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Bounds for traces of Hecke operators and applications
to modular and elliptic curves over a finite field

Ian Petrow

We give an upper bound for the trace of a Hecke operator acting on the space of holomorphic cusp forms
with respect to certain congruence subgroups. Such an estimate has applications to the analytic theory of
elliptic curves over a finite field, going beyond the Riemann hypothesis over finite fields. As the main
tool to prove our bound on traces of Hecke operators, we develop a Petersson formula for newforms for
general nebentype characters.

1. Introduction

1A. Statement of results. Let S�.�; �/ be the space of holomorphic cusp forms of weight �, for a sub-
group � of a Hecke congruence group, and of nebentype character �. We write Tr.T jS�.�; �// for the trace
of a linear operator T acting on S�.�; �/. The aim of this paper is to give estimates for Tr.TmjS�.�; �//,
where Tm is the m-th Hecke operator, as the parameters m; �; � , and � vary simultaneously.

Consider first the case that � D �0.N / and � is any Dirichlet character modulo N. Let d.m/ denote
the number of divisors of m, let �.m/ denote the sum of the divisors of m, and let  .N/ D Œ�0.N / W
SL2.Z/�DN

Q
p jN

�
1C 1

p

�
. We assume that � > 2 is an integer throughout the paper. Deligne’s theorem

tells us that each eigenvalue �.m/ of Tm satisfies j�.m/j6 d.m/m.��1/=2. Therefore we have the “trivial”
estimate on the trace

Tr.TmjS�.�0.N /; �//6 dimS�.�0.N /; �/d.m/m
��1
2 6

.� � 1/ .N /

12
d.m/m

��1
2 : (1-1)

For the bound on dimS�.�0.N /; �/, see, e.g., [Ross 1992, Corollary 8]. The power of m in (1-1) is sharp
by the Sato–Tate distribution for Hecke eigenvalues. On the other hand, by a careful analysis using the
Eichler–Selberg trace formula, Conrey, Duke and Farmer [Conrey et al. 1997] and in more generality
Serre [1997, Proposition 4] showed that if �.�1/D .�1/� then

Tr.TmjS�.�0.N /; �//

D
� � 1

12
�.m

1
2 /m

�
2
�1 .N/CO

�
.�.m/ max

f 2<4m
 .f /C d.m/N

1
2 /m

��1
2 d.N /

�
; (1-2)
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where �.m1=2/ is understood to be 0 unlessm is a perfect square. If �.�1/¤.�1/� then S�.�0.N /;�/Df0g,
so the left-hand side vanishes identically. We expect the estimate (1-2) to be sharp if m is fixed and
�CN !1.

Write c.�/ for the conductor of the Dirichlet character �, and c�.�/D
Q
p jc.�/ p for its square-free

part. In this paper we prove:

Theorem 1.1. Suppose that �.�1/ D .�1/�, .N;m/ D 1, and mc.�/c�.�/� .N 4�10=3/1�� for some
� > 0. Then we have

Tr.TmjS�.�0.N /; �//

D
� � 1

12
�.m

1
2 /m

�
2
�1 .N/CO�;".N

10
11m

��1
2
C 1
44 �

61
66 c.�/

1
44 c�.�/

1
44 .Nm�/"/: (1-3)

We remark that the hypothesis that mc.�/c�.�/� .N 4�10=3/1�� for some � > 0 in Theorem 1.1 is
no restriction in practice, since if the hypothesis fails then (1-1) is a superior bound anyway. Indeed, the
error term in (1-3) is smaller than that in both (1-1) and (1-2) when

N
8
13 �

122
195 .N�/"c.�/

1
65 c�.�/

1
65 �m�

.N 4�
10
3 /1��

c.�/c�.�/
:

For example, if � is trivial and the weight � is fixed, then (1-3) is better than (1-1) and (1-2) for

N
8
13
C"
�m�N 4�":

Note that our result requires the hypothesis .N;m/D 1, whereas the estimates (1-1) and (1-2) do not. We
discuss the source of this condition in the sketch of the proof, below.

We are also interested in spaces of modular forms for groups other than �0.N /. In particular, for
positive integers M jN let

�.M;N/D
˚�
a
c
b
d

�
2 SL2.Z/ W a; d � 1 .modN/; c � 0 .modNM/

	
: (1-4)

These congruence groups interpolate between �1.N / D �.1;N / and �.N/ ' �.N;N /. We write
S�.M;N / for the space of modular forms of weight � for the group �.M;N/ (without nebentype
character). Let ı.a; b/ be the indicator function of a D b and ıc.a; b/ be the indicator function of
a� b .mod c/. Let Tm be the m-th Hecke operator acting on S�.M;N / and for .d;N /D 1 let hd i be
the d -th diamond operator. These operators commute and T1 D h1i D id; for definitions see [Diamond
and Shurman 2005, §5.1, 5.2] or [Kaplan and Petrow 2017, §4]. In particular, we have

Tr.hd iTmjS�.�.M;N ///D
X

� .modN/

�.d/Tr.TmjS�.�0.NM/; �//: (1-5)

Applying (1-1) to (1-5) we have

Tr.hd iTmjS�.�.M;N ///6
� � 1

12
'.N / .NM/d.m/m

��1
2 : (1-6)
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Meanwhile, summing (1-2) over characters � .modN/ such that �.�1/D .�1/� we find

Tr.hd iTmjS�.�.M;N ///D
� � 1

24
m
�
2
�1'.N / .NM/

�
ıN .m

1
2d; 1/C .�1/�ıN .m

1
2d;�1/

�
CO

�
.�.m/ max

f 2<4m
 .f /C d.m/.MN/

1
2 /m

��1
2 d.MN/N

�
: (1-7)

The following result improves on both (1-6) and (1-7) in an intermediate range of parameters.

Theorem 1.2. Suppose that M jN, .N;m/D 1, and m� .N 6�10=3/1�� for some � > 0. We have

Tr.hd iTmjS�.�.M;N ///D
� � 1

24
m
�
2
�1'.N / .NM/

�
ıN .m

1
2d; 1/C .�1/�ıN .m

1
2d;�1/

�
CO�;".MN

41
22m

��1
2
C 1
44 �

61
66 .Nm�/"/:

1B. Applications to modular and elliptic curves over a finite field. Hecke operators appear throughout
number theory, and estimates for their traces are especially relevant to equidistribution problems. See for
example [Serre 1997, §5–§8] and [Murty and Sinha 2009]. We mention here a few consequences in the
analytic theory of modular and elliptic curves over a finite field.

Let C be a nonsingular projective curve of genus g over a finite field Fq with q elements. Then we
have (see, e.g., [Milne 2017, Chapter 11])

jC.Fqn/j D q
n
C 1�

2gX
iD1

˛ni ;

where f˛ig are the inverse zeros of the zeta function of C

Z.C; T /D
.1�˛1T / � � � .1�˛2gT /

.1�T /.1� qT /
:

The Riemann hypothesis for curves over finite fields asserts that j˛i j D
p
q for all i . Igusa [1959] showed

that there exists a nonsingular projective model for X0.N / over Q whose reductions modulo primes p,
p−N , are also nonsingular (see also the survey [Diamond and Im 1995, §9]), and so the preceding
discussion applies to X0.N / when p−N. Since g �  .N/=12 as N !1 we have

jX0.N /.Fq/j D qC 1CO. .N/q
1=2/: (1-8)

In particular, jX0.N /.Fq/j � q as q!1 as soon as q�N 2Cı for some ı > 0. On the other hand, the
Eichler–Shimura correspondence (see, e.g., [Milne 2017, Theorem 11.14]) asserts that

Z.X0.N /; T /D

Q
f 2H2.N/

.1��f .p/T CpT
2/

.1�T /.1�pT /
;

where H2.N / is a basis for S2.�0.N // consisting of eigenforms of fTp W p−N g and �f .p/ is the Tp
eigenvalue of f . We therefore have

jX0.N /.Fq/j D qC 1�Tr.TqjS2.�0.N ///Cp Tr.Tq=p2 jS2.�0.N ///;

where we set Tp�1 D 0. Applying (1-1), (1-2), and Theorem 1.1 we get:
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Corollary 1.3. Suppose q D pv is a prime power such that p−N. We have

jX0.N /.Fq/j D qC .p� 1/
 .N /

12
ı2.v; 0/CO"

�
min. .N /; q

1
44N

10
11 .qN /"; .q

3
2 CN

1
2 /d.N /q"/q

1
2

�
:

In particular, the main term is larger than the error term as soon as q�N
40
21
Cı for some fixed ı > 0.

