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We investigate the structure of finite groups whose noncentral real class sizes have the same 2-part. In
particular, we prove that such groups are solvable and have 2-length one. As a consequence, we show
that a finite group is solvable if it has two real class sizes. This confirms a conjecture due to G. Navarro,
L. Sanus and P. Tiep.

1. Introduction

Let G be a finite group. An element x of G is real if x and x−1 are conjugate in G. A conjugacy class
xG of G is real if xG contains a real element. If xG is a real class of G, then we call the size |xG

| of xG

a real class size. We call |xG
| a noncentral real class size if x is real and noncentral in G, i.e., x does not

lie in the center Z(G) of G.
A classical result due to Burnside (see [Dornhoff 1971, Corollary 23.4]) states that a finite group is of odd

order if and only if the identity element is the only real element. This result has been generalized by Chillag
and Mann [1998], who showed that if a finite group G has only one real class size, or equivalently if every
real element lies in Z(G), then G is isomorphic to a direct product of a 2-group and a group of odd order.

The main purpose of this paper is to prove the following.

Theorem A. Let G be a finite group. If G has two real class sizes, then G is solvable.

This confirms a conjecture due to G. Navarro, L. Sanus and P. Tiep. Theorem A is best possible in the
sense that there are nonsolvable groups with exactly three real class sizes. In fact, the special linear group
SL2(q) of degree 2 over a finite field of size q, where q ≥ 7 is a prime power and is congruent to −1
modulo 4, has three real class sizes, namely 1, q(q − 1) and q(q + 1) [Dornhoff 1971, Theorem 38.1],
but SL2(q) is nonsolvable.

The extremal condition as in Theorem A has been studied extensively in the literature for conjugacy
classes as well as character degrees of finite groups. Itô [1953] has shown that if a finite group has only
two class sizes, then it is nilpotent. The alternating group A4 has two real class sizes, which are 1 and 3,
but it is not nilpotent. So, we cannot replace solvability by nilpotency in Theorem A. Itô [1970] also
showed that if a finite group has three class sizes, then it is solvable. Clearly, this cannot happen for real
class sizes by our example in the previous paragraph.
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Recall that a character χ of a finite group G is real-valued if χ takes real values, or equivalently, χ
coincides with its complex conjugate. Notice that the reality of conjugacy classes of a group can be read
off from the character table of the group. This follows from the fact that an element x ∈ G is real if and
only if χ(x) is real for all complex irreducible characters χ of G [Dornhoff 1971, Lemma 23.2].

For the corresponding results in real-valued characters, Iwasaki [1980] and Moretó and Navarro [2008]
have studied the structure of finite groups with two and three real-valued irreducible characters. They
show that all these groups must be solvable and their Sylow 2-subgroups have a very restricted structure.
By Brauer’s lemma on character tables [Dornhoff 1971, Theorem 23.3], the number of real conjugacy
classes and the number of real-valued irreducible characters of a finite group are the same. Thus the
aforementioned results also give the structure of finite groups with at most three real conjugacy classes.
For degrees of real-valued characters, Navarro, Sanus and Tiep [Navarro et al. 2009, Theorem B] proved
that a finite group is solvable if it has at most three real-valued character degrees.

As already noted in [Navarro et al. 2009], any possible proof of Theorem A is complicated. Instead of
giving a direct proof of Theorem A, we prove a much stronger result which implies Theorem A. For an
integer n ≥ 1 and a prime p, the p-part of n, denoted by n p, is the largest power of p dividing n.

Theorem B. Let G be a finite group. Suppose that all noncentral real class sizes of G have the same
2-part. Then G is solvable.

In other words, if |xG
|2 = 2a for all noncentral real elements x ∈ G, where a ≥ 0 is a fixed integer,

then G is solvable. In fact, we can say more about the structure of these groups.

Theorem C. Let G be a finite group. Suppose that all noncentral real class sizes of G have the same
2-part. Then G has 2-length one.

Recall that a group G is said to have 2-length one if there exist normal subgroups N ≤ K ≤ G such
that N and G/K have odd order and K/N is a 2-group. Theorem C confirms a conjecture proposed in
[Tong-Viet 2013].

Several variations of Theorem B are simply not true. Indeed, if we weaken the hypothesis of Theorem B
by assuming that |xG

|2 is 1 or 2a for all real elements x ∈ G, then G need not be solvable. For example,
let G = SL2(2 f ) with f ≥ 2. Then every element of G is real and |xG

|2 = 1 or 2 f for all elements x ∈ G.
We cannot restrict the hypothesis to only real elements of odd order as SL2(7) has only one conjugacy
class of noncentral real elements of odd order. Also, Theorem B does not hold for odd primes, at least for
primes p with p ≡−1 (mod 4). In fact, we can take G = PSL2(27) if p = 3 and G = SL2(p) if p ≥ 7.
We can check that all noncentral real class sizes of G have the same p-part. There are also some examples
for primes p with p ≡ 1 (mod 4); for example, we can take G = PSL3(3) if p = 13. (We are unable to
find any example with p = 5.)

Theorems B and C can be considered as (weak) real conjugacy classes versions (only for even prime)
of the famous Thompson’s theorem on character degrees stating that if a prime p divides the degrees of
all nonlinear irreducible complex characters of a finite group G, then G has a normal p-complement. The
exact analog of Thompson’s theorem does not hold for conjugacy classes. However, Casolo, Dolfi and
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Jabara [Casolo et al. 2012] proved that for a fixed prime p, if all noncentral class sizes of a finite group G
have the same p-part, then G is solvable and has a normal p-complement. Some real-valued characters
versions of Thompson’s theorem were obtained in [Navarro et al. 2009; Navarro and Tiep 2010].

In order to describe our strategy, we need some terminology and results from abstract group theory
which can be found in Chapter 31 of [Aschbacher 2000]. For a finite group X , the layer of X , denoted
by E(X), is the subgroup of X generated by all quasisimple subnormal subgroups (or components)
of X . A finite group L is said to be quasisimple if L is perfect and L/Z(L) is a nonabelian simple
group. The generalized Fitting subgroup of X , denoted by F∗(X), is the central product of E(X) and
the Fitting subgroup F(X), the largest nilpotent normal subgroup of X . Bender’s theorem states that
CX (F∗(X))≤ F∗(X) (see, for example, [Aschbacher 2000, 31.13]).

