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Let X ⊂ Pn
k be a smooth projective variety of degree d over a number field k and suppose that X is a

counterexample to the Hasse principle explained by the Brauer–Manin obstruction. We consider the
question of whether the obstruction is given by the d-primary subgroup of the Brauer group, which would
have both theoretic and algorithmic implications. We prove that this question has a positive answer
in the case of torsors under abelian varieties, Kummer surfaces and (conditional on finiteness of Tate–
Shafarevich groups) bielliptic surfaces. In the case of Kummer surfaces we show, more specifically, that
the obstruction is already given by the 2-primary torsion, and indeed that this holds for higher-dimensional
Kummer varieties as well. We construct a conic bundle over an elliptic curve that shows that, in general,
the answer is no.

1. Introduction

Let X be a smooth projective and geometrically integral variety over a number field k. Manin observed that
any adelic point (Pv)∈ X (Ak) that is approximated by a k-rational point must satisfy relations imposed by
elements of Br X , the Brauer group of X [Manin 1971]. Indeed, for any element α ∈Br X :=H2

et(X,Gm),
the set of adelic points on X that are orthogonal to α, denoted X (Ak)

α, is a closed set containing the
k-rational points of X . In particular,

X (Ak)
Br
:=

⋂
α∈Br X

X (Ak)
α
=∅ H⇒ X (k)=∅.

In this paper, we investigate whether it is necessary to consider the full Brauer group or whether one
can determine a priori a proper subgroup B ⊂ Br X that captures the Brauer–Manin obstruction to the
existence of rational points, in the sense that the following implication holds:

X (Ak)
Br
=∅ H⇒ X (Ak)

B
:=

⋂
α∈B

X (Ak)
α
=∅.

This is of interest from both theoretical and practical perspectives. On the one hand, identifying the
subgroups for which this holds may shed considerable light on the nature of the Brauer–Manin obstruction,
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and, on the other hand, knowledge of such subgroups can facilitate computation Brauer–Manin obstructions
in practice.

We pose the following motivating question.

Question 1.1. Suppose that X ↪→ Pn is embedded as a subvariety of degree d in projective space. Does
the d-primary subgroup of Br X capture the Brauer–Manin obstruction to rational points on X?

More intrinsically, let us say that degrees capture the Brauer–Manin obstruction on X if the d-primary
subgroup of Br X captures the Brauer–Manin obstruction to rational points on X for all integers d that
are the degree of some k-rational globally generated ample line bundle on X . Since any such line
bundle determines a degree d morphism to projective space and conversely, it is clear that the answer to
Question 1.1 is affirmative when degrees capture the Brauer–Manin obstruction.

1A. Summary of results. In general, the answer to Question 1.1 can be no (see the discussion in
Section 1B). However, there are many interesting classes of varieties for which the answer is yes. We
prove that degrees capture the Brauer–Manin obstruction for torsors under abelian varieties, for Kummer
surfaces, and, assuming finiteness of Tate–Shafarevich groups of elliptic curves, for bielliptic surfaces.
We also deduce (from various results appearing in the literature) that degrees capture the Brauer–Manin
obstruction for all geometrically rational minimal surfaces.

Assuming finiteness of Tate–Shafarevich groups, one can deduce the result for torsors under abelian
varieties rather easily from a theorem of Manin (see Remark 4.4 and Proposition 4.9). In Section 4 we
unconditionally prove the following much stronger result.

Theorem 1.2. Let X be a k-torsor under an abelian variety, let B ⊂ Br X be any subgroup, and let d be
any multiple of the period of X. In particular, d could be taken to be the degree of a k-rational globally
generated ample line bundle. If X (A)B

=∅, then X (A)B[d∞]
=∅, where B[d∞] ⊂ B is the d-primary

subgroup of B.

This not only shows that degrees capture the Brauer–Manin obstruction (apply the theorem with
B=Br X ), but also that the Brauer classes with order relatively prime to d cannot provide any obstructions
to the existence of rational points.

Remark 1.3. As one ranges over all torsors of period d under all abelian varieties over number fields, ele-
ments of arbitrarily large order in (Br V )[d∞] are required to produce the obstruction (see Proposition 4.10).

We use Theorem 1.2 to deduce that degrees capture the Brauer–Manin obstruction on certain quotients
of torsors under abelian varieties. This method is formalized in Theorem 5.1 and applied in Section 5A to
prove the following.

Theorem 1.4. Let X be a bielliptic surface and assume that the Albanese torsor Alb1
X is not a nontrivial

divisible element in the Tate–Shafarevich group, X(k,Alb0
X ). Then degrees capture the Brauer–Manin

obstruction to rational points on X.
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Remark 1.5. As shown by Skorobogatov [1999], the Brauer–Manin obstruction is insufficient to explain
all failures of the Hasse principle on bielliptic surfaces. Therefore, if X is a bielliptic surface of degree d ,
then it is possible that there are adelic points orthogonal to the d-primary subgroup of Br X even though
X (k)=∅. However, Theorem 1.4 shows that in this case one also has that X (Ak)

Br
6=∅.

Before stating our results on Kummer varieties we fix some notation. We say that X satisfies BMd if
the d-primary subgroup of Br X captures the Brauer–Manin obstruction, i.e., if the following implication
holds:

X (Ak)
Br
=∅ H⇒ X (Ak)

Brd :=

⋂
α∈(Br X)[d∞]

X (Ak)
α
=∅.

We say that X satisfies BM⊥d if there is no prime-to-d Brauer–Manin obstruction, i.e., if the following
implication holds:

X (Ak) 6=∅ H⇒ X (Ak)
Brd⊥ :=

⋂
α∈(Br X)[d⊥]

X (Ak)
α
6=∅,

where (Br X)[d⊥] denotes the subgroup of elements of order prime to d . These properties are birational
invariants of smooth projective varieties (see Lemma 2.5).

Remark 1.6. Note that BM1 and BM⊥1 are equivalent; they hold if and only if

X (Ak) 6=∅⇐⇒ X (Ak)
Br
6=∅.

More generally, global reciprocity shows that the same is true of BMd and BM⊥d whenever (Br X)[d∞]
consists solely of constant algebras. In general, however, BMd and BM⊥d are logically independent.

The following theorem is proved in Section 5B. We refer to that section for the definition of a Kummer
variety.

Theorem 1.7. Kummer varieties satisfy BM2.

Since the Picard lattice of any K3 surface is even, it is a straightforward consequence of this theorem
that degrees capture the Brauer–Manin obstruction on Kummer surfaces.

Theorem 1.7 complements the recent result of Skorobogatov and Zarhin [2017, Theorem 3.3] that
Kummer varieties satisfy BM⊥2 . As remarked above, this is logically independent from Theorem 1.7 except
when (Br X)[2∞] consists solely of constant algebras. In [Skorobogatov and Zarhin 2017, Theorem 4.3] it
is shown that (Br X)[2∞] consists solely of constant algebras for Kummer varieties attached to 2-coverings
of products of hyperelliptic Jacobians with large Galois action on 2-torsion. This is the case of interest in
[Harpaz and Skorobogatov 2016] where it is shown that (conditionally on finiteness of Tate–Shafarevich
groups) some Kummer varieties of this kind satisfy the Hasse principle. Skorobogatov and Zarhin have
shown that these Kummer varieties have no nontrivial 2-primary Brauer classes [Skorobogatov and Zarhin
2017, §4 and §5]. Given this, both Theorem 1.7 and [Skorobogatov and Zarhin 2017, Theorem 3.3]
provide an explanation for the absence of any condition on the Brauer group in [Harpaz and Skorobogatov
2016, Theorems A and B].
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After seeing a draft of this paper, Skorobogatov noted that it is possible to use our results (specifically
Lemma 4.6) to extend the proof of [Skorobogatov and Zarhin 2017, Theorem 3.3] to obtain the following
common generalization.

Theorem 1.8. Let X be a Kummer variety over a number field k and suppose B ⊂ Br X is a subgroup. If
X (A)B

=∅, then X (A)B[2∞]
=∅.

This is the analog of Theorem 1.2 for Kummer varieties. The proof is given in the Appendix by
Skorobogatov.

1B. Discussion. Question 1.1 trivially has a positive answer when X (Ak)
Br
6=∅ and, in particular when

X (k) 6=∅. At the other extreme, the answer is also yes when either X (Ak)=∅ or Alb1
X (Ak)

Br
=∅ (see

Corollary 4.5). In particular, the answer is yes for varieties satisfying the Hasse principle.
Theorem 1.2 shows that the answer is yes for curves of genus 1. When the first draft of the present

paper was made available we were unaware of any example of a higher genus curve X and prime p for
which one could show that X does not satisfy BMp. Motivated by this, we undertook a deeper study of
the Brauer–Manin obstruction on curves, joint with Voloch [Creutz et al. 2018]. There we produced a
genus 3 curve over Q with a 0-cycle of degree 1 that is a counterexample to the Hasse principle explained
by the 2-torsion subgroup of the Brauer group, but with no odd Brauer–Manin obstruction. This example
shows that degrees do not capture the Brauer–Manin obstruction on higher genus curves, since the 0-cycle
of degree 1 implies that every sufficiently large integer is the degree of a very ample line bundle.

