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Let G be a finite p-group for some prime p, say of order pn. For odd p the inverse problem of Galois
theory for G has been solved through the (classical) work of Scholz and Reichardt, and Serre has shown
that their method leads to fields of realization where at most n rational primes are (tamely) ramified. The
approach by Shafarevich, for arbitrary p, has turned out to be quite delicate in the case p D 2. In this
paper we treat this exceptional case in the spirit of Serre’s result, bounding the number of ramified primes
at least by an integral polynomial in the rank of G, the polynomial depending on the 2-class of G.

1. Introduction

Let p be prime and G a finite p-group. By [Scholz 1937; Reichardt 1937] there is a Galois extension
K jQ with group G provided p is odd. The general case, allowing pD 2, has been treated by Shafarevich
[1954] in a different and somehow more complicated way. Actually the p D 2 case led to controversial
discussions some years ago, because Shafarevich used in his proof “something on free groups (and their
p-filtration) which is false for p D 2” (Serre in a letter of May 10, 1988). Shafarevich [1989] corrected
this by suggesting to use a refined filtration. The proof of Shafarevich’s theorem (for solvable groups)
given in [Neukirch et al. 2000] is based on this filtration; it employs deep results and techniques in
cohomology of number fields.

The Scholz–Reichardt method has been explained further by Serre. In a letter of September 6, 1988 he
wrote: “I have now looked into Reichardt’s 1937 paper in Crelle, and it is quite nice. The proof gives a
rather surprising result, namely: if G has order pn, p¤ 2, then G can be realized as Gal.K jQ/ where K
is ramified at most n primes. However, p ¤ 2 seems indeed essential.” This was elaborated in [Serre
1992, Chapter 2]. A slight improvement was given in [Plans 2004]; see also [Geyer and Jarden 1998].

The fieldK in Serre’s letter refers to so-called Scholz fields (Section 2). Only tame ramification happens
in these fields, so that the inertia groups are all cyclic. This implies that the cardinality of the set Ram.K/
of rational primes ramified in K must be at least equal to the rank d.G/ of the p-group G D Gal.K jQ/,
its minimum number of generators (in view of Burnside’s basis theorem and the Hermite–Minkowski
theorem). Indeed at least d.G/ primes must ramify in the socle S.K/ of K, the fixed field of the Frattini
subgroup ˆ.G/ of G (where G=ˆ.G/ is an Fp-vector space of dimension d.G/).
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The p-class (sometimes also called Frattini class) of the p-group G is the least positive integer c such
that G has a central series of length c with all factors being elementary.

Theorem. Let G be a nontrivial finite 2-group with rank d and 2-class c. There exist infinitely many
Scholz fields K with pairwise coprime (absolute) discriminants realizing G as Galois group over Q

and satisfying Ram.K/ � 1C 2cZ and jRam.K/j � fc.d/ for some integral polynomial fc of degree
.cC 3/Š=24.

The upper bound on the cardinality of Ram.K/ is rather weak (compared with the odd case). This is
primarily due to the (inductive) shrinking process needed (see below). The polynomial fc 2 ZŒX� will be
defined recursively (f1 DX , f2 D 2X5CX2, . . . ).

For any number field K0 there is a field K as above having discriminant coprime to that of K0. Then
the compositum K0K (in C) is Galois over K0 and admits G. Reichardt [1937] proved a corresponding
result in the odd case.

The proof of the theorem utilizes ideas from Scholz, Reichardt and Serre, as well as from Shafarevich.
Up to isomorphism there is a unique p-group Gc

d
.p/ of minimal order with rank d and p-class c which

has every (finite) p-group of rank d and p-class c as epimorphic image. We will have to consider,
like Shafarevich [1954], this so-called disposition p-group (for p D 2). In order to eliminate certain
.Scholz/ obstructions we also use a shrinking process, a technique also developed in [Shafarevich 1954].
However, avoiding Shafarevich’s “graded functions on canonical homomorphisms”, this will be based
on the Chevalley–Warning theorem, in a manner as proposed in [Meshulam and Sonn 1999; Neukirch
et al. 2000, Proposition (9.5.4)]. It is possible to derive upper bounds on jRam.K/j following the lines of
proof given by Shafarevich; e.g., see [Rabayev 2013].

The “minimal ramification problem” for a p-group G is the question whether G can be realized as the
group of a tamely ramified Galois extension of Q in which exactly d.G/ primes are ramified. Kisilevsky,
Neftin and Sonn [Kisilevsky et al. 2010] answered this question to the affirmative in the case where G is
semiabelian. At present a general answer seems to be out of reach; no counterexample is known so far.

2. Scholz fields

In this section G is a finite p-group for some prime p. As usual GQ denotes the absolute Galois group of
the algebraic closure Q of Q contained in C. Number fields are understood to be subfields of Q. For any
rational prime q we fix one of the GQ-conjugate prime ideals Q above q of the ring of algebraic integers
in Q, and let Iq �Dq denote the inertia and decomposition groups of Q (Dq=Iq Š Gal.Fq j Fq/Š yZ).

Definition 1. Let N be a positive integer with pN � exp.G/, where exp.G/ denotes the exponent of G.
Suppose we have a (continuous) epimorphism ' W GQ � G. The fixed field K D QKer.'/ of Ker.'/
(having Galois group G over the rationals) is a Scholz field with respect to N provided:

(S1) Each q 2 Ram.K/ belongs to 1CpNZ.

