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Proper Ga-actions on C4 preserving a coordinate
Shulim Kaliman

Dedicated to my teachers, Vladimir Yakovlevich Lin and Evgeniy Alekseevich Gorin

We prove that the actions mentioned in the title are translations. We show also that for certain Ga-actions
on affine fourfolds the categorical quotient of the action is automatically an affine algebraic variety and
describe the geometric structure of such quotients.

Introduction

An algebraic action Ga of the additive group C+ of complex numbers on a complex algebraic variety X is
free if it has no fixed points. When X is a Euclidean space Cn with a coordinate system (x1, . . . , xn) the
simplest example of such an action is a translation for which the action of an element t ∈ C+ is given by
(x1, x2, . . . , xn) 7→ (x1+ t, x2, . . . , xn). It turns out that for n≤ 3 these notions are “essentially” the same.
More precisely, when n ≤ 3 every nontrivial free Ga-action on Cn in a suitable polynomial coordinate
system is a translation1 (see [Gutwirth 1961; Rentschler 1968] for n = 2 and [Kaliman 2004] for n = 3).

Starting with n = 4 the similar statement does not hold and the basic example of Winkelmann [1990]
gives a triangular2 free Ga-action which is not a translation. In his example the geometric quotient of
the action is not Hausdorff while for a translation on Cn, the geometric quotient is isomorphic to Cn−1.
Recently Dubouloz, Finston, and Jaradat [Dubouloz et al. 2014] proved that every triangular action on
Cn which is proper (in particular, it is free and has a Hausdorff geometric quotient), is a translation in a
suitable coordinate system. Note that every triangular action preserves at least one of the coordinates, and
one of the aims of this paper is the following generalization of the Finston–Dubouloz–Jaradat result:

Theorem 0.1. Every proper Ga-action on C4 that preserves a coordinate is a translation in a suitable
polynomial coordinate system.3

MSC2010: primary 14R20; secondary 14L30, 32M17.
Keywords: proper Ga-action on affine 4-space.

1In fact, for n ≤ 3 every connected one-dimensional unipotent algebraic subgroup of Cremona group of Cn is conjugate to
such a translation [Popov 2015, Corollary 5].

2Recall that a Ga-action on Cn is triangular if in a suitable polynomial coordinate system it is of the form (x1, . . . , xn) 7→
(x1, x2+ tp2(x1), x3+ tp3(x1, x2), . . . , xn+ tpn(x1, . . . xn−1)), where each pi is a polynomial. For n ≥ 3 not every Ga-action
on Cn is triangulable (i.e., triangular in a suitable polynomial coordinate system) [Bass 1984].

3Neena Gupta informed the author that she and S. M. Bhatwadekar had recently obtained an independent proof of Theorem 0.1.
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228 Shulim Kaliman

Its proof involves investigation of categorical quotients of Ga-actions on C4. Namely, let X be an
affine algebraic variety equipped with a Ga-action 8 : Ga × X → X. Denote by C[X ]8 the subring
of 8-invariant regular functions in the ring C[X ] of regular functions on X and by Spec C[X ]8 (resp.
Spec C[X ]) the spectrum of C[X ]8 (resp. C[X ]). Then the natural embedding C[X ]8 ↪→ C[X ] induces a
map Spec C[X ] → Spec C[X ]8. The fact that C[X ]8 is finitely generated is equivalent to the fact that
Spec C[X ]8 can be viewed as an affine algebraic variety denoted by X//8. It is called the categorical
quotient of the action and the map of the spectra yields the quotient morphism % : X → X//8 in the
category of affine algebraic varieties. If dim X ≤ 3 then C[X ]8 is always finitely generated by a theorem
of Zariski [1954]. In higher dimensions this fact is not necessarily true by Nagata’s counterexample to the
fourteenth Hilbert problem. Furthermore, extending Nagata’s counterexample, Daigle and Freudenburg
[1999] showed for a Ga-action on Cn, the ring of invariant functions may not be finitely generated starting
from dimension n≥ 5. In dimension 4 the same authors showed that the ring of regular functions invariant
with respect to a triangular Ga-action on C4 is automatically finitely generated [Daigle and Freudenburg
2001] and later Bhatwadekar and Daigle [2009] proved that it remains finitely generated if one considers
instead of triangular Ga-actions the wider class of Ga-actions preserving a coordinate.4 In this paper we
establish a stronger fact contained in the next theorem together with a generalization of Theorem 0.1.

Theorem 0.2. Let ϕ : X→ B be a surjective morphism of a factorial affine algebraic Ga-variety X (i.e.,
X is equipped with some Ga-action 8 ) of dimension 4 into a smooth affine curve B. Suppose also that

• the action preserves each fiber of ϕ;

• the generic fiber of ϕ is a three-dimensional variety Y (over the field K of rational functions on B) for
which the ring of invariants of the Ga-action (induced by 8) on Y is the polynomial ring K [z, w];5

• for every b ∈ B the fiber Xb = ϕ
−1(b) admits a nonconstant morphism into a curve if and only if this

curve is a polynomial one (i.e., the normalization of the curve is the line C).

Then

(1) the ring of8-invariant functions is finitely generated and, thus, it can be viewed as the ring of regular
functions on an affine algebraic variety Q = X//8;

(2) there is an affine modification ψ : Q→ B×C2 such that for some nonempty Zariski dense subset
B∗ ⊂ B the restriction of ψ over B∗ is an isomorphism and every singular fiber of ψ is of form
C ×C where C is a polynomial curve.

(3) Furthermore, if one requires additionally that

• 8 is proper and X is Cohen–Macaulay,
• each fiber Xb is normal,

4The author is grateful to Neena Gupta for drawing his attention to the paper of Bhatwadekar and Daigle.
5This assumption that the ring of invariants of the induced action is isomorphic to K [z, w] can be replaced by the following:

for a general b∈ B the categorical quotient of the restriction of8 to the fiber Xb=ϕ
−1(b) is isomorphic to C2 (see Theorem 5.7).
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• and the restriction 8b of 8 to Xb is a translation (in particular, Xb is naturally isomorphic to a
direct product (Xb//8b)×C),

then the quotient Q is locally trivial C2-bundle over B (and in particular it is a vector bundle by
[Bass et al. 1976/77]), X is naturally isomorphic to Q×C, and 8 is generated by a translation on
the second factor of X ' Q×C.

Let us emphasize that the fact that X is a direct product Q×C is a rather rare event for regular Ga-
actions while in the category of rational actions of a connected linear algebraic group G on an algebraic
variety Y (over an algebraically closed field of any characteristic) this variety is automatically birationally
isomorphic to the product of Ps and the rational quotient of Y with respect to a Borel subgroup of G (see
[Matsumura 1963; Popov 2016]). It is also worth mentioning that the requirement that the restriction
of 8 to any Xb is a translation in (3) can be can be replaced by some topological assumptions. For
instance, if each fiber Xb is smooth and factorial with trivial second and third homology groups then
8|Xb is automatically a translation by [Kaliman 2004, Theorem 5.1]. In particular, this is true when Xb is
a smooth contractible threefold since by the Gurjar theorem [1980, Theorem 1] (see also [Fujita 1982])
such a threefold is factorial.

This leads to the following application of Theorem 0.2.

Corollary 0.3. Let ϕ : X→ B be a surjective morphism of a smooth factorial affine algebraic fourfold
X into a smooth curve B such that X is equipped with a proper Ga-action 8 preserving every fiber
Xb= ϕ

−1(b), b ∈ B of ϕ. Suppose that each Xb is a smooth contractible threefold such that the restriction
of 8 to Xb has the plane as the quotient.6

Then there exits a categorical quotient of the action Q = X//8 in the category of affine algebraic
varieties. Furthermore, Q is a two-dimensional vector bundle over B and X is naturally isomorphic to
Q×C while 8 is generated by a translation on the second factor of X ' Q×C.

Indeed, it is straightforward that the assumptions of Corollary 0.3 imply all assumptions of Theorem 0.2
with a possible exception of the condition on the generic fiber of ϕ. But this last condition follows from
a combination of the Kambayashi [Kambayashi 1975] and the Kraft–Russell [Kraft and Russell 2014]
theorems (see Theorem 5.4 and Example 5.6 below for details).

When X 'C4, B'C, and ϕ is a coordinate function the assumptions of Corollary 0.3 are automatically
true and we have Theorem 0.1.

Some of the results mentioned before (including Theorem 0.1) are extended in the last section of this
paper where using the Lefschetz principle we show that similar facts (see, Theorems 9.11 and 9.12)
remain valid if we consider varieties X and B not over the field of complex numbers C but over any (not
necessarily algebraically closed) field of characteristic zero.

6For Xb = C3 the quotient of a nontrivial Ga-action is always isomorphic to C2 due to Miyanishi’s theorem [1980] and this
is also true for smooth contractible threefolds with negative logarithmic Kodaira dimension [Kaliman and Saveliev 2004] like the
Russell cubic {x + x2 y+ z2

+ t3
= 0} ⊂ C4

x,y,z,t .
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1. General facts

Theorem 1.1. Let ϕ : X→ Y be a birational morphism of irreducible affine algebraic varieties such that
Y is normal and there is a subvariety Z of Y with codimension at least 2 for which the restriction of ϕ to
X \ϕ−1(Z) is a surjective morphism onto Y \ Z. Suppose also that for every point y ∈ Y \ Z the preimage
ϕ−1(y) is finite. Then ϕ : X→ Y is an isomorphism.

Proof. The Zariski Main theorem (e.g., see [Grothendieck 1964, Théorème 8.12.6] or [Hartshorne 1977,
Chapter III, Corollary 11.4]) implies that the restriction of ϕ yields an isomorphism between X \ϕ−1(Z)
and Y \ Z . By the Hartogs theorem the composition of the inverse map ϕ−1

: Y \ Z→ X \ϕ−1(Z) with
the inclusion X \ϕ−1(Z) ↪→ X extends to a morphism Y → X and we are done. �

Corollary 1.2. Let ϕ : X→ Y be a morphism of irreducible affine algebraic varieties, and E ⊂ X and
D ⊂ Y be irreducible divisors such that the restriction of ϕ yields an isomorphism X \ E → Y \ D.
Suppose also that Y is normal and ϕ(E) is Zariski dense in D. Then ϕ : X→ Y is an isomorphism.

Proof. The dimension argument implies that for a general point y in D the preimage ϕ−1(y) is finite.
Hence it is finite outside a proper closed subvariety Z of D and we are done by Theorem 1.1. �

The next fact and the modified proof of Theorem 1.4 below were suggested by the referee.

Proposition 1.3. Let % : X→ Q be a morphism of irreducible affine algebraic varieties such that Q is
normal and R = Q \%(X) is of codimension at least 2 in Q. Then every regular function f on X which is
constant on the general fibers of % descends to a unique regular function g on Q.

Proof. Let us show first that f is a lift of a rational function g on Q. That is, one needs to establish the
regularity of g on a Zariski dense open subset Q0 of Q \ R. We can suppose that the restriction of %
to X0 = %

−1(Q0) is flat by [Grothendieck 1964, Théorème 6.9.1] and, therefore, being surjective it is
faithfully flat [Atiyah and Macdonald 1969, Ch. 3, Exercise 16]. Consider Y = X0×Q0 X0. Then the two
natural projections Y → X0 generate two homomorphisms e1 : C[X0] → C[Y ] and e2 : C[X0] → C[Y ].
Since f is constant on general fibers of % we see that f |X0 ∈ Ker(e1 − e2). In combination with the
faithful flatness of the natural morphism C[Q0] → C[X0] this implies that f must be a lift of a regular
function g|Q0 [Fantechi et al. 2005, Lemma 2.61]. Hence g is a rational function on Q.

Assume that there exists a divisor T in Q such that a general point t0 ∈ T does not belong to the
indeterminacy set of g and g(t0) =∞. We can suppose that also t0 /∈ R, i.e., %−1(t0) 6= ∅. Hence for
a germ of a curve C in X through x0 ∈ %

−1(t0) one has f (c)→ f (x0) as c ∈ C approaches x0. This
implies that g(%(c))→ f (x0) 6= ∞ as %(c) approaches t0, a contradiction. That is, g is regular on Q
outside a subvariety of codimension at least 2. Since Q is normal, the Hartogs theorem implies that g is
regular on Q and we are done. �

Theorem 1.4. Let % : X→ Q be a morphism of irreducible affine algebraic varieties and8 :Ga×X→ X
be a nontrivial Ga-action on X which preserves each fiber of %. Let Q be normal and P be a subvariety
of Q with codimension at least 2 such that Q \ P ⊂ %(X). Suppose also that for every point q ∈ Q \ P
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the preimage %−1(q) is a curve and for a general point q ∈ Q \ P the preimage %−1(q) is an irreducible
curve. Then % : X→ Q is the categorical quotient morphism in the category of affine algebraic varieties.
In particular, the subring of Ga-invariants in the ring of regular functions on X is finitely generated.

Proof. Note that by the assumption every general fiber of % is nothing but an orbit of 8. Thus every
8-invariant function f is constant on the general fibers of %. By Proposition 1.3, f is a lift of a regular
function on Q. Hence the ring of regular functions on Q coincides with the ring C[X ]8 of invariants and
we are done. �

Now the dimension argument as in the proof of Corollary 1.2 implies the following:

Corollary 1.5. Let % : X → Q be a morphism of irreducible affine algebraic varieties such that Q is
normal and let 8 : Ga × X→ X be a nontrivial Ga-action on X preserving every fiber of %. Let E ⊂ X
and D ⊂ Q be irreducible divisors such that X \ E and Q \ D are affine algebraic varieties for which
%(X \ E)= Q \ D and %|X\E) : X \ E→ Q \ D is the categorical quotient morphism of the action 8|X\E .
Suppose also that %(E) is Zariski dense in D.

Then % : X→ Q is the categorical quotient morphism of 8.

Proposition 1.6 (cf., [Kaliman 2004, Lemma 2.1]). Let % : X→ Q be a dominant morphism of normal
affine algebraic varieties. Suppose that the general fibers of % are irreducible and there are no nonconstant
invertible regular functions on such fibers. Suppose also that Q \ %(X) is of codimension at least 2 in Q.
Then

(1) for every principal irreducible divisor D in X, which does not meet general fibers of %, the closure of
%(D) is the support of a principal irreducible divisor in Q;

(2) if X is a factorial variety so is Q;

(3) if X is factorial the preimage of any irreducible reduced divisor T in Q is an irreducible reduced
divisor in X.

Proof. In (1) D is the zero locus of a regular function f . Since f does not vanish on general fibers
and they are irreducible we see that f is constant on each general fiber. By Proposition 1.3, f = g ◦ %
where g ∈ C[Q]. Let us show that the zero locus of g coincides with the closure of %(D). Assume to the
contrary that there is a divisor F ⊂ g−1(0) \ %(D) in Q. Choose a rational function h on Q whose poles
are contained in the closure T of F and a regular function e on Q that vanishes on T ∩%(D)= T ∩%(X)
but not at general points of T. Then for sufficiently large k the function (ekh)◦% is regular on X. Since it
is constant on every general fiber of X we conclude by Proposition 1.3 that ekh is regular on Q contrary
to the fact that this function has poles on T. Thus we have (1).

Let T be an irreducible reduced Weil divisor in Q and let D be an irreducible component of %−1(T )
that is a divisor in X (such a component exists because Q \%(X) is of codimension at least 2 in Q). Under
the assumption of (2), D = f ∗(0) for a regular function f on X since X is factorial. By (1), T = %(D)
and it coincides with the zeros of g ∈C[X ] where f = g ◦%. Furthermore, if e is another regular function
on Q that vanishes on T then it is divisible by g since e ◦ % is divisible by f , and by Proposition 1.3,
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e ◦ %/g ◦ % is the lift of a regular function on Q. That is, T = g∗(0). This implies that every irreducible
element in C[Q] has a zero locus which is reduced irreducible and principal. In particular, this element is
prime and, therefore, we have (2).

Assume that D1 and D2 are reduced irreducible components of %−1(T ). Since X is factorial Di = f ∗i (0).
By the argument above fi = gi ◦% for regular functions gi on Q. Furthermore gi vanishes on T only and
thus g1/g2 is an invertible regular function. This implies that D1 = D2 and we have (3). �

Corollary 1.7. Let X be a normal affine algebraic variety and % : X→ Q be a quotient morphism of a
nontrivial Ga-action on X (in the category of affine algebraic varieties). Then Q \ %(X) has codimension
at least 2 in Q. Furthermore, if X is factorial so is Q.

Proof. Note that Q is normal since X is. If Q \ %(X) contains a divisor F of Q then as in Statement (1)
of Proposition 1.6 we can construct a rational function g on Q with poles on F whose lift to X is regular.
By construction this lift is Ga-invariant, i.e., g must be regular. A contradiction. This implies the first
statement while the second one follows from Proposition 1.6. �

2. Basic definitions and properties of affine modifications

Definition 2.1. Recall that an affine modification is any birational morphism σ : X̂ → X of affine
algebraic varieties [Kaliman and Zaidenberg 1999]. In particular, there exists a divisor D ⊂ X such that
for D̂ = σ−1(D) the restriction of σ yields an isomorphism X̂ \ D̂→ X \ D. There is some freedom in
the choice of D and we can always suppose that D is a principal effective divisor given by zeros of a
regular function f ∈ A := C[X ]. This is the case which we consider in the present paper. When such f
is fixed we call D the divisor of modification, D̂ is called the exceptional divisor of modification, and the
closure Z of σ(D̂) in X is called the center of modification. The advantage of a principal divisor D is
that the algebra Â = C[X̂ ] can be viewed as a subalgebra A[I/ f ] in the field Frac(A) of fractions of A
where I is an ideal in A (see [Kaliman and Zaidenberg 1999]).

It is worth mentioning that I is not determined uniquely, i.e., one can find another ideal J ⊂ A for
which Â = A[J/ f ]. We suppose further that I is the largest among such ideals J and we call I the ideal
of the modification. (Treating A as a subalgebra of Â one can see that I is the intersection of A and the
principal ideal generated by f in Â.)

Notation 2.2. The symbols X, Z , D, X̂ , D̂, I, f in this section have the same meaning as in Definition 2.1.

Example 2.3. Let I be generated by regular functions f, g1, . . . , gn ∈C[X ]. Consider the closed subspace
Y of X ×Cn

v1,...,vn
given by the system of equations f v j = g j ( j = 1, . . . , n) and the proper transform X̂

of X under the natural projection Y → X (i.e., X̂ is the only irreducible component of Y whose image
in X under the projection is dense in X ). Then the restriction σ : X̂ → X of the natural projection is
our affine modification. Note that D (resp. D̂) coincides with the zero locus of f (resp. f ◦ σ ) and the
center Z is given by the equations f = g1 = · · · = gn = 0.
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Remark 2.4. (1) The geometrical construction behind the modification in Example 2.3 is the following.
Consider blowing up τ : X̃→ X of X with respect to the ideal sheaf generated by f and g1, . . . , gn .
Delete from X̃ divisors on which the zero multiplicity of f ◦ τ is more than the zero multiplicity of
at least one of the functions g j ◦ τ . The resulting variety is X̂ .

(2) Note that the replacement in Example 2.3 of functions f, g1, . . . , gn by functions h f, hg1, . . . , hgn

respectively (where h ∈ C[X ] is nonzero) does not change the modification σ : X̂→ X. In order to
avoid this ambiguity we have to fix f . We are not going to specify such f ’s for affine modifications
considered below since the choice of f will be clear from the context in each particular case.

Definition 2.5. (1) Let the center of modification Z in Example 2.3 be a set-theoretical complete
intersection in X given by the zeros f = g1 = · · · = gn = 0 (i.e., Z coincides with the set of common
zeros of these functions and the codimension of Z in X is n+ 1). Then we call such σ : X̂ → X
a Davis modification. Its main property is that D̂ is naturally isomorphic to Z ×Cn and that the
support of X̂ coincides with the support of Y .7

(2) Let Z be a strict complete intersection in X given by f = g1 = · · · = gn = 0; that is, Z is not only a
set-theoretical complete intersection but also the defining ideal of the (reduced) subvariety Z in X
coincides with the ideal I generated by f, g1, . . . , gn . Then we call σ a simple modification. In this
case X̂ coincides with Y as a scheme. Note also that the zero multiplicity of f ◦ σ is 1 at general
points of D̂.

Here are some useful properties of simple modifications from [Kaliman 2002] which we shall need
later.

Proposition 2.6. Let σ : X̂→ X be a simple modification. Then

(1) X̂ is smooth over points from Zreg ∩ Dreg ∩ Xreg;

(2) X̂ is Cohen–Macauley provided X is Cohen–Macauley;

(3) furthermore, if in (2) X is normal and none of irreducible components of the center Z of σ is
contained in the singularities of X or D then X̂ is normal.

3. Pseudoaffine modifications

From a geometrical point of view it is sometimes convenient for us to consider a neighborhood U ⊂ X of
some point z ∈ Z in the standard topology (we call such U a Euclidean neighborhood) and the restriction
σ |Û : Û→U where Û is any connected component of σ−1(U ). Since U and Û are not algebraic varieties
but only complex spaces let us consider the analogue of affine modifications in the analytic setting.8

7Indeed, the preimage of Z in Y is naturally isomorphic to Z ×Cn and therefore has dimension dim X − 1. On the other
hand counting the number of equations defining Y in X ×Cn we see that every irreducible component of Y has dimension at
least dim X. This implies that Y is irreducible (since all irreducible components of Y but one are contained in the preimage of Z )
and thus D̂ ' Z ×Cn.

8One can adhere to the algebraic setting by viewing U as an étale neighborhood of z in X.
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Definition 3.1. Let X be an irreducible complex Stein space and ψ : X→W be a meromorphic map into
a projective algebraic variety W with a fixed ample divisor H such that ψ is holomorphic over W \ H. A
minimal resolution π : X̃→ X of indeterminacy points for ψ leads to a holomorphic map ψ̃ : X̃→W.
Removing from X̃ the preimage of H we obtain X̂ which, together with the natural projection σ : X̂→ X,
will be called a pseudoaffine modification. Consider the Weil divisor ψ̃∗(H) and its pushforward (as a
cycle ) D by π : X̃→ X. Then D is the divisor of the modification, D̂ = σ−1(D)⊂ X̂ is its exceptional
divisor, and the closure Z of σ(D̂) is its center. The restriction of σ induces, of course, a biholomorphism
between X̂ \ D̂ and X \ D. Note also that similarly to the algebraic setting σ |D̂ : D̂ → σ(D̂) is, by
construction, the restriction of the proper morphism π |T : T → Z where T is the closure of D̂ in X̃ . The
latter observation is important for the next remark.

Remark 3.2. Though we mostly omit explicit formulations it should be emphasized that practically all
the facts valid for affine modifications have similar analytic analogues for pseudoaffine modifications
(e.g., see Proposition 3.6 below).

Example 3.3. Let us switch to the analytic setting in Example 2.3 by assuming that X is a Stein variety,
f, g1, . . . , gn are holomorphic functions on X. As before, Y is given in X ×Cn

v1,...,vn
by equations

f v j = g j , j = 1, . . . , n

and X̂ is the proper transform of X under the natural projection Y → X. Then the restriction σ : X̂→ X
of the natural projection is a pseudoaffine modification with D (resp. D̂) being the zero locus of f (resp.
f ◦ σ ) and the center Z given by the equations f = g1 = · · · = gn = 0.

Definition 3.4. If in Example 3.3 Z is a set-theoretical complete intersection in X given by the zeros

f = g1 = · · · = gn = 0,

then we call σ a Davis pseudoaffine modification. If furthermore Z is a strict complete intersection given
by these function then σ is a simple pseudoaffine modification.

Remark 3.5. (1) For any pair U, Û as in the beginning of this section the restriction Û→U of a simple
(resp. Davis) affine modification σ : X̂ → X is automatically a simple (resp. Davis) pseudoaffine
modification.

(2) Note that when X, D, and Z are smooth for a simple pseudoaffine modification then for every point
z ∈ Z the collection { f, g1, . . . , gn} can be extended to a local coordinate system in a Euclidean
neighborhood U of z in X. In particular, if n = 1 we can treat U as a germ of Cn at the origin
with coordinates (u, v, w1, . . . , wn−2) such that D is given in U by u = 0, Z by u = v = 0, and the
preimage of U in X̂ is viewed as a subvariety of U ×Cw given by the equation uw = v.

(3) Similarly to the algebraic setting the exceptional divisor of a Davis pseudoaffine modification is a
the product of its center and a Euclidean space.

The following analytic version of Proposition 2.6 for simple pseudoaffine modifications remains valid
with a verbatim proof.
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Proposition 3.6. Let σ : X̂→ X be a simple pseudoaffine modification of irreducible Stein spaces. Then

(1) X̂ is smooth over smooth points from Z that are not contained in the singularities of D or X ;

(2) X̂ is Cohen–Macaulay provided X is Cohen–Macaulay;

(3) furthermore, if in (2) X is normal and none of irreducible components of the center Z of σ is
contained in the singularities of X or D then X̂ is normal.

Lemma 3.7. Let ψ : Y → X be a holomorphic map of irreducible normal Stein spaces such that for
some principal effective reduced divisor D ⊂ X and every x ∈ X \ D the preimage ψ−1(x) is a curve.
Suppose that the divisor E =ψ∗(D) is reduced and irreducible, ψ(E) is not contained in the singularities
of X or D, and for a general point y ∈ E the variety ψ−1(ψ(y)) is a surface. Then for such a point
y ∈ Y (resp. for z = ψ(y) ∈ X ), there exists a local analytic coordinate system (u′, v′, v′′, w′) on Y at y
(resp. (u, v, w) on X at z) where w′ = (w′1, . . . , w

′

n−2) (resp. w = (w1, . . . , wn−2)) for which the local
coordinate form of ψ is given by

(u′, v′, v′′, w′) 7→ (u, v, w)= (u′, (u′)lq(u′, v′, v′′, w′), w′),

where l ≥ 1 is the minimal zero multiplicity of the (n× n)-minors in the Jacobi matrix of ψ at y and the
function q(0, v′, v′′, w′) depends on v′ or v′′.

Proof. Since y is a general point of E we see that it is a smooth point of E and X and by the assumption z
is a smooth point of Z = ψ(E), D, and X. Thus locally D is given by u = 0 and Z by u = v = 0, where
the holomorphic functions u and v can be included in a local coordinate system (u, v, w) on X at z.
If u′ = u ◦ψ then by the assumption E is given locally near y by u′ = 0. Since dim E − dim Z = 2,
by [Chirka 1989, Appendix, Theorem 2] there exists a local coordinate system (v′, v′′, w′) on E such
that the coordinate form of ψ |E : E → D is given by v = 0 and w = w′. Extending functions v′, v′′,
and w′ holomorphically to a neighborhood of y in Y we get a local coordinate system (u′, v′, v′′, w′)
in this neighborhood. Furthermore, the extension w′ can be chosen as w′ = w ◦ψ . Hence ψ is given
locally by u = u′, w = w′, and v = (u′)lq(u′, v′, v′′, w′), where q(0, v′, v′′, w′) is not identically zero. If
q(0, v′, v′′, w′) is independent of v′ or v′′, then replacing v by v− ulq(0, w), we increase l (which is
at least 1 since otherwise ψ(E) is not contained in Z ). On the other hand l cannot be larger than the
minimal zero multiplicity of the (n× n)-minors in the Jacobi matrix of ψ at y. Hence we can suppose
that q(0, v′, v′′, w′) depends on v′ or v′′ in which case l is such a multiplicity. �

Proposition 3.8. Let the assumptions of Lemma 3.7 hold. Suppose also that

−→ Xm
σm
−→ Xm−1

σm−1
−→· · ·

σ2
−→ X1

σ1
−→ X0 := X

is a sequence of simple pseudoaffine modifications such that

(i) there exists a holomorphic map ψm : Y → Xm for which ψ = σ1 ◦ · · · ◦ σm ◦ψm ;

(ii) for ψi = σi+1 ◦ · · · ◦ σm ◦ψm the closure of ψi (E) coincides with Zi ⊂ Di , where Zi and Di are the
center and the divisor of σi+1 respectively;
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(iii) general points of Zi are contained in the smooth parts of X i and Di .9

Then such a sequence cannot be extended to the left indefinitely.

Proof. Let y be a general point in E such that ψi (y) = zi ∈ Zi which implies that near these points
Zi , Di , E, Y, X are smooth. By Lemma 3.7 we can consider local coordinate systems (u′, v′, v′′, w′)
on Y at y and (ui , vi , wi ) on X i at zi such that ψi is given locally by ui = u′, wi = w

′, and vi =

(u′)lq(u′, v′, v′′, w′). By Remark 3.5 (2) for a local coordinate system (ui+1, vi+1, wi+1) on X i+1 the
coordinate form of σi+1 is (ui , vi , wi )= (ui+1, ui+1vi+1, wi+1). Hence a local form of ψi+1 is ui+1 =

u′, wi+1 = w
′, and vi+1 = (u′)li−1q(u′, v′, v′′, w′). That is, in this construction li+1 = li − 1. Since such

powers cannot be negative we get the desired conclusion. �

Remark 3.9. In fact, we showed that m in Proposition 3.8 cannot exceed the minimal zero multiplicity l
of the (n× n)-minors in the Jacobi matrix of ψ from Lemma 3.7.

Similarly, we have the following.

Proposition 3.10. Let σ : X̂→ X be a pseudoaffine modification with center Z , divisor D, and exceptional
divisor D̂. Suppose that none of components of Z is contained in Xsing ∪ Dsing, and the image of every
component of D̂ is of codimension 1 in D. Let

−→ Xn
σn
−→ Xn−1

σn−1
−→· · ·

σ2
−→ X1

σ1
−→ X0 := X

be a sequence of simple modifications with similar conditions on centers and such that σ factors through
the composition of these simple modifications. Then such a sequence cannot be extended to the left
indefinitely without violating the fact that σ factors through the composition.

Proof. For local analytic coordinate systems at general points y ∈ D̂ and z = σ(y) ∈ Z ⊂ X , consider
the zero multiplicity k of the Jacobian of σ at y (clearly this multiplicity is independent of the choice of
local coordinate system and the choice of a general point y) and let ki be the similar multiplicity for the
modification σi ◦ · · · ◦σ1 : X i → X. Since σi+1 : X i+1→ X i contracts the exceptional divisor in X i+1 we
see that ki+1 > ki . On the other hand if σ factors through σi ◦ · · · ◦ σ1 one must have ki ≤ k. This yields
the desired conclusion. �

Definition 3.11. (1) Given two (pseudo)affine modifications σ : X̂→ X and δ : X̃→ X with the same
center Z and divisor D ⊂ X , we say that σ dominates δ if it factors through δ. For instance, consider
the normalization ν : X̃ ′→ X̃ and let δ′ = δ ◦ ν : X̃ ′→ X. Then δ is dominated by δ′.

(2) Let f, g, and h be holomorphic functions on a Stein manifold X and σ : X̂ → X be a simple
pseudoaffine modification with a smooth divisor D = f ∗(0) and a smooth center Z given by a strict
complete intersection f = h = 0. Suppose that Z is also a set-theoretical complete intersection
given by f k

= g = 0 and X̃ ⊂ X ×Cw is given by f kw = g. Then we call the Davis modification
δ : X̃→ X (induced by the natural projection) homogeneous (of degree k) if f I k−1 and g generate
the ideal I k where I is the defining ideal of Z in the ring of holomorphic functions on X.

9Actually, (iii) follows automatically from the Proposition 3.6.
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Lemma 3.12. Let X be a germ of Cn at the origin with coordinates (u, v, w1, . . . , wn−2) and let σ :
X̂ → X and I be as in Definition 3.11 (2) with f = u and h = v. Suppose also that g and δ are as in
Definition 3.11 (2) without δ being a priori homogeneous. Then δ is homogeneous if and only if and only if
the function g is of the form g = evk

+ a, where a is in f I k−1 and e is an invertible holomorphic function.

Proof. Since f = u and I is generated by u and v one can see that f I k−1 is generated by functions
uk, uk−1v, . . . , uvk−1. That is, the ideal I k is generated by f I k−1 and vk and also by f I k−1 and g. This
is possible if and only if g = evk

+ a, where a ∈ f I k−1 and e is an invertible holomorphic function. �

Proposition 3.13. Let σ : X̂→ X and δ : X̃→ X be as in Definition 3.11 (2). Then X̂ is a normalization
of X̃ and in particular σ dominates δ.

Proof. Since normalization is a local operation, by Remark 3.5 (2), we can view X as a germ of Cn at the
origin with coordinates (u, v, w1, . . . , wn−2) such that D is given by u = 0, Z by u = v = 0 (i.e., X̂ can
be viewed as the hypersurface in X ×Cw given by the equation uw = v). By Lemma 3.12 g = evk

+ a,
where a ∈ f I k−1 and e is an invertible holomorphic function. Changing e we can suppose that the Taylor
series of a does not contain monomials divisible by vk. Hence u = g/ f k

= g/uk
= ewk

+ c, where c is a
polynomial in w of degree at most k− 1 whose coefficients are holomorphic functions on X. Thus w is
integral over the ring of holomorphic functions on X̃ which concludes the proof. �

Remark 3.14. (1) Note that for a simple pseudoaffine modification from Definition 3.11 (2) with a
given divisor D the function f is determined uniquely up to an invertible factor. This implies that
for a given k ≥ 1 the notion of a homogeneous modification of degree k from Definition 3.11 (2) is
determined not as much by f and h but by D and the defining ideal I (or equivalently the center Z ).

(2) In particular if δ : X̃→ X is a pseudoaffine modification with a divisor D and a center Z such that
dim Z = dim X − 2 then for a smooth point z of Z that is not in Xsing ∪ Dsing we can say whether δ
is locally homogeneous at z or not (where in the former case there exists a Euclidean neighborhood
U of z in X such that for every connected component Ũ of δ−1(U ) the modification δ|Ũ : Ũ→U is
homogeneous).

Proposition 3.15. Let X be a normal irreducible Stein space which is Cohen–Macaulay, δ : X̃→ X be
a Davis modification with an irreducible divisor D and a center Z of codimX Z = 2 such that none of
the irreducible components of Z is contained in Xsing ∪ Dsing. Suppose also that Z is a strict complete
intersection of the form f = h = 0, where D = f ∗(0) and that at general points of Z this modification δ
is locally homogeneous. Let σ : X̂→ X be a simple pseudoaffine modification associated with divisor D
and center Z. Then X̂ is a normalization of X̃ and thus σ dominates δ.

Proof. First note that X̂ is a normal Stein space by Proposition 3.6. Let z be a general point of Z , i.e.,
z is a smooth point of Z and it is not contained in some subvariety P ⊂ Z of codimZ P ≥ 1 such that
Z ∩(Xsing∪Dsing)⊂ P. Then by Proposition 3.13 there exists a Euclidean neighborhood U of z in X such
that σ−1(U ) is a normalization of δ−1(U ). That is, we have a biholomorphism ψ between σ−1(X \ P)
and a normalization of δ−1(X \P). Since P is of codimension at least 3 in X and δ is a Davis modification
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the codimension of δ−1(P) in X̃ is at least of 2 (because by Remark 3.5(3) δ−1(P)' P ×C). Hence the
Hartogs theorem implies that ψ extends to a biholomorphism between X̂ and a normalization of X̃ which
is the desired conclusion. �

4. Semifinite modifications

Notation 4.1. Let T be a germ of an analytic set at the origin o of Cm, Hol(T ) be the ring of holomorphic
functions on T, and D = T ×C. We consider a hypersurface Z in D such that π |Z : Z → T is finite
where π : D→ T is the natural projection. We also suppose that Z coincides (as a set) with the zeros of
an analytic function h.

Lemma 4.2. Let Notation 4.1 hold and w be a coordinate on the second factor of D = T ×C. Then h
can be chosen as a monic polynomial in w with coefficients from Hol(T ), i.e., h ∈ Hol(T )[w].

Proof. Let π−1(o) ∩ Z consist of points z1, . . . , zn , where zi = (o, wi ) ∈ T × C. By the Weierstrass
preparation theorem, for every zi there is a Euclidean neighborhood in D in which h coincides with
ei hi (w), where ei is an invertible function and hi ∈ Hol(T )[w] is a monic polynomial in w−wi . Note
that Z coincides with the zeros of the product h1h2 · · · hm because of the finiteness of π |Z : Z→ T. Thus
replacing h with the product h1h2 · · · hm we get the desired conclusion. �

Lemma 4.3. Let Notation 4.1 hold and the zero multiplicity of h at general points of Z be n. Then
g = h1/n is a holomorphic function on D and in particular the defining ideal of Z in the ring Hol(T )[w]
is the principal ideal generated by g.

Proof. By Lemma 4.2 we can suppose that h is a monic polynomial in w. Consider the restriction of h
to any fiber. It is a polynomial whose roots have multiplicities divisible by n (since for general fibers
such multiplicities are exactly n). Thus the restriction of g to any fiber of π : D→ T can be chosen as a
nonzero monic polynomial in w. Therefore, choosing such a restriction on π−1(o) we define by continuity
a unique branch of h1/n on D as g. Note that g is holomorphic outside a subset K = Z ∩ π−1(Tsing)

and because of the assumption on h we see that g = wk
+ rk−1w

k−1
+ · · ·+ r1w+ r0, where each ri is a

continuous function on T holomorphic on T \ K. Hence the first statement will follow from the claim.

Claim. Let g be a (not a priori continuous) function on D, holomorphic outside a proper analytic subset K
that does not contain any fiber of π . Suppose also that g is a polynomial inw. Then g is holomorphic on D.

Taking a smaller T, if necessary, one can suppose that the image K0 of K under the natural projection
D→Cw is relatively compact. In particular, the function rkw

k
0+rk−1w

k−1
0 +· · ·+r1w0+r0 is holomorphic

on T for every w0 in C \ K0. Since we have an infinite number of such w0’s, every coefficient ri is also
holomorphic on T, which concludes the proof of the Claim.

To see that Z is a principal divisor in D consider any function f ∈ Hol(T )[w] vanishing on Z . Then
the quotient f/g is again holomorphic on D by the Claim which yields the desired conclusion. �

Lemma 4.4. Let Notation 4.1 hold and T be singular. Then so is Z.
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Proof. Assume that Z is smooth at some point z ∈ Z ∩ π−1(o). Let g be a function as in Lemma 4.3.
Extend g to a function g̃ ∈Hol(Cm, o)[w] whose zeros define an extension Z̃ of Z . Note that if the partial
derivative of g̃ with respect to w is nonzero at z then by the implicit function theorem Z̃ is biholomorphic
to (Cm, o) and therefore Z is locally biholomorphic to T which implies that Z is singular. Hence we
assume that this derivative is zero.

Let I be the defining ideal of T in Hol(Cm, o) and k be the dimension of T. Choose any m−k elements
from I and consider their Jacobi matrix (with respect to coordinates z1, . . . , zm of Cm). Since T is singular
at o, any (m − k)-minor M of this matrix vanishes at o. By Lemma 4.3 the defining ideal L of Z in
(Cm, o)×Cw is generated by I and g̃. Take any m+1−k elements from L and consider their Jacobi matrix
with respect to the coordinates (w, z1, . . . , zm). It follows from the previous argument about the partial
derivative of g̃ with respect to w and about the (m− k)-minor M that any (m+ 1− k)-minor of this new
Jacobi matrix vanishes at o. This is contrary to the fact that Z is smooth at z which concludes the proof. �

Example 4.5. Lemma 4.4 is one of the central technical results in this paper. The assumption that Z
coincides with zeros of a global analytic function is very important. Indeed, consider the case when T is a
semicubic parabola x2

− y3
= 0 in C2

x,y . Then there is a closed immersion of C into D = T ×C⊂ C3
x,y,w

given by t 7→ (t3, t2, t) such that the image is a smooth Weil divisor whose projection to the singular T
is finite. Lemma 4.4 is not applicable here because this Weil divisor is not Q-Cartier.

Remark 4.6. If T is not unibranch at o then the argument is much easier and, furthermore, Z is not
unibranch at any point z0 above o as well. Indeed, let T1 and T2 be distinct irreducible components of
T at o. Then D has irreducible branches T1×C and T2×C meeting along the line L = o×C. Since
the zeros of h contain the point z0 ∈ L but not the line L itself the zeros Zi of h in Ti ×C produce two
different branches Z1 and Z2 of Z at z0.

Proposition 4.7. Let T be an affine algebraic variety, D = T ×C, and Z be an algebraic hypersurface
in D such that π |Z : Z→ T is finite where π : D→ T is the natural projection. Suppose that for every
point t0 ∈ T there is a Euclidean neighborhood U ⊂ T such that Z ∩π−1(U ) is an analytic Q-principal
divisor in π−1(U ), i.e., for some natural k > 0 and a holomorphic function g on π−1(U ) the divisor
k Z ∩π−1(U ) coincides with g∗(0).

Then Z is an effective reduced principal divisor in D.

Proof. Let w be a function on D = T ×C induced by a coordinate on the second factor. The field C(Z)
of rational functions on Z is a finite separable extension of the field C(T ) and it is generated by w|Z
over C(T ). Let g(w)= wn

+ rn−1(t)wn−1
+ · · ·+ r1(t)w+ r0(t) be the minimal monic polynomial for

w over C(T ). In particular Z ∩π−1(U ) is given by the zeros of this rational function g. By Lemma 4.3
Z ∩π−1(U ) is a principal divisor in π−1(U ) which implies that the function g is holomorphic. Therefore
g is regular (e.g., see [Kaliman 1991, Theorem 5]). This yields the desired conclusion. �

Definition 4.8. Let σ : X̂→ X be an affine modification of normal affine algebraic varieties such that X
is Cohen–Macaulay and
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(a) its divisor D = f ∗(0) (where f ∈ C[X ]) is a reduced principal divisor in X isomorphic to a direct
product D ' T ×C;

(b) the restriction π |Z : Z→ T of the natural projection π : D→ T to the center Z of σ is finite;

(c) none of irreducible components of Z is contained in the singularities of X (note that for the
singularities of D a similar fact also holds);

(d) for any point z of Z there is a Euclidean neighborhood U in X for which the restriction σ |Û : Û→U
of σ to Û = σ−1(U ) factors through some Davis pseudoaffine modification δ : Ũ → U with the
following property: the restriction of δ over a neighborhood U ′ ⊂U of any general point z′ ∈ Z ∩U
is homogeneous of degree k (where k does not depend on different irreducible components of Z ∩U ).

Then we call such a σ a semifinite affine modification.

Proposition 4.9. Let σ : X̂ → X be a semifinite affine modification with D ' T × C and Z as in
Definition 4.8. Then σ dominates a simple modification (with the same center and divisor) and if T is
singular so is the center Z.

Proof. Let a Davis modification δ : Ũ →U from Definition 4.8 (d) be defined by the ideal ( f k, g). By
condition (d), δ is locally homogeneous at general points of Z∩U which in combination with Lemma 3.12
implies that for some k ≥ 1 the divisor k Z ∩U coincides with g∗(0) ∩U. That is, we are under the
assumptions of Proposition 4.7. Hence Z = h∗(0), where h ∈ C[D]. Thus extending h to a regular
function on X (denoted by the same symbol) we see that Z is a strict complete intersection given by
f = h = 0. These functions f and h induce a simple affine modification τ : X ′→ X with divisor D and
center Z such that X ′ is a normal affine algebraic variety by Proposition 2.6. Furthermore, X̂ and X ′ are
also normal as analytic sets by [Zariski and Samuel 1960, Chapter 13, Theorem 32]. By Proposition 3.15
τ−1(U ) is an analytic normalization of Ũ . Since X̂ is normal then the holomorphic map σ−1(U )→ Ũ
(induced by the domination of δ by σ ) factors through the normalization of Ũ . This yields a desired
holomorphic map from X̂ to X ′ which is a morphism since its restriction over X \ D is an algebraic
isomorphism. That is, σ dominates τ . The second statement follows from Lemma 4.4. �

5. Applications of Kambayashi’s theorem

Notation 5.1. In this section ϕ : X → B will be a morphism of complex factorial affine algebraic
varieties, 8 will be a Ga-action on X which preserves the fibers of ϕ. We do not assume a priori that the
C[B]-algebra C[X ]8 of 8-invariant regular functions is finitely generated.

However, such an algebra can be viewed (and will be viewed) as a direct limit lim
−−→

Aα of its finitely
generated C[B]-subalgebras Aα (with respect to the partial order generated by inclusions) where α belongs
to some index set and each Aα can be treated as the ring C[Qα] of regular functions of some affine
algebraic variety Qα . Replacing Aα with its integral closure we suppose that each of these Qα is normal
(the fact that this transition preserves affineness is a standard result, e.g., [Eisenbud 1995, Theorem 4.14]).
Furthermore, by the Rosenlicht Theorem (e.g., see [Vinberg and Popov 1989, Theorem 2.3]) Qα can
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be chosen so that the morphism %α : X→ Qα induced by the natural embedding Aα ⊂ C[X ] separates
general orbits of 8. As in [Flenner et al. 2016] we introduce the following.

Definition 5.2. A normal affine variety Qα as before will be called a partial quotient of X by 8 and the
morphism %α : X→ Qα (separating general orbits of 8) will be called a partial quotient morphism.

Remark 5.3. Note that including the coordinate functions of the morphism ϕ into a ring Aα we can
always choose a partial quotient morphism that is constant on the fibers of ϕ.

Theorem 5.4. Let ϕ : X→ B and8 be as in Notation 5.1 and the generic fiber of ϕ be a three-dimensional
variety Y (over the field K of rational functions on B). Let K̃ be the algebraic closure K and Ỹ be the
variety over K̃ obtained from Y by the field extension. Suppose that % : X → Q is a partial quotient
morphism such that ϕ factors through %. Suppose also that the ring of invariants of the Ga-action on Ỹ
(induced by 8) is a polynomial ring in two variables over K̃ . Then there is a morphism ψ : Q→ B×C2

such that for some nonempty Zariski dense open subset B∗ ⊂ B the restriction of ψ over B∗ is an
isomorphism.

Proof. By the Kambayashi theorem [1975] the ring of invariants of the induced action on Y is also a
polynomial ring in two variables over K. Hence for some B∗ as above and X∗ = ϕ−1(B∗), the induced
action on X∗ has the categorical quotient isomorphic to B∗ × C2. Assume that B \ B∗ is a principal
effective divisor, which can be done without loss of generality. Let f be a regular function on B
with zero locus B \ B∗ (we denote the lifts of f to X or Q by the same symbol). For every regular
function h ∈ C[X∗] there exists natural k for which f kh extends to a regular function on X. Hence
for sufficiently large k1 and k2 the composition of the quotient morphism %0 : X∗→ B∗×C2

u1,u2
with

the isomorphism κ : B∗×C2
u1,u2
→ B∗×C2

u1,u2
given by (b, u1, u2) 7→ (b, f k1u1, f k2u2) extends to a

morphism τ : X→ B×C2 (note that τ |X∗ : X∗→ B∗×C2 can be viewed now as the quotient morphism).
Similarly, since f ∈C[X ] and each ui ∈C[X∗] are8-invariant we see that f k1u1 and f k2u2 can be viewed
as regular functions on the normal variety Q. Thus τ = ψ ◦ θ , where θ : X→ Q and ψ : Q→ B×C are
morphisms. By the universal property of quotient morphisms, θ |X∗ : X∗→ Q \ f −1(0) factors through
τ |X∗ , which implies that ψ is invertible over B∗. This yields the desired conclusion. �

Remark 5.5. By construction ψ is an affine modification. Another observation is that if the general
fibers of ϕ do not admit nonconstant invertible functions then for every irreducible divisor T in B the
variety ϕ−1(T ) is reduced and irreducible by Proposition 1.6. Actually, in this case there is no need to
assume that B is factorial since it follows automatically from the fact that X is factorial.

Example 5.6. Let Notation 5.1 hold and every general fiber of ϕ be isomorphic to the same affine
algebraic threefold V. Suppose that 8 induces an action on each general fiber of ϕ with the categorical
quotient isomorphic to C2. Then we claim that the above conclusion about the partial quotient Q as a
modification of B×C2 over B is valid.

Indeed, by [Kraft and Russell 2014] there exists a Zariski dense open subset B∗ ⊂ B and an unramified
covering B̂∗→ B∗ such that X̂∗ = X×B∗ B̂∗ is naturally isomorphic to B̂∗×V over B̂∗. In particular, the



242 Shulim Kaliman

induced action on the generic fiber of X̂∗→ B̂∗ has the ring of invariants isomorphic to the polynomial
ring K̂ [x1, x2] where K̂ is the field of rational functions on B̂∗. Note that this ring is obtained from the ring
of invariants on the generic fiber Y of X∗→ B∗ via a field extension [K̂ : K ]. Hence by the Kambayashi
theorem the latter ring of invariants is K [x1, x2] and we are under the assumption of Theorem 5.4.

In fact, as suggested by the referee, we can strengthen Theorem 5.4 and Example 5.6 as follows:

Theorem 5.7. Let Notation 5.1 hold and let 8 induce an action on each general fiber of ϕ with the
categorical quotient isomorphic to C2. Let Y and K be as in Theorem 5.4. Then the ring of invariants
of the Ga-action on Y (induced by 8) is a polynomial ring in two variables over K. In particular, for a
partial quotient morphism % : X→ Q for which ϕ factors through % (i.e., for some morphism κ : Q→ B
one has ϕ = κ ◦ %) there is a morphism ψ : Q→ B×C2 over B such that for a nonempty Zariski dense
open subset B∗ ⊂ B the restriction of ψ over B∗ is an isomorphism.

In preparation for the proof of this theorem we need the next (certainly well-known) fact.

Proposition 5.8. Let κ : Q→ B be a dominant morphism of algebraic varieties such that Q is normal.
Then for a general point b ∈ B the variety κ−1(b) is normal.

Proof. Replacing B by a Zariski dense open subset (and Q by its preimage) we can suppose that κ is
flat [Grothendieck 1964, Théorème 6.9.1]. Let ω be a generic point of B. Then the fiber of κ over ω is
normal (e.g., see [Atiyah and Macdonald 1969, Proposition 5.13]) which is equivalent to the fact that
this fiber is geometrically normal10 since we work over a field of characteristic zero. On the other hand
the set of (not necessarily closed) points in B for which the fibers over them are geometrically normal
is open [Grothendieck 1966, Théorème 12.1.6]. Since this set is nonempty it contains general (closed)
points of B and we are done. �

Proof of Theorem 5.7. Let Qb be the fiber κ−1(b) over a general point b ∈ B and Qb
' C2 be the

categorical quotient of the action 8|ϕ−1(b). By the universal property of quotient morphisms one has a
morphism ψb : Qb

→ Qb. Since % separates general orbits ψb must be birational.
Assume that for a curve Cb ⊂ Qb the image ψb(Cb) is a point qb ∈ Qb. By Corollary 1.7 the preimage

of Cb in ϕ−1(b) is a surface Sb, i.e., %(Sb)= qb. By [Shafarevich 1994, Chapter I, Section 6.3, Corollary]
the closure T of the set {q ∈ Q |dim %−1(q)= 2} is a subvariety. Let L be the union of the one-dimensional
components of T (it is nonempty since qb ∈ T for general b). Note that %−1(L) is a closed 8-stable
threefold V. By the Hironaka flattening theorem [Hironaka 1975] there exists of a proper birational
morphism π : Q̂ → Q such that for the irreducible component X̂ of X ×Q Q̂ dominant over X the
natural projection %̂ : X̂ → Q̂ is flat, i.e., all of its fibers are one-dimensional or empty. This implies
π−1(L) contains a surface P̂ = %̂(V̂ ) where V̂ is the proper transform of V in X̂ . Choose a curve Ĉ ⊂ P̂
whose image in B is dense and such that %̂−1(ĉ) 6= ∅ for a general point ĉ ∈ Ĉ . Let R̂ be a closed

10Recall that a scheme Z over a field k is geometrically normal if it is normal and, furthermore, it remains normal under any
field extension of k. In the case of a perfect field k (e.g., a field of characteristic zero) every normal scheme is automatically
geometrically normal.



Proper Ga-actions on C4 preserving a coordinate 243

surface in Q̂ that meets P̂ along Ĉ and let R be the closure of π(R̂) (note that R contains L). Then
the closure of %−1(R \ L) contains a 8-stable threefold W that meets V over general points of B (since
%̂−1(ĉ) 6= ∅). Because X is factorial the threefold W is the zero locus of a regular function h ∈ C[X ]
which, by construction, does not vanish on general fibers of %. That is, it is constant on general fibers
and, therefore, 8-invariant. By construction h is not constant on the surface V ∩ ϕ−1(b) for general b
(this follows from the fact that W meets V ∩ϕ−1(b) along a curve). Enlarging a set of generators of the
ring C[Q] by h (and taking the integral closure to preserve the normality of Q assumed in Definition 5.2)
we obtain another partial quotient for which the image of V is a surface. That is, the set T as before
becomes at most finite and for a general b ∈ B this curve Cb does not exist.

Hence the morphism ψb : Qb
→ Qb is quasifinite now in addition to being birational. Assume that it

is not an embedding. Then by the Zariski main theorem Qb is not normal for general b ∈ B, contrary to
Proposition 5.8. Hence ψb : Qb

→ Qb is an embedding.
Let Db be the complement to the image of Qb in Qb. Suppose that Db is a curve for a general

b ∈ B (since Qb and Qb are affine the alternative is an empty Db). The set Qb \ %(ϕ
−1(b)) consists of

Db and a finite set by Corollary 1.7. Since %(X) is a constructible set by [Hartshorne 1977, Chap. II,
Exercise 3.19] we see that Q \ %(X) is an algebraic variety. Consider the irreducible components of
this variety which are dominant over B and remove those of them that have dimension dim B. Then we
are left with D :=

⋃
b∈B Db because Qb \ (%(ϕ

−1(b))∪ Db) is finite. That is, D is an algebraic variety
and Q \ D is a quasiaffine variety. The general fibers Qb \ Db of the natural morphism Q \ D→ B are
isomorphic to C2. By [Kaliman and Zaidenberg 2001] for a Zariski dense open subset B∗ ⊂ B the variety
Q∗ = κ−1(B∗) \ D naturally isomorphic to B∗×C2. Hence for X∗ = ϕ−1(B∗) we get a partial quotient
morphism %|X∗ : X∗→ B∗×C2.

Let %′ : X∗→ Q′ be another partial quotient morphism for 8|X∗ into a normal variety Q′ (over B∗)
such that % factors through %′, i.e., % = θ ◦ %′ for a morphism θ : Q′→ B∗×C2. Suppose that Q′b is the
fiber of the natural morphism Q′→ B∗ over a point b ∈ B∗, i.e., the restriction of θ yields a morphism
θb : Q′b→ Qb ' Qb

' C2. By the universal property of quotient morphisms we have a natural morphism
Qb
→ Q′b, i.e., θb is invertible. Hence θ is bijective. By the Zariski main theorem, θ is an isomorphism.