One reason why degrees cannot capture the Brauer–Manin obstruction in general is that while the set
{d ∈ N : X satisfies BMd} is a birational invariant, the set of integers that arise as degrees of globally
generated ample line bundles on X is not. Exploiting this one can construct examples (even among
geometrically rational surfaces) for which degrees do not capture the Brauer–Manin obstruction (See
Lemma 2.6 and Example 2.7). At least in the case of surfaces, this discrepancy can be dealt with by
considering only minimal surfaces, i.e., surfaces which do not contain a Galois-invariant collection of
pairwise disjoint (−1)-curves

Different and more serious issues are encountered in the case of nonrational surfaces of negative
Kodaira dimension. In Section 6 we give an example of a minimal conic bundle over an elliptic curve
for which degrees do not capture the Brauer–Manin obstruction. This is unsurprising (and somewhat
less disappointing) given the known pathologies of the Brauer–Manin obstruction on quadric fibrations
[Colliot-Thélène et al. 2016]. In Section 6 we note that degrees do capture the Brauer–Manin obstruction
on minimal rational conic bundles and on Severi–Brauer bundles over elliptic curves with finite Tate–
Shafarevich group (See Theorem 6.1).

For a minimal del Pezzo surface of degree d, degrees capture the Brauer–Manin obstruction as soon
as BMd holds. This is because the canonical class generates the Picard group, except when the surface
is P2, a quadric or a rational conic bundle [Hassett 2009, Theorem 3.9], in which cases it follows from
results mentioned above. Moreover, BMd holds trivially when the degree, d, is not equal to 2 or 3.
Indeed, when d = 1 there must be a rational point and when d > 3 the exponent of Br X/Br0 X divides d
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[Corn 2007, Theorem 4.1].1 Swinnerton-Dyer [1993, Corolarry 1] has shown that any cubic surface
such that exp(Br X/Br0 X)-3 must satisfy the Hasse principle, implying that the answer is yes for d = 3.
Whether the analogous property holds for del Pezzo surfaces of degree 2 was considered by Corn [2007,
Question 4.5], but remained open until recent work of Nakahara [2017]. He showed that odd torsion
Brauer classes on a del Pezzo surface of degree 2 cannot obstruct the Hasse principle.

Taken together, the results mentioned in the previous two paragraphs combine to yield the following.

Theorem 1.9. Degrees capture the Brauer–Manin obstruction on geometrically rational minimal surfaces
over number fields.

Our results above give an affirmative answer (conditional on the finiteness of certain Tate–Shafarevich
groups in the case of bielliptic surfaces) for two of the four classes of surfaces of Kodaira dimension 0,
the other two being K3 and Enriques surfaces. Until quite recently, all known examples of Brauer–Manin
obstructions to the existence of rational points on K3 or Enriques surfaces have come from the 2-torsion
subgroup of the Brauer group, implying that degrees capture since the Néron–Severi lattice is even in
both cases. In addition, even among diagonal quartic surfaces over Q where there were known to be
nonconstant elements of odd order, Ieronymou and Skorobogatov [2015; 2017] showed that BM⊥2 holds.
Nakahara [2017] has extended this result to some diagonal quartics over general number fields, and, using
results of this paper (specifically Lemma 4.6) has strengthened this to show that BM2 holds and hence
that degrees capture. These diagonal quartics are K3 surfaces that are geometrically Kummer, but not
necessarily Kummer over their base field.

In contrast, some time after the first draft of the present paper was made available, Corn and Nakahara
[2017] produced an example of a degree 2 K3 surface with a 3-torsion Brauer–Manin obstruction, showing
that BM⊥2 does not hold. This may suggest it is unlikely that degrees capture the Brauer–Manin obstruction
for K3 surfaces, though they have not ruled out the possibility of an even transcendental Brauer–Manin
obstruction.

Taken together, our results and the discussion above indicate that while the degrees of ample line
bundles may in general be too crude to determine it, the set of integers d for which BMd , or the stronger
variant appearing in Theorems 1.2 and 1.8, holds are interesting birational invariants intimately related to
the geometry and arithmetic of the variety.

1C. The analog for 0-cycles of degree 1. One further motivation for studying the question of whether
degrees capture the Brauer–Manin obstruction to rational points is that the analog for 0-cycles of degree 1
is expected to hold Conjecture (E) on the sufficiency of the Brauer–Manin obstruction for 0-cycles implies
that the deg(L)-primary subgroup does capture the Brauer–Manin obstruction to 0-cycles of degree 1 for
any ample globally generated line bundle L. See Section 3 for more details.

1In fact, it is well-known that del Pezzo surfaces of degree at least 5 have trivial Brauer group and satisfy the Hasse principle
(see, e.g., [Corn 2007, Thm. 4.1] and [Várilly-Alvarado 2013, Thm. 2.1]).
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2. Preliminaries

2A. Notation. For an integer n, we define Supp(n) to be the set of prime numbers dividing n. For an
abelian group G and integer d we use G[d] to denote the subgroup of elements of order dividing d,
G[d∞] for the subgroup of elements of order dividing a power of d and G[d⊥] for the subgroup of
elements order prime to d .

Throughout k denotes a number field, �k denotes the set of places of k, and Ak denotes the adele
ring of k. For any v ∈�k , kv denotes the completion of k at v. We use K to denote an arbitrary field of
characteristic 0. We fix an algebraic closure K and write 0K for the absolute Galois group of K , with
similar notation for k in place of K . For a commutative algebraic group G over k, we use X(k,G) to
denote the Tate–Shafarevich group of G, i.e., the group of torsors under G that are everywhere locally
trivial.

Let X be a variety over K . We say that X is nice if it is smooth, projective, and geometrically integral.
We write X for the base-change of X to K . If X is defined over a number field k and v ∈�k , we write
Xv for the base-change of X to kv.

When X is integral, we use k(X) to denote the function field of X . The Picard group of X , denoted
Pic X , is the group of isomorphism classes of K -rational line bundles on X . In the case that X is smooth,
given a Weil divisor D ∈ Div X we denote the corresponding line bundle by OX (D). The subgroup
Pic0 X ⊂ Pic X consists of those elements that map to the identity component of the Picard scheme. The
Néron–Severi group of X , denoted NS X , is the quotient Pic X/Pic0 X . The Brauer group of X , denoted
Br X , is H2

et(X,Gm) and the algebraic Brauer group of X is Br1 X := ker(Br X→ Br X). The structure
morphism yields a map Br K → Br X , whose image is the subgroup of constant algebras denoted Br0 X .

2B. Polarized varieties, degrees and periods. In this paper a nice polarized variety over K is a pair
(X,L) consisting of a nice K -variety X and a globally generated ample line bundle L ∈ Pic X . We define
the degree of a nice polarized variety, denoted by deg(X,L) or deg(L), to be dim(X)! times the leading
coefficient of the Hilbert polynomial, h(n) := χ(L⊗n).

Lemma 2.1. Suppose (X,L) is a nice polarized variety of degree d over K . Then there is a K -rational
0-cycle of degree d on X.

Proof. Since L is generated by global sections it determines a morphism φL : X→PN , for some N . Since
L is ample and globally generated, φL is a finite morphism [Lazarsfeld 2004, Corollary 1.2.15, page 28].
The intersection of φL(X)⊂ PN with a general linear subvariety of codimension equal to dim(X) is a
0-cycle a on φL(X) which pulls back to a 0-cycle of degree d on X . �

For a nice variety X over K and i ∈ Z we write Albi
X for degree i component of the Albanese scheme

parametrizing 0-cycles on X up to Albanese equivalence. Then Alb0
X is an abelian variety and Albi

X

is a K -torsor under Alb0
X . The (Albanese) period of X , denoted per(X), is the order of Alb1

X in the
Weil–Châtelet group H1(K ,Alb0

X ). Equivalently, the period is the smallest positive integer P such that
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AlbP
X has a K -rational point. Any k-rational 0-cycle of degree d determines a k-rational point on Albd

X .
Thus Lemma 2.1 has the following corollary.

Corollary 2.2. If (X,L) is a nice polarized variety of degree d over K , then the period of X divides d.

2C. Basic properties of BMd and BM⊥

d . The definitions of BMd and BM⊥d yield the following lemma,
which we will use freely throughout the paper.

Lemma 2.3. Let X be a nice variety over a number field k, let d and e be positive integers such that d | e,
and set d0 :=

∏
p∈Supp(d) p. Then

(1) X satisfies BMd or BM⊥d if and only if X satisfies BMd0 or BM⊥d0
, respectively, and

(2) if X satisfies BMd or BM⊥d , then X satisfies BMe or BM⊥e , respectively.

In particular, if d ′ is a positive integer with Supp(d)⊂ Supp(d ′) and X satisfies BMd or BM⊥d , then X
satisfies BMd ′ or BM⊥d ′ , respectively.