Corollary 1.3 shows that there is significant cancellation between the zeros ˛i of Z.X0.N /; T /, and in
this sense it goes beyond the Riemann hypothesis for Z.X0.N /; T /. Assuming square-root cancellation
between the zeros, one might conjecture an error term of size .qN /1=2C" in Corollary 1.3, which would
imply that the main term is larger than the error term whenever q�N 1Cı for some ı. If one assumes the
generalized Lindelöf hypothesis for adjoint square L-functions, then the method in this paper produces an
error term of size q1=8C"N 1=2C" in Corollary 1.3 (see Lemma 6.1). In a much more speculative direction,
if under the assumption .mn;W /D 1 the upper bound��;" .mnW /

"W �1=2 for the sum appearing in
Lemma 4.1 holds (cf. the Linnik–Selberg conjecture), then the error term .qN /1=2C" in Corollary 1.3 is
admissible.

If q is a square then we can compare the second main term in Corollary 1.3 to the error term coming
from (1-2) in the range where q is small compared to N. For example, in the special case that p is a
prime and q D p2 we have:

Corollary 1.4. If p;N !1 where p runs through primes p−N then for any fixed ı > 0 we have

jX0.N /.Fp2/j D

8̂̂̂̂
<̂
ˆ̂̂:
p2CO.p .N// if p2�N 4�ı ;

p2Cp 1
12
 .N/CO".p

23
22N

10
11 .qN /"/ if N

40
21
�ı
� p2�N 4�ı ;

p 1
12
 .N/CO".p

23
22N

10
11 .qN /"/ if N

8
13
Cı
� p2�N

40
21
�ı ;

.p� 1/ 1
12
 .N/CO"..p

4CN
1
2p/d.N /p"/ if p2�N

2
3
�ı :

The first of these cases is just (1-8), and the last is the Tsfasman–Vlădut,–Zink theorem [Tsfasman
et al. 1982], which has important applications to algebraic coding theory; see [Moreno 1991, Chapter 5].

Using Theorem 1.2 we can make more explicit statements about elliptic curves themselves. Let E be
an elliptic curve defined over Fq and let tE D qC 1� #E.Fq/ be the trace of the associated Frobenius
endomorphism. Hasse’s theorem tells us that jtE j6 2

p
q. The set of Fq-isomorphism classes of elliptic

curves defined over Fq is naturally a probability space where the probability of a singleton is given by

Pq.fEg/D
1

qjAutFq .E/j
:

We would like to study the expectations as q!1 of various random variables associated to tE or the
structure of the group of Fq-rational points of E. To be precise: let A be a finite abelian group with at most
two generators, and let ˆA denote the indicator function of the event that there exists an injective group
homomorphism A ,! E.Fq/. Let Uj .x/ for j > 0 be the Chebyshev polynomials of the second kind.
The Chebyshev polynomials form an orthonormal basis for the Hilbert space L2

�
Œ�1; 1�; 2

�

p
1� x2dx

�
.
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N. Kaplan and the author [Kaplan and Petrow 2017, Theorem 2] gave explicit formulas for the expectations

Eq.Uj .tE=2
p
q/ˆA/D

1

q

X
E=Fq

A,!E.Fq/

Uj .tE=2
p
q/

jAutFq .E/j

in terms of Tr.hd iTmjS�.�.M;N /// and elementary arithmetic functions of m, M, N, and j.
Theorem 1.2 yields the following refinement of the error term in the main corollary of [Kaplan and

Petrow 2017]. Let

v.n1; n2/D
n1

 .n1/'.n1/n
2
2

Y
`j

n1
.q�1;n1/

.1C `
�1�2v`.

.q�1;n1/

n2
/
/:

Corollary 1.5. Let n1 D n1.A/ and n2 D n2.A/ be the first and second invariant factors of A (i.e., we
have n2 jn1). Suppose that .jAj; q/D 1 and q � 1 .mod n2/. Then

Eq.Uj .tE=2
p
q/ˆA/D v.n1; n2/

�
ı.j; 0/COj;".min.n1; q

1
44n

19
22

1 /n1n2q
� 1
2 .qn1/

"/
�
:

If q 6� 1 .mod n2/, then Eq.UjˆA/ vanishes identically.
In particular, the traces of the Frobenius tE for fE=Fq W A ,! E.Fq/g become equidistributed with

respect to the Sato–Tate measure as q!1 through prime powers q � 1 .mod n2/. The equidistribution
is uniform in A as soon as q� n22n

41=11Cı
1 for any fixed ı > 0.

In [Kaplan and Petrow 2017] Kaplan and the author showed that the equidistribution of tE for
fE=Fq W A ,! E.Fq/g is uniform as soon as q� n22n

4Cı
1 by applying (1-6) to bound the trace. In this

sense, Corollary 1.5 goes beyond what one can conclude using the Riemann hypothesis of Deligne alone.
All of the error terms in the theorems and corollaries found in Section 2 of [loc. cit.] are similarly improved
by applying Theorem 1.2 in addition to (1-6).

1C. Outline of proof. Thanks to (1-5), the structural steps of the proof of Theorem 1.2 reduce to those
of Theorem 1.1. The details of the analytic arguments differ however (see Section 5). For these reasons,
we only discuss the proof of Theorem 1.1 in this outline.

By Atkin–Lehner theory, to estimate Tr.TmjS�.�0.N /; �// it suffices to estimateX
f 2H?

� .N;�/

�f .m/; (1-9)

where H?
� .N; �/ is set of Hecke-normalized newforms of level N and character �, and �f .m/ is the m-th

Hecke eigenvalue of f , normalized so that j�f .n/j6 d.n/. Whereas Serre and Conrey, Duke, and Farmer
used the Eichler–Selberg trace formula to access the trace of Tm, we take a different path and use the
Petersson trace formula.

Let B�.�0.N /; �/ be an orthonormal basis for S�.�0.N /; �/. Let g2B�.�0.N /; �/ and write its Fourier
coefficients as fbg.n/gn>1. Then the Petersson formula [Iwaniec and Kowalski 2004, Proposition 14.5]
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says that

�.� � 1/

.4�
p
mn/��1

X
f 2B�.�0.N/;�/

bf .n/bf .m/

D ı.m; n/C 2�i��
X
c>0

c�0 .modN/

S�.m; n; c/

c
J��1

�
4�
p
mn

c

�
; (1-10)

where J˛ is the J -Bessel function, S�.m; n; c/ is the twisted Kloosterman sum

S�.m; n; c/D
X�

d .mod c/

�.d/e

�
dmC Ndn

c

�
;

and the � indicates we run over invertible d .mod c/.
Our goal is to apply the Petersson formula to (1-9), and so we are faced with two technical difficulties:

(1) Only the newforms in S�.�0.N /; �/ have Fourier coefficients proportional to the Hecke eigenvalues
appearing in (1-9).

(2) If f is a newform, the constant of proportionality between Fourier coefficients bf .n/ and the Hecke
eigenvalues �f .n/ is � kf kL2 , which is not constant across H?

� .N; �/.

We overcome (1) in Theorem 3.1 by developing a Petersson formula for newforms for S�.�0.N /; �/.
There has been much recent interest in such formulas; see for example [Barrett et al. 2017; Nelson
2017; Petrow and Young 2018; Young 2018]. Theorem 3.1 is a generalization of [Barrett et al. 2017,
Proposition 4.1] to nontrivial central characters, which itself is a generalization of work of Iwaniec, Luo
and Sarnak [Iwaniec et al. 2000], Rouymi [2011] and Ng [2012]. Peter Humphries has also shared a
preprint with the author in which he independently obtains Theorem 3.1, and uses it to study low-lying
zeros of the L-functions associated to f 2H?