Returning to our problem, for a finite group G, we denote by Re(G) the set of all real elements of G.
Let G be a finite group with |xG

|2 = 2a for all x ∈ Re(G) \ Z(G), where a ≥ 0 is a fixed integer. An
important consequence of this hypothesis which is key to our proofs is that if x ∈ Re(G) \ Z(G) is a
2-element and t ∈ G is a 2-element inverting x , then CG(〈x, t〉) has a normal Sylow 2-subgroup; in
particular, if i is a noncentral involution of G, then CG(i) has a normal Sylow 2-subgroup (Lemma 2.4).

Let K = O2′(G). Then K satisfies the same hypothesis as G does (Lemma 2.5). Let H be the
quotient group K/O2′(K ). Then H = O2′(H) and O2′(H)= 1 which implies that F(H)= O2(H) and
F∗(H) = O2(H)E(H). We consider two cases according to whether E(H) is trivial or not. When
E(H)= 1, we have F∗(H)= O2(H). Using [Aschbacher 2000, 31.16],

F∗(NH (U ))= O2(NH (U ))

for all 2-subgroups U ≤ H . Using this, we can show that H is a 2-group and Theorem B holds in this
case (Theorem 3.3). When E(H) is nontrivial, it must be a quasisimple group (Lemma 4.1) and actually
it is isomorphic to SL2(q) with q ≥ 5 an odd prime power (Theorem 4.3). Using some ad hoc arguments,
we finally show that this cannot occur, proving Theorem B. For Theorem C, we know that G is solvable
by Theorem B. Now by Bender’s theorem, we know that F∗(H)= O2(H) and thus H is a 2-group by
Theorem 3.3. It follows that G has 2-length one as wanted.

Finally, we would like to point out some connections to other classical results in the literature. If G
is a finite group which satisfies the hypothesis of Theorem B, then the centralizer of every noncentral
involution of G has a normal Sylow 2-subgroup. Finite groups in which the centralizers of involutions are
2-closed (a group is 2-closed if it has a normal Sylow 2-subgroup) have been studied in [Suzuki 1965].
These are the so-called (C)-groups. On the other hand, the groups in which all involutions are central
were classified by R. Griess [1978]. In view of these results, it would be interesting to investigate the
structure of finite groups in which in the centralizers of all noncentral involutions are 2-closed.

The paper is organized as follows. In Section 2, we collect some properties of groups whose noncentral
real class sizes have the same 2-part. We prove Theorem C in Section 3 and Theorem B in Section 4. In
the last section, we classify all finite quasisimple groups that can appear as composition factors of the
groups considered in Section 4.
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2. 2-parts of noncentral real class sizes

In this section, we collect some important properties of real classes as well as draw some consequences
on the structure of groups satisfying the hypothesis of Theorem B. Recall that Re(G) is the set of all real
elements of a finite group G. We begin with some properties of real elements and real class sizes.

Fix a nontrivial real element x ∈G and set C∗G(x)= {g ∈G | xg
∈ {x, x−1

}}. Then C∗G(x) is a subgroup
of G containing CG(x) as a normal subgroup. If t ∈ G such that x t

= x−1, then x t2
= x so t2

∈ CG(x).
Assume that x is not an involution. We see that t ∈ C∗G(x) \ CG(x) and if h ∈ C∗G(x) \ CG(x), then
xh
= x−1

= x t so that ht−1
∈ CG(x), or equivalently h ∈ CG(x)t . Thus CG(x) has index 2 in C∗G(x) and

C∗G(x)= CG(x)〈t〉. Hence |xG
| is even whenever x is a real element with x2

6= 1. In particular, |xG
| is

even if x is a nontrivial real element of odd order. Notice that if x ∈ Re(G)∩ Z(G), then x2
= 1.

Lemma 2.1. Let G be a finite group and let N EG.

(1) If x ∈ G is real, then every power of x is also real.

(2) If xg
= x−1 for some x, g ∈ G, then x t

= x−1 for some 2-element t ∈ G.

(3) If x ∈ Re(G) and |xG
| is odd, then x2

= 1.

(4) If |G : N | is odd, then Re(G)= Re(N ).

Proof. Let x ∈ G be a real element. Then xg
= x−1 for some g ∈ G. If k is any integer, then

(xk)g = (xg)k = (x−1)k = (xk)−1,

so xk is real which proves (1). Write o(g)= 2am with (2,m)= 1 and let t = gm . Then t is a 2-element and
x t
= xgm

= xg
= x−1 as g2

∈ CG(x) and m is odd. This proves (2). Part (3) follows from the discussion
above. For part (4), suppose that N EG and |G/N | is odd. Let x ∈ Re(G). Then there exists a 2-element
t ∈ G inverting x by (2). As |G/N | is odd and t is a 2-element, t ∈ N and thus x−2

= t−1(xtx−1) ∈ N .
Again, as |G/N | is odd, x ∈ N and so x ∈ Re(N ). �

The first two claims of the following lemma are well-known. The last claim follows from [Dolfi et al.
2008, Proposition 6.4], whose proof uses the Baer–Suzuki theorem.

Lemma 2.2. Let G be a finite group and let N EG.

(1) If x ∈ N , then |x N
| divides |xG

|.

(2) If Nx ∈ G/N , then |(Nx)G/N
| divides |xG

|.

(3) G has no nontrivial real element of odd order if and only if G has a normal Sylow 2-subgroup.

We next study the structure of finite groups in which all real 2-elements are central. The proof of the
following result is similar to that of [Isaacs and Navarro 2010, Corollary C].