This implies that %|X∗ : X∗→ B∗×C2 is the categorical quotient morphism. In particular, for Y and K
as in Theorem 5.4 the ring of invariants of the Ga-action on Y (induced by 8) is a polynomial ring in two
variables over K. Now the desired conclusion follows from Theorem 5.4. �

6. Criterion for existence of an affine quotient

Notation 6.1. Let B be a unibranch germ of a smooth complex algebraic curve at point o (i.e., o is the
zero locus of some f ∈ C[B]) and ϕ : X→ B be a morphism from a complex factorial affine algebraic
variety X equipped with a Ga-action 8 which preserves each fiber of ϕ. We suppose also that % : X→ Q
is a partial quotient morphism of the action 8. Let ψ : Q→ Q0 be a morphism over B into a smooth
affine algebraic variety Q0 over B and τ = ψ ◦ %. The divisor in X (resp. Q, resp. Q0) over o will be
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denoted by E (resp. D, resp. D0). We suppose that the morphism Q0→ B is smooth (and in particular D0

is a smooth reduced divisor) and that ψ induces an isomorphism Q \D→ Q0 \D0. We suppose also that
E = ϕ∗(o) is reduced and denote by Z0 the closure of τ(E) in D0. We consider the Stein factorization
(e.g., see [Hartshorne 1977, Chapter III, Corollary 11.5]) of a proper extension E→ Z0 of the morphism
τ |E : E → Z0. Its restriction to E enables us to treat τ |E : E → Z0 as a composition of a surjective
morphism λ : E→ V with connected general fibers and a quasifinite morphism θ : V → Z0.

Theorem 1.1 implies the following:

Lemma 6.2. Let Notation 6.1 hold and Z0 (and therefore ψ(D)) be Zariski dense in D0. Then ψ is an
isomorphism.

Convention 6.3. With an exception of Corollary 6.10 we suppose throughout this section that Z0 is a
divisor in D0 and furthermore

(i) the morphism θ : V → Z0 from Notation 6.1 is in fact finite;

(ii) for every point z0 ∈ Z0 the preimage τ−1(z0) is a surface.

Remark 6.4. Note that Convention 6.3 holds automatically when E is isomorphic to C3 (under the
assumption that Z0 is a curve). Indeed, τ−1(z0) cannot be three-dimensional (otherwise it coincides with
E and τ(E) is a point, not a curve). Then both V and Z0 must be polynomial curves and a nonconstant
morphism of polynomial curve is always finite. In fact, this argument works not only when E ' C3. It is
enough to assume that there is no nonconstant morphism from E into any nonpolynomial curve.

Notation 6.5. Let Notation 6.1 hold. Our aim is to present ψ : Q→ Q0 over B as a composition

Q =: Qn
σn
−→ Qn−1

σn−1
−→· · ·

σ2
−→ Q1

σ1
−→ Q0

of simple affine modifications σi : Qi → Qi−1 over B. Let ψi = σ1 ◦ · · · ◦σi : Qi → Q0 and suppose that
ψ can be presented as ψ = ψi ◦ δi for a modification δi : Q→ Qi . Let τi = δi ◦ % and thus τ = ψi ◦ τi .
We suppose that the zero locus of f ◦ψi is reduced and coincides with Di :=ψ

−1
i (D0) (which is nothing

but the divisor of modification σi+1) while the center Zi of σi+1 coincides with τi (E). Note that under
such assumptions every Qi is normal and Cohen–Macaulay by Proposition 2.6 and induction starting
from smooth Q0 and D0.

Lemma 6.6. Suppose that for some i one has a sequence of simple affine modifications

Qi
σi
−→ Qi−1

σi−1
−→· · ·

σ2
−→ Q1

σ1
−→ Q0

such that ψ : Q → Q0 factors through ψi : Qi → Q0 and, therefore, ψ = ψi ◦ δi . Let δi : Q → Qi

be a semifinite affine modification. Then the sequence can be extended to a sequence of simple affine
modifications

Qi+1
σi+1
−→ Qi

σi
−→· · ·

σ2
−→ Q1

σ1
−→ Q0

such that Di (resp. Zi ) is the divisor (resp. center) of σi+1 and ψ : Q → Q0 factors through ψi+1 :

Qi+1→ Q0, i.e., ψ = ψi+1 ◦ δi+1.
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Proof. The statement follows from Proposition 4.9. �

In order to establish when δi is semifinite we need the following technical fact.

Lemma 6.7. For any point x0 ∈ E there is the analytic germ S at x0 of an algebraic subvariety of X of
dimension dim X − 2 such that

(i) S0 := τ(S) is a germ of an analytic hypersurface in Q0 at z0 = τ(x0);

(ii) the map τ |S : S→ S0 is finite;

(iii) for every general point z ∈ Z0 near z0 there is a local coordinate system (u, v, w) on Q0 at z for
which D0 is given locally by u = 0, Z0 by u = v = 0, and every irreducible branch of the germ of
S0 at z by an equation of form e := v − uld(u, w) = 0 where d is holomorphic and l is the zero
multiplicity of the function e ◦ τ at general points of E.

Proof. Consider two regular functions h and e on E with the set P of common zeros such that near any
general point P is locally a strict complete intersection given by h = e = 0 and for z0 = τ(x0) the set
P ∩ τ−1(z0) contains x0 as an isolated component (which is possible since τ−1(z0) is a surface). Extend
h and e regularly to X. Without loss of generality we can suppose that the set of common zeros of these
extensions is an (n− 2)-dimensional subvariety T of X where n = dim X. Denote by S (resp. R) the
analytic germ of T (resp. P) at x0 and by T0 the closure of τ(T ) in Q. Let S0 be the analytic germ of the
hypersurface T0 ⊂ Q0 at z0. For the restriction κ : S→ T0 of τ the preimage κ−1(z0)= x0 is a singleton.
Hence [Grauert and Remmert 1979, Chapter 1, Section 3, Theorem 2] implies that the holomorphic map
τ |S : S→ S0 is finite. Thus we have (i) and (ii).

By construction S meets E transversely at a general point x of R. Let z = τ(x) and (u′, v′, v′′, w′)
(resp. (u, v, w)) be a local analytic coordinate system at x ∈ X (resp. z ∈ Q0) as in Lemma 3.7. That is,
locally E (resp. D0, resp. Z0) is given by u′ = 0 (resp. u = 0, resp. u = v = 0) and τ is given by u = u′,
w = w′, and v = (u′)lq(u′, v′, v′′, w′).

The finiteness of τ |S implies that τ |S∩E : S ∩ E → S0 ∩ D0 is étale over the general point z ∈ Z0.
Thus E ∩ S is given locally by equations of form v′ = h1(w

′) and v′′ = h2(w
′), where h1 and h2 are

holomorphic functions. Since S meets E transversely we also see that S must be given locally by equations
of form v′ = h1(w

′)+ u′g1(u′, v′, v′′, w′) and v′′ = h2(w
′)+ u′g2(u′, v′, v′′, w′) where g1 and g2 are

holomorphic functions. Furthermore, by the implicit function theorem these equations can be rewritten as
v′= h1(w

′)+u′g̃1(u′, w′) and v′′= h2(w
′)+u′g̃2(u′, w′) for some other holomorphic functions g̃1 and g̃2.

Plugging these expressions for v′ and v′′ with u′ = u and w = w′ into equation v = (u′)lq(u′, v′, v′′, w′)
we get the desired form of equation e = 0 in (iii). Note that the function e ◦ τ is given by

e ◦ τ(u′, v′, v′′, w′)= (u′)l[q(u′, v′, v′′, w′)h(u′, w′)].

Since q(0, v′, v′′, w′) depends on v′ or v′′ by Lemma 3.7, we see that the expression in the brackets is
not identically zero on E , which shows that l is the zero multiplicity of e ◦ τ at a general point of E . �

Lemma 6.8. The morphism δi is always semifinite unless Zi = τi (E) is dense in Di .
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Proof. As we mentioned in Notation 6.5, the variety Qi is normal and Cohen–Macaulay, and the divisor
Di = ( f ◦ψi )

∗(0) is principal. Furthermore, by construction, Di = Zi−1×C for i ≥ 1. Thus we have
condition (a) from Definition 4.8. The finite morphism V → Z0 (from Notation 6.1 and Convention 6.3)
factors through maps θi : V→ Zi , Zi→ Zi−1 and Zi−1→ Z0 each of which must be, therefore, finite, i.e.,
we have condition (b) from Definition 4.8. Condition (c) follows from construction and Proposition 2.6.
It remains to check condition (d).

Consider the following construction of an analytic germ of an algebraic variety S in X of dimS = n−2
where dim X = n. Let M be the set of points in V above z0 (by Convention 6.3 M is finite and nonempty).
For every y ∈ M choose any x ∈ E above y. Consider the analytic germ S(y) of an (n− 2)-dimensional
algebraic subvariety of X at x such that S0(y) := τ(S(y)) is an analytic hypersurface in Q0 and the
restriction of τ yields a finite map S(y)→ S0(y) (the existence of such an S(y) is provided by Lemma 6.7).

Let V (y) be the analytic germ of V at y and k(y) be the degree of the finite morphism E∩S(y)→V (y)
induced by λ : E → V from Notation 6.1. In general k(y) may depend on y but we allow S(y) to be
nonreduced and then, replacing each S(y) (and, therefore, S0(y)) with a multiple of it, we can suppose
that k(y)= k for every y ∈ M.11 Since the variety Q0 is smooth every S0(y) coincides with h∗0y(0) for
some holomorphic function h0y . By Lemma 6.7 for a local analytic coordinate system (u, v, w) at a
general point z ∈ Z0 this function h0y can be viewed as (v− uld(u, w))k where l is the zero multiplicity
of (v− uld) ◦ τ on E .

Let S =
⋃

y∈M S(y), S0 =
⋃

y∈M S0(y), and h0 =
∏

y∈M h0y , i.e., S0 = h∗0(0). Then by construction
τ |S : S→ S0 is finite and S0 meets D0 along the analytic germ of Z0 at z0. For m being the degree of the
finite morphism θ : V → Z0 from Convention 6.3, this implies that near point z the function h0 can be
viewed as a product of km factors of the form v− uld(u, w). Hence the zero multiplicity of h0 ◦ τ at
general points of E is klm.

Let Si (y)= τi (S(y)) and Si = τi (S)=
⋃

y∈M Si (y). Note that the finiteness of τ |S : S→ S0 implies
that Si is an analytic set in Qi and (τi )|S : S→ Si is also finite. Furthermore, by construction Si meets Di

along the union of analytic germs of Zi at the points from ψ−1
i (z0)∩Si . Assume by induction that for a

germ of some holomorphic function hi on Qi the variety Si coincides with h∗i (0) and the zero multiplicity
of hi ◦ τi at general points of E is kli mi where mi is the degree of the finite morphism θi : V → Zi and
li = l − i (note that li must be greater than zero since otherwise Zi is dense in Di ).

Hence the function hi/ f kmi has a holomorphic lift to the normal variety X. Furthermore, it is constant
along each fiber of % and it can be also pushed to a holomorphic function on the normal variety Q. This
implies that δi factors through the Davis modification κ : Q′→ Qi of Qi along Di with ideal generated
by f kmi and hi . By Lemma 6.7 for a general point z′ of Zi there is a Euclidean neighborhood with a local
coordinate system (u′, v′, w′) such that Di is given locally by u′ = 0, Zi by u′ = v′ = 0, and up to an
invertible factor hi can be presented locally as a product of kmi factors of form v′− u′d(u′, w′). Hence

11We use here the following definition: if r is the degree of a finite morphism W →U of reduced analytic sets and Wm is the
m-multiple of W then we put the degree of the morphism Wm→U equal to mr . Treating Wm as a union of m disjoint samples
of W one can see that this extended notion of degree has all the properties of the standard degree.
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by Lemma 3.12 κ is locally homogeneous at z′. Thus δi is semifinite and there is a simple modification
σi+1 : Qi+1→ Qi as required in Lemma 6.6.

In order to finish induction it remains to prove the existence of a function hi+1. Note that over z′ the
function hi ◦σi+1 has zero multiplicity kmi at general points of Di+1⊂ Qi+1. Thus hi+1= hi ◦σi+1/ f kmi

is a regular function on the normal variety Qi+1 that does not vanish at general points of Di+1. In
particular hi+1 vanishes only on the proper transform of Si which is, by construction, Si+1. This is the
desired function and we are done. �

Theorem 6.9. Let Notation 6.1 and Convention 6.3 hold. Then C[X ]8 is finitely generated and Q= X//8
coincides with the affine algebraic variety Qn from Notation 6.5 for some n.

Proof. By Proposition 3.8 the sequence

Qn
σn
−→ Qn−1

σi
−→· · ·

σ2
−→ Q1

σ1
−→ Q0

of simple modifications from Notation 6.5 cannot be extended indefinitely to the left. Hence by Lemmas
6.6 and 6.8 we can suppose that for some n the image τn(E) is dense in Dn . Suppose that % : X→ Q is
any partial quotient morphism over Qn . Then δn(D) is dense in Dn since τn factors through δn . Then by
Lemma 6.2 Q is isomorphic to Qn .

Recall that C[X ]8 = lim
−−→

C[Qα], where Qα is a partial quotient. Since every such a quotient over Qn

is Qn itself we see that C[X ]8 = C[Qn], which yields the desired conclusion. �

Corollary 6.10. Let X be four-dimensional and let Notation 6.1 hold without assuming Convention 6.3.
Suppose that E admits a nonconstant morphism into a curve if and only if this curve is a polynomial one.

Then Convention 6.3 holds and thus C[X ]8 is finitely generated. In particular Statement (1) of
Theorem 0.2 is true.

Proof. By Remark 6.4, Convention 6.3 is true if Z0 is not a point. Assume it is a point z0. Since Q0

and D0 = f ∗(0) are smooth we can suppose that z0 is locally a strict complete intersection given by
f = g1 = g2 = 0. Note that gi ◦ τ vanishes on E . Hence (gi/ f ) ◦ τ is a regular Ga-invariant function
on the normal variety X. This implies that ψ : Q→ Q0 factors through σ1 : Q1→ Q0, where σ1 is the
simple modification along D0 with the ideal generated by f, g1 and g2. By construction Q1 is smooth
and the exceptional divisor is D1 ' C2. Thus we can replace the pair (Q0, D0) with (Q1, D1). If the
center of ψ after this replacement is still a point we observe that it is again a strict complete intersection
f = h1 = h2 = 0 with hi = (gi/ f ) ◦ σ1. That is, the zero multiplicity of the lift hi (to X ) on E is less
than the one of gi ◦ τ . Continue this procedure. As soon as one of these multiplicities becomes zero the
variety Z0 becomes at least a curve. Thus we are done. �

Another consequence of the equality Q = Qn in Theorem 6.9 is that the fiber of the morphism Q→ B
over o is Dn ' Zn−1×C. By the assumption of Theorem 0.2, Zn−1 is a polynomial curve. Hence:

Corollary 6.11. Statement (2) of Theorem 0.2 is true.
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7. Proper actions

Definition 7.1. Recall that an action of an algebraic group G on a variety X is proper if the morphism
G× X→ X × X that sends (g, x) ∈ G× X to (x, g.x) ∈ X × X is proper.

It is well known that every proper Ga-action is automatically free. Some geometrical properties of
such actions are described below.

Proposition 7.2. Let X be a normal affine algebraic variety equipped with a proper Ga-action 8 and
let Ci be a sequence of general orbits of 8. Suppose that C ⊂ X is a closed curve such that for every
c ∈ C and every neighborhood V ⊂ X of c (in the standard topology) there exists i0 for which Ci meets V
whenever i ≥ i0. Then C is an orbit of 8, i.e., C ' C (in particular it is smooth and connected).

Proof. Assume that C meets two disjoint orbits C ′ and C ′′ of 8 and choose points c′i , c′′i ∈ Ci such that
c′i→ c′ ∈C ′∩C and c′′i → c′′ ∈C ′′∩C as i→∞. Note that c′′i = ti .c′i . This sequence of numbers {ti } in
the group C+ goes to∞. Indeed, otherwise switching to a subsequence we can suppose that limi→∞ ti = t
and by continuity c′′ = t.c′, which is impossible since the last two points are in distinct orbits. But this
implies that the preimage (in G × X ) of a small neighborhood of the point (c′, c′′) ∈ X × X contains
points of form (ti , c′i ) ∈ C+× X going to infinity, contrary to properness.

Hence C meets only one orbit O of 8. Hence C \ O = ∅, since otherwise C meets other orbits.
Therefore, C = O ∩C which implies that C = O ' C (in particular, 8 is free) and we are done. �

Corollary 7.3. Suppose that for some q ∈ Q the fiber %−1(q) is a curve. Then %−1(q)' C.

Let us fix notation for the rest of this section.

Notation 7.4. We suppose that B is a unibranch germ of a smooth complex algebraic curve at point
o = f ∗(0) (where f ∈ C[B]) and ϕ : X → B is a morphism from a complex factorial affine algebraic
variety X equipped with a Ga-action 8 which preserves each fiber of ϕ and such that the fiber E = ϕ∗(o)
is reduced.

We suppose also that Convention 6.3 is true for some partial quotient morphism % : X → Q of the
action 8 and a morphism ψ : Q → Q0 into a smooth affine algebraic variety Q0 over B described
in Notation 6.1. Recall that in this case by Theorem 6.9 C[X ]8 is finitely generated and Q = X//8
coincides with an affine algebraic variety Qn from Notation 6.5 for some n, and, particular, in that notation
τn : X → Qn is the quotient morphism. Furthermore, let Dn be the divisor in Qn over o ∈ B. Then it
follows from the construction of Qn that Dn ' Zn−1×C and from the proof of Theorem 6.9 that τn(E)
is dense in Dn .

Proposition 7.5. Let α : E→ R be the quotient morphism of the restriction of 8 to E. Then there is a
natural affine modification β : R→ Dn over Zn−1.

Proof. The density of τn(E) in Dn implies that for a general point q ∈ Dn its preimage τ−1
n (q) is a curve.

By Corollary 7.3 this curve is isomorphic to C.
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By the universal property of quotient morphisms the map τn|E : E→ Dn factors through α, i.e., there
exists β : R→ Dn for which τn|E = β ◦α. Since τn−1 (which maps E onto Zn−1) factors through τn we
see that β is a morphism over Zn−1. Note that β−1(q) is a point since τ−1

n (q) is a connected curve. Thus
β is birational. Any birational morphism of affine algebraic varieties is an affine modification [Kaliman
and Zaidenberg 1999] and we are done. �

Remark 7.6. Proposition 7.5 implies that β is an isomorphism over a Zariski dense open subset D∗n of Dn .
Furthermore removing a proper subvariety from D∗n one can suppose that for every point in β−1(D∗n) the
fiber of α over this point is an orbit of 8. Let Q′ = (Q \ Dn)∪ D∗n . Note that by construction every fiber
of % over point of Q∗ is an orbit of 8 and the codimension of Q \ Q′ = Dn \ D∗n in Q is at least 2.

Recall that when X is four-dimensional and there is no nonconstant morphism from E into any
nonpolynomial curve then by Remark 6.4, Convention 6.3 holds, Zn−1 is a polynomial curve, and thus the
normalization of Dn = Zn−1×C is C2. In particular, if E is normal then R is normal (being the quotient
space of normal E) and we can mention the following interesting fact (which won’t be used later).

Corollary 7.7. Let the assumption of Corollary 6.10 hold and E be normal. Then R is an affine modi-
fication of C2. Furthermore, for a factorial E one has R ' C2 and normalization of morphism β is a
birational morphism β ′ : C2

→ C2.

Proof. Since β is a morphism over the curve Zn−1 we see that β ′ : R → C2 is a morphism over the
normalization Znorm

n−1 ' C of Zn−1. Note that by Corollary 1.7 R is factorial, being the quotient space
of the factorial threefold E . This implies that all fibers of the C-fibration R→ Znorm

n−1 are reduced and
irreducible. Hence R ' C2 and we are done. �

Proposition 7.8. Let β be as in Proposition 7.5 and suppose that one of the following conditions is
satisfied:

(a) β is finite, E is smooth outside codimension 2, and every fiber of α : E→ R is a curve with a possible
exception of a finite number of such fibers;

(b) β is quasifinite and the assumption of Theorem 0.2 (3) holds (in particular, X is Cohen–Macaulay,
8 is proper, each fiber Xb of ϕ : X → B (including E) is normal, and, being the image of E , the
curve Zn−1 is a polynomial one).

Then Zn−1 (and therefore Dn = Zn−1×C) is smooth and β is an isomorphism.

Proof. The assumptions on α and β imply that there is a finite subset M ⊂ Dn such that for every
q ∈ Dn \M the preimage τ−1

n (q) is a curve.
Recall that X is Cohen–Macaulay which implies that the morphism % is faithfully flat over Q \ M

(e.g., see [Matsumura 1970, Chapter 2 (3.J) and Theorem 3] and [Eisenbud 1995, Theorem 18.6]). Hence
8 is locally a translation over Q \ M by [Deveney et al. 1994, Theorem 2.8] (see also [Deveney and
Finston 1999, Theorem 1.2]). This implies that Zn−1 is smooth since otherwise Dn \M and therefore
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(Dn \M)×C⊂ E are not smooth outside codimension 2. It remains to note that, being birational and
finite, β is an isomorphism by the Zariski main theorem.

For the second statement, consider the normalization κ : Rnorm
→ Dnorm

n 'C2 of β. Since β is birational
by Proposition 7.5 and quasifinite by the assumption, the morphism κ is an embedding. Since both Rnorm

and Dnorm
n are affine we see that Dnorm

n \ κ(Rnorm) is either empty or a Cartier divisor. Since Dnorm
n ' C2,

such a divisor must be given by zeros of a regular function g. Then g admits a regular lift to the normal
variety E that does not vanish. This contradicts the assumption that E does not admit nonconstant
morphisms into a nonpolynomial curve. Thus κ(Rnorm) = Dnorm

n and as before the assumption on α
implies that there is a finite subset M ⊂ Dn such that for every q ∈ Dn \ M the preimage τ−1

n (q) is a
curve. Hence we can repeat the previous argument and get the desired conclusion. �

Remark 7.9. (1) Let Q′ be as in Remark 7.6. Note that exactly the same argument as in Proposition 7.8
for the set Q \M implies that the action 8 over Q′ is locally trivial12 even without the assumption
that β is quasifinite.

(2) Actually, following [Kaliman 2002] one can extract Sathaye’s theorem [1983] from the argument
in the proof of Proposition 7.8. Indeed, under the assumption of Sathaye’s theorem, Dn = C2 and
thus Zn−1 ' C. Since Zn−1 is smooth, every polynomial curve Zi is smooth by Lemma 4.4 and
therefore Zi ' C. Hence every Di = Zi−1 ×C is the plane and by the Abhyankar–Moh–Suzuki
theorem Zi can be viewed as a coordinate line in Di . It is a straightforward fact that a modification
σi+1 : Qi+1→ Qi with such center Zi and divisor Di leads to Qi+1 isomorphic to Qi which implies
that Qn ' B×C2.

(3) The assumption on properness of 8 is crucial in Proposition 7.8. In the absence of properness
Winkelmann [1990] constructed a free action on X=C4

x1,x2,x3,x4
such that the quotient Q is isomorphic

to the hypersurface in C4
x1,u,v,w given by

x1w = v
2
− u2
− u3.

Both X and Q are considered over the curve B = Cx1 and in particular the zero fiber D of the
morphism Q→ B is given by v2

− u2
− u3

= 0 in C3
u,v,w. That is, D is not a plane but it is the

product of C and Zn−1 where Zn−1 is a polynomial curve with one node as singularity (in accordance
with Theorem 0.2 (2)).

8. Some facts about fibered products

In order to establish quasifiniteness required in Proposition 7.8 we need some auxiliary facts.

Notation 8.1. Let % : X→ Q be a dominant morphism of normal quasiprojective algebraic varieties and
S be an irreducible closed subvariety of X such that for a Zariski dense open subset S′ of S the restriction
%|S′ : S′→ Q is quasifinite. Suppose that k = dim X − dim S is the dimension of general fibers of %.

12That is, %−1(Q′) can be covered by 8-stable affine open subsets on each of which the action admits an equivariant
trivialization.
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Lemma 8.2. Consider an irreducible germ 0 ⊂ S of a general curve through s ∈ S (in particular,
0 \ s ⊂ S′ and the dimension of %−1(%(0 \ s)) is k+ 1). Then the dimension of the fiber F in the closure
of %−1(%(0 \ s)) (in X ) over s is k.

Proof. By the semicontinuity theorem [Shafarevich 1994, Chapter I, Section 6.3, Corollary] the dimension
of F is at least k. On the other hand it cannot be greater than k since otherwise it is not contained in the
closure of the (k+ 1)-dimensional variety %−1(%(0 \ s)). �

Note that for a fixed s this fiber F may in general depend on the choice of 0, i.e., F = F(0).

Definition 8.3. Suppose that F0(0) is the component of F(0) containing s. We say that the data in
Notation 8.1 satisfies Condition (A) if for every s ∈ S the set

⋃
0 F0(0) consists of a finite number of

k-dimensional varieties.

Example 8.4. (1) If X = S then Condition (A) holds automatically.

(2) Suppose that % : X→ Q is the quotient morphism of a proper Ga-action 8 and S is a hypersurface
of X such that %(S) is Zariski dense in Q. Then for a general germ 0 as in Definition 8.3 and every
point s ′ ∈ 0 \ s the fiber %−1(%(s ′)) is a union of orbits of 8. The set

⋃
0 F0(0) contains, of course,

the orbit of 8 through s and by Proposition 7.2 it contains nothing else. Thus Condition (A) holds.

Proposition 8.5. Let Notation 8.1 hold and Condition (A) be satisfied. Suppose that X̃ is the irreducible
component of X ×Q S such that it contains S̃ = {(s, s) | s ∈ S}. Denote by λ : X̃→ S the restriction to X̃
of the natural projection.

Then for every irreducible subvariety P ⊂ S \ S′ the dimension of λ−1(P) coincides with m+ k where
m = dim P.

Proof. Suppose that for l≥ 0 the subvariety P(l)⊂ P consists of points s ∈ P for which dim λ−1(s)= k+l.
Our aim is to show that dim P(l)≤ m− l and thus dim λ−1(P)= m+ k.

Let s ∈ S, 0, F be as in Definition 8.3 and let the closure of %−1(%(0 \ s)) ∩ S meets F at points
s1, . . . , sr (i.e., each irreducible component of F passes at least through one of these points). Note that for
a fixed s this set {s1, . . . , sr }may in general depend on the choice of 0, i.e., si = si (0). Suppose that M(s)
is the union

⋃
i
⋃
0 si (0). By definition of X̃ for every s ′ ∈ 0 \ s one has λ−1(s ′)' %−1((%(s ′)). Hence

by Lemma 8.2 and Condition (A), the variety λ−1(s)=
⋃
0 F(0) has dimension at most dim M(s)+ k.

In particular P(l) is contained in the set

{s ∈ P | dim M(s)≥ l}

and we need to estimate the dimension of this last set.
For this we need to use the Hironaka flattening theorem [1975] which implies the existence of a proper

birational morphism Q̂→ Q such that for the union Ŝ of irreducible components of S×Q Q̂ with the
dominant projections to S the induced morphism Ŝ→ Q̂ is quasifinite. We have the commutative diagram
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Ŝ
β - S

Q̂

θ
?

α- Q

γ

?

where the morphisms α and β are birational and the morphism θ and γ |S′ are quasifinite.
Let P =

⋃
i Pi , where Pi are disjoint (not necessarily closed) irreducible varieties such that for any

irreducible component V of β−1(Pi ) all fibers of the morphism β|V : V → Pi are of the same dimension.
Varying i and V consider the collection C1,C2, . . . of irreducible subvarieties of Q̂ that are of the form
C j = θ(V ). Observe that, stratifying the varieties Pi ’s further, one can suppose that for indices j 6= l the va-
rieties C j and Cl are either equal or disjoint. Denote by I the set of all pairs (i, j) for which there exist V ⊂
β−1(Pi ) with θ(V )=C j and put Ci j = V (in particular dim C j = dim Ci j because of quasifiniteness of θ ).

Let ni j be the dimension of a fiber Fi j ⊂β
−1(s) of the morphism β|Ci j :Ci j→ Pi . In particular dim Pi =

dim C j − ni j ≤ m. Hence for n j =mini {ni j |(i, j) ∈ I } one has dim Pi ≤ m+ n j − ni j for any (i, j) ∈ I.
Let s ∈ Pi , i.e., β−1(s) =

⋃
j Fi j . For every where (t j) ∈ I we put F t

i j = θ
−1(θ(Fi j )) ∩ Ct j , i.e.,

dim F t
i j = ni j because of quasifiniteness. Note that

dimβ(F t
i j )=max(0, ni j − nt j )≤ ni j − n j ≤max

j
(ni j − n j ).

Thus l := dimβ(
⋃

t F t
i j )≤max j (ni j − n j ) while dim Pi ≤ m−max j (ni j − n j )≤ m− l.

Since we started with a point s ∈ Pi for the desired inequality dim P(l) ≤ m − l it suffices to show
that M(s) ⊂

⋃
j β(

⋃
t F t

i j ) (since the last set is contained in Pi ). But this follows from the fact that
the proper transform of 0 (mentioned in the definition of M(s)) in Ŝ meets β−1(s) and therefore
meets some Fi j . By quasifiniteness the proper transform (in Ŝ) of every component in the closure of
%−1(%(0 \ s))∩ S meets some F t

i j . This implies that this closure passes through a point in β(F t
i j ) which

yields M(s)⊂
⋃

j β(
⋃

t F t
i j ) and we get dim λ−1(P)≤ m+ k, i.e., dim λ−1(P)≤ dim %−1(%(P)). �

Corollary 8.6. If Condition (A) holds and %−1(%(P)) is at least of codimension 2 in X then λ−1(P) has
codimension at least 2 in X̃ .

9. Main theorems

Notation 9.1. Up to the proof of Theorem 0.2 below we adhere to the assumptions of Proposition 7.5
and, in particular, Notation 6.1. That is, B is the germ of a smooth algebraic curve at point o= f ∗(0),
ϕ : X → B is a morphism of factorial varieties, 8 is a Ga-action on X, Q = Qn is the categorical
quotient X//8 in the category of affine algebraic varieties, τn = %, and %(E) is dense in Dn =: D. Since
β is birational by Proposition 7.5, there is a Zariski dense open R∗ ⊂ R such that the restriction of
β|R∗ : R∗→ D ⊂ Q to R∗ is an embedding.

Suppose also (as in Theorem 0.2 (3)) that the restriction of our proper Ga-action 8 to E is a translation.
In particular, the quotient morphism α : E→ R admits a section whose image in E , by abuse of notation,
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will be denoted by R. The image of R∗ in this section will keep notation R∗ as well (i.e., %|R∗ : R∗→ D
is an embedding).

The section R coincides with the zero locus of a regular function on E which has simple zeros at every
point of R. Extend this function to a regular function h on X and consider the zero locus h−1(0)=: S⊂ X
of this extension.

Lemma 9.2. The function h from Notation 9.1 can be perturbed so that for S∗ = S \ R and Q∗ = Q \ D
the restriction %|S∗ : S∗→ Q∗ is finite. In particular, for S′ = S∗ ∪ R∗ the restriction %|S′ : S′→ Q is
quasifinite.

Proof. Recall that X \ E ' Q∗×C. Let w be a coordinate on the second factor, i.e., h|X\E can be treated
as a polynomial in w with coefficients in C[Q∗]. Let n be the degree of this polynomial and f be as in
Notation 6.1. Then for sufficiently large k the function h+ f kwn+1 is regular on X and the restriction of h+
f kwn+1 to E has only simple zeros on its zero locus R. This h+ f kwn+1 yields the desired perturbation. �

Proposition 9.3. Suppose that X̃ is the irreducible component of X ×Q S containing S̃ = {(s, s) | s ∈ S}.
Then X̃ is naturally isomorphic to S×C, with S̃ being the section of the natural projection λ : X̃→ S.

Proof. Let S′ be as in Lemma 9.2 and s∈ S′. Note that %−1(%(s)) is a disjoint union of orbits of8 because of
quasifiniteness of %|S′ . One of these orbits Os passes through s. By construction λ−1(λ(s))⊂%−1(%(s))×s.
Since Os× s is the only component of %−1(%(s))× s that meets S̃ we see that λ−1(λ(s))= Os× s, which
is an orbit of the free action 8̃ on X̃ induced by 8 (in particular 8̃ preserves the fibers of λ). The variety
S̃′ = {(s, s) | s ∈ S′} is a section of 8̃ over S′. Hence λ−1(S′) is naturally isomorphic to S′×C because
the action 8̃ is free. By construction S \ S′ is of codimension at least 2 in S. Hence the same is true for
the subvariety (S \ S′)×C in S×C. By Corollary 8.6 and Example 8.4 (2) X̃ \λ−1(S′) is of codimension
at least 2 in X̃ . By the Hartogs theorem the isomorphism λ−1(S′)' S′×C extends to an isomorphism
X̃ ' S×C since both varieties are affine. This is the desired conclusion. �

Lemma 9.4. For X̃ from Proposition 9.3 the restriction κ : X̃→ X of the natural projection X×Q S→ X
is quasifinite.

Proof. The restriction of κ to λ−1(S′) is quasifinite because of quasifiniteness of %|S′ . Since X̃ \λ−1(S′)=
(S \ S′)×C= R×C it suffices to check that the restriction of κ yields a quasifinite morphism R×C→ E .
The last map is an isomorphism since R is a section of 8|E and we are done. �

Notation 9.5. By the Grothendieck version of the Zariski main theorem (see [Grothendieck 1964,
Théorème 8.12.6]) there is an embedding X̃ → X̂ of X̃ into an algebraic variety X̂ such that κ can be
extended to a finite morphism χ : X̂ → X. Note that the finiteness implies that X̂ is affine since X is.
Furthermore, replacing if necessary X̂ , X̃ , and S with their normalizations, we suppose that these varieties
are normal.

Denote the lift of f ∈ C[B] from Notation 9.1 to X (resp. X̃ , resp. X̂ ) by the same letter f (resp. f̃ ,
resp. f̂ ). Let ν be the locally nilpotent vector field on X associated with the action 8. Since f ∈ Ker ν
the field f kν is also locally nilpotent for every k > 0 and it is associated with a Ga-action 8k on X which



254 Shulim Kaliman

has the same quotient morphism % : X→ Q. The lift of ν to X̃ (resp. X̂ ) will be denoted by ν̃ (resp. ν̂).
By construction ν̃ (and, hence, f̃ k ν̃) is locally nilpotent on X̃ and ν̂ is a rational vector field on X̂ . Since
X̂ \ f̂ −1(0)⊂ X̃ we see that for sufficiently large k the field f̂ k ν̂ is locally nilpotent on X̂ . We denote by
8̂k the Ga-action associated with the last field.

Proposition 9.6. The action 8̂k admits a quotient morphism %̂ : X̂→ Q̂ in the category of affine algebraic
varieties such that the commutative diagram

X̂
%̂- Q̂

X

χ

?
%- Q

τ

?

holds, where τ is a finite morphism.
Proof. For every function g ∈ C[X̃ ]8̃ and sufficiently large m > 0, the function f̃ m g has a regular
extension to X̂ , i.e., it can be viewed as a function from C[X̂ ]8̂k . Since by construction X̂ \ f̂ −1(0)=
X̃ \ f̃ −1(0)= λ−1(S \ R), where λ : X̃→ S is the quotient morphism of 8̃ (by Proposition 9.3) we see
now that a finite number of functions from C[X̂ ]8̂k separate the orbits of 8̂k contained in λ−1(S \ R).
Consider a partial quotient morphism %̂ : X̂→ Q̂ whose coordinates include these functions. Furthermore,
since the lift of every function from C[Q] to X̂ is a function from C[X̂ ]8̂k we can include the lifts of the
coordinate functions of % into the set of coordinate functions of %̂. Then the commutative diagram as
before make sense.

Let us show that τ is finite. Indeed, by finiteness of χ every function g from C[X̂ ]8̂k is integral over
C[X ]. That is, g is a root of an irreducible monic polynomial P(g) := gn

+an−1gn−1
+· · ·+a1g+a0, where

each ai ∈ C[X ]. Since g is 8̂k-invariant it satisfies also an equation gn
+ at

n−1gn−1
+ · · ·+ at

1g+ at
0 = 0,

where at
i is the result of the action of t ∈ C+ (induced by 8̂k) on ai . However, the minimal polynomial P

should be unique, which implies that ai are 8̂k-invariant and thus C[X̂ ]8̂k is integral over C[Q]. That is,
every function from C[Q̂] is integral over C[Q] and hence τ is finite.

This leads to the commutative diagram
Ê - D̂

E
?

- D
?

where D̂ := τ−1(D), Ê = f̂ −1(0), and the vertical morphisms are finite. Since for a general point q ∈ D
its preimage %−1(q) is a curve in E the diagram implies that for a general point q̂ ∈ D̂ its preimage %̂−1(q̂)
is a curve in Ê . Thus, by Theorem 1.4 %̂ is a quotient morphism which is the desired conclusion. �

Lemma 9.7. Let Q′ = Q∗ ∪ D∗ be as in Remark 7.9. Then

(i) X̂ \ (% ◦χ)−1(Q′) has codimension at least 2 in X̂;
(ii) for every point in Q′ there is a Zariski neighborhood V ⊂ Q′ such that (% ◦ χ)−1(V ) is naturally

isomorphic to V̂ ×C where V̂ = τ−1(V ).



Proper Ga-actions on C4 preserving a coordinate 255

Proof. Recall that %−1(Q \ Q′) = E \ (%|E)−1(D∗) is of codimension at least 2 in X. Hence (i) is a
consequence of finiteness of χ .

By Remark 7.9 8 is a locally trivial over Q′. In particular, for every point in Q′ there is a Zariski
neighborhood V ⊂Q′ such that %−1(V ) is naturally isomorphic to V×C where the projection %−1(V )→V
is the restriction of %. Note that the restriction of the commutative diagram in Notation 9.5 yields another
commutative diagram

Ŵ - V̂

%−1(V )
?

- V
?

where Ŵ = (% ◦χ)−1(V ). Hence we have Ŵ ' V̂ ×C since %−1(V )' V ×C. This yields (ii). �

Proposition 9.8. Let Ŝ be the closure of S̃ in X̂ . Then Ŝ is a section of the quotient morphism %̂ : X̂→ Q̂.

Proof. If suffices to construct a 8̂k-equivariant morphism ψ : X̂→ Ŝ from X̂ to Ŝ. Indeed, then by the
universal properties of quotient morphisms this morphism factors through Q̂ and, therefore, %̂|Ŝ : Ŝ→ Q̂
is invertible.

Choose as the restriction of such a ψ to X̃ the natural projection λ : X̃ = S×C→ S. Note that for
V̂ ' V ×C from Lemma 9.7(ii) λ agrees on X̃ ∩ V̂ with the natural projection V̂ → V. Hence we can
extend ψ to X̃ ∪χ−1(Q′). Now because of Lemma 9.7(i) and the Hartogs theorem this restriction extends
to X̂ and we are done. �

Remark 9.9. The fact that the morphism α : E→ R has a section may be made weaker for Proposition 9.8.
It suffices, say, to require that there exists is a reduced irreducible principal effective divisor T = h∗(0) in
E such that the restriction α|T : T → R is surjective and quasifinite. Then one can extend h to a regular
function on X and the same proofs as before imply that the result remains valid.

Corollary 9.10. The morphism β : R→ D is quasifinite.

Proof. Let R̃ be the preimage of R ⊂ S in S̃. Note that R̃ is a subvariety of X̃ ⊂ X̂ . On the other hand
since Q̂ is isomorphic to Ŝ ⊃ S̃ by Proposition 9.8, we can treat R̃ as a subvariety of Q̂. Furthermore, by
construction the quotient morphism %̂ yields an automorphism of R̃. Hence the restriction of the morphism
τ ◦ %̂ = % ◦χ to R̃ ⊂ X̂ yields a quasifinite morphism R̃→ D (where τ, χ , %̂ are from Proposition 9.6).
Since morphism %◦χ |R̃ factors through β = %|R : R→ D, the latter is also quasifinite and we are done. �

Proof of Theorem 0.2. Note that Convention 6.3 is valid by Remark 6.4. Hence Theorem 6.9 and thus
Proposition 7.5 is applicable. For the time being consider the case when B is a germ of a smooth curve at
a point o and denote by E the fiber in X over o. Since 8|E is a translation in Theorem 0.2 (3), for every
r ∈ R the preimage α−1(r) is a curve. Thus, taking into consideration Corollary 9.10, we see that the
assumptions of Proposition 7.8 are valid. This implies that the polynomial curve Zn−1 is smooth and
we have Zn−1 ' C and Dn ' C2. Hence the polynomial curve Zn−1 is smooth by Proposition 7.8 and
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we have Zn−1 ' C and Dn ' C2. By assumption Dn is also a smooth reduced fiber of the morphism
Qn→ B and Qn \ Dn ' B∗×C2. Sathaye’s theorem [1983] implies now that Qn is naturally isomorphic
to B×C2. Similarly X = Qn ×C when B is a germ of a curve.

Let us return now to the general case when B is a smooth affine curve. The local statement over germ
of B at o implies the first global claim of Theorem 0.2 (3) while the second one is the consequence of the
fact (see [Serre 1955]) that every affine manifold with a free Ga-action and an affine geometrical quotient
is the direct product of that quotient and C. Thus Statement (3) of Theorem 0.2 is valid while Statements
(1) and (2) are true by Corollaries 6.10 and 6.11. Hence we are done with the proof of Theorem 0.2. �

General case of an affine algebraic variety X over a field k of characteristic zero. Recall that there is
a one-to-one correspondence between the set of Ga-actions on an affine algebraic variety X and the set of
locally nilpotent derivations (LNDs) on the algebra B of regular functions on X (e.g., see [Freudenburg
2006]). Suppose that ν is such an LND associated with a proper Ga-action 8 on X. Then condition that
8 is free (resp. a translation) is equivalent to the fact that the ideal generated by ν(B) coincides with B
(resp. ν(B)= B). To show the validity of Theorem 0.1 for any k of characteristic zero one needs to repeat
the argument of Daigle from [Daigle and Kaliman 2009, Theorem 3.2].

Namely, if a fact is true for varieties over C it is true in the case when X is considered over a field
which is a universal domain13 [Eklof 1973]. Thus consider a field extension k′/k where k′ is a universal
domain. Then ν extends to an LND ν ′ on B′ = k′ ⊗k B associated with a Ga-action 8′. Note that ν ′

is free since ν is. Similarly, 8′ is proper, since properness survives base extension [Hartshorne 1977,
Corollary 4.8]. Thus under the assumptions of Theorem 0.1 (with C replaced by k′) 8′ is a translation by
the argument above, i.e., ν ′ : B′→ B′ is surjective. Since ν ′ is obtained by applying the functor k′⊗k−

to ν and since k′ is a faithfully flat k-module we see that ν : B→ B is also surjective. Therefore 8 is a
translation and we have:

Theorem 9.11. Let k be a field of characteristic zero and 8 be a proper Ga-action on the four-space A4
k

preserving a coordinate. Then 8 is a translation in a suitable polynomial coordinate system.

Similarly the argument before implies the following.

Theorem 9.12. Let the assumptions of Theorem 0.2 hold with the only change that X and B are varieties
over some field k of characteristic zero (and not over C). Suppose also that 8 is proper and the restriction
of 8 to every fiber is a translation (as in Theorem 0.2 (3)). Then 8 is a translation.

Conclusive Remark. In dimension 5 the analogue of Theorem 0.1 is not true by the second of Winkel-
mann’s examples in [Winkelmann 1990]. This raises the question of whether the properness is the right
condition for this type of problems. The author suspects that another condition may be more effective at
least in dimension 4, which leads to the following question:

13Recall that a universal domain is an algebraically closed field containing Q such that it has an infinite transcendence degree
over Q.
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Question. Suppose that the quotient of a free Ga-action 8 on C4 is isomorphic to C3. Is it true that 8 is
a translation?
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Nonemptiness of Newton strata
of Shimura varieties of Hodge type

Dong Uk Lee

For a Shimura variety of Hodge type with hyperspecial level at a prime p, the Newton stratification
on its special fiber at p is a stratification defined in terms of the isomorphism class of the rational
Dieudonné module of parameterized abelian varieties endowed with a certain fixed set of Frobenius-
invariant crystalline tensors (“GQp-isocrystal”). There has been a conjectural group-theoretic description
of the F-isocrystals that are expected to show up in the special fiber. We confirm this conjecture. More
precisely, for any GQp-isocrystal that is expected to appear (in a precise sense), we construct a special
point whose reduction has associated F-isocrystal equal to the given one.

1. Introduction

Fix a prime p > 0, and for g ≥ 1, let Ag be the moduli space of principally polarized abelian varieties
of dimension g in characteristic p. Then the Newton stratification on Ag is the stratification such that
each stratum consists of points x = (Ax , λx) whose associated p-divisible group (Ax [p∞], λx [p∞]) with
quasipolarization is quasi-isogenous to a fixed one. The rational Dieudonné module D(X) of a p-divisible
group X over a perfect field k of characteristic p > 0 provides an equivalence of categories between the
isogeny category of (quasipolarized) p-divisible groups and the category of (quasipolarized) F-isocrystals.
An F-isocrystal (or simply isocrystal) over a perfect field k of characteristic p is a finite-dimensional
L(k)-vector space M with a σ -linear bijective operator 8 : M→ M , where L(k) := Frac(W (k)) and σ
is its Frobenius automorphism.

According to the Dieudonné–Manin classification, an isocrystal over an algebraically closed field
is determined by the slope sequence of 8. The latter combinatorial datum in turn can be faithfully
represented by a lower-convex (piecewise-linear) polygon with integral break points lying in the first
quadrant of Z2, which will be called the Newton polygon hereafter. In other words, the Newton polygon of
D(Ax [p∞]) determines the quasi-isogeny class of Ax [p∞]. The existence of a quasipolarization forces the
Newton polygon of D(Ax [p∞]) to be “symmetric”. Then, it is a natural question to ask which symmetric
Newton polygon can be the Newton polygon of a point of Ag. In fact, the Newton polygons arising from
points of Ag in the way just described meet two more restrictions. First, when the initial point is located
at the origin, the end point is always (2g, g) ∈ Z2. Secondly, it “lies above” the ordinary Newton polygon,
which by definition is the Newton polygon having two slopes (0, 1) with the same multiplicity g. Then, it
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has long been known (after it was conjectured by Manin) that any Newton polygon subject to these two
restraints is the Newton polygon of a point on Ag; a proof can be found, e.g., in [Oort 2013, Corollary
7.8], which uses the Honda–Tate theory, and thus gives examples defined over finite fields.

The main result of this article is a generalization of this fact to more general moduli spaces of abelian
varieties, namely to Shimura varieties of Hodge type. First, we explain how each point in characteristic
p > 0 of a Shimura variety of Hodge type gives an F-isocrystal with certain additional structure. A
detailed discussion will appear in Section 2.

Let (G, X) be a Shimura datum of Hodge type. This means that there exists an embedding of Shimura
data (G, X) ↪→ (GSp(W, ψ),H±g ) into a Siegel Shimura datum, in the sense that there exists an embedding
ρW : G ↪→ GSp(W, ψ) of Q-groups which sends each morphism in X to a member of H±g ; we fix such
an embedding. For a compact open subgroup K ⊂ G(A f ) (which will be tacitly assumed sufficiently
small), the associated (canonical model over the reflex field E(G, X) of the) Shimura variety ShK (G, X)
parameterizes polarized abelian varieties endowed with a fixed set of (absolute) Hodge cycles and a
K-level structure, and carries a universal family of abelian varieties A→ SK := ShK (G, X) equipped
with a similar set of (absolute Hodge) tensors on H 1

dR(A/SK ). To study its reduction modulo p, we fix a
prime ℘ of E(G, X) and let O :=O(℘) be the localization at ℘ of the ring of integers of E(G, X) with
residue field κ(℘). To obtain an integral model over O with good reduction, we assume that GQp is
unramified, which is equivalent to the existence of a reductive group scheme GZp over Zp with generic
fiber GQp . We choose one such model GZp and set K p := GZp(Zp) (such compact open subgroups of
G(Qp) are called hyperspecial). For K , we take K = K p× K p for a (sufficiently small) compact open
subgroup K p

⊂G(Ap
f ). Then, by [Vasiu 1999; Kisin 2010], it is known that there exists a smooth integral

model SK := SK (G, X) over O with generic fiber SK , which is furthermore uniquely characterized by a
“Neron-extension property”. Also, this integral model carries a universal abelian scheme A over it by
construction. Then each point on the reduction SK ⊗O κ(℘) gives an F-isocrystal as follows.

Let z be a point of SK ⊗O κ(℘) defined over an algebraically closed field k, assumed (for simplicity)
to be of finite transcendence degree over Fp. By smoothness of SK and the moduli interpretation of
SK , the Dieudonné module D(Az) is supplied with a set of Frobenius-invariant tensors {sα,0,z}α∈J , and
there exists an L(k)-isomorphism between the dual space W∨ ⊗ L(k) and D(Az) which matches the
G-invariant tensors on W∨ and the tensors {sα,0,z}α∈J on D(Az), which is thus canonically determined
up to the action of GL(k) on W∨L(k) (Lemma 2.2.5). Choosing such an isomorphism and transporting the
Frobenius operator 8 to W∨L(k), we get an element b ∈ G(L(k)) such that 8= ρW∨(b)(idW∨ ⊗σ), where
ρW∨ : G ↪→GL(W∨) is the contragredient representation of the symplectic representation ρW fixed in the
beginning. Recall that two elements g1, g2 of G(L(k)) are called σ -conjugate if there exists h ∈ G(L(k))
with g2= hg1σ(h)−1. Then the σ -conjugacy class [b] of b is independent of the choice of an isomorphism
W∨L(k)→D(Ax) just explained, and the isomorphism class of the F-isocrystal (D(Az),8) equipped with
the Frobenius-invariant tensors {sα,0,z}α∈J , called GQp-isocrystal, corresponds to a unique σ -conjugacy
class of elements of G(L(k)). If B(GQp) denotes the set of the σ -conjugacy classes of elements of
G(L(k)), there exists a subset B(GQp , X) of B(GQp) which is expected to be the set of isocrystals with



Nonemptiness of Newton strata of Shimura varieties of Hodge type 261

GQp-structure coming from points on SK ⊗O κ(℘). We remark that this is a subset of B(GQp) defined by
certain two conditions that are analogous to those discussed above in the Siegel case, and it turns out that
for any point of SK ⊗O κ(℘), its associated GQp-isocrystal belongs to this subset B(GQp , X).

For [b] ∈ B(GQp , X), let S[b] be the subset of points of SK ⊗O κ(℘) whose associated GQp-isocrystal
is [b]. The main result of this paper is then that for every [b] ∈ B(GQp , X), S[b] is nonempty. Our proof
consists of finding a special point whose reduction has F-isocrystal equal to a given one. We recall that a
point [h, g f · K ] ∈ ShK (G, X)(C)= G(Q)\X ×G(A f )/K is called special if h ∈ X factors through TR

for some maximal Q-torus T of G. Special points are known to be defined over Q⊂ C and extend over
the valuation ring of an embedding Q ↪→Qp for any reasonable integral model.

Theorem 1.0.1 (Theorem 3.2.1). Let (G, X) be a Shimura datum and p a rational prime. Assume that
GQp is unramified. Fix a hyperspecial subgroup K p of G(Qp) and a sufficiently small compact open
subgroup K p

⊂ G(Ap
f ); put K = K p× K p. Choose a prime ℘ of E(G, X) above p, and an embedding

ιp :Q ↪→Qp inducing ℘.

(1) For every [b] ∈ B(GQp , X), there exists a special Shimura subdatum (T, h ∈ Hom(S, TR)∩ X) such
that TQp is unramified and the σ -conjugacy class of µ−1

h (p) ∈ G(Qur
p ) equals [b], and further, such

that the (unique) hyperspecial subgroup of T (Qp) is contained in K p.

(2) If (G, X) is of Hodge type, for every special point [h, g f ]K ∈ ShK (G, X)(Q) (defined for any
g f ∈ G(A f )), its reduction has F-isocrystal equal to [b].

The statement (1) here is in fact a combination of two statements (1) and (3) of Theorem 3.2.1.
The nonemptiness of Newton strata has been conjectured by Fargues [2004, Conjecture 3.1.1] and

Rapoport [2005, Conjecture 7.1]. Some partial cases confirming this conjecture were known. We only
mention previous works in two directions. For PEL-type Shimura varieties (which form a subclass of
Hodge-type Shimura varieties), this conjecture (i.e., nonemptiness of all Newton strata in B(GQp , X))
was proved by C.-F. Yu [2005] in the Lie-type C cases, then by Viehmann and Wedhorn [2013, Theorem
1.6] in general, and by Kret [2012] for some simple groups of Lie type A or C . For a general Hodge-type
Shimura variety, to the best of the author’s knowledge, there are two partial results. First, Wortmann
[2013] showed nonemptiness of the µ-ordinary locus, a generalization of the (usual) ordinary locus in Ag .
For projective Shimura varieties of Hodge type, Koskivirta [2016] proved the conjecture (nonemptiness
of all Newton strata).

While all these previous results on the nonemptiness of Newton strata, except for that of Kret, are
obtained by algebro-geometric methods in positive characteristic, which are sometimes of limited applica-
bility for Hodge-type Shimura varieties, we point out that the first claim of our theorem above is a purely
group-theoretic statement on Shimura data without any reference to the geometry of the Shimura variety.
When the Shimura datum is of Hodge type, this group-theoretic statement carries the geometric meaning
of the second claim (by Lemma 3.1.1). In this geometric interpretation of the group-theoretic statement
of the first claim, one does not need a fine geometric property of the integral canonical model SK .
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We also point out that our method of proof of the theorem, more precisely that of constructing a special
point with certain prescribed properties, allows us to obtain some finer results. First, as is already apparent,
we prove more than just nonemptiness of Newton strata; namely, we show existence of a special point
whose reduction lies in any given Newton stratum. As another example, we also prove a generalization of
a result of Wedhorn [1999, (1.6.3)] (the first statement of the next result in the PEL-type cases of Lie type
A or C), using an argument different from the original one of Wedhorn (see Remark 3.2.5).

Corollary 1.0.2 (Corollary 3.2.3). Let (G, X) be a Shimura datum of Hodge type. Suppose that GQp

is unramified and choose a hyperspecial subgroup K p of G(Qp). Let ℘ be a prime of E(G, X) above
p. Then the reduction SK p(G, X)× κ(℘) has nonempty ordinary locus if and only if ℘ has absolute
height one (that is, E(G, X)℘ =Qp). In this case, if the chosen embedding G ↪→ GSp(W, ψ) induces an
embedding GZp ↪→ GL(WZp) of Zp-group schemes, there exists a special point which is the Serre–Tate
canonical lifting of its reduction.

We remark (see 2.2.1) that the constructions of the integral canonical model by Vasiu and Kisin both
require this condition on the embedding G ↪→ GSp(W, ψ) to be satisfied. Finally, we remark that since
our methods of proof of the above results are purely group-theoretic (based on Galois cohomology theory
of algebraic groups), they are very likely to apply to more general Shimura varieties, particularly to
Shimura varieties of abelian-type and/or with nonhyperspecial level. We do not pursue such ideas in this
article, though.