� .N; �/. Theorem 3.1 is the only place in the proof where
we have used the hypothesis .N;m/D 1, in an essential way, and so is the source of the relatively prime
conditions in Theorems 1.1 and 1.2.

We deal with (2) by appealing to the special value formula

L.1;Ad2 f /D
�.N/.2/.4�/�

�.�/

kf k2
L2

VolX0.N /
;

where L.s;Ad2 f / is a certain Dirichlet series whose coefficients involve �f .n2/, and which we discuss
in more detail in Section 2. One may then swap the sum over f and this Dirichlet series, and apply our
Petersson formula for newforms (Theorem 3.1). Estimating the resulting sums directly using the Weil
bound for S�.a; b; c/ (see Lemma 4.2), one recovers that the trace of Tm is�m .N�/

1C" (compare with
(1-1)).

To save a bit more and obtain Theorem 1.1 we remove the weights kf k2
L2

more efficiently using a
method due to Kowalski and Michel [1999, Proposition 2]. Their method is based on Hölder’s inequality
and a large sieve inequality due to Duke and Kowalski [2000, Theorem 4] for subfamilies of automorphic
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forms on GL3. There are other notable large sieve inequalities for GL3 in the literature; see, e.g., [Blomer
et al. 2017, Theorem 3] and [Venkatesh 2006, Theorem 1]. However, these two are not useful to us since
we need a large sieve inequality which is efficient for the proper subfamily of GL3 forms cut out by the
image of the adjoint square lift from GL2. The inequality of Duke and Kowalski is superior to the results
[Blomer et al. 2017, Theorem 3] and [Venkatesh 2006, Theorem 1] in the case of a thin subfamily and a
long summation variable, which is the situation of interest to us.

2. Preliminaries on L-series

If L.s/ is a meromorphic function defined in Re.s/� 1 by an infinite product over primes p of local
factors Lp.s/, then for any integer N we write

L.N/.s/D
Y
p−N

Lp.s/ and LN .s/D
Y
p jN

Lp.s/;

so that L.s/ D LN .s/L
.N/.s/ for any N 2 N. To deal with the kf k2

L2
-normalization alluded to in

Section 1C, we introduce the “naive” adjoint square L-function. For f 2H?
� .N; �/, let

L.s;Ad2 f /D
�.N/.2s/

�.s/

X
n>1

j�f .n/j
2

ns
D

Y
p

Lp.s;Ad2 f /;

where �.s/ is the Riemann zeta function, and where

Lp.s;Ad2 f /D

8̂̂̂<̂
ˆ̂:
�
1�

1

p2s

��1X
˛>0

N�.p˛/�f .p
2˛/

p˛s
if p−N;

�
1�

1

ps

��
1�
j�f .p/j

2

ps

��1
if p jN:

(2-1)

Warning: the L.s;Ad2 f / is not the true adjoint square L-function of f as defined by functoriality (see
[Iwaniec and Kowalski 2004, p. 133] and the online errata). But if p−N, then Lp.s;Ad2 f / does match
the local L-factor at p of the true adjoint square L-function. Our “naive” adjoint square L function
L.s;Ad2 f / is chosen to be the Dirichlet series for which the following lemma is true.

Lemma 2.1. The series L.s;Ad2 f / defined above is holomorphic for Re.s/ > 0 and

L.1;Ad2 f /D
�.N/.2/.4�/�

�.�/

hf; f iN

VolX0.N /
; (2-2)

where

hf; f iN D

Z
�0.N/nH

jf .z/j2y�
dx dy

y2

and

VolX0.N /D
Z
�0.N/nH

dx dy

y2
D
�

3
 .N/:
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Proof. For the first statement, let � denote the irreducible admissible cuspidal automorphic representation
of GL2 generated by f , and denote by L.s;Ad2 �/ the L-function of its adjoint square lift. We have by
[Gelbart and Jacquet 1978] that L.s;Ad2 �/ is an entire function of s. Therefore, the prime-to-N part of
the naive L-function L.N/.s;Ad2 f / is holomorphic for Re.s/ > 0.

For the second statement, take the standard nonholomorphic Eisenstein series for �0.N / at the cusp1
given by

E.z; s/D
X

2�1n�0.N/

Im.z/s:

Then we have by the classical Rankin–Selberg unfolding argumentZ
�0.N/nH

jf .z/j2E.z; s/y�
dx dy

y2
D
�.sC � � 1/

.4�/sC��1

X
n>1

j�f .n/j
2

ns
:

We deduce the lemma by taking residues on both sides and recalling [Iwaniec 1997, Theorem 13.2] that

RessD1E.z; s/D VolX0.N /�1: �

Let %f .n/ be the Dirichlet series coefficients of L.N/.s;Ad2 f /. Explicitly,

%f .n/D

�P
nDm2` N�.`/�f .`

2/ if .n;N /D 1;
0 if .n;N / > 1:

(2-3)

Inverting, we also have
N�.n/�f .n

2/D
X
m2`Dn

�.m/%f .`/: (2-4)

For future reference, we write the partial sums of L.N/.1;Ad2 f / compactly as

!f .x/D
X
n6x

%f .n/

n
: (2-5)

By contrast, when p jN we have that Lp.s;Ad2 f / is constant along f 2H?
� .N; �/ by the following

lemma.

Lemma 2.2 [Ogg 1969, Theorems 2 and 3]. Let p jN be a prime, and � a Dirichlet character mod N.
Write

aN;�.p/D

8<:
1 if � is not a character mod N=p;
1
p

if � is a character mod N=p and p2−N;
0 if � is a character mod N=p and p2 jN:

Then we have j�f .p/j2 D aN;�.p/.

3. Structural steps

We study the operator T 0m D Tm=m
.��1/=2 on S�.�0.N /; �/ so that each eigenvalue �f .m/ of the T 0m

operator is normalized by Deligne’s theorem to have j�f .m/j6 d.m/. We write H?
� .N; �/ for the set of
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Hecke-normalized newforms in S�.N; �/ in the sense of Atkin–Lehner theory [1970]; see also [Li 1975].
Also by Atkin–Lehner theory we have when .m;N /D 1 that

Tr.T 0mjS�.�0.N /; �//D
X

LMDN

d.L/
X

f 2H?
� .M;�/

�f .m/; (3-1)

where we consider the interior sum to be empty if � is not a character mod M. Thanks to (1-5), we can
reduce the structural steps for traces on S�.�.M;N // to the case of S�.�0.N /; �/.

Recall the notation from Section 1C and write c� D �.� � 1/=.4�/��1. Let

��;N;�.m; n/D
c�

.
p
mn/��1

X
f 2B�.�0.N/;�/

bf .n/bf .m/;

so that the Petersson formula (1-10) is

��;N;�.m; n/D ı.m; n/C 2�i
��

X
c>0

c�0 .modN/

S�.m; n; c/

c
J��1

�
4�
p
mn

c

�
: (3-2)

The following theorem is our main tool for computing sums over the set of newforms H?
� .N; �/.

Theorem 3.1. If .mn;N /D 1 then we have

c�
X

f 2H?
� .N;�/

�f .m/�f .n/

hf; f iN
D

X
LMDN

�.L/R.M;L; �/
X
`jL1

.`;M/D1

N�.`/

`
��;M;�.m; n`

2/;

where

R.M;L; �/ WD
1

L

Y
p2 jL
p−M

�
1�

1

p2

��1 Y
p j.M;L/

�
1�

aM;�.p/

p

��1
;

and aM;�.p/ was defined in Lemma 2.2.

Proof. See Section 7. �

Theorem 3.1 does not directly apply to (3-1) because of the normalization by hf; f iN .
We present a technique for removing the weights hf; f iN , which is a slight generalization of [Kowalski

and Michel 1999, §3]. The idea for removing such weights first appeared in [Ram Murty 1995]. Let
˛ D . f̨ / be a sequence of complex numbers indexed by

f 2
[
N>1

[
� .modN/

H?
� .N; �/:

Define the natural averaging operator

AŒ˛�D AN;�Œ˛�D
X

f 2H?
� .N;�/

f̨ :
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Let

!f D c�
LN .1;Ad2 f /
hf; f iN

:

Then we define the harmonic averaging operator

AhŒ˛�D AhN;�Œ˛�D
X

f 2H?
� .N;�/

!f f̨ :

The following proposition is a minor generalization of Proposition 2 of [Kowalski and Michel 1999].
It allows us to pass from natural averages of newforms to harmonic averages of newforms.