(S2) Each q 2 Ram.K/ is busy in K (in German: “fleissig”); that is, '.Iq/D '.Dq/.
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We say that K is a Scholz field (per se) if it is Scholz with respect to N for some N with pN � exp.G/.
Normal subfields of Scholz fields obviously are Scholz fields. We also say that K is a strong Scholz field
(with respect to N ) if in addition the socle satisfies S.K/ D P1 � � �Pd , where d D d.G/ and the sets
Ram.Pi / for the (cyclic) fields Pi are pairwise disjoint and of the same cardinality.

By (S1) ramification in a Scholz field K is always tame, and by (S2) the residue class degrees of the
primes of K ramified over Q are 1. Our definition of a Scholz field is in accordance with that given in
[Scholz 1937; Reichardt 1937; Serre 1992] (for odd p), but differs from that in [Shafarevich 1954]. In the
p D 2 case from (S1), with N � 3, it follows that 2 splits completely in S.K/ and that this is a (totally)
real field, which just says that S.K/ is a Scholz field in the sense of Shafarevich.

Proposition 2.1. Let Z�H �
��G be a nonsplit central extension of the p-group G where Z D Zp

is cyclic of order p. Assume that K DQKer.'/ is a Scholz field with respect to N where pN � exp.H/.
Then the embedding problem .GQ; '; �/ has a proper solution E DQKer. /, with  WGQ�H lifting ',
such that Ram.E/D Ram.K/.

SinceZ is contained in the Frattini subgroup ofH, every solution of the embedding problem .GQ; '; �/

is proper. Let � 2 H 2.G;Z/ be the cohomology class of the extension. Recall that .GQ; '; �/ has a
solution if and only if the map '� W H 2.G;Z/! H 2.GQ; Z/ induced by ' vanishes at � [Neukirch
et al. 2000, Proposition (9.4.2)]. The existence of a solution then follows by using standard global-local
techniques, as described in [Serre 1992, Lemma 2.1.5]. Actually Serre treats only the case where p is odd;
see also [Scholz 1937; Reichardt 1937]. Let p D 2 (and Z DZ2). The map � 7! �2 is an epimorphism
of Q� onto itself with kernel f˙1g Š Z. Using that H 1.GQ;Q

�/D 0 (Hilbert’s Theorem 90) we get
that H 2.GQ; Z/ is isomorphic to Br2.Q/, the 2-torsion of the Brauer group Br.Q/DH 2.GQ;Q

�/ of Q.
Restriction to the decomposition groups Dq ŠGQq gives rise to a map

Br2.Q/!
M
q

Br2.Qq/;

and this is injective when q varies over all (finite) rational primes (ignoring the infinite place1). This
follows from the celebrated Brauer–Hasse–Noether theorem, which tells us that an element of Br.Q/
is trivial provided it is locally trivial everywhere, except possibly at one place (Hasse reciprocity; see
[Weil 1967, Chapter XIII, Theorem 2]). Now the arguments given in [Serre 1992] apply as in the odd
case. (For odd p the archimedean places can be ignored, and by Hasse reciprocity one could allow that p
is ramifying [Reichardt 1937].)

Having found a solution of the embedding problem .GQ; '; �/ from [Serre 1992, Proposition 2.1.7] it
follows that there is a solution E with Ram.E/D Ram.K/; see also [Scholz 1937, Section 5].

Usually the field E D QKer. / will not be a Scholz field, because condition (S2) may fail. It is the
unique solution of .GQ; '; �/ with Ram.E/DRam.K/ only when jRam.S.K//j D d.G/. In fact, by the
Kronecker–Weber theorem S.K/ is a subfield of a cyclotomic field. Let q 2 Ram.S.K//, and let Pq be
the (unique) subfield of the q-th cyclotomic field Q.�q/ of absolute degree p, which exists by (S1). Then
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Ram.Pq/D fqg. There is an epimorphism �q WGQ�Z with QKer.�q/ D Pq , and Eq DQKer. �q/ is a
solution of .GQ; '; �/ with Ram.Eq/D Ram.E/D Ram.K/. We have Eq DE only when Pq �S.K/.
Hence uniqueness happens only when S.K/D

Q
q2Ram.S.K//Pq .

Lemma 2.2. For any positive integers N, d there exist infinitely many pairwise disjoint d -sets of primes
fq1; : : : ; qd g such that each qi is in 1CpNZ and is a pN -th power in F�qj D .Z=qjZ/� whenever j ¤ i .

Let q1 be one of the infinitely many (Chebotarev) primes which split completely in the pN -th cyclotomic
field K1 D Q.�pN /. Let q2 split completely in K2 D K1.�q1 ;

pN
p
q1/, . . . , and let finally qd split

completely inKd DKd�1.�qd�1 ; p
Npqd�1/. Each qi is in 1CpNZ as it splits completely in Q.�pN /. In

KiC1 DQ.�pN I �q1 ; : : : ; �qi I
pN
p
q1; : : : ; p

Np
qi /

the prime qiC1 is completely split, whereas q1; : : : ; qi are ramified (1 � i < d ). For 1 � j � i we
have qiC1 2 1C qjZ since it is totally split in Q.�qj /; in this case qiC1 obviously is a pN -th power in
F�qj . Since qiC1 splits completely in Q.�pN ; p

Npqj / for j � i , the congruence xp
N

� qj .mod qiC1/
is solvable in Z (Kummer’s theorem).

Having found this d -set fq1; : : : ; qd g of primes, let qdC1 be a prime splitting totally in KdC1 D
Kd .�qd ;

pN
p
qd /, and proceed in this manner.

