G is the trivial group, so that the trivial representation of the trivial group is regarded as being
simple of depth zero.

Remark. Our use of the word simple here is consistent with, but not the same as, the use in [Gross and
Reeder 2010] where, for symplectic groups, it means of minimal positive depth 1/(2N ). More precisely,
all cuspidal representations of depth 1/(2N ) are simple in our sense, but the converse is false.
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The following theorem tells us that, in the case of simple cuspidals, the Jordan set is filled by
representations with the expected endoclass.

Theorem. Let π be a simple cuspidal representation of G and let θ̃ be a self-dual simple character whose
restriction to G is contained in π . Let 2 be the endoclass of the simple character θ̃ . Then∑

([ρ],m)∈IJord(π,22)

m deg ρ =
{

2N + 1 if 2 is 2F
0 , the trivial endoclass,

2N otherwise.
(2-1)

Note that we have 2=2F
0 if and only if π is of depth zero (which includes the degenerate case N = 0

where G is the trivial group). In this case, the theorem is a special case of the main result of [Lust and
Stevens 2016].

Remark. Since the dual group of G is SO2N+1(C), the reader may be surprised to see the sum in (2-1)
being 2N rather than 2N +1 in most cases. The reason is as follows. The Jordan set of π always contains
a pair (χ, 1), with χ a quadratic character; since χ is tame, it has trivial endoclass and so contributes to
the sum in (2-1) if and only if 2=2F

0 . The point then of Theorem 2.5 is that, apart from this quadratic
character, every other cuspidal representation appearing in the Jordan set of π has endoclass 22.

We will prove Theorem 2.5 in Section 5 by computing the real parts of the complex reducibility points
of parabolically induced representations of the form ρνs oπ , with ρ a self-dual cuspidal representation
of some general linear group with endoclass 22, using the theory of types and covers to reduce the
calculation to computations of Lusztig for finite reductive groups. We note also that the proof not only
gives the equality above but also gives an algorithm to compute the multiset IJord(π,22) (see Section 5.10
for more detail).

2.6. Now let π be an arbitrary cuspidal representation of G. Recall from 1.6 Theorem that π can be
constructed by induction, starting with a maximal skew semisimple stratum [3,−, 0, β] and a skew
semisimple character θ of H 1(β,3), which decomposes into a family of skew simple characters θi

of H 1(β i ,3i ) for i ∈ {0, . . . , l}. Let κ be the p-primary beta-extension of θ to J3 and, similarly, let κ i be
the p-primary beta-extension of θi to J3i (in SpF (V

i )) for 0≤ i ≤ l.
Let τ be the cuspidal representation of G(3oE )= P(3oE )/P1(3oE ) such that π is induced from λ=κ⊗τ .

Then we can uniquely decompose τ as τ =
⊗l

i=0 τi , with τi an irreducible (cuspidal) representation of
G(3oi

E
). We may then define, for each i , the cuspidal representation πi of SpF (V

i ) by

πi = c-IndSpF (V
i )

J
3i

κ i ⊗ τi .

Note that this representation is simple, in the sense of the previous subsection.

Remark. Recall that we are using the notation of Section 1.1, in particular 1.1 Convention so that we are
assuming β0

= 0. If the space V 0 is trivial then the representation π0 is the trivial representation of the
trivial group.
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We can now state the crucial reduction theorem, which allows us to determine the inertial Jordan set
of π from those of the simple cuspidals πi .

Theorem. With notation as above, for 0 ≤ i ≤ l, let θ̃i be the unique self-dual simple character
of H̃ 1(β i ,3i ) restricting to θi on H 1(β i ,3i ). Let 2i be the endoclass of the simple character θ̃i

and let k2i be the corresponding extension of kF . Then there is a character χi of k×2i
of order at most 2

such that we have an equality of multisets

IJord(π,22
i )= IJord(πi ,2

2
i )χi .

The character χi appearing here is in some sense explicit, coming from certain permutation characters
(see 4.4 Theorem, 4.3 Proposition and 3.10 Proposition for more details). The proof of the theorem will be
given in Section 4, following preparation in Section 3 (which is also needed for the proof of 2.5 Theorem).
Again, the principle is to use the theory of types and covers to compare the real parts of the complex
reducibility points of ρνs oπ with those of ρiν

s oπi , for ρ a self-dual cuspidal representation of some
general linear group with endoclass 22

i and ρi self-dual in the inertial class [ρ]χi .
For now, we put together the two previous theorems to get:

Corollary. Suppose F is of characteristic zero. With the notation of the theorem, we have

IJord(π)=
l⊔

i=0

IJord(πi ,2
2
i )χi .

Since the proof of 2.5 Theorem gives us an algorithm to compute the multisets IJord(πi ,2
2
i ), we can

then use this also to compute IJord(π) for any cuspidal representation π .

Proof. The theorem says that IJord(π) contains the right-hand side. On the other hand, by [Mœglin 2014,
Theorem 3.2.1] the multiset IJord(π) is finite and we have∑

([ρ],m)∈IJord(π)

m deg ρ =
∑

(ρ,m)∈Jord(π)

m deg ρ = 2N + 1.

However, writing dimF V i
= 2Ni , we get from 2.5 Theorem that

l∑
i=0

∑
([ρ],m)∈IJord(πi ,2

2
i )

m deg ρ = (2N0+ 1)+
l∑

i=1

2Ni = 2N + 1.

Thus we have equality, as required. �

We remark that the proof does not require the full strength of [Mœglin 2014, Theorem 3.2.1]; indeed,
it only uses the inequality ∑

(ρ,m)∈Jord(π)

m deg ρ ≤ 2N + 1,

which was proved previously in [Mœglin 2003, §4, Corollaire]. Thus it does not in fact depend on
Arthur’s endoscopic classification of discrete series representations of G. One could also prove it
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(without the restriction on the characteristic of F) by checking that IJord(π,2) is empty for any self-dual
endoclass 2 6=22

i ; indeed, the methods of Section 4 together with results from [Kurinczuk et al. 2016]
would allow this.

2.7. In this and the following subsection, we interpret our results in terms of the endoscopic transfer map
from cuspidal representations of G to GL2N+1(F).

For 2 an endoclass over F, we recall that the degree deg2 of 2 is the degree of an extension F[β]/F
for which there are a simple stratum [3,−, 0, β] with a simple character of endoclass 2. Although
the stratum and the field extension are not uniquely determined by 2, this degree is; see [Bushnell and
Henniart 1996, Proposition 8.11].

Let N ′ be a positive integer and write E(F) for the set of endoclasses of simple characters over F. An
endoparameter of degree N ′ over F is a formal sum∑

2∈E(F)

m22, m2 ∈ Z≥0,

such that ∑
2∈E(F)

m2 deg2= N ′.

In particular, such a formal sum has finite support {2 ∈ E(F) | m2 6= 0}. (In [Sécherre and Stevens
2016], these formal sums are called semisimple endoclasses; the nomenclature endoparameter comes
from [Kurinczuk et al. 2016].) We write EEN ′(F) for the set of endoparameters of degree N ′ over F. We
then have, for each positive integer N ′, a well-defined map

eN ′ : Irr(GLN ′(F))→ EEN ′(F)

given by mapping a cuspidal representation ρ to (N ′/ deg2(ρ))2(ρ), and mapping an arbitrary repre-
sentation to the sum of the endoparameters of its cuspidal support.

2.8. We call an endoclass 2 over F self-dual if there is a self-dual simple character θ̃ with endoclass 2.
We write Esd(F) for the set of self-dual endoclasses over F. An endoparameter of degree N ′ over F
is called self-dual if its support is contained in Esd(F), and we write EEsd

N ′(F) for the set of self-dual
endoparameters of degree N ′ over F.

Since p is odd, the only self-dual endoclass over F of odd degree is the trivial endoclass2F
0 , which has

degree 1. Indeed, if θ̃ is a self-dual simple character which is not the trivial character, then [Stevens 2001,
Theorem 6.3] implies that θ̃ is associated to a skew simple stratum, whose associated field extension E/F
is therefore of even degree. This implies, in particular, that there is a canonical bijection

EEsd
2N (F)→ EEsd

2N+1(F),
∑
2∈Esd

m22 7→
∑
2∈Esd

m22+2
F
0 .

For any N ′, there is also the natural squaring map

EEN ′(F)→ EEN ′(F),
∑
2∈E

m22 7→
∑
2∈E

m22
2,
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which is a bijection since p is odd. Combining these, we get a natural inclusion map

ι2N : EEsd
2N (F) ↪→ EE2N+1(F),

∑
2∈Esd

m22 7→
∑
2∈Esd

m22
2
+2F

0 .

Given a maximal skew semisimple stratum [3, n, 0, β] and a skew semisimple character θ of H 1(β,3),
which decomposes into a family of skew simple characters θi of H 1(β i ,3i ) for i ∈ {0, . . . , l}, we define
the self-dual endoparameter of θ to be

l∑
i=0

dimF V i

deg2i
2i ,

where 2i is the endoclass of the unique self-dual simple character θ̃i which restricts to θi . This is a
self-dual endoparameter of degree 2N.

We write Cusp(G) for the set of equivalence classes of cuspidal representations of G. From 2.6 Theorem
and 2.5 Theorem, we derive the following result.

Theorem. Suppose that F is of characteristic zero. Let π be a cuspidal representation of G and let θ be
a skew semisimple character contained in π . Then the self-dual endoparameter of θ depends only on π .
Moreover, the diagram

Cusp(G)

eG
��

transfer
// Irr(GL2N+1(F))

e2N+1

��

EEsd
2N (F)

� �

ι2N
// EE2N+1(F)

commutes, where eG(π) denotes the endoparameter of any skew semisimple character contained in π .

We remark that the fact that the map eG is well-defined is also proved, in much greater generality and
without the assumption that F has characteristic zero, in [Kurinczuk et al. 2016]; the proof here is quite
different and long predates the one in that paper. We also remark that we will see later (7.6 Theorem) that
the map eG is in fact surjective.

Proof. Let π be a cuspidal representation of G and let θ be a skew semisimple character contained in π ,
with all the notation from above. In particular, we have a family of skew simple characters θi for 0≤ i ≤ l,
and, for each i , the unique self-dual simple character θ̃i restricting to θi and the self-dual endoclass2i of θ̃i .

For (ρ,m) ∈ Jord(π), we write 2ρ for the endoclass of any simple character in ρ. Then 2.6 Corollary
implies that 2ρ =22

i for some 0≤ i ≤ l; moreover, together with 2.5 Theorem it implies∑
(ρ,m)∈Jord(π)

m deg ρ
deg2ρ

2ρ =

l∑
i=0

dimF V i

deg2i
22

i +2
F
0 . (2-2)

In particular, the right-hand side here is 2F
0 plus the square of the endoparameter of θ ; since the squaring

map is a bijection, this endoparameter is therefore independent of the choice of θ in π since the left-hand
side is.



2344 Corinne Blondel, Guy Henniart and Shaun Stevens

Now, according to [Mœglin 2014, Theorem 3.2.1], the Jordan set exactly determines the endoscopic
transfer of π to GL2N+1(F); more precisely, the transfer of π is∏

(ρ,m)∈Jord(π)

St(ρ,m),

where St(ρ,m) denotes the unique irreducible quotient of the normalized parabolically induced repre-
sentation

ρν(1−m)/2
× ρν(3−m)/2

× · · ·× ρν(m−1)/2

of GLm deg ρ(F). The endoparameter of the transfer of π is thus∑
(ρ,m)∈Jord(π)

m deg ρ
deg2ρ

2ρ,

where 2ρ is the endoclass of (any simple character in) ρ. In particular, this lies in EEsd
2N+1(F) and (2-2)

now implies that the diagram commutes. �

3. Types, covers and reducibility

In the following subsections we recall the main results about covers and their Hecke algebras, from [Bush-
nell and Kutzko 1998] in the general situation and from [Miyauchi and Stevens 2014] in the particular
situation of interest to us: induction from a maximal parabolic subgroup of a symplectic group. One of the
key features in [Miyauchi and Stevens 2014] is the presence of quadratic characters arising from the compar-
ison of beta-extensions. Using the notion of p-primary beta-extension, together with results from [Blondel
2012], we describe these characters as signatures of permutations and recall the implications of the structure
of the Hecke algebra (including its parameters) for the reducibility of parabolic induction from that paper.

3.1. We briefly recall the general notion of a type as defined in [Bushnell and Kutzko 1998]. Let for a
moment G be the group of F-points of an arbitrary connected reductive group defined over F, let L be a
Levi subgroup of G and let σ be a cuspidal representation of L . The pair (L , ρ) determines, through G-
conjugacy and twisting by unramified characters of L , an inertial class s= [L , ρ]G in G. This class s
indexes the Bernstein block Rs(G) (in the category R(G) of smooth representations of G) which is the
direct factor of R(G) consisting of representations all of whose irreducible subquotients are subquotients
of a representation parabolically induced from an element of s.

Let (J, λ) be a pair made of an open compact subgroup J of G and an irreducible smooth represen-
tation λ of J, acting on the finite-dimensional space Vλ. The Hecke algebra of the pair (J, λ) is the
intertwining algebra of the representation c-IndG

J λ, traditionally viewed as

H(G, λ)=
{

f :G→End(Vλ) | f compactly supported and ∀g∈G, ∀ j, k∈ J, f ( jgk)=λ( j) f (g)λ(k)
}
.

The pair (J, λ) is an s-type if the irreducible objects of Rs(G) are exactly the irreducible representations
of G that contain λ upon restriction to J. In this case there is an equivalence of categories

Mλ :Rs(G)→Mod-H(G, λ), Mλ(π)= HomJ (λ, π).
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3.2. There is a counterpart of parabolic induction for types: the notion of G-cover, also defined in
[Bushnell and Kutzko 1998]. Let M be a Levi subgroup of G, let JM be a compact open subgroup of M
and let λM be a smooth irreducible representation of JM . A G-cover of the pair (JM , λM) is an analogous
pair (J, λ) in G satisfying the following conditions, for any parabolic subgroup P of G of Levi M, where
we write N for the unipotent radical of P, and P− for the parabolic subgroup opposite to P with respect
to M, with unipotent radical N−:

(i) J has an Iwahori decomposition with respect to (M; P); i.e.,

J = (J ∩ N−)(J ∩M)(J ∩ N ), and J ∩M = JM .

(ii) λ restricts to λM on JM and to a multiple of the trivial representation on J ∩ N− and J ∩ N.

(iii) The Hecke algebra H(G, λ) contains an invertible element supported on the double coset of a strongly
positive element of the centre of M [Bushnell and Kutzko 1998, §7].

If the pair (JM , λM) is an sM -type in M for an inertial class sM = [L , σ ]M (so that L is a Levi subgroup
of M) and if (J, λ) is a G-cover of (JM , λM), then the pair (J, λ) is an sG-type in G for the inertial
class sG = [L , σ ]G [Bushnell and Kutzko 1998, §8]. Furthermore, the third condition above provides us
with an injective morphism of algebras t :H(M, λM) ↪→H(G, λ) that induces on modules a morphism t∗
yielding a commutative diagram:

RsG (G)
Mλ

// Mod-H(G, λ)

RsM (M)

IndG
P

OO

MλM
// Mod-H(M, λM)

t∗

OO

The reducibility of parabolically induced representations from P to G, on the left side, can thus be studied
in terms of Hecke algebra modules, on the right side.

3.3. This is the tool we use in this paper, where the types will be cuspidal types as in Sections 1.6
and 1.7, simple types and semisimple types. As for the relevant Levi and parabolic subgroups, they will
come in most cases as follows — and now we come back to the symplectic group G = SpF (V ) and the
setting of Section 1.1. Thus we have a skew semisimple stratum [3,−, 0, β] with associated orthogonal
decomposition V =⊥

l
i=0 V i, as well as all the other notation from Section 1.

Let V =
⊕m

j=−m W j be a self-dual decomposition of V (i.e., for which the orthogonal space of W j is⊕
k 6=− j W k) such that:

(a) W j
=
⊕l

i=0 W j
∩ V i and W j

∩ V i is an Ei -subspace of V i .

(b) 3(t)=
⊕m

j=−m 3(t)∩W ( j) for all t ∈ Z.

(c) For any r ∈Z and i with 0≤ i≤ l, there is at most one j , with−m≤ j≤m, such that3(r)∩V i
∩W ( j))

3(r + 1)∩ V i
∩W ( j).
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(d) For j 6= 0 there exists 0 ≤ i ≤ l such that W j
⊂ V i, and P̃((3∩W j )oi

E
) is a maximal parahoric

subgroup of GLEi (W
j ).

(e) Po((3∩W 0)oE ) is a maximal parahoric subgroup of G ∩
∏l

i=0 GLEi (W
0
∩ V i ), which is a group

with compact centre.

Such a decomposition is called exactly subordinate to the stratum [3,−, 0, β] (compare to [Stevens
2008, Definition 6.5]).

Let then V =
⊕m

j=−m W j be a self-dual decomposition of V exactly subordinate to the stratum
[3,−, 0, β], let M be the Levi subgroup of G stabilizing this decomposition and let P be a parabolic
subgroup of G with Levi component M. Then the pairs (H 1(β,3), θ), (J 1(β,3), η) and (J (β,3), κ) all
satisfy conditions (i) and (ii) of Section 3.2 above. In fact, for the first two pairs we need only conditions
(a)–(b) and a self-dual decomposition satisfying these will be called subordinate to the stratum; for the
final pair we need only (a)–(c).