Lemma 2.4. Let π : Y → X be a morphism of nice varieties over a number field k and let d be a positive
integer:

(1) If Y (Ak) 6=∅ and Y satisfies BM⊥d , then X satisfies BM⊥d .

(2) If X (Ak)
Br
=∅ and X satisfies BMd , then Y satisfies BMd .

Proof.

(1) Suppose that X (Ak) 6=∅, but X (Ak)
Brd⊥ =∅. Then for any y ∈ Y (Ak) there exists A ∈ (Br X)[d∞]

such that 0 6= (π(y),A)= (y, π∗A). Hence Y (Ak)
Brd⊥ =∅ and it follows that Y is not BM⊥d .

(2) Suppose that X is BMd and X (Ak)
Br
=∅. Then given y ∈ Y (Ak), we may find an A ∈ (Br X)[d∞]

such that 0 6= (π(y),A)= (y, π∗A), which shows that y /∈ Y (Ak)
Brd . �

Lemma 2.5. Let σ : Y 99K X be a birational map of nice varieties over a number field k and let d be a
positive integer. Then:

(1) X satisfies BMd if and only if Y satisfies BMd .

(2) X satisfies BM⊥d if and only if Y satisfies BM⊥d .

(3) The map σ induces an isomorphism σ ∗ : Br X −→∼ Br Y such that for any B ⊂Br X , Y (Ak)
σ ∗(B)
=∅

if and only if X (Ak)
B
=∅.

Proof. By the Lang–Nishimura Theorem [Lang 1954; Nishimura 1955], X (Ak) = ∅⇔ Y (Ak) = ∅.
With this in mind, the first two statements follow easily from the third. Any birational map between
smooth projective varieties over a field of characteristic 0 can be factored into a sequence of blowups
and blowdowns with smooth centers [Abramovich et al. 2002]. Hence, it suffices to prove (3) under the
assumption that σ : Y → X is a birational morphism obtained by blowing up a smooth center Z ⊂ X .
Then σ ∗ : Br X→ Br Y is an isomorphism [Grothendieck 1968, Corollaire 7.3].
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For any field L/k it is clear that σ(Y (L)) contains (X \ Z)(L). Furthermore, since Z is smooth, the
exceptional divisor EZ is a projective bundle over Z , so σ(EZ (L))= Z(L). Therefore σ(Y (L))= X (L).
It follows that the map σ : Y (Ak)→ X (Ak) is surjective, and so (3) follows from functoriality of the
Brauer–Manin pairing. �

Lemma 2.6. Let d be a positive integer and let X be a nice k-variety of dimension at least 2 with the
following properties:

(1) X (Ak) 6=∅.

(2) X (Ak)
Brd =∅.

(3) Br X/Br0 X has exponent d.

(4) Degrees capture the Brauer–Manin obstruction on X.

(5) X has a closed point P with deg(P) relatively prime to d.

Let Y := BlP X. Then degrees do not capture the Brauer–Manin obstruction on Y .

Proof. Clearly X does not satisfy BMd ′ for any d ′ prime to d . By birational invariance, the same is true
of Y . It thus suffices to exhibit a globally generated ample line bundle on Y of degree prime to d. Let
L ∈ Pic(Y ) be the pullback of an ample line bundle on X and let E denote the line bundle corresponding
to the exceptional divisor. For some integer n, L⊗n

⊗ E−1 is ample and has degree prime to d. An
appropriate multiple of this is very ample, hence globally generated, and has degree prime to d . �

Example 2.7. An example of a variety satisfying the conditions of the lemma with d = 2 and deg(P)= 3
is the del Pezzo surface of degree 2 given by the equation w2

= 34(x4
+ y4
+ z4) [Corn 2007, Remark 4.3].

The blowup of X at a suitable degree 3 point gives a rational surface for which degrees do not capture the
Brauer–Manin obstruction. In particular, the property “degrees capture the Brauer–Manin obstruction” is
not a birational invariant of smooth projective varieties.

3. The analog for 0-cycles

Let X be a nice variety over a number field k. The group of 0-cycles on X is the free abelian group on
the closed points of X . Two 0-cycles are directly rationally equivalent if their difference is the divisor of
a function f ∈ k(C)×, for some nice curve C ⊂ X . The Chow group of 0-cycles is denoted CH0 X ; it is
the group of 0-cycles modulo rational equivalence, which is the equivalence relation generated by direct
rational equivalence. For a place v ∈� one defines the modified Chow group

CH′0 Xv =
{

CH0 Xv if v is finite,
coker(Nkv/kv : CH0 Xv→ CH0 Xv) if v is infinite.

Since X is proper there is a well defined degree map CH0 X→ Z. We denote by CH(i)
0 X the preimage

of i ∈ Z. For an infinite place v, the degree of an element in CH′0 Xv is well defined modulo 2.
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There is a Brauer–Manin pairing
∏
v CH0 Xv ×Br X→Q/Z which, by global reciprocity, induces a

complex,
CH0 X→

∏
v

CH′0 Xv→ Hom(Br X,Q/Z).

In particular, if there are no classes of degree 1 in the kernel of the map on the right, then there is no
global 0-cycle of degree 1. In this case, we say that there is a Brauer–Manin obstruction to the existence
of 0-cycles of degree 1.

Conjecture (E) states that the sequence

lim
←−−

n
(CH0 X)/n→ lim

←−−
n

∏
v

(CH′0 Xv)/n→ Hom(Br X,Q/Z) (3-1)

is exact. This conjecture has its origins in work of Colliot-Thélène and Sansuc [1981], Kato and Saito
[1986] and Colliot-Thélène [1995; 1999]. It has been stated in this form by van Hamel [2003] and
Wittenberg [2012].

Conjecture (E) implies that there is a global 0-cycle of degree 1 if and only if there is no Brauer–Manin
obstruction to such (see, e.g., [Wittenberg 2012, Remark 1.1(iii)]). For a nice polarized variety (X,L),
Conjecture (E) also implies that this obstruction is captured by the deg(L)-primary part of the Brauer
group. We note that this also follows immediately from [Colliot-Thélène 1999, Conjecture 2.2, with
i = dim X and l a divisor of deg(L)].

Proposition 3.1. Let (X,L) be a nice polarized variety of degree d over k and assume that Conjecture
(E) holds for X. Then there exists a k-rational 0-cycle of degree 1 on X if and only if there exists
(zv) ∈

∏
v CH(1)

0 Xv that is orthogonal to (Br X)[d∞].

Proof. Set Qd :=
∏

Qp and Zd :=
∏

Zp, where in both cases the product ranges over the primes
dividing d . Exactness of (3-1) implies the exactness of its d-adic part,

lim
←−−

m
(CH0 X)/dm

→ lim
←−−

m

∏
v

(CH′0 Xv)/dm
→ Hom((Br X)[d∞],Qd/Zd).

If (zv) ∈
∏
v CH(1)

0 Xv is orthogonal to (Br X)[d∞], then by exactness we can find, for every m ≥ 1, some
zm ∈ CH0 X such that for every v, zm ≡ zv (mod dm CH′0 Xv). In particular, the degree of zm is prime
to d, so there is a global 0-cycle of degree prime to d on X . On the other hand, there is a 0-cycle of
degree d on X by Lemma 2.1, so there must also be a 0-cycle of degree 1 on X . �

Unconditionally we can show that the deg(L)-primary part of the Brauer group captures the Brauer–
Manin obstruction to the existence of a global 0-cycle of degree 1 when Br X/Br0 X has finite exponent.

Proposition 3.2. Let (X,L) be a nice polarized variety of degree d. Assume that Br X/Br0 X has finite
exponent. Then there is no Brauer–Manin obstruction to the existence of a 0-cycle of degree 1 if and only
if there exists (zv) ∈

∏
v CH(1)

0 Xv that is orthogonal to (Br X)[d∞].

Proof. If there is no Brauer–Manin obstruction to the existence of a 0-cycles of degree 1, then by definition
there exists a (zv)∈

∏
v CH(1)

0 Xv that is orthogonal to Br X and hence to (Br X)[d∞]. Conversely, suppose



2454 Brendan Creutz and Bianca Viray

there exists (zv) ∈
∏
v CH(1)

0 Xv that is orthogonal to (Br X)[d∞] and let m ∈ Z be the maximal divisor of
the exponent of Br X/Br0 X that is coprime to d . Since deg zv = deg zw for all places v and w, the adelic
0-cycle (zv) is orthogonal to Br0 X . Hence, the bilinearity of the pairing and the definition of m imply
that (mzv) is orthogonal to Br X . Furthermore, by Lemma 2.1, there is a k-rational 0-cycle of degree d
on X ; let (z) ∈

∏
v CH0 Xv be its image. By global reciprocity every integral linear combination of (z)

and (mzv) is orthogonal to Br X . Since m is relatively prime to d, some integral linear combination of
(z) and (mzv) has degree 1, as desired. �

4. Torsors under abelian varieties

In this section we prove the following theorem.