Lemma 2.3. Let G be a finite group. Assume that all real 2-elements of G lie in Z(G). Then G has a
normal 2-complement.
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Proof. Let P be a 2-subgroup of G. Then Re(P)⊆ Z(G) by the hypothesis of the lemma. Let Q≤ NG(P)
be a 2′-group. Since Re(P) ⊆ Z(G), Q centralizes all real elements of P . Now [Isaacs and Navarro
2010, Theorem B] implies that Q centralizes P . Hence, Q ≤ CG(P). It follows that NG(P)/CG(P) is a
2-group. As P is chosen arbitrarily, the Frobenius normal p-complement theorem [Aschbacher 2000,
39.4] implies that G has a normal 2-complement. �

Let G be a finite group with |G|2 = 2a+b, where a, b ≥ 0 are fixed integers. Observe that the two
conditions |xG

|2 = 2a for all elements x ∈ Re(G) \ Z(G) and |CG(x)|2 = 2b for all x ∈ Re(G) \ Z(G)
are equivalent. For brevity, we say that a finite group G is an R(a, b)-group if G satisfies one of the two
equivalent conditions above.

Lemma 2.4. Let G be an R(a, b)-group, let x ∈ Re(G) \ Z(G) and let t ∈ G be a 2-element such
that x t

= x−1.

(a) If o(x)= 2m for some integer m > 1, then xm
∈ Z(G).

(b) If x is a 2-element, then CG(〈x, t〉) is 2-closed. Moreover, if x is an involution of G, then CG(x) is
2-closed.

Proof. For (a), suppose that o(x)= 2m with m > 1. Notice that xm is an involution, t ∈ C∗G(x) \CG(x)
and |CG(x)|2= 2b. We have (xm)t = (xm)−1

= xm , so t ∈ CG(xm) and hence CG(x)≤ C∗G(x)≤ CG(xm).
Since x2

6= 1, we have |C∗G(x)|2 = 2|CG(x)|2 = 2b+1. Therefore |CG(xm)|2 ≥ |C∗G(x)|2 > 2b. Since G
is an R(a, b)-group, this forces xm

∈ Z(G).
For (b), assume that x is a real 2-element inverted by t . Let J := CG(〈x, t〉). We first claim that J has

no nontrivial real element of odd order. By contradiction, suppose that there exist y, s ∈ J with ys
= y−1,

where o(y) > 1 is odd. Observe that [x, y] = [x, s] = [t, y] = [t, s] = 1 and x t
= x−1, ys

= y−1, so

(xy)st
= x st yst

= x t yts
= x t ys

= x−1 y−1
= y−1x−1

= (xy)−1.

So xy∈Re(G)\Z(G). Since (o(x), o(y))=1, CG(xy)=CG(x)∩CG(y)=CA(y), where A=CG(x)≥ J .
Let U be a Sylow 2-subgroup of CG(xy). Then U is also a Sylow 2-subgroup of both CG(x) and CG(y)
as |CG(xy)|2 = |CG(x)|2 = |CG(y)|2 = 2b (noting x, y, xy ∈ Re(G) \ Z(G)). Thus CA(y) contains
a Sylow 2-subgroup of A. Therefore |y A

| is odd and hence y2
= 1 by Lemma 2.1(3). (Note that

y ∈ Re(J )⊆ Re(A).) However, as o(y) is odd, y = 1, which is a contradiction. Thus J has no nontrivial
real element of odd order and so by Lemma 2.2(3) J has a normal Sylow 2-subgroup as required. Finally,
if x is an involution, then we can choose t = 1 and the result follows. �

In the next lemma, we show that every normal subgroup of odd index of an R(a, b)-group is also an
R(a, b)-group.

Lemma 2.5. Suppose that G is an R(a, b)-group. Let K be a normal subgroup of G of odd index. Then
K is also an R(a, b)-group.

Proof. Let K be a normal subgroup of G of odd index. By Lemma 2.1(4), we have Re(G)= Re(K ). Let
x ∈ Re(K ) \ Z(K ) and let C := CG(x). Let P ∈ Syl2(C) and let S ∈ Syl2(G) such that P ≤ S. Since
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|G : K | is odd, we have P ≤ S ≤ K . In particular, S ∈ Syl2(K ). We have P ≤ K ∩C = CK (x)≤C . Thus
P is also a Sylow 2-subgroup of CK (x). Therefore |C |2= |CK (x)|2 and hence K is an R(a, b)-group. �

The first part of the following lemma is essentially Lemma 2.2 in [Guralnick et al. 2011] and its proof.
For the reader’s convenience, we include the proof here.

Lemma 2.6. Let G be a finite group and let N EG be a normal subgroup of odd order. Let xN ∈ G/N
be a real element. Write G = G/N.

(1) There exist y ∈ G and a 2-element t ∈ G such that x̄ = ȳ and yt
= y−1.

(2) If x̄ is a 2-element, then y can be chosen to be a 2-element. Moreover, if x̄ is an involution in G, then
y can be chosen to be an involution in G.

(3) In (2), we have |x̄G
|2 = |yG

|2 and CG(〈x̄, t̄〉)= CG(〈y, t〉).

Proof. Let xN be a real element of G/N . Then there exists a 2-element t N ∈ G/N inverting xN by
Lemma 2.1(2). By considering the 2-part of t , we can assume that t is a 2-element. The maps z 7→ z−1 and
z 7→ zt are commuting permutations of G having 2-power order and thus their product σ has 2-power order.
Each of these two permutations maps xN to x−1 N and x−1 N to xN . So σ defines a permutation on xN .
Since σ has 2-power order and |xN | = |N | is odd, σ has a fixed point y ∈ xN . Thus y = yσ = (yt)−1.
So yt

= y−1 as wanted. This proves (1).
Assume next that the order of xN in G/N is 2k for some integer k ≥ 0. By part (1), there exist elements

y, t ∈ G such that xN = yN and yt
= y−1. Since |N | is odd, o(y)= 2km, where m is odd and y2k

∈ N .
Since (2k,m)=1, there exist integers u, v such that 1=um+v2k and thus yN = (yum N )(yv2k

N )= yum N .
Clearly, yum is a 2-element and is inverted by t . Replace y by yum , the first claim of part (2) follows.
Moreover, as |N | is odd, if y2

∈ N and y is a 2-element, then y2
= 1. Hence the last claim of (2) follows.