Lemma 2.3. Given positive integers N, d , let fq1; : : : ; qd g be a d -set of primes as constructed in the
preceding lemma. Let also ni be integers with 1� n1 � n2 � � � � � nd �N, and let G be abelian of type
.pn1 ; : : : ; pnd /. For i D 1; : : : ; d let Pi be the (unique) subfield of Q.�qi / of absolute degree pni (which
exists). Then K D P1 � � �Pd is a Scholz field with respect to N realizing G as Galois group over Q, with
Ram.K/D fq1; : : : ; qd g.

By construction and the decomposition law in cyclotomic fields, for each i D 1; : : : ; d the prime qi is
in 1CpNZ, is totally ramified in Pi and is completely split in all Pj , j ¤ i .

Remark. Let S D fq1; : : : ; qd g be as constructed in Lemma 2.2, and let GS .p/ be the absolute Galois
group of the maximal p-extension of Q unramified outside S [f1g. By [Fröhlich 1983, Theorem 4.11]
GS .p/ maps onto every p-group of rank d , exponent pN and nilpotency class 2. This solves the minimal
ramification problem for p-groups of nilpotency class at most 2 (varying d and N ). However, it is easily
seen that such groups are semiabelian (so that [Kisilevsky et al. 2010] applies).

By recursive definition a finite group G is semiabelian if either G is abelian or G D AH for some
normal abelian subgroup A of G and some proper semiabelian subgroup H. So G is an epimorphic image
of a split group extension with abelian kernel. In an analogous manner finite solvable groups might be
called seminilpotent (see Proposition 2.2.4 and Claim 2.2.5 in [Serre 1992], and the elegant proof of this
claim in the case of abelian kernels).

The bound jRam.K/j D d.G/ can be diminished if one allows also wild ramification. Examples for
p D 2 are the (semiabelian) dihedral, semidihedral and modular 2-groups, with Ram.K/D f2g, whereas
the (generalized) quaternion 2-groups require a further (odd) ramifying prime; e.g., see [Schmid 2014].
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3. Disposition 2-groups

For subgroupsX; Y of a groupG we let ŒX; Y � be the subgroup ofG generated by the commutators Œx; y�D
x�1y�1xy D x�1xy (x 2X , y 2 Y ). We define recursively Œx1; : : : ; xnC1�D ŒŒx1; : : : ; xn�; xnC1�, and

1.G/ D G, 
nC1.G/ D Œ
n.G/;G� describing the lower central series of G. As usual we write
G0 D 
2.G/D ŒG;G�. We also denote by Z.G/ the centre of G, and we write Z0.G/DZ.G/\G0.

The lower (central Frattini) 2-series of the groupG is defined inductively by �1.G/DG and �nC1.G/D
Œ�n.G/;G��n.G/

2. If G ¤ 1 is a finite 2-group then ˆ.G/D �2.G/ is the Frattini subgroup of G, and
G has 2-class c if �cC1.G/D 1 but �c.G/¤ 1. Letting Fd be “the” free group of finite rank d � 1, for
any integer c � 1 the quotient

Gcd DG
c
d .2/D Fd=�cC1.Fd /

is a finite 2-group of rank d and 2-class c, which will be called a “disposition group” (with respect
to the prime p D 2; of course we could replace Fd by the free pro-2-group of rank d ). Every (finite)
2-group G of rank � d and 2-class � c is an epimorphic image of Gc

d
. In fact, by the universal property

of free groups, and by Burnside’s basis theorem, any epimorphism Fd=�2.Fd /�G=�2.G/ lifts to an
epimorphism � W Fd�G, and �cC1.G/D 1 implies that �cC1.Fd /� Ker.�/.

The disposition p-groups have been studied in the literature quite intensively (see for instance [Sha-
farevich 1989; Neukirch et al. 2000; Schmid 2017]). We summarize the basic facts (for the somewhat
exceptional case p D 2).

Proposition 3.1. Let G DGc
d

for d � 2 and c � 2, and let

`�d D
1

k

X
kj�

�.k/d�=k

for � D 1; : : : ; c (where �.k/ denotes the Möbius function). The group G has rank d , exponent 2c and
nilpotency class c, with centre Z.G/D �c.G/. So both V D G=ˆ.G/ and Z.G/ are F2-vector spaces
(often written additively):

(a) The assignment xˆ.G/ 7! x2
c�1

for x 2G is a well-defined injection of V into Z.G/. Fix a basis
fxiˆ.G/g

d
iD1 of V (xi 2G), and let zi D x2

c�1

i and L1
d
Dhz1; : : : ; zd i. ThenZ.G/DL1

d
˚Z0.G/,

and xiˆ.G/ 7! zi defines a linear isomorphism  1
d
W V �!� L1

d
.

(b) For � 2 f2; : : : ; cg the 2c��-th power map on 
�.G/ is a homomorphism with kernel 
�C1.G/
�.G/2

and image L�
d
D 
�.G/

2c�� in Z0.G/, and we have the (natural) direct decomposition

Z0.G/D L2d ˚ � � �˚L
c
d :

The “Lie module”L�
d

has the F2-dimension `�
d

, and the assignments Nx1˝� � �˝ Nx� 7! Œx1; : : : ; x� �
2c��,

for xi 2G and Nxi D xiˆ.G/, define an epimorphism  �
d
W V ˝�� L�

d
.