Theorem 4.1. Let k be a number field, let Y be a smooth projective variety over k that is birational to a
k-torsor V under an abelian variety, and let P be a positive integer that is divisible by the period of V .
For any subgroup B ⊂ Br Y the following implication holds:

Y (Ak)
B
=∅H⇒ Y (Ak)

B[P∞]
=∅.

Remark 4.2. Theorem 4.1 is strongest when P = per(V ). However, determining per(V ) is likely more
difficult than determining if Y (Ak)

B[P∞]
6=∅, so the theorem will often be used for an integer P that is

only known to bound the period.

Proof of Theorem 1.2. This follows immediately from Theorem 4.1 and Lemma 2.1. �

Corollary 4.3. Every k-torsor V of period P under an abelian variety satisfies BMP and BM⊥P .

Proof. We apply the theorem with B = Br X and B = (Br X)[P⊥]. �

Remark 4.4. When X(k, A) is finite (i.e., conjecturally always) one can deduce that torsors of period P
under A satisfy BMP using the well-known result of Manin relating the Brauer–Manin and Cassels–Tate
pairings. A generalization of Manin’s result by Harari and Szamuely [2008] can be used to prove that
torsors under semiabelian varieties satisfy BMP , conditional on finiteness of Tate–Shafarevich groups
(see Proposition 4.9).

Corollary 4.5. Suppose X is a nice k-variety such that Alb1
X (Ak)

Br
= ∅. Then degrees capture the

Brauer–Manin obstruction to rational points on X.

Proof. Let P denote the Albanese period of X . By Theorem 4.1, there is a P-primary Brauer–Manin
obstruction to the existence of rational points on Alb1

X . This pulls back to give a P-primary Brauer–Manin
obstruction to the existence of rational points on X . We conclude by noting that P | deg(L) for any
globally generated ample line bundle L ∈ Pic X by Lemma 2.1. �

For a nice variety X over K we define the subgroup Br1/2 X ⊂Br X as follows. Let S denote the image
of the map H1(K ,Pic0 X)→ H1(K ,Pic X) induced by the inclusion Pic0 X ⊂ Pic X and let Br1/2 X
denote the preimage of S under the map Br1 X→ H1(K ,Pic X) that is given by the Hochschild–Serre
spectral sequence.
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Lemma 4.6. Let V be a K -torsor under an abelian variety A over K . Let m and d be relatively prime
integers with m relatively prime to the period of V . If Br1/2 V has finite index in Br V , then there exists an
étale morphism ρ : V → V such that the induced map,

ρ∗ :
Br V
Br0 V

→
Br V
Br0 V

,

annihilates the m-torsion subgroup and is the identity on the d-torsion subgroup. Moreover, one may
choose ρ so that it agrees, geometrically, with [mr

] : A→ A for some integer r .

Proof. Since V is a torsor under A, there is an isomorphism ψ : V → A of varieties over K , such that
the torsor structure of V is given by a · v = ψ−1(a+ψ(v)), for a ∈ A(K ) and v ∈ V (K ). Moreover, ψ
induces group isomorphisms Pic0 A ' Pic0 V , NS A ' NS V , and Br A ' Br V .

Let P be the period of V and let n be a power of m such that n ≡ 1 mod Pd. Then nV = V in
H1(K , A), so by [Skorobogatov 2001, Proposition 3.3.5] V can be made into an n-covering of itself.
This means that there is an étale morphism π : V → V such that ψ ◦ π = [n] ◦ψ where [n] denotes
multiplication by n on A. We will show that an iterate of π has the desired properties.

Since [n] induces multiplication by n on Pic0 A, the morphism π induces multiplication by n on Pic0 V .
Indeed, π∗ = ψ∗[n]∗(ψ−1)∗ = ψ∗n(ψ−1)∗ = nψ∗(ψ−1)∗ = n, where the penultimate equality follows
since ψ∗ is a homomorphism. Similarly, π induces multiplication by n2 on NS V , since [n] induces
multiplication by n2 on NS A. Thus we have a commutative diagram with exact rows

H1(K ,Pic0 V ) i
//

n
��

H1(K ,Pic V )
j
//

π∗

��

H1(k,NS V )

n2

��

H1(K ,Pic0 V ) i
// H1(K ,Pic V )

j
// H1(k,NS V )

We claim (π2)∗ annihilates the n-torsion of H1(K ,Pic V ). Since Br1 V/Br0 V embeds into H1(K ,Pic V ),
this would imply that (π2)∗ annihilates the n-torsion in Br1 V/Br0 V . Let us prove the claim. For
any x ∈ H1(K ,Pic V )[n], we have that j (π∗(x)) = n2 j (x) = j (n2x) = 0, so π∗(x) = i(y) for some
y ∈ H1(K ,Pic0 V ) such that ny ∈ ker(i). Then (π2)∗(x)= π∗(i(y))= i(ny)= 0, as desired.

Multiplication by n on A induces multiplication by n2 on Br A (see [Berkovič 1972, middle of
page 182]). Thus π∗ acts as multiplication by n2 on Br V , and we have a commutative diagram with
exact rows,

0 // Br1 V/Br0 V i ′
//

π∗

��

Br V/Br0 V
j ′
//

π∗

��

Br V/Br1 V

n2

��

0 // Br1 V/Br0 V i ′
// Br V/Br0 V

j ′
// Br V/Br1 V

The n-torsion in Br1 V/Br0 V is killed by (π2)∗ and i ′ is injective, so a similar diagram chase as above
shows that (π3)∗ kills the n-torsion, and hence the m-torsion, in Br V/Br0 V .
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It thus suffices to show that some power of (π3)∗ is the identity map on the d-torsion subgroup of
Br V/Br0 V . By definition, the image of the composition (Br1/2 V→Br1 V→H1(K ,Pic V )) is contained
in H1(K ,Pic0 V ), so π∗ acts as multiplication by n on Br1/2 V/Br0 V . In particular, since n ≡ 1 mod d ,
π∗ acts as the identity on the d-torsion subgroup of Br1/2 V/Br0 V . Additionally, since the degree of π3

is relatively prime to d , the induced map (π3)∗ : (Br V )[d∞] → (Br V )[d∞] is injective (see [Ieronymou
et al. 2011, Proposition 1.1]). Together this shows that (π3)∗ is injective on (Br V/Br1/2 V )[d]. Since
(Br V/Br1/2 V )[d] is finite, some power σ =π3s of π3 acts as the identity on it. Thus, for every A∈Br V
such that dA ∈ Br0 V there is some A′ ∈ Br1/2 V such that

σ ∗(A)=A+A′ and dA′ ∈ Br0 V .

Again σ ∗ is the identity on (Br1/2 V/Br0 V )[d], so by induction we get (σ d)∗(A) ≡ A + dA′ ≡ A
(mod Br0 V ). Therefore ρ = σ d has the desired properties. �

Lemma 4.7. Let k be a number field. If V is a k-torsor under an abelian variety, then Br1/2 V has finite
index in Br V .

Proof. We have a filtration
Br1/2 V ⊂ Br1 V ⊂ Br V .

The second inclusion has finite index by [Skorobogatov and Zarhin 2008, Theorem 1.1]. Now we consider
the first inclusion. By the definition of Br1/2 V , the quotient Br1 V/Br1/2 V injects into the cokernel of
the map H1(k,Pic0 V )→ H1(k,Pic V ). Then by the long exact sequence in cohomology associated to
the short exact sequence

0→ Pic0 V → Pic V → NS V → 0,

the cokernel in question injects into H1(k,NS V ). The result now follows since NS V is finitely generated
and torsion-free. �

Lemma 4.8. Let X be a smooth proper variety over a number field k and let B ⊂ Br X be a subgroup. If
X (Ak)

B
=∅, then there is a finite subgroup B̃ ⊂ B such that X (Ak)

B̃
=∅.

Proof. By hypothesis X (Ak) is compact. The lemma follows from the observation that

X (Ak)
B
=

⋂
A∈B

X (Ak)
A.

is an intersection of closed subsets of X (Ak). If the intersection of these subsets is empty, then there
is some finite collection of subsets whose intersection is empty. Since Br X is torsion and a finitely
generated torsion abelian group is finite, this completes the proof. �

Proof of Theorem 4.1. In light of Lemma 2.5, we may assume that Y = V .
If V (Ak)

B
= ∅, then, by Lemma 4.8, there is a finite subgroup B ′ ⊂ B with V (Ak)

B ′
= ∅. Since

V (Ak)
B[P∞]

⊂ V (Ak)
B ′[P∞], the desired implication holds if

V (Ak)
B ′
=∅H⇒ V (Ak)

B ′[P∞]
=∅,
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for all finite subgroups B ′ ⊂ B. Thus, it suffices to prove the theorem when B is finite.
Let d be the exponent of B[P∞] and let m := exponent(B)/d so that m and d are relatively prime.

