

Realizing 2－groups as Galois groups following Shafarevich and Serve

Peter Schmid

」 」 」 」 」 」

\square

Realizing 2-groups as Galois groups following Shafarevich and Serre

Peter Schmid

Abstract

Let G be a finite p-group for some prime p, say of order p^{n}. For odd p the inverse problem of Galois theory for G has been solved through the (classical) work of Scholz and Reichardt, and Serre has shown that their method leads to fields of realization where at most n rational primes are (tamely) ramified. The approach by Shafarevich, for arbitrary p, has turned out to be quite delicate in the case $p=2$. In this paper we treat this exceptional case in the spirit of Serre's result, bounding the number of ramified primes at least by an integral polynomial in the rank of G, the polynomial depending on the 2-class of G.

1. Introduction

Let p be prime and G a finite p-group. By [Scholz 1937; Reichardt 1937] there is a Galois extension $K \mid \mathbb{Q}$ with group G provided p is odd. The general case, allowing $p=2$, has been treated by Shafarevich [1954] in a different and somehow more complicated way. Actually the $p=2$ case led to controversial discussions some years ago, because Shafarevich used in his proof "something on free groups (and their p-filtration) which is false for $p=2$ " (Serre in a letter of May 10, 1988). Shafarevich [1989] corrected this by suggesting to use a refined filtration. The proof of Shafarevich's theorem (for solvable groups) given in [Neukirch et al. 2000] is based on this filtration; it employs deep results and techniques in cohomology of number fields.

The Scholz-Reichardt method has been explained further by Serre. In a letter of September 6, 1988 he wrote: "I have now looked into Reichardt's 1937 paper in Crelle, and it is quite nice. The proof gives a rather surprising result, namely: if G has order $p^{n}, p \neq 2$, then G can be realized as $\operatorname{Gal}(K \mid \mathbb{Q})$ where K is ramified at most n primes. However, $p \neq 2$ seems indeed essential." This was elaborated in [Serre 1992, Chapter 2]. A slight improvement was given in [Plans 2004]; see also [Geyer and Jarden 1998].

The field K in Serre's letter refers to so-called Scholz fields (Section 2). Only tame ramification happens in these fields, so that the inertia groups are all cyclic. This implies that the cardinality of the set $\operatorname{Ram}(K)$ of rational primes ramified in K must be at least equal to the rank $d(G)$ of the p-group $G=\operatorname{Gal}(K \mid \mathbb{Q})$, its minimum number of generators (in view of Burnside's basis theorem and the Hermite-Minkowski theorem). Indeed at least $d(G)$ primes must ramify in the socle $\mathfrak{S}(K)$ of K, the fixed field of the Frattini subgroup $\Phi(G)$ of G (where $G / \Phi(G)$ is an \mathbb{F}_{p}-vector space of dimension $d(G)$).

MSC2010: primary 11R32; secondary 20D15.
Keywords: Galois 2-groups, Scholz fields, tame ramification, Shafarevich, Serre.

The p-class (sometimes also called Frattini class) of the p-group G is the least positive integer c such that G has a central series of length c with all factors being elementary.

Theorem. Let G be a nontrivial finite 2-group with rank d and 2-class c. There exist infinitely many Scholz fields K with pairwise coprime (absolute) discriminants realizing G as Galois group over \mathbb{Q} and satisfying $\operatorname{Ram}(K) \subseteq 1+2^{c} \mathbb{Z}$ and $|\operatorname{Ram}(K)| \leq f_{c}(d)$ for some integral polynomial f_{c} of degree $(c+3)!/ 24$.

The upper bound on the cardinality of $\operatorname{Ram}(K)$ is rather weak (compared with the odd case). This is primarily due to the (inductive) shrinking process needed (see below). The polynomial $f_{c} \in \mathbb{Z}[X]$ will be defined recursively ($f_{1}=X, f_{2}=2 X^{5}+X^{2}, \ldots$).

For any number field K_{0} there is a field K as above having discriminant coprime to that of K_{0}. Then the compositum $K_{0} K$ (in \mathbb{C}) is Galois over K_{0} and admits G. Reichardt [1937] proved a corresponding result in the odd case.

The proof of the theorem utilizes ideas from Scholz, Reichardt and Serre, as well as from Shafarevich. Up to isomorphism there is a unique p-group $G_{d}^{c}(p)$ of minimal order with rank d and p-class c which has every (finite) p-group of rank d and p-class c as epimorphic image. We will have to consider, like Shafarevich [1954], this so-called disposition p-group (for $p=2$). In order to eliminate certain (Scholz) obstructions we also use a shrinking process, a technique also developed in [Shafarevich 1954]. However, avoiding Shafarevich's "graded functions on canonical homomorphisms", this will be based on the Chevalley-Warning theorem, in a manner as proposed in [Meshulam and Sonn 1999; Neukirch et al. 2000, Proposition (9.5.4)]. It is possible to derive upper bounds on $|\operatorname{Ram}(K)|$ following the lines of proof given by Shafarevich; e.g., see [Rabayev 2013].

The "minimal ramification problem" for a p-group G is the question whether G can be realized as the group of a tamely ramified Galois extension of \mathbb{Q} in which exactly $d(G)$ primes are ramified. Kisilevsky, Neftin and Sonn [Kisilevsky et al. 2010] answered this question to the affirmative in the case where G is semiabelian. At present a general answer seems to be out of reach; no counterexample is known so far.

2. Scholz fields

In this section G is a finite p-group for some prime p. As usual $G_{\mathbb{Q}}$ denotes the absolute Galois group of the algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} contained in \mathbb{C}. Number fields are understood to be subfields of $\overline{\mathbb{Q}}$. For any rational prime q we fix one of the $G_{\mathbb{Q}}$-conjugate prime ideals \mathfrak{Q} above q of the ring of algebraic integers in $\overline{\mathbb{Q}}$, and let $I_{q} \subset D_{q}$ denote the inertia and decomposition groups of $\mathfrak{Q}\left(D_{q} / I_{q} \cong \operatorname{Gal}\left(\overline{\mathbb{F}}_{q} \mid \mathbb{F}_{q}\right) \cong \widehat{\mathbb{Z}}\right)$.
Definition 1. Let N be a positive integer with $p^{N} \geq \exp (G)$, where $\exp (G)$ denotes the exponent of G. Suppose we have a (continuous) epimorphism $\varphi: G_{\mathbb{Q}} \rightarrow G$. The fixed field $K=\overline{\mathbb{Q}}^{\operatorname{Ker}(\varphi)}$ of $\operatorname{Ker}(\varphi)$ (having Galois group G over the rationals) is a Scholz field with respect to N provided:
(S1) Each $q \in \operatorname{Ram}(K)$ belongs to $1+p^{N} \mathbb{Z}$.
(S2) Each $q \in \operatorname{Ram}(K)$ is busy in K (in German: "fleissig"); that is, $\varphi\left(I_{q}\right)=\varphi\left(D_{q}\right)$.

We say that K is a Scholz field (per se) if it is Scholz with respect to N for some N with $p^{N} \geq \exp (G)$. Normal subfields of Scholz fields obviously are Scholz fields. We also say that K is a strong Scholz field (with respect to N) if in addition the socle satisfies $\mathfrak{S}(K)=P_{1} \cdots P_{d}$, where $d=d(G)$ and the sets $\operatorname{Ram}\left(P_{i}\right)$ for the (cyclic) fields P_{i} are pairwise disjoint and of the same cardinality.

By (S1) ramification in a Scholz field K is always tame, and by (S2) the residue class degrees of the primes of K ramified over \mathbb{Q} are 1 . Our definition of a Scholz field is in accordance with that given in [Scholz 1937; Reichardt 1937; Serre 1992] (for odd p), but differs from that in [Shafarevich 1954]. In the $p=2$ case from (S1), with $N \geq 3$, it follows that 2 splits completely in $\mathfrak{S}(K)$ and that this is a (totally) real field, which just says that $\mathfrak{S}(K)$ is a Scholz field in the sense of Shafarevich.

Proposition 2.1. Let $Z \succ H \xrightarrow{\pi} G$ be a nonsplit central extension of the p-group G where $Z=Z_{p}$ is cyclic of order p. Assume that $K=\overline{\mathbb{Q}}^{\operatorname{Ker}(\varphi)}$ is a Scholz field with respect to N where $p^{N} \geq \exp (H)$. Then the embedding problem $\left(G_{\mathbb{Q}}, \varphi, \pi\right)$ has a proper solution $E=\overline{\mathbb{Q}}^{\operatorname{Ker}(\psi)}$, with $\psi: G_{\mathbb{Q}} \rightarrow H$ lifting φ, such that $\operatorname{Ram}(E)=\operatorname{Ram}(K)$.