Proposition 3.2. Let ˛ D . f̨ / be a sequence of complex numbers indexed by f 2 H?
� .N; �/ running

over all N and all �. Suppose that for all " > 0

AhŒj f̨ j��" .N�/
" (3-3)

and

max
f 2H?

� .N;�/
j!f f̨ j � .N�/�ıC" (3-4)

for some absolute ı > 0. For any integer r > 1 write x D .N�/10=r . Then we have

AŒ f̨ �D
� � 1

4�

VolX0.N /
�.N/.2/

.AhŒ!f .x/ f̨ �CO";r.x
� ı
20
C"
C .N�/�1//:

Proof. See Section 6. �

One of the main ingredients in the proof of Proposition 3.2 is a large sieve inequality for the Dirichlet
series coefficients of the automorphic adjoint square L-function L.s;Ad2 �/, see Proposition 6.2, which
is a quotation of [Duke and Kowalski 2000, Corollary 6]. This inequality is only valid when the length of
summation X satisfies X � .N�/8, which is far from the expected truth. Nonetheless, as of now it is
the best available such inequality in the range of parameters of interest to us. The exponent �ı=20 in
Proposition 3.2 is optimized given the exponent 8 above, and any improvement over the result of Duke
and Kowalski would lead to a corresponding improvement to the value 20D 2.8C 2/.

We apply Proposition 3.2 with f̨ D �f .m/ to (3-1) to get

Tr.T 0mjS�.�0.N /; �//D
X

LMDN

d.L/
� � 1

4�

VolX0.M/

�.M/.2/
AhM;�Œ!f .x/�f .m/�CO.�N

1C"x�
ı
20
C"
CN "/

D
� � 1

12

X
LMDN

d.L/ .M/

�.M/.2/

X
n6x

.n;M/D1

1

n

X
nDk2`

N�.`/AhM;�Œ�f .m/�f .`
2/�

CO.�N 1C"x�
ı
20
C"
CN "/: (3-5)

We are now ready to apply Theorem 3.1. We deduce a version of the newform formula for the harmonic
averages AhŒ�f .m/�f .n/� appearing in (3-5).
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Lemma 3.3. Let cp.�/ denote the exponent of the p-part of c.�/. If .mn;N /D 1 then we have

AhN;�Œ�f .m/�f .n/�

D
1

 .N /

X
LMDN

�.L/MF.M; �/
Y
p2 jM

�
1�

1

p2

� X
`jL1

.`;M/D1

N�.`/

`
��;M;�.m; n`

2/; (3-6)

where

F.M; �/D
Y
pjjM

cp.�/D1

�
1C

1

p

� Y
p˛ jjM
˛>2

cp.�/D˛

�
1�

1

p

��1
:

In particular, if � D �0 is trivial we have

AhN;�0 Œ�f .m/�f .n/�D
1

 .N /

X
LMDN

�.L/M
Y
p2 jM

�
1�

1

p2

� X
`jL1

.`;M/D1

1

`
��;M;�0.m; n`

2/: (3-7)

Note that formula (3-7) resembles closely the formula found in [Barrett et al. 2017, Proposition 4.1].

Proof. By the definition of Lp.1;Ad2 f / and Theorem 3.1 we have

AhŒ�f .m/�f .n/�D
Y
p jN

�
1�

1

p

��
1�
aN;�.p/

p

��1 X
LMDN

�.L/R.M;L; �/
X
`jL1

.`;M/D1

N�.`/

`
��;M;�.m; n`

2/:

It suffices to show for any L;M that

 .LM/

M

Y
p jLM

�
1�

1

p

��
1�

aLM;�.p/

p

��1
R.M;L; �/D

Y
p2 jM

�
1�

1

p2

�
F.M; �/: (3-8)

We may also assume that c.�/jM, since otherwise ��;M;�.m; n`2/D 0. Both sides of (3-8) are multi-
plicative, so it suffices to check the case M D p˛ and LD pˇ for an arbitrary prime p. The following
cases can be easily verified one-by-one:

� ˛ > 2; ˇ > 1; and cp.�/D ˛; � ˛ D 1; ˇ > 1; and cp.�/D 0;

� ˛ > 2; ˇ > 1; and cp.�/ < ˛; � ˛ D 1; ˇ D 0; and cp.�/D 1;

� ˛ > 2; ˇ D 0; and cp.�/D ˛; � ˛ D 1; ˇ D 0; and cp.�/D 0;

� ˛ > 2; ˇ D 0; and cp.�/ < ˛; � ˛ D 0; ˇ > 2; and cp.�/D 0;

� ˛ D 1; ˇ > 1; and cp.�/D 1; � ˛ D 0; ˇ D 1; and cp.�/D 0: �

4. Analysis for �0.N/

Now we put together (3-5), the newform formula (3-6), and the Petersson formula (3-2). By (3-5) and
(3-6) we have

Tr.T 0mjS�.�0.N /; �//D ACE;
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where for an integer r > 1 to be chosen later we set xr D .N�/10 and have

AD
� � 1

12

X
LMDN

d.L/

�.M/.2/

X
k6x1=2

.k;M/D1

1

k2

X
`6x=k2

.`;M/D1

N�.`/

`

X
WQDM

�.Q/WF.W; �/
Y
p2 jW

�
1�

1

p2

�

�

X
q jQ1

.q;W /D1

N�.q/

q
��;W;�.m; q

2`2/; (4-1)

and E is the error term from (3-5) of size

E�r;" �N
1C"x�

ı
20
C"
CN ": (4-2)

Applying (3-2) to A we get that
ADDCOD;

whereD andOD are the contributions from the diagonal term and off-diagonal term of (3-2), respectively.
We insert ımDq2`2ıc.�/jW for ��;W;�.m; q2`2/ in (4-1) to find

D D
� � 1

12

N�.m
1
2 /

m
1
2

X
LMDN

d.L/

�.M/.2/

X
k6x1=2=m1=4

.k;M/D1

1

k2

X
WQDM

�.Q/WF.W; �/
Y
p2 jW

�
1�

1

p2

�
ıc.�/jW :

Extending the sum over k to infinity we conclude that

DD
� � 1

12

N�.m
1
2 /

m
1
2

X
LMDN

d.L/
X

WQDM

�.Q/WF.W; �/
Y
p2 jW

�
1�

1

p2

�
ıc.�/jW CO"

�
�N 1C"

x
1
2m

1
4

j�.m
1
2 /j

�
:

By a tedious case check on prime powers we have

 .N/ıc.�/jN D
X

LMDN

MF.M; �/ıc.�/jM
Y
p2 jM

�
1�

1

p2

�
:

Therefore the result of the diagonal contribution is

D D
� � 1

12

N�.m
1
2 /

m
1
2

 .N/CO

�
�N 1C"

x
1
2m

1
4

j�.m
1
2 /j

�
; (4-3)

which matches what one finds directly from the identity contribution of the Eichler–Selberg trace formula.
Now we treat the off-diagonal terms. Let

B.Y;m;W /D
X
`6Y

.`;M/D1

X
q jQ1

.q;W /D1

N�.q`/

q`

X
c�0 .modW /

S�.m; q
2`2; c/

c
J��1

�
4�q`

p
m

c

�
: (4-4)

Then we have

OD D
� � 1

12

X
LMDN

d.L/

�.M/.2/

X
WQDM

�.Q/WF.W; �/
Y
p2 jW

�
1�

1

p2

� X
k6x1=2

.k;M/D1

1

k2
B

�
x

k2
; m;W

�
:
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Lemma 4.1. Let d3 denote the 3-divisor function. For any m; n> 1 we haveX
c�0 .modW /

S�.m; n; c/

c
J��1

�
4�
p
mn

c

�
� c.�/

1
4

Y
pjc.�/

p
1
4
.m; n;W /

1
2d3..m; n//d.W /

W �
5
6

�
mn

p
mnC �W

�1
2

log 2mn:

Proof. The proof is identical to [Iwaniec et al. 2000, Corollary 2.2] but with the following bound on the
Kloosterman sum in lieu of the standard bound without nebentype character.