3.4. In the next few subsections, we subsume the results of [Stevens 2008], in a form easier to refer
to taken from [Miyauchi and Stevens 2014] and in the case that we will focus on, that is, parabolic
induction of self-dual cuspidal representations of a maximal Levi subgroup in a symplectic group. We
thus continue with the notation of Section 1 and fix a cuspidal representation π of G = SpF (V ). We also
fix a finite-dimensional vector space W over F and a self-dual cuspidal representation ρ of GLF (W ). We
consider the symplectic space X = V ⊥ (W ⊕W ∗) over F, with form

h X (v1+w1+w
∗

1, v2+w2+w
∗

2)= h(v1, v2)+〈w1, w
∗

2〉− 〈w2, w
∗

1〉,

where h is the symplectic form on V and 〈 · , · 〉 is the pairing W × W ∗ → F. We put M equal to
GLF (W )× G, a maximal Levi subgroup of SpF (X). According to [Dat 2009, Proposition 8.4] and
[Miyauchi and Stevens 2014, §4.1], one can find a type ( J̃W × JV , λ̃W ⊗ λV ) in M for the cuspidal
representation ρ⊗π of M and a G-cover of this M-type as follows.

3.5. There exist a skew semisimple stratum [3,−, 0, β] in EndF (X) and a skew semisimple character θ
of H 1(β,3) with the following properties:

• The decomposition X = V ⊥ (W ⊕W ∗) is exactly subordinate to the stratum [3,−, 0, β]. In particular,
letting

3∩ V =3V , β|V = βV , 3∩W =3W and β|W = βW ,

the stratum [3V ,−, 0, βV ] in EndF (V ) is skew semisimple maximal and the stratum [3W ,−, 0, βW ]

in EndF (W ) is simple maximal. Moreover, the self-duality of ρ is reflected in the fact that the restriction
of β to W ⊕W ∗ generates a field (equivalently, the restricted stratum [3∩ (W ⊕W ∗),−, 0, β|W⊕W ∗] is
skew simple). We also have

H 1(β,3)∩M ' H̃ 1(βW ,3W )× H 1(βV ,3V ),
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where the isomorphism is given by restriction, and similarly for J 1(β,3) and for J (β,3). We will
abbreviate H 1(β,3)= H 1

3, H 1(βV ,3V )= H 1
V and H̃ 1(βW ,3W )= H̃ 1

W , and similarly for J 1 and J.

• Let ϑ̃W be the restriction of θ to H̃ 1
W ; this is a self-dual simple character. There are the p-primary

beta-extension κ̃W of ϑ̃W and a self-dual cuspidal representation τ̃W of J̃W/ J̃ 1
W such that ρ is induced by

an extension of λ̃W = κ̃W ⊗ τ̃W to the normalizer of J̃W .

• Let θV be the restriction of θ to H 1
V ; this is a skew semisimple character. There are the p-primary

beta-extension κV of θV and a cuspidal representation τV of JV /J 1
V such that π is induced by λV =κV⊗τV .

3.6. Let P be the parabolic subgroup of SpF (X) which is the stabilizer of the subspace W (so stabilizes
the flag W ⊂ W ⊥ V ⊂ X ), let U be the unipotent radical of P and let P− be the parabolic subgroup
opposite to P with respect to M (the stabilizer of W ∗). Also set JP = H 1

3(J3∩ P) and J 1
P = H 1

3(J
1
3∩ P).

For any extension κ of η to J3 we denote by κP the natural representation of JP in the space of (J3∩U )-
fixed vectors under κ . In particular, there is a beta-extension κ3 of θ such that κ3,P |J∩M= κ̃W⊗κV . We can
view τ = τ̃W⊗τV as a cuspidal representation of JP/J 1

P ' J̃W/ J̃ 1
W× JV /J 1

V . Then, letting λP = κ3,P⊗τ ,
we have:

Theorem [Miyauchi and Stevens 2014, §4.1]. (JP , λP) is an SpF (X)-cover of ( J̃W × JV , λ̃W ⊗ λV ).

3.7. Furthermore precise information about the Hecke algebra of this cover is given in [loc. cit.]:

Theorem [Miyauchi and Stevens 2014, Theorem B]. The Hecke algebra H (SpF (X), λP) is a Hecke
algebra on a dihedral group: it is generated by T0 and T1, each invertible and supported on a single
double coset, with relations

(Ti − qri ) (Ti + 1)= 0, i = 0, 1, r0, r1 ∈ Z.

3.8. In fact, the parameters come from rank-2 Hecke algebras of finite reductive groups as follows
[Stevens 2008, (7.3) and §7.2.2]. There are two self-dual oE -lattice sequences M0 and M1 in X such
that [Mt ,−, 0, β], for t = 0, 1, are semisimple strata and

• the hereditary orders b0(M0) and b0(M1) are maximal self-dual oE -orders containing b0(3);

• the decomposition X = V ⊥ (W ⊕W ∗) is subordinate to the strata [Mt ,−, 0, β] for t = 0, 1;

• we have P(3oE )= (P(M1,oE )∩ P−)P1(M1,oE )= (P(M0,oE )∩ P)P1(M0,oE ).

The representation τ=τ̃W⊗τV is a cuspidal representation of the Levi subgroup G(3oE)=P(3oE)/P1(3oE )

of G(Mt,oE ) = P(Mt,oE )/P1(Mt,oE ), for t = 0, 1, that can be inflated to the parabolic subgroup
P(3oE )/P1(Mt,oE ), then induced to the full group G(Mt,oE ). A specific use of the notion of beta-
extension relative to Mt,oE leads to self-dual characters χt of G(3oE ), for t = 0, 1, giving rise to injective
homomorphisms of algebras

H (G(Mt,oE ), χt ⊗ τ) ↪→ H (G, λP) (t = 0, 1). (3-1)

We will elaborate on this in Section 3.12 below.
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3.9. In order to make use of this, we need some control on the characters χt and it is here that we really need
to use the notion of p-primary beta-extension. We continue with the notation of the previous subsections
but, for the moment, drop the subscript t on Mt . We will assume that P(3oE )= (P(MoE )∩ P)P1(MoE )

so that, in the notation above, we are doing the case t = 0; the case t = 1 is obtained by exchanging the
parabolic P with its opposite P−. Denote by θM the transfer of θ3 = θ to H 1

M = H 1(β,M), and denote
by η3, ηM the unique irreducible representations of J 1

3, J 1
M which contain θ3, θM respectively. Similarly,

we have the representations η̃W , ηV of J̃ 1
W , J 1

V which contain ϑ̃W , θV respectively.
For a moment, let (J, J 1, η) be either (JM, J 1

M, ηM) or (J3, J 1
3, η3), and let κ be any extension of η

to J. We define rP(κ), the Jacquet restriction of κ , as the natural representation of J ∩M on the space
of J 1

∩U -invariants of κ [Blondel 2012, Corollaire 1.12, Lemme 1.18]; that is, rP(κ) is the restriction
to J ∩M of κP , in the notation of Section 3.6.

3.10. In order to compute the character χ from (3-1), we need to compare the following two representations
of J3:

• the beta-extension κ3,M of η3 to J3 which is compatible with the p-primary beta-extension κM
of ηM to JM (in the sense of [Stevens 2008, Definition 4.5]);

• the extension κ3 = κ P
3 of η3 to J3 characterized by the property

rP(κ
P
3 )' κ̃W ⊗ κV ,

where κ̃W and κV are the p-primary beta-extensions of η̃W and ηV respectively, as above. (See
[Blondel 2012, Lemme 1.16].)

We apply Jacquet restriction to κ3,M. The groups JM ∩M and J3 ∩M are both equal to J̃W × JV and
the representations rP(κM) and rP(κ3,M) both extend η̃W ⊗ ηV . From [Blondel 2012, Proposition 1.20],
the beta-extension κ3,M is characterized by

rP(κ3,M)= rP(κM). (3-2)

Proposition. For m ∈ JM ∩M, define εM(m) as the signature of the permutation

Ad m : u 7→ m−1um, u ∈ J 1
M ∩U−/H 1

M ∩U−.

The p-primary beta-extension κM of ηM to JM satisfies

rP(κM)' εM(κ̃W ⊗ κV ). (3-3)

This proposition and (3-2) immediately imply:

Corollary. The extensions κ3,M and κ P
3 of η3 to J3 are related by

rP(κ
P
3 )= εMrP(κ3,M).

Proof of Proposition. Let φ be an arbitrary extension of ηM to JM. By [Blondel 2012, Lemme 1.10]
the restriction of φ to (JM ∩ P)J 1

M is induced from the natural representation φP of (JM ∩ P)H 1
M on



Jordan blocks of cuspidal representations of symplectic groups 2349

the space of J 1
M ∩U -invariants of φ. Hence we can realize φ|JM∩M as the action by right translation on

functions taking values in the space of φP . We also have the representation ηM,P of (J 1
M ∩ P)H 1

M on the
space of J 1

M ∩U -invariants of ηM.
Let S̃ be the space of η̃W and let S be the space of ηV , so that S̃ ⊗ S is the space of ηM,P . The

representation φP itself extends ηM,P , so our representation φ|JM∩M acts by right translation on the space
of functions

f : (JM ∩ P)J 1
M→ S̃⊗S

satisfying, for all x ∈ (JM ∩ P)H 1
M and all g ∈ (JM ∩ P)J 1

M,

f (xg)= φP(x) f (g).

Using Iwahori decompositions as in [Blondel 2012, §1.3] we identify this space with the space T of
functions on J 1

M ∩U−/H 1
M ∩U− with values in S̃ ⊗ S. The action of m ∈ JM ∩ M on f ∈ T is now

given by

φ(m) f (u)= f (um)= f (m.m−1um)= rP(φ)(m) f (m−1um)

for u ∈ J 1
M ∩U−/H 1

M ∩U−.
Let T0 be the space of complex functions on J 1

M∩U−/H 1
M∩U− and E the permutation representation

of JM ∩M on T0,

E(m) f (u)= f (m−1um) for f ∈ T0, m ∈ JM ∩M, u ∈ J 1
M ∩U−/H 1

M ∩U−.

We can further identify T with T0⊗ (S̃⊗S) to obtain φ|JM∩M ' E ⊗ rP(φ).
All of this applies to κM, so

κM|JM∩M ' E ⊗ rP(κM).

The determinant of this representation has order a power of p, a property that is unchanged by taking pk-th
powers. Recall that the determinant of some x ⊗ y acting on X ⊗ Y is (det x)dim Y (det y)dim X. The two
spaces here, T0 and S̃⊗S, have dimension a power of p, which is odd, and the determinant of E acting
on T0 is εM.

We now write rP(κM) = κ̃W ⊗ κV , where κ̃W is a beta-extension of η̃W and κV is a beta-extension
of ηV ; see (3-2) and [Stevens 2008, Proposition 6.3]. It is enough to prove

εM det(κ̃W ⊗ κV ) has order a power of p.

Writing εM for the restrictions of εM to J̃W and to JV , this condition transforms into

det(εM⊗ κ̃W ) and det(εM⊗ κV ) have order a power of p.

The character εM is trivial on pro-p-subgroups so εM⊗ κ̃W and εM⊗κV are beta-extensions of η̃W and ηV

respectively [Stevens 2008, Theorem 4.1]. This last condition actually means that they are the p-primary
beta-extensions of η̃W and ηV respectively, and (3-3) follows. �
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3.11. Before returning to the implications on reducibility, we examine the character εM a little further.
We begin with a general lemma.

Lemma. Let Z be a finite-dimensional vector space over a finite field Fq with odd cardinality q and
let g ∈ GLFq (Z). The signature of the permutation g of Z is equal to (detFq g)(q−1)/2.

Proof. As a character of GLFq (Z), the signature is trivial on the derived subgroup, which is SLFq (Z),
as q > 2, and hence factors through a character χ of the determinant over Fq . We know χ2 is trivial and
it remains to show that χ is not identically trivial on GLFq (Z).

Consider the permutation of Fq given by multiplication by an element ζ of F×q of order 2t , with (q−1)/2t

an odd integer. This permutation fixes 0 and has (q − 1)/2t cycles of length 2t in F×q , and so has odd
signature. Then the element g = diag(ζ, 1, . . . , 1) has odd signature so χ is nontrivial. �

Proposition. For m∈ JM∩M, the permutation Ad m of J 1
M∩U−/H 1

M∩U− is an Fp-linear transformation
of this Fp-vector space and

εM(m)= [detFp Ad m](p−1)/2.

Moreover, the permutation u 7→ m−1um of the space J 1
M ∩U/H 1

M ∩U also has signature εM(m).

Proof. The first part follows from the previous lemma. Since the decomposition X = V ⊥ (W ⊕W ∗) is
subordinate to [M,−, 0, β], the pairing

〈x, y〉 = θM([x, y]) for x ∈ J 1
M ∩U−/H 1

M ∩U−, y ∈ J 1
M ∩U/H 1

M ∩U,

identifies each of those Fp-vector spaces to the dual of the other [Stevens 2008, Lemma 5.6] in such a way
that, for m ∈ JM∩M, the transpose of the map x 7→m−1xm, for x ∈ J 1

M∩U−/H 1
M∩U−, is y 7→mym−1,

for y ∈ J 1
M ∩U/H 1

M ∩U. The result follows. �

3.12. We return to the notation of Sections 3.4–3.8 and now put together the Hecke algebra homomor-
phisms (3-1) with 3.10 Proposition. Let t = 0 or 1. We recall from [Stevens 2008, (7.3)] (rephrased
in the present framework in [Blondel 2012, Proposition 3.6]) that if κ = c-IndJ3

JP
κP is a beta-extension

of η3 = c-IndJ 1
3

J 1
P
ηP relative to Mt , then there is an injective morphism of algebras

H (G(Mt,oE ), τ̃W ⊗ τV ) ↪→H (SpF (X), κP ⊗ (τ̃W ⊗ τV ))

that preserves support. We want to express this with the fixed representation λP = κ3,P on the right,
where κ3,P |J∩M = κ̃W ⊗ κV , as in Section 3.6. We thus plug in 3.10 Proposition above and get:

Theorem. Let t = 0 or 1. There is an injective morphism of algebras

jt :H (G(Mt,oE ), εMt (τ̃W ⊗ τV )) ↪→H (SpF (X), λP)

that preserves support; i.e., Supp( jt(φ))= JP Supp(φ)JP for all φ ∈H (G(Mt,oE ), εMt (τ̃W ⊗ τV )).
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3.13. We now focus on the finite-dimensional algebra H (G(Mt,oE ), εMt (τ̃W ⊗ τV )), a Hecke alge-
bra on the finite reductive group G(Mt,oE ) relative to a cuspidal representation of the parabolic sub-
group P(3oE )/P1(Mt,oE ).

Let X =⊥
l
j=0 X j be the splitting associated to the skew semisimple stratum [3,−, 0, β]. Since the

stratum [3W ,−, 0, βW ] is simple, there is a unique index i such that W ⊆ X i, and then W ∗ ⊆ X i also.
This index i will be fixed until the end of the section.

Writing V j
= V ∩ X j, the skew semisimple stratum [3V ,−, 0, βV ] then has splitting consisting of

the nonzero spaces in V =⊥
l
j=0 V j ; the only spaces which may be zero here are V 0 (since we have the

convention that β0
= 0) and V i (which is zero if and only if X i

=W ⊕W ∗).
The ambient finite group G(Mt,oE ) is a product over j , for 0 ≤ j ≤ l, of analogous groups relative

to X j, but in all of them except X i the parabolic subgroup considered is the full group:

P(Mt,oE )/P1(Mt,oE )' P(Mi
t,oi

E
)/P1(Mi

t,oi
E
)×

∏
j 6=i

P(3 j
o

j
E
)/P1(3

j
o

j
E
),

P(3oE )/P1(Mt,oE )' P(3i
oi

E
)/P1(Mi

t,oi
E
)×

∏
j 6=i

P(3 j
o

j
E
)/P1(3

j
o

j
E
).

The representation τ̃W⊗τV decomposes accordingly using τV =
⊗l

j=0τ j and we finally get an isomorphism
of algebras:

H (G(Mt,oE ), εMt (τ̃W ⊗ τV ))'H (G(Mi
t,oi

E
), εMt (τ̃W ⊗ τi )), (3-4)

where τ̃W ⊗ τi is a cuspidal representation of G̃(3W,oi
E
)× G(3i

V,oi
E
), identified with a maximal Levi

subgroup of each finite reductive group G(Mi
t,oi

E
) for t = 0, 1.

It follows from [Lusztig 1984], as recalled in Section 5, that this algebra is two-dimensional, because τ̃W

and εMt are self-dual. It has basis given by the identity element and an element Tt supported on the
double coset of a certain Weyl group element, called si if t = 0, or s$i if t = 1, in [Stevens 2008, §7.2.2];
this only defines Tt up to a nonzero scalar, which will not matter to us at first. Lusztig gives an algorithm
permitting the actual computation of the quadratic relation satisfied by Tt . This relation always has the
following shape, for some nonzero complex number ωt :

(Tt − qrt ωt)(Tt + ωt)= 0, where rt = rt(εMt (τ̃W ⊗ τi ))≥ 0. (3-5)

We emphasize the dependency in the inducing cuspidal representation εMt (τ̃W ⊗ τi ).

3.14. Finally, we can restate [Blondel 2012, Proposition 3.12], describing the real parts of the reducibility
points we wish to compute, in our notation. Recall that, for ρ a cuspidal representation of GLF (W ) as
above, we write t (ρ) for the number of unramified characters χ of GLF (W ) such that ρ⊗χ ' ρ. Recall
also that, if ρ is self-dual, then there are precisely two representations ρ, ρ ′ in the inertial class of ρ
which are self-dual.

Let π be a cuspidal representation of G. Recall that there is a real number sπ (ρ) ≥ 0 such that, for
real s, the normalized induced representation νsρ×π of SpF (X) is reducible if and only if s =±sπ (ρ),
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and similarly we have sπ (ρ ′). Then, for complex s, if νsρ×π is reducible then the real part of s must
be ±sπ (ρ) or ±sπ (ρ ′); we say that these are the real parts of the reducibility points of νsρ×π .