Finally, for part (3), by [Isaacs 2008, Lemma 7.7], CG(x̄)=CG(ȳ)=CG(y) since (o(y), |N |)= 1. If U
is a Sylow 2-subgroup of CG(y), then U is a Sylow 2-subgroup of CG(y) and |U | = |U | so |ȳG

|2= |yG
|2.

Finally, we have CG(〈x̄, t̄〉)= CG(〈ȳ, t̄〉)= CG(〈y, t〉), where the second equality follows from [Isaacs
2008, Lemma 7.7] again as 〈y, t〉 is a 2-group. �

In the next lemma, we determine some properties of the quotient group G/O2′(G).

Lemma 2.7. Let G be an R(a, b)-group and T a subgroup of G containing O2′(G). Let G = G/O2′(G).

(1) If x̄ ∈ Re(T ) \ Z(T ) is a 2-element, then there exists a 2-element t̄ ∈ T inverting x̄ and CG(〈x̄, t̄〉)
has a normal Sylow 2-subgroup.

(2) If x̄ ∈ Re(T ) \ Z(T ) is an involution, then CG(x̄) is 2-closed.

(3) If z̄, x̄ ∈ Re(G) \ Z(G) and x̄ is a 2-element, then |z̄G
|2 ≤ |x̄G

|2 = 2a and |CG(x̄)|2 = 2b.

Proof. For part (1), let x̄ ∈ Re(T ) \ Z(T ) be a 2-element. By applying Lemma 2.6 for T , there exist
2-elements y, t ∈ T such that x̄ = ȳ and yt

= y−1. Since ȳ= x̄ 6∈ Z(T ), y 6∈ Z(T ) and so y ∈Re(G)\Z(G).
By Lemma 2.4(b), CG(〈y, t〉) is 2-closed and thus by Lemma 2.6(3), CG(〈x̄, t̄〉)=CG(〈ȳ, t̄〉)=CG(〈y, t〉)
is 2-closed.
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Part (2) follows from Lemma 2.6(2) and part (1) above. For part (3), let z̄, x̄ ∈ Re(G) \ Z(G),
where x̄ is a 2-element. By Lemma 2.6(1), there exists w ∈ Re(G) \ Z(G) with w̄ = z̄. We have that
|w̄G
|2 ≤ |w

G
|2 = 2a as |w̄G

| divides |wG
|. By Lemma 2.6(3), |x̄G

|2 = |yG
|2 = 2a , which implies that

|CG(x̄)|2 = 2b. The proof is now complete. �

3. Proof of Theorem C

In this section, we prove Theorem C assuming the solvability from Theorem B. Indeed, Theorem C
follows immediately from Theorem 3.3. It is convenient to state the following.

Hypothesis A. Let G be a finite group with O2′(G)= 1 and G = O2′(G). Let a, b ≥ 0 be fixed integers.
Assume the following hold.

(1) If T ≤ G and x ∈ Re(T ) \ Z(T ) is a 2-element, then there exists a 2-element t ∈ T inverting x and
CG(〈x, t〉) is 2-closed.

(2) If x ∈ G \ Z(G) is an involution, then CG(x) is 2-closed.

(3) If x ∈ Re(G) \ Z(G) is a 2-element, then |xG
|2 = 2a and |CG(x)|2 = 2b.

(4) If z ∈ Re(G) \ Z(G), then |zG
|2 ≤ 2a and |CG(z)|2 ≥ 2b.

Using Lemmas 2.5 and 2.7, we show that if a finite group G satisfies the hypothesis of Theorem B,
then a certain section of G satisfies the hypothesis above.

Lemma 3.1. If G is an R(a, b)-group, K = O2′(G) and H = K/O2′(K ), then H satisfies Hypothesis A.

Proof. Let G be an R(a, b)-group and let K = O2′(G). We know from Lemma 2.5 that K is also an
R(a, b)-group. Let H = K/O2′(K ). Then O2′(H)= H , O2′(H)= 1 and H satisfies the conclusion of
Lemma 2.7. Therefore, H satisfies Hypothesis A. �

The following is an easy consequence of Lemma 2.3.

Lemma 3.2. Let G be a finite group. Assume that |CG(u)|2 = 2b for all 2-elements u ∈ Re(G) \ Z(G). If
U ≤ G is a 2-subgroup of G with |U | ≥ 2b, then CG(U ) has a normal 2-complement.

Proof. Let U ≤ G be a 2-group with |U | ≥ 2b. Let C = CG(U ). Observe that if all 2-elements in Re(C)
lie in Z(C), then C has a normal 2-complement by Lemma 2.3. Thus, by contradiction, assume that
there exists a real 2-element y ∈ Re(C)\ Z(C). Clearly y ∈ Re(G)\ Z(G) and so |CG(y)|2 = 2b. We see
that U ≤ CG(y) as y ∈ CG(U ), so 〈U, y〉 is a 2-subgroup of CG(y). Since |CG(y)|2 = 2b and |U | ≥ 2b,
U ∈ Syl2(CG(y)), which implies that y ∈U . But this implies that y ∈ Z(C) since [C,U ] = 1 and y ∈U ,
a contradiction. �

We now prove the key result of this section.

Theorem 3.3. Let G be a finite group satisfying Hypothesis A. If F∗(G)= O2(G), then G is a 2-group.
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Proof. Suppose that G satisfies Hypothesis A and F∗(G)= O2(G) but G is not a 2-group. Notice that
G = O2′(G). If G has no nontrivial real element of odd order, then G has normal Sylow 2-subgroup by
Lemma 2.2(3). But then since G = O2′(G), it must be a 2-group. Therefore, we may assume that there
exists an element z ∈ Re(G) \ Z(G) of odd order.