Lemma 4.2. For integers c 2NZ and a; b 2 Z with c ¤ 0 and c.�/jN, we have the estimate

jS�.a; bI c/j � d.c/ .a; b; c/
1
2 c

1
2 c.�/

1
4 c�.�/

1
4 :

Proof. See [Knightly and Li 2013, Theorem 9.2]. �

Applying Lemma 4.1 and estimating sums by integrals we find

B.Y;m;W /� c.�/
1
4 c�.�/

1
4
d.W /m

1
4Y

1
2

W�
5
6

logmY I

hence one estimates that

OD�" c.�/
1
4 c�.�/

1
4x

1
2 �

1
6m

1
4N " logmx:

We have Tr.T 0mjS�.�0.N; �///DDCODCE, and so collecting error terms we obtain

Tr.T 0mjS�.�0.N; �///

D
� � 1

12

�.m
1
2 /

m
1
2

 .N/CO"
�
c.�/

1
4 c�.�/

1
4x

1
2 �

1
6m

1
4N " logmxC �N 1C"x�

ı
20
C"
CN "

�
: (4-5)

We now optimize the value of r . By [Goldfeld et al. 1994; Banks 1997], the exponent ı D 1 is
admissible. The error in (4-5) is minimized when

x
11
20 D

N�
5
6

m
1
4 c.�/

1
4 c�.�/

1
4

:

Let us assume that there is some � > 0 such that

m
1
4 c.�/

1
4 c�.�/

1
4 � .N�

5
6 /1��: (4-6)

We choose r > 1 to be the nearest integer to

11

2

�
1C

log.�
1
6m

1
4 c.�/

1
4 c�.�/

1
4 /

log.N�
5
6 /� log.m

1
4 c.�/

1
4 c�.�/

1
4 /

�
;

which by (4-6) is then bounded above uniformly in terms of � > 0 only.
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5. Analysis for �.M; N/

Recall from (1-5) that

Tr.h Nd iT 0mjS�.�.M;N ///D
X

� .modN/

N�.d/Tr.T 0mjS�.�0.MN/; �//;

and that in Section 4 we decomposed the interior of this as

Tr.T 0mjS�.�0.MN/; �//DDCODCE:

Summing the formula (4-3) for D and (4-2) for E trivially over characters � .modN/ we get

Tr.h Nd iT 0mjS�.�.M;N ///D
� � 1

24
m�

1
2'.N / .NM/

�
ıN .m

1
2d; 1/C .�1/�ıN .m

1
2d;�1/

�
COD�CO�;".�.MN

2/1C"x�
ı
20
C"
CN.MN/"/; (5-1)

where xr D .MN�/10, r is a parameter to be chosen later, and

OD� D
X

� .modN/
�.�1/D.�1/�

�.d/OD:

Let

B�.Y;m;W /

D

X
� .modN/

�.�1/D.�1/�

�.d/F.W; �/
X

.`;K/D1
`6Y

X
q jQ1

.q;W /D1

�.q`/

q`

X
c�0 .modW /

S�.m; q
2`2; c/

c
J��1

�
4�`q

p
m

c

�
;

so that we have

OD� D
� � 1

12

X
LKDMN

d.L/

�.K/.2/

X
k6x1=2

.k;K/D1

1

k2

X
WQDK

�.Q/W
Y
p2 jW

�
1�

1

p2

�
B�
�
x

k2
; m;W

�
: (5-2)

We would like to utilize the orthogonality of characters over � .modN/. To implement this, we
now refresh the notation. Suppose W;N > 1 are integers such that W jN 2. For a; b; d; � 2 Z and
16 c � 0 .modW / define

TW .a; b; c/ WD
X

� .modN/
�.�1/D.�1/�

c.�/jW

�.d/N�.b/F.W; �/S�.a; b; c/:

With this notation, we have

B�.Y;m;W /D
X

.`;K/D1
`6Y

X
q jQ1

.q;W /D1

1

q`

X
c�0 .modW /

TW .m; q
2`2; c/

c
J��1

�
4�`q

p
m

c

�
: (5-3)

We can derive a bound on TW by appealing to the Weil bound for Kloosterman sums.
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Lemma 5.1. Suppose W;N > 1 such that W jN 2, a; b; d; � 2 Z such that .b;W /D 1, .d;N /D 1, and
16 c � 0 .modW /. We factor c D c1c2 with c1 jW1 and .c2; W /D 1. Then

jTW .a; b; c/j6  .c1/d.c2/.a; b; c2/
1
2 c

1
2

2 :

Proof. Consider the sum

T 0W .a; b; c/ WD
X

� .modN/
c.�/jW

�.d/N�.b/F.W; �/S�.a; b; c/;

which is a minor variation of TW .a; b; c/ omitting the global condition �.�1/D .�1/�. We first consider
the sum T 0W locally, returning to TW at the end of the proof. Let ˛; ˇ;  > 0 such that ˛ 6  , ˛ 6 2ˇ,
.d; pˇ /D .b; p˛/D 1, and consider T 0p˛ .a; b; p

 /. Let

I.˛; ˇ/ WD
X

� .mod pˇ/

�.dx/N�.b/ıcp.�/6˛

8̂̂<̂
:̂
1C 1

p
if cp.�/D ˛ D 1;�

1� 1
p

��1 if cp.�/D ˛ > 2;

1 else.

By opening the Kloosterman sum and exchanging order of summation we have

T 0p˛ .a; b; p
 /D

X�

x .mod p /

e

�
axC b Nx

p

�
I.˛; ˇ/: (5-4)

Next we break into four cases:

(1) ˛ > ˇ.

(2) 0D ˛ 6 ˇ.

(3) 1D ˛ 6 ˇ.

(4) 26 ˛ 6 ˇ.

Recall the orthogonality relation X
� .mod n/

�.a/N�.b/D '.n/ın.a; b/

and the almost-orthogonality relation (see, e.g., [Heath-Brown 1981, Section 2])X
c.�/Dc

�.a/N�.b/D
X

ı j.a�b;c/

'.ı/�

�
c

ı

�
:

We apply these to evaluate I.˛; ˇ/ in cases (1)–(4). We find

I.˛; ˇ/D

8̂̂̂̂
<̂
ˆ̂̂:
'.pˇ /ıpˇ .xd; b/ if ˛ > ˇ;

1 if 0D ˛ 6 ˇ;

'.p/ıp.xd; b/C
1
p

P
ı j.p;xd�b/ '.ı/�.p

=ı/ if 1D ˛ 6 ˇ;

'.p˛/ıp˛ .xd; b/C
1
p�1

P
ı j.p˛;xd�b/ '.ı/�.p

=ı/ if 1D ˛ 6 ˇ:

(5-5)
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Recall that .d; pˇ /D 1, so that d�1 .mod pˇ / (or .mod p / in cases (3) and (4)) exists. Inserting (5-5)
to (5-4), we find the following.

Case (1): ˇ < ˛.

T 0p˛ .a; b; p
 /D '.pˇ /

X�

x .mod p /
x�d�1b .mod pˇ/

e

�
axC b Nx

p

�
:

Case (2): ˇ > ˛ D 0.

T 01.a; b; p
 /D

X�

x .mod p /

e

�
axC b Nx

p

�
D S.a; b; p /:

Case (3): ˇ > ˛ D 1.

T 0p.a; b; p
 /D '.p/

X�

x .mod p /
x�d�1b .mod p/

e

�
axC b Nx

p

�
C
1

p

X
ı jp

'.ı/�.p=ı/
X�

x .mod p /
x�d�1b .mod ı/

e

�
axC b Nx

p

�
:

Case (4): ˇ > ˛ > 2.