Proposition [Blondel 2012, Proposition 3.12]. Let π be a cuspidal representation of G, let ρ be an
irreducible self-dual cuspidal representation of GLF (W ), and take all the notation of the previous
subsections. Then the real parts of the reducibility points of the normalized induced representation νsρ×π

are the elements of the set{
±

r0+ r1

2t (ρ)
,±

r0− r1

2t (ρ)

}
, where r0 = r0(εM0(τ̃W ⊗ τi )), r1 = r1(εM1(τ̃W ⊗ τi )). (3-6)

Note that, by [Bushnell and Kutzko 1993, Lemma 6.2.5], the unramified twist number t (ρ) can also be
computed from the formula t (ρ)= dimF W/e(F[βW ]/F).

3.15. We can also apply the discussion of the previous subsections in the space X i
=W⊕V i

⊕W ∗. From
the splitting of our strata, we have the lattice sequence3i

V =3∩V i and the simple stratum [3i
V ,−, 0, β i

V ]

in V i. We write Ji = J (β i
V ,3

i
V ), and similarly for J 1

i and H 1
i , and let κ i be the p-primary beta-

extension of the simple character θ
|H1

i
. Then τi is a representation of the reductive quotient Ji/J 1

i and,
putting Gi = SpF (V

i ) we can define the cuspidal representation πi = c-IndGi
J
3i
κ i ⊗ τi of Gi . (Note that,

if V i
= {0}, then πi is the trivial representation of the trivial group.)

Applying the discussion above to the representation πi and the space X i, we find that the real parts of
the reducibility points of the normalized induced representation νsρ×πi of SpF (X

i ) are the elements of
the set {

±
r ′0+ r ′1
2t (ρ)

,±
r ′0− r ′1
2t (ρ)

}
, where r ′0 = r0(εMi

0
(τ̃W ⊗ τi )), r ′1 = r1(εMi

1
(τ̃W ⊗ τi )). (3-7)

The comparison between (3-6) and (3-7) will be crucial.

3.16. We end this section with the simplest example of the computation of the parameters r0, r1 in (3-6),
for positive-depth representations. Continuing in the notation above, we assume that i > 0 and that β i

is maximal in the following sense: we have [F[β i
] : F] = dimF V i, so that (the image of) F[β i

] is a
maximal extension of F in EndF (V i ). In particular, this implies that V i

6= {0}. We assume moreover
that dimF W = dimF V i, the smallest example of the situation above. (It will turn out that this is in fact
the only situation of interest, in this context.)

Let E i
0 be the fixed field of the adjoint involution acting on E i

= F[β i
]. The centralizer of β i

in SpF (X
i ) is thus isomorphic to the unitary group U(2, 1)(E i/E i

0). In the latter group, there are two
conjugacy classes of maximal compact subgroups, the reductive quotients of which are, for some a and b
with {a, b} = {0, 1} depending on the initial lattice sequence 3i ,

• G(Ma,oE )'U (2, 1)(kE i /kE i
0
) and G(Mb,oE )'U (1, 1)×U (1)(kE i /kE i

0
) if E i/E i

0 is unramified;

• G(Ma,oE )' SL(2, kE i )×{±1} and G(Mb,oE )' O(2, 1)(kE i ) if E i/E i
0 is ramified.
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We set f = f (E i
0/F). From the calculations in Section 5 the possible values for ra , rb and the sets of

real parts of reducibility points in (3-6) are

• if E i/E i
0 is unramified: ra = 3 f or f , and rb = f ; real parts

{
±1,±1

2

}
or
{
±

1
2 , 0

}
;

• if E i/E i
0 is ramified: ra = f or 0, and rb = f ; real parts

{
±1, 0

}
or
{
±

1
2 ,±

1
2

}
.

In both cases the value of rb = rb(εMb τ̃W ⊗ τi ) is independent of the representation. We choose τ̃W such
that ra(εMa (τ̃W ⊗ τi ))= 3 f if E i/E i

0 is unramified, or ra(εMa (τ̃W ⊗ τi ))= f if E i/E i
0 is ramified. This

choice, which we denote by τ̃W , is unique and provides us with a reducibility with real part 1.
We conclude that there exists one and only one self-dual cuspidal representation ρ of GLF (W )

containing the simple character ϑ̃W such that the parabolically induced representation ν1ρ⊗π is reducible.
The representation ρ contains the type ( J̃W , κ̃W ⊗ τ̃W ). However, as discussed previously, this does not
give us a full description of the self-dual representation ρ: we know its inertial class but this still leaves
two possibilities. This situation is explored more fully in Section 6.

3.17. Applying the previous subsection again to the representation πi of Gi = SpF (V
i ) and compar-

ing (3-6) and (3-7), we remark that the relevant choice of ρ̃W for the situation in X , with the cuspidal
representation π of G = SpF (V ), differs from the analogous choice relative to the situation in X i, with
the cuspidal representation πi of Gi , by a simple twist by the character εMaεMi

a
. Indeed, in our example,

the value of rb is independent of the representation. In the next section we will study the general case,
when ra and rb may both depend on the representation.

4. Reduction to the simple case

In this section, we make the reduction to the simple case, proving 2.6 Theorem. As intimated at the end of
the last chapter, the key point to prove is that the character εMt εMi

t
is independent of t (see 4.3 Proposition).

Note that the character εMt εMi
t

is the character χi appearing in the statement of 2.6 Theorem. While we
have a description of it as a permutation character and, through careful analysis of this permutation, give
a recipe by which one could compute it, we do not here compute it precisely; we only check that it is
independent of t .

There is one further subtlety which should be remarked upon. In Section 3, we began with a pair of
cuspidal representations (ρ, π) and built from them a cover of a type, without starting from types for ρ
and π . In this section, we begin just with a cuspidal representation π of G and a cuspidal type λ for it,
and use this to define certain cuspidal representations ρ of general linear groups, and maximal simple
types λ̃ for them. The cover obtained in Section 3 is then indeed a cover of λ̃⊗ λ but this is only clear
because the (semi-)simple characters in λ and λ̃ are suitably related. Thus we take great care to set up the
notation in this section.

4.1. We first review the notation that we need. This is the notation as in Section 2.6 so that it differs
slightly from the notation of the previous section. In particular, objects in the symplectic space V do not
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have the subscript V ; instead, the corresponding objects in X (which we have yet to define) will have the
subscript X .

Throughout this and the following subsections, we fix a cuspidal representation π of G = SpF (V ).
We have the following data.

In the symplectic space V :

• A maximal skew semisimple stratum [3,−, 0, β] in EndF (V ) and a skew semisimple character θ
of H 1

= H 1(β,3) such that θ occurs in π .

• The irreducible representation η of J 1
= J 1(β,3) containing θ and the p-primary beta-extension κ

of η to J = J (β,3).

• A cuspidal representation τ of G(3oE )= P(3oE )/P1(3oE ) such that π is induced from λ= κ ⊗ τ .

The stratum [3,−, 0, β] can be written (uniquely) as an orthogonal direct sum of skew simple
strata [3 j ,−, 0, β j

] in EndF (V j ), for j = 0, . . . , l, with the convention that β0
= 0. The data above

then give us the following data in the spaces V j :

• Skew simple characters θ j of H 1
j = H 1(β j ,3j ), which are the restriction of θ .

• The irreducible representation η j of J 1
j = J 1(β j ,3j ) containing θ j and the p-primary beta-extension κ j

of η j to J j = J (β j ,3j ).

• The cuspidal representations τ j of G(3j
o

j
E
) such that, via the isomorphism G(3oE )'

∏l
j=0 G(3

j
o

j
E
), we

have τ =
⊗l

j=0τ j .

• The representation λ j = κ j ⊗ τ j of J j .

Note that, writing G j = SpF (V
j ), the representation π j = c-IndG j

J j
λ j is a cuspidal representation.

A priori, it is not determined uniquely by the representation π , but it is determined by our choice of
data ([3,−, 0, β], θ) such that π contains θ .

We now fix i ∈ {0, . . . , l} and choose an F-vector space W whose dimension is divisible by the
degree [E i

: F]. We then have the following data.

In the vector space W :

• A maximal simple stratum [3W ,−, 0, βW ] in EndF (W ), together with a field isomorphism E i
=

F[β i
] → F[βW ] = EW fixing F and taking β i to βW .

• The simple character ϑ̃W of H̃ 1
W = H̃ 1(βW ,3W ) which is the transfer of the square (θ̃i )

2 of the unique
self-dual simple character of H̃ 1(β i ,3i ) restricting to θi .

• The p-primary beta-extension κ̃W of ϑ̃W to J̃W = d J (βW ,3W ) and an irreducible self-dual cuspidal
representation τ̃W of G̃(3W,oW ), inflated to J̃W , where we have written oW for the ring of integers of EW .

• A self-dual cuspidal representation ρ of GLF (W ) containing λ̃W = κ̃W ⊗ τ̃W .

These data also induce data in the dual space W ∗ as follows. By duplicating if necessary, we assume
that 3W has period divisible by 4 and that 3W (−1) 6=3W (0). (The reason for doing this is to ensure that
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the self-dual lattice sequence we will obtain conforms to our standard normalization — see 1.1 Remark.)
Writing 〈 · , · 〉 for the pairing W ×W ∗→ F, we define 3∗W by

3∗W (r)= {w
∗
∈W ∗ | 〈3W (1− r), w∗〉 ⊆ pF } for r ∈ Z;

then the lattice sequence3W⊕3
∗

W is self-dual with respect to the natural symplectic structure on W⊕W ∗.
We also define β∗W in EndF (W ∗) by

〈w, β∗W (w
∗)〉 = −〈βW (w),w

∗
〉 for all w ∈W, w∗ ∈W ∗.

Note that, by the fact that [3i ,−, 0, β i
] is skew, there is a unique isomorphism E i

→ F[β∗W ] which
takes β i to β∗W.

We now use these data to define corresponding data in the larger spaces on which we will have covers
(as in Section 3). We define the symplectic space X i

= (W ⊕W ∗)⊥ V i, for which we have the following.

In the symplectic space X i :

• The maximal Levi subgroup Mi ' GLF (W )× SpF (V
i ) of SpF (X

i ) which stabilizes the decompo-
sition X i

= (W ⊕ W ∗) ⊥ V i, and the maximal parabolic subgroup Pi = MiUi which stabilizes the
subspace W (and so stabilizes the flag W ⊆W ⊥ V i

⊂ X i ).

• The skew simple stratum [3i
X ,−, 0, β i

X ] in EndF (X i ), where 3i
X = (3W ⊕3

∗

W ) ⊥3 and β i
X is the

unique skew simple element which stabilizes the decomposition X i
= (W ⊕W ∗) ⊥ V i and acts as β i

on V i and as βW on W ; it then acts as β∗W on W ∗. We identify E i with F[β i
X ] via the isomorphism which

takes β i to β i
X .

• Two further skew simple strata in EndF (X i ),

[Mi
0,−, 0, β i

X ], [M
i
1,−, 0, β i

X ],

such that b0(M
i
t), for t = 0, 1, are the two maximal self-dual oi

E -orders in the commuting algebra of β i
X

which contain b0(3
i
X ).

• The unique skew simple character θ i
X of H 1

X i = H 1(β i
X ,3

i
X ) that restricts to θi on H 1

i and to ϑ̃W

on H̃ 1
W ; this is the transfer to 3i

X of the skew simple character θi .

• For t = 0, 1, the skew simple character θMi
t

of H 1
Mi

t
that is transferred from θ i

X ; the corresponding
irreducible representation ηMi

t
of J 1

Mi
t
; and the p-primary beta-extension κMi

t
of ηMi

t
to JMi

t
.

• An SpF (X
i )-cover (J i

P , λ
i
P) of the pair ( J̃W × Ji , λ̃W ⊗ λi ) in Mi .

Finally, we define the symplectic space X = (W ⊕W ∗)⊥ V = X i
⊥ V∨i , where V∨i

=⊥ j 6=i V j, for
which we have the following.

In the symplectic space X :

• The maximal Levi subgroup M'GLF (W )×SpF (V ) of SpF (X)which stabilizes the decomposition X=
(W ⊕W ∗)⊥ V, and the maximal parabolic subgroup P = MU which stabilizes the subspace W.
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• The skew semisimple stratum [3X ,−, 0, βX ], where 3X =3
i
X ⊥3

∨i, with 3∨i
=⊥ j 6=i 3

j, and β the
unique skew semisimple element which stabilizes the decomposition X = (W ⊕W ∗)⊥ V and acts as β
on V and βW on W (or, equivalently, acts as β i

X on X i and as β∨i
=
⊕

j 6=i β
j on V∨i, from which it is

clear that the resulting stratum is indeed semisimple). We identify E with F[βX ] via the isomorphism
which takes β i to β i

X and β j to itself, for j 6= i .

• Two further skew semisimple strata

[M0,−, 0, βX ], [M1,−, 0, βX ],

where Mt =Mi
t ⊥3

∨i for t=0, 1; then b0(Mt) are the two maximal self-dual oE -orders in the commuting
algebra of βX which contain b0(3X ).

• The unique skew semisimple character θX of H 1
X = H 1(βX ,3X ) which restricts to θ on H 1 and to ϑ̃W

on H̃ 1
W ; it is the transfer to H 1

X of the skew semisimple character θ , and restricts to θ i
X on H 1

X i .

• For t = 0, 1, the skew semisimple character θMt of H 1
Mt

that is transferred from θX ; the corresponding
irreducible representation ηMt of J 1

Mt
; and the p-primary beta-extension κMt of ηMt to JMt .

• An SpF (X)-cover (JP , λP) of the pair ( J̃W × J, λ̃W ⊗ λ) in M.

4.2. We use the setup in the previous subsection and come back to the comparison of real parts of
reducibility points, as in Section 3.17. The comparison of beta-extensions yields, as in 3.10 Proposition,
characters εMi

t
and εMt for t = 0, 1.

We fix t = 0, 1 and temporarily drop the subscript t . By definition εM(m), for m ∈ JM ∩ M, is
the signature of the permutation Ad m : u 7→ m−1um of the quotient J 1

M ∩ U/H 1
M ∩ U, isomorphic

to the Fp-vector space J1
M ∩ U/H1

M ∩ U, where U is the Lie algebra of U (see 3.10 Proposition and
3.11 Proposition). The same holds with εMi (m) for m ∈ JMi ∩ M i : it is the signature of the same
permutation on J1

Mi ∩ Ui/H
1
Mi ∩ Ui . On the other hand U is isomorphic to Ui ⊕ HomF (V∨i ,W ) in

an Mi -equivariant way, and the action of (m, y) ∈ GLF (W )×SpF (V
i ) on φ ∈ HomF (V∨i ,W ) is given

by φ 7→ mφ. The associated decompositions of the lattices J1 and H1 (as in [Bushnell and Kutzko 1993,
Proposition 7.1.12]) lead to:

Lemma. Let (m, y) ∈ P̃(3W,oW )× P(3i
oi

E
). Then (εMi εM)((m, y)) is the signature of the permutation

φ 7→ mφ of

X := J1
M ∩HomF (V∨i ,W )/H1

M ∩HomF (V∨i ,W ).

Now the quotient group P̃(3W,oW )/P̃1(3W,oW ) is a general linear group GLmW (kW ) over the finite
extension kW = kE i of kF ; this extension depends only on the endoclass of the simple character ϑ̃W . The
lemma actually asserts that the character εMεMi is trivial on P(3i

oi
E
) and factors through the signature of

the natural left action of GLmW (kW ) on X.

4.3. Retrieving the subscripts t , our main tool is the following comparison of characters:
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Proposition. With notation as above, we have

εMi
0
εM0 = εMi

1
εM1 .

This character, as a character of GLmW (kW ), can be written as χi ◦ detkW , where χi is a quadratic
character of k×W which is independent of the choice of the space W.

The independence on the space W (for a fixed choice of i) is particularly important. We postpone the
proof of the proposition for now and, taking it for granted, deduce 2.6 Theorem.

4.4. Recall that we have written π = c-IndG
J λ and, for j = 0, . . . , l, we have the cuspidal representa-

tion π j = c-IndG j
J j
λ j of G j = SpF (V

j ). We have θ j , the simple character of H 1
j contained in λ j , and

we write θ̃ j for the self-dual simple character of H̃ 1
j which restricts to θ j . Let 2j be the endoclass of

the simple character (θ̃ j )
2, which is a simple character for the stratum [3j ,−, 0, 2β j

], and k2j for the
corresponding extension of kF .

Recall that, for an endoclass 2 and a character χ of the multiplicative group of the corresponding
finite field k2, we have

• Jord(π), the Jordan set of π (see Section 2.1);

• IJord(π,2), the inertial Jordan set of π relative to 2, which is the multiset of pairs ([ρ],m)
for (ρ,m) ∈ Jord(π) such that ρ has endoclass 2;

• IJord(π,2)χ , the χ-twisted inertial Jordan set of π relative to 2, which is the multiset of pairs
([ρ]χ ,m) with (ρ,m) ∈ Jord(π,2).

Recall here that, if ρ contains a maximal simple type ( J̃ , λ̃), then [ρ]χ denotes the inertial class of
cuspidal representations containing ( J̃ , λ̃⊗χ ◦det) (see Section 2.4). Also, when χ is the trivial character
we just write IJord(π,2).

We restate 2.6 Theorem in a refined form:

Theorem. Fix i with 0 ≤ i ≤ l, and let χi be the character of k×2i
such that χi ◦ detk2i

is the twisting
character in 4.3 Proposition. We have an equality of multisets

IJord(π,2i )= IJord(πi ,2i )χi .