Since we are working over a number field, Lemma 4.7 allows us to apply Lemma 4.6. Let ρ : V → V
be the morphism given by Lemma 4.6; then the functoriality of the Brauer–Manin pairing and global
reciprocity give that

V (Ak)
B
⊃ ρ(V (Ak)

ρ∗(B))= ρ(V (Ak)
ρ∗(B[P∞]))= ρ(V (Ak)

B[P∞]).

In particular, if V (Ak)
B is empty, then so must be V (Ak)

B[P∞]. �

4A. A conditional extension to semiabelian varieties.

Proposition 4.9. Let k be a number field and let V be a k-torsor under a semiabelian variety G with
abelian quotient A. Assume that X(k, A) is finite. Then V satisfies BMd for any integer d that is a
multiple of the period of V .

Proof. It is known that the obstruction coming from the group

B(V ) := ker
(

Br1 V →
⊕
v

Br1 Vv/Br0 Vv

)
is the only obstruction to rational points on V [Harari and Szamuely 2008, Theorem 1.1]. The extreme
cases where G is an abelian variety or a torus are due to Manin [1971, Théorème 6] and Sansuc
[1981, Corollaire 8.7], respectively. The proof of this fact is as follows. There is a homomorphism
ι : X(k,G∗) → B(X) (where G∗ denotes the 1-motive dual to G) and a bilinear pairing of torsion
abelian groups 〈 , 〉CT :X(k,G)×X(k,G∗)→ Q/Z. This is related to the Brauer–Manin pairing
via ι in the sense that for any β ∈X(k,G∗) and (Pv) ∈ V (Ak), one has 〈[V ], β〉CT = ((Pv), ι(β)). The
assumption that X(k, A) is finite implies that the pairing 〈 , 〉CT is nondegenerate. In particular, if
V (k)⊂ V (Ak)

Br
=∅, then there is some A ∈B such that V (Ak)

A
=∅. It follows from bilinearity that,

if there is such an obstruction, it will already come from the per(V )∞-torsion elements in B(X). �

4B. Unboundedness of the exponent. One might ask if we can restrict consideration to even smaller
subgroups of Br V , for instance if there is an integer d that can be determined a priori such that the
d-torsion (rather than the d-primary torsion) captures the Brauer–Manin obstruction. The following
proposition shows that this is not possible for torsors under abelian varieties, at least if Tate–Shafarevich
groups of elliptic curves are finite.

Proposition 4.10. Suppose that Tate–Shafarevich groups of elliptic curves over number fields are finite.
For any integers P and n there exists, over a number field k, a torsor V under an elliptic curve with
per(V )= P , V (Ak)

(Br V )[Pn
]
6=∅, and V (Ak)

(Br V )[Pn+1
]
=∅.

The following lemma will be helpful in the proof.

Lemma 4.11. For any integer N there exists an elliptic curve E over a number field k such that X(k, E)
has an element of order N.
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Remark 4.12. It would be very interesting to know if the curve E can be taken to be defined over Q. To
the best of our knowledge, this is unknown for P a sufficiently large prime and for P an arbitrary power
of any single prime. It follows from the lemma that this does hold for abelian varieties over Q, since
restriction of scalars gives an element of order N in X(Q,Resk/Q(E)).

Proof. Recall that the index of a variety X over a field is the gcd of the degrees of the closed points on X .
By work of Clark and Sharif [2010] we can find a torsor V under an elliptic curve E/k of period N and
index N 2. Moreover, the proof of [loc. cit.] shows that we can find such V with V (kv)=∅ for exactly
two primes v of k, both of which are finite, prime to N and such that E has good reduction. Let L/k be
any degree N extension of k which is totally ramified at both of these primes. By a result of Lang and
Tate [1958] we have that V (Lw) 6=∅ for w a place lying over either of these totally ramified primes, and
hence VL ∈X(L , EL). On the other hand, the index of VL can drop at most by a factor of N = [L : k].
Since VL is locally trivial its period and index are equal [Cassels 1962, Theorem 1.3]. Therefore we have
N ≤ Index(VL)= Period(VL)≤ Period(V )= N , so VL has order N in X(L , EL). �

Proof of Proposition 4.10. By the lemma above, we can find an elliptic curve E such that X(k, E) contains
an element of order Pn+1. Since X(k, E) is finite, we can find W ∈X(k, E) such that V := PnW is
not divisible by Pn+1 in X(k, E). Then a theorem of Manin [1971] shows that V (Ak)

(Br V )[Pn+1
]
=∅.

On the other hand, π : W → V is a Pn-covering and, by descent theory, the adelic points in π(W (Ak))

are orthogonal to (Br1 V )[Pn
] = (Br V )[Pn

] (here we have used the fact that V is a curve and applied
Tsen’s theorem). �

5. Quotients of torsors under abelian varieties

Theorem 5.1. Let k be a number field. Let Y be a smooth projective variety and let d be a positive integer
such that for any subgroup B ⊂ Br Y we have

Y (Ak)
B
=∅⇒ Y (Ak)

B[d∞]
=∅.

Let π : Y → X be a finite flat cover such that one of the following holds:

(1) d = 2, π is a ramified double cover, and (Br X/Br0 X)[2∞] is finite.

(2) π is a torsor under an abelian k-group of exponent dividing d.

Then X satisfies BMd .

Remark 5.2. In fact, a stronger result holds. There is a subgroup B⊂ (Br X)[d] such that if X (Ak)
B
6=∅,

then X is also BM⊥d . If we are in case (1), then this subgroup B is finite, depends only on the Galois
action on the geometric irreducible components of the branch locus of π , and is generically trivial.

The idea is that the subgroup B controls whether there is a twist of Y over X that is everywhere locally
soluble. If there is such a twist, then we may apply Lemma 2.4(1) and Theorem 4.1 to conclude that X
inherits BM⊥d from the covering.
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Remark 5.3. Theorem 4.1 implies that the first hypothesis of Theorem 5.1 is satisfied when Y is birational
to a torsor V under an abelian variety and d is an integer that is divisible by every prime in Supp(per(V )).

For the proof, we need a slight generalization of a result of Skorobogatov and Swinnerton-Dyer [2005,
Theorem 3 and Lemma 6].

Proposition 5.4. Let π : Y → X be a ramified double cover over k and assume that (Br X/Br0 X)[2∞]
is finite. Then

X (Ak)
Br2 6=∅⇐⇒

⋃
a∈k×/k×2

πa(Y a(Ak)
(πa)∗(Br X [2∞])) 6=∅,

where πa
: Y a
→ X denotes quadratic twist of Y → X by a.

Proof. The backwards direction follows from the functoriality of the Brauer group. Thus we consider the
forwards direction. This proof follows ideas from [Skorobogatov and Swinnerton-Dyer 2005, §5]. We
repeat the details here for the reader’s convenience.

Let f ∈ k(X)× be such that k(Y )= k(X)(
√

f ). We define a finite dimensional k-algebra

L :=
⊕

D∈X (1)
vD( f ) odd

(k ∩ k(D)).

Note that L is independent of the choice of f , since the class of f in k(X)×/k(X)×2 is unique. Let
α1, . . . , αn ∈ (Br X)[2∞] be representatives for the finitely many classes in (Br X/Br0 X)[2∞]. Let S be
a finite set of places such that for all v /∈ S, for all Pv ∈ X (kv), and for all 1≤ i ≤ n, αi (Pv)= 0 ∈ Br kv .
(It is well-known that finding such a finite set S is possible, see, e.g., [Skorobogatov 2001, §5.2].) After
possibly enlarging S we may assume that S contains all archimedean places and all places that are ramified
in a subfield of L . We may also assume that Y a(kv) 6=∅ for all v /∈ S and all a ∈ k×/k×2 with v(a) even
[Skorobogatov 2001, Proposition 5.3.2].

Let (Pv)∈ X (Ak)
Br2 . For v ∈ S, let Qv ∈ X (kv) be such that av := f (Qv)∈ k×v and be sufficiently close

to Pv so that αi (Pv)= αi (Qv) for all i . For v /∈ S, set av := 1. Let c ∈ k× be such that the class of c lies
in the kernel of the natural map k×/k×2

→ L×/L×2. Then by [Skorobogatov and Swinnerton-Dyer 2005,
Theorem 3], the quaternion algebra A= (c, f )2 lies in (Br X)[2]. Using the aforementioned properties
of S and the definition of Pv and av, we then conclude∑

v∈�k

invv((c, av))=
∑
v∈S

invv((c, av))=
∑
v∈S

invv(A(Pv))=
∑
v∈�k

invv(A(Pv))= 0.

Hence, by [Skorobogatov and Swinnerton-Dyer 2005, Lemma 6(ii)], there exists an a∈ k× with a/av ∈ k×2
v

such that Y a(Ak) 6= ∅. Since a/av ∈ k×2
v for all v ∈ S we may further assume that there exists an
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(Rv) ∈ Y a(Ak) such that πa(Rv)= Qv for all v ∈ S. We then have∑
v

invv(((πa)∗(αi ))(Rv))=
∑
v

invv(αi (π
a(Rv)))=

∑
v∈S

invv(αi (Qv))

=

∑
v∈S

invv(αi (Pv))=
∑
v

invv(αi (Pv))= 0,

so (Rv) ∈ Y a(Ak)
(πa)∗(Br X [2∞]). �

Proof of Theorem 5.1. If π is ramified, let G = Z/2; otherwise let G be the finite k-group such that
π is a torsor under G. For each τ ∈ H1(k,G), let π τ : Y τ → X denote the twisted cover, and define
Bτ := (π τ )∗(Br X).