T 0p˛ .a; b; p
 /D'.p˛/

X�

x .mod p /
x�d�1b .mod p˛/

e

�
axC b Nx

p

�
C

1

p� 1

X
ı jp˛

'.ı/�.p˛=ı/
X�

x .mod p /
x�d�1b .mod ı/

e

�
axC b Nx

p

�
:

Using the Weil bound for Kloosterman sums and trivial bounds, we find for all integers a; b, and nonzero
integers 06 i 6 j, and .y; p/D 1 we haveˇ̌̌̌ X�

x .mod pj /
x�y .mod pi /

e

�
axC b2 Nx

p

�ˇ̌̌̌
6
�
d.pj /.a; b2; pj /

1
2

p
pj if i D 0;

pj�i else.
(5-6)

Applying (5-6) to the various cases above, we find that for cases (1), (3), and (4), i.e., when ˛ > 0, we
have the bound

jT 0p˛ .a; b; p
 /j6  .p /: (5-7)

In case (2), i.e., when ˛ D 0, we have

jT 0p˛ .a; b; p
 /j6 d.p /.a; b; p /

1
2p


2 : (5-8)

Thus the estimation of T 0p˛ .a; b; p
 / is finished.

Now we return to the case of TW .a; b; c/. We have

TW .a; b; c/D
1
2
T 0W .a; b; c/C

1
2
.�1/�T 0W .a;�b; c/;
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so it suffices to establish the bound stated in the lemma for T 0W .a; b; c/. We have that T 0W .a; b; c/ is
twisted multiplicative, i.e., we have a factorization

T 0W .a; b; c/D
Y
p˛ jjW
p jjc

T 0p˛ .acp
� ; bcp� ; p /: (5-9)

Bounding the left-hand side of (5-9) using (5-7) and (5-8), we conclude the proof of the lemma. �

Applying Lemma 5.1 to (5-3) we get

B�.Y;m;W /6
X

.`;K/D1
`6Y

X
q jQ1

.q;W /D1

1

q`

X
W jc1 jW1

 .c1/

c1

X
.c2;W /D1

d.c2/.m;q
2`2; c2/

1
2

p
c2

ˇ̌̌̌
J��1

�
4�q`

p
m

c1c2

�ˇ̌̌̌
:

Again following closely the proof of [Iwaniec et al. 2000, Corollary 2.2] we have

X
.c2;W /D1

d.c2/.a; b
2; c2/

1
2

p
c2

ˇ̌̌̌
J��1

�
4�b
p
a

c1c2

�ˇ̌̌̌
�
d3..a; b

2//

�
5
6
p
c1

�
b2a

b
p
aC c1�

�1
2

log 2b2a:

We have moreover that X
W jc1 jW1

1
p
c1

1

.b
p
aC c1�/

1
2

6
2

W
1
2 b

1
2a

1
4

:

These last two estimations lead to

B�.Y;m;W /�
m
1
4

�
5
6

 .W /

W
3
2

X
.`;K/D1
`6Y

X
q jQ1

.q;W /D1

d3..m; q
2`2//p

q`
log.2q2`2m/

�
m
1
4Y

1
2 .logY /3 log 2m

�
5
6

 .W /

W
3
2

:

Inserting this into (5-2) we get

OD�� �
1
6MN

1
2
C"x

1
2 .log x/3m

1
4 log 2m;

and inserting this into (5-1) we conclude that

Tr.h Nd iT 0mjS�.�.M;N ///

D
� � 1

24
m�

1
2'.N / .NM/

�
ıN .m

1
2d; 1/C .�1/�ıN .m

1
2d;�1/

�
CO�;"

�
�
1
6MN

1
2x

1
2
C"m

1
4 log 2mC �.MN 2/1C"x�

ı
20
C"
CN.MN/"

�
: (5-10)

Now we optimize the value of r . The error term is minimized when

x
11
20 D

N
3
2 �

5
6

m
1
4

:
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Let us assume that there is some � > 0 such that

m
1
4 � .N

3
2 �

5
6 /1��:

We choose r > 1 to be the nearest integer to

11

2

�
logMN�

logN
3
2 �

5
6 � logm

1
4

�
;

which is then bounded above uniformly in terms of � > 0 only.

6. Proof of Proposition 3.2

Proof. We have by Lemma 2.1 that

AŒ f̨ �D
� � 1

4�

VolX0.N /
�.N/.2/

X
f 2H?

� .N;�/

!f f̨ L
.N/.1;Ad2 f /D

� � 1

4�

VolX0.N /
�.N/.2/

AhŒ f̨ L
.N/.1;Ad2 f /�:

Recall that we have set %f .n/ to be the Dirichlet series coefficients of L.N/.s;Ad2 f /, along with

!f .x/D
X
n6x

%f .n/

n
and !f .x; y/D

X
x<n6y

%f .n/

n
:

Lemma 6.1. We have

L.N/.1;Ad2 f /D !f .x/C!f .x; y/CO"..N�/
1
2y�

1
2
C"/:

Assuming the generalized Lindelöf hypothesis, the .N�/1=2 can be reduced to .N�/".

Proof .sketch/. For c; T; y > 0, we apply Perron’s formula (see, e.g., [Davenport 2000, p. 105]) to
calculate !f .y/, finding

!f .y/D
1

2�i

Z cCiT

c�iT

L.N/.1C s;Ad2 f /
ys

s
dsCO

�
yc
X
n>1

%f .n/

n1Cc
min.1; T �1j logy=nj�1/

�
:

We shift the contour to Re.s/D�2 to get

!f .y/D L
.N/.1;Ad2 f /C

1

2�i

�Z �2�iT
c�iT

C

Z �2CiT
�2�iT

C

Z cCiT

�2CiT

�
L.N/.1C s;Ad2 f /

ys

s
ds

CO

�
yc
X
n>1

%f .n/

n1Cc
min.1; T �1j logy=nj�1/

�
: (6-1)

By an inspection of the functional equation for L.s; f ˝ Nf / found in [Li 1979, Example 1], we have the
convexity bound (see, e.g., [Iwaniec and Kowalski 2004, (5.20)])

L.N/.s;Ad2 f /� Œ.�N /2.1Cjt j/3�
1��
2
C"; (6-2)
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where s D � C i t , valid for � 6 1. Choosing c D ", T D .N�/�
1
2y

1
2
C", and estimating all of the terms

in (6-1) directly, one finds the estimate in the statement of the lemma.
If one assumes the generalized Lindelöf hypothesis in place of (6-2), then we shift the contour to

Re.s/D�1
2

instead of �2 and follow the same steps. �

By Lemma 6.1 we have

AŒ f̨ �D
� � 1

4�

VolX0.N /
�.N/.2/

�
AhŒ!f .x/ f̨ �CA

hŒ!f .x; y/ f̨ �CO..N�/
1
2y�

1
2
C"AhŒj f̨ j�/

�
: (6-3)

By the hypothesis (3-3) we have AhŒj f̨ j��" .N�/
", and so taking y D .N�/3C", we find that the

O term in (6-3) is� .N�/�1.
Next we consider the second term and treat it using the following large sieve inequality. This is a slight

variation on Corollary 6 of [Duke and Kowalski 2000]; see also [Kowalski and Michel 1999, Proposition 1].
Let �.2/

f
.n/ be the Dirichlet series coefficients of the automorphic adjoint-square L-function L.s;Ad2 �/,

where f is a newform for the representation � . If .n;N /D 1 then we have �.2/
f
.n/D %f .n/.

Proposition 6.2. Let X > .N�/8. We have for all " > 0 thatX
f 2H?

� .N;�/

ˇ̌̌̌ X
n6X

an�
.2/

f
.n/

ˇ̌̌̌2
�" X

1C"
X
n6X

janj
2 (6-4)

for any finite family .an/16n6X of complex numbers, where the constant depends only on ".

By following closely [Kowalski and Michel 1999, §3.3] one deduces from Proposition 6.2 the following
lemma.

Lemma 6.3. Let r > 1 be an integer such that xr > .N�/10. Then for all " > 0 we have

AŒ!f .x; y/
2r ��r;" .N�/

";

where the implied constant depends only on r and ".

Proof. It suffices to replace instances of �f .n2/ in [Kowalski and Michel 1999, Lemma 3] by N�.n/�f .n2/
and to use (2-3) and (2-4) in the place of (15) and (16) of [loc. cit.]. �

We now can give an estimate for the second term of (6-3). We use Hölder’s inequality to separate
!f .x; y/ from f̨ , and Lemma 6.3 to handle the the sum involving !f .x; y/. Precisely, let s be defined
by .2r/�1C s�1 D 1. Applying Hölder’s inequality we find for any integer r > 1 that

AhŒ!f .x; y/ f̨ �D
X
f 2H?