Proof. This is now just a matter of putting together the previous results. Let ρ be a cuspidal representation
with endoclass 2i and use the notation of Section 4.1 so that ρ is a representation of GLF (W ) containing
the maximal simple type λ̃W = κ̃W ⊗ τ̃W . The values of m, if any, for which ([ρ],m) ∈ IJord(πi ,2i ) can
then be computed from (3-7): more precisely, they are∣∣∣∣r0(εMi

0
(τ̃W ⊗ τi ))± r1(εMi

1
(τ̃W ⊗ τi ))

t (ρ)

∣∣∣∣− 1, (4-1)

whenever these integers are strictly positive, together with positive integers less than this and of the same
parity.
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Now we consider the inertial class [ρ]χi . The cuspidal representations in this class contain the maximal
simple type λ̃W ⊗ χi ◦ det = κ̃W ⊗ (τ̃W ⊗ χi ◦ det). Then, using (3-6), we see that the values of m for
which ([ρ]χi ,m) ∈ IJord(π,2i ) are∣∣∣∣r0(εM0((τ̃W ⊗χi ◦ det)⊗ τi ))± r1(εM1((τ̃W ⊗χi ◦ det)⊗ τi ))

t (ρ)

∣∣∣∣− 1,

whenever these integers are strictly positive, together with positive integers less than this and of the same
parity. But 4.3 Proposition says that these are precisely the same integers as those in (4-1) (recall that all
the characters here are quadratic), and the result follows. �

Remark. As we have seen in the proof, the pairs ([ρ],m) which appear in IJord(π) are determined by
the values of rt = rt(εMi (τ̃W ⊗ τi )). Denote by ρ ′ the other self-dual cuspidal in the inertial class [ρ].
If ρ and ρ ′ are of opposite parity, say ρ is of symplectic type and ρ ′ is of orthogonal type, then we also
recover this part of the full Jordan set Jord(π): if m is even then it is (ρ,m) which appears in Jord(π),
while if m is odd then it is (ρ ′,m).

Suppose now that ρ, ρ ′ are of the same parity and ([ρ],m) appears in IJord(π). Then ρ and ρ ′ both
appear with the same multiplicities in Jord(π) if and only if r0r1 = 0. Thus in this case we also recover
this part of the full Jordan set. Both ρ and ρ ′ appear with some multiplicity in Jord(π) if and only
if |r0− r1|> t (ρ); when ρ, ρ ′ are both of orthogonal type, this condition simplifies to r0 6= r1, since the
reducibility points must be integers in this case.

The situations in which ρ, ρ ′ have the same parity are examined more closely from the Galois point of
view in Section 6.

It remains now to prove 4.3 Proposition, which will take up the remainder of this section.

4.5. In this and the next few subsections, we define and study an auxiliary lattice sequence which will
be needed for the calculations. Let 3W and 3Y be oF -lattice sequences in finite-dimensional F-vector
spaces W and Y respectively, with the same oF -period e. We define an oF -lattice sequence C=C(3Y ,3W )

in the vector space C = HomF (Y,W ) by

C(t)= {g ∈ C | g3Y (i)⊆3W (i + t) for all i ∈ Z} for t ∈ Z.

We call the jumps of 3Y those integers i such that 3Y (i) 6= 3Y (i + 1) (and similarly for any lattice
sequence). The set of jumps of 3Y is also the image of Y \ {0} by the valuation map attached to 3Y ,
given by valY (y)=max{k ∈ Z | y ∈3Y (k)}, for y ∈ Y \ {0}.

We make the following assumptions:

(i) The set of jumps of 3W is equal to aW + sW Z and the set of jumps of 3Y is equal to aY + sY Z.

(ii) The orders a(3W ) and a(3Y ) are principal orders, in other words nonzero quotients3W (i)/3W (i+1)
are all isomorphic, and the same for 3Y . In particular there are an element 5W ∈ a(3W ) such
that 5W (3W (i)) = 3W (i + 1) whenever i is a jump of 3W , and an element 5Y ∈ a(3Y ) such
that 5Y (3Y (i))=3Y (i + 1) whenever i is a jump of 3Y [Bushnell and Kutzko 1993, §5.5].
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Lemma. The set of jumps of C is equal to (aW − aY )+ gcd(sW , sY )Z. Moreover, the quotient spaces
C(i)/C(i + 1) that are nonzero are all isomorphic as kF -vector spaces, and their common dimension is

c = c(3Y ,3W )=
gcd(sW , sY )

e
dimF W dimF Y.

Proof. Proving that the set of jumps is contained in the given Z-coset is straightforward using only (i). Now
we use (ii) and remark that 5W and 5Y satisfy 5W (3W (i))=3W (i+sW ) and 5Y (3Y (i))=3Y (i+sY )

for any integer i . For any φ ∈ C we check that

valC(5Wφ)= valC(φ)+ sW , valC(φ5Y )= valC(φ)+ sY .

Thus left multiplication by 5W is an isomorphism of oF -modules from C(t) onto C(t + sW ) and right
multiplication by 5Y is an isomorphism of oF -modules from C(t) onto C(t + sY ), and the isomorphy
follows.

To compute the dimension we use the generalized index notation [A : B] for two lattices A and B in a
same finite-dimensional vector space: [A : B] is just the ordinary quotient of [A : X ] and [B : X ] for any
lattice X contained in A and B.

The common oF -period e is a multiple of sW and sY , say e = rW sW = rY sY . Write s = gcd(sW , sY )

and pick integers n,m such that s = nsW +msY . We have, for any integer k,

[C(k) : C(k+ s)] = [C(k) : C(k+ nsW )] [C(k+ nsW ) : C(k+ nsW +msY )]

= [C(k) : C(k+ sW )]
n
[C(k) : C(k+ sY )]

m

= [C(k) :$FC(k)]n/rW [C(k) :$FC(k)]m/rY

= [C(k) :$FC(k)]s/e,

and the result follows. �

4.6. We will need to determine the effect on C(3Y ,3W ) of a shift in indices on 3W . We further assume
the following.

Notation. (i) The space W is an EW -vector space for some finite extension EW of F, with ramification
index eW and residue field kW of cardinality qW .

(ii) We fix two oW -lattice sequences 3W,0 and 3W,1 in W with the same underlying lattice chain of
period 1 over EW (so that sW,0 = sW,1 = e/eW ) and with jumps at aW,0 = 0 and aW,1 = e/(2eW )

respectively.

We write sY = e/rY and put Ct = C(3Y ,3W,t) for t = 0, 1. The sets of jumps of C0, C1 are respectively

−aY + gcd
(

e
rY
,

e
eW

)
Z and

e
2eW
− aY + gcd

(
e

rY
,

e
eW

)
Z;

they are the same when e/(2eW ) divides gcd(e/rY , e/eW ). We get the following, where val2 is the 2-adic
valuation of an integer.
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Lemma. C0 and C1 have the same jumps if and only if val2(eW ) < val2(rY ). Otherwise the jumps of C0

and C1 are shifted by 1
2 gcd(e/rY , e/eW ).

4.7. We now observe that the group GLmW (kW ) acts on the quotients Ct(i)/Ct(i+1) by left multiplication,
where mW = dimEW W. These actions commute with the left action of E×W and with the right action
of 5Y so, on the nonzero quotients, they are all equivalent and the corresponding permutations of the
nonzero sets Ct(i)/Ct(i + 1) all have the same signature.

In the same fashion the nonzero quotients Ct(i)/Ct(i + 1) are isomorphic left modules over
a0(3W,t,oW )/a1(3W,t,oW ) ' MmW (kW ). The latter is a simple algebra; hence those modules have
composition series with d simple quotients all isomorphic to the natural module kmW

W . The determinant of
the action of g ∈GLmW (kW ) on any such module is thus (detkW g)d and the signature of the corresponding
permutation is ((detkW g)(qW−1)/2)d by 3.11 Lemma. The associated character of GLmW (kW ) is then
trivial if and only if d is even. Now 4.5 Lemma gives us

d =
1

mW [kW : kF ]

gcd(e/rY , e/eW )

e
dimF W dimF Y.

Since dimF W = eW [kW : kF ]mW , we conclude:

Lemma. The signature of the natural left action of GLmW (kW ) on the nontrivial quotients Ct(i)/Ct(i+1)
is the trivial character if and only if

d =
eW

lcm(rY , eW )
dimF Y

is even; otherwise it is the unique character of GLmW (kW ) of order 2. In particular,

• this signature only depends on eW , not on W itself ;

• when C0 and C1 do not have the same jumps, we have d ≡ dimF Y (mod 2).

4.8. We return to the notation of Sections 4.1–4.2 but, for now, we drop the subscript t so that M denotes
either of the orders M0 or M1. We first detail the structure of the b0(M)-bimodule J1

M ∩U/H1
M ∩U,

isomorphic to J 1
M∩U/H 1

M∩U by the Cayley map, or equivalently by Y 7→ 1+Y. (Recall that U denotes
the Lie algebra of U.) We use the inductive definition of the orders JM and HM given in [Stevens 2005,
§3.2].

We have, for some u ≥ 1, a sequence (γ0 = β, γ1, . . . , γu = 0) and a strictly increasing sequence of
integers 0< r0 < · · ·< ru−1 = n := vM(β) such that, for 0≤ v ≤ u−1, the stratum [M,−, rv−1, γv] is
semisimple and the stratum [M,−, rv, γv] is equivalent to [M,−, rv, γv+1]. Using the inductive definition
and writing [Z ] for the image in the Grothendieck group of a b0(M)-bimodule Z , we find that

[J1
M/H

1
M] = [a

n/2
M /a

(n/2)+
M ] − [b

r0/2
γ0,M

/b
(r0/2)+
γ0,M

] +

u−1∑
v=1

(
[b

rv−1/2
γv,M

/b
(rv−1/2)+
γv,M

] − [b
rv/2
γv,M

/b
(rv/2)+
γv,M

]
)
, (4-2)

where b
r/2
γ,M is shorthand for the intersection of ar/2(M) with the centraliser of γ .
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From [Stevens 2005, Proposition 3.4], we may choose the elements γv so that the decomposition X =
V ⊥ (W⊕W ∗) is subordinate to all strata considered above; in particular we can take intersections with U

in every term in the above equality. Then the value εM(m) of the quadratic character εM can be calculated
as the product of the signatures of the permutation Ad m on each resulting quotient.

4.9. We now begin the proof of 4.3 Proposition. Recall that, by 4.2 Lemma, the character εMi εM is given
by the signature of the permutation φ 7→ mφ on

X := J1
M ∩HomF (V∨i ,W )/H1

M ∩HomF (V∨i ,W )

for m ∈ P̃(3W,oW ).
The space HomF (V∨i ,W ) decomposes as a direct sum

⊕
j 6=i HomF (V j ,W ). Moreover, each V j

in turn decomposes as a direct sum V j
=⊥

s j
s=1Y j,s of subspaces Y j,s for which the assumptions of

Section 4.5–4.7 are satisfied, and such that the resulting decomposition of V is subordinate to [3,−, 0, β].
Precisely:

• If β j is nonzero, we take a direct sum of lines over E j that splits the lattice sequence 3j as in
[Bushnell and Kutzko 1999, §5.3, Lemma].

• If β j = 0, the reductive quotient of the maximal parahoric subgroup P(3j ) is isomorphic to the
direct product of at most two symplectic groups over kF , whence a decomposition of V j as an
orthogonal sum of at most two symplectic spaces satisfying the conditions required.

The action of GLmW (kW ) on X then decomposes as a direct sum over j, s of actions on

X j,s
= J1

M ∩Y j,s/H1
M ∩Y j,s,

where Y j,s
= HomF (Y j,s,W ).

Using [Stevens 2005, Proposition 3.4] and [Bushnell and Kutzko 1999, §5.3, Corollary], we may
choose the elements γv for (4-2) so that the decomposition X =⊥ j,s Y j,s

⊥ (W ⊕W ∗) is subordinate to
all strata considered. The action of GLmW (kW ) then decomposes further along (4-2) into pieces that fit
the hypotheses of 4.7 Lemma, namely pieces of the forms

Q1 = [a
n/2
M ∩Y j,s/a

(n/2)+
M ∩Y j,s

],

Q2 = [b
r0/2
γ0,M
∩Y j,s/b(r0/2)+

γ0,M
∩Y j,s

],

Q3 = [b
rv−1/2
γv,M

∩Y j,s/b(rv−1/2)+
γv,M

∩Y j,s
] − [brv/2

γv,M
∩Y j,s/b(rv/2)+γv,M

∩Y j,s
].

4.10. At last we come to the point, which is not actually to compute the character εMi εM, but rather
to prove that this character does not depend on the maximal self-dual order M. In our setting there
are exactly two choices for M with a given period e and duality invariant d = 1. Indeed, the lattice
chain underlying the self-dual lattice sequence 3X ∩ (W ⊕W ∗) is the disjoint union of two self-dual
lattice chains, one containing a self-dual lattice and its multiples, the other containing a non-self-dual
lattice (whose dual is pW times it) and its multiples. Let M0 and M1 be the two possible choices and
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write 3W,0 =M0∩W and 3W,1 =M1∩W. According to [Stevens 2008, Lemma 6.7], the sets of jumps
of 3W,0 and 3W,1 are (e/eW )Z and (e/(2eW ))+ (e/eW )Z respectively, and all results in Sections 4.5–4.7
apply.

We can thus compare εMi
0
εM0 and εMi

1
εM1 term by term.

Term Q1: We apply Sections 4.5–4.7, replacing Y by Y j,s, 3Y by 3∩Y j,s and using 3W,t =Mt ∩W as
above for t = 0, 1. We remark that dimF Y j,s is always even. Hence, by 4.7 Lemma, the signature on Q1

is trivial unless C0 and C1 have the same jumps, so give the same signature.

Term Q2: We actually have γ0 = β; hence this term is zero if the centralizer of β does not inter-
sect HomF (V j ,W ). This condition holds under the assumptions of 4.3 Proposition because j 6= i .

Term Q3: Since M0 and M1 have the same intersection with V, we may and do choose the same
sequence (γv, rv) for both. We may also scale all our lattice sequences to make the period big enough so
that all numbers rv/2 are integers. Now Q3 is zero unless the centralizer of γv intersects HomF (V j ,W ),
which we now assume. We then apply Sections 4.5–4.7 over F[γv].

If the lattice sequences C0 and C1 have the same jumps we have the equality we want. Otherwise, they
are shifted by half a period (4.6 Lemma) and the integer d given by 4.7 Lemma is equal to dimF[γv] Y

j,s.
If d is even we are also done. Otherwise we have β j 6= 0 and s3 = e/e j , and the period of C0 and C1

is e/lcm(eW , e j ).
Since Q3 is the difference of two terms [Ct(a)] − [Ct(b)] in the lattice sequence Ct , for t = 0, 1,

over F[γv], the values of Q3 for t = 0 and t = 1 will be the same on condition that the difference a−b is
a multiple of half the period. This is what we will now prove.

In the notation of (4-2), we let h ≥ 1 be the smallest integer such that the centralizer of γh inter-
sects HomF (V j ,W ), so that we only need to consider terms with v ≥ h. If h = u there is nothing
to do. Otherwise, we need to examine the values of rh and rh−1 more closely, in terms of the nor-
malized critical exponents k F

0 [γv]; see [Stevens 2005, pp. 129,141–142]. We use Lemma 3.7(ii) of
that work for rh−1 = −k0(γh−1,M) (the unnormalized critical exponent relative to M) and case (i)
for rh =−k0(γh,M) to get

rh−1 = vF[γh ](c)
e(M|oF )

e(F[γh]/F)
, rh =−k F

0 (γh)
e(M|oF )

e(F[γh]/F)

for some element c in F[γh], so that

rh−1

2
−

rh

2
=

e(M|oF[γh ])

2
(vF[γh ](c)+ k F

0 (γh)).

This is indeed an integer multiple of the half-period of jumps

e(M|oF[γh ])

2

(
lcm(eW , e j )

e(F[γh]/F)

)−1

since the last term is the inverse of an integer.
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For v > h we use [Stevens 2005, Lemma 3.7(i)] and get

rv−1

2
−

rv
2
=

e(M|oF[γv])

2

(
−k F

0 (γv−1)
e(F[γv]/F)

e(F[γv−1]/F)
+ k F

0 (γv)

)
.

This is a multiple of the half-period of jumps if and only if

−k F
0 (γv−1)e(F[γv]/F)+ k F

0 (γv)e(F[γv−1]/F)
e(F[γv−1]/F)

lcm(eW , e j )

e(F[γv]/F)

=

(
−k F

0 (γv−1)+ k F
0 (γv)

e(F[γv−1]/F)
e(F[γv]/F)

)
lcm(eW , e j )

e(F[γv−1]/F)
is an integer, which is the case because e(F[γv]/F) divides e(F[γv−1]/F); see [Bushnell and Kutzko
1993, 2.4.1].

Putting this together, we obtain the character εMi εM as a product of signatures, each of them only
depending on eW by 4.7 Lemma; hence our character only depends on eW , not on W. Furthermore, the
extension EW is isomorphic to F[βi ]; hence eW is equal to e(F[βi ]/F), independent of the choice of W.
This completes the proof of 4.3 Proposition, and hence that of 4.4 Theorem.

5. The simple case

In this section we prove 2.5 Theorem. Recalling that, by 3.12 Theorem, the parameters of the Hecke
algebra of our cover are those in the Hecke algebra of a finite reductive group, we are required to analyze
these Hecke algebras. Fortunately, these are described by [Lusztig 1984] and have been computed in our
cases in [Lust and Stevens 2016]. One subtlety is that the twisting characters εMt give rise to involutions
which we have not computed explicitly and so remain unknown. Fortunately, the numerics are such that
an exact description of these involutions is not needed.

5.1. Let π be a simple cuspidal representation of G in the sense of Section 2.5. Since the case of
depth-zero representations is already dealt with in [Lust and Stevens 2016], we assume moreover that π
has positive depth. Thus π contains a skew simple character θ of H 1

= H 1(β,3), for some maximal
skew simple stratum [3,−, 0, β], with β 6= 0, and E = F[β] is a field. We write 2 for the endoclass of
the unique self-dual simple character θ̃ which restricts to θ . We retain all the notation of Section 4.1 and
so interpret simplicity as meaning that l = 1 and drop the index 1 for notation. We will be considering
the space X = X1, while varying the self-dual cuspidal representation ρ of GLF (W ) (and the space W ).
Note that we have EW ' E so we will identify them.