Let V ∈ Syl2(CG(z)). By Hypothesis A(4), |V | ≥ 2b. Clearly, by Hypothesis A(3), G satisfies the
hypothesis of Lemma 3.2 and so CG(V ) has a normal 2-complement, say W . Then W = O2′(CG(V ))
and CG(V )/W is a 2-group. Now, we see that W E CG(V ) E NG(V ) and W is characteristic in
CG(V ) so W ≤ O2′(NG(V )). However, by [Aschbacher 2000, 31.16], as F∗(G) = O2(G), we have
F∗(NG(V )) = O2(NG(V )), which forces O2′(NG(V )) = 1 (by Bender’s theorem [Aschbacher 2000,
31.13]). Hence W = 1, so CG(V ) is a 2-group, which is impossible since z ∈ CG(V ) is a nontrivial
element of odd order. This contradiction shows that G is a 2-group. �

Assuming the solvability from Theorem B, we can now prove Theorem C, which is included in the
following.

Theorem 3.4. Let G be an R(a, b)-group. Then O2′(G) has a normal 2-complement N. So G has
2-length one. Moreover, the 2-group O2′(G)/N has at most two real class sizes.

Proof. By Theorem B, we assume that G is solvable. Let K = O2′(G) and H := K/O2′(K ). Then H
satisfies Hypothesis A by Lemma 3.1. As H is solvable and O2′(H)= 1, F∗(H)= F(H)= O2(H). By
Theorem 3.3, H is a 2-group and thus K has a normal 2-complement N = O2′(K ). So G has 2-length
one. Finally, as H is a 2-group which satisfies Hypothesis A, for any x ∈ Re(H), we have |x H

| = 1
or 2a . �

4. Proof of Theorem B

We prove Theorem B in this section. We first prove some reduction results.

Lemma 4.1. Let G be a finite nonsolvable group satisfying Hypothesis A. Let G = G/O2(G). Then
L = E(G) is a quasisimple group whose center is a 2-group and G is an almost simple group with socle
L ∼= L/Z(L).

Proof. Since G satisfies Hypothesis A, G = O2′(G) and O2′(G)= 1. We have F∗(G)= O2(G)E(G).
As G is nonsolvable, E(G) is nontrivial by Theorem 3.3. Let L be a component of G, that is, L is a
perfect quasisimple subnormal subgroup of G. Recall that E(G) is generated by all components of G.

We first claim that L = E(G). Suppose by contradiction that G has another component, say L1 6= L .
Since L is nonsolvable, by Lemma 2.3 there exists a real 2-element x ∈Re(L)\Z(L). By Hypothesis A(1),
there exists a 2-element t ∈ L such that x t

= x−1 and CG(〈x, t〉) has a normal Sylow 2-subgroup, so
it is solvable. However, by [Aschbacher 2000, 31.5], [L1, L] = 1, and since 〈x, t〉 ≤ L , we have
L1 ≤ CG(〈x, t〉), which is impossible. Thus L is the unique component of G and so L = E(G). As
O2′(G)= 1, Z(L) is a 2-group.
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Let C =CG(L). We claim that C = O2(G), which implies that G is almost simple with socle L . In fact,
we show that every real 2-element of C lies in Z(C) and so by Lemma 2.3, C has a normal 2-complement
which is O2′(C). Since L EG, C EG and so O2′(C) ≤ O2′(G) = 1. Hence C is a 2-group and thus
C ≤ O2(G). Furthermore, by [Aschbacher 2000, 31.12], [O2(G), L] = 1 so O2(G) ≤ C . Therefore,
C = O2(G) as wanted.

To finish the proof, suppose by contradiction that there exists a real 2-element y ∈ Re(C) which is not
in Z(C). By Hypothesis A(1), there exists a 2-element t ∈ C inverting y, and CG(〈y, t〉) has a normal
Sylow 2-subgroup. As [L ,C] = 1 and 〈y, t〉 ≤ C , we have L ≤ CG(〈y, t〉), which is impossible. This
completes our proof. �

In order to classify all the possible finite quasisimple groups which can appear as E(G) in the previous
lemma, we need the following.

Lemma 4.2. Let G be a finite nonsolvable group satisfying Hypothesis A, and let L = E(G) and
G = G/O2(G). If x, z ∈ Re(L) \ Z(L) and x is a 2-element, then

|zL
|2 ≤ |zG

|2 ≤ 2a
= |xG

|2 ≤ |G : L|2 · |x L
|2 ≤ |Out(L)|2 · |x L

|2. (4-1)

Proof. Notice that L = E(G) is a quasisimple group by Lemma 4.1, and by [Aschbacher 2000, 31.12],
[O2(G), L] = 1. Let x, z ∈ Re(L) \ Z(L), where x is a 2-element. By Hypothesis A(3) and (4),
|zG
|2 ≤ 2a

= |xG
|2. Since L E G, |zL

|2 ≤ |zG
|2 ≤ 2a . For the remaining inequalities, observe that

O2(G)≤ CG(x) and
|xG
| = |G : LCG(x)| · |LCG(x) : CG(x)|.

We have |LCG(x) : CG(x)| = |L : CL(x)| = |x L
| and

|G : LCG(x)| = |G : L O2(G)| / |CG(x) : CG(x)∩ L O2(G)|.

As |G : L O2(G)| = |G : L| divides |Out(L)|, by taking the 2-parts, we obtain

|xG
|2 ≤ |G : L|2 · |x L

|2 ≤ |Out(L)|2 · |x L
|2.

The proof is now complete. �

Using the classification of finite simple groups, we can show that L in the previous lemma is isomorphic
to a special linear group SL2(q), where q ≥ 5 is an odd prime power. We defer the proof of the following
theorem until next section.

Theorem 4.3. Let L be a quasisimple group with center Z and let S = L/Z. Suppose that Z is a 2-group
and the following conditions hold:

(1) If i is a noncentral involution of L , then CL(i) is 2-closed.

(2) If x, z ∈ L are noncentral real elements and x is a 2-element, then |zL
|2 ≤ |Out(S)|2 · |x L

|2.