Since Z is contained in the Frattini subgroup of H, every solution of the embedding problem $\left(G_{\mathbb{Q}}, \varphi, \pi\right)$ is proper. Let $\rho \in H^{2}(G, Z)$ be the cohomology class of the extension. Recall that $\left(G_{\mathbb{Q}}, \varphi, \pi\right)$ has a solution if and only if the map $\varphi^{*}: H^{2}(G, Z) \rightarrow H^{2}\left(G_{\mathbb{Q}}, Z\right)$ induced by φ vanishes at ρ [Neukirch et al. 2000, Proposition (9.4.2)]. The existence of a solution then follows by using standard global-local techniques, as described in [Serre 1992, Lemma 2.1.5]. Actually Serre treats only the case where p is odd; see also [Scholz 1937; Reichardt 1937]. Let $p=2$ (and $Z=Z_{2}$). The map $\tau \mapsto \tau^{2}$ is an epimorphism of $\overline{\mathbb{Q}}^{*}$ onto itself with kernel $\{ \pm 1\} \cong Z$. Using that $H^{1}\left(G_{\mathbb{Q}}, \overline{\mathbb{Q}}^{*}\right)=0$ (Hilbert's Theorem 90) we get that $H^{2}\left(G_{\mathbb{Q}}, Z\right)$ is isomorphic to $\operatorname{Br}_{2}(\mathbb{Q})$, the 2-torsion of the Brauer group $\operatorname{Br}(\mathbb{Q})=H^{2}\left(G_{\mathbb{Q}}, \overline{\mathbb{Q}}^{*}\right)$ of \mathbb{Q}. Restriction to the decomposition groups $D_{q} \cong G_{\mathbb{Q}_{q}}$ gives rise to a map

$$
\mathrm{Br}_{2}(\mathbb{Q}) \rightarrow \bigoplus_{q} \mathrm{Br}_{2}\left(\mathbb{Q}_{q}\right),
$$

and this is injective when q varies over all (finite) rational primes (ignoring the infinite place ∞). This follows from the celebrated Brauer-Hasse-Noether theorem, which tells us that an element of $\operatorname{Br}(\mathbb{Q})$ is trivial provided it is locally trivial everywhere, except possibly at one place (Hasse reciprocity; see [Weil 1967, Chapter XIII, Theorem 2]). Now the arguments given in [Serre 1992] apply as in the odd case. (For odd p the archimedean places can be ignored, and by Hasse reciprocity one could allow that p is ramifying [Reichardt 1937].)

Having found a solution of the embedding problem $\left(G_{\mathbb{Q}}, \varphi, \pi\right)$ from [Serre 1992, Proposition 2.1.7] it follows that there is a solution E with $\operatorname{Ram}(E)=\operatorname{Ram}(K)$; see also [Scholz 1937, Section 5].

Usually the field $E=\overline{\mathbb{Q}}^{\operatorname{Ker}(\psi)}$ will not be a Scholz field, because condition (S2) may fail. It is the unique solution of $\left(G_{\mathbb{Q}}, \varphi, \pi\right)$ with $\operatorname{Ram}(E)=\operatorname{Ram}(K)$ only when $|\operatorname{Ram}(\mathscr{S}(K))|=d(G)$. In fact, by the Kronecker-Weber theorem $\mathfrak{S}(K)$ is a subfield of a cyclotomic field. Let $q \in \operatorname{Ram}(\mathfrak{S}(K))$, and let P_{q} be the (unique) subfield of the q-th cyclotomic field $\mathbb{Q}\left(\zeta_{q}\right)$ of absolute degree p, which exists by (S1). Then
$\operatorname{Ram}\left(P_{q}\right)=\{q\}$. There is an epimorphism $\chi_{q}: G_{\mathbb{Q}} \rightarrow Z$ with $\overline{\mathbb{Q}}^{\operatorname{Ker}\left(\chi_{q}\right)}=P_{q}$, and $E_{q}=\overline{\mathbb{Q}}^{\operatorname{Ker}\left(\psi \chi_{q}\right)}$ is a solution of $\left(G_{\mathbb{Q}}, \varphi, \pi\right)$ with $\operatorname{Ram}\left(E_{q}\right)=\operatorname{Ram}(E)=\operatorname{Ram}(K)$. We have $E_{q}=E$ only when $P_{q} \subseteq \mathfrak{S}(K)$. Hence uniqueness happens only when $\mathfrak{S}(K)=\prod_{q \in \operatorname{Ram}(\mathfrak{S}(K))} P_{q}$.
Lemma 2.2. For any positive integers N, d there exist infinitely many pairwise disjoint d-sets of primes $\left\{q_{1}, \ldots, q_{d}\right\}$ such that each q_{i} is in $1+p^{N} \mathbb{Z}$ and is a p^{N}-th power in $\mathbb{F}_{q_{j}}^{*}=\left(\mathbb{Z} / q_{j} \mathbb{Z}\right)^{*}$ whenever $j \neq i$.

Let q_{1} be one of the infinitely many (Chebotarev) primes which split completely in the p^{N}-th cyclotomic field $K_{1}=\mathbb{Q}\left(\zeta_{p^{N}}\right)$. Let q_{2} split completely in $K_{2}=K_{1}\left(\zeta_{q_{1}}, p^{N} \sqrt{q_{1}}\right), \ldots$, and let finally q_{d} split completely in $K_{d}=K_{d-1}\left(\zeta_{q_{d-1}}, p^{N} \sqrt{q_{d-1}}\right)$. Each q_{i} is in $1+p^{N} \mathbb{Z}$ as it splits completely in $\mathbb{Q}\left(\zeta_{p^{N}}\right)$. In

$$
K_{i+1}=\mathbb{Q}\left(\zeta_{p^{N}} ; \zeta_{q_{1}}, \ldots, \zeta_{q_{i}} ; \sqrt[p^{N}]{q_{1}}, \ldots, \sqrt[p^{N}]{q_{i}}\right)
$$

the prime q_{i+1} is completely split, whereas q_{1}, \ldots, q_{i} are ramified $(1 \leq i<d)$. For $1 \leq j \leq i$ we have $q_{i+1} \in 1+q_{j} \mathbb{Z}$ since it is totally split in $\mathbb{Q}\left(\zeta_{q_{j}}\right)$; in this case q_{i+1} obviously is a p^{N}-th power in $\mathbb{F}_{q_{j}}^{*}$. Since q_{i+1} splits completely in $\mathbb{Q}\left(\zeta_{p^{N}}, \sqrt[p^{N}]{q_{j}}\right)$ for $j \leq i$, the congruence $x^{p^{N}} \equiv q_{j}\left(\bmod q_{i+1}\right)$ is solvable in \mathbb{Z} (Kummer's theorem).

Having found this d-set $\left\{q_{1}, \ldots, q_{d}\right\}$ of primes, let q_{d+1} be a prime splitting totally in $K_{d+1}=$ $K_{d}\left(\zeta_{q_{d}}, \sqrt[p^{N}]{q_{d}}\right)$, and proceed in this manner.
Lemma 2.3. Given positive integers N, d, let $\left\{q_{1}, \ldots, q_{d}\right\}$ be a d-set of primes as constructed in the preceding lemma. Let also n_{i} be integers with $1 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{d} \leq N$, and let G be abelian of type $\left(p^{n_{1}}, \ldots, p^{n_{d}}\right)$. For $i=1, \ldots, d$ let P_{i} be the (unique) subfield of $\mathbb{Q}\left(\zeta_{q_{i}}\right)$ of absolute degree $p^{n_{i}}$ (which exists). Then $K=P_{1} \cdots P_{d}$ is a Scholz field with respect to N realizing G as Galois group over \mathbb{Q}, with $\operatorname{Ram}(K)=\left\{q_{1}, \ldots, q_{d}\right\}$.

By construction and the decomposition law in cyclotomic fields, for each $i=1, \ldots, d$ the prime q_{i} is in $1+p^{N} \mathbb{Z}$, is totally ramified in P_{i} and is completely split in all $P_{j}, j \neq i$.
Remark. Let $S=\left\{q_{1}, \ldots, q_{d}\right\}$ be as constructed in Lemma 2.2, and let $G_{S}(p)$ be the absolute Galois group of the maximal p-extension of \mathbb{Q} unramified outside $S \cup\{\infty\}$. By [Fröhlich 1983, Theorem 4.11] $G_{S}(p)$ maps onto every p-group of rank d, exponent p^{N} and nilpotency class 2 . This solves the minimal ramification problem for p-groups of nilpotency class at most 2 (varying d and N). However, it is easily seen that such groups are semiabelian (so that [Kisilevsky et al. 2010] applies).

By recursive definition a finite group G is semiabelian if either G is abelian or $G=A H$ for some normal abelian subgroup A of G and some proper semiabelian subgroup H. So G is an epimorphic image of a split group extension with abelian kernel. In an analogous manner finite solvable groups might be called seminilpotent (see Proposition 2.2.4 and Claim 2.2.5 in [Serre 1992], and the elegant proof of this claim in the case of abelian kernels).

The bound $|\operatorname{Ram}(K)|=d(G)$ can be diminished if one allows also wild ramification. Examples for $p=2$ are the (semiabelian) dihedral, semidihedral and modular 2-groups, with $\operatorname{Ram}(K)=\{2\}$, whereas the (generalized) quaternion 2-groups require a further (odd) ramifying prime; e.g., see [Schmid 2014].

3. Disposition 2-groups

For subgroups X, Y of a group G we let $[X, Y]$ be the subgroup of G generated by the commutators $[x, y]=$ $x^{-1} y^{-1} x y=x^{-1} x^{y}(x \in X, y \in Y)$. We define recursively $\left[x_{1}, \ldots, x_{n+1}\right]=\left[\left[x_{1}, \ldots, x_{n}\right], x_{n+1}\right]$, and $\gamma_{1}(G)=G, \gamma_{n+1}(G)=\left[\gamma_{n}(G), G\right]$ describing the lower central series of G. As usual we write $G^{\prime}=\gamma_{2}(G)=[G, G]$. We also denote by $Z(G)$ the centre of G, and we write $Z^{\prime}(G)=Z(G) \cap G^{\prime}$.