This article is organized as follows. In Section 2, we review the construction of the canonical integral
model SK (G, X) of a Hodge-type Shimura variety ShK (G, X) with hyperspecial level at p, due to Vasiu
and Kisin, and of the Newton stratification on its (good) reduction SK (G, X)⊗ κ(℘). We also recall the
definitions of Newton map and Kottwitz map for reductive groups over p-adic fields, which are needed to
define Newton stratification. Section 3 is devoted to the proof of the nonemptiness of Newton strata, by
constructing a special point with prescribed F-isocrystal. For that, we generalize (in Hodge-type situation)
a result of Kottwitz which identifies the GQp-isocrystal of the reduction of a special point in terms of
the defining special Shimura datum. As a corollary of our method, we also obtain a criterion for when
the good reduction of a Shimura variety with hyperspecial level has an ordinary point, and prove that
in such cases, there always exists a special point which is the Serre–Tate canonical lifting of its reduction.

Notation. Throughout this paper, Q denotes the algebraic closure of Q inside C (so Q has a privileged
embedding into C). For a (connected) reductive group G over a field, we let Gsc be the universal covering
of its derived group Gder, and for a (general linear algebraic) group G, Z(G) and Gad denote its center
and the adjoint group G/Z(G), respectively.

2. Newton stratification on good reduction of Shimura varieties

In this section, we give an account of the construction of Newton stratification on the reduction of the
integral canonical model of a Hodge-type Shimura variety with hyperspecial level.
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First, we begin with a brief review of the Newton map and Kottwitz map, which are defined for connected
reductive groups over p-adic fields. For a reductive group G over a local field F and a conjugacy class
C of cocharacters of G F , we define a certain subset B(G, C) of B(G), the set of all G-isocrystals.

2.1. G-isocrystals and the set B(G,C). In this subsection only, all algebraic groups considered will be
defined over p-adic fields.

Let k be an algebraically closed field of characteristic p, and let W (k) be its Witt vector ring and
K0 = L(k) the fraction field of W (k). Fix an algebraic closure K0 of K0. Let F be a finite extension of
Qp in K0, and denote by L the composite of K0 and F in K0; for our application to Shimura varieties, the
most interesting case will be when k = Fp and F =Qp, so that L = L(Fp). Denote by σ the Frobenius
automorphism of L/F (i.e., the automorphism of L fixing F and inducing the q-th power map on the
residue field k of L , where q ∈ N is the cardinality of the residue field of F). Let G be a connected
reductive group over F . Put GalF := Gal(F/F).

2.1.1. Let B(G) be the set of σ -conjugacy classes in G(L):

B(G)= G(L)/∼,

where two elements x, y of G(L) are σ -conjugated, denoted by x ∼ y, if x = gyσ(g)−1 for some
g ∈ G(L); the σ -conjugacy class of b ∈ G(L) is denoted by [b]. An element of B(G) is called an
(F-)isocrystal with G-structure.

To relate this notion to the previously introduced notion of F-isocrystal (i.e., a finite-dimensional
vector space U over L endowed with a σ -linear bijection 8 :U →U ), let REPF (G) be the category of
finite-dimensional F-linear representations of G, and CRYS the category of F-isocrystals. Both are in a
natural manner F-linear Tannakian categories (for CRYS, see [Kottwitz 1985, §3]). An element [b] of
B(G) can equivalently be considered as an F-linear exact (faithful) tensor functor

REPF (G)→ CRYS : (ρ, V ) 7→ (V ⊗ L , ρ(b) · (idV ⊗ σ)),

for any representative b ∈ G(L) of [b] ∈ B(G); see [Rapoport and Richartz 1996, Remark 3.4(i)]. If
[b1] = [b2], there exists a natural transformation between the corresponding tensor functors. Then any F-
isocrystal (U,8) of height n (i.e., dimL U = n) gives rise to an F-isocrystal with GLn-structure [Rapoport
and Richartz 1996, Remarks 3.4(ii)]. So, B(GLn) classifies the isomorphism classes of F-isocrystals
(U,8) of height n.

2.1.2. Let D be the pro-algebraic torus over Qp with character group Q. We define N (G) to be the set
of σ -invariants in the set of conjugacy classes of homomorphisms DL → GL :

N (G)= (Int G(L) \HomL(D,G))〈σ 〉,

where 〈σ 〉 denotes the infinite cyclic group generated by σ (and is endowed with the discrete topology).
For example, when G = T is a torus, we have N (T )= X∗(T )

GalF
Q

.
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If T ⊂ G is a maximal F-torus with (absolute) Weyl group �, there is a natural identification

N (G)= (X∗(T )Q/�)GalF ,

where the Galois action on X∗(T )Q/� is the canonical action.
Kottwitz [1985, §4] (cf. [Rapoport and Richartz 1996, Theorem 1.8]) constructs a map

ν = νG : G(L)→ HomL(D,G)

which is functorial in G. We call the induced functorial map ν, defined on the category of connected
reductive groups over F , the Newton map:

ν : B( · )→N ( · ); νG([b])= νG(b), b ∈ [b].

Here, b ∈ G(L) is a representative of [b] and νG(b) is the conjugacy class of νG(b).
When G = GLn , the Newton map sends an F-isocrystal (U,8) of height n to its Newton polygon,

which is represented in N (GLn) by the corresponding slope homomorphism; see Example 1.10 of
[Rapoport and Richartz 1996].

2.1.3. Let π1(G)= π1(G, T ) := X∗(T )/
∑

α∈R∗ Zα∨ be the algebraic fundamental group à la Borovoi,
where T is a maximal torus of G F and R∗⊂ X∗(T ) is the set of roots of (G, T ). This is a GalF -module in
a natural manner, and (as the notation suggests) is canonically attached to G only. The functor G 7→π1(G)
is an exact functor from the category of connected reductive groups over F to the category of finitely
generated discrete GalF -modules; see [Rapoport and Richartz 1996, 1.13]. Kottwitz [1990, §6] constructs
a natural transformation

κ : B( · )→ π1( · )GalF (2.1.3.1)

of set-valued functors on the category of connected reductive groups over F , where π1( · )GalF is the
group of coinvariants for the canonical Galois action [Rapoport and Richartz 1996, 1.13]. For tori, for
which B( · ) has an obvious abelian group structure, this map is an isomorphism [Kottwitz 1985, (5.5.1)]
(cf. [Rapoport and Richartz 1996, Theorem 1.15]).

2.1.4. In the following discussion, suppose given a G(F)-conjugacy class C of cocharacters into G F . We
define a finite subset B(G, C) of B(G), following Kottwitz [1997, §6] (cf. [Rapoport 2005, §4]).

Choose a Borel pair (T, B) (i.e., T is a maximal F-torus and B is a Borel subgroup of G F containing
T ). Let BR(G)= (X∗(T ), R∗, X∗(T ), R∗,1) be the associated based root datum and C ⊂ X∗(T )R the
closed Weyl chamber associated with the root base 1⊂ R∗.

Denoting by µC = µC(G, C) the (unique) representative in C of C, we set

µ(G, C) := |GalF ·µC |
−1

∑
µ′∈GalF ·µC

µ′ ∈ C .

Here, the action of GalF on C is the canonical action. The G(F)-conjugacy class of cocharacters containing
µ(G, C) depends only on the pair (G, C) (i.e., is independent of the choice of a Borel pair (T, B)).
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Let µ\ = µ\(C) denote the image of µ ∈ X∗(T ) under the natural map

X∗(T )→ π1(G)GalF =

(
X∗(T )

/ ∑
α∈R∗

Zα∨
)

GalF

for any cocharacter µ of TF lying in the conjugacy class C; µ\ depends only on the conjugacy class C,
and neither on the choice of a representative µ in TF nor on that of T .

For a connected reductive group G over F and a G(F)-conjugacy class C of cocharacters into G F ,
we define

B(G, C) := {[b] ∈ B(G) | κG([b])= µ\, νG([b])� µ(G, C)},

where � is the natural partial order on the closed Weyl chamber C defined so that ν � ν ′ if ν ′− ν is a
nonnegative linear combination with real coefficients of simple coroots in X∗(T )R [Rapoport and Richartz
1996, Lemma 2.2]. Also, here we use the canonical identification of X∗(T )Q/� as a subset of C .

One knows by [Kottwitz 1997, 4.13] that the map (ν, κ) : B(G)→ N (G)× π1(G)GalF is injective;
hence B(G, C) can be identified with a subset of N (G).

2.2. Integral canonical model and Newton stratification. Let (G, X) be a Shimura datum of Hodge
type. We assume given an embedding ρ : (G, X)→ (GSp(W, ψ),H±) of Shimura data (i.e., there exists
an embedding ρW : G ↪→ GSp(W, ψ) of Q-algebraic groups which sends each morphism in X to a
member of H±g ). Consider a compact open subgroup K of G(A f ) of the form K = K p K p, where K p

and K p are compact open subgroups of G(Qp) and G(Ap
f ), respectively. Choose a prime ℘ of E(G, X)

above p and let O(℘) be the localization at ℘ of the ring of integers OE(G,X) of E(G, X). We also use
ShK (G, X) to denote the canonical model over E(G, X) [Deligne 1979, 2.2].

2.2.1. When K p is hyperspecial, Vasiu [1999] (cf. [Vasiu 2007a; 2007b]) and Kisin [2010] independently
constructed a smooth integral model SK (G, X) over O(℘) of the canonical model ShK (G, X). The
projective limit SK p(G, X) of SK p K p(G, X) over varying {K p

} is characterized, as a scheme over O(℘),
uniquely by the extension property: for any regular, formally smooth O(℘)-scheme S, every E(G, X)-
morphism SE(G,X)→ ShK p(G, X) extends uniquely over O(℘).

Remark 2.2.2. This definition of the extension property is due to Kisin [2010, Theorem 2.3.8]. It differs
slightly from that of Vasiu, who uses, as test schemes, healthy regular schemes over O(℘) [Vasiu 1999,
Section 3.2] instead of regular, formally smooth O(℘)-schemes. But, when GQp is unramified, every
regular, formally smooth scheme over O(℘) is also healthy regular over O(℘), because O(℘) is unramified
over Z(p) [Milne 1994, Corollary 4.7(a)] and every regular, formally smooth scheme is healthy regular
(if p > 2) over any d.v.r. unramified over Z(p), according to a lemma of Faltings (see [Moonen 1998,
Lemma 3.6]). Consequently, this difference (and related other minor differences) will not matter when
the extension property is invoked for such schemes.

In our work, we need a more precise description of the integral canonical model. Let GZp be a reductive
group scheme over Zp with generic fiber GQp and such that GZp(Zp) = K p. By [Kisin 2010, (2.3)],
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there exists a lattice WZ of W such that the embedding ρQp : GQp ↪→ GL(WQp) is induced by a closed
embedding

GZp ↪→ GL(WZp),

where WZp :=WZ⊗Zp. For K p stabilizing WẐ =WZ⊗ Ẑ, one can find a compact open subgroup H =
H p Hp ⊂GSp(W, ψ)(A f ) with ρ(K )⊂ H such that H stabilizes WẐ and also that ρ : G ↪→GSp(W, ψ)
induces an embedding (of weakly canonical models of Shimura varieties)

ShK (G, X) ↪→ ShH (GSp(WZ, ψ),H
±)⊗Q E(G, X).

For d ∈ N and sufficiently small H , let Ag,d,H denote the Mumford (fine) moduli scheme over Z[1/d]
which parametrizes abelian schemes endowed with a polarization of degree d and a level H -structure.
By replacing WZ by a scalar multiple of it, we may and do assume that ψ is Z-valued on WZ; let
d := [W ∗Z :WZ] for the dual W ∗Z ⊂W . Then, by taking sufficiently small K p (so that H p is also so), we
get an embedding of schemes

ShH (GSp(WZ, ψ),H
±) ↪→Ag,d,H .

By construction, SK (G, X) is the normalization of the Zariski closure of the image of the resulting
embedding

ShK (G, X) ↪→Ag,d,H ⊗Z(p) O(℘). (2.2.2.1)

From now on, when we talk about the canonical integral model SK p K p (with hyperspecial K p), we
will tacitly assume that K p is small enough that the above conditions imposed are achieved.

Let SK ⊗ κ(℘) be the reduction of the integral canonical model SK = SK (G, X) at ℘. Next, we define
the Newton stratification on this scheme, following [Rapoport 2005; Vasiu 2008] (cf. [Wortmann 2013]).
We fix an embedding ιp :Q ↪→Qp which induces the chosen prime ℘ on E(G, X); such choice amounts
to fixing an embedding E(G, X)℘ ↪→Qp together with an embedding ιp of E(G, X)-algebras.

2.2.3. For a vector space V , let T (V ) be the tensor space attached to V :

T (V )=
⊕

(s,t)∈N2

V⊗s
⊗ (V∨)⊗t .

An element of T (V ) is called a tensor on V . Let {sα}α∈J be the set of tensors on WQ fixed under the
extended action of GQ ↪→ GL(W ) on T (W ).

Let (π : A→ ShK , λA) be the pullback to ShK = ShK (G, X) of the universal abelian scheme with a
polarization of degree d over Ag,d,H ; as usual, we assume K p to be sufficiently small for this to make
sense. We have the local system W := R1(π an)∗Q of Q-vector spaces and the (analytic) vector bundle
Wan

C
:= R1(π an)∗�

•

AC/ShK
with Gauss–Manin connection (which is an integrable connection with regular

singularities). By Deligne’s theorem, the latter is the analytification of a unique algebraic vector bundle W

over ShK (in this case, the relative de Rham cohomology H 1
dR(A/ShK ) := R1π∗�

•

A/ShK
) with integrable

connection. Each tensor sα defines a global section sα,B of the local system T (W) and also a global
section sα,dR of the vector bundle T (H 1

dR(A/ShK )) [Kisin 2010, (2.2)].
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Now, let F ⊃ E(G, X) be an extension which can be embedded in C; we fix an embedding σ∞ : F ↪→C

which extends the given embedding E(G, X) ↪→ C. For x ∈ ShK (G, X)(F), let Ax be the corresponding
abelian variety over F , and let H m

dR(Ax/F) and H m
ét (Ax ⊗F F,Qp) denote the de Rham cohomology

of Ax/F and the étale cohomology of Ax ⊗F F , respectively. For each tensor sα ∈ T (W ), let sα,B,σ∞(x)
in T (H 1

B(σ∞(Ax),Q)) denote the fiber of sα,B at σ∞(x) ∈ ShK (G, X)(C). By the moduli interpre-
tation of the complex points of ShK (G, X) [Milne 1994, Proposition 3.9], there is an isomorphism
W∨ ∼→ H 1

B(Aσ∞(x),Q), uniquely determined up to action of G(Q), where G acts on W∨ by the contra-
gredient representation. Moreover, sα,B,σ∞(x) is the image of sα by any such isomorphism (in particular,
it does not depend on the choice of such isomorphism). For each prime l, let sα,l,σ∞(x) be the tensor in
T (H 1

ét(Ax ⊗F F,Ql)) which is the preimage of sα,B,σ∞(x) under the canonical isomorphism

H 1
ét(Ax ⊗F F,Ql)

∼
→ H 1

ét(σ∞(Ax ⊗F F),Ql)= H 1
B(σ∞(Ax),Q)⊗Ql, (2.2.3.1)

where the first isomorphism σ∞ is the proper base change isomorphism in étale cohomology. The image
of sα,B,σ∞(x) under the comparison isomorphism

H 1
B(σ∞(Ax),Q)⊗C= H 1

dR(Ax ⊗F,σ∞ C/C)

is the stalk sα,dR,σ∞(x) at σ∞(x) of the section sα,dR of T (H 1
dR(A/ShK )). As the algebraic vector bundle

H 1
dR(A/ShK ) is defined over E(G, X) [Kisin 2010, Corollary 2.2.2], so is σ∞(sα,dR,x), the base change via

σ∞ of the stalk sα,dR,x of sα,dR at x . Set H m
A (Ax) :=H m

dR(Ax/F)×
∏

l H m
ét (Ax ,Ql) and Q(1) := F×A f (1),

where A f (1) := (lim←−−r µr )⊗Z Q (as usual, µr := {ζ ∈ F | ζ r
= 1}), and let T (H 1

A(Ax),Q(1)) be the
tensor space generated by these F ×A f -modules H m

A (Ax), Q(1) (and their duals) [Deligne et al. 1982,
Chapter I, §1]. Then, the element

(sα,dR,x , sα,ét,σ∞(x) := (sα,l,σ∞(x))l)

of T (H 1
A(Ax),Q(1)) is an absolute Hodge cycle on Ax [Deligne et al. 1982, Chapter I, §2].

2.2.4. Now we show that every geometric point z ∈ SK ⊗ Fp(k) (with k = k̄, char k = p) gives rise to a
GQp -isocrystal over k, i.e., a σ -conjugacy class of elements in G(L). Here, we assume that L(k) can be
embedded in C; for example, this is the case if k has finite transcendence degree over Fp. The p-divisible
group (Az[p∞], λAz [p

∞
]) with quasipolarization gives rise to an F-isocrystal over k equipped with a

nondegenerate alternating pairing. More precisely, the crystalline cohomology M := H 1
cris(Az/W (k)) of

Az with quasipolarization λz is a quasipolarized F-crystal (M, φ, 〈 , 〉): M is a free W (k)-module of rank
2 dim Az , φ ∈ EndZp(M) is a σ -linear endomorphism such that pM ⊂ φ(M), and 〈 , 〉 : M×M→W (k)
is an alternating form with the property that 〈φ(v1), φ(v2)〉 = p〈v1, v2〉

σ for v1, v2 ∈ M .
To proceed, we fix an embedding E(G, X)℘ ↪→ L(k), and thus an identification E(G, X)℘ = L(Fq) as

well, where Fq is the residue field of O(℘). Then there exists a lift of z :Spec(k)→SK⊗κ k to Spec(W (k)),
since SK (G, X) is smooth over O(℘) and O(℘) is unramified over Z(p) [Milne 1994, Corollary 4.7]. We
choose one, say x : Spec(W (k))→ SK , and set (Ax , λx) := x∗(A, λA).



268 Dong Uk Lee

Lemma 2.2.5. For each α ∈ J , let sα,0,x ∈ T (M ⊗W (k) L(k)) denote the image of sα,dR,x (the stalk at x
of sα,dR) under the canonical isomorphism H 1

dR(Ax/L(k))= M ⊗W (k) L(k).

(1) The tensor sα,0,x is a crystalline cycle, namely sα,0,z belongs to the F0-filtration of T (M⊗ L(k)) and
is fixed under the Frobenius φ, where the filtration on T (M ⊗ L(k)) is the one transported from the
Hodge filtration on T (H 1

dR(Ax/L(k)) by the canonical isomorphism M ⊗ L(k)= H 1
dR(Ax/L(k)).

(2) The triple
(M ⊗ F, φ, (sα,0,x)α∈J )

depends only on z, not on the lift x ; let us write sα,0,z for sα,0,x . There exists an L(k)-isomorphism

W∨⊗Q L(k) ∼→ M ⊗W (k) L(k) (2.2.5.1)

which maps sα to sα,0,z for every α ∈ J .

Proof. (1) This is well-known. Originally, this statement was proved by Blasius, Ogus, and Wintenberger
independently (see [Blasius 1994, §5]) when x was defined over a number field, as a consequence of the
fact that the Hodge cycles on an abelian variety over a number field are de Rham and the compatibility
of the crystalline and de Rham comparison isomorphisms [Blasius 1994, 5.1(5)]. Then Vasiu [2008,
Section 8] generalized it to arbitrary fields.

(2) As before, we choose an embedding σ∞ : L(k) ↪→ C of E(G, X)-algebras. We have seen that for
each α ∈ J , the image of sα under the comparison isomorphism

W∨⊗C ∼→ H 1
B(σ∞(Ax),Q)⊗C ∼→ H 1

dR(Ax/L(k))⊗L(k),σ∞ C (2.2.5.2)

is σ∞(sα,dR,x)= sα,dR,x⊗1 (a section of T (H 1
dR(Ax ′/L(k)))⊗L(k),σ∞ C); recall that the first isomorphism

is unique up to the action of G(Q) on W∨. Next, for any two lifts x, x ′ over W (k) of z, the composite of
the canonical maps

H 1
dR(Ax/L(k)) ∼→ H 1

cris(Az/W (k))⊗ L(k) ∼→ H 1
dR(Ax ′/L(k))

is given by parallel transport with respect to the Gauss–Manin connection [Berthelot and Ogus 1983,
Remark 2.9]. As σ∞(sα,dR,y) for y = x, x ′ are the stalks of a horizontal global section sα,B of the local
system T (WC), we see that under the composite map at hand, σ∞(sα,dR,x) must map to σ∞(sα,dR,x ′). This
proves that the triple (M ⊗ L(k), φ, (sα,0,x)α∈J ) is independent of the choice of lift x . Let us write sα,0,z
for sα,0,x (α ∈ J ).

Now, the functor defined on L(k)-algebras

R 7→ IsomR((W∨L(k)⊗ R, {sα ⊗ 1}), (M ⊗ R, {sα,0,z ⊗ 1}))

of isomorphisms between W∨⊗Q L(k) and M = H 1
cris(Az/L(k)) taking sα to sα,0,z for every α ∈ J is

represented by a scheme which is nonempty since it has a C-valued point, as was just seen, and thus is a
torsor over L(k) under GL(k). Since H 1(L(k),GL(k))= {0} (Steinberg’s theorem), this torsor is trivial,
namely has an L(k)-valued point. �
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Therefore, when one chooses an isomorphism as in (2.2.5.1) and transports the σ -linear map φ to
W∨⊗ L(k), we obtain an element b ∈ G(L(k)) with

φ = ρW∨(b)(idW∨ ⊗ σ),

where ρW∨ :G ↪→GL(W∨) denotes the contragredient representation: indeed, both φ and idW∨⊗σ (thus
ρW∨(b) as well) fix each sα ⊗ 1 ∈ T (W∨⊗ L(k)). Although b depends on the choice of an isomorphism
(2.2.5.1), its σ -conjugacy class [b] ∈ B(GQp) is independent of such choice. This shows that the F-
isocrystal over k attached to z is an GQp-isocrystal. For an arbitrary point z of SK (G, X)⊗ κ(℘), we
define the F-isocrystal attached to z to be the F-isocrystal of the geometric point in SK (G, X)(k) induced
from z for any algebraically closed field k containing the residue field κ(z) of z. The resulting F-isocrystal
does not depend on the choice of k ′; see [Viehmann and Wedhorn 2013, §8; Rapoport and Richartz 1996,
Lemma 1.3]. In this way, we obtain a (set-theoretic) map

2 : SK (G, X)⊗ κ(℘)→ B(GQp).

By the same argument (applied to Sh(T, h) instead of Sh(G, X)), we see that if σ∞(x) is a special
point, i.e., σ∞(x)= [h, g f ] ∈ ShK (G, X)(σ∞(F)) for some h ∈ X factoring through a maximal Q-torus
T of G, the GQp-isocrystal (attached to its reduction z ∈ SK (G, X)) has a representative in T (L).

Finally, we remark that although our definition of the F-isocrystal attached to a point of SK (G, X)(k)
uses cohomology spaces, one can equally work with homology spaces, as adopted by other people (such
as Viehmann and Wedhorn [2013]). This does not alter the definition of the map 2.

2.2.6. With every Shimura datum (G, X), there is associated a natural G(C)-conjugacy class c(G, X) of
cocharacters of GC, namely that containing the Hodge cocharacter µ−1

h := h−1
|Gm , where Gm refers to

the factor of (ResC/RGm)C =
∏

Gal(C/R) Gm corresponding to the identity embedding of C. Recall that
we fixed an embedding ιp : Q ↪→ Qp inducing the chosen prime ℘ on E(G, X) and Q is given as a
subfield of C. As is well-known, this choice allows us to consider c(G, X) as a G(Qp)-conjugacy class
of cocharacters of GQp

; we continue to denote it by c(G, X).
Put B(GQp , X) := B(GQp , c(G, X)) (the subset of B(GQp) defined in 2.1.4 for C = c(G, X)) and

µ(GQp , X) := µ(GQp , c(G, X)).

Proposition 2.2.7. Let (G, X) be a Shimura datum of Hodge type and K = K p K p
⊂ G(A f ) a compact

open subgroup. Suppose that G is unramified over Qp and K p ⊂ G(Qp) is hyperspecial.

(1) The image of 2 : SK (G, X)⊗ κ(℘)→ B(GQp) is contained in B(GQp , X).

(2) For [b] ∈ B(GQp), the subset
S[b] :=2−1([b])

is locally closed inside SK (G, X)⊗ Fp.

For (1), see, e.g., [Viehmann 2015, Theorem 3.7], and for (2), [Vasiu 2011, 5.3.1].
Endowed with reduced induced subscheme structure, the subvarieties S[b] of SK (G, X)⊗Fp are called

the Newton strata of SK (G, X).
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Rapoport [2005, Conjecture 7.1] conjectures the following.

Conjecture 2.2.8. Im(2)= B(GQp , X).

Remark 2.2.9. (1) It is known (see [Rapoport and Richartz 1996; Chai 2000]) that with respect to the
partial order � on B(GQp , X), there exist a unique maximal element, called the µ-ordinary element, and a
unique minimal element, called the basic element. The µ-ordinary element is just (the σ -conjugacy class
in B(GQp , X)with Newton point) µ(GQp , X); it is clear from the definition that µ(GQp , X)∈ B(GQp , X).
Previously, nonemptiness is known for these two special strata. For the µ-ordinary locus, this was first
proved by Wedhorn [1999] in the PEL-type cases, using an equicharacteristic deformation argument (which
is thus yet unavailable for Hodge type Shimura varieties) and by Wortmann [2013] for general Hodge-type
cases, along the lines of [Viehmann and Wedhorn 2013] comparing the Newton stratification with the
Ekedahl–Oort stratification. There was also a group-theoretic approach of [Bültel 2001]. Nonemptiness
of the basic locus in the PEL-type cases was shown in [Fargues 2004].

(2) The Newton stratification on Shimura varieties has been a research topic of intensive study with
constant progress and outputs. We refer the reader to the recent survey article [Viehmann 2015] on the
current status of research (updating the reports by Rapoport [2003; 2005]). Here, we just mention one
question directly related to our work, namely the dimension of Newton strata (the result on which either
assumes or subsumes the nonemptiness of stratum). There is a conjectural formula for the (co)dimension
of each Newton stratum [Chai 2000, Question 7.6; Rapoport 2005, p. 296]. This conjecture was inspired
by the result of Oort [2001, Theorem 4.2] confirming it in the Siegel case, and was proved, among
others, in the general PEL-type case by Hamacher [2015]; with our nonemptiness result, his recent work
[Hamacher 2017] also establishes this formula in the general Hodge-type case. Also, the result of [Kret
2012], alluded to in the introduction, in fact establishes nonemptiness of Newton strata by proving this
formula in the simple PEL-type cases of Lie type A or C ; his result, however, depends on the resolution
of the Langlands–Rapoport conjecture [Kisin 2017] and the stabilization of the twisted trace formula.
There is also a work of Scholze and Shin [2013, Corollary 8.4] of similar flavor.

(3) We do not know yet if our definition of the GQp-isocrystal is a GQp-isocrystal on SK ⊗ κ(℘) in the
sense of [Rapoport and Richartz 1996, §3]. Due to this flaw, some basic properties on Newton stratification
that are known for PEL-type Shimura varieties, such as the Grothendieck specialization theorem, are not
yet established for Hodge type Shimura varieties. For some known properties, we refer to [Rapoport
2003; Vasiu 2008].

3. Proof of nonemptiness of Newton strata

We keep the notation from the previous section; in particular, we chose an embedding ιp : Q ↪→ Qp

inducing ℘ on E(G, X). In this section, we prove the main result, namely that for any GQp-isocrystal
[b] lying in B(GQp , X), there exists a special point in ShK (G, X)(Q) such that the F-isocrystal of its
reduction is [b]. For that, we give a generalization of a result of Kottwitz [1992, Lemma 13.1] (in the
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PEL-cases) which identifies the GQp-isocrystal of the reduction of a special point in terms of the special
Shimura subdatum defining the point.

3.1. GQ p-isocrystal attached to special points. We recall that for a torus T over a nonarchimedean local
field F, there exists a unique maximal compact subgroup of T (F) (which is also open). In fact, T has a
canonical integral form T over OF such that for every finite extension F ′ of F, the maximal compact
subgroup of T (F ′) is T (OF ′). If E is a finite Galois extension of F splitting T , the maximal compact
subgroup of T (E) = Hom(X∗(T ), E×) (' (E×)dim T ) is T (OE) = Hom(X∗(T ),O×E ) (' (O×E )

dim T );
furthermore, we have T (OF ) = HomGal(E/F)(X∗(T ),O×E ). If T is unramified over F , T (OF ) is the
unique hyperspecial subgroup of T (F) (see Theorem 1 and the discussion after Proposition 2 in §10.3 of
[Voskresenskiı̆ 1998]; also see [Tits 1979]). We will also write simply T (OF ) for T (OF ).

Now, let x = [h, k f ] ∈ ShK (G, X)(Q) be a special point, namely h ∈ Hom(S, TR)∩ X for a maximal
Q-torus T of G and k f ∈ G(A f ). Then, ιp(x) ∈ ShK (G, X)(Qp) extends (uniquely) to an Oιp-valued
point of the integral canonical model SK , where Oιp is the valuation ring of Q defined by ιp. This
is due to the construction of SK as the normalization of the Zariski closure of the image of a natural
embedding ShK (G, X) ↪→ Ag,d,H ⊗Z(p) O(℘) (as provided by (2.2.2.1)). Indeed, the image of x under
such an embedding is a polarized abelian variety of CM-type; thus, it extends to an Oιp-valued point
of Ag,d.H . Since the morphism SK (G, X)→Ag,d,H ⊗Z(p) O(℘) of O(℘)-schemes is finite (as the target
is an excellent scheme), the claim follows by the valuative criterion of properness applied to a suitable
normal model over O(℘) of ShK ′(T, h) for K ′ ⊂ T (A f )∩ K a compact open subgroup. Set L := L(Fp).

Lemma 3.1.1. (1) The GQp-isocrystal of the reduction z of ιp(x) ∈ ShK (G, X)(Oιp) is the image of
−µh ∈ X∗(TQp)GalQp

under the natural map X∗(TQp)GalQp
∼
→ B(TQp)→ B(GQp), where the first

isomorphism is the inverse of the isomorphism κTQp
: B(TQp)

∼
→ X∗(TQp)GalQp

(2.1.3.1).

(2) If TQp is unramified and the (unique) hyperspecial subgroup T (Zp) of T (Qp) is contained in K p,
then ιp(x) is defined over an unramified extension E ′ of E(G, X)℘ and extends uniquely over OE ′ .

It follows readily from [Kottwitz 1985, 2.5] that the GQp-isocrystal of the reduction z is represented by

NmE/E0(µ(πE))
−1
∈ T (L),

where E = E(T, h)p for the prime p of the reflex field E(T, h) induced by ιp, E0 ⊂ E is the maximal
unramified subextension of Qp, NmE/E0 : T (E)→ T (E0) is the Norm map, and πE is a uniformizer
of E .

Proof. (1) This was proved by Kottwitz [1992, Lemma 13.1] in his PE(L)-type situation. In our general
Hodge-type situation, we adapt his arguments; incidentally. We already observed that the F-isocrystal of z
is represented by an element of T (L). Before entering into a detailed proof, we briefly explain the strategy
of Kottwitz’s proof [1992, §12–13]. It consists of two parts. First, with any Qp-torus (T ′, µ′ ∈ X∗(T ′))
endowed with a cocharacter, he constructs a certain T ′-isocrystal, i.e., a Qp-linear exact tensor functor

4T ′,µ′ : REPQp(T
′)−→ CRYS (3.1.1.1)
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(see Section 2.1) and identifies it (via the isomorphism κT ′ : B(T ′) ∼→ X∗(T ′)GalQp
(2.1.3.1)); this part of

his argument applies to any torus over a p-adic field endowed with a cocharacter. Next, he specializes the
pair (T ′, µ′) to the one (TQp , µh) coming from a special Shimura subdatum (T, h) of (GSp(W, ψ),H±),
and in this case obtains the geometric interpretation 4TQp,µh (WQp) = H cris

1 (Az/L), where WQp refers
to the representation of TQp given by the chosen embedding T ↪→ GSp(W, ψ) and H cris

1 (Az/L) is the
F-isocrystal dual to H 1

cris(Az/L) for the reduction z of ιp(x) [Kottwitz 1992, Lemma 13.1]. Here, Kottwitz
works with special Shimura-subdatum defined by a PEL-datum, but one easily checks that this statement
continues to hold for any special Shimura subdatum of (GSp(W, ψ),H±) (we will justify this shortly).
Finally, a standard argument of Tannakian theory gives an isomorphism

f (WQp) : H
cris
1 (Az/L) ∼→WQp ⊗ L

of L-vector spaces; this is obtained by identifying some two L-valued fiber functors of the Tannakian
category REPQp(T

′), from which it follows (cf. Section 2.1) that the Frobenius automorphism H cris
1 (Az/L)

transfers to bσ with b ∈ T ′(L) via such isomorphism. Our main job then consists in verifying that in a
general Hodge-type situation, such an isomorphism f (WQp) still qualifies as an isomorphism of (2.2.5.1),
namely that under the induced map f (WQp)

∨
:W∨L

∼
→ H 1

cris(Az/L), for each α ∈ J , the tensor sα goes
over to the crystalline cycle sα,0,z of Lemma 2.2.5(2).

To justify these claims in detail, we begin by recalling the construction of the functor 4TQp,µh (3.1.1.1).
Let F ⊂ Qp be a finite extension of Qp and T F the category of tori over Qp split by F . The functor
T 7→ X∗(T ) is an equivalence of categories between T F and the category of Gal(F/Qp)-modules that
are free of finite rank as abelian groups. Then, for any object T ′ of T F endowed with a cocharacter
µ′ ∈ X∗(T ′), one defines a Qp-linear exact tensor functor

4T ′,µ′ : REPQp(T
′)→ CRYS (3.1.1.2)

as the composite of two Qp-linear exact tensor functors

ρ∗T ′,µ′ : REPQp(T
′)→ CR(F), D : CR(F)→ CRYS,

where CR(F) is the neutral Qp-linear Tannakian category of finite-dimensional crystalline representations
of Gal(Qp/Fur), where Fur

⊂Qp is the maximal unramified subextension of F . Here, the first functor
ρ∗T ′,µ′ is dual to a certain natural homomorphism

ρT ′,µ′ : Gal(Qp/Fur)→ T ′(Qp) (3.1.1.3)

that is constructed from (T ′, µ′) in [Kottwitz 1992, §12]. The second functor D is the Dieudonné functor
in the Fontaine–Messing theory: for a finite unramified extension E (⊂ Fur) of F and a crystalline
representation V of Gal(Qp/E),

D(V )= (Bcris⊗Qp V )Gal(Qp/E),
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where Bcris is the crystalline period ring of [Fontaine and Messing 1987]. Then, in view of [Kottwitz
1985, 2.5], Lemma 12.1 of [Kottwitz 1992] says that, regarding 4T ′,µ′ as an element of B(T ′), one has
the equality

4T ′,µ′ =−µ
′

under the isomorphism κT ′ : B(T ′) ∼→ X∗(T ′)GalQp
(2.1.3.1).

In the geometric situation where (T ′, µ′)= (TQp , µh), we claim that one has a canonical isomorphism
of F-isocrystals

4TQp,µh (WQp)= H cris
1 (Az/L),

where H cris
1 (Az/L) is the F-isocrystal dual to H 1

cris(Az/L), i.e., the linear dual HomL(H 1
cris(Az/L), L)

equipped with the Frobenius operator81( f )(v) := p−1
·
σf (V v) for f ∈ H cris

1 (Az/L) and v ∈ H 1
cris(Az/L)

(V being the Verschiebung operator on H 1
cris(Az/L)). In view of the comparison theorem of [Fontaine

and Messing 1987] and [Faltings 1989], it is sufficient to show that the (crystalline) representation
Gal(Qp/Fur)→TQp↪→GL(WQp) (3.1.1.3) is isomorphic, via some isomorphism W∨

Qp

∼
→H 1

ét(ιp(Ax),Qp),
to the canonical Galois representation Gal(Qp/Fur)→ GL(H ét

1 (ιp(Ax),Qp)), where H ét
1 (ιp(Ax),Qp)

is H 1
ét(ιp(Ax),Qp)

∨ (linear dual). The moduli interpretation of ShK (G, X)(C) provides an isomorphism
W∨ ∼→ H 1

B(Ax ,Q), uniquely determined up to action of G(Q). There exists such an isomorphism
under which the Hodge structure h : C× → GL(W )R corresponds to the defining Hodge structure
hx : C

×
→ GL(H 1

B(Ax ,Q)) of Ax ; we fix one, say θ . The induced isomorphism

W∨Qp

∼
→ H 1

B(Ax ,Q)⊗Qp
∼
→ H 1

ét(ιp(Ax),Qp) (3.1.1.4)

will be what we want. Under such isomorphism, the Galois representation Gal(Qp/Fur)→TQp (3.1.1.3) is
identified with the one attached to the pair (Tx , hx) by the same procedure in [Kottwitz 1992, §12], where
Tx := Int(θ)(T )⊂GL(H 1

B(Ax ,Q)). Therefore, given these, the claim at hand follows readily from a result
in the theory of complex multiplication of Shimura and Taniyama, which says that when ιp(Ax) is defined
over a finite extension F of Qp, the canonical Galois representation Gal(Fab/F)→GL(H ét

1 (ιp(Ax),Qp))

composed with the isomorphism F× ∼→W ab
F in local class field theory (normalized in such a way that the

geometric Frobenius automorphisms map to uniformizers) is

rTx ,µhx
|E(T,h)×p ◦NmF/E(T,h)p : F

×
→ E(T, h)×p → (Tx)Qp ,

where E(T, h) is the reflex field of (T, µh) and p is the place of E(T, h) defined by ιp : Q ↪→ Qp (so
that E(T, h)p ⊂ F); see [Chai et al. 2014, A.2.5.3, A.2.5.8, (1), and A.2.4.5].

From 4TQp,µh (defined for (T ′, F, µ′)= (TQp , F, µh)), and the obvious fiber functor CRYS→VECL :

(U,8) 7→ U , we get a fiber functor over L: ω1 : REPQp(TQp) → VECL . By Steinberg’s theo-
rem (H 1(L , TL) = {0}), this nonstandard fiber functor is isomorphic to the standard fiber functor
ω0 : REPQp(TQp)→ VECL : (ρ, V ) 7→ V ⊗Qp L; we fix such an isomorphism f : ω1

∼
→ ω0. Then, we

have seen that there exists b ∈ T (L) such that

(H cris
1 (Az/L),81)' (W ⊗ L , ρW (b)(idW ⊗ σ)),
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via the induced isomorphism f (WQp) : ω1(WQp) = H cris
1 (Az/L) ∼→ ω0(WQp) = WQp ⊗ L , and that

[b] = −µ′ ∈ X∗(T ′)GalQp
under the isomorphism κT ′ : B(T ′) ∼→ X∗(T ′)GalQp

(2.1.3.1). Also note in
passing that H 1

cris(Ax/L) ' (W∨⊗ L , ρW∨(b)(idW∨ ⊗ σ)). Therefore, to prove statement (1), we only
need to show that for any isomorphism f : ω1

∼
→ ω0 of fiber functors, f (WQp) : H cris

1 (Az/L) ∼→ WL

qualifies as an isomorphism of (2.2.5.1) (i.e., an isomorphism compatible with tensors). We remark that
in the PEL-type setting, the tensors involved were morphisms in (abelian) categories, so this was obvious.
In a general Hodge-type case, however, the proof of this fact requires a nontrivial fact [Blasius 1994] that
the Hodge cycles on abelian varieties over number fields are de Rham.

In more detail, we consider each tensor sα as a morphism sα : 1→ W⊗
Qp

in REPQp(TQp), where 1
is the trivial representation Qp (which is an identity object of the tensor category REPQp(TQp)) and
W⊗

Qp
denotes some specific object of REPQp(TQp). Applying the functor 4TQp,µh , we get a morphism

s ′α :4TQp,µh (1)→4TQp,µh (W
⊗

Qp
) in CRYS. As 4TQp,µh (1) is the trivial F-isocrystal (L , σ ), again this is

equivalently regarded as a crystalline tensor on 4TQp,µh (WQp)= H cris
1 (Az/L). Moreover, as f : ω1→ ω0

is an isomorphism of fiber functors, we have a commutative diagram of L-vector spaces:

ω1(1)
s′α
//

f (1) '

��

ω1(W⊗Qp
)

' f (W⊗
Qp
)

��

ω0(1)
sα
// ω0(W⊗Qp

)

So, it remains to check that the crystalline tensor s ′α on H 1
cris(Az/L) equals the crystalline cycle sα,0,z , i.e.,

the de Rham cycle sα,dR,x on H 1
dR(Ax/L) (under the canonical isomorphism H 1

cris(Az/L)= H 1
dR(Ax/L)).

First, it follows from the previous discussion that the image of the tensor sα : 1 → W⊗
Qp

under the
functor ρ∗TQp,µh

is its image under our chosen identification W∨
Qp

∼
→ H 1

ét(ιp(Ax),Qp) (3.1.1.4). As this
identification is induced from an isomorphism W∨ ∼→ H 1

B(Ax ,Q) provided by the moduli interpretation
of ShK p K p(G, X)(C), the image tensor equals the tensor sα,p,σ∞(x) : 1→ H ét

1 (ιp(Ax),Qp)
⊗. This is

the p-adic component of the absolute Hodge cycle (sα,dR,x , (sα,l,σ∞(x))l). Then, since the étale and
the de Rham component of an absolute Hodge cycle on an abelian variety over a number field match
under the p-adic comparison isomorphism, from which the second functor D is induced [Blasius 1994,
Theorem 0.3], the image of sα,p,σ∞(x) under the functor D must be sα,dR,x : 1→ H dR

1 (Ax/L)⊗. So, we
have just proved that s ′α =4µh (sα)= sα,dR,x , and consequently statement (1).

(2) The statement on the field of definition is an easy consequence of the reciprocity law characterizing the
canonical model of Shimura varieties [Deligne 1979, 2.2] and local class field theory. For any compact open
subgroup K ′ contained in T (A f )∩K , there is a natural map ShK ′(T, h)→ShK (G, X)⊗E(G,X)E(T, h) of
weakly canonical models of Shimura varieties [Deligne 1979, 2.2.5]. Hence, it suffices to show that for the
compact open subgroup K ′ = T (Zp)×K ′p for any K ′p ⊂ T (Ap)∩K p, the connected components of the
finite scheme ShK ′(T, h) over E(T, h) are defined over an (abelian) extension E ′ of E(T, h) such that the
prime p′ of E ′ induced by ιp is unramified over ℘. The action of Gal(Q/E(T, h)) (which factors through
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the topological abelianization Gal(E(T, h)ab/E(T, h))) on the group ShK ′(T, h)(Q)= T (Q)\T (A f )/K ′

is given by (the adelic points of) the reciprocity map [Deligne 1979, 2.2]

rT,µh : ResE(T,h)/Q(Gm E(T,h))
ResE(T,h)/Q(µh)
−−−−−−−−→ ResE(T,h)/Q(TE(G,h))

NE(T,h)/Q
−−−−−→ T (3.1.1.5)

via class field theory: for ρ ∈ Gal(E(T, h)ab
p /E(T, h)p) = E(T, h)×p and [t]K ′ ∈ ShK ′(T, h)(Ep) =

T (Q)\T (A f )/K ′, one has
ρ[t] = [t · rT,µh (ρ)

−1
],

where one uses the convention that under the identification Gal(E(T, h)ab
p /E(T, h)p) = E(T, h)×p , the

geometric Frobenius corresponds to a uniformizer of E(T, h)p. Obviously, the image in T (Qp) under the
map rT,µh of the unit group (OE(T,h)⊗Zp)

× is contained in the maximal compact open subgroup T (Zp).
As Gal(E(T, h)ab

p /E(T, h)ur
p ) = (OE(T,h))

×
p ⊂ (OE(T,h) ⊗ Zp)

×, this proves the claim. Then, by the
extension property [Kisin 2010, 2.3.7] and Remark 2.2.2 of the integral canonical model, x extends to an
OF -valued point of SK . �

Note that when the conditions of (2) hold, the “good reduction at ιp” of the special point follows
from an intrinsic property of the integral canonical model (i.e., the extension property), rather than its
construction.

3.2. Construction of special Shimura data with prescribed F-isocrystals.

Theorem 3.2.1. Let (G, X) be a Shimura datum (not necessarily of Hodge type) such that GQp is
unramified and K p = GZp(Zp) a hyperspecial subgroup of G(Qp).

(1) For every [b] ∈ B(GQp , X), there exists a special Shimura subdatum (T, h : S→ TR) such that

νGQp
([b])=−

1
[F :Qp]

NmF/Qp(µh).

Here, the right-hand side is the image of the corresponding quasicocharacter under the canonical
map X∗(T )

GalQp
Q

=N (TQp)→N (GQp) and F ⊂Qp is the field of definition of µ ∈ X∗(TQp).

(2) If (G, X) is of Hodge type, for every [b] ∈ B(GQp , X), there exists a special Shimura subdatum (T, h)
such that for any g f ∈ G(A f ), the reduction (at ιp) of the special point [h, g f ]K p ∈ ShK p(G, X)(Q)
has the F-isocrystal equal to [b].

(3) Furthermore, we may find such a special Shimura subdatum (T, h) with the additional properties
that TQp is unramified and T (Zp)⊂ K p.

The additional properties in statement (3) specify the prime-to-p isogeny class of the reduction of a
special point defined by such (T, h), not just its Q-isogeny class; such finer information has an amusing
application (see Corollary 3.2.3).

Proof. (1) Our proof consists of two steps. Fix a rational prime l 6= p.
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Step 1. We claim that for an arbitrary maximal Qp-torus T ′ of GQp , there exist a maximal Q-torus T0

of G such that (T0)Qv
is elliptic in GQv

for v =∞, l and (T0)Qp = Int(gp)(T ′) for some gp ∈ G(Qp).
Then, for such T0, we will shortly find µ ∈ X∗(T0) satisfying the following conditions:

µ ∈ X∗(T0)∩ c(G, X) and νGQp
([b])=

1
[F :Qp]

NmF/Qp(µ). (3.2.1.1)

Here, in the equation on the right, F is any extension of Qp splitting (T0)Qp ; note that the quasicocharacter
itself remains the same if we take F to be a field of definition of µ.

First, to find a maximal Q-torus T0 of G with the required properties, we consider the following three
sets:

Xv = {x ∈ Gsc(Qv) | x is regular semisimple and CentG(x) is elliptic in GQv
}, (v =∞, l);

X p = {x ∈ Gsc(Qp) | x is regular semisimple and CentG(x)= Int(gp)(T ′) for some gp ∈ G(Qp)}.

These sets are all nonempty: for v =∞, this follows from Deligne’s condition on Shimura data [Deligne
1979, (2.1.1.2)], and for v= l, from [Platonov and Rapinchuk 1994, Theorem 6.21]. They are also open in
the real, l-adic, and p-adic topology, respectively: for two sufficiently close regular semisimple elements,
their centralizers are conjugated (cf. [Bültel 2001, proof of Lemma 3.1]). So, by the weak approximation
theorem, there exists an element x ∈ Gsc(Q) which lies in all of them. Its centralizer T0 := CentG(x) is
then the desired maximal torus.

Secondly, existence of a cocharacter µ ∈ X∗(T0) satisfying the conditions (3.2.1.1) is established in
Lemma 5.11 of [Langlands and Rapoport 1987]. (See [Lee 2016, Proposition 4.2.4] for another proof.)
We remark that this proof of Langlands–Rapoport uses, as the input condition, nonemptiness of the affine
Deligne–Lusztig variety X (c(G, X), b)K p attached to the tuple (GQp , c(G, X), K p, [b]):

X (c(G, X), b)K p := {gGZp(OL) ∈ G(L)/GZp(OL) | g−1bσ(g) ∈ GZp(OL)µ(p)GZp(OL)},

where µ is any morphism Gm,OL → GZp ⊗OL lying in c(G, X). But [Wintenberger 2005] shows that
[b] ∈ B(GQp , c(G, X)) implies such nonemptiness.

Step 2. Next, for any maximal Q-torus T0 of G, elliptic at R, and each cocharacter µ∈ X∗(T0)∩c(G, X),
we claim that there exists u ∈ G(Q) such that

(i) Int u : (T0)Q ↪→ GQ is defined over Q and the Q-torus T := Int u(T0) is elliptic in G over R,

(ii) Int u(µ) equals µ−1
h for some h ∈ Hom(S, TR)∩ X .1

Moreover, if (T0)Ql is elliptic in GQl for some l 6= p, there exist such u ∈ G(Q) and h ∈ X which satisfy,
in addition to these properties, that

(iii) there exists y ∈ G(Qp) such that (TQp , µ
−1
h )= Int y((T0)Qp , µ).

Our proof is an adaptation of the argument of [Langlands and Rapoport 1987, Lemma 5.12]. Let T sc
0 be

the inverse image of (T0∩Gder)0 under the canonical isogeny Gsc
→Gder, and pick any morphism h0 ∈ X

1Recall our convention that c(G, X) is the conjugacy class of cocharacters into GC containing µ−1
h for some h ∈ X .
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factoring through (T0)R, which exists since (T0)R is elliptic in GR and any two elliptic maximal tori in
any connected reductive real algebraic group H are conjugate under H(R). Choose w ∈ NG(T0)(C) such
that µ= w(µ−1

h0
); we may find such a w in NGsc(T sc

0 )(C) as the Weyl groups of G and Gsc are the same.
This gives us a cocycle α∞ ∈ Z1(Gal(C/R),Gsc(C)) defined by

α∞ι = w · ι(w
−1)

for all ι ∈ Gal(C/R). As a matter of fact, this has values in T sc
0 (C). Indeed, by [Shelstad 1979, Proposi-

tion 2.2], the automorphism Int(w−1) of (T sc
0 )C is defined over R, so

Int(w−1)(ι(t))= ι(Int(w−1)t)= Int(ι(w−1))(ι(t))

for all t ∈ T sc
0 (C), i.e., ι(w)w−1

∈ CentGsc(T sc
0 )(C) = T sc

0 (C), and so is wι(w−1) = ι(ι(w)w−1). Then,
by Lemma 7.16 of [Langlands 1983], there exists a global cocycle

α ∈ Z1(Q, T sc
0 )

mapping to α∞ ∈ H 1(R, T sc
0 ). When (T0)Ql is elliptic in GQl for some l 6= p, then the following lemma

ensures the existence of a cocycle α ∈ Z1(Q, T sc
0 ) mapping to α∞ ∈ H 1(R, T sc

0 ) and further to zero
in H 1(Qp, T sc

0 ). For a finitely generated abelian group A, let Ators be the subgroup of its torsion elements.

Lemma 3.2.2. (1) For a maximal Q-torus T of G which is elliptic at l 6= p, the natural map

(π1(T sc)0(l))tors→ (π1(T sc)0)tors

is surjective, where we write 0 = Gal(Q/Q) and 0(l)= Gal(Ql/Ql).

(2) There exists α ∈ Z1(Q, T sc
0 ) mapping to α∞ ∈ H 1(R, T sc

0 ) and to zero in H 1(Qp, T sc
0 ).

Proof of lemma. First, we recall some (standard) notations: for a torus T over a field F , T̂ denotes the
dual torus of T , and for an abelian topological group A, AD denotes its dual group Homcont(A,C×)

(group of continuous homomorphisms).

(1) Since this map is induced (by restriction) by the natural surjection π1(T sc)0(l)� π1(T sc)0 , it suffices
to prove that π1(T sc)0(l) is a torsion group. But, since T sc

Ql
is anisotropic, T̂ sc0(l) is a finite group, and

so is
π1(T sc)0(l) = X∗(T̂ sc0(l))= Hom(T̂ sc0(l),C×).

(2) For any place v of Q, there exists a canonical isomorphism

H 1(F, T sc) ∼→ Hom(π0(T̂ sc0(v)),C×)= ((T̂ sc0(v))D)tors ∼= (π1(T sc)0(v))tors

[Kottwitz 1984, (3.3.1); Rapoport and Richartz 1996, 1.14], and a short exact sequence

H 1(Q, T sc)→ H 1(Q, T sc(A)) :=
⊕
v

H 1(Qv, T sc)
θ
−→ π0(T̂ sc0)D

= (π1(T sc)0)tors
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[Kottwitz 1986, Proposition 2.6]. Here, θ is the composite⊕
v

H 1(Qv, T sc) ∼→
⊕
v

π0(T̂ sc0(v))D
→ π0(T̂ sc0)D,

of which the second map is identified with the natural map
⊕

v(π1(T sc)0(v))tors � (π1(T sc)0)tors (thus,
it equals the direct sum of the maps considered in the statement of (1)). Hence, by (1), there exists a
class αl

∈ H 1(Ql, T sc) such that θ(αl)=−θ(α∞), and thus the element (βv)v ∈ H 1(Q, T sc(A)) defined
by the condition that βv = αv for v =∞, l and βv = 0 for v 6= l,∞ in π0(T̂ sc0)D . By exactness of the
sequence, we conclude existence of α ∈ Z1(Q, T sc) whose cohomology class maps to (βv)v. �

Now, by changing α∞ and w further, we may assume that α∞ is the restriction of α to Gal(C/R).
Then, using the fact that the restriction map H 1(Q,Gsc)→ H 1(R,Gsc) is injective (which follows from
the Hasse principle [Platonov and Rapinchuk 1994, Theorem 6.6] and the fact that H 1(Qv,Gsc) = 0
for any nonarchimedean place v [Platonov and Rapinchuk 1994, Theorem 6.4]), we see that α becomes
trivial as a cocycle with values in Gsc(Q). We summarize this discussion in the diagram:

H 1(R, T sc
0 )

// H 1(R,Gsc) α∞
� // 0

H 1(Q, T sc
0 )

//

OO

H 1(Q,Gsc)
?�

OO

∃ α
_

OO

� // α′
_

OO

⇒ α′ = 0.

So there exists u ∈ Gsc(Q) such that for all ρ ∈ Gal(Q/Q),

αρ = u−1ρ(u).

Then the homomorphism Int u : (T0)Q→GQ : t 7→ t ′=utu−1 is defined over Q; in particular, T :=uT0u−1

is a torus defined over Q, and as the restriction of Int u to Z(G) is the identity, TR is also elliptic in GR.
Moreover, since u−1ι(u)= wι(w−1) for ι ∈ Gal(C/R), one has that uw ∈ Gsc(R) and

Int u(µ)= Int(uw)µ−1
h0
= µ−1

h

for h := Int(uw)(h0) ∈ X ∩Hom(S, T ). This establishes the claims (i) and (ii). The proof of claim (iii)
is similar. As the restriction of α to Gal(Qp/Qp) is trivial, there exists x ∈ T (Qp) such that xρ(x−1)=

αρ = u−1ρ(u) for all ρ ∈Gal(Qp/Qp), i.e., ux ∈ G(Qp). But the homomorphism Int u : (T0)Qp
→ GQp

also equals Int u = Int ux . This proves (iii).