Then L ∼= SL2(q) with q ≥ 5 odd.
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Let p be a prime. If n ≥ 1 is an integer, then the p-adic valuation of n, denoted by νp(n), is the highest
exponent ν such that pν divides n. Hence n p = pνp(n). Notice that νp(xy)= νp(x)+νp(y) for all integers
x, y ≥ 1.

The following number theoretic result is obvious.

Lemma 4.4. Let m, k ≥ 1 be integers, where m ≥ 3 is odd. Then ν2
(
m2k
− 1

)
≥ k+ 2.

Proof. We proceed by induction on k ≥ 1. Suppose that m ≡ ε (mod 4), where ε =±1. For the base case,
assume k = 1. Clearly, m− ε is divisible by 4 while m+ ε is divisible by 2. So ν2(m2

− 1)≥ 3= k+ 2.
Assume that ν2

(
m2t
− 1

)
≥ t + 2 for some integer t ≥ 1. We have

m2t+1
− 1=

(
m2t
− 1

)(
m2t
+ 1

)
.

Since m is odd, ν2
(
m2t
+ 1

)
≥ 1 and ν2

(
m2t
− 1

)
≥ t + 2 by the induction hypothesis. Therefore,

ν2
(
m2t+1

− 1
)
= ν2

(
m2t
+ 1

)
+ ν2

(
m2t
− 1

)
≥ 1+ (t + 2)= (t + 1)+ 2.

By induction, the lemma follows. �

We are now ready to prove Theorem B, which we restate here.

Theorem 4.5. If G is an R(a, b)-group, then G is solvable.

Proof. Let G be a counterexample to the theorem of minimal order. Then G is nonsolvable and by
Lemma 3.1, H satisfies Hypothesis A, where H = K/O2′(K ) and K = O2′(G). As G is nonsolvable,
H is nonsolvable. Let L = E(H). By Lemmas 4.1, 4.2 and Hypothesis A(2), L is a quasisimple group
satisfying the hypothesis of Theorem 4.3, so L ∼= SL2(q) with q ≥ 5 an odd prime power. Moreover,
O2′(H)= H and H is almost simple with socle L , where H = H/O2(H).

Write q = p f
≥ 5, where p > 2 is a prime and f ≥ 1. It is well-known that

Out(PSL2(q))∼= 〈δ〉× 〈ϕ〉 ∼= Z2×Z f ,

where δ is a diagonal automorphism of order 2 and ϕ is a field automorphism of order f of PSL2(p f ).
Assume q≡η (mod 4) with η=±1. We have k := ν2(q−η)≥2, ν2(q+η)=1 and |L|2= (q2

−1)2=2k+1.
Now L has two noncentral real elements z and x (which lie in the cyclic subgroups of L of order

q + η and q − η) of order (q + η)/2 and 2k > 2, respectively. It is easy to check that |x L
|2 = 2

and |zL
|2 = 2k . Moreover, zL is invariant under the diagonal automorphisms of L . As H/L is a subgroup

of Out(L) ∼= Z2 × Z f with O2′(H/L) = H/L , it follows that H/L is an abelian 2-group of order at
most 2c+1, where c = ν2( f ).

(a) Assume that f is odd. Then PSL2(q)∼= L E H ≤ PGL2(q).
If H ∼= PSL2(q), then H = L O2(H). In this case, we see that |zH

|2 = |zL
|2 = 2k > 2= |x L

|2 = |x H
|2,

violating (4-1).
Assume that H ∼= PGL2(q). From the character table of PGL2(q) (see [Steinberg 1951, Table III]),

H ∼= PGL2(q) contains a real element ȳ of order p (labeled by A2) with |ȳH
| = q2

−1. Since o(ȳ)= p is
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odd, by [Guralnick et al. 2011, Lemma 2.2] there exists a real element w ∈ H of order p such that w̄ = ȳ.
Now |wH

|2 ≥ |ȳH
|2 = 2k+1 > 4= |Out(L)|2 · |x L

|2, violating (4-1).

(b) Assume f is even. We have that q ≡ 1 (mod 4) and since p is odd, by Lemma 4.4 we have
k = ν2(q − 1)≥ c+ 2. Recall that c = ν2( f ).

From [Dornhoff 1971, Theorem 38.1], L ∼= SL2(q) has a real element

y =
(

1 0
1 1

)
of order p (labeled by c). The image ȳ of y in L ∼= PSL2(q) is also a real element of order p and
|yL
| = |ȳL

| = (q2
− 1)/2. Hence |yH

|2 ≥ |ȳL
|2 = 2k as |PSL2(q)|2 = 2k .

Assume that |H/L|2 ≤ 2c. We have |H : L|2 · |x L
|2 ≤ 2c+1 < 2c+2

≤ 2k
≤ |yH

|2, contradicting (4-1).
Finally, we assume that |H/L|2 = 2c+1 and so H/L = 〈δ〉×〈ϕm

〉 with m = f/2c. We know that ȳ ∈ L
is ϕ-invariant but not δ-invariant. Thus |ȳH

|2 = 2k+1 and hence |yH
|2 ≥ |ȳH

|2 = 2k+1
≥ 2c+3. Now

|Out(L)|2 · |x L
|2 = 2c+2 < 2c+3

≤ |yH
|2, which violates (4-1) again. The proof is now complete. �

5. Quasisimple groups

The main purpose of this section is to prove Theorem 4.3. We first prove some easy results which will be
needed in our classification.

For a prime p and a group X , the p-rank of X , denoted by rp(X), is the maximum rank of an elementary
abelian p-subgroup of X . Recall that the p-rank of an elementary abelian p-group of order pk is k. The
following easy result should be known.

Lemma 5.1. Let X be a finite group and let Z be a subgroup of Z(X). Let i ∈ X be a noncentral
involution. Let r be the 2-rank of Z and let X = X/Z. Let T ≤ X be the full inverse image of CX (ī). Then
T/CX (i) is an elementary abelian 2-group of order at most 2r and |i X

|2 ≤ 2r
· |ī X
|2.