Proposition 3.1 is contained in the (Main) Theorem of [Schmid 2017] (where one can also find an
explanation of the notion “Lie module”). Actually we shall only use the F2-vector space decomposition
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Z.Gc
d
/ D

Lc
�D1L

�
d

, together with the epimorphisms  �
d

described above. We emphasize that  1
d

depends on the choice of a basis for Gc
d
=ˆ.Gc

d
/ (in the p D 2 case).

Lemma 3.2. Let Gc
ı
D Gc

ı
and Gc

d
D Gc

d
be disposition 2-groups with ı > d � 2 and c � 2, and let

˛ W Gc
ı
=ˆ.Gc

ı
/� Gc

d
=ˆ.Gc

d
/ be an epimorphism. Then all lifts of ˛ to Gc

ı
(which exist) restrict to

the same epimorphism ˛z WZ.G
c
ı
/�Z.Gc

d
/, and ˛z maps Z0.Gc

ı
/ onto Z0.Gc

d
/ respecting the direct

decompositions into Lie modules.

This lemma follows from [Schmid 2017, Proposition 3]. If ˛ sends basis vectors to basis vectors or
zero, and L1

ı
, L1

d
are computed with regard to these bases (see above), then ˛z maps L1

ı
onto L1

d
. The

following lemma is Proposition 4 in [Schmid 2017].

Lemma 3.3. Let H D Gc
d

with d � 2, c � 2, and let G D H=Z.H/ (Š Gc�1
d

). There is a natural
(transgression) isomorphism Hom.Z.H/; F2/ �!� H 2.G; F2/. Choose a basis f��g of H 2.G; F2/, and
let H� for each � be an extension of G by Z2 Š F2 with cohomology class �� . Then the fibre product of
the H� amalgamating G is isomorphic to H.

4. The Scholz obstructions

Let d � 2, c� 2, and letGDGc�1
d

. LetN be an integer withN � c, and suppose we have a strong Scholz
field K with respect to N realizing G as Galois group over Q. Let f��g be a basis of H 2.G; F2/. For any
� let H� be a (central) extension of G by Z2 Š F2 with cohomology class �� , and let E� be a solution
of the corresponding nonsplit embedding problem with Ram.E� / D Ram.K/ (see Proposition 2.1).
The compositum E D

Q
� E� is a normal number field containing K with Ram.E/ D Ram.K/, and

H D Gal.E jQ/ is the fibre product of the H� amalgamating G. Hence H ŠGc
d

by Lemma 3.3.
For proof-technical reasons we assume in what follows merely that the E� are chosen such that if there

is q2Ram.E/nRam.K/, then q21C2NZ and q splits completely in S.K/. We also will choose the basis
f��g ofH 2.G;Z2/ suitably, without altering the fieldE (see below). Let tDdimH 2.G;Z2/DdimZ.H/

(Lemma 3.3).
By Proposition 3.1 we have Z.H/ D �c.H/ � ˆ.H/ and H=Z.H/ Š G. Hence by assumption

S.E/DS.K/D P1 � � �Pd , where the Ram.Pi / are pairwise disjoint and of the same cardinality. Let bi
be the discriminant of Pi . By (S1) 2 is unramified in Pi DQ.

p
bi / and hence

bi D
Y

q2Ram.Pi /

q 2 1C 2NZ:

Given a prime q we simply write Iq �Dq for the inertia and decomposition groups in H of some fixed
prime Q of E above q (determined up to H -conjugacy). The images of these groups in H=ˆ.H/ D
Gal.S.E/jQ/ and their intersections withZ.H/DGal.E jK/ are independent of the choice of Q. Recall
that Iq is cyclic (by tame ramification).

Lemma 4.1. Let IqDhxi i be the inertia group inH of some q2Ram.Pi / (1� i �d ). Then NxiDxiˆ.H/
and zi D x2

c�1

i are independent of the choice of the prime q in Ram.Pi /, and fxigdiD1 is a minimal system
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of generators for H. For any q 2 Ram.Pi / we have Iq \Z.H/D hzi i, and the primes of K above q are
unramified in Ehzi i.

This is immediate from the structure of S.E/DEˆ.H/ and from Proposition 3.1. We also get thatL1
d
D

hz1; : : : ; zd i is an F2-subspace of Z.H/ of dimension d D `1
d

complementary to Z0.H/DH 0\Z.H/
in Z.H/. Hence letting E? D

Td
iD1E

hzi i be the fixed field of this L1
d

we have E DE? �EZ
0.H/ and

E?\EZ
0.H/ DK. Let also

E.i/D
\
j¤i

Ehzj i\EZ
0.H/

for each i D 1; : : : ; d . Now choose a basis f��g of Hom.Z.H/; F2/ such that E� D EKer.�� / either is
contained in E? or is equal to E.i/ for some i , and let f��g correspond to f��g under the transgression
isomorphism Hom.Z.H/; F2/ �!� H 2.G; F2/ (Lemma 3.3).

For each � write E� D K.
p
�� / for some �� 2 K� (determined mod .K�/2). Then every group

extension of G by Z2 with cohomology class �� is realized as K.
p
m�� / for some (square-free) integer

m¤ 0, because it is obtained by Baer addition of H� with the split extension of G by Z2 realized as
K.
p
m/D Q.

p
m/ �K (with Q.

p
m/ 6�K; alternately, multiply  � W GQ�H� with �m W GQ� Z2

having QKer.�m/ DQ.
p
m/).