The lower (central Frattini) 2-series of the group G is defined inductively by $\lambda_{1}(G)=G$ and $\lambda_{n+1}(G)=$ $\left[\lambda_{n}(G), G\right] \lambda_{n}(G)^{2}$. If $G \neq 1$ is a finite 2-group then $\Phi(G)=\lambda_{2}(G)$ is the Frattini subgroup of G, and G has 2-class c if $\lambda_{c+1}(G)=1$ but $\lambda_{c}(G) \neq 1$. Letting F_{d} be "the" free group of finite rank $d \geq 1$, for any integer $c \geq 1$ the quotient

$$
G_{d}^{c}=G_{d}^{c}(2)=F_{d} / \lambda_{c+1}\left(F_{d}\right)
$$

is a finite 2-group of rank d and 2-class c, which will be called a "disposition group" (with respect to the prime $p=2$; of course we could replace F_{d} by the free pro-2-group of rank d). Every (finite) 2-group G of rank $\leq d$ and 2-class $\leq c$ is an epimorphic image of G_{d}^{c}. In fact, by the universal property of free groups, and by Burnside's basis theorem, any epimorphism $F_{d} / \lambda_{2}\left(F_{d}\right) \rightarrow G / \lambda_{2}(G)$ lifts to an epimorphism $\pi: F_{d} \rightarrow G$, and $\lambda_{c+1}(G)=1$ implies that $\lambda_{c+1}\left(F_{d}\right) \subseteq \operatorname{Ker}(\pi)$.

The disposition p-groups have been studied in the literature quite intensively (see for instance [Shafarevich 1989; Neukirch et al. 2000; Schmid 2017]). We summarize the basic facts (for the somewhat exceptional case $p=2$).
Proposition 3.1. Let $G=G_{d}^{c}$ for $d \geq 2$ and $c \geq 2$, and let

$$
\ell_{d}^{\kappa}=\frac{1}{k} \sum_{k \mid \kappa} \mu(k) d^{\kappa / k}
$$

for $\kappa=1, \ldots, c\left(\right.$ where $\mu(k)$ denotes the Möbius function). The group G has rank d, exponent 2^{c} and nilpotency class c, with centre $Z(G)=\lambda_{c}(G)$. So both $V=G / \Phi(G)$ and $Z(G)$ are \mathbb{F}_{2}-vector spaces (often written additively):
(a) The assignment $x \Phi(G) \mapsto x^{2^{c-1}}$ for $x \in G$ is a well-defined injection of V into $Z(G)$. Fix a basis $\left\{x_{i} \Phi(G)\right\}_{i=1}^{d}$ of $V\left(x_{i} \in G\right)$, and let $z_{i}=x_{i}^{2^{c-1}}$ and $L_{d}^{1}=\left\langle z_{1}, \ldots, z_{d}\right\rangle$. Then $Z(G)=L_{d}^{1} \oplus Z^{\prime}(G)$, and $x_{i} \Phi(G) \mapsto z_{i}$ defines a linear isomorphism $\psi_{d}^{1}: V \xrightarrow{\sim} L_{d}^{1}$.
(b) For $\kappa \in\{2, \ldots, c\}$ the $2^{c-\kappa}$-th power map on $\gamma_{\kappa}(G)$ is a homomorphism with kernel $\gamma_{\kappa+1}(G) \gamma_{\kappa}(G)^{2}$ and image $L_{d}^{\kappa}=\gamma_{\kappa}(G)^{2^{c-\kappa}}$ in $Z^{\prime}(G)$, and we have the (natural) direct decomposition

$$
Z^{\prime}(G)=L_{d}^{2} \oplus \cdots \oplus L_{d}^{c}
$$

The "Lie module" L_{d}^{κ} has the \mathbb{F}_{2}-dimension ℓ_{d}^{κ}, and the assignments $\bar{x}_{1} \otimes \cdots \otimes \bar{x}_{\kappa} \mapsto\left[x_{1}, \ldots, x_{\kappa}\right]^{2^{c-\kappa}}$, for $x_{i} \in G$ and $\bar{x}_{i}=x_{i} \Phi(G)$, define an epimorphism $\psi_{d}^{\kappa}: V^{\otimes \kappa} \rightarrow L_{d}^{\kappa}$.

Proposition 3.1 is contained in the (Main) Theorem of [Schmid 2017] (where one can also find an explanation of the notion "Lie module"). Actually we shall only use the \mathbb{F}_{2}-vector space decomposition
$Z\left(G_{d}^{c}\right)=\bigoplus_{\kappa=1}^{c} L_{d}^{\kappa}$, together with the epimorphisms ψ_{d}^{κ} described above. We emphasize that ψ_{d}^{1} depends on the choice of a basis for $G_{d}^{c} / \Phi\left(G_{d}^{c}\right)$ (in the $p=2$ case).
Lemma 3.2. Let $G_{\delta}^{c}=G_{\delta}^{c}$ and $G_{d}^{c}=G_{d}^{c}$ be disposition 2-groups with $\delta>d \geq 2$ and $c \geq 2$, and let $\alpha: G_{\delta}^{c} / \Phi\left(G_{\delta}^{c}\right) \rightarrow G_{d}^{c} / \Phi\left(G_{d}^{c}\right)$ be an epimorphism. Then all lifts of α to G_{δ}^{c} (which exist) restrict to the same epimorphism $\alpha_{z}: Z\left(G_{\delta}^{c}\right) \rightarrow Z\left(G_{d}^{c}\right)$, and α_{z} maps $Z^{\prime}\left(G_{\delta}^{c}\right)$ onto $Z^{\prime}\left(G_{d}^{c}\right)$ respecting the direct decompositions into Lie modules.

This lemma follows from [Schmid 2017, Proposition 3]. If α sends basis vectors to basis vectors or zero, and $L_{\delta}^{1}, L_{d}^{1}$ are computed with regard to these bases (see above), then α_{z} maps L_{δ}^{1} onto L_{d}^{1}. The following lemma is Proposition 4 in [Schmid 2017].

Lemma 3.3. Let $H=G_{d}^{c}$ with $d \geq 2, c \geq 2$, and let $G=H / Z(H)\left(\cong G_{d}^{c-1}\right)$. There is a natural (transgression) isomorphism $\operatorname{Hom}\left(Z(H), \mathbb{F}_{2}\right) \xrightarrow{\sim} H^{2}\left(G, \mathbb{F}_{2}\right)$. Choose a basis $\left\{\rho_{\tau}\right\}$ of $H^{2}\left(G, \mathbb{F}_{2}\right)$, and let H_{τ} for each τ be an extension of G by $Z_{2} \cong \mathbb{F}_{2}$ with cohomology class ρ_{τ}. Then the fibre product of the H_{τ} amalgamating G is isomorphic to H.

4. The Scholz obstructions

Let $d \geq 2, c \geq 2$, and let $G=G_{d}^{c-1}$. Let N be an integer with $N \geq c$, and suppose we have a strong Scholz field K with respect to N realizing G as Galois group over \mathbb{Q}. Let $\left\{\rho_{\tau}\right\}$ be a basis of $H^{2}\left(G, \mathbb{F}_{2}\right)$. For any τ let H_{τ} be a (central) extension of G by $Z_{2} \cong \mathbb{F}_{2}$ with cohomology class ρ_{τ}, and let E_{τ} be a solution of the corresponding nonsplit embedding problem with $\operatorname{Ram}\left(E_{\tau}\right)=\operatorname{Ram}(K)$ (see Proposition 2.1). The compositum $E=\prod_{\tau} E_{\tau}$ is a normal number field containing K with $\operatorname{Ram}(E)=\operatorname{Ram}(K)$, and $H=\operatorname{Gal}(E \mid \mathbb{Q})$ is the fibre product of the H_{τ} amalgamating G. Hence $H \cong G_{d}^{c}$ by Lemma 3.3.

For proof-technical reasons we assume in what follows merely that the E_{τ} are chosen such that if there is $q \in \operatorname{Ram}(E) \backslash \operatorname{Ram}(K)$, then $q \in 1+2^{N} \mathbb{Z}$ and q splits completely in $\mathfrak{S}(K)$. We also will choose the basis $\left\{\rho_{\tau}\right\}$ of $H^{2}\left(G, Z_{2}\right)$ suitably, without altering the field E (see below). Let $t=\operatorname{dim} H^{2}\left(G, Z_{2}\right)=\operatorname{dim} Z(H)$ (Lemma 3.3).

By Proposition 3.1 we have $Z(H)=\lambda_{c}(H) \subseteq \Phi(H)$ and $H / Z(H) \cong G$. Hence by assumption $\mathfrak{S}(E)=\mathfrak{S}(K)=P_{1} \cdots P_{d}$, where the $\operatorname{Ram}\left(P_{i}\right)$ are pairwise disjoint and of the same cardinality. Let b_{i} be the discriminant of P_{i}. By (S 1$) 2$ is unramified in $P_{i}=\mathbb{Q}\left(\sqrt{b_{i}}\right)$ and hence

$$
b_{i}=\prod_{q \in \operatorname{Ram}\left(P_{i}\right)} q \in 1+2^{N} \mathbb{Z} .
$$

Given a prime q we simply write $I_{q} \subseteq D_{q}$ for the inertia and decomposition groups in H of some fixed prime \mathfrak{Q} of E above q (determined up to H-conjugacy). The images of these groups in $H / \Phi(H)=$ $\operatorname{Gal}(\mathfrak{S}(E) \mid \mathbb{Q})$ and their intersections with $Z(H)=\operatorname{Gal}(E \mid K)$ are independent of the choice of \mathfrak{Q}. Recall that I_{q} is cyclic (by tame ramification).

Lemma 4.1. Let $I_{q}=\left\langle x_{i}\right\rangle$ be the inertia group in H of some $q \in \operatorname{Ram}\left(P_{i}\right)(1 \leq i \leq d)$. Then $\bar{x}_{i}=x_{i} \Phi(H)$ and $z_{i}=x_{i}^{2^{c-1}}$ are independent of the choice of the prime q in $\operatorname{Ram}\left(P_{i}\right)$, and $\left\{x_{i}\right\}_{i=1}^{d}$ is a minimal system
of generators for H. For any $q \in \operatorname{Ram}\left(P_{i}\right)$ we have $I_{q} \cap Z(H)=\left\langle z_{i}\right\rangle$, and the primes of K above q are unramified in $E^{\left\langle z_{i}\right\rangle}$.