�

!f !f .x; y/ f̨ 6 AŒ!f .x; y/2r �
1
2r

� X
f 2H?

� .N;�/

.!f j f̨ j/
s

�1
s

6 A
1
2rAŒ!f .x; y/

2r �
1
2rAhŒj f̨ j�

1
s ;

where
AD max

f 2H?
� .N;�/

!f j f̨ j �" .N�/
�ıC"
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by hypothesis (3-4). Suppose now that r is sufficiently large so that xr > .N�/10. Then Lemma 6.3
applies, and we have

AŒ!f .x; y/
2r �

1
2r �r;" .N�/

":

Lastly, by hypothesis (3-3) we have

AhŒj f̨ j�
1
s �" .N�/

":

Putting these estimates together, we find that AhŒ!f .x; y/ f̨ ��r;" .N�/
� ı
2r
C", and so derive the bound

claimed in Proposition 3.2. �

7. Proof of Theorem 3.1

Proof. The strategy of the proof is to pick an orthogonal basis for S�.�0.N /; �/ and compute the
Fourier coefficients of basis elements explicitly. For f a modular function of weight �, we define
fjd .z/D d

�
2 f .dz/. Atkin–Lehner theory gives an orthogonal direct sum decomposition

S�.�0.N /; �/D
M

LMDN

M
f 2H?

� .M;�/

S�.LIf; �/;

where S�.LIf; �/D spanffj` W `jLg is called an oldclass. Note that the inner sum is f0g unless c.�/jM,
so we may assume this for the remainder of the proof.

To pick an orthogonal basis for S�.�0.N /; �/ it then suffices to pick a orthonormal basis for each
oldclass S�.LIf; �/. We use a basis for the oldclasses first due to [Schulze-Pillot and Yenirce 2018,
Theorem 8]. The basis constructed by Schulze-Pillot and Yenirce is the same as the one found by Rouymi
[2011] in the case of prime power level and trivial nebentypus and Ng [2012] in the case of arbitrary
level and trivial nebentypus; see also [Blomer and Milićević 2015, Chapter 5] and [Humphries 2018,
Lemma 3.15]. Each of these preceding works used the Rankin–Selberg method to compute inner products
and orthonormalize the oldclasses. Schulze-Pillot and Yenirce however took a different and simpler path,
using the trace operator to compute the inner products.

Let f 2 H?.M; �/. For integers d jg one defines a joint multiplicative function �g.d/. On prime
powers, �g.d/ is given for � > 2 by

�1.1/D 1; �p� .p
�/D

�
1�

j�f .p/j
2

p.1C
"0;M .p/

p
/2

�� 1
2
�
1�

"0;M .p/
2

p2

�� 1
2

;

�p.p/D

�
1�

j�f .p/j
2

p.1C
�0;M .p/

p
/2

�� 1
2

; �p� .p
��1/D

��f .p/
p
p

�p� .p
�/;

�p.1/D
��f .p/

p
p.1C �0;M .p/=p/

�p.p/; �p� .p
��2/D

�.p/

p
�p� .p

�/;

and �pa.pb/D 0 in all other cases.
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Proposition 7.1 [Schulze-Pillot and Yenirce 2018, Theorem 9]. Let M jN and let f 2H?
� .M; �/. The

set of functions ˚
f .g/.z/D

P
d jg �g.d/d

�
2 f .dz/ W g jL

	
is an orthogonal basis for Sk.LIf; �/. In fact, if f is L2.�0.N /nH/-normalized, then the above set is in
fact orthonormal.

Now that we have an orthonormal basis for S�.�0.N /; �/, we follow Barrett, Burkhardt, DeWitt,
Dorward, and Miller [Barrett et al. 2017] to derive the Petersson formula for newforms Theorem 3.1.

Let f 2H?
� .M; �/ have Fourier coefficients af .n/ and be normalized so that af .1/D 1. Of course

f .z/=kf kN is L2.�0.N /nH/-normalized, so using the basis in Proposition 7.1 we have

��;N;�.m; n/D
c�

.mn/
��1
2

X
g2B�.�0.N/;�/

bg.n/bg.m/

D
c�

.mn/
��1
2

X
LMDN

X
f 2H?

� .m;�/

1

hf; f iN

X
g jL

af .g/.m/af .g/.n/: (7-1)

By the definition of f .g/ we have

af .g/.n/D
X

d j.g;n/

�g.d/d
�
2 af

�
n

d

�
;

which are now expressible in terms of Hecke eigenvalues �f .n/ normalized so that j�f .n/j6 d.n/. We
have then that

��;N;�.m; n/

D
c�

.mn/
��1
2

X
LMDN

X
f 2H?

� .M;�/

1

kf k2N

X
g jL

� X
d j.g;m/

�g.d/d
�
2 af

�
m

d

��� X
d j.g;n/

�g.d/d
�
2 af

�
n

d

��

D c�
X

LMDN

X
f 2H?

� .M;�/

1

kf k2N

X
g jL

� X
d j.g;m/

�g.d/d
1
2�f

�
m

d

��� X
d j.g;n/

�g.d/d
1
2�f

�
n

d

��

D c�
X

LMDN

X
f 2H?

� .N;�/

1

kf k2N

X
g jL

„g.m; n; f /;

where we have set

„g.m; n; f /D

� X
d j.g;m/

�g.d/d
1
2�f

�
m

d

��� X
d j.g;n/

�g.d/d
1
2�f

�
n

d

��
for g jLjN.

Now suppose that .d1; d2/D 1 and d1d2 jm. Then by Hecke multiplicativity we have

�f

�
m

d1

�
�f

�
m

d2

�
D �f .m/�f

�
m

d1d2

�
;



2492 Ian Petrow

so that for .g1; g2/D 1 we have

„g1.m; n; f /„g2.m; n; f /D �f .m/�f .n/„g1g2.m; n; f /:

Therefore

��;N;�.m; n/D c�
X

LMDN

X
f 2H?

� .M;�/

1

kf k2N
.�f .m/�f .n//

1�!.L/
Y
p˛ jjL

�X
d jp˛

„d .m; n; f /

�
;

where !.n/ is the number of distinct prime factors of n. Let

Vp˛ .m; n; f /D
X
d jp˛

„d .m; n; f /D .1�„/p˛ .m; n; f /;

where � denotes Dirichlet convolution. We suppose now that .m; n;N /D 1 and calculate.

Lemma 7.2 [Barrett et al. 2017, Appendix A]. If .m; n;N /D 1 then we have

Vp˛ .m; n; f /D�f .m/�f .n/.1Cj�p.1/j
2
Cj�p2.1/j

2/

C ıp jm�f .m=p/�f .n/p
1
2 .�p.p/�p.1/C �p2.p/�p2.1//

C ıp jn�f .m/�f .n=p/p
1
2 .�p.1/�p.p/C �p2.1/�p2.p//

C ıp2 jm�f .m=p
2/�f .n/p�p2.p

2/�p2.1/C ıp2 jn�f .m/�f .n=p
2/p�p2.1/�p2.p

2/;

if ˛ > 2 and
Vp˛ .m; n; f /D �f .m/�f .n/.1Cj�p.1/j

2/

C ıp jm�f .m=p/�f .n/p
1
2 �p.p/�p.1/

C ıp jn�f .m/�f .n=p/p
1
2 �p.1/�p.p/;

if ˛ D 1.

Proof. We actually have if ˛ > 2 that

Vp˛ .m; n; f /D„1.m; n; f /C„p.m; n; f /C„p2.m; n; f /:

The other summands vanish because by our assumption .m; n;N /D 1, since if p jm then p−n because
p jN. So each p divides either m or n but never both. Then, we have �pˇ .1/D 0 for ˇ > 3. In fact, even
more terms vanish. We have

Vp˛ .m; n; f /D �f .m/�f .n/.1Cj�p.1/j
2
Cj�p2.1/j

2/

C ıp jm�f .m=p/�f .n/p
1
2 .�p.p/�p.1/C �p2.p/�p2.1//

C ıp jn�f .m/�f .n=p/p
1
2 .�p.1/�p.p/C �p2.1/�p2.p//

C ıp2 jm�f .m=p
2/�f .n/p�p2.p

2/�p2.1/C ıp2 jn�f .m/�f .n=p
2/p�p2.1/�p2.p

2/:

Inserting the formulas for �, we complete the proof. The formula for the ˛ D 1 case is even simpler as
we can drop the p2 terms. �
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Recall we write MLDN and f 2H?
� .M; �/.