Let q 2 Ram.Pi / for some i , and let Iq �Dq be as above. For any prime q of K above q, determined
up to G-conjugacy, the Frobenius

N�q D

�
Ehzi i jK

q

�
(Artin symbol) is an element of Gal.Ehzi i jK/ and independent of the choice of q above q. Since q is
busy in the Scholz field K, both Iq and Dq have the same image (of order 2c�1) in H=Z.H/ Š G.
Hence Dq D Iq.Dq \Z.H// and

Dq \Z.H/D hzi i � h�qi

for some element �q (of order 2 or 1) mapping onto N�q , which in turn maps onto the generator of Dq=Iq .
If �q ¤ 0 (additive notation), we may replace �q by zi C �q . In spite of this ambiguity we call �q “the”
Scholz obstruction for E associated to q. This will be no problem since we only shall consider the
restrictions of �q to fields E� �Ehzi i.

Proposition 4.2. Let �i D
P
q2Ram.Pi / �q , and assume that �i D 0 (or that �i 2 hzi i) for all i D 1; : : : ; d .

Then there exist infinitely many pairwise disjoint t-sets fp1; : : : ; ptg of rational primes such that yE DQt
�D1K.

p
p�e�� / is a strong Scholz field with respect to N admitting Gc

d
as Galois group over Q and

having Ram. yE/D Ram.K/[fp1; : : : ; ptg.

Proof. We argue by induction. Suppose that either K0 DK or that K0 D
Q
� 0 K.
p
p� 0e�� 0/ is a strong

Scholz field with respect to N (with corresponding Ram.K0/) for certain � 0 and primes p� 0 , but that there
is still some � different from all these � 0. We prove that there are infinitely many primes p� 2 1C 2NZ
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which split completely in K0 such that yE0 DK0.
p
p�e�� / is a strong Scholz field with respect to N

with Ram. yE0/D Ram.K0/[fp�g.
Let G0 D Gal.K0 jQ/. By Lemma 3.3 this represents a central Frattini extension of G and is an

epimorphic image over G of H Š Gc
d

. In particular S.K0/ D S.K/ D S.E/. By construction the
image �0 of �� under the inflation map inf WH 2.G; F2/!H 2.G0; F2/ is nontrivial. Let E0 DK0E� D
K0.
p
�� / and H0 D Gal.E0 jQ/. For x 2 G0 choose an inverse image Qx 2 H0, and observe that

E0 DK0.
p
��
Qx/ and .

p
��
Qx/2 D .

p
��

2/ Qx D �x� . Hence

�x� D ˇ
2
x��

for some ˇx 2K�0 . Let q0 jq be primes ofK0 jQ. For the q0-adic valuation we have vq0.�� /Dvq0x .�
x
� /D

2 � vq0x .ˇx/C vq0x .�� /. This shows that the fractional ideal .�� / of K0 generated by �� splits into
a square of a fractional ideal b and a G0-invariant square-free (integral) ideal of K0, the latter being
decomposed into products of G0-conjugates of primes of K0 ramified over Q and those which are not.
Hence may write uniquely

.�� /D b2 �D � .e/;

where D is a G0-invariant ideal of K0 composed of pairwise distinct prime ideals of K0 ramified over
the rationals, and where e is a square-free positive integer relatively prime to the discriminant of K0.

Let again q0 jq be primes of K0 jQ. By [Hecke 1981, Theorem 120], q0 is ramified in E0DK0.
p
�� /

if and only if vq0.�� / is odd, except possibly when q0 is dyadic (lying above 2). But 2 is not ramified in
the Scholz field K0 by (S1), and Ram.E� /� 1C2NZ by assumption. So this exception does not happen.
Hence q0 is ramified in E0 if and only if either q0 appears in D or q is a divisor of e. Each rational prime
dividing e is unramified in K0 but ramified in E0 DK0E� and hence in E� . The prime divisors of e (if
any) therefore are in Ram.E/ nRam.K/, thus belong to 1C 2NZ and split completely in S.K/ (by our
convention).

Let R be the subset of Ram.K/ consisting of those rational primes q for which the primes q of K
above q do not ramify in E� . We claim that RDR.�� / is an invariant of the cohomology class �� . By
Hecke vq.�/ is even, and knowing that q ¤ 2 one just has to show that vq.m�/D vq.m/C vq.�/ also is
even for any integer m¤ 0. But this is clear since vq.m/D e.qjq/ � vq.m/ and the ramification index
e.qjq/D jIqj is a proper power of 2. Similarly, the set R0 of rational primes ramified in K0 but not in
E0 DK0E� is an invariant of �0 D inf.�� /.

Now let q 2Ram.S.K0//DRam.S.K//, say q 2Ram.Pi /. We assert that q 2R if and only if q 2R0.
Let q0 jq be primes of K0 jK above q. We have q 2R if and only if q is unramified in E� (E� �Ehzi i),
and then (obviously) q0 is unramified in E0 DK0E� and hence q 2R0. Conversely, suppose that q0 is
unramified in E0 (q 2R0). Assume that q 62R; that is, qD q0\K is ramified in E� . Then E� DE.i/
by construction. Moreover then q is unramified in E� 0 DK.

p
�� 0/ for all � 0 ¤ � since then E� 0 �Ehzi i.

As this is a property of the cohomology class �, we know q is unramified in the fields K.
p
p� 0e�� 0/

generating K0. Consequently q is unramified in K0, whence splits completely in the Scholz field K0. It
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follows that q0 must be ramified in E0. This is the desired contradiction. (The “converse” statement is
not true in general; a corresponding argument is missing in [Shafarevich 1954, p. 121].)