Now we complete the proof of Theorem 3.2.1(1). Let [b] ∈ B(GQp , X). For the first statement, we
take an arbitrary maximal Q-torus T0 of G that is elliptic over R, and find a cocharacter µ of T0 having
the properties (3.2.1.1); we remark that Lemma 5.1 of [Langlands and Rapoport 1987], which was used
to find such a µ0, works for any maximal Qp-torus of GQp (in particular, for (T0)Qp ). From such a
pair (T0, µ), we get a special Shimura subdatum (T, h) with the properties (i) and (ii) of Step 2. This
special Shimura subdatum (T, h) satisfies the condition of the first statement, since Int(u) : T0→ T is
defined over Q (for u ∈ G(Q) as chosen in the proof) so that Int(u)(NmF/Qp(µ))= NmF/Qp(µ

−1
h ).
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(2) Note that the quasicocharacter − 1
[F :Qp]

NmF/Qp(µh) equals the image of −µh under the natural map
B(TQp)

∼= X∗(T )GalQp
→N (TQp)= X∗(T )GalQp

Q
: use the fact that there exists a commutative diagram

B(G)
νG //

κG

��

N (G)

δG
��

π1(G)GalF

αG // π1(G)
GalF
Q

(for any reductive group G over a p-adic field F). Here, the map αG in the bottom is given by

µ 7→ |GalF ·µ|
−1

∑
µ′∈GalF ·µ

µ′

(cf. [Kottwitz 1985, 2.8; Rapoport and Richartz 1996, Theorem 1.15]). Therefore, since the map
(ν, κ) : B(GQp)→N (GQp)×π1(G)GalQp

is injective [Kottwitz 1997, 4.13], the second statement follows
from the first statement and Lemma 3.1.1.

(3) Finally, for the existence of a special Shimura subdatum (T, h) with the additional property on the
position of the hyperspecial subgroup T (Zp), we begin with an unramified maximal Qp-torus T ′ of GQp

such that the unique hyperspecial subgroup T ′(Zp) of T ′(Qp) is contained in K p: such a torus exists by
Lemma 3.2.4 below. Then, from such T ′, we can find (by Step 1) a pair (T0, µ) having the properties
(3.2.1.1) of Step 1 and, further, such that (T0)Qv

is elliptic for v =∞, (some) l 6= p and also that the
unique hyperspecial subgroup of T0(Qp) is contained in Int(gp)(K p) for some gp ∈ G(Qp). For such
(T0, µ), again Step 2 produces a special Shimura datum (T1, h1) satisfying the properties (i)–(iii) of Step 2.
Now, since G(Q) is dense in G(Qp) [Milne 1994, Lemma 4.10], there exists g ∈ G(Q)∩ K p · g−1

p . Then
the new special Shimura datum (T, h) := Int(g)(T1, h1) still satisfies the condition in the first statement,
and further, the unique hyperspecial subgroup of T (Qp) is contained in K p. �

Corollary 3.2.3. Let (G, X) be a Shimura datum of Hodge type. Choose an embedding ιp :Q ↪→Qp and
let ℘ be the prime of E(G, X) induced by ιp. Suppose that GQp is unramified and choose a hyperspecial
subgroup K p of G(Qp). Then the reduction SK p(G, X)× κ(℘) has nonempty ordinary locus if and only
if ℘ has absolute height one (i.e., E(G, X)℘ =Qp). In this case, if GZp ↪→ GL(WZp) is an embedding of
Zp-group schemes (see [Kisin 2010, (2.3.1)]), there exists a special point which is the canonical lifting of
its reduction.

Recall from 2.2.1 that in the construction of the integral canonical model, an embedding G ↪→GSp(W,ψ)
is chosen so as to satisfy the condition in the corollary.

Proof. The necessity of E(G, X)℘ =Qp was proved in [Bültel 2001, Section 3]. For sufficiency, we note
that it suffices to find a special Shimura subdatum (T, h) such that

there exists a Borel subgroup B over Qp of GQp containing TQp and such that µh ∈ X∗(T ) lies
in the closed Weyl chamber determined by (TQp , B). (∗)
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Indeed, then the canonical Galois action of GalQp on X∗(T ) coincides with the naive Galois action;
hence, one has that E(G, X)℘ = E(T, h)p, where p is the prime of E(T, h) induced by ιp. Given this,
the corollary then follows from [Bültel 2001, Lemma 2.2]: for a CM-abelian variety A over Q (⊂C) with
CM-type (F,8), where F is a CM-algebra and 8 is a subset of Hom(F,C) with 8t ι◦8=Hom(F,C),
the reduction of A at ιp :Q ↪→Qp is an ordinary abelian variety if and only if the prime of the reflex field
E = E(F,8) induced by ιp is of absolute height one; when A is defined by a special Shimura datum
(T, h), the reflex field E(F,8) equals the reflex field E(T, h) defined earlier.

Now, pick an arbitrary maximal Qp-torus T ′ of GQp containing a maximal Qp-split torus. As GQp is
quasisplit, there exists a Borel subgroup B ′ defined over Qp which contains T ′. Let µ′ be the cocharacter
in c(G, X) factoring through T ′ and lying in the closed Weyl chamber determined by (T ′, B ′). Let (T, h)
be a special Shimura subdatum produced from (T ′, µ′) as in the proof of Theorem 3.2.1 and such that
(TQp , µh) is conjugate to (T ′, µ′) under G(Qp). Then, for such (T, µh), the condition (∗) continues to
hold, which proves the claim.

For the second statement, there exists a special Shimura subdatum (T, h) as in the last statement of
Theorem 3.2.1. Then, as µh is a morphism of Zp-group schemes Gm→ GZp ↪→ GL(WZp), any special
point [h, 1×g p

f ] ∈ ShK p K p(G, X)(Q) (with arbitrary g p
f ∈G(Ap

f )) is the canonical lifting of its reduction,
according to [Milne 2006, Proposition 9.24]. �

Lemma 3.2.4. Let F be a p-adic field with ring of integers OF . For any reductive group scheme HOF over
OF , there exists a reductive OF -subgroup scheme SOF of HOF whose generic fiber is a maximal F-split
torus of H := HOF ⊗ F. Its centralizer T ′OF

:= CentHOF
(SOF ) is a smooth, closed subscheme of HOF .

Note that as H is quasisplit, the generic fiber T ′ of T ′OF
is a maximal F-torus of H .

Proof. Let B(H, F) denote the Bruhat–Tits building of H over F . Choose a maximal F-split F-torus S
of H such that the hyperspecial point x fixed by K p := HOF (OF ) is contained in the apartment associated
with S. Let SOF be the (unique) reductive OF -group scheme with generic fiber S. Then, SOF is a closed
subscheme of HOF . Indeed, we first observe that SOF (OL) maps to HOF (OL) under the embedding
S ↪→H , where L is the completion of the maximal unramified extension (in an algebraic closure F) of F
and OL is the ring of integers of L . This follows from these two facts: first, the hyperspecial point x of
B(H, F) is also a hyperspecial point of B(H, L) with the associated OL -group scheme being (HOF )OL

[Tits 1979, 3.4, 3.8], and secondly, for a maximal L-split torus S1 of H containing S and defined over F
(which exists by [Bruhat and Tits 1984, 5.1.12]), x ∈ B(H, L) lies in the apartment corresponding to S1

[Tits 1979, 1.10]. So, x is fixed under the maximal bounded subgroup S1(OL) of S1(L), and thus under
SOF (OL) as well. Then, according to [Vasiu 1999, 3.1.2.1], this implies that the F-embedding S ↪→H
extends to an OF -embedding SOF ↪→ HOF . The fact that T ′OF

:= CentHOF
(SOF ) is a smooth closed group

OF -subscheme of HOF is well-known [SGA 3 II 1970, XI, Corollaire 5.3; Conrad 2014, 2.2]. Moreover,
one knows that it represents the functor on OF -schemes

R′ 7→ {g ∈ H(R′) | g(SOF )R′g−1
= (SOF )R′},
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and its generic fiber T ′ := CentH (S) is a maximal torus of H which splits over L , since H is quasisplit
[Tits 1979, 1.10]. �

Remark 3.2.5. (1) In fact, for any special Shimura subdatum (T, h) with the property (∗) in the proof,
every special point of ShK p(G, X) defined by it has µ-ordinary reduction at ιp. So, we get a more
direct proof of nonemptiness of µ-ordinary locus (without invoking Lemma 5.11 of [Langlands and
Rapoport 1987] used in the proof of Theorem 3.2.1).

(2) This corollary was proved in the PEL-type cases of Lie type A or C by Wedhorn [1999]. His
argument was to first establish nonemptiness of the µ-ordinary locus, and then to check that the
µ-ordinary locus equals the (usual) ordinary locus when E(G, X)℘ =Qp (in the PEL-type cases
of Lie type A or C). But to check the second statement, he relied on a case-by-case analysis. In
contrast, we observe that in view of (1), the equality of the µ-ordinary Newton point and the ordinary
Newton point when E(G, X)℘ =Qp is simply a consequence of the existence of a special Shimura
subdatum (T, h) with the property (∗) in the proof (since the reduction of such a special point attains
simultaneously the two Newton points when E(G, X)℘ =Qp).
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Towards Boij–Söderberg theory for Grassmannians:
the case of square matrices
Nicolas Ford, Jake Levinson and Steven V Sam

We characterize the cone of GL-equivariant Betti tables of Cohen–Macaulay modules of codimension 1,
up to rational multiple, over the coordinate ring of square matrices. This result serves as the base
case for “Boij–Söderberg theory for Grassmannians,” with the goal of characterizing the cones of GLk-
equivariant Betti tables of modules over the coordinate ring of k× n matrices, and, dually, cohomology
tables of vector bundles on the Grassmannian Gr(k,Cn). The proof uses Hall’s theorem on perfect
matchings in bipartite graphs to compute the extremal rays of the cone, and constructs the corresponding
equivariant free resolutions by applying Weyman’s geometric technique to certain graded pure complexes
of Eisenbud–Fløystad–Weyman.

1. Introduction

1A. Ordinary and equivariant Boij–Söderberg theory. Let M be a finitely generated Z-graded module
over a polynomial ring A = C[x1, . . . , xn]. The Betti table of M counts the number of generators in each
degree of a minimal free resolution of M . More precisely, if M has a graded minimal free resolution of
the form

M←
⊕
d∈Z

A(−d)⊕β0d ← · · · ←

⊕
d∈Z

A(−d)βnd ← 0,

the Betti table of M is the collection of numbers βi j . Equivalently, βi j is the dimension of the degree- j
part of the graded module TorA

i (M,C).
Boij–Söderberg theory (initiated in [Boij and Söderberg 2008]) seeks to characterize the possible Betti ta-

bles of graded modules over polynomial rings, with the key insight that it is easier to study these tables only
up to positive scalar multiple. The theory has been broadly successful: while the earliest results concerned
Betti tables of Cohen–Macaulay modules (stratified by their codimension) [Eisenbud et al. 2011; Eisenbud
and Schreyer 2009], the theory was extended to all modules [Boij and Söderberg 2012], to certain modules
over multigraded and toric rings [Berkesch et al. 2012; Eisenbud and Erman 2017], and more [Kummini
and Sam 2015; Gheorghita and Sam 2016]. For some surveys, see [Fløystad 2012; Fløystad et al. 2016].

In fact, the classification is surprisingly simple. We say a Betti table is pure if, for each i , exactly one
βi j is nonzero, i.e., each step of the minimal free resolution is concentrated in a single degree. For each

MSC2010: primary 13D02; secondary 05E99.
Keywords: Boij–Söderberg theory, Betti table, cohomology table, Schur functors, Grassmannian, free resolutions, equivariant

K-theory.
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increasing sequence of integers d0 < d1 < · · ·< dk , there is a Cohen–Macaulay A-module whose Betti
table is pure with the βidi ’s as the only nonzero entries. Moreover, the resulting Betti table is unique up
to a rational multiple, and any purported Betti table is a positive rational multiple of the Betti table of an
actual module if and only if it can be written as a positive Q-linear combination of pure tables [Eisenbud
and Schreyer 2009]. If we bound the degrees that can occur in a Betti table — that is, bound the j’s for
which βi j may be nonzero — the Betti tables that fit within these bounds form a rational polyhedral cone.
The pure tables then form the extremal rays of this cone.

A key feature of the theory is the discovery that the cone of Betti tables is dual to another cone,
consisting of cohomology tables of vector bundles and sheaves on projective space. Given such a sheaf F ,
its cohomology table is the table of numbers γi j = hi (F ⊗O( j)). There is a family of nonnegative
bilinear pairings between Betti tables of modules and cohomology tables of sheaves, and the inequalities
that cut out the cone of Betti tables can all be realized explicitly in terms of this pairing. Consequently,
Betti tables yield numerical constraints on the possible cohomology tables on Pn, and vice versa. Recent
work of Eisenbud and Erman [2017] has categorified this pairing, realizing it through a functorial pairing
between the underlying algebraic objects.

This paper is the beginning of an attempt to generalize this story to GLk-equivariant modules over a poly-
nomial ring (all GLk-modules are required to be algebraic representations). Write R=C[x11, x12, . . . , xkn],
the coordinate ring of the affine space of k× n matrices with the left GLk action. In this setting, as we
will see in Section 2, a minimal free resolution of a finitely generated equivariant R-module comes with
an action of GLk , so in forming our Betti tables we can ask which representations appear at each step of
the resolution rather than just which degrees. Specifically, by analogy with the ordinary case, we wish to
understand:

(i) the cone BSk,n of GLk-equivariant Betti tables of modules supported on the locus of rank-deficient
matrices in Hom(Ck,Cn), and

(ii) the cone ESk,n of GL-cohomology tables of vector bundles on the Grassmannian Gr(k,Cn).

Both of these constructions will be defined more precisely in Section 2.

Remark 1.1. The case k = 1 is the ordinary Boij–Söderberg theory of graded modules and vector
bundles on projective space since an algebraic action of GL1 is equivalent to a choice of Z-grading (see
Remark 2.1). We should point out that in this case, [Sam and Weyman 2011] studies a GLn-equivariant
analogue of Boij–Söderberg theory using a Schur-positive analogue of convex cones. In [Sam and
Weyman 2011], the equivariant Betti table records characters and the Boij–Söderberg cone is defined to
be closed under “Schur positive rational functions” while in the current work, the equivariant Betti table
records multiplicities and the cone has an action of the positive rational numbers instead.

In a later paper, we establish a nonnegative pairing between these tables, extending the pairing of
Eisenbud–Schreyer; the hope is that the cones are dual, as they are in ordinary Boij–Söderberg theory.
On the algebraic side, we will restrict to Cohen–Macaulay modules supported everywhere along the
rank-deficient locus.
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A fundamental base case in ordinary Boij–Söderberg theory is to understand Betti tables of torsion
graded modules over a polynomial ring C[t] in one variable. The categorified pairing of Eisenbud–Erman
effectively outputs such a module (actually a complex of such modules); as such, the structure of these
tables, while very simple, controls the structure of the general Boij–Söderberg cone and its dual. It is
relatively straightforward to write down the inequalities that cut out the corresponding cone, and every
inequality cutting out the larger cone of Betti tables comes from pulling back one of these through the
pairing mentioned earlier.

This paper is concerned with the corresponding base case, namely, the cone of equivariant modules
over the coordinate ring of square matrices. This case looks simple at first glance: the modules have codi-
mension 1, and the corresponding Grassmannian is just a point, so there is no dual picture involving vector
bundles. Unlike in the graded setting, however, the equivariant base case is already both combinatorially
and algebraically interesting. Our main result is the following description of this cone:

Theorem 1.2. In the square matrix case, the supporting hyperplanes of the equivariant Boij–Söderberg
cone BSk,k correspond to antichains in the extended Young’s lattice Y± of weakly decreasing integer
sequences. Its extremal rays correspond to pure resolutions and are indexed by comparable pairs of
weakly decreasing integer sequences, λ(0) ( λ(1).

For a more precise version of this statement, see Theorem 3.8.
We will exhibit a free resolution to realize each extremal ray, but the construction is nontrivial and

relies on existing results of Eisenbud–Fløystad–Weyman from ordinary Boij–Söderberg theory. The proof
presented here also depends crucially on the Borel–Weil–Bott theorem, so we do not know if our results
hold in positive characteristic.

We expect the description of the cone in Theorem 1.2 to control the structure of the equivariant
Boij–Söderberg cone in the general case. In particular, the generalized Eisenbud–Schreyer pairing will
map the larger cones BSk,n and ESk,n to the square-matrix cone. We sketch this construction in Section 2.

1B. Structure of the paper. The paper is structured as follows: In Section 2, we introduce the relevant
notions, namely, equivariant Betti tables and (briefly) GL-cohomology tables for sheaves on Grassman-
nians. In Section 3, we describe the combinatorics of the equivariant Boij–Söderberg cone for square
matrices. In Section 4, we show that each extremal ray is realizable, using Weyman’s geometric technique.

2. Setup

Throughout, let V,W be vector spaces over C of dimensions k, n respectively, with k ≤ n. Starting in
Section 3, we will assume n = k.

2A. Background. We will only consider algebraic representations of GL(V ). A good introduction to
these notions is [Fulton 1996]. We will also refer the reader to [Sam and Snowden 2012, §3] for a succinct
summary (with references) of what we’ll need about the representation theory of the general linear group.
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The irreducible (algebraic) representations of GL(V ) are indexed by weakly decreasing integer se-
quences λ = (λ1, . . . , λk), where k = dim(V ). We write Sλ(V ) for the corresponding representation,
called a Schur functor. If λ has all nonnegative parts, we write λ≥ 0 and say λ is a partition. We often
represent partitions by their Young diagrams:

λ= (3, 1)←→ λ= .

We partially order partitions and integer sequences by containment:

λ⊆ µ if λi ≤ µi for all i.

We write Y for the poset of all partitions with this ordering, called Young’s lattice. We write Y± for the
set of all weakly decreasing integer sequences; we call it the extended Young’s lattice.

If λ is a partition, Sλ(V ) is functorial for linear transformations V → W . If λ has negative parts,
Sλ is only functorial for isomorphisms V −→∼ W . If λ = (d, 0, . . . , 0), then Sλ(V ) = Symd(V ) and if
λ= 1d

= (1, . . . , 1, 0, . . . , 0) with d 1’s, then Sλ(V )=
∧d
(V ). If dim V = k, we’ll write det(V ) for the

one-dimensional representation
∧k
(V )= S1k (V ). We write Kλ(k) for the dimension of Sλ(C

k).
We may always twist a representation by powers of the determinant:

det(V )⊗a
⊗Sλ1,...,λk (V )= Sλ1+a,...,λk+a(V )

for any integer a ∈ Z. This operation is invertible and can sometimes be used to reduce to considering the
case when λ is a partition.

By semisimplicity, any tensor product of Schur functors is isomorphic to a direct sum of Schur functors
with some multiplicities:

Sλ(V )⊗Sµ(V )∼=
⊕
ν

Sν(V )⊕cνλ,µ .

The cνλ,µ are the Littlewood–Richardson coefficients; we won’t need to know how they are computed
in general, though we will use that if cνλ,µ 6= 0 and λ is a partition, then µ⊆ ν (and similarly, if µ is a
partition, then λ⊆ ν). Also, by symmetry of tensor products, we have cνλ,µ = cνµ,λ. An important special
case is Pieri’s rule when λ = (d). In this case, cν(d),µ ≤ 1 and is nonzero if and only if µ ⊆ ν and the
complement of µ in ν is a horizontal strip, i.e., does not have more than 1 box in any column. This is
equivalent to the interlacing inequalities ν1 ≥ µ1 ≥ ν2 ≥ µ2 ≥ · · · .

If R is a C-algebra with an action of GL(V ), and S is any GL(V )-representation, then S⊗C R is an
equivariant free R-module; it has the universal property

HomGL(V ),R(S⊗C R,M)∼= HomGL(V )(S,M)

for all equivariant R-modules M . The basic examples will be the modules Sλ(V )⊗ R.

Remark 2.1 (Gradings and GL1). If dim(V ) = 1, the notion of GL(V )-equivariant ring or module is
identical to “(Z-)graded.” In particular, in this case V⊗d

⊗ R ∼= R(−d), the rank-1 free module generated
in degree d .
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In general, the modules Sλ(V )⊗R are the equivariant analogues of the twisted graded modules R(−d).
The analogous notion to “N-graded ring” is that, as a GL(V )-representation, R should contain only those
Sλ with nonnegative parts.

2B. Equivariant modules and Betti tables. Fix two vector spaces V and W with k = dim(V ) ≤
dim(W )= n. Let X be the affine variety Hom(V,W ), with coordinate ring

R =OX = Sym(Hom(V,W )∗)= Sym(V ⊗W ∗)∼= C

[
xi j :

1≤ i ≤ k,
1≤ j ≤ n

]
.

The ring R has actions of GL(V ) and GL(W ). Its structure as a representation is given by the Cauchy
identity (see [Sam and Snowden 2012, (3.13)] for example),

R ∼=
⊕
ν≥0

Sν(V )⊗Sν(W ∗). (2-1)

We are primarily interested in the GL(V )-action, though we will use both actions when we construct
resolutions in Section 4.

The rank-deficient locus {T : ker(T ) 6= 0} ⊂ X is an irreducible subvariety of codimension n− k+ 1.
Its prime ideal Pk is generated by the

(n
k

)
maximal minors of the k× n matrix (xi j ). When k = n, Pk is a

principal ideal, generated by the determinant.
Note that the maximal ideal m = (xi j ) of the origin in X and the ideal Pk are GL(V )- and GL(W )-

equivariant.
Let M be a finitely generated GL(V )-equivariant R-module. The module Tori

R(R/m,M) naturally
has the structure of a finite-dimensional GL(V )-representation. We define the equivariant Betti number
βi,λ(M) as the multiplicity of the Schur functor Sλ(V ) in this Tor module, i.e.,

Tori
R(R/m,M) ∼=

⊕
λ

Sλ(V )⊕βi,λ(M) (as GL(V )-representations).

It is convenient also to define the (equivariant) rank Betti number β̃i,λ(M) as the dimension of the
λ-isotypic component, that is,

β̃i,λ := βi,λ · dimC(Sλ(V ))= βi,λ · Kλ(k).

By semisimplicity of GL(V )-representations, it is easy to see that any minimal free resolution of M can
be made equivariant, so we may instead define βi,λ as the multiplicity of the equivariant free module
Sλ(V )⊗ R in the i-th step of an equivariant minimal free resolution of M :

M← F0← F1← · · · ← Fd ← 0, where Fi =
⊕
λ

Sλ(V )βi,λ(M)⊗ R,

and likewise β̃i,λ is the rank of the corresponding summand as an R-module.
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Remark 2.2. Both definitions βi,λ, β̃i,λ are useful. The Betti number is needed for the pairing with vector
bundles, but the rank Betti number is more relevant to the square matrix case and will play the more
significant role in this paper.

2B1. Betti tables and cones. Let

Bk,n =

n−k+1⊕
i=0

⊕
λ

Qi,λ

be a direct sum of copies of Q, indexed by homological degree i and partition λ. We think of an element
of Bk,n as an abstract Betti table, that is, a choice of βi,λ for each i and λ. Similarly, we write B̃k,n for
the space of abstract rank Betti tables (β̃i,λ).

We define the equivariant Boij–Söderberg cones BSk,n ⊆Bk,n, B̃Sk,n ⊆ B̃k,n as the positive linear span
of all (multiplicity or rank) Betti tables of finitely generated Cohen–Macaulay modules M supported on
the rank-deficient locus Spec R/Pk ⊂ X . (That is, M for which

√
ann(M)= Pk .)

2C. GL-cohomology tables for Grassmannians. Let Gr(k,W ) denote the Grassmannian variety of
k-dimensional subspaces in W, with tautological exact sequence of vector bundles

0→ S→W →Q→ 0,

where W denotes the trivial rank-n vector bundle and

S = {(x,U ) ∈W ×Gr(k,W ) : x ∈U }.

Let E be any coherent sheaf on Gr(k,W ). We define the GL-cohomology table γi,λ(E) by

γi,λ(E) := dimC Hi (E ⊗Sλ(S)).

We let ESk,n ⊂
⊕

i
∏
λ Qi,λ be the positive span of such tables.

Remark 2.3. Note that if k = 1 then S = O(−1) on the projective space P(W ). Since this is a line
bundle, λ can have only one row, say λ= ( j). Then

Sλ(S)= Sym j (O(−1))=O(− j),

so γi,λ(E) = γi,− j (E) is the usual cohomology table of E with respect to O(1). In general, the GL-
cohomology table contains more information than the usual cohomology table with respect to twists
by O(1); in particular, it determines the class of E in K-theory K(Gr(k,W )), while the usual table only
determines the K-class of i∗(E), where i : Gr(k,W ) ↪→ P(

∧k
(W )) is the Plücker embedding.

2D. The numerical pairing. We briefly discuss the pairing between equivariant Betti tables and GL-
cohomology tables. For details, see [Ford and Levinson 2016]. Let B = (βi,λ) be an equivariant Betti
table and 0 = (γi,λ) a GL-cohomology table. We define a rank table 8̃(B, 0)= (φ̃i,λ(B, 0)), for i ∈ Z,
by

φ̃i,λ(B, 0)=
∑

p−q=i

βp,λ · γq,λ.
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In this definition we do not assume any bounds on i , so it is convenient to define the derived Boij–Söderberg
cone BSD

k,n ⊂
⊕

i∈Z

⊕
λ Qi,λ as the positive linear span of Betti tables of minimal free equivariant

complexes F • =
⊕

λ Sλ(V )β•,λ ⊗ R with homology modules supported in the rank-deficient locus.

Theorem 2.4 [Ford and Levinson 2016, Theorem 1.13]. The map 8̃ defines a pairing of cones,

8̃ : BSD
k,n ×ESk,n→ B̃SD

k,k .

Consequently, any nonnegative linear functional on the cone B̃SD
k,k determines a nonnegative bilinear

pairing between equivariant Betti tables and GL-cohomology tables. The extended cone B̃SD
k,k has

extremal rays and facets closely resembling those of B̃Sk,k . See [Ford and Levinson 2016, Section 4.2]
for an explicit description.

3. The Boij–Söderberg cone on square matrices

We now assume V,W are vector spaces of the same dimension k, and we describe the cone B̃Sk,k ⊂ B̃k,k .
In particular, we would like to know both the extremal rays and the equations of the supporting hyperplanes.
The modules M of interest are Cohen–Macaulay of codimension 1, so their minimal free resolutions are
just injective maps F1 ↪→ F0 of equivariant free modules. For i = 0, 1, we put

Fi =
⊕
λ

Sλ(V )βi,λ ⊗ R,

and define β̃i,λ = βi,λ · Kλ(k) as in Section 2.
The first observation is that, since M is a torsion module, we must have

rank F0 = rank F1, that is,
∑
λ

β̃0,λ(M)=
∑
λ

β̃1,λ(M). (3-1)

Conversely, any injective map of free modules of this form must have a torsion cokernel, which is then
Cohen–Macaulay of codimension 1. We will see that the rank condition is the only linear constraint on
Betti tables, that is, the cone spans this entire linear subspace.

3A. Antichain inequalities. The maps of any minimal complex have positive degree. More precisely,
we have the following:

Lemma 3.1 (Sequences contract under minimal maps). Let

f : Sµ(V )⊗ R→ Sλ(V )⊗ R

be any nonzero map. If µ= λ, then f is an isomorphism. Otherwise, µ) λ and f is minimal.

Proof. This follows from the universal property of equivariant free modules,

HomGL(V ),R(Sµ(V )⊗ R,Sλ(V )⊗ R)∼= HomGL(V )(Sµ(V ),Sλ(V )⊗ R).
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We apply the Cauchy identity (2-1) for R as a GL(V )-representation. We see that

HomGL(V )(Sµ(V ),Sλ(V )⊗ R)∼=
⊕
ν≥0

HomGL(V )
(
Sµ(V ),Sλ(V )⊗Sν(V )

)
⊗Sν(W ∗).

By the Littlewood–Richardson rule, if µ 6⊇ λ, every summand is 0. If µ= λ, the only nonzero summand
comes from ν =∅; we see that the corresponding map is an isomorphism (if nonzero). Finally, if µ) λ,
there is at least one ν for which the corresponding summand is nonzero and any such ν must satisfy
|ν| = |µ| − |λ|> 0, so the corresponding map of R-modules has strictly positive degree (equal to |µ|),
hence is a minimal map. �

Remark 3.2. Because the ring R involves W ∗, not W , the analogous computation shows that the sequence
labeling W expands under a minimal map: that is, a nonzero GL(W )-equivariant map Sµ(W )⊗ R→
Sλ(W )⊗ R exists if and only if µ⊆ λ (and is minimal if and only if µ 6= λ).

In particular, for any fixed µ, a minimal injective map F1 ↪→ F0 of free modules must inject the
summands λ⊆ µ of F1 into the summands λ( µ of F0, and so∑

λ(µ
β̃0,λ ≥

∑
λ⊆µ

β̃1,λ, (3-2)

which gives us some of the inequalities our Betti tables need to satisfy. But in fact these inequalities are
not enough. For example, for any pair of partitions α, β, the summands of F1 given by

{λ : λ⊆ α or λ⊆ β}

must inject into the summands of F0 given by

{λ : λ( α or λ( β}.

This gives the additional, nonredundant condition∑
λ(α or λ(β

β̃0,λ ≥
∑

λ⊆α or λ(β
β̃1,λ.

Example 3.3. The following example illustrates that the inequalities (3-2) are not sufficient. Consider
the following rank Betti table, with all entries equal to 1 (shown transposed, with dashed lines indicating
containment of partitions):

β̃0λ :

β̃1λ :
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It is evident that this cannot be the Betti table of a torsion module, since nothing maps to the summand.
Likewise, the table violates the inequality for the pair , . For any single partition µ, however, the
inequality (3-2) is satisfied. (Note that if µ contains both and , then it strictly contains .)

The complete set of inequalities is as follows. Recall that if P is a poset, I ⊆ P is an order ideal if
x ∈ I and y ≤ x implies that y ∈ I , i.e., I is a downwards-closed subset. We define the interior of I to be
the subset

I ◦ = {x ∈ P : x < y for some y ∈ I }

of elements strictly contained in I . The maximal elements I \ I ◦ of I form an antichain, that is, they are
pairwise incomparable. We have the following:

Lemma 3.4 (Antichain inequalities). Let Y± be the extended Young’s lattice and I ⊆ Y± an order ideal.
Let (βi,λ) ∈ BSk,k be a Betti table. Then ∑

λ∈I ◦
β̃0,λ ≥

∑
λ∈I

β̃1,λ. (3-3)

Proof. Follows from the above discussion. �

Remark 3.5 (Inequalities for upwards-closed sets). It is also the case that, for any upwards-closed subset
U ⊆ Y±, we have a “dual” inequality ∑

λ∈U

β̃0,λ ≤
∑
λ∈U◦

β̃1,λ, (3-4)

where U◦ = {λ ∈U : λ≥ µ for some µ ∈U } is its upwards-interior.
Algebraically, this corresponds to the following observation: let (F1)U◦ , (F0)U be the summands

corresponding to U◦, U . The projection F0 � (F0)U vanishes on the images of the non-U◦ summands
of F1, so we have a commutative diagram

F1
f

//

��

F0

��

(F1)U◦
f̄
// (F0)U

It follows that coker( f )→ coker( f̄ ) is surjective, hence coker( f̄ ) is also torsion (since coker( f ) is).
Consequently, we obtain the desired inequality rank(F1)U◦ ≥ rank(F0)U .

Alternatively, we may deduce (3-4) by subtracting the inequality (3-3) with I = Y± \ (U ◦) from the
rank Equation (3-1), and observing that

(P \ (U◦))◦ ⊆ P \U

holds in any poset P. (Note that the complement of an upwards-closed set is downwards-closed.) In
particular, given the rank Equation (3-1), the “upwards-facing” and “downwards-facing” inequalities
collectively cut out the same cone.
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3B. Extremal rays and pure diagrams. We can construct a very simple Betti table by letting λ(0) ( λ(1)

be any pair of distinct, comparable partitions. Let β̃0,λ(0) = β̃1,λ(1) = 1 and let all other entries of the Betti
table be 0. We call the resulting table P̃(λ(0), λ(1)) a pure table of type (λ(0), λ(1)), and any resolution
corresponding to a positive multiple of this table a pure resolution.

Note that a pure table clearly satisfies all of the antichain inequalities (3-3), as well as the linear
constraint (3-1). Moreover, since a Betti table must have at least two nonzero entries, a pure table
cannot be written as a nontrivial positive combination of other tables. Any realizable pure table therefore
generates an extremal ray of B̃Sk,k .

We will show in Theorem 4.1 that every pure table has a realizable scalar multiple. Consequently,
every pure table generates an extremal ray of the Boij–Söderberg cone B̃Sk,k .

We now show that, assuming Theorem 4.1, every extremal ray is of this form.

Theorem 3.6 (Extremal rays). Every realizable rank Betti table is a positive Z-linear combination of
pure rank tables.

The proof uses Hall’s Theorem on perfect matchings in bipartite graphs. Recall that a perfect matching
on a graph G is a subset E ′ ⊆ E of the edges of G, such that every vertex of G occurs on exactly one
edge from E ′. We recall the statement of Hall’s matching theorem (see [Lovász and Plummer 1986,
Theorem 1.1.3] for a proof):

Theorem 3.7 (Hall). Let G be a bipartite graph with left vertices L , right vertices R and edges E. For a
collection of vertices S, let 0(S) be the set of neighboring vertices to S.

Assume |L| = |R|. Then G has a perfect matching if and only if |0(S)| ≥ |S| for all subsets S ⊆ R.

Proof of Theorem 3.6. Let (β̃i,λ) ∈ B̃Sk,k be a realizable rank Betti table; by rescaling, we may assume all
the entries are integers. We define a bipartite graph G = (L , R, E) as follows: For each λ, L (resp. R)
will have β̃0,λ vertices (resp. β̃1,λ) labeled λ. Every vertex labeled λ in L is connected to every vertex
labeled µ in R whenever λ( µ. By the rank condition (3-1), G satisfies |L| = |R|.

Observe that a perfect matching on G decomposes (βi,λ) as a Z-linear combination of pure tables:
each edge (λ(0)← λ(1)) in the matching corresponds to a pure table P̃(λ(0), λ(1)). Thus, it suffices to
show that G has a perfect matching.

We apply Hall’s theorem (Theorem 3.7). Let S ⊆ R. Observe that if S contains a vertex labeled µ,
then without loss of generality, we may assume S contains every vertex labeled µ and, in addition, every
vertex labeled µ′ with µ′ ⊆ µ, since adding these vertices makes S larger but does not change 0(S).

Let I be the order ideal generated by the set of vertex labels appearing in S. We see that |S|=
∑

λ∈I β̃1,λ

and |0(S)| =
∑

λ∈I ◦ β̃0,λ, so the condition |0(S)| ≥ |S| is precisely the antichain inequality (3-3) for I . �

Thus, assuming Theorem 4.1, we have shown:

Theorem 3.8 (Combinatorial description of B̃Sk,k). The cone B̃Sk,k ⊂ B̃k,k is cut out by the rank equation
(3-1), the antichain inequalities (3-3) and the conditions β̃ i,λ ≥ 0. Its extremal rays are exactly the rays
spanned by the pure tables corresponding to all pairs λ(0) ( λ(1) of comparable elements of Y±.
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Remark 3.9 (Decomposing Betti tables). There are efficient algorithms for computing perfect matchings
of graphs; see, e.g., [Lovász and Plummer 1986, §1.2]. A standard proof of Hall’s theorem implicitly
uses the following algorithm, which is inefficient but conceptually clear. Let B̃ ∈ B̃Sk,k be a Betti table.

Case 1: Suppose every antichain inequality is strict. Choose any pure table P̃(λ(0),λ(1)) whose entries
occur with nonzero values in B̃. Then

B̃rest = B̃− P̃(λ(0), λ(1)) ∈ B̃Sk,k .

Continue the algorithm on B̃rest.

Case 2: Suppose, instead, there exists an antichain I for which (3-3) is an equality. Write

B̃ = B̃ I + B̃rest,

where B̃ I contains all the entries involved in the equality (β̃0,λ for λ ∈ I ◦ and β̃1,λ for λ ∈ I ).
Then both B̃ I ∈ B̃Sk,k and B̃rest ∈ B̃Sk,k ; continue the algorithm separately for each.

We contrast the algorithm above with the usual algorithm [Eisenbud and Schreyer 2009, §1] for
decomposing graded Betti tables. For graded tables, the decomposition is “greedy” and deterministic.
It relies on a partial ordering on pure graded Betti tables, which induces a decomposition of the Boij–
Söderberg cone as a simplicial fan. Unfortunately, the natural choices of partial ordering on the equivariant
pure tables P(λ(0), λ(1)) do not yield valid greedy decomposition algorithms. For example, suppose the
graph G of Theorem 3.6 consists of a single long path. Compare the following two examples:

β̃0λ :

β̃1λ :

In both cases, G has a unique perfect matching, but whether an edge is used depends on its placement
along the path, not just on the partitions labeling its vertices. Hence, an algorithm that (for instance)
greedily selects the lexicographically largest pair (λ(0), λ(1)) will fail: in both cases, the lex-largest λ(0) is
= (3, 1) and its lex-largest neighbor is λ(1) = = (3, 2). This leads to the (unique) correct matching

on the first graph, but fails on the graph to the right.
Similarly, if the graph structure of G is a cycle, then G has two perfect matchings, so a deterministic

algorithm must have a way of selecting one.
Finally, unlike in the graded case, we do not know a good simplicial decomposition of B̃Sk,k ; it would

be interesting to find such a structure.

4. Constructing Pure Resolutions

The main theorem of this section is as follows.



296 Nicolas Ford, Jake Levinson and Steven V Sam

Theorem 4.1. For any partitions λ(0) ( λ(1), there exists a torsion, GL(V )-equivariant R-module M with
minimal free resolution

M← Sλ(0)(V )
c0 ⊗ R← Sλ(1)(V )

c1 ⊗ R← 0,

for some positive integers c0, c1.

We first consider a pair of partitions differing by a box. The same argument works somewhat more
generally (see Remark 4.8), but we restrict to this case for notational simplicity.

By the Pieri rule, there is a unique GL(V )×GL(W )-equivariant R-linear map

Sλ(0)(V )⊗Sλ(1)(W )⊗ R← Sλ(1)(V )⊗Sλ(0)(W )⊗ R. (4-1)

Theorem 4.2. The biequivariant map (4-1) is injective.

We postpone the proof to Section 4A and now explain how it implies Theorem 4.1.

Proof of Theorem 4.1. Let |λ(1)| − |λ(0)| = r . Choose a chain of partitions

λ(1) = α(r) ) α(r−1) ) · · ·) α(0) = λ(0), with |α(i)| = |λ(0)| + i for all i.

By Theorem 4.2, for i = 1, . . . , r , there exists a sequence of biequivariant, linear injections

fi : Sα(i)(V )⊗Sα(i−1)(W )⊗ R ↪→ Sα(i−1)(V )⊗Sα(i)(W )⊗ R.

Let g be the composite map

F1 = Sα(r)(V )⊗Sα(r−1)(W )⊗ · · ·⊗Sα(1)(W )⊗Sα(0)(W )⊗ R

fr⊗id⊗···⊗id
��

Sα(r)(W )⊗Sα(r−1)(V )⊗ · · ·⊗Sα(1)(W )⊗Sα(0)(W )⊗ R

id⊗ fr−1⊗···⊗id
��

...

id⊗···⊗ f2⊗id

��

Sα(r)(W )⊗Sα(r−1)(W )⊗ · · ·⊗Sα(1)(V )⊗Sα(0)(W )⊗ R

id⊗···⊗id⊗ f1

��

F0 = Sα(r)(W )⊗Sα(r−1)(W )⊗ · · ·⊗Sα(1)(W )⊗Sα(0)(V )⊗ R

Clearly g is again injective. Since rank(F1)= rank(F0), we are done. �

4A. Proof of Theorem 4.2. To cut down on indices, we write λ for the smaller partition and µ for the
larger. We put

µ= (µ1, . . . , µk), and we assume µr > µr+1,

λ= µ, except for λr = µr − 1.
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The proof relies on the Borel–Weil–Bott theorem and a construction of Eisenbud–Fløystad–Weyman.
We first review these results, then give an informal summary of the argument, and finally give a proof of
the theorem.

4A1. Borel–Weil–Bott and Eisenbud–Fløystad–Weyman. On P(W ∗), we have the short exact sequence

0→ S→W →O(1)→ 0.

Note that we are using W, not W ∗.
Given a permutation σ , define `(σ )= #{i < j : σ(i) > σ( j)}, the number of inversions.

Theorem 4.3 (Borel–Weil–Bott, [Weyman 2003, Corollary 4.1.9]). Let β = (β1, . . . , βk−1) be weakly
decreasing and let d ∈ Z. The cohomology of Sβ(S)(d) is determined as follows. Write

(d, β1, . . . , βk−1)− (0, 1, . . . , k− 1)= (a1, . . . , ak).

(1) If ai = a j for some i 6= j , every cohomology group of Sβ(S)(d) vanishes.

(2) Otherwise, a unique permutation σ sorts the ai into decreasing order, aσ(1) > aσ(2) > · · · > aσ(k).
Put λ= (aσ(1), . . . , aσ(k))+ (0, 1, . . . , k− 1). Then

H`(σ )
(
Sβ(S)(d)

)
= Sλ(W ),

and Hi (Sβ(S)(d))= 0 for i 6= `(σ ).

We will also use the following result, on the existence of certain equivariant graded free resolutions.
First, for a partition λ, we say (i, j) is an outer border square if (i, j) /∈ λ and (i − 1, j − 1) ∈ λ (or

i = 1 or j = 1), as in the ∗’s below, for λ= (3, 1):

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗

∗

.

.

.

· · ·

Let α be a partition with k parts, and let α′ ) α be obtained by adding at least one border square in
row 1, and all possible border squares in rows 2, . . . , k. Let α(0) = α, and for i = 1, . . . , k, let α(i) be
obtained by adding the chosen border squares only in rows 1, . . . , i .

Theorem 4.4 [Eisenbud et al. 2011, Theorem 3.2]. Let E be a k-dimensional complex vector space and
R = Sym(E) its symmetric algebra. There is a finite, GL(E)-equivariant R-module M whose equivariant
minimal free resolution is, with α(i) defined as above,

F0← F1← · · · ← Fk← 0, Fi = Sα(i)(E)⊗ R.

Since the construction is equivariant, it works in families:
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Theorem 4.5. Let X be a complex variety and E a rank k vector bundle over X. Let E∗→ X be the dual
bundle. There is a sheaf M of OE∗-modules with a locally free resolution

F0← F1← · · · ← Fk← 0, Fi = Sα(i)(E)⊗OE∗ .

This follows by applying the Eisenbud–Fløystad–Weyman (EFW) construction to the sheaf of algebras
OE∗ = Sym(E). The resolved sheaf M is locally given by M above. Note that M is coherent as an
OX -module, though we will not need this.

Remark 4.6. The construction we presented is also a direct corollary of a special case Kostant’s version
of the Borel–Weil–Bott theorem, for example see [Erman and Sam 2017, §6] for some discussion and
references. We expect that other cases of Kostant’s theorem are relevant for constructing complexes in
the nonsquare matrix case.

4A2. Informal summary of the argument. We have fixed λ( µ, a pair of partitions differing by a box.
There is a unique EFW complex with, in one step, a linear differential of the form

Sµ(E)⊗Sym(E)→ Sλ(E)⊗Sym(E).

The rest of the complex is uniquely determined by this pair of shapes, and is functorial in E . We “sheafify”
the complex, lifting it to a complex of modules over the algebra Sym(V ⊗O(−1)) on P(W ∗), with terms
of the form

O(−di )⊗Sα(V )⊗Sym(V ⊗O(−1)),

We twist so that the 0th term has degree d =µ1, base change along the flat extension Sym(V⊗O(−1)) ↪→
Sym(V ⊗W ∗), and finally tensor through by the vector bundle Sβ(S), where S ⊂ W ×P(W ∗) is the
tautological rank-(k−1) subbundle, and β is chosen so that all the terms of the resulting complex except
the desired pair have no cohomology. (That is, Sβ(S) has supernatural cohomology with roots at each of
the other di ’s.) Finally, we obtain the desired map from the hypercohomology spectral sequence for the
complex.

Example 4.7. Let k = 4 and let λ = (6, 1, 1, 0), µ = (6, 2, 1, 0) = ? (the added box is starred).
Working on P(W ∗), the corresponding locally free resolution of sheaves (with the twisting degrees
indicated) is, after twisting and base-changing,

(6)← (1)
?
←− ← (−1)← (−3),

where α(d) stands for the sheaf O(d)⊗Sα(V )⊗Sym(V ⊗W ∗) on P(W ∗). The desired linear differential
is marked with a ?.

We put β = (7, 1, 0) and tensor through by Sβ(S) (note that S has rank 3). Observe that Sβ(S)(d)
has no cohomology when d ∈ {6,−1,−3}, but that

H1(Sβ(S)(1))= S621(W ), H1(Sβ(S))= S611(W ).
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?

• • • •

•

• • •

?
◦ ◦

◦

◦ ◦

Figure 1. Left: The partition µ; the starred box in the 4th row is removed to form λ.
Right: The outer strip is formed by connecting the inner border strip (•) in rows 1 to r−1
to the outer border strip (◦) outside rows r + 1, . . . , k. The empty squares form α(0);
then α(i) is obtained by adding all marked squares (•, ?, ◦) up to row i . Note that α(3)= λ
and α(4) = µ.

Consequently, the E1 page of the hypercohomology spectral sequence only has the terms

S611(V )⊗S621(W )⊗ R← S621(V )⊗S611(W )⊗ R,

in the second and third columns. (The left term is along the main diagonal.) The spectral sequence, run
the other way, collapses with Hi (M) in the first column, where M is the sheaf resolved by this complex.
We see that the only nonvanishing term can be H0(M), giving an exact sequence of R-modules

0← H0(M)← S611(V )⊗S621(W )⊗ R← S621(V )⊗S611(W )⊗ R← 0.

Remark 4.8. There are two easy ways to generalize the construction that we have sketched above. First,
in the map marked ? above, there is no reason to assume that the two partitions differ by a single box,
and the same construction allows them to differ by multiple boxes as long as they are in the same row. In
this case, the Pieri rule still implies that the map (4-1) is unique up to scalar.

Second, in the above example we chose β so that Sβ(S)(d) has no cohomology for all d besides
the twists appearing in the target and domain of a single differential (in this case, the one marked ?).
Alternatively, we could choose β so that Sβ(S)(d) has no cohomology for all but two of the terms in the
complex (not necessarily consecutive terms). The end result is also a map of the form (4-1) where λ(0)

and λ(1) differ by a connected border strip. In general the map (4-1) is not unique up to scalar, however.

4A3. Combinatorial setup. We define shapes α(i), i = 0, . . . , k, as follows. Consider the squares
formed by

• the inner border strip of µ inside rows 1, . . . , r − 1,

• the rightmost square in row r of µ,

• the outer border strip of µ outside rows r + 1, . . . , k.

(See Figure 1.) Then α=α(0) is obtained by deleting all these squares, and α(i) is obtained by including
those squares in rows 1, . . . , i . Clearly, α(r) = µ and α(r−1)

= λ.
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Let ei be the number of border squares in row i , so

ei =


1+µi −µi+1 for i = 1, . . . , r − 1,
1 for i = r,
1+ λi−1− λi for i = r + 1, . . . , k.

We define a modified (and negated) partial sum,

di := µ1− (e1+ · · ·+ ei )=


µi+1− i if i = 0, . . . , r − 1,
µr − r if i = r,
µi − i + 1 if i = r + 1, . . . , k.

Finally, we write β = (β1, . . . , βk−1) for the unique partition such that, on P(W ∗), the vector bundle
Sβ(S)(d) has no cohomology for each di , i ∈ {0, . . . , k} \ {r − 1, r}, where S ⊂ W × P(W ∗) is the
tautological rank-(k−1) subbundle. By Borel–Weil–Bott, this determines β uniquely by

β − (1, . . . , k− 1)= (d0, . . . , dr−2, dr+1, . . . , dk).

With these choices, we check:

Lemma 4.9. For d = dr , the only nonvanishing cohomology of Sβ(S)(d) on P(W ∗) is Hr−1
= Sµ(W ).

For d = dr−1, the only nonvanishing cohomology is Hr−1
= Sλ(W ).

Proof. We apply Borel–Weil–Bott: we have to sort

(d, β1, . . . , βk)− (0, 1, . . . , k− 1)= (d, d0, . . . , dr−2, dr+1, . . . , dk).

For d = dr−1 or dr , sorting takes r − 1 swaps, so in both cases Hr−1 is nonvanishing. To see that the
cohomology group is Sµ(W ) for dr−1 and Sλ(W ) for dr , we must check that

µ= (d0, . . . , dr−2, dr−1, dr+1, . . . , dk)+ (0, 1, . . . , k− 1),

λ= (d0, . . . , dr−2, dr , dr+1, . . . , dk)+ (0, 1, . . . , k− 1).

These are clear from the computation above. �

4A4. The proof of Theorem 4.2. Let α(i) and di be defined as above. Consider the projective space
P(W ∗), with tautological line bundle O(−1)⊂W ∗ and rank-(k−1) bundle S ⊂W. Set ξ := V ⊗O(−1).
By Theorem 4.5, we have an exact complex

F0← · · · ← Fi ← Fi+1← · · · , where Fi = Sα(i)(ξ)⊗Sym(ξ).

Note that
Sλ(ξ)= Sλ(V )⊗O(−|λ|).

For legibility, we write O(−λ) for O(−|λ|). Thus, we have a locally free resolution

Sα(0)(V )⊗O(−α(0))⊗Sym(ξ)← · · · ← Sα(i)(V )⊗O(−α(i))⊗Sym(ξ)← · · ·

of sheaves of Sym(ξ)-modules.
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Next, let R = OP(W ∗)⊗ Sym(V ⊗W ∗). Observe that Sym(ξ) ↪→ R is a flat ring extension (locally
it is an inclusion of polynomial rings). Now base change to R, which preserves exactness. Finally, we
tensor by Sβ(S)⊗O(α(0)+µ1). Our final complex has terms

Sα(i)(V )⊗Sβ(S)(di )⊗R.

Let M be the sheaf resolved by the complex.
We run the hypercohomology spectral sequence. Running the horizontal maps first, we see that the

sequence collapses on the E2 page with Hi (M) in the leftmost column. Running the sequence the other
way, the E1 page has terms

Hq(Sα(p)(V )⊗Sβ(S)(dp)⊗R
)
= Sα(p)(V )⊗Hq(Sβ(S)(dp)

)
⊗R.

(We emphasize that Sα(p)(V ) and R are trivial bundles.) By construction, the middle factor is zero unless
p = r − 1, r , where by Lemma 4.9 the nonvanishing cohomology is Hr−1, with

Hr−1(Sβ(S)(dr−1)
)
= Sµ(W ), Hr−1(Sβ(S)(dr )

)
= Sλ(W ).

In particular, the E1 page contains only the map

Sλ(V )⊗Sµ(W )⊗ R← Sµ(V )⊗Sλ(W )⊗ R,

with the left term located on the main diagonal. We see that Hi (M)= 0 for i > 0 and that the map above
is a resolution of H0(M) by free R-modules.

4B. A stronger version of Theorem 4.1. Use the notation of Theorem 4.1. Since M is torsion, the ranks
must agree,

c0Kλ(0)(k)= c1Kλ(1)(k).

A straightforward choice of c0, c1 is to take c0 = Kλ(1)(k) and c1 = Kλ(0)(k), and to look for a “small”
resolution of the form

M← Sλ(0)(V )⊗Sλ(1)(W )⊗ R← Sλ(1)(V )⊗Sλ(0)(W )⊗ R← 0, (4-2)

equivariant for both GL(V ) and GL(W ). Theorem 4.2 proves this conjecture when |λ(1)| = |λ(0)|+ 1 and
one can also do the case when λ(1) is obtained by adding a connected border strip to λ(0) using Remark 4.8.
In general, we do not know if this particular form of resolution exists, though we conjecture that it does:

Conjecture 4.10. A small pure resolution (4-2) exists, for any pair λ(0) ( λ(1).

We finish by establishing one more situation where Conjecture 4.10 is true:

Proposition 4.11. Suppose there exists d such that (λ(0))i ≤ d ≤ (λ(1)) j for all i, j . (Equivalently, assume
(λ(0))1 ≤ (λ

(1))k .) Then a small pure resolution (4-2) exists.
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Proof. We construct the map geometrically. After twisting down by d , we may suppose instead λ(0) ≤ 0≤
λ(1). Write λ(0)=−µR for some partition µ≥ 0. On X =Hom(V,W ), there is a canonical, biequivariant
map of vector bundles T : V × X→W × X , which is an isomorphism away from the determinant locus.
When λ≥ 0, the Schur functor Sλ(V ) is functorial for linear transformations of V (when λ has negative
parts, Sλ is only functorial for isomorphisms), so there is an induced map

Sλ(1)(T ) : Sλ(1)(V )× X→ Sλ(1)(W )× X,

and, from the dual bundles, a second induced map

Sµ(T ∗) : Sµ(W ∗)× X→ Sµ(V ∗)× X.

Let g = Sλ(1)(T ) ⊗ Sµ(T ∗). Note that g is generically an isomorphism of vector bundles, so the
corresponding map of R-modules is injective:

g : Sλ(1)(V )⊗Sµ(W ∗)⊗ R→ Sµ(V ∗)⊗Sλ(1)(W )⊗ R.

Finally, we note that there is a canonical isomorphism of representations Sµ(E∗) ∼= S−µR (E) for any
vector space E . Apply this to the free R-modules above to get the desired map. �
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Chebyshev’s bias for products of k primes
Xianchang Meng

For any k ≥ 1, we study the distribution of the difference between the number of integers n ≤ x with
ω(n) = k or �(n) = k in two different arithmetic progressions, where ω(n) is the number of distinct
prime factors of n and �(n) is the number of prime factors of n counted with multiplicity. Under some
reasonable assumptions, we show that, if k is odd, the integers with�(n)= k have preference for quadratic
nonresidue classes; and if k is even, such integers have preference for quadratic residue classes. This result
confirms a conjecture of Richard Hudson. However, the integers with ω(n)= k always have preference
for quadratic residue classes. Moreover, as k increases, the biases become smaller and smaller for both of
the two cases.

1. Introduction and statement of results

First, we consider products of k primes in arithmetic progressions. Let

πk(x; q, a)= |{n ≤ x : ω(n)= k, n ≡ a mod q}|,
and

Nk(x; q, a)= |{n ≤ x :�(n)= k, n ≡ a mod q}|,
where ω(n) is the number of distinct prime divisors of n, and �(n) is the number of prime divisors of n
counted with multiplicity. For example, when k = 1, N1(x; q, a) is the number of primes π(x; q, a) in
the arithmetic progression a mod q; and π1(x; q, a) counts the number of prime powers pl ≤ x for all
l ≥ 1 in the arithmetic progression a mod q.

Dirichlet [1837] showed that, for any a and q with (a, q)= 1, there are infinitely many primes in the
arithmetic progression a mod q. Moreover, for any (a, q)= 1,

π(x; q, a)∼ x
φ(q) log x

,

where φ is Euler’s totient function [Davenport 2000]. Analogous asymptotic formulas are available for
products of k primes. Landau [1909] showed that, for each fixed integer k ≥ 1,

Nk(x) := |{n ≤ x :�(n)= k}| ∼ x
log x

(log log x)k−1

(k− 1)! .