Lemma 7.3. If .m;N /D 1 and .n;N /D 1 then we have

.�f .m/�f .n//
1�!.L/

Y
p˛ jjL

Vp˛ .m;n;f /D�f .m/�f .n/
Y
pjjL

.1Cj�p.1/j
2/
Y
p2jL

.1Cj�p.1/j
2
Cj�p2.1/j

2/:

Proof. Note that the conditions .m;N /D 1 and .n;N /D 1 imply that p−m and p−n. So the formula
above follows immediately from the formulas in Lemma 7.2. �

One has that

kf k2N D
 .N/

 .M/
kf k2M

since f 2H?
� .M; �/. Thus

��;N;�.m; n/

D c�
X

LMDN

 .M/

 .N/

X
f 2H?

� .M;�/

1

kf k2M
�f .m/�f .n/

Y
pjjL

.1Cj�p.1/j
2/
Y
p2jL

.1Cj�p.1/j
2
Cj�p2.1/j

2/:

Next we insert the definitions of the � functions. Let

rf .p/D 1�
j�f .p/j

2

p
�
1C

�0;M .p/
p

�2 ;
so

rf .p/
�1
D 1C

j�f .p/j
2

p
�
1C

�0;M .p/
p

�2 C� j�f .p/j
2

p
�
1C

�0;M .p/
p

�2�2C � � � ;
where �0;M denotes the trivial character modulo M. Observe that

1Cj�p.1/j
2
D rf .p/

�1

and

1Cj�p.1/j
2
Cj�p2.1/j

2
D rf .p/

�1

�
1�

�0;M .p/

p2

��1
:

Then we get

��;N;�.m; n/D c�
X

LMDN

 .M/

 .N/

Y
p2 jL

�
1�

�0;M .p/

p2

��1 X
f 2H?

� .M;�/

�f .m/�f .n/

kf k2M

Y
pjL

1

rf .p/
: (7-2)

Next we need a formula for rf .p/�1. Recall from (2-1) that at a prime p−M the local adjoint square L
function is given by

Lp.1;Ad2 f /D
1

1�p�2

X
˛>0

N�.p˛/�f .p
2˛/

p˛
D

1�
1� ˛.p/=ˇ.p/

p

��
1� 1

p

��
1� ˇ.p/=˛.p/

p

�
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so that X
˛>0

N�.p˛/�f .p
2˛/

p˛
D

1C 1
p�

1� ˛.p/=ˇ.p/
p

��
1� ˇ.p/=˛.p/

p

�
D

1C 1
p�

1C 1
p

�2
�
j�f .p/j2

p

D
1�

1C 1
p

�
rf .p/

;

where the second equals sign follows from the formulas

j�f .p/j
2
D N�.p/�f .p/

2; �f .p/D ˛.p/Cˇ.p/; ˛.p/ˇ.p/D �.p/;

which are valid when p−M. We can summarize the above calculation and Lemma 2.2 as

rf .p/
�1
D

8̂̂<̂
:̂
�
1C

1

p

�X
˛>0

N�.p˛/�f .p
2˛/

p˛
if p−M;

�
1�

aM;�.p/

p

��1
if p jM:

Let

�?�;N;�.m; n/D c�
X

f 2H?
� .N;�/

�f .m/�f .n/

kf k2N
:

Recall the definition of R.M;L; �/ from the statement of Theorem 3.1, which we rearrange to

R.M;L; �/D
 .M/

 .ML/

Y
p2 jL
p−M

�
1�

1

p2

��1 Y
p jL
p−M

�
1C

1

p

� Y
p j.M;L/

�
1�

aM;�.p/

p

��1
:

We have then that

��;N;�.m; n/D
X

LMDN

R.M;L; �/
X
`jL1

.`;M/D1

N�.`/

`
�?�;M;�.m; n`

2/: (7-3)

This is analogous to the first half of [Barrett et al. 2017, Proposition 4.1]. Now we would like to invert
this formula, and we prepare for this with two lemmas.

Lemma 7.4. Let ˛; ˇ > 0 and 06  6 ˇ and cp.�/6 ˇ� 1. Then

R.pˇ ; p˛; �/R.p ; pˇ� ; �/DR.p ; p˛Cˇ� ; �/: (7-4)

Proof. We check cases.

Case ˛ > 0 and ˇ D  . Note that R.p ; 1; �/D 1 for any  > 0.

Case ˛ D 0. Note that R.pˇ ; 1; �/D 1 for any ˇ > 0.

Case ˛ > 1, ˇ D 1 and  D 0. We have by hypothesis cp.�/D 0, so

R.p; p˛/R.1; p/D
 .p/

 .p˛C1/

�
1�

1

p2

��1 1

 .p/

�
1C

1

p

�
:
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On the other hand, we also have

R.1; p˛C1/D
1

 .p˛C1/

�
1�

1

p2

��1�
1C

1

p

�
:

Case ˛ > 1, ˇ > 2 and  D 0. We have p j.pˇ ; p˛/ and apˇ;�.p/D 0, so R.pˇ ; p˛; �/D p�˛ and

R.1; pˇ ; �/D
1

 .pˇ /

�
1�

1

p2

��1�
1C

1

p

�
;

R.1; p˛Cˇ ; �/D
1

 .p˛Cˇ /

�
1�

1

p2

��1�
1C

1

p

�
:

Generic case ˛ > 1, ˇ > 2, 16  6 ˇ� 1, and cp.�/6 ˇ� 1. We have

R.pˇ ; p˛; �/D
 .pˇ /

 .p˛Cˇ /
;

R.p ; pˇ�˛; �/D
 .p /

 .pˇ /

�
1�

ap ;�.p/

p

��1
;

R.p ; pˇC˛� ; �/D
 .p /

 .p˛Cˇ /

�
1�

ap ;�.p/

p

��1
:

The above cover all the cases in the lemma. �

Lemma 7.5. Let N 2 N, N D LM, and M DWQ. Then

R.M;L; �/R.W;Q; �/ıc.�/jW DR.W;LQ; �/ıc.�/jW :

Proof. Both sides of the desired formula are multiplicative. Let ˛D vp.L/, ˇD vp.M/, and  D vp.W /.
It then suffices to check that

R.pˇ ; p˛; �/R.p ; pˇ� ; �/ı>cp.�/ DR.p
 ; p˛Cˇ� ; �/ı>cp.�/: (7-5)

If cp.�/6 ˇ� 1 then (7-5) is true by Lemma 7.4. So, suppose not. Then ˇ 6 cp.�/6  , but W jM so
 6 ˇ and so ˇ D  . In the case ˇ D  , (7-5) is true because R.pˇ ; 1; �/D 1. �

We are now prepared to invert (7-3) using Lemma 7.5. We calculateX
LMDN

�.L/R.M;L; �/
X
`jL1

.`;M/D1

N�.`/

`
��;M;�.m; n`

2/

D

X
LMDN

�.L/R.M;L; �/
X
`jL1

.`;M/D1

N�.`/

`

X
QWDM

R.W;Q; �/
X
q jQ1

.q;W /D1

N�.q/

q
�?�;W;�.m; n`

2q2/

D

X
LMDN

�.L/
X

QWDM

R.M;L; �/R.W;Q; �/
X

b j.LQ/1

.b;W /D1

N�.b/

b
�?�;W;�.m; nb

2/
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D

X
WXDN

R.W;X; �/
X
b jX1

.b;W /D1

N�.b/

b
�?�;W;�.m; nb

2/
X

LQDX

�.L/

DR.N; 1; �/�?�;N;�.m; n/

D�?�;N;�.m; n/;

where the first equality follows by (7-3), the third by Lemma 7.5, and the fourth by Möbius inversion. �
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