This is immediate from the structure of $\mathfrak{S}(E)=E^{\Phi(H)}$ and from Proposition 3.1. We also get that $L_{d}^{1}=$ $\left\langle z_{1}, \ldots, z_{d}\right\rangle$ is an \mathbb{F}_{2}-subspace of $Z(H)$ of dimension $d=\ell_{d}^{1}$ complementary to $Z^{\prime}(H)=H^{\prime} \cap Z(H)$ in $Z(H)$. Hence letting $E^{\perp}=\bigcap_{i=1}^{d} E^{\left\langle z_{i}\right\rangle}$ be the fixed field of this L_{d}^{1} we have $E=E^{\perp} \cdot E^{Z^{\prime}(H)}$ and $E^{\perp} \cap E^{Z^{\prime}(H)}=K$. Let also

$$
E(i)=\bigcap_{j \neq i} E^{\left\langle z_{j}\right\rangle} \cap E^{Z^{\prime}(H)}
$$

for each $i=1, \ldots, d$. Now choose a basis $\left\{\chi_{\tau}\right\}$ of $\operatorname{Hom}\left(Z(H), \mathbb{F}_{2}\right)$ such that $E_{\tau}=E^{\operatorname{Ker}\left(\chi_{\tau}\right)}$ either is contained in E^{\perp} or is equal to $E(i)$ for some i, and let $\left\{\rho_{\tau}\right\}$ correspond to $\left\{\chi_{\tau}\right\}$ under the transgression isomorphism $\operatorname{Hom}\left(Z(H), \mathbb{F}_{2}\right) \xrightarrow{\sim} H^{2}\left(G, \mathbb{F}_{2}\right)($ Lemma 3.3).

For each τ write $E_{\tau}=K\left(\sqrt{\mu_{\tau}}\right)$ for some $\mu_{\tau} \in K^{*}\left(\right.$ determined $\left.\bmod \left(K^{*}\right)^{2}\right)$. Then every group extension of G by Z_{2} with cohomology class ρ_{τ} is realized as $K\left(\sqrt{m \mu_{\tau}}\right)$ for some (square-free) integer $m \neq 0$, because it is obtained by Baer addition of H_{τ} with the split extension of G by Z_{2} realized as $K(\sqrt{m})=\mathbb{Q}(\sqrt{m}) \cdot K\left(\right.$ with $\mathbb{Q}(\sqrt{m}) \nsubseteq K$; alternately, multiply $\psi_{\tau}: G_{\mathbb{Q}} \rightarrow H_{\tau}$ with $\chi_{m}: G_{\mathbb{Q}} \rightarrow Z_{2}$ having $\overline{\mathbb{Q}}^{\operatorname{Ker}\left(\chi_{m}\right)}=\mathbb{Q}(\sqrt{m})$.

Let $q \in \operatorname{Ram}\left(P_{i}\right)$ for some i, and let $I_{q} \subseteq D_{q}$ be as above. For any prime \mathfrak{q} of K above q, determined up to G-conjugacy, the Frobenius

$$
\bar{\phi}_{q}=\left(\frac{E^{\left\langle z_{i}\right\rangle} \mid K}{\mathfrak{q}}\right)
$$

(Artin symbol) is an element of $\operatorname{Gal}\left(E^{\left\langle z_{i}\right\rangle} \mid K\right)$ and independent of the choice of \mathfrak{q} above q. Since q is busy in the Scholz field K, both I_{q} and D_{q} have the same image (of order 2^{c-1}) in $H / Z(H) \cong G$. Hence $D_{q}=I_{q}\left(D_{q} \cap Z(H)\right)$ and

$$
D_{q} \cap Z(H)=\left\langle z_{i}\right\rangle \times\left\langle\sigma_{q}\right\rangle
$$

for some element σ_{q} (of order 2 or 1) mapping onto $\bar{\phi}_{q}$, which in turn maps onto the generator of D_{q} / I_{q}. If $\sigma_{q} \neq 0$ (additive notation), we may replace σ_{q} by $z_{i}+\sigma_{q}$. In spite of this ambiguity we call σ_{q} "the" Scholz obstruction for E associated to q. This will be no problem since we only shall consider the restrictions of σ_{q} to fields $E_{\tau} \subseteq E^{\left\langle z_{i}\right\rangle}$.

Proposition 4.2. Let $\sigma_{i}=\sum_{q \in \operatorname{Ram}\left(P_{i}\right)} \sigma_{q}$, and assume that $\sigma_{i}=0$ (or that $\sigma_{i} \in\left\langle z_{i}\right\rangle$) for all $i=1, \ldots, d$. Then there exist infinitely many pairwise disjoint t-sets $\left\{p_{1}, \ldots, p_{t}\right\}$ of rational primes such that $\hat{E}=$ $\prod_{\tau=1}^{t} K\left(\sqrt{p_{\tau} \ell \mu_{\tau}}\right)$ is a strong Scholz field with respect to N admitting G_{d}^{c} as Galois group over \mathbb{Q} and having $\operatorname{Ram}(\widehat{E})=\operatorname{Ram}(K) \cup\left\{p_{1}, \ldots, p_{t}\right\}$.

Proof. We argue by induction. Suppose that either $K_{0}=K$ or that $K_{0}=\prod_{\tau^{\prime}} K\left(\sqrt{p_{\tau^{\prime}} e \mu_{\tau^{\prime}}}\right)$ is a strong Scholz field with respect to N (with corresponding $\operatorname{Ram}\left(K_{0}\right)$) for certain τ^{\prime} and primes $p_{\tau^{\prime}}$, but that there is still some τ different from all these τ^{\prime}. We prove that there are infinitely many primes $p_{\tau} \in 1+2^{N} \mathbb{Z}$
which split completely in K_{0} such that $\widehat{E}_{0}=K_{0}\left(\sqrt{p_{\tau} e \mu_{\tau}}\right)$ is a strong Scholz field with respect to N with $\operatorname{Ram}\left(\hat{E}_{0}\right)=\operatorname{Ram}\left(K_{0}\right) \cup\left\{p_{\tau}\right\}$.

Let $G_{0}=\operatorname{Gal}\left(K_{0} \mid \mathbb{Q}\right)$. By Lemma 3.3 this represents a central Frattini extension of G and is an epimorphic image over G of $H \cong G_{d}^{c}$. In particular $\mathfrak{S}\left(K_{0}\right)=\mathfrak{S}(K)=\mathfrak{S}(E)$. By construction the image ρ_{0} of ρ_{τ} under the inflation map inf: $H^{2}\left(G, \mathbb{F}_{2}\right) \rightarrow H^{2}\left(G_{0}, \mathbb{F}_{2}\right)$ is nontrivial. Let $E_{0}=K_{0} E_{\tau}=$ $K_{0}\left(\sqrt{\mu_{\tau}}\right)$ and $H_{0}=\operatorname{Gal}\left(E_{0} \mid \mathbb{Q}\right)$. For $x \in G_{0}$ choose an inverse image $\tilde{x} \in H_{0}$, and observe that $E_{0}=K_{0}\left({\sqrt{\mu_{\tau}}}^{\tilde{x}}\right)$ and $\left({\sqrt{\mu_{\tau}}}^{\tilde{x}}\right)^{2}=\left({\sqrt{\mu_{\tau}}}^{2}\right)^{\tilde{x}}=\mu_{\tau}^{x}$. Hence

$$
\mu_{\tau}^{x}=\beta_{x}^{2} \mu_{\tau}
$$

for some $\beta_{x} \in K_{0}^{*}$. Let $\mathfrak{q}_{0} \mid q$ be primes of $K_{0} \mid \mathbb{Q}$. For the \mathfrak{q}_{0}-adic valuation we have $v_{\mathfrak{q}_{0}}\left(\mu_{\tau}\right)=v_{\mathfrak{q}_{0} x}\left(\mu_{\tau}^{x}\right)=$ $2 \cdot v_{\mathfrak{q}_{0}} x\left(\beta_{x}\right)+v_{\mathfrak{q}_{0}} x\left(\mu_{\tau}\right)$. This shows that the fractional ideal $\left(\mu_{\tau}\right)$ of K_{0} generated by μ_{τ} splits into a square of a fractional ideal \mathfrak{b} and a G_{0}-invariant square-free (integral) ideal of K_{0}, the latter being decomposed into products of G_{0}-conjugates of primes of K_{0} ramified over \mathbb{Q} and those which are not. Hence may write uniquely

$$
\left(\mu_{\tau}\right)=\mathfrak{b}^{2} \cdot \mathfrak{D} \cdot(e)
$$

where \mathfrak{D} is a G_{0}-invariant ideal of K_{0} composed of pairwise distinct prime ideals of K_{0} ramified over the rationals, and where e is a square-free positive integer relatively prime to the discriminant of K_{0}.

Let again $\mathfrak{q}_{0} \mid q$ be primes of $K_{0} \mid \mathbb{Q}$. By [Hecke 1981, Theorem 120], \mathfrak{q}_{0} is ramified in $E_{0}=K_{0}\left(\sqrt{\mu_{\tau}}\right)$ if and only if $v_{\mathfrak{q}_{0}}\left(\mu_{\tau}\right)$ is odd, except possibly when \mathfrak{q}_{0} is dyadic (lying above 2). But 2 is not ramified in the Scholz field K_{0} by $(\mathrm{S} 1)$, and $\operatorname{Ram}\left(E_{\tau}\right) \subseteq 1+2^{N} \mathbb{Z}$ by assumption. So this exception does not happen. Hence \mathfrak{q}_{0} is ramified in E_{0} if and only if either \mathfrak{q}_{0} appears in \mathfrak{D} or q is a divisor of e. Each rational prime dividing e is unramified in K_{0} but ramified in $E_{0}=K_{0} E_{\tau}$ and hence in E_{τ}. The prime divisors of e (if any) therefore are in $\operatorname{Ram}(E) \backslash \operatorname{Ram}(K)$, thus belong to $1+2^{N} \mathbb{Z}$ and split completely in $\mathfrak{S}(K)$ (by our convention).