MSC2010: primary 11M26; secondary 11M06, 11N60.
Keywords: Chebyshev’s bias, Dirichlet L-function, Hankel contour, generalized Riemann hypothesis.
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The same asymptotic is also true for the function πk(x) := |{n≤ x :ω(n)= k}|. For more precise formulas,
see [Tenenbaum 1995, II.6, Theorems 4 and 5]. Using similar methods as in [Tenenbaum 1995; Davenport
2000], one can show that, for any fixed residue class a mod q with (a, q)= 1,

Nk(x; q, a)∼ πk(x; q, a)∼ 1
φ(q)

x
log x

(log log x)k−1

(k− 1)! .

For the case of counting primes (�(n) = 1), Chebyshev [1853] observed that there seem to be
more primes in the progression 3 mod 4 than in the progression 1 mod 4. That is, it appears that
π(x; 4, 3) ≥ π(x; 4, 1). In general, for any a 6≡ b mod q and (a, q) = (b, q) = 1, one can study the
behavior of the functions

1ωk (x; q, a, b) := πk(x; q, a)−πk(x; q, b),

1�k (x; q, a, b) := Nk(x; q, a)− Nk(x; q, b).

Denote 1(x; q, a, b) := 1�1(x; q, a, b). Littlewood [1914] proved that 1(x; 4, 3, 1) changes sign
infinitely often. Actually, 1(x; 4, 3, 1) is negative for the first time at x = 26, 861 [Leech 1957].
Knapowski and Turán published a series of papers starting with [1962] about the sign changes and
extreme values of the functions 1(x; q, a, b). And such problems are colloquially known today as “prime
race problems”. Irregularities in the distribution, that is, a tendency for 1(x; q, a, b) to be of one sign is
known as “Chebyshev’s bias”. For a nice survey of such works, see [Ford and Konyagin 2002; Granville
and Martin 2006].

Chebyshev’s bias can be well understood in the sense of logarithmic density. We say a set S of positive
integers has logarithmic density, if the following limit exists:

δ(S)= lim
x→∞

1
log x

∑
n≤x
n∈S

1
n
.

Let δ fk (q; a, b)= δ(P fk (q; a, b)), where P fk (q; a, b) is the set of integers with 1 fk (n; q, a, b) > 0, and
f =� or ω. In order to study the Chebyshev’s bias and the existence of the logarithmic density, we need
the following assumptions:

(1) The extended Riemann hypothesis (ERHq) for Dirichlet L-functions modulo q .

(2) The linear independence conjecture (LIq), the imaginary parts of the zeros of all Dirichlet L-functions
modulo q are linearly independent over Q.

Under these two assumptions, Rubinstein and Sarnak [1994] showed that, for Chebyshev’s bias for
primes (�(n) = 1), the logarithmic density δ�1(q; a, b) exists, and in particular, δ�1(4; 3, 1) ≈ 0.996
which indicates a strong bias for primes in the arithmetic progression 3 mod 4. Recently, using the
same assumptions, Ford and Sneed [2010] studied the Chebyshev’s bias for products of two primes with
�(n)= 2 by transforming this problem into manipulations of some double integrals. They connected
1�2(x; q, a, b) with 1(x; q, a, b), and showed that δ�2(q; a, b) exists and the bias is in the opposite
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direction to the case of primes, in particular, δ�2(4; 3, 1)≈ 0.10572 which indicates a strong bias for the
arithmetic progression 1 mod 4.

By orthogonality of Dirichlet characters, we have

1�k (x; q, a, b)= 1
φ(q)

∑
χ 6=χ0 mod q

(χ(a)−χ(b))
∑
n≤x

�(n)=k

χ(n), (1-1)

and

1ωk (x; q, a, b)= 1
φ(q)

∑
χ 6=χ0 mod q

(χ(a)−χ(b))
∑
n≤x

ω(n)=k

χ(n). (1-2)

The inner sums over n are usually analyzed using analytic methods. Neither the method of Rubinstein
and Sarnak [1994] nor the method of Ford and Sneed [2010] readily generalizes to handle the cases of
more prime factors (k ≥ 3). From the point of view of L-functions, the most natural sum to consider is∑

n1···nk≤x
n1···nk≡a mod q

3(n1) · · ·3(nk). (1-3)

However, estimates for 1�k (x; q, a, b) or 1ωk (x; q, a, b) cannot be readily recovered from such an
analogue by partial summation. Ford and Sneed [2010] overcome this obstacle in the case k = 2 by means
of the 2-dimensional integral∫ ∞

0

∫ ∞
0

∑
p1 p2≤x

χ(p1 p2) log p1 log p2

pu1
1 pu2

2
du1 du2.

Analysis of an analogous k-dimensional integral leads to an explosion of cases, depending on the relative
sizes of the variables u j , and becomes increasingly messy as k increases.

We take an entirely different approach, working directly with the unweighted sums. We express the
associated Dirichlet series in terms of products of the logarithms of Dirichlet L-functions, then apply
Perron’s formula, and use Hankel contours to avoid the zeros of L(s, χ) and the point s = 1

2 . Using the
same assumptions (1) and (2), we show that, for any k ≥ 1, both

δ�k (q; a, b) and δωk (q; a, b)

exist. Moreover, we show that, as k increases, if a is a quadratic nonresidue and b is a quadratic residue,
the bias oscillates with respect to the parity of k for the case �(n)= k, but δωk (q; a, b) increases from
below 1

2 monotonically.
For some of our results, we need only a much weaker substitute for condition LIq, which we call the

simplicity hypothesis (SHq): ∀χ 6= χ0 mod q, L
( 1

2 , χ
) 6= 0 and the zeros of L(s, χ) are simple. Let

N (q, a) := #{u mod q : u2 ≡ a mod q}.
Then, using the weaker assumptions SHq and ERHq, we prove the following theorems.
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Theorem 1. Assume ERHq and SHq. Then, for any fixed k ≥ 1, and fixed large T0,

1�k (x; q, a, b)= 1
(k− 1)!

√
x(log log x)k−1

log x

{
(−1)k

φ(q)

∑
χ 6=χ0

(χ(a)−χ(b))
∑
|γχ |≤T0

L
(

1
2+iγχ ,χ

)
=0

x iγχ

1
2 + iγχ

+ (−1)k

2k−1

N (q, a)− N (q, b)
φ(q)

+6k(x; q, a, b, T0)

}
,

where

lim sup
Y→∞

1
Y

∫ Y

1
|6k(ey; q, a, b, T0)|2 dy� log2 T0

T0
.

Since 1�1(x; q, a, b)=1(x; q, a, b), we get the following corollary.

Corollary 1.1. Assume ERHq and SHq. Then, for any fixed k ≥ 2,

1�k (x; q, a, b) log x√
x(log log x)k−1

= (−1)k+1

(k− 1)!
(

1− 1
2k−1

)
N (q, a)− N (q, b)

φ(q)
+ (−1)k+1

(k− 1)!
1(x; q, a, b) log x√

x
+6′k(x; q, a, b),

where, as Y →∞,
1
Y

∫ Y

1
|6′k(ey; q, a, b)|2 dy = o(1).

In the above theorem, the constant (−1)k/(2k−1) · (N (q, a)− N (q, b))/(φ(q)) represents the bias in
the distribution of products of k primes counted with multiplicity. Richard Hudson conjectured that, as k
increases, the bias would change directions according to the parity of k. Our result above confirms his con-
jecture (under ERHq and SHq). Figures 1.1 and 1.2 show the graphs corresponding to (q, a, b)= (4, 3, 1)
for 2 log x/(

√
x(log log x)2) ·1�3(x; 4, 3, 1) and 6 log x/(

√
x(log log x)3) ·1�4(x; 4, 3, 1), plotted on

a logarithmic scale from x = 103 to x = 108. In these graphs, the functions do not appear to be
oscillating around 1

4 and − 1
8 respectively as predicted in our theorem. This is caused by some terms of

order 1/log log x and even lower order terms, and log log 108 ≈ 2.91347 and 1/log log 108 ≈ 0.343233.
However, we can still observe the expected direction of the bias through these graphs.

For the distribution of products of k primes counted without multiplicity, we have the following
theorem. In this case, the bias will be determined by the constant (N (q, a)− N (q, b))/(2k−1φ(q)) in
the theorem below.

Theorem 2. Assume ERHq and SHq. Then, for any fixed k ≥ 1, and fixed large T0,

1ωk (x; q, a, b)= 1
(k− 1)!

√
x(log log x)k−1

log x

{
(−1)k

φ(q)

∑
χ 6=χ0

(χ(a)−χ(b))
∑
|γχ |≤T0

L
(

1
2+iγχ ,χ

)
=0

x iγχ

1
2 + iγχ

+ N (q, a)− N (q, b)
2k−1φ(q)

+ 6̃k(x; q, a, b, T0)

}
,
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Figure 1.1.
2 log x√

x(log log x)2
1�3(x; 4, 3, 1)

where

lim sup
Y→∞

1
Y

∫ Y

1
|6̃k(ey; q, a, b, T0)|2 dy� log2 T0

T0
.

Corollary 2.1. Assume ERHq and SHq. Then, for any fixed k ≥ 1,

1ωk (x; q, a, b) log x√
x(log log x)k−1

=
(

1
2k−1 + (−1)k+1

)
N (q, a)− N (q, b)
(k− 1)!φ(q) + (−1)k+1

(k− 1)!
1(x; q, a, b) log x√

x
+ 6̃′k(x; q, a, b),

where, as Y →∞,
1
Y

∫ Y

1
|6̃′k(ey; q, a, b)|2 dy = o(1).

For the distribution of 1(x; q, a, b), Rubinstein and Sarnak [1994] showed the following theorem.
This is the version from [Ford and Sneed 2010].

Theorem RS. Assume ERHq and LIq. For any a 6≡ b mod q and (a, q)= (b, q)= 1, the function

u1(eu; q, a, b)
eu/2
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has a probabilistic distribution. This distribution has mean (N (q, b)− N (q, a))/φ(q), is symmetric with
respect to its mean, and has a continuous density function.

Corollaries 1.1, 2.1, and Theorem RS imply the following result.

Theorem 3. Let a 6≡b mod q and (a, q)= (b, q)=1. Assuming ERHq and LIq, for any k≥1, δ�k (q; a, b)
and δωk (q; a, b) exist. More precisely, if a and b are both quadratic residues or both quadratic nonresidues,
then δ�k (q; a, b)= δωk (q; a, b)= 1

2 . Moreover, if a is a quadratic nonresidue and b is a quadratic residue,
then, for any k ≥ 1,

1− δ�2k−1(q; a, b) < δ�2k (q; a, b) < 1
2 < δ�2k+1(q; a, b) < 1− δ�2k (q; a, b),

δωk (q; a, b) < δωk+1(q; a, b) < 1
2 ,

δ�2k (q; a, b)= δω2k (q; a, b), and δ�2k−1(q; a, b)+ δω2k−1(q; a, b)= 1.

Remark. The above results confirm a conjecture of Richard Hudson proposed years ago in his communi-
cations with Ford. Borrowing the methods from [Rubinstein and Sarnak 1994, Section 4], we are able to
calculate δ�k (q; a, b) and δωk (q; a, b) precisely for special values of q , a, and b. In particular, we record
in Table 1.1 the logarithmic densities up to products of 10 primes for two cases: q = 3, a = 2, b = 1, and
q = 4, a = 3, b = 1.
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k δ�k (3; 2, 1) δωk (3; 2, 1) δ�k (4; 3, 1) δωk (4; 3, 1)

1 0.99906† 0.00094 0.9959† 0.0041
2 0.069629 0.069629 0.10572‡ 0.10572
3 0.766925 0.233075 0.730311 0.269689
4 0.35829 0.35829 0.380029 0.380029
5 0.571953 0.428047 0.380029 0.380029
6 0.463884 0.463884 0.469616 0.469616
7 0.518075 0.481925 0.515202 0.484798
8 0.49096 0.49096 0.492398 0.492398
9 0.50452 0.49548 0.503801 0.496199
10 0.49774 0.49774 0.498099 0.498099

Table 1.1. For q = 3, a = 2 and b = 1 (left-hand side) and q = 4, a = 3 and b = 1
(right-hand side). † [Rubinstein and Sarnak 1994] ‡ [Ford and Sneed 2010]

For fixed q and large k, we give asymptotic formulas for δ�k (q; a, b) and δωk (q; a, b).

Theorem 4. Assume ERHq and LIq. Let A(q) be the number of real characters mod q. Let a be a
quadratic nonresidue and b be a quadratic residue, and (a, q)= (b, q)= 1. Then, for any nonnegative
integer K , and any ε > 0,

δ�k (q;a,b)=
1
2
+ (−1)k−1

2π

K∑
j=0

(
1

2k−1

)2 j+1
(−1) j A(q)2 j+1C j (q;a,b)

(2 j+1)! +Oq,K ,ε

(
1

(2k−1)2K+3−ε

)
, (1-4)

δωk (q;a,b)=
1
2
− 1

2π

K∑
j=0

(
1

2k−1

)2 j+1
(−1) j A(q)2 j+1C j (q;a,b)

(2 j+1)! +Oq,K ,ε

(
1

(2k−1)2K+3−ε

)
, (1-5)

where C j (q; a, b) is some constant depending on j , q, a, and b. In particular, for K = 0,

δ�k (q; a, b)= 1
2
+ (−1)k−1 A(q)C0(q; a, b)

2kπ
+ Oq,ε

(
1

(2k)3−ε

)
,

δωk (q; a, b)= 1
2
− A(q)C0(q; a, b)

2kπ
+ Oq,ε

(
1

(2k)3−ε

)
.

Remark. We have a formula for C j (q; a, b),

C j (q; a, b)=
∫ ∞
−∞

x2 j8q;a,b(x) dx,

where

8q;a,b(z)=
∏
χ 6=χ0

∏
γχ>0

L
(

1
2+iγχ

)
=0

J0

(
2|χ(a)−χ(b)|z√

1
4 + γ 2

χ

)
,
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and J0(z) is the Bessel function,

J0(z)=
∞∑

m=0

(−1)m
( z

2

)2m

(m!)2 .

Numerically, C0(3; 2, 1) ≈ 3.66043 and C0(4; 3, 1) ≈ 3.08214. When q is large, using the method in
[Fiorilli and Martin 2013, Section 2], we can find asymptotic formulas for C j (q; a, b),

C j (q; a, b)= (2 j − 1)!!√2π
V (q; a, b) j+1/2 + O j

(
1

V (q; a, b) j+3/2

)
,

where (2 j − 1)!! = (2 j − 1)(2 j − 3) · · · 3 · 1, (−1)!! = 1, and

V (q; a, b)=
∑

χ mod q

|χ(b)−χ(a)|2
∑
γχ∈R

L
(

1
2+iγχ ,χ

)
=0

1
1
4 + γ 2

χ

.

By Proposition 3.6 in [Fiorilli and Martin 2013], under ERHq, V (q; a, b)∼ 2φ(q) log q .

2. Formulas for the associated Dirichlet series and origin of the bias

Let χ be a nonprincipal Dirichlet character, and denote

F fk (s, χ) :=
∑

f (n)=k

χ(n)
ns ,

where f = � or ω. The formulas for F fk (s, χ) are needed to analyze the character sums in (1-1) and
(1-2). The purpose of this section is to express F fk (s, χ) in terms of Dirichlet L-functions, and to explain
the source of the biases in the functions 1�k (x; q, a, b) and 1ωk (x; q, a, b).

Throughout the paper, the notation log z will always denote the principal branch of the logarithm of a
complex number z.

2A. Symmetric functions. Let x1, x2, . . . be an infinite collection of indeterminates. We say a formal
power series P(x1, x2, . . .) with bounded degree is a symmetric function if it is invariant under all finite
permutations of the variables x1, x2, . . ..

The n-th elementary symmetric function en = en(x1, x2, . . .) is defined by the generating function∑∞
n=0 enzn =∏∞i=1(1+ xi z). Thus, en is the sum of all square-free monomials of degree n. Similarly,

the n-th homogeneous symmetric function hn = hn(x1, x2, . . .) is defined by the generating function∑∞
n=0 hnzn =∏∞i=1 1/(1− xi z). We see that, hn is the sum of all possible monomials of degree n. And

the n-th power symmetric function pn = pn(x1, x2, . . .) is defined to be pn = xn
1 + xn

2 + · · · .
The following result is due to Newton or Girard (see [Macdonald 1995, Chapter 1, (2.11) and (2.11’),

page 23] or [Mendes and Remmel 2015, Chapter 2, Theorems 2.8 and 2.9]).



Chebyshev’s bias for products of k primes 313

Lemma 5. For any integer k ≥ 1,

khk =
k∑

n=1

hk−n pn, (2-1)

kek =
k∑

n=1

(−1)n−1ek−n pn. (2-2)

2B. Formula for F�k(s, χ). For <(s) > 1, we define

F(s, χ) :=
∑

p

χ(p)
ps ,

the sum being over all primes p. Since

log L(s, χ)=
∞∑

m=1

∑
p

χ(pm)

mpms , (2-3)

we then have
F(s, χ)= log L(s, χ)− 1

2 log L(2s, χ2)+G(s), (2-4)

where G(s) is absolutely convergent for <(s)≥ σ0 for any fixed σ0 >
1
3 . Henceforth, σ0 will be a fixed

abscissa > 1
3 , say σ0 = 0.34. Because L(s, χ) is an entire function for nonprincipal characters χ , formula

(2-4) provides an analytic continuation of F(s, χ) to any simply connected domain within the half-plane
{s : <(s)≥ σ0} which avoids the zeros of L(s, χ) and the zeros and possible pole of L(2s, χ2).

For any complex number s with <(s)≥ σ0 >
1
3 , let x p = χ(p)/ps if p is a prime, 0 otherwise. Then,

by (2-1) in Lemma 5, we have the following relation

k F�k (s, χ)=
k∑

n=1

F�k−n (s, χ)F(ns, χn). (2-5)

For example, for k = 1, F�1(s, χ)= F(s, χ). For k = 2,

2F�2(s, χ)= F2(s, χ)+ F(2s, χ2).

For k = 3,
3!F�3(s, χ)= 2F�2(s, χ)F(s, χ)+ 2F(s, χ)F(2s, χ2)+ 2F(3s, χ3)

= F3(s, χ)+ 3F(s, χ)F(2s, χ2)+ 2F(3s, χ3).

For k = 4,

4!F�4(s, χ)= 3!F�3(s, χ)F(s, χ)+ 3!F�2(s, χ)F(2s, χ2)+ 3!F(s, χ)F(3s, χ2)+ 3!F(4s, χ4)

= F4(s, χ)+ 6F2(s, χ)F(2s, χ2)+ 8F(s, χ)F(3s, χ3)+ 6F(4s, χ4)+ 3F2(2s, χ2).

For any integer l ≥ 1, we define the set

S(k)m,l := {(n1, · · · , nl) | n1+ · · ·+ nl = k−m, 2≤ n1 ≤ n2 ≤ · · · ≤ nl, n j ∈ N(1≤ j ≤ l)}
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Let S(k)m = ⋃l≥1 S(k)m,l . Thus any element of S(k)m is a partition of k − m with each part ≥ 2. For any
n= (n1, n2, · · · , nl) ∈ S(k)m , denote

F(ns, χ) :=
l∏

j=1

F(n j s, χn j ).

Hence, by (2-5) and induction on k, we deduce the following result.

Lemma 6. For k = 1, F�1(s, χ)= F(s, χ). For any k ≥ 2, we have

k!F�k (s, χ)= Fk(s, χ)+
k−2∑
m=0

Fm(s, χ)Fnm(s, χ), (2-6)

where Fnm(s, χ)=
∑

n∈S(k)m
a(k)m (n)F(ns, χ) for some a(k)m (n) ∈ N.

2C. Formula for Fωk(s, χ). By definition, we have

Fωk (s, χ)=
∑

p1<p2<···<pk

k∏
n=1

( ∞∑
j=1

χ(p j
n)

p j
n

)
.

Denote

F̃(s, χ) :=
∑

p

(
χ(p)

ps +
χ(p2)

p2s + · · ·
)
,

and for any u ∈ N+,

F̃(s, χ; u) :=
∑

p

(
χ(p)

ps +
χ(p2)

p2s + · · ·
)u

=
∑

p

∞∑
j=u

(
Du( j)

χ(p j )

p js

)
,

where Du( j)= ( j−1
u−1

)
is the number of ways of writing j as sum of u ordered positive integers.

By (2-3), we have

F̃(s, χ)= F̃(s, χ; 1)=
∑

p

∞∑
j=1

χ(p j )

p js = log L(s, χ)+ 1
2 log L(2s, χ2)+ G̃1(s) (2-7)

and

F̃(s, χ; 2)=
∑

p

∞∑
j=2

( j − 1)
χ(p j )

p js = log L(2s, χ2)+ G̃2(s), (2-8)

where G̃1(s) and G̃2(s) are absolutely convergent for <(s) ≥ σ0. Formula (2-7) provides an analytic
continuation of F̃(s, χ) to any simply connected domain within the half-plane {s : <(s) ≥ σ0} which
avoids the zeros of L(s, χ) and the zeros and possible pole of L(2s, χ2). Moreover, for any fixed u ≥ 3,
F̃(s, χ; u) is absolutely convergent for <(s)≥ σ0.
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For any complex number s with <(s)≥ σ0, take x p =∑∞j=1
χ(p j )

p js if p is a prime, 0 otherwise. Then
by (2-2) in Lemma 5, we get the following formula,

k Fωk (s, χ)= Fωk−1(s, χ)F̃(s, χ)−
k∑

n=2

(−1)n Fωk−n (s, χ)F̃(s, χ; n). (2-9)

For example, for k = 1, Fω1(s, χ)= F̃(s, χ). For k = 2,

2Fω2(s, χ)= F̃2(s, χ)− F̃(s, χ; 2).
For k = 3,

3!Fω3(s, χ)= 2Fω2(s, χ)F̃(s, χ)− 2Fω1(s, χ)F̃(s, χ; 2)+ 2F̃(s, χ; 3)
= F̃3(s, χ)− 3F̃(s, χ)F̃(s, χ; 2)+ 2F̃(s, χ; 3).

For k = 4,

4!Fω4(s, χ)= 3!Fω3(s, χ)F̃(s, χ)− 3!Fω2(s, χ)F̃(s, χ; 2)+ 3!F̃(s, χ)F̃(s, χ; 3)− 3!F̃(s, χ; 4)
= F̃4(s, χ)− 6F̃2(s, χ)F̃(s, χ; 2)+ 8F̃(s, χ)F̃(s, χ; 3)− 6F̃(s, χ; 4)+ 3F̃2(s, χ; 2).

Hence, by (2-9) and induction on k, we get the following result.

Lemma 7. For k = 1, Fω1(s, χ)= F̃(s, χ). For any k ≥ 2, we have

k!Fωk (s, χ)= F̃k(s, χ)+
k−2∑
m=0

F̃m(s, χ)F̃nm(s, χ), (2-10)

where F̃nm(s, χ) =
∑

n∈S(k)m
b(k)m (n)F̃(ns, χ) for some b(k)m (n) ∈ Z, and for any n = (n1, . . . , nl) ∈ S(k)m ,

F̃(ns, χ) :=∏l
j=1 F̃(s, χ; n j ).

2D. Origin of the bias. In this section, we heuristically explain the origin of the bias in our theorems.

(1) Analytical aspect. In order to get formulas for 1�k (x; q, a, b) and 1ωk (x; q, a, b), our strategy is to
apply Perron’s formula to the associated Dirichlet series F�k (s, χ) and Fωk (s, χ), then we choose special
contours to avoid the singularities of these Dirichlet series. See Section 3 for the details.

First, we have a look at the case of counting primes in arithmetic progressions. If we only count primes,
by (2-4), we have

F�1(s, χ)= F(s, χ)=
∑

p

χ(p)
ps = log L(s, χ)− 1

2 log L(2s, χ2)+G(s).

The main contributions for 1�1(x; q, a, b) are from the first two terms,

log L(s, χ)− 1
2 log L(2s, χ2).

The first term log L(s, χ) counts all the primes with weight 1 and prime squares with weight 1
2 . The higher

order powers of primes are negligible since they only contribute O(x1/3). The singularities of log L(s, χ),
i.e., the zeros of L(s, χ), on the critical line contribute the oscillating terms in our result. In our proof, we
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use special Hankel contours to avoid the singularities of log L(s, χ) and extract these oscillating terms
(Lemma 12). See Sections 3 and 4 for the details of how to handle these singularities. The second term
−1

2 log L(2s, χ2) counts the prime squares with weight − 1
2 and contributes the bias term. When χ is a

real character, the point s = 1
2 is a pole of L(2s, χ2), and hence the integration of − 1

2 log L(2s, χ2) over
the Hankel contour around s = 1

2 contributes a bias term with order of magnitude
√

x/log x . Using the
orthogonality of Dirichlet characters, and the formula

∑
χ real(χ(a)− χ(b)) = N (q, a)− N (q, b), we

get the expected size of the bias.
Another natural and convenient function to consider is −L ′(s, χ)/L(s, χ) = ∑∞n=1 χ(n)3(n)/n

s ,
which is much easier to analyze than log L(s, χ). This weighted form counts each prime p and its powers
with weight log p. Similar to log L(s, χ), all the singularities of the function −L ′(s, χ)/L(s, χ) on the
critical line are the nontrivial zeros of L(s, χ) and thus there is no bias for this weighted counting function∑

n≤x
n≡a mod q

3(n)−
∑
n≤x

n≡b mod q

3(n).

Thus, partial summation is used to extract the sum∑
n≤x

n≡a mod q

3(n)
log n

−
∑
n≤x

n≡b mod q

3(n)
log n

from the above weighted form, which is possible because log n is a smooth function. However, there is
no way to do this with the analogue (1-3) to recover the unweighted counting function 1�k (x; q, a, b) or
1ωk (x; q, a, b).

If we count all the prime powers with the same weight 1, by (2-7), we have

Fω1(s, χ)= F̃(s, χ)= log L(s, χ)+ 1
2 log L(2s, χ2)+ G̃1(s).

In this case, the bias is from the second term 1
2 log L(2s, χ2) for real character χ which counts the prime

squares with positive weight 1
2 . This is why the bias is opposite to the case of counting only primes.

For the general case, when we derive the formula for 1�k (x; q, a, b) using analytic methods, by (2-6)
in Lemma 6, the main contributions for F�k (s, χ) will be from 1

k!F
k(s, χ), which is essentially

1
k!
(
log L(s, χ)− 1

2 log L(2s, χ2)
)k
.

In the expansion of the above formula, the term 1
k! logk L(s, χ) contributes the oscillating terms (see (4-9)

and (4-13))
(−1)k

(k− 1)!
√

x(log log x)k−1

log x

∑
L
(

1
2+iγχ ,χ

)
=0

x iγχ

1
2 + iγχ

.

When χ is real, the term

1
k!
(−1

2 log L(2s, χ2)
)k = (−1)k

k!2k (log L(2s, χ2))k
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contributes a bias term (see (4-10) and (4-14))

1
(k− 1)!

(−1)k

2k−1

√
x(log log x)k−1

log x
.

Then summing over all the real characters, we get the expected bias term in our formula for1�k (x; q, a, b).
The factor (−1)k/2k−1 explains why the bias has different directions depending on the parity of k and
why the bias decreases as k increases. Other terms with factors of the form logk− j L(s, χ) log j (2s, χ2)

for 1≤ j ≤ k− 1 only contribute oscillating terms with lower orders of log log x which can be put into
the error term in our formula (see Lemma 14).

Similarly, for the case of 1ωk (x; q, a, b), by (2-10) in Lemma 7, the main contributions for Fωk (s, χ)
are from

1
k! F̃

k(s, χ)= 1
k!
(
log L(s, χ)+ 1

2 log L(2s, χ2)+ G̃1(s)
)k
.

The main terms are from the contributions of the terms 1
k! logk L(s, χ) and 1

k!
( 1

2 log L(2s, χ2)
)k . Thus,

the main oscillating terms are the same as that of 1�k (x; q, a, b), and the bias term has the same size
without direction change.

Through the above analysis, we see that the biases are mainly affected by the powers of±1
2 log L(2s, χ2)

for real characters which count the products of prime squares.

(2) Combinatorial aspect. Instead of giving precise prediction of the size of the bias as above, here
we use a simpler combinatorial intuition to roughly explain the behavior of the bias. We borrowed this
combinatorial explanation from Hudson [1980].

Pick a large number X . Let S1 be the set of primes p ≡ 1 mod 4 up to X , and S2 be the set of
primes p ≡ 3 mod 4 up to X . Using these primes, we generate the set V (2) := {pq : p, q ∈ S1 ∪
S2, p and q can be the same}.

Let V (2)
1 := {n ∈ V (2) : n ≡ 1 mod 4}, and V (2)

2 := {n ∈ V (2) : n ≡ 3 mod 4}. Then, the integers in V (2)
1

come from either products of two primes from S1 or products of two primes from S2. The integers in
V (2)

2 are the product of two primes pq with p ∈ S1 and q ∈ S2. Thus,

|V (2)
1 | =

( |S1|
2

)
+ |S1| +

( |S2|
2

)
+ |S2| = |S1|2+ |S2|2

2
+ |S1| + |S2|

2
,

and
|V (2)

2 | = |S1| · |S2|.
It is clear that |V (2)

1 |> |V (2)
2 |. Note that 1

2(|S1| + |S2|) counts the squares of primes with weight 1
2 which

makes a crucial difference between V (2)
1 and V (2)

2 .
Let V (0)

1 = {1} and V (0)
2 =∅. For any k ≥ 1, denote

V (k)
1 := {n = p1 · · · pk : p j ∈ S1 ∪ S2 for all 1≤ j ≤ k, n ≡ 1 mod 4},

V (k)
2 := {n = p1 · · · pk : p j ∈ S1 ∪ S2 for all 1≤ j ≤ k, n ≡ 3 mod 4},

where the p j can be the same. Note that V (1)
1 = S1 and V (1)

2 = S2.
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We give inductive formulas for |V (k)
1 | and |V (k)

2 |. The elements of V (k)
1 and V (k)

2 are generated by
integers of the form p j nk− j for p ∈ S1 or S2 and nk− j ∈ V (k− j)

1 or V (k− j)
2 (1 ≤ j ≤ k). By (2-1) in

Lemma 5, we have

k|V (k)
1 | = (|V (k−1)

1 | · |S1|+|V (k−1)
2 | · |S2|)︸ ︷︷ ︸

pnk−1

+ |V (k−2)
1 |(|S1|+|S2|)︸ ︷︷ ︸

p2nk−2

+ (|V (k−3)
1 | · |S1|+|V (k−3)

2 | · |S2|)︸ ︷︷ ︸
p3nk−3

+ · · ·

and

k|V (k)
2 | = (|V (k−1)

2 | · |S1|+|V (k−1)
1 | · |S2|)︸ ︷︷ ︸

pnk−1

+ |V (k−2)
2 |(|S1|+|S2|)︸ ︷︷ ︸

p2nk−2

+ (|V (k−3)
2 | · |S1|+|V (k−3)

1 | · |S2|)︸ ︷︷ ︸
p3nk−3

+ · · · .

Thus,

k(|V (k)
1 | − |V (k)

2 |)
= (|V (k−1)

1 | · |S1| + |V (k−1)
2 | · |S2|)− (|V (k−1)

2 | · |S1| + |V (k−1)
1 | · |S2|)+ (|V (k−2)

1 | − |V (k−2)
2 |)

(|S1| + |S2|)+ (|V (k−3)
1 | · |S1| + |V (k−3)

2 | · |S2|)− (|V (k−3)
2 | · |S1| + |V (k−3)

1 | · |S2|)+ · · ·
= (|V (k−1)

1 | − |V (k−1)
2 |)(|S1| − |S2|)+ (|V (k−2)

1 | − |V (k−2)
2 |)(|S1| + |S2|)

+ (|V (k−3)
1 | − |V (k−3)

2 |)(|S1| − |S2|)+ · · · . (2-11)

For 1≤ j ≤ k−1, suppose |V ( j)
1 |< |V ( j)

2 | for odd j and |V ( j)
1 |> |V ( j)

2 | for even j . Therefore, by (2-11)
and induction, we deduce that |V (k)

1 |< |V (k)
2 | for odd k and |V (k)

1 |> |V (k)
2 | for even k. This provides us a

heuristic explanation for the bias oscillation of 1�k (x; 4, 3, 1).
This heuristic also works for the quadratic residues and nonresidues modulo q whenever q has a

primitive root. Because in this case, all the residues form a cyclic group (we thank the referee for pointing
this out). When q has no primitive root, one should consider the group structure of the residue classes if
we want to give a similar heuristic as above.

For example, for q = 8, we know that 1 mod 8 is the only quadratic residue, and

32 ≡ 52 ≡ 72 ≡ 1 mod 8, 3 · 5≡ 7 mod 8, 5 · 7≡ 3 mod 8, and 3 · 7≡ 5 mod 8. (2-12)

If we define V (1)
j := {p ≡ j mod 8, p ≤ X} for j = 1, 3, 5, and 7. For any k ≥ 2, let

V (k)
j := {n = p1 · · · pk ≡ j mod 8, pi ∈ V (1)

1 ∪ V (1)
3 ∪ V (1)

5 ∪ V (1)
7 , 1≤ i ≤ k}, for j = 1, 3, 5, 7.

Then similar to q = 4, using (2-12) and Lemma 5, we have

k|V (k)
1 | =

(|V (k−1)
1 | · |V (1)

1 | + |V (k−1)
3 | · |V (1)

3 | + |V (k−1)
5 | · |V (1)

5 | + |V (k−1)
7 | · |V (1)

7 |
)︸ ︷︷ ︸

pnk−1

+ |V (k−2)
1 |(|V (1)

1 | + |V (1)
3 | + |V (1)

5 | + |V (1)
7 |

)︸ ︷︷ ︸
p2nk−2

+ · · ·
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k|V (k)
3 | =

(|V (k−1)
3 | · |V (1)

1 | + |V (k−1)
1 | · |V (1)

3 | + |V (k−1)
5 | · |V (1)

7 | + |V (k−1)
7 | · |V (1)

5 |
)︸ ︷︷ ︸

pnk−1

+ |V (k−2)
3 |(|V (1)

1 | + |V (1)
3 | + |V (1)

5 | + |V (1)
7 |

)︸ ︷︷ ︸
p2nk−2

+ · · ·

and similarly for k|V (k)
5 | and k|V (k)

7 |. For 1 ≤ l ≤ k − 1, suppose |V (l)
1 | < |V (l)

3 | ∼ |V (l)
5 | ∼ |V (l)

7 | for
odd l, by the formulas for k|V (k)

j | ( j = 1, 3, 5, 7) and induction on k, we will derive the expected bias
phenomenon.

3. Contour integral representation

In this section, we express the inner sums in (1-1) and (1-2) as integrals over truncated Hankel contours
(see Lemma 10 below).

Let
ψ fk (x, χ) :=

∑
n≤x

f (n)=k

χ(n),

where f =� or ω. By Perron’s formula [Karatsuba 1993, Chapter V, Theorem 1] we have the following
lemma.

Lemma 8. For any T ≥ 2,

ψ fk (x, χ)=
1

2π i

∫ c+iT

c−iT
F fk (s, χ)

x s

s
ds+ O

(
x log x

T
+ 1

)
,

where c = 1+ 1/log x , and f =� or ω.

Starting from Lemma 8, we will shift the contour to the left, in a way which avoids the singularities of
the integrand. We will then require estimates of the integrand along the various parts of the new contour.

Lemma 9. Assume ERHq. Then, for any 0< δ < 1
6 and for all χ 6= χ0 mod q , there exists a sequence of

numbers T= {Tn}∞n=0 satisfying n ≤ Tn ≤ n+ 1 such that, for T ∈ T,

F fk (σ + iT )= O(logk T ),
( 1

2 − δ < σ < 2
)

where f =� or ω.

Proof. Using the similar method as in [Titchmarsh 1986, Theorem 14.16], one can show that, for any
ε > 0 and for all χ 6= χ0 mod q , there exists a sequence of numbers T= {Tn}∞n=0 satisfying n≤ Tn ≤ n+1
such that, T−εn � |L(σ + iTn, χ)| � T δ+ε

n ),
( 1

2 − δ < σ < 2
)
. Hence, by formulas (2-4), (2-6), (2-7),

(2-8), and (2-10), we get the conclusion of this lemma. �

Let ρ be a zero of L(s, χ),1ρ be the distance of ρ to the nearest other zero, and Dγ :=minT∈T(|γ−T |).
For each zero ρ, and X > 0, let H(ρ, X) denote the truncated Hankel contour surrounding the point s = ρ
with radius 0< rρ ≤min

( 1
x ,

1
31ρ,

1
2 Dγ ,

1
3

∣∣ρ− 1
2

∣∣), which includes the circle |s− ρ| = rρ excluding the
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−T

0

T

ρ = 1
2 + iγ

1
2 − δ 1

2
1 1+ 1

log x

Figure 3.1. Integration contour

point s = ρ− rρ , and the half-line (ρ− X, ρ− r ] traced twice with arguments +π and −π respectively.
Let 10 be the distance of 1

2 to the nearest zero. Let H(1
2 , X) denote the corresponding truncated Hankel

contour surrounding s = 1
2 with radius r0 =min

( 1
x ,

10
3

)
.

Take δ = 1
10 . By Lemma 8, we pull the contour to the left to the line <(s)= 1

2 − δ using the truncated
Hankel contour H(ρ, δ) to avoid the zeros of L(s, χ) and using H

( 1
2 , δ

)
to avoid the point s = 1

2 . See
Figure 3.1.

Then we have the following lemma.

Lemma 10. Assume ERHq, and L
(1

2 , χ
) 6= 0 (χ 6= χ0). Then, for any fixed k ≥ 1, and T ∈ T,

ψ fk (x, χ)=
∑
|γ |≤T

1
2π i

∫
H(ρ,δ)

F fk (s, χ)
x s

s
ds+ a(χ)

1
2π i

∫
H
(

1
2 ,δ
)F fk (s, χ)

x s

s
ds

+ O
(

x log x
T
+ x(log T )k

T
+ x1/2−δ(log T )k+1

)
,

where a(χ)= 1 if χ is real, 0 otherwise, and f = ω or �.
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Proof. By formulas (2-6) and (2-10), if χ is not real, s = 1
2 is not a singularity of F fk (s, χ). Hence the

second term is zero if χ is not real. By Lemma 9, the integral on the horizontal line is

� (log T )k
∫ c

1
2−δ

xσ

|σ + iT | dσ �
xc(log T )k

T
� x(log T )k

T
. (3-1)

Under the assumption ERHq, the integral on the vertical line <(s)= 1
2 − δ is

�
∫ T

−T

x1/2−δ logk(|t | + 2)∣∣ 1
2 − δ+ i t

∣∣ dt � x1/2−δ(log T )k+1. (3-2)

By (3-1), (3-2), and Lemma 8, we get the desired error term in this lemma. �

4. Proof of the main theorems

In this section, we give the full proof of Theorems 1 and 2, by quoting Lemmas 12, 13, 14, and 15 of
which the proofs will appear in later sections.

Proof of Theorems 1 and 2. Let γ be the imaginary part of a zero of L(s, χ) in the critical strip. We have
the following lemma.

Lemma 11 [Ford and Sneed 2010, Lemma 2.2]. Let χ be a Dirichlet character modulo q. Let N (T, χ)
denote the number of zeros of L(s, χ) with 0< <(s) < 1 and |=(s)|< T . Then

(1) N (T, χ)= O(T log(qT )) for T ≥ 1,

(2) N (T, χ)− N (T − 1, χ)= O(log(qT )) for T ≥ 1,

(3) uniformly for s = σ + i t and σ ≥−1,

L ′(s, χ)
L(s, χ)

=
∑
|γ−t |<1

1
s− ρ + O(log q(|t | + 2)). (4-1)

For simplicity, we denote
1

0 j (u)
:=
[

d j

dz j

(
1
0(z)

)]
z=u
.

The following lemma is the starting lemma to give us the bias terms and oscillating terms in our main
theorems. This lemma may have independent use, we will give the proof in Section 8.

Lemma 12. Let H(a, δ) be the truncated Hankel contour surrounding a complex number a (<(a) > 2δ)
with radius 0< r � 1

x . Then, for any integer k ≥ 1,

1
2π i

∫
H(a,δ)

logk(s−a)
x s

s
ds= (−1)k xa

a log x

{
k(log log x)k−1+

k∑
j=2

(k
j

)
(log log x)k− j 1

0 j (0)

}
+Ok

( |xa−δ/3|
|a|

)

+ Ok

( |xa|
|a|2 log2 x

(log log x)k−1
)
+ Ok

( |xa|
|a|2|<(a)− δ|

(log log x)k−1

(log x)3

)
.
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Remark. By (5-3) in the proof of Lemma 16, one can easily show that∣∣∣∣ 1
0 j (0)

∣∣∣∣� 0( j + 1). (4-2)

By Lemma 10, we need to examine the integration over the truncated Hankel contours H(ρ, δ) and
H
( 1

2 , δ
)
. By (2-4) and (2-7), and the assumptions of our theorems, on each truncated Hankel contour

H(ρ, δ), we integrate the formula (4-1) in Lemma 11 to obtain

F(s, χ)= log(s− ρ)+ Hρ(s), (4-3)

F̃(s, χ)= log(s− ρ)+ H̃ρ(s), (4-4)

where
Hρ(s)=

∑
0<|γ ′−γ |≤1

log(s− ρ ′)+ O(log|γ |),

H̃ρ(s)=
∑

0<|γ ′−γ |≤1

log(s− ρ ′)+ O(log|γ |).

If χ is real, s = 1
2 is a pole of L(2s, χ2). So, by (2-4) and (2-7), on the truncated Hankel contour H

( 1
2 , δ

)
,

for a real character χ , we write

F(s, χ)= 1
2 log

(
s− 1

2

)+ HB(s), (4-5)

F̃(s, χ)=− 1
2 log

(
s− 1

2

)+ H̃B(s), (4-6)

where HB(s)= O(1) and H̃B(s)= O(1).
Denote

Iρ(x) := 1
2π i

∫
H(ρ,δ)

k!F�k (s, χ)
x s

s
ds, IB(x) := 1

2π i

∫
H
(

1
2 ,δ
) k!F�k (s, χ)

x s

s
ds,

and

Ĩρ(x) := 1
2π i

∫
H(ρ,δ)

k!Fωk (s, χ)
x s

s
ds, ĨB(x) := 1

2π i

∫
H
(

1
2 ,δ
) k!Fωk (s, χ)

x s

s
ds.

We define a function T (x) as follows: for Tn′ ∈T satisfying e2n+1 ≤ Tn′ ≤ e2n+1 + 1, let T (x)= Tn′ for
e2n ≤ x ≤ e2n+1

. In particular, we have

x ≤ T (x)≤ 2x2, (x ≥ e2).

Thus, by Lemma 10, for T = T (x),

ψ�k (x, χ)=
1
k!
∑
|γ |≤T

Iρ(x)+ a(χ)
k! IB(x)+ O(x1/2−δ/2), (4-7)

ψωk (x, χ)=
1
k!
∑
|γ |≤T

Ĩρ(x)+ a(χ)
k! ĨB(x)+ O(x1/2−δ/2). (4-8)
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We will see later that
∑
|γ |≤T Iρ(x) and

∑
|γ |≤T Ĩρ(x) will contribute the oscillating terms, i.e., the

summation over zeros, in our theorems, and IB(x) and ĨB(x) will contribute the bias terms.
Next, we want to find the main contributions for Iρ(x), IB(x), Ĩρ(x), and ĨB(x). By (2-6) and (4-3),

we have

Iρ(x)= 1
2π i

∫
H(ρ,δ)

(log(s− ρ))k x s

s
ds+ 1

2π i

∫
H(ρ,δ)

k∑
j=1

(k
j

)
(log(s− ρ))k− j (Hρ(s)) j x s

s
ds

+ 1
2π i

∫
H(ρ,δ)

k−2∑
m=0

Fm(s, χ)Fnm(s, χ)
x s

s
ds

=: IMρ
(x)+ EMρ

(x)+ ERρ (x), (4-9)

and by (2-6) and (4-5),

IB(x)= 1
2k

1
2π i

∫
H
(

1
2 ,δ
)(log

(
s− 1

2

))k x s

s
ds+ 1

2π i

∫
H
(

1
2 ,δ
) k∑

j=1

(k
j

)( 1
2 log

(
s−1

2

))k− j
(HB(s)) j x s

s
ds

+ 1
2π i

∫
H
(

1
2 ,δ
) k−2∑

m=0

Fm(s, χ)Fnm(s, χ)
x s

s
ds

=: BM(x)+ EB(x)+ ER(x). (4-10)

Here, IMρ
(x) and BM(x) will make main contributions to Iρ(x) and IB(x), respectively. Similarly, by

(2-10) and (4-4), we have

Ĩρ(x)= 1
2π i

∫
H(ρ,δ)

(log(s− ρ))k x s

s
ds+ 1

2π i

∫
H(ρ,δ)

k∑
j=1

(k
j

)
(log(s− ρ))k− j (H̃ρ(s)) j x s

s
ds

+ 1
2π i

∫
H(ρ,δ)

k−2∑
m=0

F̃m(s, χ)F̃nm(s, χ)
x s

s
ds

=: ĨMρ
(x)+ ẼMρ

(x)+ ẼRρ (x), (4-11)

and by (2-10) and (4-6),

ĨB(x)= (−1)k

2k

1
2π i

∫
H
(

1
2 ,δ
)(log

(
s− 1

2

))k x s

s
ds+ 1

2π i

∫
H
(

1
2 ,δ
) k∑

j=1

(k
j

)(− 1
2 log

(
s− 1

2

))k− j
(H̃B(s)) j x s

s
ds

+ 1
2π i

∫
H
(

1
2 ,δ
) k−2∑

m=0

F̃m(s, χ)F̃nm(s, χ)
x s

s
ds

=: B̃M(x)+ ẼB(x)+ ẼR(x). (4-12)

Here, ĨMρ
(x) and B̃M(x) will make main contributions to Ĩρ(x) and ĨB(x), respectively.
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Applying Lemma 12, we have

IMρ
(x)= ĨMρ

(x)= (−1)k
√

x
log x

x iγ

1
2 + iγ

{
k(log log x)k−1+

k∑
j=2

(k
j

)
(log log x)k− j 1

0 j (0)

}

+ Ok

(
1
|γ |2
√

x(log log x)k−1

(log x)2

)
+ Ok

(
x1/2−δ/3

|γ |
)
, (4-13)

BM(x)= (−1)k
√

x
2k−1 log x

{
k(log log x)k−1+

k∑
j=2

(k
j

)
(log log x)k− j 1

0 j (0)

}

+ Ok

(√
x(log log x)k−1

(log x)2

)
+ Ok(x1/2−δ/3), (4-14)

and

B̃M(x)= (−1)k BM(x). (4-15)

For the bias terms, by (4-10), (4-12), (4-14), and (4-15), we have

IB(x)= (−1)k
√

x
2k−1 log x

{
k(log log x)k−1+

k∑
j=2

(k
j

)
(log log x)k− j 1

0 j (0)

}

+ EB(x)+ ER(x)+ Ok

(√
x(log log x)k−1

(log x)2

)
+ Ok(x1/2−δ/3), (4-16)

and

ĨB(x)=
√

x
2k−1 log x

{
k(log log x)k−1+

k∑
j=2

(k
j

)
(log log x)k− j 1

0 j (0)

}

+ ẼB(x)+ ẼR(x)+ Ok

(√
x(log log x)k−1

(log x)2

)
+ Ok(x1/2−δ/3). (4-17)

We will prove the following result in Section 5.

Lemma 13. For the bias terms,

IB(x)= (−1)kk
2k−1

√
x

log x
(log log x)k−1+ Ok

(√
x(log log x)k−2

log x

)
,

ĨB(x)= k
2k−1

√
x

log x
(log log x)k−1+ Ok

(√
x(log log x)k−2

log x

)
.
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Then for the oscillating terms, by (4-9), (4-11), and (4-13), and Lemma 11, for T = T (x),

∑
|γ |≤T

Iρ(x)= (−1)kk
√

x(log log x)k−1

log x

∑
|γ |≤T

x iγ

1
2 + iγ

+ (−1)k
√

x
log x

k∑
j=2

(k
j

)(log log x)k− j

0 j (0)

∑
|γ |≤T

x iγ

1
2 + iγ

+
∑
|γ |≤T

EMρ
(x)+

∑
|γ |≤T

ERρ (x)+ Ok

(√
x(log log x)k−1

log2 x

)
,

(4-18)

and∑
|γ |≤T

Ĩρ(x)= (−1)kk
√

x(log log x)k−1

log x

∑
|γ |≤T

x iγ

1
2 + iγ

+ (−1)k
√

x
log x

k∑
j=2

(k
j

)(log log x)k− j

0 j (0)

∑
|γ |≤T

x iγ

1
2 + iγ

+
∑
|γ |≤T

ẼMρ
(x)+

∑
|γ |≤T

ẼRρ (x)+ Ok

(√
x(log log x)k−1

log2 x

)
. (4-19)

The first terms in the above formulas are the main oscillating terms in our theorems. We will show in
Section 6 that the other terms are small in average. For T = T (x), denote

61(x;χ) := log x√
x

∑
|γ |≤T

EMρ
(x)= log x

∑
|γ |≤T

x iγ E ′Mρ
(x), (4-20)

62(x;χ) := log x√
x

∑
|γ |≤T

ERρ (x)= log x
∑
|γ |≤T

x iγ E ′Rρ (x), (4-21)

where E ′Mρ
(x)= EMρ

(x)/xρ , and E ′Rρ (x)= ERρ (x)/xρ . Similarly, denote

6̃1(x;χ) := log x√
x

∑
|γ |≤T

ẼMρ
(x)= log x

∑
|γ |≤T

x iγ Ẽ ′Mρ
(x), (4-22)

6̃2(x;χ) := log x√
x

∑
|γ |≤T

ẼRρ (x)= log x
∑
|γ |≤T

x iγ Ẽ ′Rρ (x), (4-23)

where Ẽ ′Mρ
(x)= ẼMρ

(x)/xρ and Ẽ ′Rρ (x)= ẼRρ (x)/xρ .
Then we have the following lemma (see Sections 6A and 6B for the proof).

Lemma 14. For the error terms from the Hankel contours around zeros, we have∫ Y

2
(|61(ey;χ)|2+ |62(ey;χ)|2) dy = o(Y (log Y )2k−2),∫ Y

2
(|6̃1(ey;χ)|2+ |6̃2(ey;χ)|2) dy = o(Y (log Y )2k−2).

Moreover, we also need to bound the lower order sum

S1(x;χ) := (−1)k
k∑

j=2

(k
j

)
(log log x)k− j 1

0 j (0)

∑
|γ |≤T

x iγ

1
2 + iγ

, (4-24)
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and the error from the truncation by a fixed large T0,

S2(x, T0;χ) :=
∑
|γ |≤T

x iγ

1
2 + iγ

−
∑
|γ |≤T0

x iγ

1
2 + iγ

. (4-25)

Then we have the following result (See Section 6C for the proof).

Lemma 15. For the lower order sum and error from the truncation, we have∫ Y

2
|S1(ey;χ)|2 dy = o(Y (log Y )2k−2),

and for fixed large T0,∫ Y

2
|S2(ey, T0;χ)|2 dy� Y

log2 T0

T0
+ log Y

log3 T0

T0
+ log5 T0.

Combining Lemmas 13, 14, and 15 with (4-7), (4-8), (4-18), and (4-19), we get, for fixed large T0,

ψ�k (x, χ)=
(−1)k

(k− 1)!
√

x
log x

(log log x)k−1
( ∑
|γ |≤T0

x iγ

1
2 + iγ

+6(x, T0;χ)
)

+ a(χ)
(−1)k

(k− 1)!
√

x
log x

(log log x)k−1, (4-26)

where

lim sup
Y→∞

1
Y

∫ Y

1
|6(ey, T0;χ)|2 dy� log2 T0

T0
.

Also,

ψωk (x, χ)=
(−1)k

(k− 1)!
√

x
log x

(log log x)k−1
( ∑
|γ |≤T0

x iγ

1
2 + iγ

+ 6̃(x, T0;χ)
)

+ a(χ)
1

(k− 1)!
√

x
log x

(log log x)k−1, (4-27)

where

lim sup
Y→∞

1
Y

∫ Y

1
|6̃(ey, T0;χ)|2 dy� log2 T0

T0
.

Note that
∑

χ 6=χ0
(χ(a)−χ(b))a(χ)= N (q, a)− N (q, b). Hence, combining (4-26) and (4-27) with

(1-1) and (1-2), we get the conclusions of Theorem 1 and Theorem 2. Now we finish the proof of
Theorems 1 and 2 modulo the proofs of Lemmas 12, 13, 14, and 15. �

5. The bias terms

In this section, we examine the bias terms and give the proof of Lemma 13.
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5A. Estimates on the horizontal line. In order to examine the corresponding integration on the horizontal
line in the Hankel contour, we prove the following estimate which we will use many times later to analyze
the error terms in our theorems.

Lemma 16. For any integers k ≥ 1 and m ≥ 0, we have∫ δ

0
|(log σ − iπ)k − (log σ + iπ)k |σm x−σ dσ �m,k

(log log x)k−1

(log x)m+1 .

Proof. Let I represent the integral in the lemma. Then, we have

I ≤ 2
k∑

j=1

(k
j

)
π j
∫ δ

0
|log σ |k− jσm x−σ dσ �k

k∑
j=1

∫ δ

0
|log σ |k− jσm x−σ dσ (5-1)

Using a change of variable, σ log x = t , we have∫ δ

0
|log σ |k− jσm x−σ dσ ≤ 1

(log x)m+1

∫ δ log x

0
|log t − log log x |k− j tme−t dt

≤ 1
(log x)m+1

k− j∑
l=0

(k− j
l

)
(log log x)k− j−l

∫ δ log x

0
|log t |l tme−t dt

�k
1

(log x)m+1

k− j∑
l=0

(log log x)k− j−l
∫ δ log x

0
|log t |l tme−t dt. (5-2)

Next, we estimate∫ δ log x

0
|log t |l tme−t dt ≤

(∫ 1

0
+
∫ ∞

1

)
|log t |l tme−t dt =: Il1 + Il2 . (5-3)

For the first integral in (5-3),

Il1 =
∫ 1

0
|log t |l tme−t dt ≤

∫ 1

0
|log t |l dt

t→1/et=
∫ ∞

0

t l

et dt = 0(l + 1).

For the second integral in (5-3),

Il2 =
∫ ∞

1

tm(log t)l

et dt t→et=
∫ ∞

0

t l

eet−(m+1)t dt �m 0(l + 1). (5-4)

Then, by (5-2)-(5-4), we have∫ δ

0
|log σ |k− jσm x−σ dσ �k

1
(log x)m+1

k− j∑
l=0

(log log x)k− j−l Om,l(1)�m,k
(log log x)k− j

(log x)m+1 . (5-5)

Thus, by (5-1),

I �m,k
(log log x)k−1

(log x)m+1 .

Hence, we get the conclusion of this lemma. �
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5B. The bias terms. We have the following estimate for the integral over the truncated Hankel contour
H
( 1

2 , δ
)
.

Lemma 17. Assume the function f (s)= O(1) on H
( 1

2 , δ
)
. Then, for any integer m ≥ 0,∣∣∣∣∫

H
(

1
2 ,δ
)(log

(
s− 1

2

))m f (s)
x s

s
ds
∣∣∣∣�m

√
x(log log x)m−1

log x
.