Let q0 jq be primes of K0 jQ with q 2R0. Then the Frobenius

�q D

�
E0 jK0

q0

�
is defined, which is a central element in H0 D Gal.E0 jQ/ and so depends only on q. Independent of the
choice of the square root

p
�� we have

.
p
�� /

�q D

�
��

q0

�
p
�� ;

where �
��

q0

�
D˙1

is the Legendre symbol (quadratic residue symbol). Since�
��

q0

�
D

�
�x�
q0x

�
D

�
ˇ2x��

q0x

�
D

�
��

q0x

�
for each x 2 G0, and since q is the absolute norm of q0 by (S2), it is appropriate to write this symbol
as
���
q

�
(like in [Shafarevich 1954]). As usual the Legendre symbol is extended multiplicatively to

products of nondyadic primes in the denominator (Jacobi symbol), yielding also certain extensions of the
Shafarevich symbol. For an integer m¤ 0 the symbol

�m��
q

�
is defined since R0 is an invariant of �0,

and if m is not divisible by q then �
m��

q

�
D

�
m

q

��
��

q

�
:

In this case q0 jq are unramified in K0.
p
m/jQ.

p
m/ and�

K0.
p
m/jK0

q0

�
restricts to

�
Q.
p
m/jQ

.q/

�
since q is busy in K0 by (S2). Thus

�
m
q

�
D
�
m
q0

�
, and the result follows since evidently�

m

q0

��
��

q0

�
D

�
m��

q0

�
:

Let again q 2 Ram.Pi / for some i , and let q 2 R0. Using that q is busy in the Scholz field K0, the
restrictions to E� of �q and of the Frobenius �q introduced above agree. Therefore

.
p
�� /

�q D .
p
�� /

�q D

�
��

q

�
p
�� :

We know that q 2R\Ram.Pi /, and this implies that all primes in Ram.Pi / belong to R and hence to R0
(see Lemma 4.1). Therefore �

��

bi

�
D

Y
q2Ram.Pi /

�
��

q

�
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is defined, and

.
p
�� /

�i D

�
��

bi

�
p
�� :

Thus �
��

bi

�
D 1

by the hypothesis of the proposition.
Recall that e is coprime to the discriminant of K0 and so not divisible by any prime in R0. By the

Chinese remainder theorem there is an odd integer m such that�
m

q

�
D

�
e��

q

�
D

�
e

q

��
��

q

�
for each q 2R0. Then m is prime to every q 2R0 and�

me��

q

�
D

�
m

q

��
e��

q

�
D 1:

Since R0 � Ram.K0/� 1C 2NZ (with N � c � 2), replacing m by �m if necessary, we may assume
that m> 0. We assert that �

bi

m

�
D 1

whenever Ram.Pi /�R0. By quadratic reciprocity�
bi

m

�
D

�
m

bi

�
;

because bi and m are relatively prime positive odd integers and bi 2 1C 2NZ. We have�
e

bi

�
D

�
bi

e

�
D 1

since the primes dividing e are in 1C 2NZ and split completely in Pi DQ.
p
bi /. Consequently

1D
Y

q2Ram.Pi /

�
me��

q

�
D

�
me��

bi

�
D

�
m

bi

��
e

bi

��
��

bi

�
D

�
m

bi

�
;

as required.
Let T D

Q
q2R0

Q.
p
q/. Using that S.T /D T, Ram.Q.�2N //D f2g and 2 62R0 D Ram.T / we get

T \K0.�2N /D
Y0

i

Q.
p
bi /;

where the product is taken over those indices i where Ram.Pi /�R0. (This is always true when E� �E?,
and if E� DE.i/ for some i then Ram.Pj /�R0 for all j ¤ i and Ram.Pi /\R0D¿.) By construction
the Artin automorphism

� D

�
T jQ

.m/

�
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is defined and is trivial on
Q0
i Q.
p
bi /. Hence � can be extended to an automorphism O� of T �K0.�2N /

which is trivial onK0.�2N /. By Chebotarev’s density theorem there are infinitely many rational primes p�
which are unramified in T �K0.�2N / and for which some prime above p� has O� as Frobenius automorphism.
Then p� splits completely in K0.�2N /; that is, p� splits completely in K0 and belongs to 1C 2NZ.
Moreover

� D

�
T jQ

.p� /

�
:

Thus �
q

p�

�
D

�
q

m

�
for all q 2R0, in view of the action of � on Q.

p
q/ (and consistency of the Artin symbol). But�

q

p�

�
D

�
p�

q

�
and

�
q

m

�
D

�
m

q

�
by quadratic reciprocity. Consequently�

p�e��

q

�
D

�
p�

q

��
e��

q

�
D

�
m

q

��
e��

q

�
D

�
me��

q

�
D 1:

Let yE0 DK0.
p
p�e�� /. By the above, every prime in R0 is busy in yE0. From

.p�e�� /D .eb/
2
�D � .p� /

we infer that Ram. yE0/ D Ram.K0/ [ fp�g (Hecke; 2 does not ramify in yE0 as it does not ramify
in E0 D K0E� or in Q.

p
p�e/). Consequently yE0 is a (strong) Scholz field with respect to N. The

proposition follows by induction and by appealing to Lemma 3.3. �

5. The shrinking process

We are going to construct Scholz fields fulfilling the assumptions made in Proposition 4.2. As above we
consider disposition 2-groups Gc

d
. Arguing by induction on the 2-class c (varying d ) this will prove the

theorem. For c D 1 (or d D 1) Lemmas 2.2 and 2.3 apply, in which case we may define the polynomial
fc DX . So let N � c � 2 be integers. We assume that for every d � 2 there are infinitely many strong
Scholz fields Kc�1

d
with respect to N with pairwise coprime discriminants admitting Gc�1

d
as Galois

group over the rationals, all these fields having the property that jRam.Kc�1
d

/j � fc�1.d/ for some
(unique) polynomial fc�1 2 ZŒX� with degfc�1 D .cC 2/Š=24.