Let R be the subset of $\operatorname{Ram}(K)$ consisting of those rational primes q for which the primes \mathfrak{q} of K above q do not ramify in E_{τ}. We claim that $R=R\left(\rho_{\tau}\right)$ is an invariant of the cohomology class ρ_{τ}. By Hecke $v_{\mathfrak{q}}(\mu)$ is even, and knowing that $q \neq 2$ one just has to show that $v_{\mathfrak{q}}(m \mu)=v_{\mathfrak{q}}(m)+v_{\mathfrak{q}}(\mu)$ also is even for any integer $m \neq 0$. But this is clear since $v_{\mathfrak{q}}(m)=e(\mathfrak{q} \mid q) \cdot v_{q}(m)$ and the ramification index $e(\mathfrak{q} \mid q)=\left|I_{\mathfrak{q}}\right|$ is a proper power of 2 . Similarly, the set R_{0} of rational primes ramified in K_{0} but not in $E_{0}=K_{0} E_{\tau}$ is an invariant of $\rho_{0}=\inf \left(\rho_{\tau}\right)$.

Now let $q \in \operatorname{Ram}\left(S_{(}\left(K_{0}\right)\right)=\operatorname{Ram}(\mathfrak{S}(K))$, say $q \in \operatorname{Ram}\left(P_{i}\right)$. We assert that $q \in R$ if and only if $q \in R_{0}$. Let $\mathfrak{q}_{0} \mid \mathfrak{q}$ be primes of $K_{0} \mid K$ above q. We have $q \in R$ if and only if \mathfrak{q} is unramified in $E_{\tau}\left(E_{\tau} \subseteq E^{\left\langle z_{i}\right\rangle}\right)$, and then (obviously) \mathfrak{q}_{0} is unramified in $E_{0}=K_{0} E_{\tau}$ and hence $q \in R_{0}$. Conversely, suppose that \mathfrak{q}_{0} is unramified in $E_{0}\left(q \in R_{0}\right)$. Assume that $q \notin R$; that is, $\mathfrak{q}=\mathfrak{q}_{0} \cap K$ is ramified in E_{τ}. Then $E_{\tau}=E(i)$ by construction. Moreover then \mathfrak{q} is unramified in $E_{\tau^{\prime}}=K\left(\sqrt{\mu_{\tau^{\prime}}}\right)$ for all $\tau^{\prime} \neq \tau$ since then $E_{\tau^{\prime}} \subseteq E^{\left\langle z_{i}\right\rangle}$. As this is a property of the cohomology class ρ, we know \mathfrak{q} is unramified in the fields $K\left(\sqrt{p_{\tau^{\prime}} e \mu_{\tau^{\prime}}}\right)$ generating K_{0}. Consequently \mathfrak{q} is unramified in K_{0}, whence splits completely in the Scholz field K_{0}. It
follows that \mathfrak{q}_{0} must be ramified in E_{0}. This is the desired contradiction. (The "converse" statement is not true in general; a corresponding argument is missing in [Shafarevich 1954, p. 121].)

Let $\mathfrak{q}_{0} \mid q$ be primes of $K_{0} \mid \mathbb{Q}$ with $q \in R_{0}$. Then the Frobenius

$$
\phi_{q}=\left(\frac{E_{0} \mid K_{0}}{\mathfrak{q}_{0}}\right)
$$

is defined, which is a central element in $H_{0}=\operatorname{Gal}\left(E_{0} \mid \mathbb{Q}\right)$ and so depends only on q. Independent of the choice of the square root $\sqrt{\mu_{\tau}}$ we have

$$
\left(\sqrt{\mu_{\tau}}\right)^{\phi_{q}}=\left(\frac{\mu_{\tau}}{\mathfrak{q}_{0}}\right) \sqrt{\mu_{\tau}}
$$

where

$$
\left(\frac{\mu_{\tau}}{\mathfrak{q}_{0}}\right)= \pm 1
$$

is the Legendre symbol (quadratic residue symbol). Since

$$
\left(\frac{\mu_{\tau}}{\mathfrak{q}_{0}}\right)=\left(\frac{\mu_{\tau}^{x}}{\mathfrak{q}_{0}^{x}}\right)=\left(\frac{\beta_{x}^{2} \mu_{\tau}}{\mathfrak{q}_{0}^{x}}\right)=\left(\frac{\mu_{\tau}}{\mathfrak{q}_{0}^{x}}\right)
$$

for each $x \in G_{0}$, and since q is the absolute norm of \mathfrak{q}_{0} by (S2), it is appropriate to write this symbol as $\left[\frac{\mu_{\tau}}{q}\right]$ (like in [Shafarevich 1954]). As usual the Legendre symbol is extended multiplicatively to products of nondyadic primes in the denominator (Jacobi symbol), yielding also certain extensions of the Shafarevich symbol. For an integer $m \neq 0$ the symbol $\left[\frac{m \mu_{\tau}}{q}\right]$ is defined since R_{0} is an invariant of ρ_{0}, and if m is not divisible by q then

$$
\left[\frac{m \mu_{\tau}}{q}\right]=\left(\frac{m}{q}\right)\left[\frac{\mu_{\tau}}{q}\right]
$$

In this case $\mathfrak{q}_{0} \mid q$ are unramified in $K_{0}(\sqrt{m}) \mid \mathbb{Q}(\sqrt{m})$ and

$$
\left(\frac{K_{0}(\sqrt{m}) \mid K_{0}}{\mathfrak{q}_{0}}\right) \quad \text { restricts to } \quad\left(\frac{\mathbb{Q}(\sqrt{m}) \mid \mathbb{Q}}{(q)}\right)
$$

since q is busy in K_{0} by (S2). Thus $\left(\frac{m}{q}\right)=\left(\frac{m}{q_{0}}\right)$, and the result follows since evidently

$$
\left(\frac{m}{\mathfrak{q}_{0}}\right)\left(\frac{\mu_{\tau}}{\mathfrak{q}_{0}}\right)=\left(\frac{m \mu_{\tau}}{\mathfrak{q}_{0}}\right) .
$$

Let again $q \in \operatorname{Ram}\left(P_{i}\right)$ for some i, and let $q \in R_{0}$. Using that q is busy in the Scholz field K_{0}, the restrictions to E_{τ} of σ_{q} and of the Frobenius ϕ_{q} introduced above agree. Therefore

$$
\left(\sqrt{\mu_{\tau}}\right)^{\sigma_{q}}=\left(\sqrt{\mu_{\tau}}\right)^{\phi_{q}}=\left[\frac{\mu_{\tau}}{q}\right] \sqrt{\mu_{\tau}}
$$

We know that $q \in R \cap \operatorname{Ram}\left(P_{i}\right)$, and this implies that all primes in $\operatorname{Ram}\left(P_{i}\right)$ belong to R and hence to R_{0} (see Lemma 4.1). Therefore

$$
\left[\frac{\mu_{\tau}}{b_{i}}\right]=\prod_{q \in \operatorname{Ram}\left(P_{i}\right)}\left[\frac{\mu_{\tau}}{q}\right]
$$

is defined, and

$$
\left(\sqrt{\mu_{\tau}}\right)^{\sigma_{i}}=\left[\frac{\mu_{\tau}}{b_{i}}\right] \sqrt{\mu_{\tau}}
$$

Thus

$$
\left[\frac{\mu_{\tau}}{b_{i}}\right]=1
$$

by the hypothesis of the proposition.
Recall that e is coprime to the discriminant of K_{0} and so not divisible by any prime in R_{0}. By the Chinese remainder theorem there is an odd integer m such that

$$
\left(\frac{m}{q}\right)=\left[\frac{e \mu_{\tau}}{q}\right]=\left(\frac{e}{q}\right)\left[\frac{\mu_{\tau}}{q}\right]
$$

for each $q \in R_{0}$. Then m is prime to every $q \in R_{0}$ and

$$
\left[\frac{m e \mu_{\tau}}{q}\right]=\left(\frac{m}{q}\right)\left[\frac{e \mu_{\tau}}{q}\right]=1
$$

Since $R_{0} \subseteq \operatorname{Ram}\left(K_{0}\right) \subseteq 1+2^{N} \mathbb{Z}$ (with $N \geq c \geq 2$), replacing m by $-m$ if necessary, we may assume that $m>0$. We assert that

$$
\left(\frac{b_{i}}{m}\right)=1
$$

whenever $\operatorname{Ram}\left(P_{i}\right) \subseteq R_{0}$. By quadratic reciprocity

$$
\left(\frac{b_{i}}{m}\right)=\left(\frac{m}{b_{i}}\right)
$$

because b_{i} and m are relatively prime positive odd integers and $b_{i} \in 1+2^{N} \mathbb{Z}$. We have

$$
\left(\frac{e}{b_{i}}\right)=\left(\frac{b_{i}}{e}\right)=1
$$

since the primes dividing e are in $1+2^{N} \mathbb{Z}$ and split completely in $P_{i}=\mathbb{Q}\left(\sqrt{b_{i}}\right)$. Consequently

$$
1=\prod_{q \in \operatorname{Ram}\left(P_{i}\right)}\left[\frac{m e \mu_{\tau}}{q}\right]=\left[\frac{m e \mu_{\tau}}{b_{i}}\right]=\left(\frac{m}{b_{i}}\right)\left(\frac{e}{b_{i}}\right)\left[\frac{\mu_{\tau}}{b_{i}}\right]=\left(\frac{m}{b_{i}}\right)
$$

as required.
Let $T=\prod_{q \in R_{0}} \mathbb{Q}(\sqrt{q})$. Using that $\mathfrak{S}(T)=T, \operatorname{Ram}\left(\mathbb{Q}\left(\zeta_{2^{N}}\right)\right)=\{2\}$ and $2 \notin R_{0}=\operatorname{Ram}(T)$ we get