For a self-dual cuspidal representation ρ of some GLF (W ), recall that we write deg ρ = dimF W
and sπ (ρ) for the unique nonnegative real number such that the normalized induced representation νsρ×π

is reducible. Then the description of the Jordan set in Section 2.1 shows that, in order to prove 2.5 Theorem,
the equality we must prove is ∑

ρ

bsπ (ρ)2c deg ρ = 2N , (5-1)

where the sum runs over all self-dual cuspidal representations ρ with endoclass 2(ρ)=22.
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5.2. Recall that we have π = c-IndG
J λ, with λ= κ⊗τ and that ρ contains the maximal simple type λ̃W =

κ̃W ⊗ τ̃W and has unramified twist number t (ρ) = (dimF W )/e(2), where we have written e(2) =
e(22)= e(E/F) since it depends only on the endoclass. Moreover, by 3.14 Proposition, we have that
the real parts of the reducibility points of the normalized induced representation νsρ×π are the elements
of the set {

±
r0+ r1

2t (ρ)
,±

r0− r1

2t (ρ)

}
,

where, for t = 0, 1, the integers rt = rt(εMt (τ̃W ⊗ τ)) come from the quadratic relations in the finite
Hecke algebra H (G(Mt,oE ), εMt (τ̃W ⊗ τ)) as in (3-5).

Remark. It will be crucial to note that the character εMt depends only on the dimension deg ρ = dimF W,
and not on the representation ρ itself.

The contribution to the sum (5-1) of the inertial class [ρ] (that is, writing ρ ′ = νπ i/t (ρ) log(q)ρ for the
other self-dual representation in the inertial class, the combined contributions of ρ and ρ ′) is⌊(

r0+ r1

2t (ρ)

)2⌋
+

⌊(
r0− r1

2t (ρ)

)2⌋
.

From results of Lusztig (see [Lust and Stevens 2016, §8] and also Section 5.6 below), the numbers rt/t (ρ)
are either both integers or both half-integers so that this simplifies to⌊

r2
0 + r2

1

2t (ρ)2

⌋
. (5-2)

5.3. In order to prove (5-1) we will need to recall Lusztig’s parametrization of cuspidal representations of
classical groups, and the computation of the parameter rt in the Hecke algebra H (G(Mt,oE ), εMt (τ̃W⊗τ)).
We follow the description in [Lust and Stevens 2016, §2, 3, 6 and, especially, 7], to which we refer for
details and references for the assertions made here.

In almost all cases, we have

H (G(Mt,oE ), εMt (τ̃W ⊗ τ))'H (Go(Mt,oE ), εMt (τ̃W ⊗ τ
o)),

where τ o is an irreducible component of the restriction τ|Go(3oE )
, and it is here that we will perform our

calculations. In the exceptional cases we have rt = 0 and it will turn out that this matches the formula one
would obtain by following the recipe for computing the parameters in the connected component Go(Mt,oE ).
Thus we will assume first that the calculation is to be done in Go(Mt,oE ) and then, in Section 5.7, we will
treat the exceptional cases.

5.4. Since P(3oE ) is the normalizer of a maximal parahoric subgroup of the centraliser G E , we have the
decomposition

Go(3oE )= G(0)(3oE )×G(1)(3oE ),
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which is a product of two connected classical groups over ko
E (the residue field of the fixed points Eo

in E under the involution on A). We have a similar decomposition of Go(Mt,oE ) with, moreover,

G(1)(M0,oE )= G(1)(3oE ) and G(0)(M1,oE )= G(0)(3oE ),

and the Levi subgroup

G̃(3W,oE )×G(t)(3oE )⊆ G(t)(Mt,oE ).

We choose an irreducible component τ o of the restriction τ|Go(3oE )
and write it as τ (0)⊗ τ (1). Writing the

character εMt as εW
Mt
⊗ ε

(0)
Mt
⊗ ε

(1)
Mt

, we have isomorphisms of Hecke algebras

H (Go(Mt,oE ), εMt (τ̃W ⊗ τ
o))'H (G(t)(Mt,oE ), ε

W
Mt
τ̃W ⊗ ε

(t)
Mt
τ (t)),

and it is in this Hecke algebra that we compute the parameter rt .

5.5. We now fix t = 0 or 1 and so drop the sub/superscript t from our notations for now. Thus we have

• a connected classical group Go(MoE) over ko
E , with Levi subgroup G̃(3W,oE)×G(3oE) and G̃(3W,oE)'

GLm(kE), where m = dimE W ;

• a self-dual cuspidal representation τ̃W ⊗ τ of G̃(3W,oE )×G(3oE );

• a character εW
M⊗ εM of G̃(3W,oE )×G(3oE ) of order at most 2, which depends on m = dimE W but

not on τ̃W .

By Green’s parametrization (and after fixing an isomorphism G̃(3W,oE ) ' GLm(kE)), the cuspidal
representation τ̃W corresponds to an irreducible monic polynomial Q ∈ kE [X ] of degree m. Moreover,
this polynomial is kE/ko

E -self-dual, that is,

Q(X)= (Q(0))−1 Xdeg Q Q(1/X),

where x 7→ x̄ is the automorphism of kE with fixed field ko
E , extended to kE [X ] coefficientwise; see

[Lust and Stevens 2016, §7.1]. Since a cuspidal representation τ̃W of G̃(3W,oE ) is self-dual if and only
if τ̃W ε

W
M is cuspidal self-dual, twisting by εW

M induces an involution on the set of irreducible kE/ko
E -self-

dual monic polynomials of degree m. We denote this involution by σm,W ; it is either trivial, or given
by Q(X) 7→ (−1)deg Q Q(−X).

Similarly, by Lusztig’s parametrization, the cuspidal representation τ lies in a rational Lusztig se-
ries E(s) corresponding to (the rational conjugacy class of) a semisimple element s of the dual group
of G(3oE ). Since its series contains a cuspidal representation, this semisimple element s has characteristic
polynomial of a particular form, namely

Ps(X)=
∏

P

P(X)aP ,

where the product is over all irreducible kE/ko
E -self-dual monic polynomials and the integers aP satisfy

certain combinatorial constraints (see [Lust and Stevens 2016, (7.2) and §7.7]); more precisely, we have:
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•
∑

P aP deg P is the dimension of the space V on which the dual group of G(3oE ) naturally acts.

• If either kE 6= ko
E or P(X) 6= (X ± 1), then aP =

1
2(b

2
P + bP), for some nonnegative integers bP .

• If P(X)= X±1 then, writing a+ := a(X−1) and a− := a(X+1), there are integers b
+
, b
−
≥ 0 such that

(i) if G(3oE ) is odd special orthogonal then a+ = 2(b2
+
+ b
+
) and a− = 2(b2

−
+ b
−
),

(ii) if G(3oE ) is symplectic then a+ = 2(b2
+
+ b
+
)+ 1 and a− = 2b2

−
,

(iii) if G(3oE ) is even special orthogonal then a+ = 2b2
+

and a− = 2b2
−

,

and, in case (iii), the (±1)-eigenspace in V is an even-dimensional orthogonal space of type (−1)b± ,
and the same in case (ii) for the (−1)-eigenspace only.

As above, twisting by the character εM will induce a degree-preserving involution on the set of irre-
ducible kE/ko

E -self-dual monic polynomials. If the character εM is trivial then this involution is trivial.
If the character εM is nontrivial quadratic then, by [Cabanes and Enguehard 2004, Proposition 8.26],
twisting by εM induces a bijection between rational Lusztig series

E(s)−→∼ E(−s),

and the involution is given by P(X) 7→ (−1)deg P P(−X). In either case, we denote by σm,G the invo-
lution induced by twisting by εM. (Note that this is a degree-preserving involution on the set of all
irreducible kE/ko

E -self-dual monic polynomials; the subscript m is included to indicate that the involution
depends on m.) The characteristic polynomial corresponding to the cuspidal representation τεM is then∏

P

P(X)aσm,G (P) .

Putting together our two involutions, we get an involution on the set of irreducible kE/ko
E -self-dual

monic polynomials of degree m given by

σm = σm,G ◦ σm,W .

5.6. Recall that the Hecke algebra H (G(MoE ), ε
W
Mτ̃W ⊗ εMτ) is generated by an element T satisfying a

quadratic relation
(T − qrω)(T +ω)= 0,

where q is the cardinality of the residue field of kF . The work of Lusztig, as presented in [Lust and
Stevens 2016, §7], allows one to write down explicitly the parameter r in terms of the characteristic
polynomials of the previous subsection, as follows.

Let Q(X) be the irreducible kE/ko
E -self-dual monic polynomial of degree m corresponding to τ̃W , and

let Ps(X)=
∏

P P(X)aP be the monic polynomial corresponding to τ , where the aP are as described in
the previous subsection. Writing f for the degree of the extension kE/kF , one gets the following values:

• If kE = ko
E and σ1(Q)= X − 1 then

r
f
=

{
2b+ if G is even special orthogonal,
2b++ 1 otherwise.
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• If kE = ko
E and σ1(Q)= X + 1 then

r
f
=

{
2b−+ 1 if G is odd special orthogonal,
2b− otherwise.

• If kE 6= ko
E or m is even then

r
f
= (2bσm(Q)+ 1)

m
2
.

Note that, since t (ρ)= m f , the number r/t (ρ) is a half-integer, as asserted above. Moreover, r/t (ρ) is
an integer precisely when E/Eo is ramified and E/F is a maximal extension (i.e., of degree dimF W ); in
particular, this depends only on the polynomial Q (that is, on τ̃W , so on the representation ρ) and not on
either the representation τ or on the involution σ1.

5.7. In this subsection, we treat the exceptional cases, where we do not have an isomorphism

H (G(Mt,oE ), εMt (τ̃W ⊗ τ))'H (Go(Mt,oE ), εMt (τ̃W ⊗ τ
o)). (5-3)

According to the description in [Miyauchi and Stevens 2014, §6.3], this occurs precisely when

• E/Eo is ramified;

• dimE W = 1, so that τ̃W is a character of order at most 2;

• and either G(3oE )= Go(3oE ) or εMt τ|Go(3oE )
is reducible.

We remark that εMt τ|Go(3oE )
is reducible if and only if τ|Go(3oE )

is reducible.
In these cases, writing Go(Mt,oE )= G(0)(3oE )×G(1)(3oE ), there is one value of t for which G(t)(3oE )

is an even special orthogonal group (for the other it is a symplectic group) and it is precisely for this
value of t that we do not have an isomorphism (5-3) and we get rt = 1.

As above, we write τ (0)⊗τ (1) for an irreducible component of τ|Go(3oE )
, and write εMt as εW

Mt
⊗ε

(0)
Mt
⊗ε

(1)
Mt

.
Writing Ps(X) =

∏
P(X)aP for the polynomial corresponding to the cuspidal representation τ (t), the

fact that it does not extend to the full even orthogonal group implies, by [Lust and Stevens 2016,
Proposition 7.9], that ±1 are not roots of Ps , that is, a+ = a− = 0.

Since τ̃W is a character of order at most 2, the corresponding polynomial is Q(X)= X±1. In particular,
since we have b+ = b− = 0, the formulae of Section 5.6 are still valid, since they too give rt = 0. Thus
those formulae are valid in every case.

5.8. Finally, using the formulae of Section 5.6, we return to computing the contribution (5-2), so we
retrieve the sub/superscripts t . We have

• an irreducible kE/ko
E -self-dual monic polynomial Q(X), corresponding to the cuspidal representa-

tion τ̃W ;

• for t = 0, 1, a polynomial
∏

P P(X)a
(t)
P corresponding to the cuspidal representation τ (t);

• for t = 0, 1, an involution σ (t)m on the set of irreducible kE/ko
E -self-dual monic polynomials of

degree m.
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Suppose first that either kE 6= ko
E or m is even; then we get

⌊
r2

0 + r2
1

2t (ρ)2

⌋
=

⌊(2b(0)
σ
(0)
m (Q)

+ 1)2+ (2b(1)
σ
(1)
m (Q)

+ 1)2

8

⌋
=
⌊1

2 b(0)
σ
(0)
m (Q)

(b(0)
σ
(0)
m (Q)

+ 1)+ 1
2 b(1)
σ
(1)
m (Q)

(b(1)
σ
(1)
m (Q)

+ 1)+ 1
2

⌋
= a(0)

σ
(0)
m (Q)

+ a(1)
σ
(1)
m (Q)

.

If kE = ko
E then one of the groups G(t)(Mt,oE ) is symplectic, while the other is orthogonal. Here we can

treat each case, each polynomial X ± 1, and each possibility for the involutions σ (t)1 , separately. Up to
permuting {0, 1} we are in one of the following two cases:

If G(0)(3oE ) is odd special orthogonal and G(1)(3oE ) is symplectic, then the contribution of σ (1)1 (X−1) is⌊
(2b(0)ζ + 1)2+ (2b(1)+ + 1)2

2

⌋
= 2b(0)ζ (b

(0)
ζ + 1)+ 2b(1)+ (b

(1)
+ + 1)+ 1= a(0)ζ + a(1)+ ,

where ζ is the sign defined by σ (0)1 σ
(1)
1 (X − 1)= X − ζ ; and the contribution of σ (1)1 (X + 1) is

⌊
(2b(0)
−ζ + 1)2+ (2b(1)− )

2

2

⌋
= 2b(0)

−ζ (b
(0)
−ζ + 1)+ 2(b(1)− )

2
= a(0)
−ζ + a(1)− .

In particular, the sum of the contributions of X ± 1 is

a(0)+ + a(0)− + a(1)+ + a(1)− .

If G(0)(3oE ) is even special orthogonal and G(1)(3oE ) is symplectic, then the contribution of σ (1)1 (X−1) is⌊
(2b(0)ζ )

2
+ (2b(1)+ + 1)2

2

⌋
= 2(b(0)ζ )

2
+ 2b(1)+ (b

(1)
+ + 1)= a(0)ζ + a(1)+ − 1,

where ζ is again the sign defined by σ (0)1 σ
(1)
1 (X − 1)= X − ζ , and the contribution of σ (1)1 (X + 1) is⌊

(2b(0)
−ζ )

2
+ (2b(1)− )

2

2

⌋
= 2(b(0)

−ζ )
2
+ 2(b(1)− )

2
= a(0)
−ζ + a(1)− .

In this second case, the sum of the contributions of X ± 1 is

a(0)+ + a(0)− + a(1)+ + a(1)− − 1;

the term −1 reflects the fact that the sum of the dimensions of the spaces on which the dual groups
of G(t)(3oE ) act naturally is 1 more than the sum of the dimensions of the spaces on which the
groups G(t)(3oE ) act naturally. Note also that this latter sum of dimensions is precisely dimE V , where
we recall that V is the symplectic space on which our group G acts.
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5.9. Having computed all the contributions to the sum (5-1) in the previous subsection, we can now sum
them over all possible Q, noting that, if the cuspidal representation ρ corresponds to the polynomial Q,
then deg ρ = [E : F] deg Q. If kE 6= ko

E , this is straightforward and we obtain∑
ρ

bsπ (ρ)2c deg ρ = [E : F]
∑

m

(
m

∑
deg Q=m

(a(0)
σ
(0)
m (Q)

+ a(1)
σ
(1)
m (Q)

)

)

= [E : F]
(∑

P

a(0)P deg P +
∑

P

a(1)P deg P
)
= [E : F] dimE V = 2N ,

as required. Here the penultimate equality occurs because each group G(t)(3oE ) is a unitary group (whose
dual group is then a unitary group acting naturally on a space of the same dimension), and the sum of the
dimensions of the spaces on which they act is dimE V.

If kE = ko
E then we need to be a little more careful with the polynomials X ± 1 (that is, the kE/ko

E -
self-dual monic polynomials of degree 1), as described at the end of the previous subsection. If one of
the G(t)(3oE ) is even special orthogonal (and the other symplectic) then we get that

∑
ρbsπ (ρ)

2
c deg ρ is

[E : F]
(∑

m≥2

(
m

∑
deg Q=m

(a(0)
σ
(0)
m (Q)

+ a(1)
σ
(1)
m (Q)

)

)
+ a(0)+ + a(0)− + a(1)+ + a(1)− − 1

)

= [E : F]
(∑

P

a(0)P deg P +
∑

P

a(1)P deg P − 1
)
= [E : F] dimE V = 2N ,

where the penultimate equality uses the fact that the dual of a symplectic group acts naturally on a space
of one dimension greater, while the dual of an even special orthogonal group acts naturally on a space of
the same dimension.

On the other hand, if one of the G(t)(3oE ) is odd special orthogonal (and the other symplectic) then we
get the same sum except without the term −1, and the penultimate equality uses the fact that the dual of
an odd special orthogonal group acts naturally on a space of one dimension smaller, while the dual of a
symplectic group acts naturally on a space of one dimension greater.

This completes the proof of (5-1), and hence that of 2.5 Theorem.

5.10. The results in this section not only prove 2.5 Theorem but also give an algorithm to compute the
inertial Jordan set of a positive-depth simple cuspidal representation of G. (The case of depth zero is
treated already in [Lust and Stevens 2016].) Moreover, 2.6 Corollary then gives the inertial Jordan set for
any cuspidal representation of G.

Indeed, suppose π is a simple cuspidal representation of G, induced from a cuspidal type λ= κ ⊗ τ .
With the usual notation, let τ o be any irreducible component of the restriction of τ to the maximal
parahoric subgroup Po(3oE ). Then τ o is the inflation of a representation τ (0)⊗ τ (1), with each τ (t) a
cuspidal representation of a finite reductive group over ko

E . These each appear in some rational Lusztig
series and we consider the set Q(t) of monic irreducible polynomials dividing the characteristic polynomial
(over kE ) of the corresponding semisimple conjugacy class for t = 0, 1, all of which are kE/ko

E -self-dual.
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For each m ∈ degQ(t), we compute the signature character εMt , and thus deduce the involution σ (t)m as in
Section 5.5. We set

Q= {σ (t)m (Q) | Q ∈Q(t), deg Q = m, t = 0, 1}.