Assume that X (Ak)
Brd 6=∅. By [Ieronymou et al. 2011, Proposition 1.1], (π τ )∗((Br X)[d∞])= Bτ [d∞].

Therefore, Proposition 5.4 and descent theory show in cases (1) and (2) respectively, that there exists
a τ ∈ H1(k,G) such that Y τ (Ak)

Bτ [d∞]
6= ∅. Applying the assumption with B = Bτ we conclude that

Y τ (Ak)
Bτ is nonempty. By the functoriality of the Brauer–Manin pairing, we have that X (Ak)

Br
6=∅. �

5A. Bielliptic Surfaces. We say that a nice variety X over K is a bielliptic surface if X is a minimal
algebraic surface of Kodaira dimension 0 and irregularity 1.

5A1. Geometry of bielliptic surfaces. If X is a bielliptic surface over K then it is well-known that X is
isomorphic to (A×B)/G where A and B are elliptic curves and G is a finite abelian group acting faithfully
on A and B such that A/G is an elliptic curve and B/G ' P1 (see, e.g., [Beauville 1996, Chapters VI
and VIII]). Furthermore, by the Bagnera–de Franchis classification [Beauville 1996, List VI.20], the pair
of γ := |G| and n := exponent(G) must be one of the following:

(γ, n) ∈ {(2, 2), (4, 2), (4, 4), (8, 4), (3, 3), (9, 3), (6, 6)}.

In all cases n is the order of the canonical sheaf in Pic X .
For A, B, and G as above, the universal property of the Albanese variety and [Beauville 1996,

Example IX.7(1)] imply that the natural k-morphism 9 : X → Alb1
X geometrically agrees with the

projection map (A× B)/G→ A/G.

Lemma 5.5. Let A and B be elliptic curves over K and let G be a finite group acting faithfully on A
and B such that A/G is an elliptic curve and B/G ' P1. Set X := (A× B)/G and let π denote the
projection map X→ B/G. If L ∈ Pic X is such that L∼alg π

∗(OP1(m)) for some positive integer m and
H0(X,L) 6= 0, then L' π∗(OP1(m)).

Proof. Since L∼algπ
∗(OP1(m)) and Pic0

X' A/G'Pic0
A/G , there exists a line bundle L′∈Pic0(A/G) such

that L' π∗(OP1(m))⊗π∗2 (L
′), where π2 is the projection X→ A/G. By assumption H0(X,L) 6= 0, so

H0(P1, π∗L) 6=0, which, by the projection formula, implies that H0(P1, π∗π
∗

2L
′), and hence H0(A/G,L′),

are nonzero. We complete the proof by observing that H0(A/G,L′) 6= 0 if and only if L′ 'OA/G . �

Proposition 5.6. Let X be a bielliptic surface over K . Then there exists a genus 0 curve C and a
K -morphism 8 : X→ C that is geometrically isomorphic to the projection map (A× B)/G→ B/G.



Degree and the Brauer–Manin obstruction 2461

Proof. By the geometric classification, there exist smooth elliptic curves A and B over K such that
X ' (A× B)/G. By abuse of notation, we will also use A and B to refer to the algebraic equivalence
class of a smooth fiber of the projection maps X→ B/G and X→ A/G, respectively.

Since X has an ample divisor, the sum of the Galois conjugates of this divisor is a K -rational ample
divisor D. Then by [Serrano 1990, Lemma 1.3 and Table 2], [D] ≡ αA+βB ∈Num X for some positive
α, β ∈ 1

n Z. Since the natural map X→ Alb1
X is K -rational, taking the fiber above a closed point yields a

K -rational divisor F representing m B ∈Num X for some m> 0. By taking a suitable integral combination
of D and F , we obtain a K -rational divisor D′ that is algebraically equivalent to m′A for some positive
integer m′. Hence, m′A ∈ (NS X)Gal(K/K ).

Applying Lemma 5.5 to the Galois conjugates of OX (m
′A) we see that OX (m

′A) ∈ (Pic X)0K . By
the Hochschild–Serre spectral sequence the cokernel of Pic X→ (Pic X)0K injects into Br K , which is
torsion. Therefore some multiple of A is represented by a K -rational divisor D0.

Since A is the class of the pull back of OB/G(1) under the projection map (A×B)/G→ B/G), it follows
that φ|D0| is geometrically isomorphic to the projection map (A×B)/G→ B/G composed with an r -tuple
embedding. Thus, the image of φ|D0| is a K -rational genus 0 curve C and φ|D0| is the desired map. �

5A2. Proof of Theorem 1.4.

Lemma 5.7. Let X be a bielliptic surface of period d over a number field k. Then X satisfies BMnd where
n denotes the order of the canonical sheaf in Pic X.

Proof. Since the canonical sheaf is n-torsion and is defined over k, there exists a µn-torsor π : V → X
that is defined over k; by [Basile and Skorobogatov 2003, Proposition 1] V is a torsor under an abelian
surface. Since π has degree n and X has period d , the period of V must satisfy Supp(per(V ))⊂Supp(nd).
Indeed, for any i ∈ Z, the degree n map V → X induces a map Albi

X → Albni
V . Since Albd

X (k) 6=∅ we
must have Albnd

V (k) 6=∅. Then Theorem 4.1 and case (2) of Theorem 5.1 (see Remark 5.3) show that X
satisfies BMnd . �

We now state and prove our main result on bielliptic surfaces. Theorem 1.4 follows immediately.

Theorem 5.8. Let (X,L) be a nice polarized bielliptic surface over a number field k. If the canonical
sheaf of X has order 3 or 6, assume that Alb1

X is not a nontrivial divisible element of X(k,Alb0
X ). Then

X satisfies BMdeg(L)

Remark 5.9. If the canonical sheaf of X has order 3 or 6, then it follows from the Bagnera–de Franchis
classification that the elliptic curve Alb0

X has j-invariant 0.

Proof. Let n denote the order of the canonical sheaf of X . We will show that one of the four possibilities
always occurs:

(1) X is not locally solvable.

(2) There is a k-rational point on X .

(3) There is a Brauer–Manin obstruction to rational points on Alb1
X .

(4) Every globally generated ample line bundle L on X has Supp(n)⊂ Supp(deg(L)).
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In the first two cases BMd holds trivially for every d. In the third case, the theorem follows from
Corollary 4.5. In the fourth case we have Supp(deg(L)) = Supp(n deg(L)) and, by Corollary 2.2,
Supp(n deg(L))⊃ Supp(n per(X)), so we can apply Lemma 5.7 to conclude that BMdeg(L) holds.

By the adjunction formula, the Néron–Severi lattice is even, so when n ∈ {2, 4} we are in case (4) above.
By the Bagnera–de Franchis classification we may therefore assume (γ, n) is one of (6, 6), (3, 3) or (9, 3).
Furthermore we can assume X is locally soluble. Then Alb1

X represents an element in X(k,Alb0
X ). If this

class is nontrivial, then Manin’s theorem (see the proof of Proposition 4.9) shows that Alb1
X (Ak)

Br
=∅

and we are in case (3) above.
Since X is locally solvable Proposition 5.6 gives a k-morphism 8 : X→ P1. Since P1 and Alb1

X have
k-points, we obtain k-rational fibers A, B ∈ Div(X) above k-points of P1 and Alb1

X , respectively. All
fibers of 9 are smooth genus one curves geometrically isomorphic to B, while the general fiber of 8 is
geometrically isomorphic to A, but there are 3 multiple fibers with (at least) one having multiplicity n
[Serrano 1990, Table 2]. Let A0 ∈ Div(X) denote the reduced component of a multiple fiber with
multiplicity n. By [Serrano 1990, Theorem 1.4], the classes of A0 and n/γ B give a Z-basis for Num(X)
and the intersection pairing is given by B2

= A2
= 0 and A · B = γ . The ample subset of Pic X maps to

the set of positive integral linear combinations of A0 and (n/γ )B in Num(X).
Let eA and eB be the smallest positive integers such that the classes of eA A0 and eB((γ /n)B) in NS(X)

are represented by k-rational divisors on X . Since n A0 = A in Pic X we have eA | n. Moreover, eA = 1
when (γ, n)= (6, 6), because in this case 8 has a unique fiber of multiplicity 6, which must lie over a
k-rational point. Similarly, (γ /n)((n/γ )B)= B, so eB | γ /n. Therefore both eA and eB must divide 3. It
follows that when eAeB > 1 every k-rational ample divisor on X has degree divisible by 6 and we are in
case (2) above. Therefore we are reduced to considering the case eA = eB = 1, in which case we will
complete the proof by showing that X (k) 6=∅.