Fixing d � 2 we let ı D r � d where

r D 2d2
cX
�D1

� � `�d

(see Proposition 3.1 for notation). We know that r D r.d/ is an integral polynomial in d of degree cC 2.
By our inductive hypothesis there is a strong Scholz field Kı DKc�1ı

with respect to N admitting Gc�1
ı
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as Galois group over the rationals. Indeed there are infinitely many such fields with pairwise coprime
discriminants. By Proposition 2.1 and Lemma 3.3 we can embed Kı into a normal number field Eı
with group Gc

ı
having Ram.Eı/D Ram.Kı/. In particular Kı DE

Z.Gc
ı
/

ı
and

S.Eı/DS.Kı/D

rY
jD1

dY
iD1

Pij ;

where the Ram.Pij / have the same cardinality and are pairwise disjoint. Adapted to this decomposition
there is a minimal system fxij gi;j of generators of Gc

ı
such that the image Nxij in W D Gc

ı
=ˆ.Gc

ı
/ of

xij generates the image in W of the inertia group Iq in Gc
ı

for any q 2 Ram.Pij /, and zij D x2
c�1

ij has
order 2 and generates Iq \Z.Gcı / (see Lemma 4.1).

For every q 2 Ram.S.Eı// we choose a Scholz obstruction �q for Eı (determined by q up to adding
zij if �q ¤ 0 and q 2 Ram.Pij /). Define

�ij D
X

q2Ram.Pij /

�q

for each pair i; j . Let L1
ı

be the subspace of Z.Gc
ı
/ generated by all the zij , and let  1

ı
W W �!� L1

ı

be the linear map given by Nxij 7! zij for all i; j . By Proposition 3.1 we have the decomposition
Z.Gc

ı
/D

Lc
�D1L

�
ı

into F2-vector spaces. We also introduce a “target” disposition 2-group Gc
d

of rank d
and class c with generators x1; : : : ; xd , yielding the basis Nxi D xiˆ.Gcd / of V DGc

d
=ˆ.Gc

d
/, and let L1

d

be the subspace of Z.Gc
d
/ generated by the zi D x2

c�1

i (1� i � d ). Then we have again the vector space
decomposition Z.Gc

d
/ D

Lc
�D1L

�
d

. Let  1
d
W V �!� L1

d
be the linear isomorphism given by Nxi 7! zi

for each i , and define the epimorphisms  �
ı
W W ˝�� L�

ı
and  �

d
W V ˝�� L�

d
for 2 � � � c as in

Proposition 3.1.
Now let ˛ D .aj / be any nontrivial r-tuple in F

.r/
2 . We shall also write ˛ WW � V for the (surjective)

linear map given by ˛. Nxij /D aj Nxi for all pairs i; j (additive notation). By Lemma 3.2 every lift of ˛ to
Gc
ı

gives rise to the same epimorphism ˛z WZ.G
c
ı
/�Z.Gc

d
/, and ˛z respects the corresponding vector

space decompositions. From Proposition 3.1 it follows that ˛z ı �ı D  
�
d
ı˛˝� for each � D 1; : : : ; c

(where ˛˝� W W ˝� � V ˝� is the �-th tensor power of ˛). In particular ˛z.zij / D aj zi for all i; j
(additive notation).

Though irrelevant for our purposes, but following [Shafarevich 1954], we consider the “canonical”
epimorphism �.˛/ WGc

ı
�Gc

d
given by mapping xij onto xi for all i if aj D 1 and to 1 if aj D 0. This

is a distinguished lift of ˛ to Gc
ı

. (Writing Gc
ı
D Fı=�cC1.Fı/ and letting ftij g be a basis of the free

group, there is an automorphism of Gc
ı

sending xij to tij�cC1.Fı/ for all i; j . Then �.˛/ is given via
the assignments tij 7! xi if aj D 1 and tij 7! 1 otherwise.) Let

E.˛/DE
Ker.�.˛//
ı

and K.˛/DE.˛/\Kı :

Obviously K.˛/ is a Scholz field with respect to N ; condition (S2) might fail for the field E.˛/.
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It is convenient to identify Gal.E.˛/jQ/ with Gc
d

through the isomorphism induced by �.˛/. Then
every element of Gc

ı
is sent by �.˛/ to its restriction on E.˛/. In particular K.˛/D E.˛/Z.G

c
d
/ since

Kı DE
Z.Gc

ı
/

ı
and �.˛/ (resp. ˛z) maps Z.Gc

ı
/ onto Z.Gc

d
/. It follows that Gal.K.˛/jQ/ŠGc�1

d
and

that S.K.˛//DS.E.˛//.
If there is a prime q 2 Ram.E.˛// nRam.K.˛//, then q 2 Ram.Kı/� 1C 2NZ and q is busy in the

Scholz field Kı . It follows that q splits completely in K.˛/ (being busy and unramified). In particular q
splits completely in S.K.˛//.