Proof. Since the left-hand side is 0 when m = 0, we assume m ≥ 1 in the following proof. By Lemma 16,
we have∣∣∣∣∫

H
(

1
2 ,δ
)(log

(
s− 1

2

))m f (s)
x s

s
ds
∣∣∣∣≤ ∣∣∣∣∫ δ

r0

(
(log σ − iπ)m − (log σ + iπ)m

)
f
( 1

2 − σ
) x1/2−σ

1
2 − σ

dσ
∣∣∣∣

+ O
(∫ π

−π
(log 1/r0+π)m x1/2+r0

1
2 − r0

r0 dα
)

�√x
(∫ δ

0
|(log σ − iπ)m − (log σ + iπ)m |x−σ dσ + (log x +π)m

x

)
�m

√
x(log log x)m−1

log x
. (5-6)

This completes the proof of this lemma. �

In the following, we prove the asymptotic formulas for the bias terms.

Proof of Lemma 13. Since HB(s)= O(1), by (4-10), (4-12), and Lemma 17,

|EB(x)| �
k∑

j=1

∣∣∣∣∫
H
(

1
2 ,δ
)(log

(
s− 1

2

))k− j
(HB(s)) j x s

s
ds
∣∣∣∣

�
√

x
log x

k∑
j=1

(log log x)k− j−1

�k

√
x

log x
(log log x)k−2. (5-7)

Similarly,

|ẼB(x)| �
k∑

j=1

∣∣∣∣∫
H
(

1
2 ,δ
)(log

(
s− 1

2

))k− j
(H̃B(s)) j x s

s
ds
∣∣∣∣

�k

√
x

log x
(log log x)k−2. (5-8)

In the following, we estimate ER(x) in (4-10) and ẼR(x) in (4-12). If χ is not real, ER(x)= ẼR(x)= 0.
If χ is real, by (2-4), on H

( 1
2 , δ

)
, we write

F(2s, χ2)=− log
(
s− 1

2

)+ H2(s). (5-9)
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On H
( 1

2 , δ
)
, |H2(s)| = O(1). By (2-6), we have

|ER(x)| �
k−2∑
m=0

∑
n∈S(k)m

∣∣∣∣∫
H
(

1
2 ,δ
)Fm(s, χ)F(ns, χ) x s

s
ds
∣∣∣∣. (5-10)

For each 0≤ m ≤ k− 2, we write

Fm(s, χ)F(ns, χ)= Fm(s, χ)Fm′(2s, χ2)Gn(s),

where m+ 2m′ ≤ k, and Gn(s)= O(1) on H(1
2 , δ). Thus, by (4-5), (5-9), and Lemma 17,∣∣∣∣∫

H
(

1
2 ,δ
) Fm(s, χ)F(ns, χ) x s

s
ds
∣∣∣∣

�
∣∣∣∣∫

H
(

1
2 ,δ
)(log

(
s− 1

2

)+ HB(s)
)m(log

(
s− 1

2

)− H2(s)
)m′Gn(s)

x s

s
ds
∣∣∣∣

�
m∑

j1=0

m′∑
j2=0

∣∣∣∣∫
H
(

1
2 ,δ
)(log

(
s− 1

2

))m+m′− j1− j2
(HB(s)) j1(H2(s)) j2 Gn(s)

x s

s
ds
∣∣∣∣

�
m∑

j1=0

m′∑
j2=0

√
x

log x
(log log x)m+m′− j1− j2−1

�k

√
x

log x
(log log x)k−2. (5-11)

In the last step, we used the conditions 0≤ m ≤ k− 2 and m+ 2m′ ≤ k.
Combining (5-10) and (5-11), we deduce that

|ER(x)| �k

√
x

log x
(log log x)k−2. (5-12)

Similarly, if χ is real, by (2-8), we write

F̃(s, χ; 2)=− log
(
s− 1

2

)+ H̃2(s), (5-13)

where H̃2(s)= O(1) on H
( 1

2 , δ
)
. Using a similar argument as above, by (4-6), (5-13), and Lemma 17,

we have

|ẼR(x)| �
k−2∑
m=0

∑
n∈S(k)m

∣∣∣∣∫
H
(

1
2 ,δ
) F̃m(s, χ)F̃(ns, χ)

x s

s
ds
∣∣∣∣�k

√
x

log x
(log log x)k−2. (5-14)

By (4-10), (4-14), (5-7), and (5-12), we get

IB(x)= (−1)k
√

x
2k−1 log x

{
k(log log x)k−1+

k∑
j=2

(k
j

)
(log log x)k− j 1

0 j (0)

}
+ Ok

(√
x(log log x)k−2

log x

)
.
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Then, by (4-2), ∣∣∣∣ k∑
j=2

(k
j

)
(log log x)k− j 1

0 j (0)

∣∣∣∣�k (log log x)k−2.

Hence,

IB(x)= (−1)kk
2k−1

√
x

log x
(log log x)k−1+ Ok

(√
x(log log x)k−2

log x

)
. (5-15)

Similarly, by (4-12), (4-15), (5-8), and (5-14), we have

ĨB(x)= k
2k−1

√
x

log x
(log log x)k−1+ Ok

(√
x(log log x)k−2

log x

)
. (5-16)

This completes the proof of Lemma 13. �

6. Average order of the error terms

In Section 6A and Section 6B, we examine the error terms from the Hankel contours around zeros and
give the proof of Lemma 14. In Section 6C, we examine the lower order sum and the error from the
truncation, and give the proof of Lemma 15.

6A. Error terms from the Hankel contours around zeros. In this section, we give the proof of Lemma 14.
The following lemma gives an average estimate for the integral over Hankel contours around zeros, which
is the key lemma for our proof.

Lemma 18. Let ρ be a zero of L(s, χ). Assume the function g(s) � (log|γ |)c on H(ρ, δ) for some
constant c ≥ 0, and

Hρ(s)=
∑

0<|γ ′−γ |≤1

log(s− ρ ′)+ O(log|γ |) on H(ρ, δ). (6-1)

For any integers m, n ≥ 0, denote

E(x; ρ) :=
∫

H(ρ,δ)
(log(s− ρ))m(Hρ(s))ng(s)

x s−ρ

s
ds.

Then, for T = T (x), we have∫ Y

2

∣∣∣∣y ∑
|γ |≤T (ey)

eiγ y E(ey; ρ)
∣∣∣∣2 dy = o(Y (log Y )2m+2n−2).

We will give the proof of Lemma 18 in next subsection. We use it in this section to prove Lemma 14 first.

Proof of Lemma 14. By (4-20), we have

|61(x;χ)|2 =
∣∣∣∣log x

∑
|γ |≤T

x iγ E ′Mρ
(x)
∣∣∣∣2� k∑

j=1

∣∣∣∣log x
∑
|γ |≤T

x iγ Eρ, j (x)
∣∣∣∣2, (6-2)
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where

Eρ, j (x)=
∫

H(ρ,δ)
(log(s− ρ))k− j (Hρ(s)) j x s−ρ

s
ds.

By Lemma 18, take m = k− j , n = j , and g(s)≡ 1, (i.e., c = 0),∫ Y

2

∣∣∣∣y ∑
|γ |≤T (ey)

eiγ y Eρ, j (ey)

∣∣∣∣2 dy = o(Y (log Y )2k−2).

Thus, ∫ Y

2
|61(ey;χ)|2 dy = o(Y (log Y )2k−2). (6-3)

By definition (4-9) and (4-21), we have

|62(x;χ)|2�
k−2∑
m=0

∑
n∈S(k)m

∣∣∣∣log x
∑
|γ |≤T

x iγ
∫

H(ρ,δ)
Fm(s, χ)F(ns, χ) x s−ρ

s
ds
∣∣∣∣2

�
k−2∑
m=0

∑
n∈S(k)m

m∑
j=0

∣∣∣∣log x
∑
|γ |≤T

x iγ Em, j (x, χ; n)
∣∣∣∣2, (6-4)

where

Em, j (x, χ; n)=
∫

H(ρ,δ)
(log(s− ρ))m− j (Hρ(s)) j F(ns, χ) x s−ρ

s
ds.

Since on H(ρ, δ), we know F(ns, χ)= O((log|γ |) 1
2 (k−m)), by Lemma 18, we get∫ Y

2

∣∣∣∣y ∑
|γ |≤T (ey)

eiγ y Em, j (ey, χ; n)
∣∣∣∣2 dy = o(Y (log Y )2m−2).

Hence, by (6-4), we deduce that∫ Y

2
|62(ey;χ)|2 dy = o(Y (log Y )2k−2). (6-5)

Combining (6-3) and (6-5), we get the first formula in Lemma 14.
For 6̃1(x;χ) and 6̃2(x, χ), by (4-22), using a similar argument with Lemma 18,∫ Y

2
|6̃1(ey;χ)|2 dy�

k∑
j=1

∫ Y

2

∣∣∣∣y ∑
|γ |≤T (ey)

eiγ y Ẽρ, j (ey)

∣∣∣∣2 dy = o(Y (log Y )2k−2), (6-6)

where

Ẽρ, j (x)=
∫

H(ρ,δ)
(log(s− ρ))k− j (H̃ρ(s)) j x s−ρ

s
ds.

Similarly, by (4-23) and Lemma 18,∫ Y

2
|6̃2(ey;χ)|2 dy�

k−2∑
m=0

∑
n∈S(k)m

m∑
j=0

∫ Y

2

∣∣∣∣y ∑
|γ |≤T (ey)

eiγ yẼm, j (ey, χ; n)
∣∣∣∣2 dy = o(Y (log Y )2k−2), (6-7)
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where

Ẽm, j (x, χ; n)=
∫

H(ρ,δ)
(log(s− ρ))m− j (H̃ρ(s)) j F̃(ns, χ)

x s−ρ

s
ds.

Combining (6-6) and (6-7), we get the second formula in Lemma 14. �

6B. Estimates for integral over Hankel contours around zeros. We need the following results to finish
the proof of Lemma 18.

Lemma 19 [Ford and Sneed 2010, Lemma 2.4]. Assume L
( 1

2 , χ
) 6= 0. For A ≥ 0 and real l ≥ 0,

∑
|γ1|,|γ2|≥A
|γ1−γ2|≥1

logl(|γ1| + 3) logl(|γ2| + 3)
|γ1||γ2||γ1− γ2| �l

(log(A+ 3))2l+3

A+ 1
.

Lemma 20. For any integers N , j ≥ 1, and 0< |δn| ≤ 1, we have

∫ δ

0

∣∣∣∣ N∑
n=1

log(σ + iδn)

∣∣∣∣ j

x−σ dσ � j
1

log x

{
min

(
N log log x, log

1
1N

)
+ Nπ

} j

,

where 1N =∏N
n=1|δn|.

Proof. Let I denote the integral in the lemma. We consider two cases: 1N ≥
( 1

log x

)N and 1N <
( 1

log x

)N .

(1) If 1N ≥ (1/log x)N , we have

I �
(

log
1
1N
+ Nπ

) j ∫ δ

0
x−σ dσ � 1

log x

(
log

1
1N
+ Nπ

) j

� 1
log x

(N log log x + Nπ) j . (6-8)

(2) If 1N < (1/log x)N , we write

I =
(∫ (1N )

1/N

0
+
∫ 1/log x

(1N )1/N
+
∫ δ

1/log x

)∣∣∣∣ N∑
n=1

log(σ + iδn)

∣∣∣∣ j

x−σ dσ =: I1+ I2+ I3. (6-9)

First, we estimate I1,

I1�
(

log
1
1N
+ Nπ

) j ∫ (1N )
1/N

0
x−σ dσ � (1N )

1/N
(

log
1
1N
+ Nπ

) j

. (6-10)

For 0 < t < 1, consider the function f (t) = t1/N
(
log 1

t + Nπ
) j . Since the critical point of f (t) is

t = eN (π−1) > 1, by (6-10), we have

I1� f
(

1
(log x)N

)
= 1

log x
(N log log x + Nπ) j � 1

log x

(
log

1
1N
+ Nπ

) j

. (6-11)
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Next, we estimate I3. Using the change of variable σ log x = t , we get

I3�
∫ δ

1/log x

(
N log

1
σ
+ Nπ

) j

x−σ dσ

= 1
log x

∫ δ log x

1
(N log log x − N log t + Nπ) j e−t dt

= N j

log x

j∑
l=0

( j
l

)
(log log x +π) j−l

∫ δ log x

1
(− log t)le−t dt

� j
N j

log x

j∑
l=0

(log log x +π) j−l
∫ ∞

1

t l

et dt

� j
(N log log x + Nπ) j

log x

� 1
log x

(
log

1
1N
+ Nπ

) j

. (6-12)

For I2, similar to I3, using the change of variable σ log x = t , we get

I2�
∫ 1/log x

(1N )1/N

(
N log

1
σ
+ Nπ

) j

x−σ dσ

= 1
log x

∫ 1

(1N )1/N log x
(N log log x − N log t + Nπ) j e−t dt

= N j

log x

j∑
l=0

( j
l

)
(log log x +π) j−l

∫ 1

(1N )1/N log x
(− log t)le−t dt

(
t→ 1

et

)

� j
N j

log x

j∑
l=0

(log log x +π) j−l
∫ ∞

0

t l

et dt

� j
(N log log x + Nπ) j

log x

� 1
log x

(
log

1
1N
+ Nπ

) j

. (6-13)

Combining (6-11), (6-12), (6-13), with (6-9), we get

I � j
(N log log x + Nπ) j

log x
� j

1
log x

(
log

1
1N
+ Nπ

) j

. (6-14)

By (6-8) and (6-14), we get the conclusion of this lemma. �

In the following, we use the above lemmas to prove Lemma 18.
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Proof of Lemma 18. If m = 0, E(x; ρ)= 0 and hence the integral is 0. In the following, we assume m ≥ 1.
Let 0ρ represent the circle in the Hankel contour H(ρ, δ). Then,

E(x; ρ)=
∫

H(ρ,δ)
(log(s− ρ))m(Hρ(s))ng(s)

x s−ρ

s
ds

=
∫ δ

rρ

(
(log σ − iπ)m− (log σ + iπ)m

)(
Hρ
( 1

2−σ + iγ
))ng

(1
2−σ + iγ

) x−σ
1
2 − σ + iγ

dσ

+
∫
0ρ

(log(s− ρ))m(Hρ(s))ng(s)
x s−ρ

s
ds

=: Eh(x; ρ)+ Er (x; ρ). (6-15)

For the second integral in (6-15), since rρ ≤ 1
x , by Lemma 11,

|Er (x; ρ)| � (log|γ |)crρxrρ

|γ |
(

log
1
rρ
+π

)m( ∑
0<|γ−γ ′|≤1

log
(

1
|γ ′− γ | − rρ

)
+ O(log|γ |)

)n

� (log|γ |)crρxrρ

|γ |
(

log
1
rρ
+π

)m

(log|γ |)n
(

log
(

1
rρ

)
+ O(1)

)n

� (log|γ |)n+c

|γ |
(log(1/rρ)+π)m+n

1/rρ
� (log|γ |)n+c

|γ |
1

x1−ε . (6-16)

Denote

6(x; g) :=
∣∣∣∣ ∑
|γ |≤T

x iγ E(x; ρ)
∣∣∣∣2� ∣∣∣∣ ∑

|γ |≤T

x iγ Eh(x; ρ)
∣∣∣∣2+ ∣∣∣∣ ∑

|γ |≤T

x iγ Er (x; ρ)
∣∣∣∣2. (6-17)

By (6-16), and T (x)� x2, we get∣∣∣∣ ∑
|γ |≤T

x iγ Er (x; ρ)
∣∣∣∣2� 1

x2−ε

( ∑
|γ |≤T (x)

(log|γ |)n+c

|γ |
)2

� 1
x2−ε . (6-18)

For the first sum in (6-17),∣∣∣∣ ∑
|γ |≤T

x iγ Eh(x; ρ)
∣∣∣∣2 = ( ∑

|γ1−γ2|≤1
|γ1|,|γ2|≤T

+
∑

|γ1−γ2|>1
|γ1|,|γ2|≤T

)
x i(γ1−γ2)Eh(x; ρ1)Eh(x; ρ2)=:61(x; g)+62(x; g).

By (6-15),

|Eh(x; ρ)| � (log|γ |)c
|γ |

m∑
j=1

∫ δ

0
|log σ |m− j

∣∣Hρ( 1
2 − σ + iγ

)∣∣nx−σ dσ. (6-19)
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Let

S j (x) :=
∫ δ

0
|log σ |m− j

∣∣Hρ( 1
2 − σ + iγ

)∣∣nx−σ dσ

≤
(∫ δ

0
|log σ |2(m− j)x−σdσ

) 1
2
(∫ δ

0

∣∣Hρ( 1
2 − σ + iγ

)∣∣2nx−σ dσ
) 1

2

. (6-20)

By (5-5) in the proof of Lemma 16,∫ δ

0
|log σ |2(m− j)x−σ dσ � (log log x)2(m− j)

log x
. (6-21)

By condition (6-1) and the Cauchy–Schwarz inequality,∣∣Hρ( 1
2 − σ + iγ

)∣∣2n �
∣∣∣∣ ∑
0<|γ ′−γ |≤1

log(σ + i(γ ′− γ ))
∣∣∣∣2n

+ (log|γ |)2n.

Then, by Lemma 20, ∫ δ

0

∣∣Hρ( 1
2 − σ + iγ

)∣∣2nx−σ dσ � (Mγ (x))2n + (log|γ |)2n

log x
, (6-22)

where Mγ (x) = min(N (γ ) log log x, log 1/1N (γ )), N (γ ) is the number of zeros γ ′ in the range 0 <
|γ ′− γ | ≤ 1, and 1N (γ ) =

∏
0<|γ ′−γ |≤1|γ ′− γ |.

Thus, by (6-21) and (6-22),

S j (x)� (log log x)m− j

log x
((Mγ (x))n + (log|γ |)n).

Substituting this into (6-19), we get

|Eh(x; ρ)| � (log|γ |)c
|γ |

m∑
j=1

(log log x)m− j

log x
((Mγ (x))n + (log|γ |)n)

� (log|γ |)c
|γ |

(log log x)m−1

log x
((Mγ (x))n + (log|γ |)n). (6-23)

Then, by Lemma 11, we have

|61(x; g)| �
∑
|γ |≤T

log(|γ |)( max
|γ ′−γ |<1

|Eh(x; ρ ′)|)2

� (log log x)2(m−1)

log2 x

∑
γ

(log|γ |)2c

|γ |2 ((Mγ (x))2n + (log|γ |)2n)

= (log log x)2m+2n−2

log2 x
o(1). (6-24)

Thus, for each positive integer l, ∫ 2l+1

2l
61(ey; g) dy = o

(
l2m+2n−2

2l

)
. (6-25)
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In the following, we examine 62(x; g). By (6-15),

62(x; g)=
∑

|γ1−γ2|>1
|γ1|,|γ2|≤T

x i(γ1−γ2)Eh(x; ρ1)Eh(x; ρ2). (6-26)

For e2l ≤ x ≤ e2l+1
, T = T (x)= Tl ′ is a constant, and so we define

J (x; g) :=
∑

|γ1−γ2|>1
|γ1|,|γ2|≤Tl′

x i(γ1−γ2)

∫ δ

rρ1

∫ δ

rρ2

Rρ1(σ1; x)Rρ2(σ2; x) dσ1 dσ2

i(γ1− γ2)− (σ1+ σ2)
, (6-27)

where

Rρ(σ ; x)=
(
(log σ − iπ)m − (log σ + iπ)m

)
H n
ρ

(1
2 − σ + iγ

)g
(1

2 − σ + iγ
)
x−σ

1
2 − σ + iγ

.

Thus, ∫ e2l+1

e2l

∑
|γ1−γ2|>1
|γ1|,|γ2|≤Tl′

x i(γ1−γ2)Eh(x; ρ1)Eh(x; ρ2)
dx
x
= J (e2l+1; g)− J (e2l ; g). (6-28)

By (6-27), (6-19), and (6-23), and Lemma 19, for e2l ≤ x ≤ e2l+1

|J (x; g)|�
∑

|γ1−γ2|>1

(log|γ1|)c(log|γ2|)c
|γ1||γ2||γ1− γ2|

(
(log log x)m−1

log x

)2

((Mγ1(x))
n+(log|γ1|)n)((Mγ2(x))

n+(log|γ2|)n)

� (log log x)2m+2n−2

log2 x

∑
|γ1−γ2|>1

(log|γ1|)n+c(log|γ2|)n+c

|γ1||γ2||γ1− γ2|

� (log log x)2m+2n−2

log2 x
. (6-29)

Hence, by (6-26), (6-28), and (6-29), we get, for any positive integer l,∫ 2l+1

2l
62(ey; g) dy = o

(
l2m+2n−2

2l

)
. (6-30)

Therefore, by (6-18), (6-25) and (6-30),∫ Y

2

∣∣∣∣y ∑
|γ |≤T (ey)

eiγ y E(ey; ρ)
∣∣∣∣2 dy�

∑
l≤ log Y

log 2+1

22l
∫ 2l+1

2l
6(ey; g) dy (6-31)

� 1+
∑

l≤ log Y
log 2+1

22l
∫ 2l+1

2l
(61(ey; g)+62(ey; g)) dy (6-32)

= o(Y (log Y )2m+2n−2). (6-33)

This completes the proof of Lemma 18. �
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6C. Lower order sum and error from the truncation. In this section, we examine the lower order sum
and the error from the truncation by a fixed large T0, and give the proof of Lemma 15.

Proof of Lemma 15. For the lower order sum, by (4-24), we have∫ Y

2
|S1(ey;χ)|2 dy�

k∑
j=2

(log Y )2k−2 j
∫ Y

2

∣∣∣∣ ∑
|γ |≤T (ey)

eiγ y

1
2 + iγ

∣∣∣∣2 dy.

For the inner integral, by Lemma 11 and Lemma 19, and the definition of T = T (x),∫ Y

2

∣∣∣∣ ∑
|γ |≤T (ey)

eiγ y

1
2 + iγ

∣∣∣∣2 dy ≤
∑

l≤ log Y
log 2+1

∫ 2l+1

2l

( ∑
|γ1−γ2|≤1
|γ1|,|γ2|≤Tl′

+
∑

|γ1−γ2|>1
|γ1|,|γ2|≤Tl′

)
ei(γ1−γ2)y( 1

2 + iγ1
)(1

2 − iγ2
) dy

�
∑

l≤ log Y
log 2+1

(
2l
∑
γ

log|γ |
|γ |2 +

∑
γ1,γ2

1
|γ1||γ2||γ1− γ2|

)
� Y.

Thus, ∫ Y

2
|S1(ey;χ)|2 dy�

k∑
j=2

Y (log Y )2k−2 j = o(Y (log Y )2k−2)).

Next, we examine S2(x, T0;χ). For fixed T0, let X0 be the largest x such that T = T (x)≤ T0. Since
x ≤ T (x)≤ 2x2, log X0 � log T0. By Lemma 11 and Lemma 19,∫ Y

2
|S2(ey, T0;χ)|2 dy≤

∫ log X0

2

∣∣∣∣ ∑
|γ |≤T0

1
|γ |
∣∣∣∣2 dy+

∫ Y

log X0

∣∣∣∣ ∑
T0≤|γ |≤T (ey)

eiγ y

1
2 + iγ

∣∣∣∣2 dy

� log5 T0+
∑

log log X0
log 2 ≤l≤ log Y

log 2+1

∫ 2l+1

2l

( ∑
|γ1−γ2|≤1

T0≤|γ1|,|γ2|≤Tl′

+
∑

|γ1−γ2|>1
T0≤|γ1|,|γ2|≤Tl′

)
ei(γ1−γ2)y( 1

2 + iγ1
)(1

2 − iγ2
)dy

� log5 T0+
∑

log log X0
log 2 ≤l≤ log Y

log 2+1

(
2l
∑
|γ |≥T0

log|γ |
|γ |2 +

∑
|γ1|,|γ2|≥T0

1
|γ1||γ2||γ1− γ2|

)

� Y
log2 T0

T0
+ log Y

log3 T0

T0
+ log5 T0.

This completes the proof of this lemma. �

7. Asymptotic formulas for the logarithmic densities

In this section, we give the proof of Theorem 4.

Proof of Theorem 4. For large q , Fiorilli and Martin [2013] gave an asymptotic formula for δ�1(q; a, b).
Lamzouri [2013] also derived such an asymptotic formula using another method. Here, we want to derive
asymptotic formulas for δ�k (q; a, b) and δωk (q; a, b) for fixed q and large k.
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Let a be a quadratic nonresidue mod q and b be a quadratic residue mod q , and (a, q)= (b, q)= 1.
Letting λk = 1/2k−1, similar to formula (2.10) of [Fiorilli and Martin 2013], we have, under ERHq and LIq,

δ�k (q; a, b)= 1
2
+ (−1)k

2π

∫ ∞
−∞

sin(λk(N (q; a)− N (q; b))x
x

8q;a,b(x) dx .

Noting that N (q, a)− N (q, b)=−A(q),

δ�k (q; a, b)= 1
2
+ (−1)k−1

2π

∫ ∞
−∞

sin(λk A(q)x)
x

8q;a,b(x) dx . (7-1)

For any ε > 0,∫ ∞
−∞

sin(λk A(q)x)
x

8q;a,b(x) dx =
(∫ 1/λεk

−∞
+
∫ 1/λεk

−1/λεk

+
∫ ∞

1/λεk

)
sin(λk A(q)x)

x
8q;a,b(x) dx . (7-2)

By Proposition 2.17 in [Fiorilli and Martin 2013], |8q;a,b(t)| ≤ e−0.0454φ(q)t for t ≥ 200. So for large
enough k,∫ ∞

1/λεk

sin(λk A(q)x)
x

8q;a,b(x) dx � λk

∫ ∞
1/λεk

e−0.0454φ(q)x dx �q,J,ε λ
J
k , for any J > 0. (7-3)

The integral over x ≤−1/λεk is also bounded by λJ
k .

By Lemma 2.22 in [Fiorilli and Martin 2013], for each nonnegative integer K and real number C > 1,
we have, uniformly for |z| ≤ C ,

sin z
z
=

K∑
j=0

(−1) j z2 j

(2 j + 1)! + OC,K (|z|2K+2).

Thus, the second integral in (7-2) is equal to

λk A(q)
∫ 1/λεk

−1/λεk

sin(λk A(q)x)
λk A(q)x

8q;a,b(x) dx

=
K∑

j=0

λ
2 j+1
k

(−1) j A(q)2 j+1

(2 j + 1)!
∫ 1/λεk

−1/λεk

x2 j8q;a,b(x) dx + Oq,K (λ
2K+3−ε
k )

=
K∑

j=0

λ
2 j+1
k

(−1) j A(q)2 j+1

(2 j + 1)!
∫ ∞
−∞

x2 j8q;a,b(x) dx + Oq,K ,ε(λ
2K+3−ε
k ). (7-4)

Combining (7-1), (7-3), and (7-4), we get the asymptotic formula (1-4) for δ�k (q; a, b). Similarly, or
by the results in Theorem 3, we have the asymptotic formula (1-5) for δωk (q; a, b). �

8. The source of main terms and proof of Lemma 12

In this section, we give the proof of the main lemma we used for extracting out the bias terms and
oscillating terms from the integrals over Hankel contours.
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Let H(0, X) be the truncated Hankel contour surrounding 0 with radius r . Lau and Wu [2002] proved
the following lemma.

Lemma 21 [Lau and Wu 2002, Lemma 5]. For X > 1, z ∈ C and j ∈ Z+, we have

1
2π i

∫
H(0,X)

w−z(logw) j ew dw = (−1) j d j

dz j

(
1
0(z)

)
+ E j,z(X),

where

|E j,z(X)| ≤ eπ |=(z)|

2π

∫ ∞
X

(log t +π) j

t<(z)et dt.

Proof of Lemma 12. We have the equality

1
s
= 1

a
+ a− s

a2 +
(a− s)2

a2s
.

With the above equality, we write the integral in the lemma as

1
2π i

∫
H(a,δ)

logk(s− a)
(

1
a
+ a− s

a2 +
(a− s)2

a2s

)
x s ds =: I1+ I2+ I3.

For I3, using Lemma 16, we get∫
H(a,δ)

logk(s− a)
(a− s)2

a2s
x s ds

≤
∣∣∣∣∫ δ

r

(
(log σ−iπ)k − (log σ+iπ)k

)
σ 2x−σ

xa

a2(a−σ) dσ
∣∣∣∣+ ∫ π

−π
x<(a)+r(log 1

r+π
)k r2

|a|2|<(a)−r |r, dα

� |xa|
|a|2|<(a)− δ|

(∫ δ

0
|(log σ − iπ)k − (log σ + iπ)k |σ 2x−σ dσ + (log 1

r +π)k
(1/r)3

)
�k

|xa|
|a|2|<(a)− δ|

(
(log log x)k−1

(log x)3
+ 1

x3−ε

)
�k

|xa|
|a|2|<(a)− δ|

(log log x)k−1

(log x)3
. (8-1)

We estimate I2 similarly. By Lemma 16,∫
H(a,δ)

logk(s− a)
a− s

a2 x s ds

≤
∣∣∣∣∫ δ

r
((log σ − iπ)k − (log σ + iπ)k)σ x−σ

xa

a2 dσ
∣∣∣∣+ ∫ π

−π
x<(a)+r(log 1

r +π
)k r
|a|2 r dα

� |x
a|
|a|2

(∫ δ

0
|(log σ − iπ)k − (log σ + iπ)k |σ x−σ dσ +

(
log 1

r +π
)k

(1/r)2

)
�k
|xa|
|a|2

(
(log log x)k−1

(log x)2
+ 1

x2−ε

)
�k
|xa|
|a|2

(log log x)k−1

(log x)2
. (8-2)
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For I1, using change of variable (s− a) log x = w, by Lemma 21, we get

I1 = 1
2π i

1
log x

∫
H(0,δ log x)

(logw− log log x)k
xaew

a
dw

= xa

a log x
(−1)k(log log x)k

1
2π i

∫
H(0,δ log x)

ew dw

+ (−1)k−1k
xa

a log x
(log log x)k−1 1

2π i

∫
H(0,δ log x)

ew logw dw

+ xa

a log x

k∑
j=2

(k
j

) 1
2π i

∫
H(0,δ log x)

(− log log x)k− j (logw) j ew dw

= (−1)k xa

a log x

{
k(log log x)k−1+

k∑
j=2

(k
j

)
(log log x)k− j 1

0 j (0)

}

+ xa

a log x

k∑
j=1

(k
j

)
E j,0(δ log x)(− log log x)k− j . (8-3)

By Lemma 21,

|E j,0(δ log x)| ≤ 1
2π

∫ ∞
δ log x

(log t +π) j

et dt � j e−
1
2 δ log x

∫ ∞
1
2 δ log x

(log t) j

et/2 dt � j x−δ/2.

Hence, we get∣∣∣∣ xa

a log x

k∑
j=1

(k
j

)
E j,0(δ log x)(− log log x)k− j

∣∣∣∣�k
x<(a)

|a| log x

k∑
j=1

x−δ/2(log log x)k− j�k
|xa−δ/3|
|a| . (8-4)

Combining (8-1), (8-2), (8-3), and (8-4), we get the conclusion of Lemma 12. �
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D-groups and the Dixmier–Moeglin equivalence
Jason Bell, Omar León Sánchez and Rahim Moosa

A differential-algebraic geometric analogue of the Dixmier–Moeglin equivalence is articulated, and proven
to hold for D-groups over the constants. The model theory of differentially closed fields of characteristic
zero, in particular the notion of analysability in the constants, plays a central role. As an application it
is shown that if R is a commutative affine Hopf algebra over a field of characteristic zero, and A is an Ore
extension to which the Hopf algebra structure extends, then A satisfies the classical Dixmier–Moeglin
equivalence. Along the way it is shown that all such A are Hopf Ore extensions in the sense of Brown
et al., “Connected Hopf algebras and iterated Ore extensions”, J. Pure Appl. Algebra 219:6 (2015).

1. Introduction 343
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4. The DME for Ore extensions of commutative Hopf algebras 368
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1. Introduction

This article is about an analogue of the Dixmier–Moeglin equivalence for differential-algebraic geometry.
(The immediate motivation is an application to the classical noncommutative Dixmier–Moeglin problem,
which we will describe later in this introduction.) The main objects of study here are D-varieties. An
introduction to this category is given in Section 2A, but let us at least recall here that a D-variety (over the
constants) is an algebraic variety V over a field k of characteristic zero, equipped with a regular section
to the tangent bundle s W V ! TV . A D-subvariety is an algebraic subvariety W for which the restriction
s�W is a section to the tangent bundle of W . There are natural notions of D-morphism and D-rational
map. For convenience, let us assume that k is algebraically closed. We are interested in the following
properties of an irreducible D-subvariety W � V over k:

� ı-local-closedness. There is a maximum proper D-subvariety of W over k.

� ı-primitivity. There is a k-point of W that is not contained in any proper D-subvariety of W over k.

J. Bell and R. Moosa were partially supported by their respective NSERC Discovery Grants.
MSC2010: primary 03C98; secondary 12H05, 16S36, 16T05.
Keywords: D-groups, model theory of differentially closed fields, Dixmier–Moeglin equivalence, Hopf Ore extensions.

343

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2018.12-2
http://dx.doi.org/10.2140/ant.2018.12.343
http://dx.doi.org/10.1016/j.jpaa.2014.09.007
http://dx.doi.org/10.1016/j.jpaa.2014.09.007


344 Jason Bell, Omar León Sánchez and Rahim Moosa

� ı-rationality. There is no nonconstant rational map from .W; s/ to .A1; 0/ over k, where 0 denotes
the zero section to the tangent bundle of the affine line.

The question is, for which ambient D-varieties .V; s/ are these three properties equivalent for all D-
subvarieties? It is not hard to see, and is spelled out in the proof of Corollary 2.14 below, that in general

ı-local-closedness D) ı-primitivity D) ı-rationality.

In earlier work [Bell et al. 2017a], together with Stéphane Launois, we used the model theory of the Manin
kernel to produce (in any dimension � 3) a D-variety which is itself ı-rational but not ı-locally-closed.
Here we focus on positive results. The main one, which appears as Corollary 2.17 below, is the following:

Theorem A. Suppose .G; s/ is a D-group over the constants — that is, G is an algebraic group and
s WG! TG is a homomorphism of algebraic groups. Then for any D-subvariety of .G; s/, ı-rationality
implies ı-local-closedness. In particular, for every D-subvariety of .G; s/, ı-rationality, ı-primitivity,
and ı-local-closedness are equivalent properties.

The proof of Theorem A relies on the model theory of differentially closed fields. In model-theoretic
parlance, the point is that ı-rationality of .V; s/ is equivalent to the generic type of the corresponding
Kolchin closed set being weakly orthogonal to the constants, while ı-local-closedness means that the
type is isolated. One context in which one can prove (using model-theoretic binding groups, for example)
that weak orthogonality to the constants implies isolation is when the type in question is analysable in
the constants. We give a geometric explanation of analysability in Section 2E in terms of what we call
compound isotriviality of D-varieties. The reader can look there for a precise definition, but suffice it to
say that a compound isotrivial D-variety is one that admits a finite sequence of fibrations where at each
stage the fibres are isomorphic (possibly over a differential field extension of the base) to D-varieties
where the section is the zero section. We show that for compound isotrivial D-varieties, ı-rationality
implies ı-local-closedness (Proposition 2.13). Then we show, using known results about the structure
of differential-algebraic groups, that every D-subvariety of a D-group over the constants is compound
isotrivial (Proposition 2.16). Theorem A follows.

It turns out that for our intended application, namely Theorem B2 appearing later in this introduction,
we need Theorem A to work for D-varieties that are slightly more general than D-groups. Given an
affine algebraic group G, we may as well assume that G � GLn, so that a regular section to the tangent
bundle is then of the form sD .id; Ns/ where Ns WG!Matn. It is not hard to check, from how the algebraic
group structure is defined on the tangent bundle, that s WG! TG being a homomorphism is equivalent
to the identity Ns.gh/D Ns.g/hCg Ns.h/, where g; h 2G are matrices and all addition and multiplication is
matrix addition and multiplication. Now suppose we are given a homomorphism to the multiplicative
group, a WG!Gm. By an a-twisted D-group we mean a D-variety .G; s/ where G is an affine algebraic
group and s D .id; Ns/ satisfies the identity Ns.gh/D Ns.g/hC a.g/g Ns.h/. So an a-twisted D-group is a
D-group exactly when aD 1. We are able to show that D-subvarieties of a-twisted D-groups are also
compound isotrivial. This yields the following generalisation of Theorem A: For any D-subvariety of an
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a-twisted D-group over the constants, ı-rationality, ı-primitivity, and ı-local-closedness are equivalent
properties. The passage from D-groups to a-twisted D-groups turns out to be technically quite difficult,
and is done in Section 3.

It is worth pointing out that we have been intentionally ambiguous about the field of definitions in
the statements of Theorem A and its a-twisted generalisation. The reason for this is that the results
actually hold true for D-subvarieties of .G; s/ that are defined over differential field extensions of the base
field k. To make this precise one has to give a more general definition of D-variety using prolongations
rather than tangent bundles, and we have decided to delay this to the main body of the article. While the
final conclusion we are interested in is about D-subvarieties over k, this possibility of passing to base
extensions is an important part of the inductive arguments involved.

Now for the application to noncommutative algebra, to which Section 4 is dedicated. The classical
Dixmier–Moeglin equivalence (DME) is about prime ideals in a noetherian associative algebra over a field
of characteristic zero; it asserts the equivalence between three properties of such prime ideals: primitivity
(a representation-theoretic property), local-closedness (a geometric property), and rationality (an algebraic
property). Precise definitions are given at the beginning of Section 4. We are interested in the question
of when the DME holds for skew polynomial rings RŒxI ı� over finitely generated commutative integral
differential k-algebras .R; ı/. Recall that RŒxI ı� is the noncommutative polynomial ring in x over R

where xr D rxCı.r/. This question is not vacuous since examples of such skew polynomial rings failing
the DME were given in [Bell et al. 2017a]; indeed, these were the first counterexamples to the DME of
finite Gelfand–Kirillov dimension. The connection to D-varieties should be clear: RD kŒV � for some
irreducible algebraic variety V , and the k-linear derivation ı induces a regular section s W V ! TV . So
the study of such .R; ı/ is precisely the same thing as the study of D-varieties. We are able to prove
(this is Proposition 4.6 below) that RŒxI ı� satisfies the DME if ı-rationality implies ı-locally-closedness
for all D-subvarieties of the D-variety .V; s/ associated to .R; ı/. Theorem A therefore answers our
question in the special case of differential Hopf algebras.

Theorem B1. If .R; ı/ is a finitely generated commutative integral differential Hopf k-algebra, then
RŒxI ı� satisfies the DME.

Being a differential Hopf algebra means that R has the structure of a Hopf algebra and that ı commutes
with the coproduct; this is equivalent to saying that .R; ı/ comes from an affine D-group .G; s/.

More generally than skew polynomial rings, we consider Ore extensions. Suppose R is a finitely
generated commutative integral k-algebra, � is a k-algebra automorphism of R, and ı is a k-linear
�-derivation of R — meaning that ı.rs/D �.r/ı.s/C ı.r/s. Recall that the Ore extension RŒxI �; ı� is
the noncommutative polynomial ring in the variable x over R where xr D �.r/xCı.r/. So when � D id
we are in the skew polynomial case discussed above. What about the DME for RŒxI �; ı�?

Theorem B2. Suppose R is a finitely generated commutative integral Hopf k-algebra. If an Ore extension
RŒxI �; ı� admits a Hopf algebra structure extending that on R, then RŒxI �; ı� satisfies the DME.
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That Theorem B1 is a special case of Theorem B2 uses the (known) fact that one can always extend
the Hopf structure on a differential algebra R to the skew polynomial ring extension RŒxI ı�, namely by
the coproduct induced by �.x/D x˝ 1C 1˝x. Theorem B2 appears as Theorem 4.1 below. Its proof
goes via a reduction to the case when � D id and then an application of the stronger a-twisted version
of Theorem A discussed above. Both of these steps use the work of Brown et al. [2015] on Hopf Ore
extensions. One obstacle is that while their results hold for much more general R than we are considering,
they are conditional on the coproduct of the variable x in the Ore extension taking the special form

�.x/D a˝xCx˝ bC v.x˝x/Cw;

where a; b 2 R and v;w 2 R˝k R. This is part of their definition of a Hopf Ore extension, though
they speculate about its necessity. We prove that when k is algebraically closed, after a linear change of
variable, �.x/ always has the above form. This is Theorem 4.2 below, and may be of independent interest:

Theorem C. Suppose k is algebraically closed and R is a finitely generated commutative integral Hopf
k-algebra. If an Ore extension RŒxI �; ı� admits a Hopf algebra structure extending that of R then, after
a linear change of the variable x,

�.x/D a˝xCx˝ bCw

for some a; b 2R, each of which is either 0 or group-like, and some w 2R˝k R. In particular, RŒxI �; ı�

is a Hopf Ore extension of R.

It has been conjectured [Bell and Leung 2014] that all finitely generated complex noetherian Hopf
algebras of finite Gelfand–Kirillov dimension satisfy the DME. Theorem B2 verifies a special case. To
make more significant progress on this conjecture one would like to pass from Hopf Ore extensions to
iterated Hopf Ore extensions. As of now, this appears to be beyond the scope of the techniques used here.

Throughout this paper, by an affine k-algebra we mean a finitely generated commutative k-algebra
that is an integral domain.

2. The ı-DME for D-groups over the constants

In this section we prove Theorem A of the introduction. After some preliminaries, we articulate
in Section 2C the differential-algebraic geometric analogue of the DME suggested in the introduction,
and call it the ı-DME. A sufficient condition for this to hold in terms of the model-theoretic notion of
analysability to the constants is given in Section 2E, and then applied to show that D-groups over the
constants satisfy the ı-DME in Section 2F. In a final section we reformulate ı-DME algebraically, as a
statement about commutative differential Hopf algebras, thereby preparing the stage for the application to
the classical DME in Section 4.

2A. Preliminaries on D-varieties. Suppose k is a field of characteristic zero equipped with a derivation ı.
In this section we review the notion of a D-variety over k. Several more detailed expositions can be
found in the literature, for instance [Buium 1992], which introduced the notion, and also [Kowalski and
Pillay 2006, ~2].
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We first need to recall what prolongations are. If V � An is an affine algebraic variety over k, then by
the ı-prolongation of V is meant the algebraic variety �V � A2n over k whose defining equations are

P .X1; : : : ;Xn/D 0;

P ı.X1; : : : ;Xn/C

nX
iD1

@P

@Xi
.X1; : : : ;Xn/ �Xi D 0;

for each P 2 I.V /� kŒX1; : : : ;Xn�. Here P ı denotes the polynomial obtained by applying ı to all the
coefficients of P . The projection onto the first n coordinates gives us a surjective morphism � W �V ! V .

Note that if K is any ı-field extension of k, and a 2 V .K/, then

r.a/ WD .a; ıa/ 2 �V .K/:

If V is defined over the constant field of .k; ı/ then �V is nothing other than the tangent bundle TV . In
general, �V is a torsor for the tangent bundle; for each a 2 V the fibre �aV is an affine translate of the
tangent space TaV . In particular, if V is smooth and irreducible then so is �V .

Taking prolongations is a functor which acts on morphisms f W V !W by acting on their graphs.
It preserves the following properties of a morphism: being étale, being a closed embedding, and being
smooth. The functor � acts naturally on rational maps also; this is because for U a Zariski open subset of
an irreducible variety V , �V�U D �.U / is Zariski open in �.V /. Moreover, prolongations commute with
base extension to ı-field extensions.

We have restricted our attention here to the affine case merely for concreteness. The prolongation
construction extends to abstract varieties by patching over an affine cover in a natural and canonical way.

A D-variety over k is an algebraic variety V over k equipped with a regular section s W V ! �V

over k. An example is when V is defined over the constants and s W V ! TV is the zero section.
If V is affine then a D-variety structure on V is nothing other than an extension of ı to the co-

ordinate ring kŒV �. Indeed, if s W V ! �V is given by s.X / D .X; s1.X /; : : : ; sn.X // in variables
X D .X1; : : : ;Xn/, then we can extend ı to kŒX � by Xj 7! sj .X /, and this will induce a deriva-
tion on kŒV �. Conversely, given an extension of ı to kŒV �, and choosing sj .X / to be such that
ı.Xj C I.V //D sj .X /C I.V /, we get that s WD .id; s1; : : : ; sn/ W V ! �V is a regular section.

A D-subvariety of .V; s/ is a closed algebraic subvariety W � V , over a possibly larger ı-field K,
such that s.W /� �W . In principle one should talk about the base extension of V to K before talking
about subvarieties over K, but as prolongations commute with base extension, and following standard
model-theoretic practices, we allow D-subvarieties to be defined over arbitrary ı-field extensions unless
explicitly stated otherwise.

A D-variety .V; s/ over k is said to be k-irreducible if V is k-irreducible as an algebraic variety. In
this case s induces on k.V / the structure of a ı-field extending k. A D-variety .V; s/ is called irreducible
if V is absolutely irreducible. In general, every irreducible component of V is a D-subvariety over kalg

and these are called the irreducible components of .V; s/.
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A morphism of D-varieties .V; s/! .W; t/ is a morphism of algebraic varieties f W V !W such that

�V
�f
// �W

V

s

OO

f
// Wt

OO

commutes. It is not hard to verify that the pull-back of a D-variety, and the Zariski closure of the image
of a D-variety, under a D-morphism, are again D-varieties.

In the same way, we can talk about rational maps between D-varieties. A useful fact is that if U is
a nonempty Zariski open subset of V , then the prolongation of U is the restriction of �V to U , and so
.U; s�U / is a D-variety in its own right. So a rational map on V is a D-rational map if it is a D-morphism
when restricted to the Zariski open subset on which it is defined.

A D-constant rational function on a D-variety .V; s/ over k is a rational map over k from .V; s/ to
.A1; 0/, where 0 denotes the zero section to the tangent bundle of the affine line. In the case when .V; s/
is k-irreducible, they correspond precisely to the ı-constants of .k.V /; ı/.

2B. Differentially closed fields and the Kolchin topology. Underlying our approach to the study of
D-varieties is the model theory of existentially closed ı-fields (of characteristic zero). These are ı-fields
K with the property that any finite sequence of ı-polynomial equations and inequations over K which
have a solution in some ı-field extension, already have a solution in K. The class of existentially closed
ı-fields of characteristic zero is axiomatisable in first-order logic, and its theory is denoted by DCF0. We
work in a fixed model of this theory, an existentially closed ı-field K. In particular, K is algebraically
closed. We let Kı denote the field of constants of K; it is an algebraically closed field that is pure in the
sense that the structure induced on it by DCF0 is simply that given by the language of rings.

Suppose .V; s/ is a D-variety over K. Let x 2 V .K/. Note that fxg is a D-subvariety if and only if
r.x/D s.x/, recalling that r W V .K/! �V .K/ is given by x 7! .x; ıx/. We call such points D-points,
and denote the set of all D-points in V .K/ by .V; s/].K/. It is an example, the main example we will
encounter, of a Kolchin closed subset of V .K/. In general a Kolchin closed subset of the K-points of an
algebraic variety is one that is defined Zariski-locally by the vanishing of ı-polynomials. Note that when
.V; s/ is defined over the constants and s is the zero section, .V; s/].K/D V .Kı/.

One of the main consequences of working in an existentially closed ı-field is that .V; s/].K/ is Zariski-
dense in V .K/. In particular, for any subvariety W � V , we have that W is a D-subvariety if and only if
W \ .V; s/].K/ is Zariski dense in W .K/.

Suppose .V; s/ is k-irreducible for some ı-subfield k. If we allow ourselves to pass to a larger
existentially closed ı-field, then we can always find a k-generic D-point of .V; s/, that is, a D-point
x 2 .V; s/].K/ that is Zariski-generic over k in V . Note that such a point is also Kolchin-generic in
.V; s/].K/ over k in the sense that it is not contained in any proper Kolchin closed subset defined over k.

In order to ensure the existence of generic D-points without having to pass to larger ı-fields, it is
convenient to assume that K is already sufficiently large, namely saturated. This means that if k is a
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ı-subfield of strictly smaller cardinality than K, and F is a collection of Kolchin constructible sets over
k every finite subcollection of which has a nonempty intersection, then F has a nonempty intersection.

2C. An analogue of the DME for D-varieties. We fix from now on a saturated existentially closed
ı-field K of sufficiently great cardinality. So K serves as a universal domain for ı-algebraic geometry
(and hence, in particular, algebraic geometry). We also fix a small ı-subfield k �K that will serve as the
field of coefficients.

Definition 2.1 (ı-DME for D-varieties). Suppose .V; s/ is a D-variety over k. We say that .V; s/ satisfies
the ı-DME over k, if for every k-irreducible D-subvariety W � V , the following are equivalent:

(i) .W; s/ is ı-locally-closed: it has a maximum proper D-subvariety over k.

(ii) .W; s/ is ı-primitive: there exists a point p2W .kalg/ that is not contained in any proper D-subvariety
of W over k.

(iii) .W; s/ is ı-rational: k.W /ı � kalg.

Remark 2.2. As the model-theorist will notice, and as we will prove in the next section, W being ı-locally
closed means that the Kolchin generic type p of .W; s/].K/ over k is isolated. The model-theoretic
meaning of ı-rationality is that p is weakly orthogonal to the constants. On the other hand, it is not clear
how to express a priori the ı-primitivity of W as a model-theoretic property of p.

Without additional assumptions on k there is no hope for the ı-DME to be satisfied. For example,
there are positive-dimensional ı-rational D-varieties over any k, but if k is differentially closed then the
only ı-locally closed D-varieties over k are zero-dimensional. This is because every D-variety over a
differentially closed field k has a Zariski dense set of D-points over k, and so a D-subvariety over k

containing all of them could not be proper. We are interested, however, in the case when k is very much
not differentially closed; namely, when ı is trivial on k.

Proposition 2.3. For any k-irreducible D-variety, ı-local-closedness implies ı-primitivity. Moreover, if
k �Kı then ı-primitivity implies ı-rationality.

Proof. Let .W; s/ be a k-irreducible D-variety.
Suppose .W; s/ is ı-locally-closed, and denote by A the maximum proper D-subvariety of W over k.

Then p 2W .kalg/ nA.kalg/ witnesses ı-primitivity. This proves the first assertion.
Now suppose that k � Kı, .W; s/ is ı-primitive, and p 2 W .kalg/ is not contained in any proper

D-subvariety over k. Suppose f 2 k.W / is a ı-constant. We want to show that f 2 kalg. We view it
as a rational map of D-varieties, f W .W; s/! .A1; 0/, and suppose for now that it is defined at p. So
f .p/ 2 A1.kalg/. Because of our additional assumption that k �Kı , and hence kalg �Kı , we have that
f .p/ is a D-point of .A1; 0/. Now, let ƒ be the orbit of f .p/ under the action of the absolute Galois
group of k. Then ƒ is a finite D-subvariety of .A1; 0/ over k. Hence the Zariski closure of f �1.ƒ/ is
a D-subvariety of W over k that contains p. It follows that f �1.ƒ/DW . So f is kalg-valued on all
of W . We have shown that every element of k.W /ı that is defined at p is in kalg.
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We have still to deal with the possibility that f is not defined at p. In that case, writing f D a
b

with
a; b 2 kŒW �, we must have b.p/D 0. The fact that ıf D 0 implies by the quotient rule that bıaD aıb.
So either ıaD ıb D 0 or f D a

b
D
ıa
ıb

. Since a and b are defined at p, if ıaD ıb D 0 then a; b 2 kalg by
the previous paragraph, and hence f 2 kalg. If, on the other hand, f D ıa

ıb
, then we iterate the argument

with .ıa; ıb/ in place of .a; b/. What we get in the end is that either f 2 kalg or f D ı`a
ı`b

for all `� 0.
We claim the latter is impossible. Indeed, it would imply that ı`b.p/D 0 for all `, and so p is contained
in the D-subvariety V .I/, where I is the ı-ideal of kŒW � generated by b. But the assumption on p would
then imply that V .I/DW , contradicting the fact that b ¤ 0. So f 2 kalg, as desired. �

So the question becomes:

Question 2.4. Under the assumption that ı is trivial on k, for which D-varieties does ı-rationality imply
ı-local-closedness?

Question 2.4 should be, we think, of general interest in differential-algebraic geometry. In [Bell et al.
2017a] it was pointed out that Manin kernels can be used to construct, in all Krull dimensions at least
three, examples that were ı-rational but not ı-locally closed. Let us point out that in dimension � 2 the
answer is affirmative:

Proposition 2.5. If k �Kı then every D-variety over k of dimension � 2 satisfies the ı-DME over k.

Proof. Suppose .V; s/ is a D-variety over k of dimension at most 2. By Proposition 2.3 it suffices to
show that if W � V is a k-irreducible ı-rational D-subvariety over k then it has a maximum proper
D-subvariety over k. We may assume that dim W > 0. Now, it is a known fact that ı-rationality implies
the existence of only finitely many D-subvarieties of codimension one over k. Indeed, this is a theorem
of Hrushovski1; see [Bell et al. 2017a, Theorem 6.1] and [Freitag and Moosa 2017, Theorem 4.2] for
published generalisations. So it remains to consider the zero-dimensional D-subvarieties of W over k.
But as k �Kı, the union of these is contained in the Zariski closure X of .W; s/].K/\W .Kı/. Note
that s restricts to the zero section on X , and hence X is a D-subvariety of W over k that must be proper
by ı-rationality of .W; s/. So the union of X and the finitely many codimension one D-subvarieties of
W form the maximal proper D-subvariety over k. �

We will give a sufficient condition for ı-rationality to imply ı-local-closedness, and hence for the
ı-DME, having to do with analysability to the constants in the model theory of differentially closed fields.
We will then use this condition to prove the ı-DME for D-groups over the constants.

2D. Maximum D-subvarieties. Here we look closer at which D-varieties over k have a proper D-
subvariety over k that contains all other proper D-subvarieties over k. This is something that never
happens in the pure algebraic geometry setting: every variety over k has a Zariski dense set of kalg-points,
and each kalg-point is contained in a finite subvariety defined over k. So a k-irreducible variety cannot
have a maximum proper subvariety over k. In the enriched context of D-varieties there will be many

1It is Proposition 2.3 in his unpublished and untitled manuscript dated 1995 on “how to deduce the @0-categoricity of degree
one strongly minimal sets in DCF0 from Jouanolou’s work”.
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D-points over a differential closure of k, say Qk, but a Qk-point need not live in a proper D-subvariety
defined over k. So D-points are not an obstacle to the existence of a maximum proper D-subvariety. In
fact, as the following lemma points out, the existence of a maximum proper D-subvariety is a natural
property to consider from both the Kolchin topological and model-theoretic points of view.

We continue to work in our sufficiently saturated differentially closed field .K; ı/, and fix a ı-subfield
k of coefficients.

Lemma 2.6. Suppose .V; s/ is a k-irreducible D-variety. The following are equivalent.

(i) .V; s/ is ı-locally closed.

(ii) .V; s/ has finitely many maximal proper k-irreducible D-subvarieties.

(iii) ƒ WD .V; s/].K/ n
S
f.W; s/].K/ WW ¨ V is a D-subvariety over kg is Kolchin constructible.