First we claim that when eA = 1 the class of A0 in NS(X) is represented by an effective k-rational
divisor. In the case n= 6, we have seen that A0 ∈Div(X). In the case n= 3, let F1= A0, F2, F3 denote the
reduced components of the multiple fibers of 8. The class of the canonical sheaf on X is represented by

2F1+ 2F2+ 2F3− 2A

[Serrano 1996, Theorem 4.1]. Since the canonical sheaf is not trivial, the Fi cannot all be linearly
equivalent. The assumption that eA = 1 implies that F1 = A0 is linearly equivalent to each of its Galois
conjugates. The Galois action must permute the Fi , but it cannot act transitively, so some Fi must be
fixed by Galois. This Fi is an effective k-rational divisor representing the class of A0. Relabeling if
necessary, we may therefore assume that A0 is an effective k-rational divisor.

When γ = n, (n/γ )B = B is an effective k-rational divisor intersecting A0 transversally and A0 ·B = 1,
so A0∩ B consists of a k-rational point. When γ 6= n we have (γ, n)= (9, 3). In this case, D = A0+

5
3 B

is very ample [Serrano 1990, Theorem 2.2]. By Bertini’s theorem [Hartshorne 1977, Lemma V.1.2]
the complete linear system |D| contains a curve C ∈ Div(X) intersecting A0 transversally. This gives
a k-rational 0-cycle of degree 5 on A0. On the other hand, the restriction of 9 to A0 gives a degree 3
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étale map A0→ Alb1
X . As Alb1

X (k) 6=∅, this gives a k-rational 0-cycle of degree 3 on A0. Then A0 is
a genus one curve with a k-rational 0-cycle of degree 1, so it (and hence X ) must have a k-point. �

5B. Kummer varieties. Let A be an abelian variety over K . Any K -torsor T under A[2] gives rise to a
2-covering ρ : V → A, where V is the quotient of A×K T by the diagonal action of A[2] and ρ is the
projection onto the first factor. Then T = ρ−1(0A) and V has the structure of a K -torsor under A. The
class of T maps to the class of V under the map H1(K , A[2])→ H1(K , A) induced by the inclusion of
group schemes A[2] ↪→ A and, in particular, the period of V divides 2.

Let σ : Ṽ → V be the blow up of V at T ⊂ V . The involution [−1] : A→ A fixes A[2] and induces
involutions ι on V and ι̃ on Ṽ whose fixed point sets are T and the exceptional divisor, respectively. The
quotient Ṽ /ι̃ is geometrically isomorphic to the Kummer variety of A, so in particular is smooth. We call
the quotient Ṽ /ι̃ the Kummer variety associated to the 2-covering ρ : V → A.

Theorem 5.10. Let X be a Kummer variety over a number field k. Then X satisfies BM2.

Proof. By definition every Kummer variety admits a double cover by a smooth projective variety birational
to a torsor of period dividing 2 under an abelian variety. Moreover (Br X/Br0 X)[2∞] is finite by
[Skorobogatov and Zarhin 2017, Corollary 2.8]. So the theorem follows from Theorem 4.1 and case (1)
of Theorem 5.1 (see Remark 5.3). �

6. Severi–Brauer bundles

A Severi–Brauer bundle is a nice variety X together with a dominant morphism π : X → Y to a nice
variety Y such that the generic fiber is a smooth Severi–Brauer variety.

Theorem 6.1. Let π : X→ C be a Severi–Brauer bundle, with C a curve. Assume either

(1) g(C)= 0 and π is minimal of relative dimension 1, or

(2) g(C)= 1, π is a smooth morphism, and X(k,Alb0
C) is finite.

Then degrees capture the Brauer–Manin obstruction on X.

Remark 6.2. If π : X→ C is a minimal conic bundle over a positive genus curve C with singular fibers,
then degrees do not necessarily capture the Brauer–Manin obstruction. We construct a counterexample in
Section 6A.

In the case that g(C)= 0, it is well-known that Br X/Br0 X is 2-torsion, so X trivially satisfies BM2.
Then the result follows from the following lemma.

Lemma 6.3. Let π : X→C be a minimal conic bundle over a curve C without a section. Then the degree
of any globally generated ample line bundle in Pic X is divisible by 4i , where i is the odd part of the index
of C.

Proof. Since π has no section, the class of the generic fiber in Br k(C) has order 2. Then, since π : X→C
is minimal, any line bundle in L ∈ Pic X is algebraically equivalent (over k) to OX (2aS+ b ind(C)F),
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where a, b,∈ Z, S is a geometric section of π (which exists by Tsen’s theorem) and F is the class of a
fiber over a K -point of C . Thus, we have

deg(L)= deg(LK )= 4a2S2
+ 4ab ind(C).

Further, since there is a double cover C ′ → C such that the conic bundle π ′ : X ×C C ′ → C ′ has a
section, S2 is equal to the degree of the wedge power of a rank 2 vector bundle on X ×C C ′ [Beauville
1996, p. 30 and Proposition III.18]. Since any degree n point on C yields a degree n or 2n point
on C ′, the index of C and C ′ can differ only by a factor of 2. Therefore, S2

∈ ind(C ′)Z ⊂ iZ and so
deg(L)= 4a2S2

+ 4ab ind(Y )≡ 0 (mod 4i). �

To prove part (2) of Theorem 6.1 we require the following result about Severi–Brauer bundles with no
singular fibers.

Proposition 6.4. Let π : X → Y be a Severi–Brauer bundle over a nice k-variety Y with π a smooth
morphism. Let A ∈ Br Y denote the class of the generic fiber of π and let d be the order of A. Suppose
that

(1) X(k,Alb0
Y )[d

∞
] is finite,

(2) Y (k) 6=∅,

(3) the canonical map Y (k)→ Alb1
Y (k)/d Alb0

Y (k) is surjective, and

(4) for every prime v, the evaluation map Av : CH(0)
0 (Yv)→ Br kv factors through Alb0

Y (kv).

Then X (A)Brd 6=∅⇒ X (k) 6=∅. In particular, X satisfies BMd .

Remark 6.5. Hypotheses (3) and (4) of the proposition are satisfied if

• Y is an abelian variety;

• Y is a curve such that #Y (k)= # Alb0
Y (k); or

• Y is a curve such that Y (k) 6=∅ and Alb0
Y (k) is finite of order prime to d.

This is a slight generalization of a result in [Colliot-Thélène et al. 2016, Proposition 6.5] which proves
that the Brauer–Manin obstruction is the only one on X under the assumption that Y is an elliptic curve
with X(k, Y ) finite.

Proof of Theorem 6.1(2). If C(k)=∅, then the assumption on X(k,Alb0
C) implies by Manin’s theorem

that C(Ak)
Br
= ∅. Since C ' Alb1

X , we may apply Corollary 4.5 to conclude that degrees capture the
Brauer–Manin obstruction on X .

Assume that C(k) 6=∅ and let d be the order of the generic fiber of π in Br C . Then Proposition 6.4
and Remark 6.5 together show that X satisfies BMd so it suffices to show that d divides the degree of any
globally generated ample line bundle.

Restriction to the generic fiber yields an exact sequence

0→ ZF→ NS X→ NS Xη→ 0,



Degree and the Brauer–Manin obstruction 2465

where F denotes the class of a fiber of π . (Here we are using the assumption that π is smooth, so there
are no reducible fibers.) Since Xη is a Severi–Brauer variety whose class in the Brauer group has order d ,
NS Xη is free of rank 1 and generated by d H , where H is a generator of NS Xη ' NS Pr

' Z. Thus any
divisor class is NS X can be represented as ad H ′+ bF , where H ′ is a Zariski closure of H . Since

(ad H ′+ bF)dim X
= (ad H ′)dim X

+ (dim X)(ad)dim X−1b(H ′)dim X−1
· F

= (ad)dim X−1(ad · H ′ dim X
+ (dim X)b(H ′ dim X−1

· F)),

and dim X > 1, this shows that the degree of any line bundle is divisible by d . �

Proof of Proposition 6.4. To ease notation set A = Alb0
Y . Choose P0 ∈ Y (k) and use this to define a

k-morphism ι : Y → A sending P to the class of the 0-cycle P − P0. Suppose that X (Ak)
Brd 6=∅. Fix a

point (Qv) ∈ X (Ak)
Brd and let (Pv) := (π(Qv)). Then (ι(Pv)) ∈ A(Ak)

Brd by functoriality. Since ι(Pv) is
orthogonal to (Br A)[d∞] it follows from descent theory (e.g., [Skorobogatov 2001, Theorem 6.1.2]) that,
for every n, ι(Pv) lifts to an adelic point on some dn-covering of A. (For the definition of an N -covering
see [Skorobogatov 2001, Definition 3.3.1].) Because X(k, A)[d∞] is finite, there is some n such that
every dn-covering of A which lifts to a locally soluble dn+1-covering of A is of the form x 7→ dnx+Q for
some Q ∈ A(k). In particular, there is some Q ∈ A(k) such that (ι(Pv)− Q) ∈ d A(Ak). By assumption
(3) there is some P ∈ Y (k) such that (ι(Pv)− ι(P)) ∈ d A(Ak). Now by assumption (4) and the fact that
dA = 0 it follows that, for every prime v, A(P)⊗ kv = A(Pv). Note that A(Pv) = 0 ∈ Br kv since the
fiber X Pv has a kv-point. Thus, A(P)⊗ kv = 0 for every v. We conclude that the Severi–Brauer variety
X P must be everywhere locally soluble and thus, by the Albert–Brauer–Hasse–Noether theorem, that
X P(k) 6=∅. �

6A. A counterexample.