$$
T \cap K_{0}\left(\zeta_{2^{N}}\right)=\prod_{i}^{\prime} \mathbb{Q}\left(\sqrt{b_{i}}\right)
$$

where the product is taken over those indices i where $\operatorname{Ram}\left(P_{i}\right) \subseteq R_{0}$. (This is always true when $E_{\tau} \subseteq E^{\perp}$, and if $E_{\tau}=E(i)$ for some i then $\operatorname{Ram}\left(P_{j}\right) \subseteq R_{0}$ for all $j \neq i$ and $\operatorname{Ram}\left(P_{i}\right) \cap R_{0}=\varnothing$.) By construction the Artin automorphism

$$
\phi=\left(\frac{T \mid \mathbb{Q}}{(m)}\right)
$$

is defined and is trivial on $\prod_{i}^{\prime} \mathbb{Q}\left(\sqrt{b_{i}}\right)$. Hence ϕ can be extended to an automorphism $\hat{\phi}$ of $T \cdot K_{0}\left(\zeta_{2^{N}}\right)$ which is trivial on $K_{0}\left(\zeta_{2^{N}}\right)$. By Chebotarev's density theorem there are infinitely many rational primes p_{τ} which are unramified in $T \cdot K_{0}\left(\zeta_{2^{N}}\right)$ and for which some prime above p_{τ} has $\hat{\phi}$ as Frobenius automorphism. Then p_{τ} splits completely in $K_{0}\left(\zeta_{2^{N}}\right)$; that is, p_{τ} splits completely in K_{0} and belongs to $1+2^{N} \mathbb{Z}$. Moreover

$$
\phi=\left(\frac{T \mid \mathbb{Q}}{\left(p_{\tau}\right)}\right) .
$$

Thus

$$
\left(\frac{q}{p_{\tau}}\right)=\left(\frac{q}{m}\right)
$$

for all $q \in R_{0}$, in view of the action of ϕ on $\mathbb{Q}(\sqrt{q})$ (and consistency of the Artin symbol). But

$$
\left(\frac{q}{p_{\tau}}\right)=\left(\frac{p_{\tau}}{q}\right) \quad \text { and } \quad\left(\frac{q}{m}\right)=\left(\frac{m}{q}\right)
$$

by quadratic reciprocity. Consequently

$$
\left[\frac{p_{\tau} e \mu_{\tau}}{q}\right]=\left(\frac{p_{\tau}}{q}\right)\left[\frac{e \mu_{\tau}}{q}\right]=\left(\frac{m}{q}\right)\left[\frac{e \mu_{\tau}}{q}\right]=\left[\frac{m e \mu_{\tau}}{q}\right]=1
$$

Let $\hat{E}_{0}=K_{0}\left(\sqrt{p_{\tau} e \mu_{\tau}}\right)$. By the above, every prime in R_{0} is busy in \hat{E}_{0}. From

$$
\left(p_{\tau} e \mu_{\tau}\right)=(e \mathfrak{b})^{2} \cdot \mathfrak{D} \cdot\left(p_{\tau}\right)
$$

we infer that $\operatorname{Ram}\left(\widehat{E}_{0}\right)=\operatorname{Ram}\left(K_{0}\right) \cup\left\{p_{\tau}\right\}$ (Hecke; 2 does not ramify in \widehat{E}_{0} as it does not ramify in $E_{0}=K_{0} E_{\tau}$ or in $\left.\mathbb{Q}\left(\sqrt{p_{\tau} e}\right)\right)$. Consequently \hat{E}_{0} is a (strong) Scholz field with respect to N. The proposition follows by induction and by appealing to Lemma 3.3.

5. The shrinking process

We are going to construct Scholz fields fulfilling the assumptions made in Proposition 4.2. As above we consider disposition 2-groups G_{d}^{c}. Arguing by induction on the 2-class c (varying d) this will prove the theorem. For $c=1$ (or $d=1$) Lemmas 2.2 and 2.3 apply, in which case we may define the polynomial $f_{c}=X$. So let $N \geq c \geq 2$ be integers. We assume that for every $d \geq 2$ there are infinitely many strong Scholz fields K_{d}^{c-1} with respect to N with pairwise coprime discriminants admitting G_{d}^{c-1} as Galois group over the rationals, all these fields having the property that $\left|\operatorname{Ram}\left(K_{d}^{c-1}\right)\right| \leq f_{c-1}(d)$ for some (unique) polynomial $f_{c-1} \in \mathbb{Z}[X]$ with $\operatorname{deg} f_{c-1}=(c+2)!/ 24$.

Fixing $d \geq 2$ we let $\delta=r \cdot d$ where

$$
r=2 d^{2} \sum_{\kappa=1}^{c} \kappa \cdot \ell_{d}^{\kappa}
$$

(see Proposition 3.1 for notation). We know that $r=r(d)$ is an integral polynomial in d of degree $c+2$. By our inductive hypothesis there is a strong Scholz field $K_{\delta}=K_{\delta}^{c-1}$ with respect to N admitting G_{δ}^{c-1}
as Galois group over the rationals. Indeed there are infinitely many such fields with pairwise coprime discriminants. By Proposition 2.1 and Lemma 3.3 we can embed K_{δ} into a normal number field E_{δ} with group G_{δ}^{c} having $\operatorname{Ram}\left(E_{\delta}\right)=\operatorname{Ram}\left(K_{\delta}\right)$. In particular $K_{\delta}=E_{\delta}^{Z\left(G_{\delta}^{c}\right)}$ and

$$
\mathfrak{S}\left(E_{\delta}\right)=\mathfrak{S}\left(K_{\delta}\right)=\prod_{j=1}^{r} \prod_{i=1}^{d} P_{i j}
$$

where the $\operatorname{Ram}\left(P_{i j}\right)$ have the same cardinality and are pairwise disjoint. Adapted to this decomposition there is a minimal system $\left\{x_{i j}\right\}_{i, j}$ of generators of G_{δ}^{c} such that the image $\bar{x}_{i j}$ in $W=G_{\delta}^{c} / \Phi\left(G_{\delta}^{c}\right)$ of $x_{i j}$ generates the image in W of the inertia group I_{q} in G_{δ}^{c} for any $q \in \operatorname{Ram}\left(P_{i j}\right)$, and $z_{i j}=x_{i j}^{2^{c-1}}$ has order 2 and generates $I_{q} \cap Z\left(G_{\delta}^{c}\right)$ (see Lemma 4.1).

For every $q \in \operatorname{Ram}\left(\mathfrak{S}\left(E_{\delta}\right)\right)$ we choose a Scholz obstruction σ_{q} for E_{δ} (determined by q up to adding $z_{i j}$ if $\sigma_{q} \neq 0$ and $\left.q \in \operatorname{Ram}\left(P_{i j}\right)\right)$. Define

$$
\sigma_{i j}=\sum_{q \in \operatorname{Ram}\left(P_{i j}\right)} \sigma_{q}
$$

for each pair i, j. Let L_{δ}^{1} be the subspace of $Z\left(G_{\delta}^{c}\right)$ generated by all the $z_{i j}$, and let $\psi_{\delta}^{1}: W \xrightarrow{\simeq} L_{\delta}^{1}$ be the linear map given by $\bar{x}_{i j} \mapsto z_{i j}$ for all i, j. By Proposition 3.1 we have the decomposition $Z\left(G_{\delta}^{c}\right)=\bigoplus_{\kappa=1}^{c} L_{\delta}^{\kappa}$ into \mathbb{F}_{2}-vector spaces. We also introduce a "target" disposition 2-group G_{d}^{c} of rank d and class c with generators x_{1}, \ldots, x_{d}, yielding the basis $\bar{x}_{i}=x_{i} \Phi\left(G_{d}^{c}\right)$ of $V=G_{d}^{c} / \Phi\left(G_{d}^{c}\right)$, and let L_{d}^{1} be the subspace of $Z\left(G_{d}^{c}\right)$ generated by the $z_{i}=x_{i}^{2^{c-1}}(1 \leq i \leq d)$. Then we have again the vector space decomposition $Z\left(G_{d}^{c}\right)=\bigoplus_{\kappa=1}^{c} L_{d}^{\kappa}$. Let $\psi_{d}^{1}: V \xrightarrow{\longrightarrow} L_{d}^{1}$ be the linear isomorphism given by $\bar{x}_{i} \mapsto z_{i}$ for each i, and define the epimorphisms $\psi_{\delta}^{\kappa}: W^{\otimes \kappa} \rightarrow L_{\delta}^{\kappa}$ and $\psi_{d}^{\kappa}: V^{\otimes \kappa} \rightarrow L_{d}^{\kappa}$ for $2 \leq \kappa \leq c$ as in Proposition 3.1.

Now let $\alpha=\left(a_{j}\right)$ be any nontrivial r-tuple in $\mathbb{F}_{2}^{(r)}$. We shall also write $\alpha: W \rightarrow V$ for the (surjective) linear map given by $\alpha\left(\bar{x}_{i j}\right)=a_{j} \bar{x}_{i}$ for all pairs i, j (additive notation). By Lemma 3.2 every lift of α to G_{δ}^{c} gives rise to the same epimorphism $\alpha_{z}: Z\left(G_{\delta}^{c}\right) \rightarrow Z\left(G_{d}^{c}\right)$, and α_{z} respects the corresponding vector space decompositions. From Proposition 3.1 it follows that $\alpha_{z} \circ \psi_{\delta}^{\kappa}=\psi_{d}^{\kappa} \circ \alpha^{\otimes \kappa}$ for each $\kappa=1, \ldots, c$ (where $\alpha^{\otimes \kappa}: W^{\otimes \kappa} \rightarrow V^{\otimes \kappa}$ is the κ-th tensor power of α). In particular $\alpha_{z}\left(z_{i j}\right)=a_{j} z_{i}$ for all i, j (additive notation).