Now let 2 be the endoclass of the self-dual simple character lifting any skew simple character in π
and let Q ∈Q. We put n = deg Q deg2 and let θ̃ be the unique (up to conjugacy) m-simple character
in GLn(F) with endoclass 22 (in the language of [Bushnell and Henniart 2014], for example). Let κ̃
be the p-primary extension of θ̃ , a representation of a group J̃. The group J̃/ J̃ 1 is then a finite general
linear group of rank deg Q over kE , and we let τ̃Q be the unique cuspidal representation in the Lusztig
series corresponding to a semisimple conjugacy class with characteristic polynomial Q. Write [ρQ] for
the inertial class of cuspidal representations of GLn(F) containing κ̃ ⊗ τ̃Q .

The inertial classes in {[ρQ] | Q ∈Q} are precisely the inertial classes which will appear in IJord(π).
In order to compute the multiplicities with which [ρQ] appears, we follow the recipe of Section 5.6 to
compute the corresponding Hecke algebra parameters r0 and r1, and hence the real parts of the reducibility
points |r0± r1|/(deg Q[kE : kF ]) and the multiplicities from Mœglin’s criterion. In the case that kE 6= ko

E

or m = deg Q > 1, this is straightforward, with the real parts of the reducibility points given by

b(0)
σ
(0)
m (Q)

+ b(1)
σ
(1)
m (Q)

+ 1

2
and

b(0)
σ
(0)
m (Q)

− b(1)
σ
(1)
m (Q)

2
,

where a(t)P =
1
2 b(t)P (b

(t)
P + 1) is the power to which P divides the characteristic polynomial corresponding

to τ (t). By the construction of Q, the first of these is certainly greater than 1
2 . In the case kE = ko

E

and deg Q = 1 (so that Q is X ± 1) there is no such simple universal formula, and instead one must
proceed in a case-by-case analysis as in Section 5.8. We leave this as an exercise to the reader; a similar
calculation is done in [Lust and Stevens 2016, §8].

6. Galois parameters

In this section we study self-duality in terms of Galois parameters with a view, in particular, to under-
standing the ambiguities in our results in terms of the local Langlands correspondence.

6.1. We denote by F a fixed separable closure of F and by WF the absolute Weil group of F (with similar
notation for intermediate fields). We would like to explore a self-dual irreducible representation σ of WF ,
with a view to determining its parity (that is, whether it is symplectic or orthogonal); in particular, we
would like to know when the self-dual irreducible representation σ ′ which is an unramified twist of (and
not isomorphic to) σ has the same parity as σ , since it is in this case that we have ambiguity. For now,
we do not require p to be odd.

Let χ be an unramified character of WF . Then (χσ)∨ is isomorphic to χ−1σ∨, so, σ being self-dual, χσ
is self-dual if and only if χ2σ ' σ .

We let t (σ ) be the number of unramified characters η of WF such that ησ ' σ — such characters form
a cyclic group. We deduce that the only unramified character twist σ ′ of σ which is self-dual but not
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isomorphic to σ is obtained as χσ , where χ is an unramified character of order 2t (σ ). (If r = val2(t (σ )),
any unramified character of order 2r+1 would do equally well.)

Let E be the unramified extension of F in F of degree t (σ ). Then σ is induced from a representation τ
of WE ; the restriction of σ to WE is the direct sum of the conjugates of τ under Gal(E/F), which are
pairwise inequivalent. As σ is self-dual, τ∨ is one of those conjugates.

Assume first that τ is self-dual — which, we remark, is necessarily true if t (σ ) is odd. Since t (τ )= 1,
the unramified twist τ ′ of τ which is self-dual but not isomorphic to τ has the form χτ , where χ is
the order-2 unramified character of WE , and it has the same parity as τ . Since induction for self-dual
representations preserves the parity, we deduce that σ and σ ′ share the same parity too.

Assume then that τ is not self-dual. Then τ∨ is necessarily isomorphic to τ γ, where γ is the order-2
element of Gal(E/F). Let Ẽ = Eγ , so that E/Ẽ is quadratic, and let T be the (irreducible) representation
of WẼ induced from τ . As τ∨ ' τ γ, we see that T is self-dual. Its restriction to WE is τ ⊕ τ∨, with τ not
isomorphic to τ∨, so the WE -invariant bilinear forms on the space of T form a space of dimension 2, with
a line of alternating forms and a line of symmetric ones. Each of these lines is invariant under Gal(E/F),
one offering the trivial representation, the other the order-2 character ω of Gal(E/F). The self-dual
unramified twist T ′ of T which is not isomorphic to T is T ′ = ηT where η is unramified of order 4,
so that T ′ ⊗ T ′ ' ωT ⊗ T. From the previous analysis, we deduce that if T is symplectic then T ′ is
orthogonal and conversely, T and T ′ have different parities. By induction again we see that σ and σ ′

have different parities.

6.2. Let us look at some special cases. Assume first that σ is tame. Then t (σ )= dim σ . Introducing E
and τ as in Section 6.1, we have that τ is a character, regular under the action of Gal(E/F). If τ were
self-dual it would have order 1 or 2, but any character of E× of order 1 or 2 factors through NE/F ,
and hence can be regular under the action of Gal(E/F) only if t (σ ) = dim σ = 1, so E = F. Thus,
apart from quadratic characters of WF , tame self-dual irreducible representations σ of WF have even
dimension, and we can apply the discussion of Section 6.1 to them, concluding that σ and σ ′ have
different parities.

6.3. We now assume that σ is not tame, but we concentrate on our case of interest; that is, we assume
from now on that p is odd. We want in that case to spot when σ and σ ′ have the same parity, and then try
to say whether they are orthogonal or symplectic.

Let us first analyze σ . Its restriction to the wild ramification subgroup PF of WF is nontrivial, since σ
is not tame. Let γ be an irreducible component of this restriction — so that γ is not the trivial character
of PF — and S = Sγ its stabilizer in WF . Then by Clifford theory σ is induced from the representation
of S on the isotypical component V(γ ) of γ in the space V of σ .

Now by assumption σ is self-dual, and so is its restriction to PF . But PF is a pro-p-group and p is
odd, so no nontrivial irreducible representation of PF is self-dual, and we see that γ ∨ is not isomorphic
to γ . Thus there is g in WF \ S with gγ isomorphic to γ ∨; the coset gS is the same for all possible choices
of g, and g2 belongs to S, so S̃ = S ∪ gS is a subgroup of WF containing S as an index-2 subgroup.
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To get σ , we can first induce V(γ ) from S to S̃, and then from S̃ to WF . We shall prove now
that IndS̃

S V(γ ) is self-dual; its parity is then inherited by σ . This reduces the problem to understanding
the parity of IndS̃

S V(γ ).

6.4. To prove that IndS̃
S V(γ ) is self-dual, we take an abstract viewpoint:

Proposition. Let G be a group with a subgroup H of index 2, and let g ∈ G \H . Let (ρ,V) be
an irreducible representation of H . Assume that ρ is not self-dual, but that ρ∨ is equivalent to gρ.
Then IndG

H ρ is irreducible and self-dual. If dimV is odd, then IndG
H ρ is symplectic if and only if its

determinant is trivial.

Proof. Since gρ is not isomorphic to ρ, the induced representation IndG
H ρ is irreducible, and it is self-

dual because (IndG
H ρ)

∨ is isomorphic to IndG
H ρ
∨ and hence to IndG

H
gρ, which is isomorphic to IndG

H ρ.
If IndG

H ρ is symplectic, then clearly its determinant is trivial. To prove the converse statement when dimV
is odd, we need to analyze the situation carefully.

Since ρ∨ is equivalent to gρ, there is a nondegenerate bilinear form 8 : V ×V→ C such that

8(hv, ghg−1v′)=8(v, v′) for all h ∈H , v, v′ ∈ V.

It is unique up to scalar. We claim that the form 9, defined by 9(v, v′)=8(v′, g2v) for v, v′ in V , is
proportional to 8. Indeed, for v, v′ ∈ V and h ∈H , we find

9(hv, ghg−1v′)=8(ghg−1v′, g2hv)=8(v′, g2v)=9(v, v′).

Writing 9 = λ8 with λ ∈ C×, we compute

8(v′, v)=8(g2v′, g2v)=9(v, g2v′)= λ8(v, g2v′)= λ9(v′, v)= λ28(v′, v)

for v, v′ in V so that λ2
= 1. We shall see that the parity of IndG

H ρ is governed by the scalar λ.
On the space V⊕V equipped with the representation ρ⊕gρ, there is an H -invariant symplectic form f ,

unique up to scalar, which we can take to be

f : ((v1, v2), (w1, w2)) 7→8(v1, w2)−8(w1, v2).

The space of IndG
H ρ can be taken as V ⊕V , where H acts as ρ⊕ gρ and g acts via

g(v1, v2)= (v2, g2v1).

Since 8(v2, g2v1)=9(v1, v2)= λ8(v1, v2), we get that g acts on f by multiplication by −λ, so IndG
H ρ

is symplectic if and only if λ=−1.
Let us choose a basis (e1, . . . , ed) of V , where d = dim ρ. Then 8(v1, v2)= (

tx1)H x2 for v1, v2 ∈ V
with coordinates given by x1, x2 ∈Cd respectively, and H the d×d Gram matrix of8 in the basis. If Mg2

is the matrix of ρ(g2) we get 8(v2, g2v1)= (
tx2)H Mg2 x1, from which we deduce that H Mg2 = λ(t H),

which implies that det ρ(g2)= λd.
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Now det(IndG
H ρ) is an order-2 character of G which is trivial on H ; in fact it is given by

(det ρ ◦Ver) ωdim ρ,

where Ver : G 7→ G ab
7→ H ab is the transfer and ω is the nontrivial character of G trivial on H . In

this special case where H has index 2 in G , the transfer map Ver is trivial on H and sends g to g2,
so det(IndG

H ρ(g))= (−λ)d .
When d is odd, we find that IndG

H ρ is symplectic if and only if its determinant is trivial, as desired. �

Remark. When d is even, IndG
H ρ always has trivial determinant, regardless of its parity. Determining

the parity amounts to computing the scalar λ.

6.5. We revert to the context of Sections 6.1–6.3. We want to spot the cases where σ and σ ′ (in the
notation of Section 6.1) have the same parity, and in those cases possibly apply 6.4 Proposition to
determine that parity. For that we have to analyze the situation further.

It is known (see [Bushnell and Henniart 2014, 1.3, Proposition]) that γ extends to a representation 0
of S = Sγ , and we can even impose that det0 have order a power of p; then 0 is unique up to twist
by an unramified character of S, of order a power of p. Since gγ is equivalent to γ ∨, we see that g0

is equivalent to χ0∨, where χ is an unramified character of S of order a power of p. Such a χ has a
unique square root η with order a power of p and replacing 0 with η−10, we may — and do — assume
that g0 ' 0∨. This now specifies 0 completely.

As a representation of S, the space V(γ ) is a tensor product0⊗δ, where δ is an irreducible representation
of S trivial on PF , well-defined up to isomorphism. Since gV(γ )' V(γ )∨ as representations of S, we
get that gδ ' δ∨.

Let K be the fixed field of S, and K̃ that of S̃; thus the extension K/K̃ is quadratic and, in particular,
tame. Writing d = dim δ, the representation δ is induced from a character α of the unramified degree-d
extension Kd of K in F, with α tamely ramified and regular under the action of Gal(Kd/K ); this
character α is determined up to the action of Gal(Kd/K ).

In those terms, we try to see when σ and σ ′ have the same parity; that is, writing σ = Ind τ as in
Section 6.1, where τ is a representation of WE with E/F unramified of degree t (σ ), we want to know if τ
is self-dual. Note that t (V(γ ))= d, so t (σ )= d f (K/F), where f (K/F) is the inertia degree of K/F.
The extension Kd/E is totally tamely ramified, and we can take τ to be Ind(0⊗α), where the induction
is from WKd to WE (and we first restrict 0 from S to WKd ).

6.6. The following result describes when σ, σ ′ have the same parity.

Proposition. Let σ be a self-dual irreducible representation of WF . Assume σ is not tame, and adopt the
above notation. Then the following are equivalent:

(i) σ and σ ′ have the same parity.

(ii) K/K̃ is ramified and d = 1.

When these conditions are satisfied, σ and σ ′ are symplectic if and only if the character α is ramified.
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Remark. When d = 1, we see that α is a tame character of K× which satisfies gα = α−1. If K/K̃ is
ramified, g acts trivially on the residue field of K , and α|UK has order 1 or 2. In that case, let $ be a
uniformizer of K with $ 2

∈ K̃ ; then the condition gα = α−1 translates into α(−$ 2) = 1: either α is
unramified of order 1 or 2 or α

|K̃× is the quadratic character ωK/K̃ defining K .

Proof. To prove the proposition, we need to see when τ = IndWE
WKd

(0⊗ α) is self-dual. The restriction
of 0⊗α to PF is γ , so τ can be self-dual only if there is h in WE such that hγ ' gγ — that is h ∈ gS,
or equivalently WE ∩ S 6=WE ∩ S̃. Recalling that E is the maximal unramified extension of F in Kd , we
see that the fixed field of WE ∩ S is Kd ; if K/K̃ were unramified, the fixed field of WE ∩ S̃ would also
be Kd , so that τ could not be self-dual.

Thus, if τ is self-dual then K/K̃ is ramified and we take g in WE ∩ S̃. Reasoning as in Section 6.3 and
using 6.4 Proposition, we see that τ is self-dual if and only if 0⊗α induces to a self-dual representation
of WK̃d

, where K̃d is the fixed field of g in Kd (so that Kd/K̃d is quadratic ramified); in particular we
then have g(0⊗α)' (0⊗α)∨. Since g0 ' 0∨ by construction, this implies gα = α−1 and since Kd/K̃d

is ramified, g acts trivially on the residue field of Kd so α|UKd
has order 1 or 2 and regularity with respect

to Gal(K/Kd) implies d = 1. Thus if τ is self-dual then d = 1, which proves (i)⇒ (ii).
Conversely if (ii) is satisfied then τ is self-dual if and only if gα = α−1 by the above analysis, which

gives (ii)⇒ (i).
Assume finally that conditions (i) and (ii) are satisfied. Using again 6.4 Proposition, we have to check

whether the determinant of IndWK̃
WK
(0⊗α)— which by self-duality has order 1 or 2 — is trivial. Seeing

that determinant as a character of K̃× (via class field theory), it is equal to

ν = det(0⊗α)
|K̃×(ωK/K̃ )

dim γ .

But det0 has order a power of p and p is odd, and α has order at most 4 (cf. the remark above) so we
find ν = (α

|K̃×ωK/K̃ )
dim γ. If α is unramified then ν = ωK/K̃ (since dim γ is odd) is nontrivial; if α is

ramified then α
|K̃× = ωK/K̃ by the remark and ν is trivial. The final claim of the proposition now follows

from 6.4 Proposition. �

6.7. Now we interpret the conditions of 6.4 Proposition in terms of the cuspidal representation ρ
of GLn(F), with n= dim σ , which corresponds to σ under the Langlands correspondence. To describe this
representation ρ we will use the machinery of the construction of cuspidal representations as in Section 1.

Assume σ is not tame, i.e., ρ is not of depth zero. Then ρ contains a simple character θ̃ , belonging
to a set of simple characters built using an element β ∈ GLn(F) which generates a field F[β]. We
have n= d[F[β] : F], so that d is determined by ρ. Moreover the extension K/F which appears above in
the discussion on the construction of σ is isomorphic to the maximal tame subextension L/F of F[β]/F ;
see [Bushnell and Henniart 2014, tame parameter theorem].

When ρ— equivalently σ — is self-dual, we can choose β such that the self duality comes from an
automorphism x 7→ x̄ of F[β], sending β to −β, and θ̃ to θ̃−1; see [Blondel 2004, Theorem 1]. That
automorphism induces an order-2 automorphism of L; let L̃ be its fixed field.
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Proposition. The extensions K/K̃ and L/L̃ are isomorphic.

Thus condition (ii) in 6.6 Proposition can be translated in terms of ρ. See below (Section 6.8) for a
translation of the last assertion of [Blondel 2004].

Proof. The proof relies on the compatibility of tame lifting of simple characters with the induction process
for Weil group representations [Bushnell and Henniart 1996; 2005; 2014]. Choose an isomorphism ι

of K/F onto L/F.
The representation σK of WK on V(σ ) corresponds to a (cuspidal) representation ρL of GLm(L),

where m = d[F[β] : L]; the simple character θ̃L appearing in ρL is an L/F-lift of θ̃ and L/F is the
maximal tame extension such that θ̃ has a lift to GL[F[β]:L](L).

If K ′ is intermediate between F and K , and L ′ = ι(K ′), then σK ′ = IndWK ′

WK
V(σ ) corresponds to a

(cuspidal) representation ρL ′ of GLm′(L ′), with m′ = d[F[β] : L ′], and the simple character θ̃L ′ appearing
in ρL ′ is an L ′/F-lift of θ̃ and lifts to θ̃L in L/L ′. But K̃ is the maximal intermediate subfield K ′ such
that σK ′ is self-dual. Because the Langlands correspondence is compatible with taking contragredients, the
field ι(K̃ ) is the maximal field L ′ intermediate between F and L such that θ̃L ′ is self-dual (i.e., conjugate
to θ̃−1

L ′ in GL[F[β]:L ′](L ′)). Thus ι(K̃ )= L̃ . �

6.8. Now assume that d= 1 and L/L̃ (or equivalently K/K̃ ) is ramified. We want to express the condition
that α is ramified in 6.6 Proposition in terms of ρ. For that we have to review a little bit the construction
of ρ from θ̃ from Section 1, whose notation we use.