Proof. Let g ∈ T . Then i g
= i z for some z ∈ Z . As i2

= 1 and i z = zi , we have z2
= 1. Now

CX (i)g = CX (i g) = CX (i z) = CX (i), so CX (i) E T . Moreover, i g2
= (i z)g = i gz = i , and hence

g2
∈ CX (i). Thus T/CX (i) is an elementary abelian 2-group. Let �= {x ∈ Z : x2

= 1}. Clearly � is an
elementary abelian 2-subgroup of X of order 2r . For each h ∈ T , there exists z ∈ � such that ih

= i z.
Moreover, if ih

= ik for some h, k ∈ T , then hCX (i)= kCX (i). Thus there is an injective map from the
set of left cosets of CX (i) in T to � and hence |T : CX (i)| ≤ 2r . Now

|i X
|2 = |X : T |2 · |T : CX (i)|2 = |ī X

|2 · |T : CX (i)| ≤ 2r
· |ī X
|2.

The proof is complete. �

We next determine all quasisimple groups which have an involution i whose centralizer is solvable. No-
tice the isomorphisms PSU4(2)∼=PSp4(3), PSL2(7)∼=PSL3(2), A5∼=PSL2(4)∼=PSL2(5), A6∼=PSL2(9)
and A8 ∼= PSL4(2).
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Lemma 5.2. Let L be a quasisimple group and let S = L/Z(L). Suppose that L has an involution i such
that CL(i) is solvable. Then one of the following holds.

(i) L ∼=M11 or S ∼=M12,M22,Fi22.

(ii) L ∼= An (5≤ n ≤ 12), 2 · An (8≤ n ≤ 12) or 3 · An (6≤ n ≤ 7).

(iii) S ∼= PSL2(q),PSL3(q),PSU3(q),Sp4(q),
2B2(q) with q = 2 f .

(iv) S ∼= PSLn(2) (n = 4, 5, 6), PSUn(2) (4 ≤ n ≤ 9), Sp2n(2) (3 ≤ n ≤ 5), �±2n(2) (4 ≤ n ≤ 5),
3D4(2), 2F4(2)′,F4(2), 2E6(2).

(v) S ∼= PSL3(3),PSL4(3),PSU3(3),PSU4(3),PSp4(3),�7(3),P�+8 (3),G2(3).

(vi) L ∼= PSL2(q) with q odd.

Proof. Let L = L/Z(L). Since CL(i) is solvable, i 6∈ Z(L) and CL(ī) is solvable by Lemma 5.1. Thus S
is a nonabelian simple group with a solvable involution centralizer.

(1) Assume that S is a sporadic simple group. The information on the centralizers of involutions of L can be
read off from Tables 5.3(a)–(z) in [Gorenstein et al. 1998]. It follows that L ∼=M11 or S ∼=M12,M22,Fi22.

(2) Assume S ∼= An with n ≥ 5. We know that every involution j of S ∼= An is a product of r
disjoint transpositions, where r is even. Let s = n− 2r . By [Gorenstein et al. 1998, Proposition 5.2.8]
CS( j) ∼= (H1× H2)〈t〉, where H2 ∼= As and H1 ∼= R1L1 with L1 ∼= Sr and R1 ∼= Cr−1

2 . Hence if r or s
is at least 5, then CS( j) is nonsolvable. Thus both r and s are at most 4 and hence n ≤ 12. Therefore,
if L = An with n ≥ 5, then 5≤ n ≤ 12. If L ∼= 2 · An , then n ≤ 12 by our observation above. However,
2 · An has a noncentral involution only when n ≥ 8. Thus if L ∼= 2 · An , then 8 ≤ n ≤ 12. For n = 6, 7,
only 3 · An has a solvable involution centralizer.

(3) Assume S is a finite simple group of Lie type. The centralizers of involutions of L are determined in
[Aschbacher and Seitz 1976] and Tables 4.5.1 and 4.5.2 in [Gorenstein et al. 1998]. From these results, it
is easy to get all the possibilities for L . (See also [Liebeck and O’Brien 2007, Lemma 3.4].) �

We use the convention that PSLεn(q) is PSLn(q) if ε =+ and PSUn(q) if ε =−. A similar convention
applies to SLεn(q). We now prove the main result of this section.

Theorem 5.3. Let L be a quasisimple group with center Z and let S = L/Z. Suppose that Z is a 2-group
and the following conditions hold:

(1) If i is a noncentral involution of L , then CL(i) is 2-closed.

(2) If x, z ∈ Re(L) \ Z(L) are noncentral real elements, where x is a 2-element, then

|zL
|2 ≤ |Out(S)|2 · |x L

|2.

Then L ∼= SL2(q) with q ≥ 5 odd.

Proof. We consider the following cases.
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Case 1. All involutions of L are central. By the main theorem in [Griess 1978], L ∼= SL2(q) with
q ≥ 5 odd or 2 · A7. If the first case holds, then we are done. So, assume that L ∼= 2 · A7. We have
|Out(S)|2 = 2. Using [Conway et al. 1985], we can check that L has two real elements z and x of order 3
and 4, respectively, with |zL

| = 280 and |x L
| = 210. Clearly |zL

|2 = 23 > |Out(S)|2 · |x L
|2 = 22, violating

condition (2). So this case cannot occur.

Case 2. Z(L) is trivial. Then L is a nonabelian simple group. Let x ∈ L be a 2-central involution of L ,
i.e., x is an involution that lies in the center of some Sylow 2-subgroup of L . We have |x L

|2 = 1 so (2)
implies |zL

|2 ≤ |Out(L)|2 for all noncentral real elements z ∈ L .
The centralizer of every noncentral involution of L is 2-closed by the hypothesis. Since L is simple, it

follows that the centralizer of every involution of L is 2-closed. Now [Suzuki 1965, Theorem 1] yields
that L is isomorphic to one of the following groups: A6, PSL2(p) with p a Fermat or a Mersenne prime,
PSL2(2 f ) with f ≥ 2, PSL3(q),PSU3(q) with q = 2 f or 2B2(22 f+1) with f ≥ 1.