Though irrelevant for our purposes, but following [Shafarevich 1954], we consider the "canonical" epimorphism $\pi(\alpha): G_{\delta}^{c} \rightarrow G_{d}^{c}$ given by mapping $x_{i j}$ onto x_{i} for all i if $a_{j}=1$ and to 1 if $a_{j}=0$. This is a distinguished lift of α to G_{δ}^{c}. (Writing $G_{\delta}^{c}=F_{\delta} / \lambda_{c+1}\left(F_{\delta}\right)$ and letting $\left\{t_{i j}\right\}$ be a basis of the free group, there is an automorphism of G_{δ}^{c} sending $x_{i j}$ to $t_{i j} \lambda_{c+1}\left(F_{\delta}\right)$ for all i, j. Then $\pi(\alpha)$ is given via the assignments $t_{i j} \mapsto x_{i}$ if $a_{j}=1$ and $t_{i j} \mapsto 1$ otherwise.) Let

$$
E(\alpha)=E_{\delta}^{\operatorname{Ker}(\pi(\alpha))} \quad \text { and } \quad K(\alpha)=E(\alpha) \cap K_{\delta} .
$$

Obviously $K(\alpha)$ is a Scholz field with respect to N; condition (S2) might fail for the field $E(\alpha)$.

It is convenient to identify $\operatorname{Gal}(E(\alpha) \mid \mathbb{Q})$ with G_{d}^{c} through the isomorphism induced by $\pi(\alpha)$. Then every element of $G_{\delta\left(G_{\delta}^{c}\right)}^{c}$ is sent by $\pi(\alpha)$ to its restriction on $E(\alpha)$. In particular $K(\alpha)=E(\alpha)^{Z\left(G_{d}^{c}\right)}$ since $K_{\delta}=E_{\delta}^{Z\left(G_{\delta}^{c}\right)}$ and $\pi(\alpha)\left(\right.$ resp. $\left.\alpha_{z}\right)$ maps $Z\left(G_{\delta}^{c}\right)$ onto $Z\left(G_{d}^{c}\right)$. It follows that $\operatorname{Gal}(K(\alpha) \mid \mathbb{Q}) \cong G_{d}^{c-1}$ and that $\mathfrak{S}(K(\alpha))=\mathfrak{S}(E(\alpha))$.

If there is a prime $q \in \operatorname{Ram}(E(\alpha)) \backslash \operatorname{Ram}(K(\alpha))$, then $q \in \operatorname{Ram}\left(K_{\delta}\right) \subseteq 1+2^{N} \mathbb{Z}$ and q is busy in the Scholz field K_{δ}. It follows that q splits completely in $K(\alpha)$ (being busy and unramified). In particular q splits completely in $\mathfrak{S}(K(\alpha))$.

We have $\mathfrak{S}(E(\alpha))=E(\alpha) \cap \mathfrak{S}\left(E_{\delta}\right)$ since $\pi(\alpha)\left(\Phi\left(G_{\delta}^{c}\right)\right)=\Phi\left(G_{d}^{c}\right)$. For each $i=1, \ldots, d$ we let

$$
P_{i}(\alpha)=E(\alpha) \cap \prod_{j=1}^{r} P_{i j}
$$

If I_{q} is the inertia group in G_{δ}^{c} for some $q \in \operatorname{Ram}\left(P_{i j}\right)$, then $\pi(\alpha)\left(I_{q}\right)$ maps onto $\left\langle\bar{x}_{i}\right\rangle$ if $a_{j}=1$ (which exists) and $\pi(a)\left(I_{q}\right) \subseteq \Phi\left(G_{d}^{c}\right)$ otherwise. So $P_{i}(\alpha)$ is the (cyclic) subfield of $\mathfrak{S}(E(\alpha))$ fixed (centralized) by all $\bar{x}_{i^{\prime}}$ for $i^{\prime} \neq i$ (but not by \bar{x}_{i}), and $\operatorname{Ram}\left(P_{i}(\alpha)\right)=\biguplus_{j}^{\prime} \operatorname{Ram}\left(P_{i j}\right)$, where j varies over the indices in $\{1, \ldots, r\}$ for which $a_{j}=1$. Hence we have

$$
\mathfrak{S}(K(\alpha))=\mathfrak{S}(E(\alpha))=P_{1}(\alpha) \cdots P_{d}(\alpha)
$$

and we infer that $K(\alpha)$ is strongly Scholz.
Let $q \in \operatorname{Ram}\left(P_{i}(\alpha)\right)$ for some i. Then $q \in \operatorname{Ram}\left(P_{i j}\right)$ for a unique j, and $\alpha_{z}\left(z_{i j}\right)=a_{j} z_{i}=z_{i}$. Every prime \mathfrak{q} of K_{δ} above q is unramified in $E_{\delta}^{\left\langle z_{i j}\right\rangle}$, and $\mathfrak{q}_{\alpha}=\mathfrak{q} \cap K(\alpha)$ is unramified in $E(\alpha)^{\left\langle z_{i}\right\rangle}=E(\alpha) \cap E_{\delta}^{\left\langle z_{i j}\right\rangle}$. The restriction of

$$
\left(\frac{E_{\delta}^{\left\langle z_{i j}\right\rangle} \mid K_{\delta}}{\mathfrak{q}}\right)
$$

to $E(\alpha)^{\left\langle z_{i}\right\rangle}$ agrees with

$$
\left(\frac{E(\alpha)^{\left\langle z_{i}\right\rangle} \mid K(\alpha)}{\mathfrak{q}_{a}}\right)
$$

as q is busy in K_{δ}. Hence $\alpha_{z}\left(\sigma_{q}\right)$ may be identified with "the" Scholz obstruction for $E(\alpha)$ associated to q. We have

$$
\sum_{q \in \operatorname{Ram}\left(P_{i}(\alpha)\right)} \alpha_{z}\left(\sigma_{q}\right)=\sum_{j}^{\prime} \alpha_{z}\left(\sigma_{i j}\right)
$$

where the sum is taken over all j for which $a_{j}=1$.
Consider $Z\left(G_{\delta}^{c}\right) \otimes L_{\delta}^{1}=\bigoplus_{\kappa=1}^{c}\left(L_{\delta}^{\kappa} \otimes L_{\delta}^{1}\right)$. Let α_{z}^{κ} denote the restriction to L_{δ}^{κ} of α_{z}. The map $\alpha_{z} \otimes \alpha_{z}^{1}: Z\left(G_{\delta}^{c}\right) \otimes L_{\delta}^{1} \rightarrow Z\left(G_{d}^{c}\right) \otimes L_{d}^{1}$ respects the corresponding decompositions, and the diagram

commutes for each κ. All maps in this square are surjections. On the obvious bases of $W^{\otimes \kappa+1}$ and $V^{\otimes \kappa+1}$ we have

$$
\alpha^{\otimes \kappa+1}\left(\bar{x}_{i_{1}, j_{1}} \otimes \cdots \otimes \bar{x}_{i_{\kappa+1}, j_{\kappa+1}}\right)=\left(\bar{x}_{i_{1}} \otimes \cdots \otimes \bar{x}_{i_{\kappa+1}}\right) a_{j_{1}} \cdots a_{j_{\kappa+1}} .
$$

Let $z \in Z\left(G_{\delta}^{c}\right) \otimes L_{\delta}^{1}$ with κ-component $z^{\kappa} \in L_{\delta}^{\kappa} \otimes L_{\delta}^{1}$, and let $\widehat{z^{\kappa}} \in W^{\otimes \kappa} \otimes W$ be an inverse image of z^{κ} with regard to $\psi_{\delta}^{\kappa} \otimes \psi_{\delta}^{1}$. Given a nontrivial linear form $\chi \in \operatorname{Hom}\left(L_{d}^{\kappa} \otimes L_{d}^{1}, \mathbb{F}_{2}\right)$, the element $\chi \circ\left(\psi_{d}^{\kappa} \otimes \psi_{d}^{1}\right) \circ \alpha^{\otimes \kappa+1}\left(\widehat{z^{\kappa}}\right)$ may be interpreted as evaluation at $\left(a_{j}\right)$ of some homogeneous polynomial of degree $\kappa+1$ in r variables over \mathbb{F}_{2} determined by $\widehat{z^{\kappa}}$ and χ. But $\left(\psi_{d}^{\kappa} \otimes \psi_{d}^{1}\right) \circ \alpha^{\otimes \kappa+1}\left(\widehat{z^{\kappa}}\right)=\left(\alpha_{z}^{\kappa} \otimes \alpha_{z}^{1}\right)\left(z^{\kappa}\right)$ and so this evaluation only relies on z^{κ} (and on χ). Hence we may state that $\chi \circ\left(\alpha_{z}^{\kappa} \otimes \alpha_{z}^{1}\right)\left(z^{\kappa}\right)=0$ if $\left(a_{j}\right)$ is a (nontrivial) zero of a certain homogeneous polynomial of degree $\kappa+1$ in r variables over \mathbb{F}_{2}. Varying χ over a basis for $\operatorname{Hom}\left(L_{d}^{\kappa} \otimes L_{d}^{1}, \mathbb{F}_{2}\right)$ we obtain that $\left(\alpha_{z}^{\kappa} \otimes \alpha_{z}^{1}\right)\left(z^{\kappa}\right)=0$ if $\left(a_{j}\right)$ is a common zero of $\ell_{d}^{\kappa} \cdot d$ such polynomials, and we get $\left(\alpha_{z} \otimes \alpha_{z}^{1}\right)(z)=0$ if $\left(a_{j}\right)$ is a common zero of $d \sum_{\kappa=1}^{c} \ell_{d}^{\kappa}$ such homogeneous polynomials in r variables over \mathbb{F}_{2} of respective degrees $\kappa+1=2, \ldots, c+1$.