We also continue with the notation for ρ introduced in the previous subsection. Recall that, since d = 1,
we have n=[F[β] : F]. The simple character θ̃ is a character of H̃ 1 and we have the open subgroups J̃ 1, J̃
of GLn(F). We write η̃ for the unique irreducible representation of J̃ 1 containing θ̃ . Then J̃ =UF[β] J̃ 1 and,
by the types theorem [Bushnell and Henniart 2014, §7.6, Theorem], there is a unique beta-extension κ̃
such that tr κ̃ is constant on the roots of unity of F[β] of order prime to p which are regular for
the action of Gal(Knr/F), where Knr is the maximal unramified extension of F in K . Moreover,
the same result gives that ρ contains the representation κ̃ ⊗ ωα of J, where α is seen as a character
of J/J 1

'UF[β]/U 1
F[β] 'UK /U 1

K and ω is the order-2 character of UF[β].
Thus we conclude that ρ is symplectic when ρ contains κ̃ , and is orthogonal when ρ contains ωκ̃ .

6.9. We have discussed at length above the ambiguity between σ and σ ′ inherent to our method — of
course when σ and σ ′ have different parities it is the orthogonal one that features.

Let us now briefly mention a few favourable circumstances when our methods do allow us to determine
completely the parameter of a cuspidal representation π of Sp2N (F).

Since the parameter φ of π is orthogonal of dimension 2N + 1, one irreducible component must have
odd dimension. But in our case where p is odd, the only irreducible orthogonal representations of WF

with odd dimension are the four quadratic characters of WF . Thus at least one of them, say ω, has to occur
in the parameter, and if the Jordan block it belongs to is (ω,m) then m has to be congruent to 1 (mod 4),
to yield an odd-dimensional contribution to φ; the contribution to the determinant is then ω. We then see



2376 Corinne Blondel, Guy Henniart and Shaun Stevens

that if we know all other components, then we can decide between ω and ω′ by taking into account the
condition detφ = 1. To know all the other components σ , it is necessary that for each of them, σ and σ ′

have different parities. We conclude that it will be rather rare that we determine φ without ambiguity.
Let us give just a few examples in low dimension. See [Lust and Stevens 2016] for a discussion of

depth-zero cases.

N = 1, SL2(F): The parameter is either ρ⊕ω with ρ irreducible orthogonal of dimension 2 and ω= det ρ,
or ω1 ⊕ ω2 ⊕ ω3 where the ωi ’s are the nontrivial quadratic characters of WF . In terms of homomor-
phisms WF → SO3(C)' PGL2(C), the second case corresponds to a triply imprimitive representation
of WF , and the first case to a simply imprimitive one [Bushnell and Henniart 2006]. In the first case, our
methods allow us to determine ρ only if it is induced from the quadratic unramified extension of F (i.e.,
in fact, when ω is unramified of order 2).

N = 2, Sp4(F): There has to be a quadratic character ω of WF occurring with Jordan block (ω, 1)
only. If another quadratic character η occurs, the Jordan block can be (η, 1) or (η, 3). In the latter
case φ = ω⊕ η⊕ η⊗St3 and the determinant condition implies that ω is trivial and consequently that η
is not trivial. If our computation shows that both 1 and the nontrivial quadratic unramified character ωnr

occur, then the parameter is necessarily φ = 1⊕ωnr ⊕ωnr ⊗St3; if, on the contrary, our method gives
that a ramified quadratic character η occurs, then we cannot distinguish between η and η′ = ηωnr .

Let us look at the case where two distinct characters ω, η occur with Jordan blocks (ω, 1) and (η, 1)
only. Then a third character, ν say, must also occur and φ = ω⊕ η⊕ ν ⊕ ρ, where ρ is irreducible
orthogonal of dimension 2. The determinant of ρ is the quadratic character ωE/F defining the extension
from which ρ is induced so that the determinant condition on φ is ωηνωE/F = 1.

When E/F is unramified, there is no ambiguity in ρ in our computation, and the parameter is

φ = 1⊕µ⊕µ′⊕ ρ,

where µ, µ′ are the two ramified quadratic characters of WF .
When E/F is ramified, the parameter could be

φ = 1⊕ωnr ⊕ωnrωE/F ⊕ ρ or φ = 1⊕ωnr ⊕ωnrωE/F ⊕ ρ
′

and we cannot resolve the ambiguity between ρ and ρ ′.
Finally if there is only one quadratic character ω of WF occurring in φ, we can compute ω, and thus

determine φ completely, only if the other components (necessarily even-dimensional) offer no ambiguity.
We hope to come back to the case of Sp4(F) in a sequel to this paper, where a refinement of our

methods will allow a more complete determination of φ.

7. Langlands correspondence and ramification

In this final section we interpret our results on the endoscopic transfer map in terms of the Langlands
correspondence for G. In particular, we prove a ramification theorem for the symplectic group G,
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giving a bijection between self-dual endoclasses and self-dual orbits of irreducible representations of
the wild inertia group PF which is simultaneously compatible (in a suitable sense) with the Langlands
correspondence for symplectic groups over F in all dimensions.

7.1. We first recall the ramification theorem for general linear groups, from [Bushnell and Henniart 2003,
8.2, Theorem]; see also [Bushnell and Henniart 2014, 6.3, Theorem]. Recall that E(F) denotes the set of
endoclasses over F. We write WF\ Irr(PF ) for the set of WF -orbits of irreducible representations of PF .
By abuse of notation, we will identify such an orbit with the direct sum of the inequivalent irreducible
representations in the orbit; thus, for γ an irreducible representation of PF with stabilizer S, we identify
its WF -orbit [γ ] with

⊕
WF/S

gγ . In particular, we can then talk of the dimension of an orbit.
Given an irreducible representation of WF , by Mackey theory its restriction to PF is a multiple of a

single WF -orbit of irreducible representations, so we get a natural map Irr(WF )→WF\ Irr(PF ), which
is surjective.

Theorem. There is a unique bijection E(F)→ WF\ Irr(PF ), 2 7→ [γ (2)], which is compatible with
the local Langlands correspondence:⋃

n≥1 Cusp(GLn(F))
∼
//

����

Irr(WF )

����

E(F) ∼
// WF\ Irr(PF )

Moreover we have deg2= dim[γ (2)].

7.2. Now we consider how this bijection behaves with respect to duality. Recall that we write Esd(F)
for the set of self-dual endoclasses, that is, those endoclasses 2 for which there is a self-dual simple
character θ̃ with endoclass 2. If the endoclass is nontrivial then θ̃ is associated to a skew simple
stratum [3,−, 0, β] and the associated field E = F[β] has degree n over F and is equipped with a Galois
involution with fixed field Eo. If 2 is the trivial endoclass then we have E = Eo = F.

It will be useful to have the following result, which guarantees the existence of self-dual cuspidal
representations of general linear groups with given (self-dual) endoclass.

Lemma. Let 2 be a self-dual endoclass and E/Eo as above. Let m be an integer which is

(i) odd if E/Eo is unramified quadratic,

(ii) 1 or even if E/Eo is ramified quadratic,

(iii) even if E = F,

and put n = m deg2. Then there are (at least) two inequivalent orthogonal self-dual cuspidal representa-
tions of GLn(F) with endoclass 2, and two inequivalent symplectic self-dual cuspidal representations of
GLn(F) with endoclass 2.
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Note that, in the case that E = F (so 2 is trivial) and m = 1, there are four inequivalent self-dual
(cuspidal) representations of GL1(F) with endoclass 2 but all four are orthogonal; they are the four
quadratic characters.

Proof. Suppose first that 2 is nontrivial. Let θ̃ be a self-dual simple character with endoclass 2, as
above, with associated skew simple stratum [3,−, 0, β] and E = F[β]. Then any transfer (in the sense
of simple characters) of θ̃ is also self-dual, by [Stevens 2005, Corollary 2.13].

Let m be an integer as in the hypotheses of the lemma and let f be a nondegenerate skew-hermitian
form on an m-dimensional E-vector space V such that the associated unitary group (a group over Eo) is
quasisplit. We write ooE for the ring of integers of Eo and poE for its unique maximal ideal, with ko

E the
residue field. Fix λo an F-linear form on Eo such that {e ∈ Eo | λo(eooE)⊆ pF } = poE , and consider the
form h = λo ◦ trE/Eo ◦ f on V. Thinking of V as an n-dimensional F-vector space, this is a nondegenerate
alternating form. We take the transfer θ̃m of θ̃ to the unique (up to conjugacy) self-dual oE -lattice chain3m

on V such that 3m(0) 6=3m(1). Thus θ̃ is a self-dual simple character of endoclass 2.
Denote by κ̃m the unique p-primary extension of θ̃m , and denote by J̃m the group on which it lives;

then, by uniqueness, κ̃m is self-dual (that is, invariant under the involution σ defining the symplectic
group SpF (V )). Now κ̃m extends to a representation K̃m of E× J̃m with determinant a power of p and any
two such extensions differ by an unramified character of order a power of p. In particular, K̃m◦σ is another
such extension and so has the form K̃m⊗χ for χ unramified of order a power of p. Since p is odd, χ has
a unique square root χ ′ of order a power of p, and then we can replace K̃m by K̃m⊗χ

′, which is self-dual.
Now we consider the quotient

J̃m/ J̃ 1
m ' P̃(3m,oE )/P̃1(3m,oE )' GLm(kE).

The involution σ also acts here, with fixed points a unitary group if E/Eo is unramified and a symplectic
group if E/Eo is ramified (in the latter case, it is symplectic rather than orthogonal because 3m(0) 6=
3m(1)); the action of σ is conjugate to the map transpose-inverse-Gal(kE/ko

E)-conjugate. The conditions
on m are then precisely those required for the existence of a Gal(kE/ko

E)-self-dual cuspidal representa-
tion τ̃ of GLm(kE) (that is, such that the Galois conjugate of τ̃ is equivalent to τ̃∨) — see [Adler 1997,
Theorem 7.1] in the case kE = ko

E and [Kariyama 2008, Corollary 5.8] in the case kE 6= ko
E .

Let ω be a quadratic character of E , necessarily tame since p is odd. We also write ω for the character
of k×E induced by restricting ω; then the representation τ̃ω is also Gal(kE/ko

E)-self-dual. We inflate τ̃ω
to J̃m and extend to a representation T̃ω of E× J̃m by setting T̃ω($E) = ω($E)Idτ̃ω, for $E a fixed
uniformizer of E such that $ E = (−1)e(E/Eo)$E , where x 7→ x̄ denotes the generator of Gal(E/Eo).
This representation T̃ω is then self-dual, that is, equivalent to T̃ω ◦ σ .

Finally, the representation ρω = c-IndGLn(F)
E× J̃

K̃m ⊗ T̃ω is then irreducible and cuspidal, and equivalent
to ρω ◦ σ . Since the involution σ is a conjugate of the involution transpose-inverse, by [Gelfand and
Kajdan 1975, Theorem 2], the representation ρω ◦ σ is equivalent to ρ∨ω .

Thus we have constructed four self-dual cuspidal representations ρω of GLm(F) with endoclass 2, and
it remains only to see that two are orthogonal and two symplectic. Note that ρω and ρω′ are unramified
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twists of each other if and only if ω−1ω′ is the nontrivial unramified quadratic character ωnr . If either m>1
or E/Eo is unramified then, by 6.6 Proposition and 6.7 Proposition, the representations ρω and its self-dual
unramified twist ρωωnr have opposite parities so we are done. (Note that, writing L for the maximal tame
subextension of E/F and Lo for that of Eo/F, we have that L/Lo is ramified if and only if E/Eo is
ramified, since p is odd.)

On the other hand, if m = 1 and E/Eo is ramified then we are in the situation of Section 6.8, and
the argument there explains that one pair ρω, ρωωnr consists of two orthogonal representations, while the
other pair consists of two symplectic representations, as required.

We are left with the case that2 is the trivial endoclass and m is even. The existence of self-dual cuspidal
depth-zero representations is [Adler 1997, Theorem 7.1] and the argument that there are (at least) two or-
thogonal and two symplectic is formally exactly as in the previous case, with K̃ the trivial representation. �

We say that an orbit [γ ] in WF\ Irr(PF ) is self-dual if it is self-dual when considered as a representation
of PF ; that is, if there is g ∈WF such that γ ∨ ' gγ . We write (WF\ Irr(PF ))

sd for the set of self-dual
orbits. Then we have:

Proposition. The bijection of 7.1 Theorem restricts to a bijection,

Esd(F)→ (WF\ Irr(PF ))
sd. (7-1)

Proof. Let γ be an irreducible representation of PF and put n = dim[γ ]. Suppose that [γ ] is a self-dual
orbit and let g ∈ WF be such that gγ ' γ ∨. Then, as in Section 6.5, there is a unique irreducible
representation 0 of the stabilizer S of γ such that det0 has order a power of p and g0 ' 0∨. Then the
representation IndWF

S 0 is irreducible self-dual so the corresponding cuspidal representation ρ of GLn(F)
is also self-dual. By [Blondel 2004, 2.2, Corollary] (see also [Goldberg et al. 2007, p. 10]), ρ contains a
simple character with self-dual transfer to GL2n(F), so the endoclass 2(ρ), which corresponds to [γ ] by
7.1 Theorem, is self-dual.

Conversely, let 2 be a self-dual endoclass and put n = deg2. By the lemma, there is a self-dual
cuspidal representation ρ of GLn(F) with endoclass2. Then the corresponding irreducible representation
of WF is self-dual so the orbit in its restriction to PF is also self-dual, as required. �

7.3. We now introduce the notion of wild parameter.

Definition. A wild parameter (over F) is a finite-dimensional semisimple complex representation V
of PF such that gV ' V for all g ∈ WF . We write 9(F) for the set of equivalence classes of wild
parameters over F, and 9n(F) for the set of equivalence classes of n-dimensional wild parameters over F.

Equivalently, we can think of an element of 9n(F) as the GLn(C)-conjugacy class of a homomor-
phism ψ :PF→GLn(C) for which there exists A∈GLn(C) such that ψ ◦Ad g=Ad A◦ψ for all g ∈WF .

Thus a finite-dimensional semisimple complex representation V of PF is a wild parameter if and only
if, when we decompose it into its isotypic components V =

⊕
γ∈Irr(PF )

V(γ ), we have

dimV(γ )= dimV(gγ ) for all g ∈WF .
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Therefore a wild parameter is equivalent to ⊕
WF\ Irr(PF )

m[γ ][γ ],

where we are thinking of the orbit [γ ] as the sum over the WF -conjugates of γ ∈ Irr(PF ), and m[γ ] ∈Z≥0.
Equivalently, the n-dimensional wild parameters are precisely the restrictions to PF of the Lang-

lands parameters for GLn(F); that is, writing 8n(F) for the set of admissible homomorphisms φ :
WF ×SL2(C)→ GLn(C) up to conjugacy, and 8(F)=

⋃
n≥18n(F), the natural map

8(F)→9(F)

induced by φ 7→φ|PF is surjective. Indeed, by taking direct sums one need only check that, for any γ ∈PF ,
there is a Langlands parameter φ whose restriction to PF is isomorphic to [γ ]. This, however, follows
from the discussion in Section 6.5: γ extends to a representation 0 of its stabilizer Sγ by [Bushnell
and Henniart 2014, 1.3, Proposition], and then IndWF

Sγ 0 is the required Langlands parameter (with
trivial SL2(C) action).

Recall from Section 2.7 that an endoparameter of degree n over F is a formal sum∑
2∈E

m22, m2 ∈ Z≥0, such that
∑
2∈E

m2 deg2= n.

We write EEn(F) for the set of endoparameters of degree n over F. Then the ramification theorem for GLn

(7.1 Theorem) together with the compatibility of the Langlands correspondence with parabolic induction
immediately give:

Theorem. The bijection of 7.1 Theorem induces, for each n, a bijection EEn(F)→ 9n(F) which is
compatible with the Langlands correspondence:

Irr(GLn(F))
∼
//

����

8n(F)

����

EEn(F)
∼

// 9n(F)

7.4. Now we turn to the case of the symplectic group G and recall Arthur’s local Langlands correspondence
in this case.

We denote by 8(G) the set of Langlands parameters for G, that is, the set of conjugacy classes of
homomorphisms φ : WF × SL2(C)→ SO2N+1(C) such that the representation obtained by composing
with the natural inclusion map ι : SO2N+1(C) ↪→ GL2N+1(C) is semisimple.

We denote by 8disc(G) the set of discrete Langlands parameters, that is, those whose image is not
contained in a proper parabolic subgroup of SO2N+1(C); equivalently, ι◦φ is a direct sum of inequivalent
irreducible orthogonal representations of WF × SL2(C) and has determinant 1. Thus, given φ a discrete
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Langlands parameter, the representation ι ◦φ decomposes as a multiplicity-free direct sum⊕
i∈I

σi ⊗Stmi , (7-2)

where Stm denotes the unique m-dimensional irreducible algebraic representation of SL2(C) for m ≥ 1,
and the σi are irreducible self-dual representations of WF , such that

•
∑

i∈I mi dim σi = 2N + 1,

• σi is symplectic if mi is even and orthogonal if mi is odd,

•
∏

i∈I det(σi )
mi = 1.

We say that a discrete Langlands parameter φ is cuspidal if, whenever σ ⊗ Stm is a subrepresentation
of ι◦φ and m> 2, the representation σ⊗Stm−2 is also a subrepresentation of ι◦φ. We denote by8cusp(G)
the set of cuspidal Langlands parameters.

As usual, for φ a discrete Langlands parameter, we denote by Sφ the group of connected components
of the centralizer in SO2N+1(C) of the image of φ. This is a finite product of copies of the cyclic group
of order 2; if ι ◦φ decomposes as in (7-2), then Sφ has order 2#I−1.