Assume that L ∼= 2B2(22 f+1) with f ≥ 1. It follows from Propositions 3 and 16 in [Suzuki 1962]
that L has a real element z of order 2 f

− 1 with |CL(z)| = 2 f
− 1 and so |zL

|2 = 22(2 f+1)
≥ 64. Since

|Out(L)| = 2 f + 1 is odd, |zL
|2 > |Out(L)|2, and hence this case cannot occur.

Assume L ∼= PSL2(p) with p a Fermat or a Mersenne prime. We have |Out(L)| = 2 and L possesses a
real element z of odd order (p+δ)/2, where p≡ δ (mod 4) and |zL

|2=|L|2≥ 4. As |zL
|2> 2=|Out(L)|2,

this case cannot happen.
If L ∼= A6, then |Out(L)| = 22. However, A6 has a real element z of order 3 with |zL

| = 40 and thus
|zL
|2 = 8> |Out(S)|2 = 4. Thus this case cannot happen.
Next, if L ∼= PSL2(2 f ) with f ≥ 2, then L has a real element z of order 2 f

−1 with |zL
| = 2 f (2 f

+1).
Clearly |zL

|2 = 2 f > f ≥ |Out(L)|2 as |Out(L)| = f .
Finally, assume L ∼= PSLε3(2

f ). We have f ≥ 2 as PSL3(2) ∼= PSL2(7), where 7 = 23
− 1 is a

Mersenne prime and PSU3(2) is not simple. In both cases, |Out(L)| = 2d f with d = (3, 2 f
− ε1) so

|Out(L)|2= 21+ν2( f ). The quasisimple group X =SLε3(2
f ) possesses real elements h of order 2 f

+ε1 with
|CX (h)| = 4 f

−1 and g of order 2 f
−ε1 with |CX (g)| = (2 f

−ε1)2 [Guralnick et al. 2011, Lemma 4.4(3)].
Now let y ∈ {g, h} be an element with o(y) relatively prime to d = (3, 2 f

− ε1) and let z be the image
of y in L = PSLε3(2

f )∼= X/Z(X). Then |CL(z)| = |CX (y)/Z(X)| (by [Isaacs 2008, Lemma 7.7]) is odd,
so |zL

|2 = |L|2 = 23 f . Since f ≥ 2, 23 f > 22 f
≥ 21+ν2( f ). Hence these cases cannot occur.

Case 3. Z(L) is nontrivial and L has a noncentral involution. Let j be a noncentral involution of L . By
condition (1), CL( j) is 2-closed and thus it is solvable. Hence L is one of the quasisimple groups in
Lemma 5.2. Moreover, as Z(L) is a nontrivial 2-group, the Schur multiplier M(S) of S ∼= L/Z(L) is of
even order. It follows that we only need to consider the following cases.

(i) S ∼=M12,M22,Fi22, An (8≤ n ≤ 12), PSL3(4), 2B2(8).

(ii) S ∼= PSUn(2) (n = 4, 6), Sp6(2), �
+

8 (2),F4(2), 2E6(2).

(iii) S ∼= PSU4(3),PSp4(3),�7(3),P�+8 (3).
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We show that these cases cannot occur by showing that condition (2) does not hold. Clearly j̄ ∈ L is a
noncentral involution and by Lemma 5.1, | j L

|2 ≤ 2r2(Z(L)) · | j̄ L
|2, where r2(Z(L)) is the 2-rank of Z(L).

Let S̃ be the perfect central extension of S such that S̃/Z(S̃)∼= S and |Z(S̃)| = |M(S)|. From [Conway
et al. 1985], we see that M(S) can be written as a direct product of at most two (possibly trivial) cyclic
groups, so r2(Z(L))≤ r2(M(S))≤ 2. Let e2(S)=max{ν2(|x S

|) : x is an involution in S}. Then for each
noncentral involution j ∈ L , we have ν2(| j L

|)≤ r2(M(S))+ e2(S).
Let z ∈ S be a nontrivial real element of odd order. There exists y ∈ Re(L) \ Z(L) of odd order such

that z is the image of y in L/Z(L)∼= S (see [Navarro et al. 2009, Lemma 3.2] or [Guralnick et al. 2011,
Lemma 2.2]) and by applying [Isaacs 2008, Lemma 7.7], |zS

| = |yL
| (noting (o(y), |Z(L)|)= 1). Hence

to show that condition (2) does not hold, it suffices to find a nontrivial real element z ∈ S of odd order
such that the following inequality holds:

ν2(|zS
|) > ν2(|Out(S)|)+ r2(M(S))+ e2(S). (5-1)

For each simple group S in (i)–(iii) above, we list in Table 1 the invariant e2(S), the largest 2-part of
the sizes of conjugacy classes of involutions of S in the second column, the Atlas class name and the
2-part of the conjugacy class of odd order real element z ∈ S, the order of the outer automorphism group

S e2(S) z ν2(|zS
|) |Out(S)| M(S)

M12 2 3a 5 2 Z2

M22 0 5a 7 2 Z12

Fi22 1 3d 17 2 Z6

A8 1 5a 6 2 Z2

A9 1 3b 4 2 Z2

A10 1 3c 7 2 Z2

A11 1 3c 6 2 Z2

A12 0 3d 7 2 Z2

PSL3(4) 0 3a 6 12 Z4×Z12
2B2(8) 0 5a 6 3 Z2×Z2

PSU4(2) 1 5a 6 2 Z2

PSU6(2) 3 3c 12 6 Z2×Z6

Sp6(2) 2 3c 7 1 Z2

�+8 (2) 2 3d 9 6 Z2×Z2

F4(2) 4 3c 18 2 Z2
2E6(2) 5 3c 27 6 Z2×Z6

PSU4(3) 0 3d 7 8 Z3×Z12

�7(3) 0 3g 8 2 Z6

P�+8 (3) 2 3m 11 24 Z2×Z2

Table 1. Some small simple groups.
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Out(S) and in the last column the Schur multiplier M(S). The information in this table can be read off
from the character table of S using [Conway et al. 1985].

From Table 1, we can check that (5-1) holds, which completes our proof. �
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