(iv) The Kolchin generic type of .V; s/].K/ over k is an isolated type.

Proof. (i))(ii). Let W be the maximum proper D-subvariety over k. The k-irreducible components of
W are D-subvarieties of V ; see for example [Kaplansky 1976, Theorem 2.1]. Every proper k-irreducible
D-subvariety of V is contained in one of these components. So the maximal proper k-irreducible
D-subvarieties of V are precisely the k-irreducible components of W .

(ii))(iii). Let W1; : : : ;W` be the maximal proper k-irreducible D-subvarieties of V . ThenS
f.W; s/].K/ WW ¨ V is a D-subvariety over kg D .W1; s/

].K/[ � � � [ .W`; s/
].K/:

(iii))(iv). The Kolchin generic type of .V; s/].K/ over k is the complete type p.X / in DCF0 axiomatised
by the formulas saying that “X 2 .V; s/].K/”, and, for each proper Kolchin closed subset A of .V; s/].K/
over k, the formula “X 62A”. Note that as .V; s/].K/ is defined by r.X /D s.X /, the occurrences of each
ıX in the defining equations of A can be replaced by polynomials, so that ADAZar\ .V; s/].K/, where
AZar denotes the Zariski closure of A in V . When A is over k, we have that AZar is a D-subvariety of V

over k. It follows that the set of realisations of p is precisely ƒ, so that ƒ being Kolchin constructible
implies that p is axiomatised by a single formula, that is, it is isolated.

(iv))(i). Let ƒ be as in statement (iii). As we have seen, this is the set of realisations of the Kolchin
generic type of .V; s/].K/ over k. The latter being isolated implies, by quantifier elimination, that ƒ is
Kolchin constructible. By saturation, this in turn implies that

A WD
S
f.W; s/].K/ WW ¨ V is a D-subvariety over kg

is a finite union, and hence is itself a proper Kolchin closed subset over k. Then AZar is the maximum
proper D-subvariety over k. �

The following lemma will be useful in showing that certain D-varieties satisfy the equivalent conditions
of Lemma 2.6.
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Lemma 2.7. Suppose f W .V; s/! .W; t/ is a dominant D-rational map of k-irreducible D-varieties
over k. The following are equivalent.

(i) .V; s/ has a maximum proper D-subvariety over k.

(ii) .W; t/ has a maximum proper D-subvariety over k, and for some (equivalently, every) k-generic
D-point � of W , the fibre V� WD f

�1.�/Zar has a maximum proper D-subvariety over k.�/.

Proof. We show how this follows easily from basic properties of isolated types, leaving it to the reader to
make the straightforward, but rather unwieldy, translation into an algebro-geometric argument if desired.

(i))(ii). Suppose a 2 .V; s/].K/ is a k-generic D-point. Since f is a dominant D-rational map,
f .a/ 2 .W;T /].K/ is also k-generic. By characterisation (iv) of the previous lemma, tp.a=k/ is isolated.
As f .a/ is in the definable closure of a over k, it follows that tp.f .a/=k/ is isolated. Hence, .W; t/ has
a maximum proper D-subvariety over k.

Now fix � 2 .W; t/].K/ a k-generic D-point, and let a be a k.�/-generic D-point of the fibre V�.
Then a is k-generic in .V; t/, and hence tp.a=k/ is isolated. It follows that the extension tp.a=k.�// is
also isolated. So V� has a maximum proper D-subvariety over k.�/.

(ii))(i). Fix � 2 .W; t/].K/ a k-generic D-point such that V� has a maximum proper D-subvariety
over k.�/. Let a be a k.�/-generic D-point of V�. So tp.a=k.�// and tp.�=k/ are both isolated, implying
that tp.a=k/ is isolated. Since a 2 .V; s/].K/ is k-generic, condition (i) follows. �

2E. Compound isotriviality. Our sufficient condition for ı-rationality to imply ı-local-closedness will
come from looking at isotrivial D-varieties.

Definition 2.8. An irreducible D-variety .V; s/ over k is said to be isotrivial if there is some ı-field
extension F � k such that .V; s/ is D-birationally equivalent over F to a D-variety of the form .W; 0/,
where W is defined over the constants F ı and 0 is the zero section. We say that a possibly reducible
D-variety is isotrivial if every irreducible component is.

This definition comes from model theory: it is a geometric translation of the statement that the Kolchin
generic type of .V; s/].K/ over k is Kı-internal. Note that there is some tension, but no inconsistency,
between isotriviality and ı-rationality; for example, .W; 0/ is far from being ı-rational, instead of there
being no new ı-constants in the rational function field we have that ı is trivial on all of k.W /. The reason
these notions are not inconsistent is that the isotrivial .V; s/ is only of the form .W; 0/ after base change —
that is, over additional parameters — and that makes all the difference.

Fact 2.9. A k-irreducible D-variety that is at once both ı-rational and isotrivial must be ı-locally closed.

Proof. Suppose .V; s/ is a k-irreducible isotrivial D-variety with k.V /ı � kalg. We want to show that V

has a maximum proper D-subvariety over k. The proof we give makes essential use of model theory. We
show how the statement translates to the well-known fact that a type internal to the constants but weakly
orthogonal to the constants is isolated.
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Let p be the Kolchin generic type of .V; s/].K/ over k. By Lemma 2.6, it suffices to show that p is
isolated. That in turn reduces to showing that every extension of p to kalg is isolated. Fix q an extension
of p to kalg. So q is the Kolchin generic type of .bV ; s/].K/ over kalg, for some irreducible componentbV of V . Isotriviality of .V; s/ implies isotriviality of .bV ; s/, and this means that q is internal to the
constants Kı; see, for example, [Kowalski and Pillay 2006, Fact 2.6]. By stability, this implies that the
binding group G D Aut.q=kalg.Kı// is type-definable over kalg; see, for instance, [Hrushovski 2002,
Appendix B]. In fact, G is definable: G lives in the constants and by !-stability of the induced structure
on the constants, every type-definable group in Kı is a definable group. So we have a definable group
acting definably on the set of realisations of q.

On the other hand, for all aˆ q we have that

kalg.a/ı � .k.a/alg/ı D .k.a/ı/alg
� kalg;

where the last containment uses our assumption on k.V /D k.a/. This shows that q is weakly orthogonal
to Kı. So the action of G on the set of realisations of q is transitive. As G is definable, the set of
realisations of q must be definable — that is, q is isolated. �

Using Lemma 2.7 we can extend Fact 2.9 to the case of D-varieties that are built up by a finite sequence
of fibrations by isotrivial D-subvarieties.

Definition 2.10. An irreducible D-variety .V; s/ over k is said to be compound isotrivial if there exists
a sequence of irreducible D-varieties .Vi ; si/ over k, for i D 0; : : : ; `, with dominant D-rational maps
over k

V D V0

f0
// V1

f1
// � � � // V`�1

f`�1
// V` D 0;

where 0 denotes an irreducible zero-dimensional D-variety, and such that the generic fibres of each fi are
isotrivial. That is, for each i D 0; : : : ; `�1, if � is a k-generic D-point in ViC1, then f �1

i .�/Zar, which is
a k.�/-irreducible D-subvariety of .Vi ; si/, is isotrivial. We say .V; s/ is compound isotrivial in ` steps.

While isotriviality is equivalent to the Kolchin generic type being internal to the constants, compound
isotriviality corresponds to that type being analysable in the constants. As this is a less familiar notion,
even among model theorists, we spell out the equivalence here.

Lemma 2.11. Suppose .V; s/ is an irreducible D-variety over k, and a 2 .V; s/].K/ is a k-generic
D-point. Then .V; s/ is compound isotrivial if and only if the type of a over k in DCF0 is analysable
in Kı.

Proof. Analysability in Kı means that there are tuples aD a0; a1; : : : ; a` such that

(i) ai is in the ı-field generated by ai�1 over k, for i D 1; : : : ; `� 1, a` 2 k, and

(ii) the type of ai over the algebraic closure of the ı-field generated by k.aiC1/ is internal to Kı.

If .V; s/ is compound isotrivial one simply takes ai Dfi�1.ai�1/ for i D 1; : : : ; `. Condition (i) is clear —
in fact with “ı-field generated by” replaced by “field generated by” — and condition (ii) follows from
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the fact that ai is a k.aiC1/
alg-generic D-point of one of the irreducible components of f �1

i .aiC1/
Zar,

all of which are isotrivial. For the converse, given a D a0; a1; : : : ; a` satisfying condition (i) and (ii),
one first replaces ai with .ai ; ı.ai/; : : : ; ı

n.ai// for some sufficiently large n, so that ai is a k-generic
D-point of an irreducible D-variety .Vi ; si/ over k. This sequence of D-varieties witnesses the compound
isotriviality, using the fact that the irreducible components of f �1

i .aiC1/
Zar are all conjugate over k.aiC1/

and hence the isotriviality of one implies the isotriviality of them all. �

Remark 2.12 (stability under base change). The definition of compound isotriviality seems to be sensitive
to parameters; the D-varieties Vi and the D-rational maps fi need also be defined over k. In fact, the
notion is stable under base change: if an irreducible D-variety .V; s/ over k is compound isotrivial when
viewed as a D-variety over some ı-field extension F � k then it was already compound isotrivial over k.
A model-theoretic restatement of this is the well-known fact that a stationary type with a nonforking
extension that is analysable in the constants is already analysable in the constants. We leave it to the
reader to formulate a geometric argument.

Note also that (compound) isotriviality is preserved by D-birational maps.

Proposition 2.13. For an irreducible compound isotrivial D-variety over k, ı-rationality implies ı-local-
closedness.

Proof. Suppose .V; s/ is an irreducible compound isotrivial D-variety over k with k.V /ı � kalg. We need
to show that V has a maximum proper D-subvariety over k. We proceed by induction on the number of
steps witnessing the compound isotriviality. The case `D 0 is vacuous. Suppose we have a compound
isotrivial .V; s/ witnessed by

V D V0

f0
// V1

f1
// � � � // V`�1

f`�1
// V` D 0

with ` � 1. Then V1 is compound isotrivial in ` � 1 steps, and as k.V1/ is a ı-subfield of k.V / by
dominance of f0, the induction hypothesis applies to give us a maximum proper D-subvariety of V1

over k.
On the other hand, the generic fibre V� WDf

�1
0
.�/Zar is an isotrivial k.�/-irreducible D-subvariety of V ,

where � is a k-generic D-point of V1. Moreover, as k.�/.V�/D k.V /, V� is ı-rational, and therefore
Fact 2.9 applies to V� and we obtain a maximum proper D-subvariety over k.�/. Now Lemma 2.7 implies
that V has a maximum proper D-subvariety over k. �

Corollary 2.14. Suppose k �Kı and .V; s/ is a D-variety over k with the property that every irreducible
D-subvariety of V over kalg is compound isotrivial. Then .V; s/ satisfies ı-DME.

Proof. By Proposition 2.3, it suffices to show that every ı-rational k-irreducible D-subvariety .W; s/

is ı-locally closed. Note that if k D kalg then .W; s/ is absolutely irreducible, and compound isotrivial
by assumption, so that ı-local-closedness follows by Proposition 2.13. In general, let .W0; s/ be an
absolutely irreducible component of .W; s/. It is over kalg. The ı-rationality of .W; s/ over k implies
the ı-rationality of .W0; s/ over kalg — see, for example, the last paragraph of the proof of Fact 2.9. By
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assumption, .W0; s/ is compound isotrivial, and so by Proposition 2.13 it is ı-locally closed over kalg.
We have shown that every irreducible component of .W; s/ is ı-locally closed over kalg, and it is not hard
to see, by taking the union of the maximum proper D-subvarieties of these components, for example, that
this implies that .W; s/ is ı-locally closed, as desired. �

2F. D-groups over the constants. A D-group is a D-variety .G; s/ over k whose underlying variety G

is an algebraic group, and such that the section s WG! �G is a morphism of algebraic groups. (Note that
there is a unique algebraic group structure on �.G/ which makes the embedding r W G.K/! �G.K/

a homomorphism.) The notions of D-subgroup and homomorphism of D-groups are the natural ones,
with the caveat that, unless stated otherwise, parameters may come from a larger ı-field. The quotient
of a D-group by a normal D-subgroup admits a natural D-group structure. The terms connected and
connected component of identity when applied to D-groups refer just to the underlying algebraic group,
though note that the connected component of identity of a D-group over k is a D-subgroup.

In the context of D-groups, isotriviality is better behaved. A connected D-group .G; s/ is isotrivial if
and only if it is isomorphic as a D-group to one of the form .H; 0/, where H is an algebraic group over
the constants and 0 is the zero section. So one remains in the category of D-groups, and D-birational
equivalence is replaced by D-isomorphism. See the discussion around Fact 2.6 of [Kowalski and Pillay
2006] for a proof of this. In particular, every D-subvariety of an isotrivial D-group is itself isotrivial.
Quotients of isotrivial D-groups are also isotrivial. Moreover, by [Pillay 2006, Corollary 3.10], if a
D-group .G; s/ has a finite normal D-subgroup H such that G=H is isotrivial, then .G; s/ must have
been isotrivial to start with. We also note that, as (compound) isotriviality is preserved under D-birational
maps, when working inside a D-group (compound) isotriviality is preserved under translation by D-points
of G (as these translations are in fact D-automorphisms of G).

The following fact is mostly a matter of putting together various results in the literature on D-groups.
As we will see, it will imply that every D-subvariety of a D-group over the constants is compound
isotrivial in at most 3 steps. At this point it is worth noting that the set of D-points of a D-group is a
subgroup definable in DCF0 of finite Morley rank. Moreover, the ] functor is an equivalence between the
categories of D-groups over k and finite Morley rank groups in DCF0 definable over k; see [Kowalski
and Pillay 2006, Fact 2.6].

Fact 2.15. Suppose .G; s/ is a connected D-group over the constants.

(a) The centre Z.G/ is a normal D-subgroup of G over the constants, and the quotient G=Z.G/ is an
isotrivial D-group.

(b) Let H be the algebraic subgroup of points in Z.G/, where s agrees with the zero section. Then
Z.G/=H is an isotrivial D-group.

Proof. For a proof that Z.G/ is a D-subgroup, see [Kowalski and Pillay 2006, Fact 2.7(iii)]. That
G=Z.G/ is isotrivial was originally proved by Buium [1992] in the centreless case, and then generalised
by Kowalski and Pillay [2006, Theorem 2.10].
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For part (b), note first of all that H is a D-subgroup of Z.G/ by definition; the zero section does
map to the tangent bundle of H . Now, it suffices to show that Zı=H ı is isotrivial, where Zı is the
connected component of identity of Z.G/ and H ı WDZı\H . Let Z WD .Zı; s/].K/, the subgroup of
D-points of Z. Then .H ı; s/].K/D Z.Kı/, the ı-constant points of Z. These are now commutative
ı-algebraic groups. As the ] functor is an equivalence of categories, isotriviality of Zı=H ı follows once
we show that Z=Z.Kı/ is definably isomorphic (over some parameters) to .Kı/n for some n. Because
Zı is a connected commutative algebraic group over the constants, there exists a ı-algebraic group
homomorphism `d WZı!L.Zı/ over k0, where L.Zı/ is the Lie algebra of Zı, the tangent space at
the identity. This homomorphism is called the logarithmic derivative and is defined as

`d.X /Dr.X / � .s.X //�1;

with the operations in TZı. One can check that `d is surjective with kernel Zı.Kı/ (a proof appears in
[Marker 2000, ~3]; see also [Kolchin 1973, ~V.22]). So Z=Z.Kı/ is definably isomorphic to a ı-algebraic
subgroup F of L.Zı/. Since L.Zı/ is a vector group, F is a finite-dimensional Kı-vector subspace (see,
for example, [Pillay 1996, Fact 1.3]), and hence definably isomorphic over a basis to some .Kı/n. �

Suppose .G; s/ is a D-group over a ı-field k and .H; s/ is a D-subgroup over k. Even when H is
not normal, it makes sense to consider the quotient space G=H as an algebraic variety, and s induces
on G=H the natural structure of a D-variety .G=H; Ns/ over k, in such a way that the quotient map
� W G! G=H is a D-morphism. See [Kowalski and Pillay 2006, Fact 2.7(ii)] for details. Now if ˛ is
a D-point of .G=H; Ns/, then the fibre ��1.˛/ is a D-subvariety over k.˛/; and for ˇ a D-point of this
fibre we have ��1.˛/D ˇCH . So each fibre .��1.˛/; s/ is isomorphic to .H; s/ over k.ˇ/. One could
develop in this context the notion of “D-homogeneous spaces”.

Using Fact 2.15 we obtain the following highly restrictive property on the structure of D-subvarieties
of D-groups over the constants.

Proposition 2.16. Suppose .G; s/ is a connected D-group over k0 �Kı . If k is any ı-field extension of
k0 and W is any irreducible D-subvariety of G over k, then W is compound isotrivial in at most 3 steps.

In particular, if W is ı-rational then it is ı-locally closed.

Proof. Consider the normal sequence of D-subgroups

G BZ.G/BH B 0;

where Z.G/ is the centre of G and H is the algebraic subgroup of points in Z.G/ where s agrees with the
zero section. Consider the corresponding sequence of irreducible D-varieties and D-morphisms over k0:

G
�0
// G=H

�1
// G=Z.G/

�2
// 0 :

Since G=Z.G/, Z.G/=H , and H are isotrivial — the first two by Fact 2.15 and the last as s�H is the
zero section — this exhibits G as compound isotrivial in three steps. We can then obtain the same result
for any irreducible D-subvariety of G by using the fact that any element of .G; s/].K/ is a product of
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two generic elements. Alternatively, we can argue as follows, keeping in mind that every D-subvariety of
an isotrivial D-group is itself isotrivial.

If W �G is an irreducible D-variety over k, then we get a sequence of dominant D-morphisms

W
f0
// W1

f1
// W2

f2
// 0;

where W1 �G=H is the Zariski closure of �0.W /, W2 �G=Z.G/ is the Zariski closure of �1.W1/, and
the fi are the appropriate restrictions of the �i . Then W2 is isotrivial, as it is a D-subvariety of G=Z.G/.
If ˛ is a D-point of W2 then f �1

1
.˛/ is a D-subvariety of ��1

1
.˛/ which is isomorphic as a D-variety

to Z.G/=H . So the fibres of f1 over D-points are all isotrivial D-subvarieties of W1. If ˇ is a D-point
of W1 then f �1

0
.ˇ/ is a D-subvariety of ��1

0
.ˇ/ which is isomorphic as a D-variety to H . So the fibres

of f0 over D-points are all isotrivial. Hence, W is compound isotrivial in 3 steps.
The “in particular” clause is by Proposition 2.13. �

We have now proved Theorem A of the introduction:

Corollary 2.17. If k �Kı then every D-group over k satisfies ı-DME.

Proof. Suppose .G; s/ is a D-group over k and W is an irreducible D-subvariety of G over kalg. Then,
over kalg, it is isomorphic to an irreducible D-subvariety of the connected component of identity, G0.
Applying Proposition 2.16 to G0, we have that W is compound isotrivial. So every irreducible D-
subvariety of G over kalg is compound isotrivial. The ı-DME now follows from Corollary 2.14. �

2G. Differential Hopf algebras. In this section we give equivalent algebraic formulations of the ı-DME
and our results so far. This will help us make the connection to the classical DME, which is about
noncommutative associative algebras and as such does not have a direct geometric formulation.

We restrict our attention to the case when ı is trivial on the base field k.
As explained in Section 2A, the standard geometry-algebra duality, which assigns to a variety its coordi-

nate ring, induces an equivalence between the category of k-irreducible affine D-varieties .V; s/ and that
of differential rings .R; ı/, where R is an affine k-algebra and ı is a k-linear derivation. This equivalence
associates to a k-irreducible D-subvariety of V a prime ı-ideal of R. Using this dictionary, we can easily
translate the geometric Definition 2.1, in the case when k �Kı , into the following algebraic counterpart.

Definition 2.18 (ı-DME for affine differential algebras). Suppose R is an affine k-algebra equipped with
a k-linear derivation ı. We say that .R; ı/ satisfies the ı-DME if for every prime ı-ideal P of R, the
following conditions are equivalent:

(i) P is ı-primitive: There exists a maximal ideal m of R such that P is maximal among the prime
ı-ideals contained in m.

(ii) P is ı-locally-closed: The intersection of all the prime ı-ideals of R that properly contain P is a
proper extension of P .

(iii) P is ı-rational: Frac.R=P /ı is contained in kalg.
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The algebraic counterpart of an affine algebraic group G over k is the commutative Hopf k-algebra
R D kŒG�, where the group law G �G ! G induces a coproduct � W R! R˝k R. So what is the
algebraic counterpart of a D-group .G; s/ over k? The following lemma says that it is a differential Hopf
k-algebra, a commutative Hopf k-algebra R equipped with a k-linear derivation ı that commutes with
the coproduct, where ı acts on R˝k R by ı.r1˝ r2/D ır1˝ r2C r1˝ ır2.

Lemma 2.19. Suppose k �Kı and let .G; s/ be a D-variety defined over k such that G is a connected
affine algebraic group. Let ı on RD kŒG� be the corresponding k-linear derivation. Then s WG! TG is
a group homomorphism if and only if ı commutes with the coproduct.

Proof. Unravelling the facts that s induces the derivation ı on kŒG� and that the group operation
m WG �G!G induces the coproduct � on kŒG�, we have that for all f 2 kŒG�,

�.ıf /D ı�.f /() df .s.m.y; z///D d.f ım/.s.y/; s.z//; (2-1)

where .y; z/ are coordinates for G �G. But

d.f ım/.s.y/; s.z//D df ı dm.s.y/; s.z//D df .s.y/� s.z//;

where � denotes the group operation dm W TG � TG ! TG. And so the right-hand side of (2-1) is
equivalent to

df .s.m.y; z///D df .s.y/� s.z//:

But this, asserted for all f 2 kŒG�, is equivalent to s.m.y; z// D s.y/ � s.z/, i.e., that s is a group
homomorphism. �

In other words, the study of connected affine D-groups over the constants is the same thing as the
study of affine differential Hopf k-algebras. So our Theorem A becomes the following.

Theorem 2.20. Every commutative affine differential Hopf algebra over a field of characteristic zero
satisfies ı-DME.

Proof. By Lemma 2.19 our differential Hopf algebra is of the form kŒG� for some connected affine
D-group .G; s/ with k � Kı. By Corollary 2.17, .G; s/ satisfies the ı-DME. So .kŒG�; ı/ satisfies
ı-DME. �

3. Twisting by a group-like element

As it turns out, the application to the classical Dixmier–Moeglin problem that we have in mind, and
that will be treated in Section 4, requires a generalisation of Theorem 2.20. Instead of working with
differential Hopf algebras, we need to consider Hopf algebras equipped with derivations that do not quite
commute with the coproduct. Suppose R is a commutative affine Hopf k-algebra. We use Sweedler
notation2 and write �.r/D

P
r1˝ r2 for any r 2R. Now, for a k-linear derivation ı to commute with

2Recall that in Sweedler notation
P

r1˝ r2 is used to denote an expression of the form
Pd

jD1 rj ;1˝ rj ;2. We use Sweedler
notation throughout, hopefully without confusion.
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� on R means that for all r 2R,

�.ır/D
X

ır1˝ r2C r1˝ ır2:

We wish to weaken this condition by asking instead simply that there exists some a 2 R satisfying
�.a/D a˝ a — that is, a is a group-like element of R — such that for all r 2R,

�.ır/D
X

ır1˝ r2C ar1˝ ır2: (3-1)

That is, we ask ı to be what Panov [2003] calls an a-coderivation. We wish to prove the following.

Theorem 3.1. Suppose k is a field of characteristic zero, R is a commutative affine Hopf k-algebra, and
ı is a k-linear derivation on R that is an a-coderivation for some group-like a 2R. Then .R; ı/ satisfies
the ı-DME.

When a D 1 this is just the case of affine differential Hopf k-algebras, and hence is dealt with by
Theorem 2.20. The general case requires some work. Throughout this section k is a fixed field of
characteristic zero.

Let us begin with a geometric explanation of what this twisting by a group-like element means. First
of all, we have R D kŒG� for some connected affine algebraic group G over k, with the coproduct �
on R induced by the group operation on G, and the derivation ı on R induced by a D-variety structure
s W G ! TG. Note that ı being a k-derivation implies that k � Kı and so �G D TG. Now, as G is
an affine algebraic group, we may assume it is an algebraic subgroup of GLn, so that TG �G �Matn.
Writing sD .id; Ns/, where Ns WG!Matn, we want to express as a property of Ns what it means for ı to be an
a-coderivation. That a 2R is group-like means that a WG!Gm is a homomorphism of algebraic groups.

Lemma 3.2. Suppose G � GLn is a connected affine algebraic group over k, a W G ! Gm is a ho-
momorphism, and s D .id; Ns/ W G ! TG � G �Matn is a D-variety structure on G over k. Then the
corresponding k-linear derivation ı on kŒG� is an a-coderivation if and only if

Ns.gh/D Ns.g/hC a.g/g Ns.h/ (3-2)

for all g; h 2G, where all addition and multiplication is in the sense of matrices.

Proof. Note that for r 2 kŒG�, �.ır/ 2 kŒG �G� is given by

�.ır/.g; h/D dghr.Ns.gh//

for all g; h 2 G, where dr W TG ! A2 is the differential of r W G ! A1. On the other hand, writing
�.r/D

P
r1˝ r2 we haveX

.ır1˝ r2C ar1˝ ır2/.g; h/D
X

dgr1.Ns.g// r2.h/C a.g/r1.g/ dhr2.Ns.h//

D d.g;h/

�X
r1˝ r2

�
.Ns.g/; a.g/Ns.h//

D d.g;h/.�r/.Ns.g/; a.g/Ns.h//;
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where the second equality uses the fact that a.g/ is a scalar. Now, as an element of kŒG�G�,�.r/D r ım,
where m WG �G!G is the restriction of matrix multiplication on GLn. Note that when we differentiate
matrix multiplication we get d.g;h/m.A;B/DAhCgB, for all g; h 2 GLn and A;B 2Matn. Hence,X

.ır1˝ r2C ar1˝ ır2/.g; h/D d.g;h/.�r/.Ns.g/; a.g/Ns.h//

D dghr ı d.g;h/m.Ns.g/; a.g/Ns.h//

D dghr.Ns.g/hCga.g/Ns.h//

D dghr.Ns.g/hC a.g/g Ns.h//:

Hence, ı being an a-coderivation, as in (3-1), is equivalent to

dghr.Ns.gh//D dghr.Ns.g/hC a.g/g Ns.h//

for all r 2 kŒG�. But this implies

Ns.gh/D Ns.g/hC a.g/g Ns.h/;

as desired. �

Definition 3.3. When G is an affine algebraic group and .G; s/ is a D-variety structure such that (3-2)
holds, we say that .G; s/ is an a-twisted D-group.

The following family of examples of 2-dimensional twisted D-groups will play an important role in
the proof.

Example 3.4. Let c 2 k be a parameter. Let RD k
�
x; 1

x
;y
�

with ı the k-linear derivation induced by
ı.x/D xy and ı.y/D 1

2
y2C c.1� x2/. Note that R is the coordinate ring of the algebraic subgroup

E � GL2 made up of matrices of the form �
x y

0 1

�
;

and hence is a commutative affine Hopf k-algebra. We denote by .E; tc/ the D-variety structure on E

induced by ı. Writing tc D .id; Ntc/, we have

Ntc

�
a b

0 1

�
D

�
ab 1

2
b2C c.1� a2/

0 0

�
:

Now a straightforward computation shows that

Ntc

��
a b

0 1

��
a0 b0

0 1

��
D

�
a2a0b0C aa0b 1

2
a2.b0/2C abb0C 1

2
b2C c.1� .aa0/2/

0 0

�
D Ntc

�
a b

0 1

��
a0 b0

0 1

�
C a

�
a b

0 1

�
Ntc

�
a0 b0

0 1

�
:

That is, .E; tc/ is an x-twisted D-group. (Note that x 2R is group-like.) Note that since .E; tc/ is not a
D-group, we cannot use Theorem 2.20 to deduce the ı-DME. However, since the Krull dimension is two,
.E; tc/ does satisfy the ı-DME (see Proposition 2.5).
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Our strategy for proving Theorem 3.1 is to show that every a-twisted D-group over the constants admits
the example described above as an image, with each fibre having the property that every D-subvariety
is compound isotrivial. From the ı-DME for .E; tc/, together with our earlier work around compound
isotriviality and maximum proper D-subvarieties, we will then be able to conclude that every a-twisted
D-group satisfies the ı-DME.

To relate an arbitrary a-twisted D-group to one of those considered in Example 3.4, we will require the
following proposition, whose proof is rather technical, and for which it would be nice to give a conceptual
explanation.

Proposition 3.5. Suppose R is a commutative affine Hopf k-algebra, and ı is a k-linear derivation on R

that is an a-coderivation for some group-like a 2R. Then for some c 2 k we have

aı2aD
3

2
.ıa/2C c.a2

� a4/:

We delay the proof of this proposition until we have established the preliminary Lemmas 3.6 and 3.7
below, for which we fix a commutative affine Hopf k-algebra R, equipped with a k-linear derivation ı,
such that ı is also an a-coderivation for some group-like a 2R. As a is group-like it is invertible in R.
We fix the following sequence of elements in R:

u0 WD a; u1 WD
ıa

a
; u2 WD ıu1�

1

2
u2

1; um WD ı.um�1/ for m� 3.

Note that the desired identity aı2aD 3
2
.ıa/2C c.a2 � a4/ is equivalent to u2 D c.1� a2/; this is our

eventual aim.

Lemma 3.6. For all m� 1, we have

�.um/D um˝ 1C am
˝umC

m�1X
jD2

cj ;maj um�j ˝uj C

X
fi ˝gi ;

where the cj ;m are positive (nonzero) integers, the fi 2 .u1; : : : ;um�1/
2kŒu0; : : : ;um�1�, and the

gi 2 kŒu0; : : : ;um�1�.

Proof. We can compute the coproducts of the elements u0;u1; : : : using the fact that aD u0 is group-like
and ı is an a-coderivation:

�.u0/D a˝ a;

�.u1/D
�

1

a
˝

1

a

�
.ıa˝ aC a2

˝ ıa/D u1˝ 1C a˝u1;

�.u2/D ıu1˝ 1C ıa˝u1C a2
˝ ıu1�

1

2
u2

1˝ 1� au1˝u1� a2
˝

1

2
u2

1 D u2˝ 1C a2
˝u2:

Then for mD 1; 2, the conclusion of the statement of the lemma follows from the above computations
with fi D gi D 0 and the middle sum being empty. Now one computes �.umC1/D�.ıum/ for m� 2,
using the inductively given expression for �.um/ and the fact that ı is an a-coderivation. The rest is a
straightforward brute force computation that we leave to the reader. �
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Lemma 3.7. There exist n� 1, a polynomial P 2 kŒu0; : : : ;un�1�, and some r � 0 such that

un D
P .u0; : : : ;un�1/

ur
0

:

Proof. Since R is finitely generated as a k-algebra, this sequence .um/ cannot be algebraically independent
over k. Choose n minimal such that .u0; : : : ;un/ is algebraically dependent over k. Note that if nD 0

then aD u0 is a constant and so u1 D u2 D 0 by definition. So we assume that n> 0.
So there is some d � 1 such that

ud
n C

X
i<d

Ai.u0; : : : ;un�1/u
i
n D 0; (3-3)

with A0; : : : ;Ad�1 rational functions over k. We may assume that d is minimal. Our first step is to show
that d D 1.

Since R D kŒG� for some connected affine algebraic group G over k, we have that R˝ R is a
domain. Indeed, R ˝ R D kŒG � G� and G � G is a connected affine algebraic group. We can
thus work inside the fraction field of R ˝ R. Let F be the subfield which is the fraction field of
kŒu0; : : : ;un�1�˝k kŒu0; : : : ;un�1�. Note that by the minimality of d , f1;un; : : : ;u

d�1
n g is linearly

independent over k.u0; : : : ;un�1/, from which it follows that fui
n ˝ u

j
n W 0 � i; j < dg is linearly

independent over F . Applying � to both sides of (3-3), Lemma 3.6 gives us that

.un˝ 1C an
˝un/

d
2

X
i<d

F � .un˝ 1C an
˝un/

i
�

X
iCj<d

F � .ui
n˝uj

n/:

On the other hand, ud
n ˝ 1 and and ˝ud

n are also in
P

iCj<d F � .ui
n˝u

j
n/ by (3-3). It follows that

d�1X
iD1

�
d

i

�
an.d�i/ui

n˝ud�i
n 2

X
iCj<d

F � .ui
n˝uj

n/:

If d > 1 then ud�1
n ˝un appears with a nonzero coefficient on the left-hand side but with zero coefficient

on the right-hand side. This contradicts the F -linear independence of .ui
n˝u

j
n W 0� i; j < d/.

So d D 1, and we have that
un D

P .u0; : : : ;un�1/

Q.u0; : : : ;un�1/
; (3-4)

for some relatively prime polynomials P and Q over k. We aim to show that Q is a monomial in u0.
First we argue that Q˝Q divides �.Q/ in S WD kŒu0; : : : ;un�1�˝k kŒu0; : : : ;un�1�, which we note

is the polynomial ring over k in the variables ui ˝ 1; 1˝uj , and hence is a UFD. Indeed,

�.P /D�.Q/�.un/ by applying � to both sides of (3-4)

D�.Q/.un˝ 1C an
˝unCy/ by Lemma 3.6, for some y 2 S

D�.Q/..P=Q/˝ 1C an
˝ .P=Q/Cy/:
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We can then multiply both sides by 1˝Q to see that �.Q/..P=Q/˝Q/ 2 S . Hence, multiplying
by Q˝1, we see that Q˝1 divides�.Q/.P˝Q/D�.Q/.P˝1/.1˝Q/. Since P and Q are relatively
prime, Q˝ 1 divides �.Q/. A similar argument shows that 1˝Q divides �.Q/. Since we are working
in a UFD and 1˝Q and Q˝ 1 are relatively prime, we see that Q˝Q divides �.Q/, as desired.

Let i � n� 1 be the largest index for which ui appears in Q. Then we can write

QD

MX
jD0

u
j
i Qj .u0;u1; : : : ;ui�1/

with M > 0 and QM nonzero. So

Q˝QD .uM
i ˝uM

i /.QM ˝QM /C
X

j ;k<M

.u
j
i ˝uk

i /.Qj ˝Qk/

while, if i � 1, then

�.Q/D

MX
jD0

�.ui/
j Qj .�.u0/; : : : ; �.ui�1//D

X
`Cm�M

f`;m.u
`
i ˝um

i /;

where f`;m 2 kŒu0; : : : ;ui�1�˝k kŒu0; : : : ;ui�1�, by Lemma 3.6. (Note that Lemma 3.6 fails for u0,
so we are using that i � 1 in the above calculation.) But this contradicts Q˝Q dividing �.Q/, since
uM

i ˝uM
i appears in the former while in the latter no u`i ˝um

i appears with `;m�M . So it must be
that i D 0 and we have shown that Q is a polynomial in u0.

Multiplying by a nonzero scalar if necessary, we may assume that Q is in fact a polynomial in u0 with
leading coefficient 1. Let M denote the degree of Q. Then Q.u0/˝Q.u0/ divides �.Q/DQ.u0˝u0/

in S , recalling that u0 D a is group-like. Since both Q.u0/˝Q.u0/ and Q.u0˝u0/ are polynomials of
total degree 2M in the variables u0˝ 1 and 1˝u0 and since they both have leading coefficient 1, we
see that they must be the same. In particular, Q.u0/˝Q.u0/ is a polynomial in u0˝u0 with leading
coefficient 1, which implies that Q.u0/ is of the form ur

0
. �

Proof of Proposition 3.5. Let .R; ı/, a, and the ui be as above. We need to show that u2 D c.1� a2/

for some c 2 k. By Lemma 3.7 we have that there is some n � 1, some r � 0 and some polynomial
P 2 kŒu0; : : : ;un�1� such that

un D
P .u0; : : : ;un�1/

ur
0

; (3-5)

for some polynomial P over k. Our first step is to show that n� 2.
Let S WD kŒu0; : : : ;un�1�˝k kŒu0; : : : ;un�1�. Let

I WD .u1; : : : ;un�1/
2kŒu0; : : : ;un�1�

and consider the ideal of S given by

J WD I ˝ kŒu0; : : : ;un�1�C kŒu0; : : : ;un�1�˝ I:
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So these are the elements of S in which each monomial has degree at least 2 in either the variables
u1˝ 1; : : : ;un�1˝ 1, or in the variables 1˝u1; : : : ; 1˝un�1. Using Lemma 3.6 we can compute that
for 1� i; j ; `� n� 1,

�.uiuj u`/ 2 J: (3-6)

Moreover, for 1� i; j � n� 1, Lemma 3.6 gives

�.uiuj /D u
j
0
ui ˝uj Cui

0uj ˝ui mod J: (3-7)

Now, write the polynomial P of (3-5) as

P D P0.u0/C

n�1X
iD1

Pi.u0/ui C

X
1�i�j�n�1

Pi;j .u0/uiuj CH;

where H is of degree at least three in u1; : : : ;un�1. Applying � to both sides of (3-5) we get
.u0˝u0/

r�.un/D�.P /. We therefore have

.u0˝u0/
r�.un/DP0.u0˝u0/C

n�1X
iD1

Pi.u0˝u0/�.ui/C
X
i�j

Pi;j .u0˝u0/�.uiuj /C�.H /: (3-8)

We claim that this forces Pi D 0 for all i D 1; : : : ; n�1. To prove this, note that by Lemma 3.6 and (3-5),
both sides of (3-8) are elements of the polynomial ring

k.u0˝ 1; 1˝u0/Œu1˝ 1; : : : ;un�1˝ 1; 1˝u1; : : : ; 1˝un�1�:

We first compute, for both sides of (3-8), the coefficient of ui ˝ 1. On the right-hand side, using
equations (3-6) and (3-7), the only term that contributes is Pi.u0 ˝ u0/�.ui/. By Lemma 3.6, that
contribution is Pi.u0 ˝ u0/. On the left-hand side, using Lemma 3.6 and (3-5), the coefficient of
ui ˝ 1 is .u0˝ u0/

r ..Pi.u0/=u
�r
0
/˝ 1/. So Pi.u0/˝ ur

0
D Pi.u0˝ u0/. This forces Pi D dur

0
for

some d 2 k. On the other hand, comparing the coefficient of 1˝ui on both sides of (3-8) we have that
urCn

0
˝Pi.u0/DPi.u0˝u0/.u

i
0
˝1/. Plugging in Pi D dur

0
we get that d.urCn

0
˝ur

0
/D d.urCi

0
˝ur

0
/.

As i < n, this forces d D 0 and hence Pi D 0.
Equation (3-8) therefore becomes

.u0˝u0/
r�.un/D P0.u0˝u0/ C

X
1�i�j�n�1

Pi;j .u0˝u0/.u
j
0
ui ˝uj Cui

0uj ˝ui/ mod J:

Assume towards a contradiction that n� 3. Then by Lemma 3.6 we must have u1˝un�1 appearing in
�.un/ on the left with a nonzero coefficient. So P1;n�1 ¤ 0. But then P1;n�1.u0˝u0/.u0un�1˝u1/

appears on the right, while it does not appear on the left since un�1˝u1 does not appear in �.un/ by
Lemma 3.6.

This contradiction proves that n� 2. Suppose nD 1. Then (3-5) says u1 D P .u0/=u
r
0
. Applying � to

both sides yields
P .u0/˝ur

0CurC1
0
˝P .u0/D P .u0˝u0/;

which is only possible if P0 D 0. Hence u1 D u2 D 0, as desired.
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So we are left to consider the case when nD 2. Equation (3-5) becomes

u2 D
1

ur
0

MX
jD0

Pj .u0/u
j
1

with M � 1, the Pj are polynomials over k, and PM is nonzero. Multiplying by ar (recall that u0 D a)
and applying � gives

.ar
˝ ar /.u2˝ 1C a2

˝u2/D

MX
jD0

Pj .a˝ a/.u1˝ 1C a˝u1/
j ;

which we can write as� MX
jD0

Pj .a/u
j
1
˝ ar

C

MX
jD0

arC2
˝Pj .a/u

j
1

�
D

MX
jD0

Pj .a˝ a/.u1˝ 1C a˝u1/
j :

Notice that if M > 1 then the right-hand side involves terms with ui
1
˝ u

j
1

with i; j � 1, while the
left-hand side does not, and so we cannot have equality. Thus M D 1. Writing out the above equation
with this in mind we get that

P0.a/˝ar
CP1.a/u1˝ar

CarC2
˝P0.a/CarC2

˝P1.a/u1DP0.a˝a/CP1.a˝a/.u1˝1Ca˝u1/:

We look at this as an equation in kŒa˝ 1; 1˝ a� Œu1˝ 1; 1˝u1�. Then taking the coefficient of u1˝ 1

gives that
P1.a/˝ ar

D P1.a˝ a/;

which can only occur if P1 D dar for some d 2 k. Then computing the coefficient of 1˝ u1 gives
arC2˝dar D d.arC1˝ar /, and so d D 0. Hence P1D 0. Now taking the constant coefficient (regarding
constants as being in kŒa˝ 1; 1˝ a�) gives that

P0.a/˝ ar
C arC2

˝P0.a/D P0.a˝ a/:

Now write P0.t/D
PL

jD0 pj tj . Then we have

LX
jD0

pj .a
j
˝ ar

C arC2
˝ aj

� aj
˝ aj /D 0:

Notice that if j 62 fr; r C 2g then we have that the coefficient of aj ˝ aj on the left-hand side is equal to
pj whereas the right-hand side is zero and so pj D 0. It follows that P0.t/D pr tr CprC2trC2. Then

0D

LX
jD0

pj .a
j
˝ ar

C arC2
˝ aj

� aj
˝ aj /D pr arC2

˝ ar
CprC2arC2

˝ ar :

This forces pr D prC2 and so we see that P0.t/ D c.tr � trC2/ for some constant c 2 k. Thus,
u2 D

1
ur

0

.P0.u0/CP1.u0/u1/D c.1�u2
0
/D c.1� a2/, as desired. �
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The following is a geometric interpretation of the proposition.

Proposition 3.8. Suppose k � Kı and .G; s/ is an affine connected a-twisted D-group over k, where
a 2 kŒG� is group-like. Then

g 7!

�
a.g/ ıa.g/

a.g/

0 1

�
defines a homomorphism � W G! E, where E � GL2 is the algebraic subgroup made up of matrices
of the form

�
x
0

y
1

�
. Moreover, there exists some c 2 k such that if .E; tc/ is the a-twisted D-group from

Example 3.4, then � W .G; s/! .E; tc/ is a D-morphism.

Proof. Recall that as a 2 kŒG� is group-like, a W G ! Gm is a homomorphism of algebraic groups. It
follows immediately that � is well-defined and does indeed map G to E. We check that it is a group
homomorphism. Given g; h 2 G, note first of all that as �.a/D a˝ a and ı is an a-coderivation, we
have �.ıa/D ıa˝ aC a2˝ ıa and so

ıa.gh/D�.ıa/.g; h/D ıa.g/a.h/C a.g/2ıa.h/: (3-9)

We can therefore compute

�.g/�.h/D

�
a.g/ ıa.g/

a.g/

0 1

��
a.h/ ıa.h/

a.h/

0 1

�
D

�
a.gh/ a.g/ ıa.h/

a.h/
C
ıa.g/
a.g/

0 1

�

D

�
a.gh/ a.g/2ıa.h/Cıa.g/a.h/

a.gh/

0 1

�
D

�
a.gh/ ıa.gh/

a.gh/

0 1

�
D �.gh/;

where we have used a.gh/D a.g/a.h/ repeatedly and (3-9) in the penultimate equality. We note that
we have not up until this point used the parameter c 2 k; the reason for this is that the groups Ec are
isomorphic as algebraic groups.

It remains to show that � is a D-morphism from .G; s/ to some .E; tc/. Let c be as given by
Proposition 3.5. It suffices to show that � takes D-points to D-points. That is, if g 2 .G; s/].K/ then�

a.g/ ıa.g/
a.g/

0 1

�
should be a D-point of .E; tc/. Writing tc D .id; Ntc/ we have that

Ntc

�
a.g/ ıa.g/

a.g/

0 1

�
D

�
ıa.g/ ıa.g/2

2a.g/2
C c.1� a.g/2/

0 0

�

D

�
ıa.g/ a.g/ı2a.g/�ıa.g/2�c.a.g/2�a.g/4/

a.g/2
C c.1� a.g/2/

0 0

�

D ı

�
a.g/ ıa.g/

a.g/

0 1

�
;
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where the first step comes from Example 3.4, the second step follows from Proposition 3.5 telling us that
aı2aD 3

2
.ıa/2C c.a2� a4/, and in the final equality we are using the fact that as g is a D-point of G,

ı.r.g//D .ır/.g/ for all r 2 kŒG�. This shows that �.g/ 2 .E; tc/].K/, as desired. �

We can now complete the proof of the theorem.

Proof of Theorem 3.1. We have already established that .R; ı/ is the coordinate ring of an affine connected
a-twisted D-group .G; s/, where a 2 kŒG� is group-like. Here recall that k �Kı . By Proposition 2.3, it
suffices to show that every irreducible ı-rational D-subvariety of G over k is ı-locally-closed.

Let � W .G; s/! .E; tc/ be the D-morphism from Proposition 3.8. We first show that every fibre of this
map has the property that all its D-subvarieties, over arbitrary ı-field extensions, are compound isotrivial.

Let us start with the fibre above the identity, that is, H D ker.�/. Since � is a D-morphism, .H; s/
is a D-subvariety of .G; s/. Here, by abuse of notation, we write .H; s/ instead of .H; s�H /. Since
� is an algebraic group homomorphism H is an algebraic subgroup of G. It follows that .H; s/ is an
a�H -twisted D-group also. On the other hand, a�H D 1 by the definition of � . So .H; s/ is an actual
D-group. By Proposition 2.16, every irreducible D-subvariety of H , over any ı-field extension of k, is
compound isotrivial.

What about other fibres of � over D-points of .E; tc/? Any such fibre is a D-subvariety of .G; s/ of
the form Hg, for some g 2 .G; s/].K/. Since .G; s/ is not necessarily a D-group, the multiplication-by-
g-on-the-right map, �g WG!G, is not necessarily a D-automorphism. Nevertheless, when we restrict
this map to H we do get a D-isomorphism between H and Hg. To see this we need only check that �g

takes D-points of H to D-points of Hg. Letting h 2 .H; s/].K/ we compute

Ns.hg/D Ns.h/gC a.h/hNs.g/ by (3-2)

D Ns.h/gC hNs.g/ as a�H D 1

D ı.h/gC hı.g/ as h and g are D-points

D ı.hg/ as r WG! TG is a group homomorphism

as desired. So H and Hg are D-isomorphic over k.g/. It follows that every fibre of � above a D-point
has the property that all its D-subvarieties, over arbitrary ı-field extensions, are compound isotrivial.

Now suppose that V �G is an irreducible ı-rational D-subvariety over k. We need to prove that it has
a maximum proper D-subvariety over k. Let W �E be the D-subvariety obtained by taking the Zariski
closure of the image of V under � , and consider the dominant D-morphism ��V W .V; s/! .W; tc/.
Since k.W / � k.V /, W is also ı-rational. Since .E; tc/ is of dimension two, it satisfies the ı-DME
by Proposition 2.5. Hence W has a maximum proper D-subvariety over k. Next, let � be a k-generic
D-point of W and consider the fibre V�. Note that V� is ı-rational since k.�/.V�/D k.V /. But V� is
a D-subvariety of the fibre of � W .G; s/! .E; tc/ above the D-point �, and hence, as we have argued
above, is compound isotrivial. So, by Proposition 2.13, V� has a maximum proper D-subvariety over k.�/.
We have shown that both the image and the generic fibre have maximum proper D-subvarieties, and so
by Lemma 2.6, .V; s/ has a maximum proper D-subvariety over k, as desired. �
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Remark 3.9. In the end of the above proof we could also have used the fact that .E; tc/, while not in
general isotrivial, is compound isotrivial in two steps. This was observed by Ruizhang Jin, in whose Ph.D.
thesis this example will be worked out. In any case, using the compound isotriviality of .E; tc/ the above
arguments actually give that every D-subvariety of .G; s/ is compound isotrivial (in at most five steps)
from which it follows by Corollary 2.14 that .G; s/ satisfies the ı-DME.

4. The DME for Ore extensions of commutative Hopf algebras

We now apply the results of the previous sections to the classical study of certain (noncommutative) Hopf
algebras. Recall that if A is a noetherian associative algebra over a field k of characteristic zero, then
we say that the Dixmier–Moeglin equivalence (DME) holds for A if for every (two-sided) prime ideal P

of A, the following are equivalent:

(i) P is primitive: it is the annihilator of a simple left A-module.

(ii) P is locally closed: the intersection of all the prime ideals of A that properly contain P is a proper
extension of P .

(iii) P is rational: the centre of the Goldie quotient ring3 Frac.A=P / is an algebraic field extension of k.

Of course, for commutative algebras the DME always holds as the notions of primitive, locally closed,
and rational all coincide with maximal.

It is known that in any algebra that satisfies the Nullstellensatz locally closed implies primitive and
primitive implies rational; see [Brown and Goodearl 2002, II.7.16]. Thus, the central question is when
does rational imply locally closed? Certainly this is not always the case; even in finite Gelfand–Kirillov
dimension a counterexample was found in [Bell et al. 2017a]. In [Bell and Leung 2014] the DME was
conjectured specifically about all Hopf algebras of finite Gelfand–Kirillov dimension.

We show here that the DME holds for Hopf algebras that arise as certain twisted polynomial rings
over commutative Hopf algebras. Recall that if R is a k-algebra equipped with an automorphism � then
a k-linear � -derivation is a k-linear map ı satisfying the twisted Leibniz rule:

ı.rs/D �.r/ı.s/C ı.r/s:

Given � and ı, the Ore extension of R, denoted by RŒxI �; ı� is the ring extension of R with the property
that it is a free left R-module with basis fxn W n� 0g and such that xr D �.r/xC ı.r/ for all r 2R. We
aim to prove the DME for Hopf algebras that arise as the Ore extensions of commutative Hopf algebras.
The next theorem makes this precise.

Theorem 4.1. Suppose k is a field of characteristic zero and R is a commutative affine Hopf k-algebra
equipped with a k-algebra automorphism � and a k-linear � -derivation ı. Assume that the Ore extension
A WDRŒxI �; ı� admits a Hopf algebra structure extending that of R. Then A satisfies the DME.

3The Goldie quotient is an artinian ring of quotients for any prime noetherian ring that imitates the field of fractions
construction for integral domains in the commutative case. See [McConnell and Robson 2001, Chapter 2] for details.



D-groups and the Dixmier–Moeglin equivalence 369

This is Theorem B2 of the introduction. Its proof is preceded by a number of preliminaries.

4A. Hopf Ore extensions. In this section we prove a result (Corollary 4.4, below) that severely restricts
what .R; �; �; ı/ can be if A D RŒxI �; ı� is to admit a Hopf algebra structure extending that on R.
Actually this was already done in [Brown et al. 2015], answering a question of Panov [2003], in a more
general context where R is not necessarily commutative, but under the additional assumption on A that

�.x/D a˝xCx˝ bC v.x˝x/Cw (4-1)

for some a; b 2R and v;w 2R˝k R. When (4-1) holds, possibly after a change of the variable x, Brown
et al. call RŒxI �; ı� a Hopf Ore extension. They ask if every Ore extension admitting a Hopf algebra
structure extending that on R is a Hopf Ore extension. We prove that this is the case, in a strong way,
when R is commutative and affine (this is Theorem C of the introduction):

Theorem 4.2. Suppose k is an algebraically closed field of characteristic zero and R is a commutative
affine Hopf k-algebra equipped with a k-algebra automorphism � and a k-linear �-derivation ı. If
RŒxI �; ı� admits a Hopf algebra structure extending that of R then, after a linear change of the variable x,

�.x/D a˝xCx˝ bCw

for some a; b 2R, each of which is either 0 or group-like, and some w 2R˝k R.

Proof. Our starting point is [Brown et al. 2015, ~2:2, Lemma 1] which says that if R˝k R is a domain
(which is true here as R is a commutative domain and k is algebraically closed) then

�.x/D s.1˝x/C t.x˝ 1/C v.x˝x/Cw; (4-2)

where s; t; v; w 2 R˝k R. We let A D RŒxI �; ı� and let S denote the antipode of A. By making a
substitution x 7! x � � for some � 2 k, we may assume that �.x/D 0, where � W A! k is the counit.
This substitution does not change the form of �.x/ given in (4-2).

Our first goal is to show that v D 0. Recall that since R is commutative it is of the form RD kŒG� for
a connected affine algebraic group G. We can therefore view v 2R˝k R as a regular function on G�G.
We show first that v.g�1;g/D 0 for all g 2G, and then that in fact v D 0.

We now consider the antipode S . By [Skryabin 2006, Corollary 1], S is bijective on A and its restriction
to R is bijective on R. Thus we can write

S.x/D a0C a1xC � � �C adxd

for some d � 1 and a0; : : : ; ad 2 R with ad ¤ 0. Writing m W A˝k A! A for the homomorphism
induced by multiplication, we have the identity

m ı .S ˝ id/ ı�.x/D �.x/:

So, as �.x/D 0, we may let �Dm ı .S ˝ id/ and use (4-2) to write

0D �.s/xCS.x/�.t/CS.x/�.v/xC�.w/:
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Notice that mı .S˝ id/.R˝R/�R and so if we look at the coefficient of xdC1 on the right-hand side,
we see that it is ad�

d .�.v//. Since R˝R is a domain and ad is nonzero and � is an automorphism,
we see that �.v/ D m ı .S ˝ id/.v/ D 0. Geometrically, this means precisely that v.g�1;g/ D 0 for
all g 2G.

Next we apply coassociativity, which tells us that .�˝id/.�.x//D .id˝�/.�.x// in R˝k R˝k RD

kŒG �G �G�. Writing this out using (4-2), and equating the coefficients of x˝x˝x, yields

.�˝ id/.v/ � .v˝ 1/D .id˝�/.v/ � .1˝ v/:

Evaluating at .g; h�1; h/ for any fixed g; h 2G we get

v.gh�1; h/v.g; h�1/D v.g; 1G/v.h
�1; h/D 0;

where the final equality uses what we proved in the previous paragraph. Now, if v ¤ 0 then for a Zariski
dense set of .g; h/ 2G�G, v.g; h�1/¤ 0. But then for each such .g; h/ the above equation implies that
v.gh�1; h/D 0. Hence, in fact, v.gh�1; h/D 0 for all .g; h/ 2G �G. As every element of G �G can
be written in the form .gh�1; h/, we have shown that v D 0.