Theorem [Arthur 2013, Theorems 1.5.1 and 2.2.1; Mœglin 2011, Theorem 1.5.1]. Suppose that F is
of characteristic zero. There is a natural surjective map from the set of discrete series representations
of G to 8disc(G) with finite fibres, characterized by an equality of stable distributions via transfer
to GL2N+1(C). Moreover,

• the fibre of φ ∈8disc(G) is in bijection with the set of characters of Sφ;

• the fibre 5φ of φ ∈8disc(G) contains a cuspidal representation of G if and only if φ is cuspidal, in
which case 5φ ∩Cusp(G) is in bijection with the set of alternating characters of Sφ .

We do not recall the definition of alternating character (see [Mœglin 2011, §1.5]) but only recall that if,
for φ a cuspidal Langlands parameter as in (7-2), we set I0 = {σi | σi is orthogonal}, then there are 2#I0−1

alternating characters of Sφ . (Note that I0 is nonempty, since one of the σi must be a quadratic character.)
In particular, the L-packet of a cuspidal Langlands parameter φ consists only of cuspidal representations
if and only if mi = 1 for all i ∈ I, in the description (7-2); that is, each self-dual irreducible representation
of WF which appears in φ is orthogonal and appears with multiplicity 1. In this case, we say that φ is
regular.

7.5. We say that a wild parameter V is self-dual if it is self-dual as a representation of PF , in which
case det(V) is trivial (since p is odd).

Given a self-dual wild parameter, we would like to see that there is a unique choice of orthogonal
structure on it. This is indeed a special case of the following result on the existence and uniqueness of
orthogonal structures on self-dual representations of groups of odd order.
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Proposition. Let G be a finite group of odd order and let V be a finite-dimensional complex representation
of G . If V is self-dual, then V is orthogonal: there is on V a G -invariant nondegenerate symmetric bilinear
form; moreover such a form is unique up to the action of AutG (V).

In other words, a self-dual representation of G is underlying a unique (up to isomorphism) orthogonal
representation.

Proof. As G has odd order, the only self-dual irreducible representation of G is the trivial representation 1G .
For an irreducible representation γ of G , let V(γ ) be the γ -isotypic component of V , and put Vγ =
HomG (γ,V), so that V(γ ) decomposes canonically as γ ⊗ Vγ . Then V is self-dual if and only if Vγ
and Vγ ∨ have the same dimension for all γ .

Assume V is self-dual. For any G -invariant nondegenerate symmetric bilinear form on V , we can
write V as the orthogonal direct sum of its subspaces V(1G ) and V(γ )⊕V(γ ∨) for γ running through a set
of representatives of the nontrivial irreducible representations up to contragredient. On V(1G ), where G

acts trivially, there is a nondegenerate symmetric bilinear form, unique up to the action of Aut(V(1G )).
Therefore, for existence and uniqueness, it is enough to consider the case where V = V(γ )⊕V(γ ∨)

for some nontrivial γ . Then the dual of V(γ ) is γ ∨⊗ (Vγ )∗, whereas the dual of V(γ ∨) is γ ⊗ (Vγ ∨)∗.
An isomorphism j : V → V∨ (that is, a self-duality on V) is the direct sum of Idγ ⊗ i and Idγ ∨ ⊗ i ′,
where i is an isomorphism of Vγ onto (Vγ ∨)∗, and i ′ an isomorphism of Vγ ∨ onto (Vγ )∗. The self-duality
is orthogonal if and only if i and i ′ are transpose to each other.

Obviously there exists then an orthogonal structure on V , and moreover all such structures are given
by the choice of i (with i ′ its transpose). Since AutG (V), which is the product Aut(Vγ )×Aut(Vγ ∨), acts
transitively on the set of i , we have uniqueness too. �

7.6. Now let V be an n-dimensional self-dual wild parameter over F. By 7.5 Proposition, V then carries
a PF -invariant nondegenerate symmetric bilinear form, unique up to the action of AutPF (V). Thus we
can regard V as a homomorphism ψ :PF → SO(V)' SOn(C).

For γ ∈ Irr(PF ), we write V[γ ] for the component of V corresponding to the orbit of γ under WF ;
that is,

V[γ ] =
∑

g∈WF

V(gγ ).

We consider the stabilizer in SO(V) of the self-dual decomposition

V =
⊕

WF\ Irr(PF )

V[γ ]

and say that V is discrete if this stabilizer is contained in no proper Levi subgroup of SO(V). Equivalently,
the self-dual parameter V is discrete if and only if every orbit [γ ] in the support of V (that is, such
that V[γ ] is nonzero) is self-dual.

We write 9sd
n (F) for the set of equivalence classes of discrete self-dual n-dimensional wild parameters

over F. Note that the restriction to PF of any discrete Langlands parameter for G is a discrete self-dual
wild parameter of dimension 2N + 1, which explains the nomenclature.
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Recall also that we have the set EEsd
n (F) of self-dual endoparameters of degree n over F, which consists

of those endoparameters of degree n with support in the set Esd(F) of self-dual endoclasses. Then we
have the following ramification theorem for G.

Theorem. The bijection (7-1) induces, for each N ≥ 1, a bijection EEsd
2N (F)→9sd

2N+1(F) which, when F
is of characteristic zero, is compatible with the Langlands correspondence for cuspidal representations
of G:

Cusp(G) // //

����

8cusp(G)

����

EEsd
2N (F)

∼
// 9sd

2N+1(F)

The induced bijection EEsd
2N (F)→9sd

2N+1(F) is not as obvious as in the case of general linear groups.
If we denote the bijection (7-1) by 2 7→ [γ (2)] then the induced map is∑

2

m22 7→ 1PF ⊕

⊕
2

m2[γ (2
2)]. (7-3)

We remark also that this theorem asserts that the restriction map 8cusp(G)→9sd
2N+1(F) is surjective, so

that every discrete self-dual wild parameter of dimension 2N+1 occurs as the restriction of not only some
discrete Langlands parameter for G but of some cuspidal parameter. In fact, we show that it occurs as the
restriction of a regular parameter (i.e., one whose L-packet consists only of cuspidal representations).

Proof. Since the only irreducible self-dual representation of PF is the trivial representation (so the
only odd-dimensional self-dual class [γ ] is that of the trivial representation), while the squaring map on
endoclasses is a bijection (since p is odd), it is clear that (7-3) defines a bijection. Its compatibility with
the Langlands correspondence is now just a reinterpretation of 2.8 Theorem, using 7.3 Theorem.

It remains to prove that the vertical maps are surjective. We prove that the map on the right is surjective,
and then surjectivity on the left follows. So let V =

⊕
m[γ ][γ ] be a (2N+1)-dimensional self-dual wild

parameter (where the sum is over the WF orbits in Irr(PF ) as usual). We will define a regular Langlands
parameter σ =

⊕
σ [γ ] for G such that σ [γ ] restricts to V[γ ] = m[γ ][γ ].

Let γ ∈ Irr(PF ) be a nontrivial representation. If m[γ ]= 0 then we put σ [γ ] = {0} so assume m[γ ]> 0,
in which case the orbit [γ ] is self-dual. Let 2 be corresponding (self-dual) endoclass and let E/Eo be the
quadratic extension associated to a skew simple stratum which has a simple character with endoclass 2.
We pick nonnegative integers m1,m2 with m1+m2 = m[γ ] such that

(i) m1,m2 are odd or 0 if E/Eo is unramified;

(ii) m1,m2 are even or 1 if E/Eo is ramified.

For i = 1, 2 we put ni = mi deg2. Then, by 7.2 Lemma, there exist inequivalent orthogonal self-dual
cuspidal representations ρ1, ρ2 of GLn1(F),GLn2(F) respectively, both with endoclass 2. Let σ1, σ2

denote the corresponding Langlands parameters, which are orthogonal and put σ [γ ] = σ1⊕ σ2; then the
restriction of σ [γ ] to PF is V[γ ], as required, by 7.1 Theorem.
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Finally, put m = m[1PF ]
− 1, which is even. By 7.2 Lemma, there is an orthogonal self-dual depth-

zero cuspidal representation of GLm(F), and let δ be the corresponding representation of WF . We
put σ [1PF ] = δ⊕ω, where ω = det(δ)

∏
[γ ]6=[1PF ]

det σ [γ ].
Then σ =

⊕
[γ ]σ [γ ] is a regular cuspidal Langlands parameter for G which restricts to V . �

7.7. In the proof of 7.6 Theorem we saw that, for any self-dual wild parameter V of odd dimension, there is
a regular Langlands parameter for G which restricts to V . As well as this, one can (in general) cook up other
examples of Langlands parameters which restrict to V and are highly irregular. Since we find it amusing,
we include here a description of how to find a highly irregular Langlands parameter which restricts to V .

We begin with the following observation, which is just the translation of 7.2 Lemma (with m = 1) to
Galois representations. Suppose γ ∈ Irr(PF ) is nontrivial with self-dual WF -orbit. Then there are four self-
dual representations of WF whose restriction to PF is [γ ], two of which are orthogonal and two of which
are symplectic. We write σγ,1, σγ,2 for the two orthogonal ones, and σγ,3, σγ,4 for the two symplectic ones.

Now we decompose V =
⊕

m[γ ][γ ] as above. As before, we will define a Langlands parame-
ter σ =

⊕
σ [γ ], with σ [γ ]|PF = m[γ ][γ ]. We will obtain a parameter which is not regular whenever

either m[1PF ]
> 3 or m[γ ] > 1 for some nontrivial self-dual [γ ].

By Lagrange’s four-square theorem, we can find nonnegative integers such that

4m[γ ]+ 2= a2
1 + a2

2 + a2
3 + a2

4 .

Moreover, two of the ai are even and the other two odd. We label them so that a1, a2 are even and a3, a4

are odd and, when m[γ ] = 2, we take the solution with a1 = a2 = 0. Then we set

σ [γ ] =

4⊕
i=1

σγ,i ⊗ (Stai−1⊕Stai−3⊕ · · · ),

where we understand that we ignore the terms on the right where ai ≤ 1.
Finally, write ω1 =

∏
[γ ]6=[1PF ]

det σ [γ ], which is a quadratic character, and let ω2, ω3, ω4 denote the
other three quadratic characters. Again, there are nonnegative integers such that

m[1PF ]
= a2

1 + a2
2 + a2

3 + a2
4 .

Since m[1PF ]
is odd, there is exactly one ai which has opposite parity to the other three, and we choose

our numbering so that this is a1. Then we take

σ [1PF ] =

4⊕
i=1

ωi ⊗ (St2ai−1⊕St2ai−3⊕ · · ·⊕St1),

where, again, we ignore the terms for which ai = 0.
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[Mœglin and Tadić 2002] C. Mœglin and M. Tadić, “Construction of discrete series for classical p-adic groups”, J. Amer. Math.
Soc. 15:3 (2002), 715–786. MR Zbl

[Sécherre and Stevens 2016] V. Sécherre and S. Stevens, “Towards an explicit local Jacquet–Langlands correspondence beyond
the cuspidal case”, preprint, 2016. arXiv

[Stevens 2001] S. Stevens, “Intertwining and supercuspidal types for p-adic classical groups”, Proc. London Math. Soc. (3) 83:1
(2001), 120–140. MR Zbl

[Stevens 2005] S. Stevens, “Semisimple characters for p-adic classical groups”, Duke Math. J. 127:1 (2005), 123–173. MR Zbl

[Stevens 2008] S. Stevens, “The supercuspidal representations of p-adic classical groups”, Invent. Math. 172:2 (2008), 289–352.
MR Zbl

Communicated by Michael Rapoport
Received 2017-05-30 Revised 2018-06-02 Accepted 2018-07-20

corinne.blondel@imj-prg.fr CNRS-IMJ-PRG, Université Paris Diderot, Paris, France

guy.henniart@math.u-psud.fr Université de Paris-Sud, Laboratoire de Mathématiques d’Orsay, Orsay, France

shaun.stevens@uea.ac.uk School of Mathematics, University of East Anglia, Norwich, United Kingdom

mathematical sciences publishers msp

https://www.jstor.org/stable/j.ctt1287kfd
http://msp.org/idx/mr/1876802
http://msp.org/idx/zbl/1036.11027
http://dx.doi.org/10.1007/s002220050012
http://msp.org/idx/mr/1738446
http://msp.org/idx/zbl/1048.11092
http://dx.doi.org/10.1093/imrn/rnp150
http://msp.org/idx/mr/2595008
http://msp.org/idx/zbl/1184.22009
http://dx.doi.org/10.4153/CJM-2008-048-7
http://msp.org/idx/mr/2442048
http://msp.org/idx/zbl/1152.22015
http://msp.org/idx/arx/1611.02667
http://dx.doi.org/10.1007/BF01244308
http://msp.org/idx/mr/1228127
http://msp.org/idx/zbl/0809.11032
http://msp.org/idx/arx/1611.08421
http://dx.doi.org/10.1515/9781400881772
http://msp.org/idx/mr/742472
http://msp.org/idx/zbl/0556.20033
http://dx.doi.org/10.1007/s00208-013-0953-y
http://msp.org/idx/mr/3157998
http://msp.org/idx/zbl/1294.22015
http://dx.doi.org/10.1016/S0021-8693(03)00172-8
http://msp.org/idx/mr/2004481
http://msp.org/idx/zbl/1028.22016
http://msp.org/idx/mr/2767522
http://msp.org/idx/zbl/1225.22015
http://dx.doi.org/10.1090/conm/614/12254
http://msp.org/idx/mr/3220932
http://msp.org/idx/zbl/1298.22019
http://dx.doi.org/10.1090/S0894-0347-02-00389-2
http://msp.org/idx/mr/1896238
http://msp.org/idx/zbl/0992.22015
http://msp.org/idx/arx/1611.04317
http://dx.doi.org/10.1112/plms/83.1.120
http://msp.org/idx/mr/1829562
http://msp.org/idx/zbl/1017.22012
http://dx.doi.org/10.1215/S0012-7094-04-12714-9
http://msp.org/idx/mr/2126498
http://msp.org/idx/zbl/1063.22018
http://dx.doi.org/10.1007/s00222-007-0099-1
http://msp.org/idx/mr/2390287
http://msp.org/idx/zbl/1140.22016
mailto:corinne.blondel@imj-prg.fr
mailto:guy.henniart@math.u-psud.fr
mailto:shaun.stevens@uea.ac.uk
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Richard E. Borcherds University of California, Berkeley, USA

Antoine Chambert-Loir Université Paris-Diderot, France

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad Stanford University, USA

Samit Dasgupta University of California, Santa Cruz, USA

Hélène Esnault Freie Universität Berlin, Germany

Gavril Farkas Humboldt Universität zu Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Kiran S. Kedlaya Univ. of California, San Diego, USA

János Kollár Princeton University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Martin Olsson University of California, Berkeley, USA

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Michael Rapoport Universität Bonn, Germany

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Christopher Skinner Princeton University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Pham Huu Tiep University of Arizona, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2018 is US $340/year for the electronic version, and $535/year (+$55, if shipping outside the US) for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2018 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 12 No. 10 2018

2237Higher weight on GL(3), II: The cusp forms
JACK BUTTCANE

2295Stark systems over Gorenstein local rings
RYOTARO SAKAMOTO

2327Jordan blocks of cuspidal representations of symplectic groups
CORINNE BLONDEL, GUY HENNIART and SHAUN STEVENS

2387Realizing 2-groups as Galois groups following Shafarevich and Serre
PETER SCHMID

2403Heights of hypersurfaces in toric varieties
ROBERTO GUALDI

2445Degree and the Brauer–Manin obstruction
BRENDAN CREUTZ and BIANCA VIRAY

2471Bounds for traces of Hecke operators and applications to modular and elliptic curves over a finite field
IAN PETROW

24992-parts of real class sizes
HUNG P. TONG-VIET

A
lgebra

&
N

um
ber

Theory
2018

Vol.12,
N

o.10

http://dx.doi.org/10.2140/ant.2018.12.2237
http://dx.doi.org/10.2140/ant.2018.12.2295
http://dx.doi.org/10.2140/ant.2018.12.2327
http://dx.doi.org/10.2140/ant.2018.12.2387
http://dx.doi.org/10.2140/ant.2018.12.2403
http://dx.doi.org/10.2140/ant.2018.12.2445
http://dx.doi.org/10.2140/ant.2018.12.2471
http://dx.doi.org/10.2140/ant.2018.12.2499

	Introduction
	0.1. 
	0.2. 
	0.3. 
	0.4. 
	0.5. 
	0.6. 
	0.7. 
	0.8. 
	0.9. 
	0.10. 

	Notation
	1. Cuspidal types and primary beta-extensions
	1.1. 
	1.2. 
	1.3. 
	1.4. 
	1.5. 
	1.6. 
	1.7. 
	1.8. 

	2. Inertial Jordan blocks
	2.1. 
	2.2. 
	2.3. 
	2.4. 
	2.5. 
	2.6. 
	2.7. 
	2.8. 

	3. Types, covers and reducibility
	3.1. 
	3.2. 
	3.3. 
	3.4. 
	3.5. 
	3.6. 
	3.7. 
	3.8. 
	3.9. 
	3.10. 
	3.11. 
	3.12. 
	3.13. 
	3.14. 
	3.15. 
	3.16. 
	3.17. 

	4. Reduction to the simple case
	4.1. 
	4.2. 
	4.3. 
	4.4. 
	4.5. 
	4.6. 
	4.7. 
	4.8. 
	4.9. 
	4.10. 

	5. The simple case
	5.1. 
	5.2. 
	5.3. 
	5.4. 
	5.5. 
	5.6. 
	5.7. 
	5.8. 
	5.9. 
	5.10. 

	6. Galois parameters
	6.1. 
	6.2. 
	6.3. 
	6.4. 
	6.5. 
	6.6. 
	6.7. 
	6.8. 
	6.9. 

	7. Langlands correspondence and ramification
	7.1. 
	7.2. 
	7.3. 
	7.4. 
	7.5. 
	7.6. 
	7.7. 

	Acknowledgements
	References
	
	