We have S.E.˛//DE.˛/\S.Eı/ since �.˛/.ˆ.Gc
ı
//Dˆ.Gc

d
/. For each i D 1; : : : ; d we let

Pi .˛/DE.˛/\

rY
jD1

Pij :

If Iq is the inertia group in Gc
ı

for some q 2 Ram.Pij /, then �.˛/.Iq/ maps onto h Nxi i if aj D 1 (which
exists) and �.a/.Iq/�ˆ.Gcd / otherwise. So Pi .˛/ is the (cyclic) subfield of S.E.˛// fixed (centralized)
by all Nxi 0 for i 0 ¤ i (but not by Nxi ), and Ram.Pi .˛//D

U0
j Ram.Pij /, where j varies over the indices in

f1; : : : ; rg for which aj D 1. Hence we have

S.K.˛//DS.E.˛//D P1.˛/ � � �Pd .˛/;

and we infer that K.˛/ is strongly Scholz.
Let q 2 Ram.Pi .˛// for some i . Then q 2 Ram.Pij / for a unique j , and ˛z.zij /D aj zi D zi . Every

prime q ofKı above q is unramified inEhzij i
ı

, and q˛Dq\K.˛/ is unramified inE.˛/hzi iDE.˛/\Ehzij i
ı

.
The restriction of �

E
hzij i

ı
jKı

q

�
to E.˛/hzi i agrees with �

E.˛/hzi i jK.˛/

qa

�
as q is busy in Kı . Hence ˛z.�q/ may be identified with “the” Scholz obstruction for E.˛/ associated
to q. We have X

q2Ram.Pi .˛//

˛z.�q/D
X0

j

˛z.�ij /;

where the sum is taken over all j for which aj D 1.
Consider Z.Gc

ı
/˝ L1

ı
D
Lc
�D1.L

�
ı
˝ L1

ı
/. Let ˛�z denote the restriction to L�

ı
of ˛z . The map

˛z˝˛
1
z WZ.G

c
ı
/˝L1

ı
!Z.Gc

d
/˝L1

d
respects the corresponding decompositions, and the diagram

V ˝� ˝V

 �
d
˝ 1

d

��

W ˝� ˝W
˛˝�˝˛
oo

 �
ı
˝ 1

ı

��

L�
d
˝L1

d
L�
ı
˝L1

ı
˛�z˝˛

1
z

oo
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commutes for each �. All maps in this square are surjections. On the obvious bases of W ˝�C1 and
V ˝�C1 we have

˛˝�C1. Nxi1;j1 ˝ � � �˝ Nxi�C1;j�C1/D . Nxi1 ˝ � � �˝ Nxi�C1/aj1 � � � aj�C1 :

Let z 2 Z.Gc
ı
/˝L1

ı
with �-component z� 2 L�

ı
˝L1

ı
, and let bz� 2 W ˝� ˝W be an inverse image

of z� with regard to  �
ı
˝  1

ı
. Given a nontrivial linear form � 2 Hom.L�

d
˝ L1

d
; F2/, the element

�ı. �
d
˝ 1

d
/ı˛˝�C1.bz�/ may be interpreted as evaluation at .aj / of some homogeneous polynomial of

degree �C1 in r variables over F2 determined by bz� and �. But . �
d
˝ 1

d
/ı˛˝�C1.bz�/D .˛�z˝˛1z /.z�/

and so this evaluation only relies on z� (and on �). Hence we may state that � ı .˛�z ˝ ˛
1
z /.z

�/D 0 if
.aj / is a (nontrivial) zero of a certain homogeneous polynomial of degree �C 1 in r variables over F2.
Varying � over a basis for Hom.L�

d
˝L1

d
; F2/ we obtain that .˛�z ˝ ˛

1
z /.z

�/D 0 if .aj / is a common
zero of `�

d
� d such polynomials, and we get .˛z˝˛1z /.z/D 0 if .aj / is a common zero of d

Pc
�D1 `

�
d

such homogeneous polynomials in r variables over F2 of respective degrees �C 1D 2; : : : ; cC 1.
Now consider for each i D 1; : : : ; d the element z.i/ D

Pr
jD1 �ij ˝ zij of Z.Gc

ı
/˝L1

ı
. Since by

definition r > d2
Pc
�D1.� C 1/ � `

�
d

, the Chevalley–Warning theorem guarantees that we may choose
˛ D .aj / nontrivial in F

.r/
2 such that .˛z˝˛1z /.z.i//D 0 for all i . We have

.˛z˝˛
1
z /.z.i//D

rX
jD1

˛z.�ij /˝˛z.zij /D

rX
jD1

˛z.�ij /˝ aj zi D

� X
q2Ram.Pi .˛//

˛z.�q/

�
˝ zi :

Hence
P
q2Ram.Pi .˛// ˛z.�q/ D 0 for all i D 1; : : : ; d , so that Proposition 4.2 applies. Consequently

there is a strong Scholz field E with respect to N containing K.˛/DE.˛/\Kı and admitting Gc
d

as
Galois group over the rationals. We also get

Ram.E/D Ram.K.˛//[fp1; : : : ; ptg;

where t D dimZ.Gc
d
/ D

Pc
�D1 `

�
d

. Here the t-set fp1; : : : ; ptg of rational primes may be chosen in
infinitely many pairwise disjoint ways.

By induction jRam.Eı/jD jRam.Kı/j�fc�1.ı/. Define fc such that fc.d/Dfc�1.ı/C
Pc
�D1 � �`

�
d

.
Then jRam.E/j � fc.d/. Since ı D rd is an integral polynomial in d of degree c C 3, this fc is an
integral polynomial of degree .cC 3/ degfc�1 D .cC 3/Š=24. This completes the proof of the theorem.
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