Now consider for each $i=1, \ldots, d$ the element $z(i)=\sum_{j=1}^{r} \sigma_{i j} \otimes z_{i j}$ of $Z\left(G_{\delta}^{c}\right) \otimes L_{\delta}^{1}$. Since by definition $r>d^{2} \sum_{\kappa=1}^{c}(\kappa+1) \cdot \ell_{d}^{\kappa}$, the Chevalley-Warning theorem guarantees that we may choose $\alpha=\left(a_{j}\right)$ nontrivial in $\mathbb{F}_{2}^{(r)}$ such that $\left(\alpha_{z} \otimes \alpha_{z}^{1}\right)(z(i))=0$ for all i. We have

$$
\left(\alpha_{z} \otimes \alpha_{z}^{1}\right)(z(i))=\sum_{j=1}^{r} \alpha_{z}\left(\sigma_{i j}\right) \otimes \alpha_{z}\left(z_{i j}\right)=\sum_{j=1}^{r} \alpha_{z}\left(\sigma_{i j}\right) \otimes a_{j} z_{i}=\left(\sum_{q \in \operatorname{Ram}\left(P_{i}(\alpha)\right)} \alpha_{z}\left(\sigma_{q}\right)\right) \otimes z_{i}
$$

Hence $\sum_{q \in \operatorname{Ram}\left(P_{i}(\alpha)\right)} \alpha_{z}\left(\sigma_{q}\right)=0$ for all $i=1, \ldots, d$, so that Proposition 4.2 applies. Consequently there is a strong Scholz field E with respect to N containing $K(\alpha)=E(\alpha) \cap K_{\delta}$ and admitting G_{d}^{c} as Galois group over the rationals. We also get

$$
\operatorname{Ram}(E)=\operatorname{Ram}(K(\alpha)) \cup\left\{p_{1}, \ldots, p_{t}\right\}
$$

where $t=\operatorname{dim} Z\left(G_{d}^{c}\right)=\sum_{\kappa=1}^{c} \ell_{d}^{\kappa}$. Here the t-set $\left\{p_{1}, \ldots, p_{t}\right\}$ of rational primes may be chosen in infinitely many pairwise disjoint ways.

By induction $\left|\operatorname{Ram}\left(E_{\delta}\right)\right|=\left|\operatorname{Ram}\left(K_{\delta}\right)\right| \leq f_{c-1}(\delta)$. Define f_{c} such that $f_{c}(d)=f_{c-1}(\delta)+\sum_{\kappa=1}^{c} \kappa \cdot \ell_{d}^{\kappa}$. Then $|\operatorname{Ram}(E)| \leq f_{c}(d)$. Since $\delta=r d$ is an integral polynomial in d of degree $c+3$, this f_{c} is an integral polynomial of degree $(c+3) \operatorname{deg} f_{c-1}=(c+3)!/ 24$. This completes the proof of the theorem.

Acknowledgements

I owe special thanks to J.-P. Serre for some revealing discussions on the inverse problem of Galois theory for nilpotent (and for solvable) groups. I am also indebted to the referee for some valuable comments.

References

[Fröhlich 1983] A. Fröhlich, Central extensions, Galois groups, and ideal class groups of number fields, Contemp. Math. 24, Amer. Math. Soc., Providence, RI, 1983. MR Zbl
[Geyer and Jarden 1998] W.-D. Geyer and M. Jarden, "Bounded realization of l-groups over global fields: the method of Scholz and Reichardt", Nagoya Math. J. 150 (1998), 13-62. MR Zbl
[Hecke 1981] E. Hecke, Lectures on the theory of algebraic numbers, Graduate Texts in Math. 77, Springer, 1981. MR Zbl
[Kisilevsky et al. 2010] H. Kisilevsky, D. Neftin, and J. Sonn, "On the minimal ramification problem for semiabelian groups", Algebra Number Theory 4:8 (2010), 1077-1090. MR Zbl
[Meshulam and Sonn 1999] R. Meshulam and J. Sonn, "A quantitative version of a lemma of Shafarevich-Ishkhanov", Comm. Algebra 27:3 (1999), 1255-1259. MR Zbl
[Neukirch et al. 2000] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, Grundlehren der Math. Wissenschaften 323, Springer, 2000. MR Zbl
[Plans 2004] B. Plans, "On the minimal number of ramified primes in some solvable extensions of $\mathbb{Q} "$, Pacific J. Math. 215:2 (2004), 381-391. MR Zbl
[Rabayev 2013] D. Rabayev, Upper bound on the minimal number of ramified primes for solvable groups over the rationals, Ph.D. thesis, Technion-Israel Institute of Technology, 2013.
[Reichardt 1937] H. Reichardt, "Konstruktion von Zahlkörpern mit gegebener Galoisgruppe von Primzahlpotenzordnung", J. Reine Angew. Math. 177 (1937), 1-5. MR Zbl
[Schmid 2014] P. Schmid, "On 2-extensions of the rationals with restricted ramification", Acta Arith. 163:2 (2014), 111-125. MR Zbl
[Schmid 2017] P. Schmid, "Disposition p-groups", Arch. Math. (Basel) 108:2 (2017), 113-121. MR Zbl
[Scholz 1937] A. Scholz, "Konstruktion algebraischer Zahlkörper mit beliebiger Gruppe von Primzahlpotenzordnung, I", Math. Z. 42:1 (1937), 161-188. MR Zbl
[Serre 1992] J.-P. Serre, Topics in Galois theory, Research Notes in Math. 1, Jones and Bartlett, Boston, 1992. MR Zbl
[Shafarevich 1954] I. R. Shafarevich, "On the construction of fields with a given Galois group of order l^{α} ", Izv. Akad. Nauk SSSR Ser. Mat. 18:3 (1954), 261-296. In Russian; translated in Amer. Math. Soc. Trans. (2) 4 (1956), 107-142. Zbl
[Shafarevich 1989] I. R. Shafarevich, "Factors of a descending central series", Mat. Zametki 45:3 (1989), 114-117. In Russian; translated in Math. Notes 45:3 (1989), 262-264. MR Zbl
[Weil 1967] A. Weil, Basic number theory, Grundlehren der Math. Wissenschaften 144, Springer, 1967. MR Zbl
Communicated by Pham Huu Tiep
Received 2017-07-26 Revised 2018-07-21 Accepted 2018-08-26
peter.schmid@uni-tuebingen.de Mathematisches Institut, Universität Tübingen, Tübingen, Germany

Algebra \& Number Theory

msp.org/ant

EDITORS

Managing Editor Editorial Board Chair
Bjorn Poonen
Massachusetts Institute of Technology
Cambridge, USA
David Eisenbud
University of California
Berkeley, USA

Board of Editors

Richard E. Borcherds	University of California, Berkeley, USA	Martin Olsson	University of California, Berkeley, USA
Antoine Chambert-Loir	Université Paris-Diderot, France	Raman Parimala	Emory University, USA
J-L. Colliot-Thélène	CNRS, Université Paris-Sud, France	Jonathan Pila	University of Oxford, UK
Brian D. Conrad	Stanford University, USA	Anand Pillay	University of Notre Dame, USA
Samit Dasgupta	University of California, Santa Cruz, USA	Michael Rapoport	Universität Bonn, Germany
Hélène Esnault	Freie Universität Berlin, Germany	Victor Reiner	University of Minnesota, USA
Gavril Farkas	Humboldt Universität zu Berlin, Germany	Peter Sarnak	Princeton University, USA
Hubert Flenner	Ruhr-Universität, Germany	Joseph H. Silverman	Brown University, USA
Sergey Fomin	University of Michigan, USA	Michael Singer	North Carolina State University, USA
Edward Frenkel	University of California, Berkeley, USA	Vasudevan Srinivas	Tata Inst. of Fund, Research, India
Andrew Granville	Université de Montréal, Canada	J. Toby Stafford	University of Michigan, USA
Joseph Gubeladze	San Francisco State University, USA	Pham Huu Tiep	University of Arizona, USA
Roger Heath-Brown	Oxford University, UK	Ravi Vakil	Stanford University, USA
Craig Huneke	University of Virginia, USA	Michel van den Bergh	Hasselt University, Belgium
Kiran S. Kedlaya	Univ. of California, San Diego, USA	Marie-France Vignéras	Université Paris VII, France
János Kollár	Princeton University, USA	Kei-Ichi Watanabe	Nihon University, Japan
Philippe Michel	École Polytechnique Fédérale de Lausanne Wu Zhang	Princeton University, USA	
Susan Montgomery	University of Southern California, USA		
Shigefumi Mori	RIMS, Kyoto University, Japan		Shiversity, USA

PRODUCTION
production@msp.org
Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.
The subscription price for 2018 is US $\$ 340 /$ year for the electronic version, and $\$ 535 /$ year ($+\$ 55$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra \& Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW ${ }^{\circledR}$ from MSP.
PUBLISHED BY
■ mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers

Algebra \& Number Theory

Volume 12 No. 102018

Higher weight on GL(3), II: The cusp forms 2237
Jack Buttcane
Stark systems over Gorenstein local rings 2295
Ryotaro Sakamoto
Jordan blocks of cuspidal representations of symplectic groups 2327Corinne Blondel, Guy Henniart and Shaun Stevens
Realizing 2-groups as Galois groups following Shafarevich and Serre 2387
Peter Schmid
Heights of hypersurfaces in toric varieties 2403
Roberto Gualdi
Degree and the Brauer-Manin obstruction 2445
Brendan Creutz and Bianca Viray
Bounds for traces of Hecke operators and applications to modular and elliptic curves over a finite field 2471 Ian Petrow
2-parts of real class sizes 2499Hung P. Tong-Viet