Theorem 6.6. There exists a conic bundle surface π : X→ E over an elliptic curve, such that X has an
ample globally generated line bundle of degree 12 and X does not satisfy BM6. In particular, degrees do
not capture the Brauer–Manin obstruction.

Proof. Let E/Q be an elliptic curve with a Q-rational cyclic subgroup Z of order 5 such that

Gal(Q(Z)/Q)= Z/4,

with E(Q)= {O} and with X(Q, E) finite, e.g., the curve with LMFDB label 11.a1 [LMFDB Collabora-
tion 2013, Elliptic Curve 11.a2]. Then Z = O ∪ P , where P is a degree 4 closed point. Let p1 and p2 be
two primes that are congruent to 1 modulo 8 and that split completely in k(P). Finally choose a prime
q 6= pi that is 1 modulo 8 and that is a nonsquare modulo p1 and modulo p2.

We will use this chosen data to construct a conic bundle X over E with the required properties. Let E be
the rank 3 vector bundle OE⊕OE⊕OE(2O). Since 4O∼ P , there exists a section s2∈H0(E,OE(2O)⊗2)

such that div(s2)= P and such that s2(O)=−p1 p2. Let s0 := 1 and s1 := −q thought of as sections of
H0(E,O⊗2

E ). Then we define π : X → E to be the conic bundle given by the vanishing of the section
s := s0+s1+s2 ∈H0(E,Sym2 E) inside P(E); this conic bundle is smooth by [Poonen 2009, Lemma 3.1].

http//www.lmfdb.org/EllipticCurve/Q/onon.atw
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Since s is invertible on E − P , the morphism π is smooth away from P . Because P is a single closed
point, it follows that π∗ : Br E→Br X is surjective (see [Colliot-Thélène et al. 2016, Proposition 2.2(i)]).
Hence, X (AQ)

Br6 6=∅ if and only if π(X (AQ))∩ E(AQ)
Br6 6=∅.

Since the pi split completely in k(P), the connected components of P ⊗ kpi are points in E(Qpi ).
Consider an adelic point (Pv) ∈ E(AQ) with Pv = O for all v 6= p1, p2 and Pv a connected component
of P ⊗ kv for v = p1, p2. Then (Pv) is 5-torsion and, since 5 is relatively prime to 6, the point (Pv) is
6-divisible in E(AQ). Since X(Q, E) is finite, descent theory implies that (Pv) ∈ E(AQ)

Br6 (see the
proof of Proposition 6.4).

Since pi splits completely in k(P), each connected component of X P⊗Qpi is a pair of lines intersecting
at a unique point, which must be defined over Qpi . In particular, Ppi ∈ π(X (Qpi )) for i = 1, 2. Further,
by construction, the fiber above O is given by

X O : w
2
0 − qw2

1 = p1 p2w
2
2.

By the choice of p1, p2 and q , X O(Qv) 6=∅ exactly when v 6= p1, p2. Hence, (Pv) ∈ π(X (AQ)) and so
X (AQ)

Br6 6=∅.
To prove that X does not satisfy BM6, it remains to show that X (AQ)

Br
= ∅, which, by the same

argument as above, is equivalent to showing that π(X (AQ))∩ E(AQ)
Br
= ∅. Since X(k, E) is finite,

E(AQ)
Br
=
∏

p<∞{O} × CO , where CO ⊂ E(R) is the connected component of O . However, since
s2(P)= 0 and q /∈ F×2

pi
for i = 1, 2, X O(Qp1)= X O(Qp2)=∅, so X (AQ)

Br
=∅.

Now we will show that X has a globally generated k-rational ample line bundle of degree 12. Consider
the morphism f : X→ P3

×P1 that is the composition of the following maps

X ↪→ P(OE ⊕OE ⊕OE(2∞))→ P(O⊕4
E )' P3

× E (id,x)
−−−→P3

×P1,

where the second map (from left to right) is induced by a surjection O⊕2
E →OE(2O) and the morphism

g that is the composition of f with the Segre embedding P3
×P1 ↪→ P7. Note that f , and therefore g, is

2-to-1 onto its image, so L := g∗OP7(1) is a globally generated ample line bundle on X .
The image of f is the complete intersection of a (2, 0) hypersurface, which comes from the quadric

relation s, and a (1, 1) hypersurface, which comes from the kernel of O⊕2
E →OE(2O). Since a quadric

surface in P3 is geometrically isomorphic to P1
×P1, the image of g is geometrically isomorphic to a

hyperplane intersected with the image Y of P1
×P1

×P1 ↪→ P7. Since the Hilbert polynomial of Y is
(1+ x)3, the degree of Y , and hence the degree of image g, is 3! = 6. Therefore, deg(L) = 12 and so
degrees do not capture the Brauer–Manin obstruction to rational points on X . �

Appendix: Proof of Theorem 1.8
by Alexei N. Skorobogatov

The following, statement equivalent to Theorem 1.8, is a common generalization of [Skorobogatov and
Zarhin 2017, Theorem 3.3] and Theorem 1.7.

Let Br(X)odd be the subgroup of Br(X) formed by the elements of odd order.
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Theorem A.1. Let A be an abelian variety of dimension > 1 over a number field k. Let X be the
Kummer variety attached to a 2-covering of A. If B is a subgroup of Br(X) such that X (Ak)

B
6=∅, then

X (Ak)
B+Br(X)odd 6=∅.

Proof. By [Skorobogatov and Zarhin 2017, Corollary 2.8] the group Br(X)/Br0(X) is finite. Hence we
can assume without loss of generality that B is finite. Replacing B by its 2-primary torsion subgroup we
can assume that B ⊂ Br(X)[2∞]. There exists an odd integer n such that Br(X)[n] and Br(X)odd have
the same image in Br(X).

By the definition of a Kummer variety [Skorobogatov and Zarhin 2017, Definition 2.1] there exists a
double cover π : Y ′→ X , where σ : Y ′→ Y is the blowing-up of a 2-covering f : Y → A of A in f −1(0),
such that the branch locus of π is the exceptional divisor of σ . Since n is odd and Y is a torsor for A of
period dividing 2, we have a well defined morphism [n] : Y→ Y compatible with multiplication by n on A.

Let (Pv)∈ X (Ak). For each v there is a class αv ∈H1(kv, µ2)= k∗v/k∗2v such that Pv lifts to a kv-point on
the quadratic twist Y ′αv , which is a variety defined over kv . By weak approximation we can assume that αv
comes from k∗/k∗2 and hence Y ′αv is actually defined over k. Let παv :Y

′
αv
→ X be the natural double cover.

Let D = π∗αv (B) be the image of B in Br(Yαv ). We need the following corollary of Lemma 4.6.

Lemma A.2. There exists a positive integer s such that [ns
]
∗
: Br(Yαv )→ Br(Yαv ) restricted to D is the

identity map on D.

Proof. By Lemma 4.6 for d = 2 there is a positive integer a such that [na
] induces the identity on the

quotient of D by D∩Br0(Yαv ). Hence for each A∈ D there is an A0 ∈Br0(Yαv ) such that [na
]
∗A=A+A0.

Let b be the product of orders of A0, where A ranges over all elements of D. Then s = ab satisfies the
conclusion of the lemma. �

Now assume that (Pv) ∈ X (Ak)
B . For each place v of k choose a kv-point of Y ′αv above Pv and let Rv

be its image in Yαv . In the proof of [Skorobogatov and Zarhin 2017, Theorem 3.3] instead of Mv = [n]Rv
put Mv = [ns

]Rv , where s is as in Lemma A.2. This definition has all the properties needed for the proof
of [loc. cit., Theorem 3.3] with the additional property

A(Mv)= ([ns
]
∗A)(Rv)=A(Rv) (A-1)

for each A ∈ π∗αv (B). We now proceed exactly as in the proof of [loc. cit., Theorem 3.3]. By a small
deformation we can assume that Mv avoids the exceptional divisor of Y ′αv→Yαv . Then Mv lifts to a unique
point M ′v ∈ Y ′αv (kv). Let Qv = παv (M

′
v) ∈ X (kv). By (A-1) for each B ∈ B we have B(Qv) = B(Pv),

hence (Qv) ∈ X (Ak)
B . The proof of [loc. cit., Theorem 3.3] shows that (Qv) ∈ X (Ak)

Br(X)odd . Thus
(Qv) ∈ X (Ak)

B+Br(X)odd . �
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