We have thus proven that
�.x/D s.1˝x/C t.x˝ 1/Cw (4-3)

for some s; t; w 2R˝k R.
We claim now that either t D 0 or t D 1˝b for some group-like b 2R. We again apply coassociativity

to x, this time using (4-3) and equating the coefficients of x˝ 1˝ 1, to get

.�˝ id/.t/ � .t ˝ 1/D .id˝�/.t/

The geometric interpretation is that

t.fg; h/t.f;g/D t.f;gh/ (4-4)

for all f;g; h 2G.
Suppose t.1G ;g0/D 0 for some g0 2 G. We show in this case that t D 0. Indeed, for all h 2 G we

have 0D t.g0; h/t.1G ;g0/D t.1G ;g0h/, by (4-4) with f D 1G . Hence, t.1G ; h/D 0 for all h 2G. But
then, by (4-4) with f D g�1, we get 0D t.1G ; h/D t.g�1g; h/t.g�1;g/D t.g�1;gh/ for all g; h 2G.
As every element of G �G is of the form .g�1;gh/ for some g; h 2G, we have t D 0, as desired.

Suppose on the contrary that t.1G ;g/¤ 0 for every g 2 G. Then t.g; h/D t.1G ;gh/=t.1G ;g/ is a
never vanishing regular function on G �G, and hence t D �t 0, where � 2 k� and t 0 WG �G! Gm is an
algebraic group homomorphism (see [Rosenlicht 1961, Theorem 3]). So t 0 D b0˝ b, where b0; b 2R are
group-like. But then we have

�b0.g/b.h/D t.g; h/D
t.1G ;gh/

t.1G ;g/
D
�b.gh/

�b.g/
D
�b.g/b.h/

�b.g/

for all g; h 2G. It follows that b0 D �D 1 and t D 1˝ b, as desired.
A similar argument shows that in (4-3) either s D 0 or s D a˝ 1 for some group-like a 2 R. This

proves the theorem. �
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Remark 4.3. It may be worth pointing out that our proof of Theorem 4.2 made no use of ı. We used
only the properties of a Hopf algebra extension and the fact that � is injective, as well as the fact that
every element of A can be written as a left polynomial in x over R.

Corollary 4.4. Suppose k is an algebraically closed field of characteristic zero and R is a commutative
affine Hopf k-algebra equipped with a k-algebra automorphism � and a k-linear �-derivation ı. If
RŒxI �; ı� admits a Hopf algebra structure extending that of R then .R; �; �; ı/ must satisfy the following
two conditions:

(1) There exists w 2R˝k R and a group-like a 2R such that, for all r 2R,

�.ı.r//D
X

.ı.r1/˝ r2C ar1˝ ı.r2//Cw.�.r/��.�.r///:

(2) There is a character � WR! k such that for all r 2R,

�.r/D
X

�.r1/r2 D

X
r1�.r2/:

In the above we are using Sweedler notation, writing �.r/D
P

r1˝ r2 for all r 2R.

Proof. Statements (1) and (2) are proven for Hopf Ore extensions in [Brown et al. 2015]. Indeed,
remembering that in our case R is commutative, statement (2) is just part (i)(c) of the main theorem of
[Brown et al. 2015] (see also their Theorem 2.4(d)), and statement (1) is the identity labelled (21) in
[Brown et al. 2015] which is asserted in part (i)(d) of their main theorem. So to prove the corollary it
suffices to show that ADRŒxI �; ı� is a Hopf Ore extension, that is, after a change of variable �.x/ has
the form (4-1) discussed above. But Theorem 4.2 gives us an even stronger form for �.x/. �

Remark 4.5. The main theorem of [Brown et al. 2015] also includes a converse; namely, assuming that
.R; �; �; ı/ satisfies (1) and (2), with w 2R˝k R satisfying two other identities, one can always extend
in a natural way the Hopf algebra structure from R to RŒxI �; ı�. This gives many examples to which our
Theorem 4.1 will apply.

4B. The case when � is the identity. When � D id note that a �-derivation is just a derivation. In
this case we write the Ore extension as RŒxI ı�; it is the skew polynomial ring in x over R where
xr D rxC ı.r/ for all r 2 R. Statement (1) of Corollary 4.4 now says that if RŒxI ı� admits a Hopf
algebra structure extending that on R, then ı must have been an a-coderivation on R. So Theorem 3.1
applies and we have that .R; ı/ satisfies the ı-DME. The following proposition relates the ı-DME for
.R; ı/ to the DME for RŒxI ı�.

Proposition 4.6. Suppose k is a field of characteristic zero and R is a commutative affine k-algebra
equipped with a k-linear derivation ı. If the ı-rational prime ı-ideals of .R; ı/ are ı-locally-closed, then
the rational prime ideals of RŒxI ı� are locally closed.

In particular, if the ı-DME holds for .R; ı/ then the DME holds for RŒxI ı�.
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Proof. Suppose P is a rational prime ideal of RŒxI ı�. Let I WD P \ R. Then I is a prime ideal
of R (see [Fisher 1975, Corollary to Lemma 2]). Moreover, I is a ı-ideal since if a 2 P \R then
ı.a/ D Œx; a� 2 P \R. It follows easily that J WD IRŒxI ı� is an ideal of RŒxI ı� that is contained in
P and that RŒxI ı�=J Š .R=I/ŒxI ı�, where we use ı to denote the induced derivation on S WD R=I .
Let F D Frac.S/ be the field of fractions of S and extend ı to F . We claim that the ı-constants of
F are all algebraic over k. Indeed, note that if f 2 F with ı.f / D 0 then f is a central element
of F ŒxI ı�. We let QP denote the prime ideal in S ŒxI ı� corresponding to P under the isomorphism
RŒxI ı�=J ŠS ŒxI ı�. As P\RD I , we have that QP\S D 0, so that QP lifts to a prime ideal P0 of F ŒxI ı�.
The image of f in B WD F ŒxI ı�=P0 is again a central element of B. By construction B is a localization
of S ŒxI ı�=eP ŠRŒxI ı�=P and thus passing to the full localization gives that f is a central element of
Frac.RŒxI ı�=P /. As P is rational f must be algebraic over k.

We have shown that the prime ı-ideal I is ı-rational. By assumption it is therefore ı-locally-closed.
Consequently, there is some g 2R n I such that every prime ı-ideal of R properly containing I must
contain g.

In order to prove that P is locally closed it now suffices to show that whenever Q© P is prime then
Q\R© P \RD I . Indeed, if this is the case, then we have that

g 2
T
fQ\R WQ© P primeg:

Since g … P , we have in particular thatT
fQ WQ© P primeg ¤ P:

That is, P is locally closed.
Towards a contradiction, therefore, let us assume that there exists a prime ideal Q © P such that

Q\RD P \RD I . It follows that F ŒxI ı� is not simple: under the isomorphism RŒxI ı�=J Š S ŒxI ı�,
Q corresponds to a nonzero prime ideal eQ in S ŒxI ı� whose intersection with S DR=I is trivial, so thateQ lifts to a nonzero prime ideal Q0 in F ŒxI ı�. On the other hand, it is well-known that, as F is a field of
characteristic zero, if ı is nontrivial on F then F ŒxI ı� is a simple ring (indeed this is a consequence of
the fact that F ŒxI ı� is a left and right PID; see [van der Put and Singer 2003, §2.1]). Thus, ı is trivial
on F and so F ŒxI ı� D F Œx� is a PID. So P0, the lift of eP from S ŒxI ı� to F ŒxI ı�, must be 0, as it is
properly contained in Q0. That is, F ŒxI ı� is a localisation of RŒxI ı�=P . Hence, Frac.RŒxI ı�=P /DF.x/,
contradicting the rationality of P .

For the “in particular” clause, note RŒxI ı� satisfies the Nullstellensatz — by [Irving 1979, Theorem 2]
for example — and hence we already know that local-closedness implies primitivity and primitivity implies
rationality. �

Corollary 4.7. Suppose k is an algebraically closed field of characteristic zero and R is a commutative
affine Hopf k-algebra equipped with a k-linear derivation ı that is also an a-coderivation for some
group-like a 2R. Then RŒxI ı� satisfies the DME.

Proof. Theorem 3.1 together with Proposition 4.6. �
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A special case of Corollary 4.7 is when R is a differential Hopf k-algebra — this yields Theorem B1
of the introduction. But the DME for RŒxI ı� in that case is easier: one uses only Theorem 2.20 and the
material in Section 3 is not necessary.

4C. The case when ı is inner. If � is an automorphism of R, and a 2R, then the map r 7! a.r ��.r//

is a � -derivation on R. Such � -derivations are called inner. Here is a sufficient criterion for a � -derivation
ı being inner.4

Lemma 4.8. Suppose R is a commutative ring with an automorphism � and a �-derivation ı. Suppose
there exists an element f 2R such that f � �.f / is a unit. Then ı is inner.

Proof. It is easy to see, using the commutativity of R, that a WD ı.f /=.f ��.f // witnesses the innerness
of .R; �; ı/. �

When ı is inner the Dixmier–Moeglin equivalence for RŒxI �; ı� follows easily from known results. It
makes use however of one more notion:

Definition 4.9. Let A be a finitely generated algebra over a field k. We say that a k-vector subspace V

of A is a frame for A if V is finite-dimensional, contains 1A, and generates A as a k-algebra.

Lemma 4.10. Suppose R is a commutative affine Hopf algebra over a field k of characteristic zero and �
is a k-algebra automorphism of R satisfying statement (2) of Corollary 4.4. Then there is a frame for R

such that �.V /D V .

Proof. Suppose RDkŒG�, where G is an affine algebraic group. Then G is linear and hence we may embed
G into GLn. This gives us a frame V of R spanned by the restriction to G of 1, the coordinate functions
xi;j , and 1

det . Now, �.xi;j /D
P

xi;k ˝xk;j and �
�

1
det

�
D

1
det ˝

1
det . So �.V /� V ˝V . Statement (2)

of Corollary 4.4 then implies that �.V /� V , and hence by finite-dimensionality �.V /D V .5 �

Proposition 4.11. Suppose k is an uncountable algebraically closed field of characteristic zero, R is a
finitely generated commutative k-algebra, � is a k-algebra automorphism of R that preserves a frame,
and ı is an inner � -derivation on R. Then RŒxI �; ı� satisfies the DME.

Proof. When ı D 0 this is [Bell et al. 2017b, Theorem 1.6]; while the theorem there is stated for k D C it
holds for any uncountable algebraically closed field. But if a 2R is such that ı.r/D a.r � �.r// for all
r 2R, then RŒxI �; ı�DRŒt I �; 0�, where t WD x� a. Indeed,

t r D .x� a/r D �.r/xC ı.r/� ar D �.r/x� a�.r/D �.r/t

for all r 2R, and ftn W n� 0g can be seen to be another left R-basis for RŒxI �; ı� using the fact that, for
any polynomial P , P .t/ is equal to P .x/ plus terms of strictly lower degree. So the inner case reduces to
the case when ı D 0. �

4For a more general statement in the noncommutative case, see [Goodearl 1992, Lemma 2.4(b)].
5As a referee pointed out to us, the existence of a frame V with�.V /�V ˝V can be deduced for arbitrary finitely generated

Hopf algebras by starting with any frame W and extending it to a finite-dimensional subcoalgebra V by the finiteness theorem
for coalgebras [Montgomery 1993, Theorem 5.1.1].
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4D. The general case. We fix from now on a field k of characteristic zero. Our proof of Theorem 4.1 will
go via reducing to the case either when � D id or when ı is inner. It will require some preparatory lemmas.
First, let us point out that statement (2) of Corollary 4.4 forces .R; �/ to be of a very restricted form.

Lemma 4.12. Let G be a connected affine algebraic group over k and � WG!G an automorphism of G

over k. Let RD kŒG�, and � D �� the corresponding k-algebra automorphism of R. If .R; �/ satisfies
statement (2) of Corollary 4.4 then � WG!G is translation by some central element of G.k/.

Proof. Since � W R ! k is a homomorphism, there is some c 2 G.k/ such that �.f / D f .c/ for
all f 2 R. If we write �.f / D

P
f1 ˝ f2, then by the definition of the coproduct on R we have

f .ab/D
P
f1.a/f2.b/ for all a; b 2G. Now, property (2) gives us that for all a 2G,

�.f /.a/D
X

�.f1/f2.a/D
X

f1.c/f2.a/D f .ca/:

The other half of the equality in (2) gives �.f /.a/D f .ac/. So f .ca/D f .ac/ for all f 2R, and hence
c is central in G. On the other hand, f .ca/D �.f /.a/D f .�a/ for all f 2R, so � is translation by c. �

We will make use of the following notion.

Definition 4.13. Suppose � is an automorphism of a commutative ring R. A � -prime ideal is a � -ideal
I such that whenever J and K are � -ideals with JK � I then either J � I or K � I .

Note that a �-prime ideal need not be prime. But, at least in the case when R is a commutative
noetherian ring, a �-prime ideal is radical; this follows from the fact that the nilpotent radical of I is a
� -ideal and some power of it is contained in I . We will sometimes need to quotient out by � -prime ideals
that we do not know are prime, which means we will have to work with reduced difference rings that are
not necessarily integral domains. The following lemma about such difference rings will be very useful.

Lemma 4.14. Suppose R is a commutative ring endowed with an automorphism � such that .0/ is
� -prime. If 0¤ f 2R satisfies �.f / 2Rf then f is not a zero divisor in R.

Proof. Let J DRf . Then J is a �-ideal of R. It follows that K WD fr 2R W rf D 0g is also a �-ideal
of R. Then by construction, JK D .0/. Since .0/ is � -prime and J is nonzero, we see that K D .0/ and
so we obtain the desired result. �

Finally, we will make use of the following fundamental result on Ore extensions of commutative
noetherian rings.

Fact 4.15 [Goodearl 1992]. Suppose R is a commutative noetherian ring, � is an automorphism of R,
and ı is a �-derivation. Suppose P is a prime ideal of the Ore extension RŒxI �; ı�, and let I D P \R.
Then one of the following three statements must hold:

(I) RŒxI �; ı�=P is commutative.

(II) I is a .�; ı/-ideal of R — that is, I is preserved under � and ı— and there is a prime ideal I 0 of R

containing I such that �.r/� r 2 I 0 for all r 2R.

(III) I is a � -prime .�; ı/-ideal of R and IRŒxI �; ı� is a prime ideal of RŒxI �; ı�.
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Proof of Theorem 4.1. We have that R is a commutative affine Hopf k-algebra equipped with a k-algebra
automorphism � and a k-linear � -derivation ı, and that the Ore extension A WDRŒxI �; ı� admits a Hopf
algebra structure extending that of R. We wish to show that A satisfies the DME. By [Irving 1979,
Theorem 2] we have that A satisfies the Nullstellensatz, and so it suffices to prove that if P is a rational
prime ideal of A then P is locally closed.

We first reduce to the case when k is algebraically closed. Since R D kŒG�, where G is an affine
algebraic group, and hence smooth, R is integrally closed. Let F denote the field of fractions of R and
let F0 WD kalg\F . Since R is integrally closed, F0 �R. Since F is a finitely generated extension of k,
F0 is a finite extension of k. Let R0 WDR˝F0

kalg. Since F0 is relatively algebraically closed in F , we
see that R0 is again an integral domain. Thus R0 is a commutative affine Hopf kalg-algebra to which we
extend � and ı by kalg-linearity. Suppose we have proven the DME for R0ŒxI �; ı�. Then Irving–Small
reduction techniques (see [Irving and Small 1980] and also [Rowen 1988, Theorem 8.4.27]) give that
ADRŒxI �; ı� satisfies the DME over F0. But since F0 is a finite extension of k, we get the DME over
k also.

Next we reduce to the case when k is uncountable (in order to be able to use Proposition 4.11). Let
L be an uncountable algebraically closed extension of k. Then since k is algebraically closed we see
that R˝k L is a commutative affine Hopf L-algebra, to which we extend � and ı by L-linearity, and
B WD A˝k LŠ .R˝k L/ŒxI �; ı�. Assume the DME holds for B. Let P be a rational prime ideal of
A and let QD P ˝k L. Since k is algebraically closed, Q is a prime ideal of B. Since P is rational and
B=QD .A=P /˝kL, we see that Q is rational. Hence Q is locally closed. Since the primes in A containing
P lift to primes in B containing Q, it follows that P is locally closed in A. So A satisfies the DME.

We may therefore assume that k is uncountable and algebraically closed.
If � D id then ı is a k-linear derivation on R and statement (1) of Corollary 4.4 tells us that it is also

an a-coderivation for some group-like a 2R. It follows by Corollary 4.7 that ADRŒxI ı� satisfies the
DME. So we may assume � ¤ id.

We may also assume that A=P is not commutative. Indeed, if it were, as P is rational, we would have
that Frac.A=P /� k, so that P is a maximal ideal and hence locally closed.

Write RD kŒG�, where G is a connected affine algebraic group over k. By Lemma 4.12 we know that
� D �� where � WG!G is translation by a central (nonidentity) element c 2G.k/.

Our next goal is to reduce to the case that P \RD .0/, though in order to obtain this we will have to
give up on R being an integral domain. Let I DR\P . We have already ruled out case (I) of Fact 4.15.
On the other hand, case (II) cannot hold: � would induce the identity map on R=I 0, implying that �
is the identity on V .I 0/, which contradicts the fact that it is translation on G by a nonidentity element.
Hence case (III) holds; I is a � -prime .�; ı/-ideal of R and J WD IA is a prime ideal of A. Consider now
the reduced quotient ring R WDR=I with the induced automorphism, which we continue to denote by � ,
and the induced �-derivation, which we continue to denote by ı. Let ADA=J ŠRŒxI �; ı� and P the
image of P in A. Since J is contained in P , P is rational in A and it suffices to show that P is locally
closed in A. Note that we have achieved P \RD .0/.
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Next, we claim that there is some non-zero-divisor f 2 R such that .�; ı/ extends to eR WD RŒ1=f �

and ı is inner on eR. To see this, consider the frame V for R, given by Lemma 4.10, that is preserved
by � . The image V of V in R is then a frame for R that is also preserved by � . Using k D kalg, let f
be an eigenvector for the action of � on V , say �.f /D �f for some � 2 k�. By Lemma 4.14, f is not
a zero divisor. Moreover, the multiplicatively closed subset f1; f; f 2; : : :g of R is preserved by � , and
hence by [Goodearl 1992, Lemma 1.3], .�; ı/ extends uniquely to the localisation at this set, namely toeR WD RŒ1=f �. It remains to show that f can be chosen so that ı is inner on eR. If the eigenvalue � is
not equal to 1, then f � �.f /D .1��/f is a unit in eR, and we get ı inner by Lemma 4.8. So suppose
that 1 is the only eigenvalue for � on V . Note that � is not the identity operator on R because � is not
the identity on V .I/. Since V generates R as a k-algebra, � is not the identity on V either. Hence there
must be some Jordan block that is of size greater than one, but with eigenvalue 1. So we can choose the
eigenvector f in such a way that there exists nonzero g 2 V with �.g/D gCf . Hence g� �.g/ is a
unit in eRDRŒ1=f �, and so by Lemma 4.8 again, ı is inner on eR.

To prove that P is locally closed let us consider the following partition of the set of prime ideals of A

that properly extend P :

S1 WD fQ© P WQ prime, and no power of f is in Qg;

S2 WD fQ© P WQ prime, not in S1, and Q\R is a � -prime .�; ı/-idealg;

S3 WD fQ© P WQ prime, and not in S1 or S2g:

It suffices to show that for each of i D 1; 2; 3,
T

Si ¤ P .
For i D 2, note that as �-prime implies radical, we have that f 2 Q for all Q 2 S2, but f … P as

P \RD .0/.
For i D 3, applying Fact 4.15 to Q 2 S3, we have that either A=Q is commutative or there is in

R D R=I a prime ideal I WD I 0=I extending Q\R, and such that � is the identity on R=I D R=I 0.
The latter case is impossible using again that � D �� and � is translation on G by a nonidentity element.
So A=Q is commutative for all Q 2 S3. As A=P DA=P is not commutative there exist a; b 2A such
that g WD Œa; b� … P . But g 2Q for all Q 2 S3.

It remains therefore to consider S1. Let

eAD eRŒxI �; ı�DR
h

1

f

i
ŒxI �; ı�:

As ı is inner on eR, Proposition 4.11 tells us that eA satisfies the Dixmier–Moeglin equivalence. As
P \R D .0/, we know that no power of f is in P , and hence eP WD P eA is a prime ideal. As eA is a
localisation of A we have that eP is rational, and hence locally closed. If Q 2 S1 then QeA is a prime
ideal properly extending eP . So there is ˛ 2 eA n eP such that ˛ 2QeA for all Q 2 S1. For some n� 0, we
have f n˛ 2A. So

f n˛ 2QeA\ADQ:

But f n˛ … P . So
T

S1 ¤ P , as desired. �
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Galois theory (Będlewo, Poland, 2001), edited by T. Crespo and Z. Hajto, Banach Center Publications 58, Polish Academy of
Sciences, Institute of Mathematics, Warsaw, 2002. MR Zbl

[Irving 1979] R. S. Irving, “Generic flatness and the Nullstellensatz for Ore extensions”, Comm. Algebra 7:3 (1979), 259–277.
MR Zbl

[Irving and Small 1980] R. S. Irving and L. W. Small, “On the characterization of primitive ideals in enveloping algebras”, Math.
Z. 173:3 (1980), 217–221. MR Zbl

[Kaplansky 1976] I. Kaplansky, An introduction to differential algebra, 2nd ed., Actualités Scientifiques et Industrielles 1251,
Hermann, Paris, 1976. MR Zbl

[Kolchin 1973] E. R. Kolchin, Differential algebra and algebraic groups, Pure and Applied Math. 54, Academic Press, New
York, 1973. MR Zbl

[Kowalski and Pillay 2006] P. Kowalski and A. Pillay, “Quantifier elimination for algebraic D-groups”, Trans. Amer. Math. Soc.
358:1 (2006), 167–181. MR Zbl

[Marker 2000] D. Marker, “Manin kernels”, pp. 1–21 in Connections between model theory and algebraic and analytic geometry,
edited by A. Macintyre, Quaderni di Matematica 6, Department of Mathematics, Seconda Università di Napoli, Caserta, Italy,
2000. MR Zbl

[McConnell and Robson 2001] J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, revised ed., Graduate
Studies in Math. 30, American Mathematical Society, Providence, RI, 2001. MR Zbl

[Montgomery 1993] S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Math. 82,
American Mathematical Society, Providence, RI, 1993. MR Zbl

[Panov 2003] A. N. Panov, “Ore extensions of Hopf algebras”, Mat. Zametki 74:3 (2003), 425–434. MR Zbl

http://dx.doi.org/10.1007/s10468-014-9474-y
http://dx.doi.org/10.1007/s10468-014-9474-y
http://msp.org/idx/mr/3284332
http://msp.org/idx/zbl/1312.16029
http://dx.doi.org/10.4171/JEMS/712
http://dx.doi.org/10.4171/JEMS/712
http://msp.org/idx/mr/3656478
http://msp.org/idx/zbl/06736625
http://msp.org/idx/mr/3649164
http://msp.org/idx/zbl/1370.16018
http://dx.doi.org/10.1007/978-3-0348-8205-7
http://msp.org/idx/mr/1898492
http://msp.org/idx/zbl/1027.17010
http://dx.doi.org/10.1016/j.jpaa.2014.09.007
http://dx.doi.org/10.1016/j.jpaa.2014.09.007
http://msp.org/idx/mr/3299738
http://msp.org/idx/zbl/1312.16031
http://dx.doi.org/10.1007/BFb0087235
http://msp.org/idx/mr/1176753
http://msp.org/idx/zbl/0756.14028
http://dx.doi.org/10.2140/pjm.1975.58.71
http://msp.org/idx/mr/0374195
http://msp.org/idx/zbl/0311.16036
http://dx.doi.org/10.1016/j.aim.2017.04.008
http://dx.doi.org/10.1016/j.aim.2017.04.008
http://msp.org/idx/mr/3658729
http://msp.org/idx/zbl/1372.12005
http://dx.doi.org/10.1016/S0021-8693(05)80036-5
http://msp.org/idx/mr/1176901
http://msp.org/idx/zbl/0779.16010
http://dx.doi.org/10.4064/bc58-0-9
http://msp.org/idx/mr/1972449
http://msp.org/idx/zbl/1099.12003
http://dx.doi.org/10.1080/00927877908822347
http://msp.org/idx/mr/519702
http://msp.org/idx/zbl/0402.16002
http://dx.doi.org/10.1007/BF01159659
http://msp.org/idx/mr/592369
http://msp.org/idx/zbl/0437.17002
http://msp.org/idx/mr/0460303
http://msp.org/idx/zbl/0083.03301
http://msp.org/idx/mr/0568864
http://msp.org/idx/zbl/0264.12102
http://dx.doi.org/10.1090/S0002-9947-05-03820-1
http://msp.org/idx/mr/2171228
http://msp.org/idx/zbl/1075.03014
http://msp.org/idx/mr/1930680
http://msp.org/idx/zbl/1100.14522
http://dx.doi.org/10.1090/gsm/030
http://msp.org/idx/mr/1811901
http://msp.org/idx/zbl/0980.16019
http://dx.doi.org/10.1090/cbms/082
http://msp.org/idx/mr/1243637
http://msp.org/idx/zbl/0793.16029
http://dx.doi.org/10.1023/A:1026115004357
http://msp.org/idx/mr/2022506
http://msp.org/idx/zbl/1071.16035


378 Jason Bell, Omar León Sánchez and Rahim Moosa

[Pillay 1996] A. Pillay, “Differential algebraic groups and the number of countable differentially closed fields”, pp. 114–134 in
Model theory of fields, edited by D. Marker et al., Lecture Notes in Logic 5, Springer, 1996.

[Pillay 2006] A. Pillay, “Remarks on algebraic D-varieties and the model theory of differential fields”, pp. 256–269 in Logic in
Tehran, edited by A. Enayat et al., Lecture Notes in Logic 26, Association for Symbolic Logic, La Jolla, CA, 2006. MR Zbl

[van der Put and Singer 2003] M. van der Put and M. F. Singer, Galois theory of linear differential equations, Grundlehren der
Math. Wissenschaften 328, Springer, 2003. MR Zbl

[Rosenlicht 1961] M. Rosenlicht, “Toroidal algebraic groups”, Proc. Amer. Math. Soc. 12 (1961), 984–988. MR Zbl

[Rowen 1988] L. H. Rowen, Ring theory, vol. II, Pure and Applied Math. 128, Academic Press, Boston, 1988. MR Zbl

[Skryabin 2006] S. Skryabin, “New results on the bijectivity of antipode of a Hopf algebra”, J. Algebra 306:2 (2006), 622–633.
MR Zbl

Communicated by Michael Singer
Received 2016-11-30 Revised 2017-09-29 Accepted 2017-10-30

jpbell@uwaterloo.ca Department of Pure Mathematics, University of Waterloo, Waterloo, Canada

omar.sanchez@manchester.ac.uk School of Mathematics, University of Manchester, Manchester, United Kingdom

rmoosa@uwaterloo.ca Department of Pure Mathematics, University of Waterloo, Waterloo, Canada

mathematical sciences publishers msp

http://msp.org/idx/mr/2262324
http://msp.org/idx/zbl/1110.03019
http://dx.doi.org/10.1007/978-3-642-55750-7
http://msp.org/idx/mr/1960772
http://msp.org/idx/zbl/1036.12008
http://dx.doi.org/10.2307/2034407
http://msp.org/idx/mr/0133328
http://msp.org/idx/zbl/0107.14703
http://msp.org/idx/mr/945718
http://msp.org/idx/zbl/0651.16002
http://dx.doi.org/10.1016/j.jalgebra.2006.04.017
http://msp.org/idx/mr/2271358
http://msp.org/idx/zbl/1125.16031
mailto:jpbell@uwaterloo.ca
mailto:omar.sanchez@manchester.ac.uk
mailto:rmoosa@uwaterloo.ca
http://msp.org


msp
ALGEBRA AND NUMBER THEORY 12:2 (2018)

dx.doi.org/10.2140/ant.2018.12.379

Closures in varieties of representations
and irreducible components

Kenneth R. Goodearl and Birge Huisgen-Zimmermann

Dedicated to the memory of Peter Gabriel

For any truncated path algebra3 of a quiver, we classify, by way of representation-
theoretic invariants, the irreducible components of the parametrizing varieties
Repd(3) of the 3-modules with fixed dimension vector d. In this situation, the
components of Repd(3) are always among the closures Rep S, where S traces
the semisimple sequences with dimension vector d, and hence the key to the
classification problem lies in a characterization of these closures.

Our first result concerning closures actually addresses arbitrary basic finite-
dimensional algebras over an algebraically closed field. In the general case, it
corners the closures Rep S by means of module filtrations “governed by S”;
when 3 is truncated, it pins down the Rep S completely.

The analysis of the varieties Rep S leads to a novel upper semicontinuous mod-
ule invariant which provides an effective tool towards the detection of components
of Repd(3) in general. It detects all components when 3 is truncated.

1. Introduction

By strong consensus, a classification of all indecomposable finite-dimensional
representations of a finite-dimensional algebra 3 is an unattainable goal in general.
A far more promising alternative to this impossibly comprehensive problem is
that of generically classifying the finite-dimensional 3-modules. This amounts to
understanding the generic structure of the modules in the irreducible components of
the varieties Repd(3) which parametrize the 3-modules with dimension vector d.
By its very nature, this quest comes paired with the task of pinning down the
irreducible components of the Repd(3) in representation-theoretic terms.

In the present article, the component problem is solved for arbitrary truncated
path algebras3 over an algebraically closed field K . In tandem, significant headway
is made towards determining the generic features of the modules in the components.
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The classification of the components, in turn, relies on a characterization of
the modules in the closures of certain representation-theoretically defined locally
closed subvarieties of Repd(3). Our initial round of results regarding such closures,
including the description of an associated upper semicontinuous module invariant
which serves to test for inclusions, holds for arbitrary basic finite-dimensional
K -algebras. The findings lead to partial lists of components in this broad scenario.
The results become tight on specialization to the truncated case.

Throughout, we assume K to be an algebraically closed field and3 a basic finite-
dimensional K -algebra. This means that, up to isomorphism,3=KQ/I for a quiver
Q and an admissible ideal I in the path algebra. The maximal length of a path in
KQ\ I will be denoted by L; in other words, L is minimal with respect to J L+1

= 0,
where J is the Jacobson radical of3. Consequently, the radical layering S(M) of a
3-module M has no more than L+1 nonzero entries: S(M)= (J l M/J l+1 M)0≤l≤L .
By Repd(3), we denote the standard affine variety parametrizing the 3-modules
with dimension vector d. This variety is partitioned into finitely many locally closed
subvarieties Rep S corresponding to the semisimple sequences S with dimension
vector d; these are the sequences S = (S0, . . . ,SL) of (isomorphism classes of)
semisimple 3-modules with dim S :=

∑
0≤l≤L dim Sl = d; here Rep S consists of

those points x in Repd(3) which represent modules Mx with S(Mx)= S.
The closures Rep S are relevant to the problem of describing the irreducible

components of Repd(3): indeed, it is readily seen that the components of the ambi-
ent variety are always among those of the Rep S, where S traces the d-dimensional
semisimple sequences. Less obviously, the components of the subvarieties Rep S,
and hence those of their closures, may be obtained from Q and I by way of a
straightforward algorithm, each component tagged by a “generic minimal projective
presentation” of the modules it encodes (see [Babson et al. 2009] and [Huisgen-
Zimmermann 2009]). Identifying the components of Repd(3) thus amounts to
a sorting problem: for which components C of Rep S is the closure C maximal
among the irreducible subsets of Repd(3)? This is an extremely taxing question
in general, calling for a thorough understanding of the boundaries of the varieties
Rep S.

Our strategy consists of moving back and forth between the varieties Repd(3)

and GRASSd(3); the latter is a closed subvariety of a vector space Grassmannian
which parametrizes the modules with dimension vector d by suitable submodules
of a projective cover of the semisimple module with this dimension vector (see
Section 2 and [Huisgen-Zimmermann 2009; Huisgen-Zimmermann and Goodearl
2012]). The irreducible components of the projective variety GRASSd(3) may be
studied by “spreading them out” within a suitable flag variety (Theorem 3.9), and
the subsequent transfer of information GRASSd(3)←→ Repd(3) is modeled on
the influential work [Gabriel 1975]. In a first step, we show:
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Theorem A (cf. Theorem 3.8 and Theorem 4.3; see also Remark 3.7(4)). Let
3 = KQ/I be a path algebra modulo relations, L + 1 its Loewy length, and
S = (S0, . . . ,SL) a d-dimensional semisimple sequence in 3-mod. Then every
module in the closure Rep S has a filtration by submodules,

M = M0 ⊇ M1 ⊇ · · · ⊇ ML+1 = 0,

which is “governed by S” in the sense that each quotient Ml/Ml+1 is isomorphic
to Sl (0≤ l ≤ L). In fact, the set Filt S consisting of those points in Repd(3) that
correspond to modules with at least one filtration governed by S is always closed.

If 3 is a truncated path algebra, i.e., 3= KQ/〈all paths of length L + 1〉, and
Rep S is nonempty, then

Rep S= Filt S.

For general 3, the inclusion Rep S ⊆ Filt S may be proper. The question
of whether a point in Repd(3) belongs to Filt S may be answered by testing for
similarity of certain matrices. By contrast, to date, there is no algorithm for deciding
whether a module belongs to Rep S.

A semisimple sequence S is called realizable if Rep S 6= ∅. (When 3 is a
truncated path algebra, realizability is checked via mere inspection of the quiver;
see [Huisgen-Zimmermann 2016, Criterion 3.2] and Realizability Criterion 4.1
below.)

Corollary B (cf. Corollary 3.11). For M ∈ 3-mod, let 0(M) be the number of
those realizable semisimple sequences that govern at least one filtration of M. Then

0• : Repd(3)→ N, x 7→ 0(Mx),

is an upper semicontinuous function.
In particular, whenever C is an irreducible component of some Rep S such that

1 ∈ 0•(C), the closure C is an irreducible component of Repd(3).

In the second part of the paper, we derive consequences for truncated path
algebras. As is suggested by Theorem A, the component problem simplifies con-
siderably in this situation. Notably, the subvarieties Rep S are all irreducible, and
generic minimal projective presentations of the modules in Rep S are immediate
from quiver and Loewy length (see [Babson et al. 2009, Section 5] and Section 5A
below). In some prominent special cases, particularly manageable solutions to the
problem of sifting out the inclusion-maximal ones among the closures Rep S are
already available (see [Huisgen-Zimmermann 2016; Huisgen-Zimmermann and
Shipman 2017]): for instance, if 3 is either local or based on an acyclic quiver Q,
the semisimple sequences singled out by the minimal values of the following
upper semicontinuous map furnish a complete, nonrepetitive parametrization of the
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components Rep S of Repd(3):

2= (S
•
,S∗
•
) : Repd(3)→ Seq(d)×Seq(d), x 7→ (S(Mx),S∗(Mx)); (1-1)

here the codomain of 2 is partially ordered by the componentwise dominance order
on the set Seq(d) of all d-dimensional semisimple sequences (see Section 2), and
S∗(Mx) stands for the socle layering of the module Mx (the dual of the radical
layering). The unique minimal sequence S∗(Mx) attained on Rep S, that is, the
generic socle layering of the modules in Rep S, is supplied by a closed formula
based on S, Q and L [Huisgen-Zimmermann and Shipman 2017, Theorem 3.8],
which makes the 2-test very user-friendly. But for general truncated 3, the map
2 fails to detect all components, even when supplemented by further standard
semicontinuous module invariants, such as path ranks or assortments of annihilator
dimensions. The map 0•, on the other hand, compensates for the blind spots of 2:

Theorem C (cf. Theorem 4.5). If 3 is any truncated path algebra, the irreducible
components of Repd(3) are precisely those closures Rep S on which 0• attains
the value 1.

In other words, Rep S is maximal among the irreducible subsets of Repd(3) if
and only if there exists a module N in Rep S such that N ⊇ JN ⊇ · · · ⊇ J L+1 N is
the only filtration of N which is governed by a realizable semisimple sequence.

In deciding which semisimple sequences S are the generic radical layerings of
the irreducible components of Repd(3), Theorem C thus permits exclusive reliance
on 0•. However, in practice, combining 0• with the test map 2 is considerably
more efficient.

In the pursuit of a generic approach to the structure of 3-modules, the hereditary
case, pioneered in [Kac 1980; 1982] and [Schofield 1992], serves as a model. We
further point to a selection of existing contributions to the component problem
over nonhereditary algebras: General tools were developed in [Crawley-Boevey
and Schröer 2002] and [Babson et al. 2009]. Solutions to the problem over spe-
cific classes of tame algebras were given in [Barot and Schröer 2001; Carroll
and Weyman 2013; Donald and Flanigan 1977; Geiss and Schröer 2003; 2005;
Morrison 1980; Riedtmann et al. 2011; Schröer 2004] for instance; solutions for
certain classes of wild nonhereditary algebras can be found in [Bleher et al. 2015;
Huisgen-Zimmermann 2016; Huisgen-Zimmermann and Shipman 2017]. As is to
be expected, meaningful classifications of the irreducible components of Repd(3)

in the quoted instances are throughout obtained via partial lists of generic properties
of the modules in the components. For a more detailed discussion of prior work on
the topic we refer to the introduction of [Huisgen-Zimmermann 2016].

We add a few comments on the foundational nature of truncated path algebras
with respect to the component problem. Clearly, given an arbitrary basic K -algebra
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3= KQ/I , there is a unique truncated path algebra 3trunc having the same quiver
and Loewy length as 3. In the general situation, the varieties Rep S typically break
up into multiple components. Given that all of them are contained in irreducible
components of Repd(3trunc), it is advantageous to first determine the latter, say

Rep3trunc
S(1) = Filt3trunc(S

(1)), . . . , Rep3trunc
S(m) = Filt3trunc(S

(m)),

before aiming at the irreducible components of Repd(3). Indeed, this confines
the need for size comparisons among the closures of components of the varieties
Rep3 S to the subvarieties Filt3trunc S( j)

∩Repd(3); see Section 6B.

Overview. In Section 2, we provide background for the proofs of the main results
and introduce a recurring example. Section 3 addresses the general case, where
3 is basic but otherwise unrestricted. In Sections 4 and 5, we apply the findings
to truncated path algebras. Section 4 contains the announced classification of
the irreducible components of Repd(3), while in Section 5, we discuss generic
modules and apply the results of Section 4 to exhibit interconnections among the
components. Section 6, finally, illustrates the theory and addresses the interplay
Repd(3)←→ Repd(3trunc).

2. Conventions and prerequisites

To repeat: throughout, we assume3=KQ/I to be a basic finite-dimensional algebra
over K = K with Jacobson radical J and Loewy length L + 1. The composition
pq of paths stands for “p after q” when start(p) = end(q), while pq = 0 in KQ
otherwise. By 3trunc we denote the truncated path algebra associated to 3, namely,

3trunc = KQ/〈the paths of length L + 1〉;

we make no notational distinction between the 3- and 3trunc-structures of the
objects in 3-mod. The vertices e1, . . . , en of Q will be identified with the paths of
length zero in KQ, as well as with the corresponding primitive idempotents in 3.
An element x of a 3-module M is said to be normed by ei if x = ei x , and a normed
element in M\JM is called a top element of M . A full sequence of top elements of M
is a generating set of M consisting of top elements which are K -linearly independent
modulo JM . The simple module 3ei/Jei corresponding to the vertex ei will be
denoted by Si , and isomorphic semisimple modules will be identified.

The dominance order on the set Seq(d) of all semisimple sequences with dimen-
sion vector d is defined as follows:

(S0, . . . ,SL)≤ (S
′

0, . . . ,S′L) ⇐⇒

⊕
0≤ j≤l

S j ⊆
⊕

0≤ j≤l

S′j for 0≤ l ≤ L .
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Recall that the radical and socle layerings of a 3-module M are denoted by S(M)
and S∗(M). For basic properties of these semisimple sequences, we refer to
[Huisgen-Zimmermann 2016, Section 2.B].

We fix our notation for the parametrizing varieties of the d-dimensional 3-
modules. The affine variety Repd(3) is{

(xα)α∈Q1 ∈

∏
α∈Q1

HomK (K dstart(α), K dend(α))

∣∣∣ the xα satisfy all relations in I
}
,

where Q1 is the set of arrows of Q. The orbits of the obvious conjugation action on
Repd(3) by the group GL(d) :=

∏
1≤i≤n GLdi (K ) are in natural bijection with the

isomorphism classes of the d-dimensional3-modules. Given S∈Seq(d), we denote
by Rep S the locally closed subvariety of Repd(3) which consists of the points x
for which the corresponding module Mx has radical layering S. Clearly, the varieties
Rep S, where S traces the semisimple sequences with dim S= d, partition Repd(3).
However, in general, this (finite) partition falls short of being a stratification of
Repd(3) in the strict sense, in that closures of strata need not be unions of strata.

To introduce the projective parametrizing variety GRASSd(3), we fix a projective
3-module P whose top P/J P has dimension vector d, and set d = |d|. The
variety GRASSd(3) is the closed subvariety of the vector space Grassmannian
Gr((dim P − d), P) consisting of those points C ∈ Gr((dim P − d), P) which are
3-submodules of P with the property that dim(P/C)= d. This time, the group
action whose orbits determine the isomorphism classes of the quotients P/C in
3-mod is the canonical action of Aut3(P) on GRASSd(3). The role played by
Rep S in the affine setting is taken over by GRASS(S), the locally closed subvariety
consisting of those C ∈ GRASSd(3) for which S(P/C)= S.

The following connection between the affine and projective parametrizing va-
rieties was proved in [Bongartz and Huisgen-Zimmermann 2001, Proposition C];
it was inspired by [Gabriel 1975], as is explained in some detail in Remark 3 of
[Bongartz and Huisgen-Zimmermann 2001, Section 2]. We restate the result for
convenient reference.

Proposition 2.1. Consider the natural isomorphism from the lattice of GL(d)-
stable subsets of Repd(3) on one hand to the lattice of Aut3(P)-stable subsets
of GRASSd(3) on the other, which pairs orbits encoding isomorphic modules.
This correspondence preserves and reflects openness, closures, irreducibility, and
smoothness.

In describing generic projective resolutions of the modules in an irreducible
component of Repd(3), a key invariant of a d-dimensional 3-module M is its
set of skeleta. These skeleta live in a projective cover of M in 3trunc-mod. In the
following definitions, we fix a semisimple sequence S with dim S= d.
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Definitions 2.2 (coordinatized projective modules and skeleta).

(1) Let Ptrunc be a projective cover of S0 in 3trunc-mod. This cover is referred to
as a coordinatized projective module when it comes equipped with a fixed full
sequence of top elements z1, . . . , zt , where t = dim S0. In particular, we obtain a
decomposition Ptrunc =

⊕
1≤r≤t 3trunc zr . A path of length l in the coordinatized

projective module Ptrunc is any nonzero element p = p zr where p is a path of
length l in Q; thus each zr is now viewed as a path of length zero. Note that we have
a well-defined concept of path length in 3trunc, and hence also in Ptrunc. Clearly,
each path p= p zr ∈ Ptrunc is normed by a primitive idempotent, namely by end(p),
and the primitive idempotent norming zr is start(p).

(2) An (abstract) skeleton with layering S is a set σ consisting of paths in Ptrunc

which satisfies the following two conditions:

• It is closed under initial subpaths, i.e., whenever p zr ∈ σ , and q is an initial
subpath of p (meaning p = q ′q for some path q ′), the path q zr again belongs
to σ .

• For 0≤ l ≤ L , the number of those paths of length l in σ which end in a given
vertex ei coincides with the multiplicity of Si in the semisimple module Sl .

Note that any skeleton σ with layering S includes the paths z1, . . . , zt of length
zero.

(3) Let M ∈ 3-mod. An abstract skeleton σ is a skeleton of M if M has a full
sequence z1, . . . , zt of top elements, each zr normed by the same vertex as zr , such
that

• {p zr | p zr ∈ σ } is a K -basis for M , and

• the layering of σ coincides with the radical layering S(M) of M .

In this situation, we also say that σ is a skeleton of M relative to z1, . . . , zt .

Clearly, the set of skeleta of any finite-dimensional 3-module M is nonempty,
and the set of all skeleta of modules with fixed dimension vector d is finite. The rel-
evance of skeleta towards a generic understanding of the modules in the irreducible
components of Repd(3) is underlined by the following fact:

Observation 2.3. Let P be the power set of the set of all skeleta with dimension
vector d. Then the map

Repd(3)→ P, x 7→ {skeleta of Mx},

is generically constant on each irreducible component of Repd(3).
To see this, let C ⊆ Repd(3) be an irreducible component, and S the generic

radical layering of its modules. Then C∩Rep S is open in C, and for any skeleton σ
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with layering S, the set

Rep(σ ) := {x ∈ Repd(3) | σ is a skeleton of Mx}

is an open subvariety of Rep S; see [Huisgen-Zimmermann 2007, Lemma 3.8].
Hence, a skeleton σ with layering S arises as a skeleton of the modules in a dense
open subset of C precisely when C∩Rep(σ ) is nonempty. Given that there are only
finitely many eligible skeleta, this proves the claim.

Next, we recall more discerning graphical invariants associated to a finite-
dimensional 3-module, namely its hypergraphs; see Definition 3.9 of [Babson
et al. 2009].

Definitions 2.4 (σ -critical paths and hypergraphs). Again, we let Ptrunc be a co-
ordinatized projective 3trunc-module with top S0 and assume σ ⊆ Ptrunc to be an
abstract skeleton with layering S. Recall that the distinguished top elements zr of
Ptrunc coincide with the paths of length zero in σ .

(1) A σ -critical path is a path q ∈ Ptrunc \ σ such that every proper initial subpath
of q belongs to σ . Thus, q = αq ′, where q ′ ∈ σ and α is an arrow; in particular,
length(q) > 0. Given a σ -critical path q, we define a subset σq ⊆ σ as follows:

σq := {paths p ∈ σ | length( p)≥ length(q) and end( p)= end(q)}.

The final condition in the definition of σq means that all paths in σq are normed
(on the left) by the same vertex as q.

(2) Suppose M ∈ 3-mod has skeleton σ relative to a full sequence z1, . . . , zt

of top elements. The 3-structure of M is then determined by the family of
expansion coefficients corresponding to the σ -critical paths q = q zr ∈ Ptrunc,
namely

q zr =
∑

p=pzs∈σq

cq, p p zs (2-1)

for unique scalars c p,q ∈ K .

(3) We refer to any pair

G = (σ, (τq)q σ -critical) with τq ⊆ σq for all σ -critical paths q

as an (undirected) hypergraph in Ptrunc. The set τq is called the support set
of q. Empty support sets are allowed.

In informal terms: the vertices of these hypergraphs are the elements of σ ,
and a typical (hyper)edge, labeled by an arrow γ ∈ Q1, connects a vertex
p ∈ σ to the vertex γ p if γ p ∈ σ and to the support set τγ p of vertices if γ p
is σ -critical.
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(4) A hypergraph G as above is called a hypergraph of a 3-module M (relative to
a full sequence z1, . . . , zt of top elements of M) if σ is a skeleton of M and,
in the expansion (2-1) above, cq, p 6= 0 precisely when p ∈ τq .

While hypergraphs pin down families of modules, as opposed to individual
isomorphism classes, they provide a useful tool for communicating, in a visually
suggestive format, the generic structure of the modules in the components. For
our diagrammatic representations of hypergraphs, we refer to [Babson et al. 2009],
[Derksen et al. 2014], and to the example below. This example will serve as a staple
in the sequel.

Example 2.5. Let 3= KQ/〈the paths of length 4〉 =3trunc, where Q is the quiver

1
α1

++

α2

��

αr
...

��

2
β1

kk

β2

__

βs

...

VV

(a) First suppose that r = 2 and s= 1. Choose S := (S1, S2, S1, S2), and let Ptrunc=

3truncz be the corresponding 3trunc-projective cover of S0 = S1, coordinatized by
a fixed top element z. Generically, the modules in Rep S then have a hypergraph
of the form

1
α1

2

β1

α2

1
α1 α2

2
.............

..
...
..
..
..
....
..............

..

...

..

.......................................................................................

..

...
....

This diagram is to be read as follows: the radical layering of any module G having
the above hypergraph (relative to a top element z ∈ G, say) is S, and the skeleton
chosen to represent G is σ := {z, α1z, β1α1z, α1β1α1z}; the edges corresponding
to paths in the skeleton σ are drawn as solid edges, while the dashed edges stand
for the terminal arrows of σ -critical paths. Moreover, the diagram contains the
information that the support sets τq for the two σ -critical paths q = α2z and
q = α2β1α1z in Ptrunc (in the sense of Definitions 2.4), are τα2 z = {α1z, α1β1α1z}
and τα2β1α1 z = {α1β1α1z}. Indeed, the “dotted pool” indicates that the element α2z
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of G is a K -linear combination of α1z and α1β1α1z with coefficients in K ∗; on
the other hand, given that the set τα2β1α1 z is a singleton, no extra pooling device
is required to communicate the condition that α2β1α1z ∈ G be a nonzero scalar
multiple of α1β1α1z.

Next, we consider the semisimple sequence S′ := (S2
1 , S2

2 , 0, 0). The modules in
Rep S′ generically look as follows, relative to top elements z1, z2, say:

1
α1

1
α1

2
....................................................................................................................

...

...
..

α2

2

α2

Here, the dotted pool serves double duty in indicating that both α2z1 and α2z2 are
linear combinations of α1z1 and α1z2 with (unspecified) nonzero coefficients. In
the sequel, we will use the fact that, generically, the modules in Rep S′ decompose
in the form

1
α1 α2

⊕ 1
α1 α2

2 2

(b) Now let r = 3. The hypergraphs

(I) (II) (III)

1

z1

α1

1

z2

α2

1

z3

•
1

z1

α1

1

z2

α2
1

z3

α3

1

z1

α1

1

z2

α2

1

z3

α3

2 2 2
...................................................................................

...

...
..

2

are hypergraphs of modules Mi =
(⊕

1≤ j≤33z j
)
/Ui , where z j = e1 for j = 1, 2, 3.

Here the submodule U1 is generated by α2z2 − α1z1, α3z3 and α j zk for j 6= k,
while U2 is generated by α2z2−α1z1, α3z3−α1z1 and α j zk for j 6= k; finally, U3

is generated by α3z3 − (α1z1 + α2z2) and α j zk for j 6= k. The chosen reference
skeleton of M1 and M2 is σ := {z1, z2, z3, α1z1}, and that of M3 is σ ∪{α2z2}. Note
that the dimension of JM3 is 2, the number of displayed vertices in the second row
of the hypergraph.

Generically, the modules with radical layering S′ := (S2
1 , S2

2 , 0, 0) are indecom-
posable and have hypergraphs of the form

1

z1

α1

1

z2

α1

2
..........................................................................................................................................................

...

...
..

α2
α3

2

α2
α3
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The modules in Rep S, where S := (S1, S2, S1, S2), generically have a hyper-
graph akin to the first one shown in part (a). �

3. The main results for general 3

3A. Pared-down parametrizing varieties. Towards a description of Rep S, we
present lower-dimensional, more manageable varieties parametrizing the modules
with radical layering S.

Definition 3.1 (decompositions of K |d| induced by semisimple sequences). Let
S= (S0, . . . ,SL) be a realizable semisimple sequence in 3-mod with dim S= d,
and write d = |d|. Consider a vector space decomposition of K d which is induced
by S in the following sense: namely,

K d
=

⊕
0≤l≤L
1≤i≤n

K(l,i)

with the property that dimK(l,i) = dim ei Sl for all eligible indices l and i . Set
Kl =

⊕
1≤i≤n K(l,i) for l ≤ L , and KL+1 = K(L+1,i) = 0. Given a family ( fα)α∈Q1

of K -endomorphisms of K d , the following notation will be convenient: whenever
p = αl · · ·α1 is a path of positive length l in Q, we set f p = fαl ◦ · · · ◦ fα1 ; if p is
a path of length 0, say p = ei , then f p is defined to be the canonical projection
K d
→
⊕

0≤l≤L K(l,i) ⊆ K d relative to the above decomposition. Thus, we obtain
a K -algebra homomorphism KQ→ EndK (K d) such that p 7→ f p for all paths p
in Q.

By Q≥l we denote the set of paths of length at least l in Q. The following lemma
is an upgraded version of [Huisgen-Zimmermann 2016, Lemma 5.1] and is proved
analogously.

Lemma 3.2 (triangular points in Repd(3)). We refer to the above notation. Suppose
that f = ( fα)α∈Q1 is a family of K -linear maps K d

→ K d satisfying the following
three conditions: For any arrow α from ei to e j and any index l ∈ {0, . . . , L},

(i) fα(K(l,r))= 0 for all r 6= i ;

(ii) fα(K(l,i))⊆
⊕

l+1≤m≤L K(m, j);

(iii) whenever c1, . . . , cm ∈ K and p1, . . . , pm are paths of length ≤ L in Q, which
have a common starting vertex and a common terminal vertex,∑

1≤ j≤m

c j p j ∈ I =⇒

∑
1≤ j≤m

c j f p j = 0.

Then the following statements (I)–(III) hold:
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(I) The tuple f is a point in Repd(3), and the radical layering of the correspond-
ing3-module M f satisfies S(M f )≥S. Moreover, all3-modules with radical
layering S are represented by suitable points f ∈ Repd(3) satisfying (i)–(iii).

(II) J l M f =
∑

p∈Q≥l
Im( f p) for all l ∈ {0, . . . , L}.

(III) S(M f )= S precisely when, for each h ∈ {0, . . . , L}, the linear map

(K0)
Q≥h →

⊕
l≥h

Kl, (xq)q∈Q≥h 7→

∑
q

fq(xq),

has maximal rank, namely
∑

l≥h dimKl . �

The lemma prompts an analysis of the following two subvarieties of Repd(3).

3.3 (the varieties 1-Rep(≥S) and 1-Rep S). Keep S and a decomposition of K d

induced by S fixed. The collection of all f = ( fα) satisfying conditions (i)–(iii) of
Lemma 3.2 is a closed subvariety of Repd(3) which we denote by 1-Rep(≥S).
Indeed, the inclusion map

1-Rep(≥S) ↪→ Repd(3)

provided by part (I) of Lemma 3.2 is a closed immersion.
To see this, take B(l,µ) = (b1

(l,µ), . . . , bdl,µ
(l,µ)) to be an ordered basis for K(l,µ) and

B to be the lexicographically ordered union of the B(l,µ). Relative to this basis
for K d , the image of the above embedding consists of all those families (Fα) of
matrices in Repd(3) such that each Fα has a strictly lower triangular form of the
following ilk:

• the only nonzero entries in any column labeled (l, µ)( j) are confined to posi-
tions with lower label (l + 1, ν), . . . , (L , ν), provided α is an arrow eµ→ eν ,
and

• condition (iii) of Lemma 3.2 is satisfied.

The latter requirement translates into polynomial equations for the entries of the Fα .
This shows that the considered embedding is indeed a closed immersion.

Moreover, observe that, up to isomorphism, the variety1-Rep(≥S) is determined
by S, irrespective of the choice of a decomposition K d

=
⊕

l,i K(l,i) induced
by S. Lemma and Definition 3.6 below will show that the GL(d)-stable hull
GL(d).(1-Rep(≥S))⊆ Repd(3) is, in fact, unique in the strict sense.

We will identify1-Rep(≥S)with its image under the above immersion whenever
convenient. The subset of 1-Rep(≥S) consisting of the points which correspond
to modules with radical layering S will be denoted by 1-Rep S. In view of part
(III) of Lemma 3.2, 1-Rep S is an open subvariety of 1-Rep(≥S).

Next, we consider the effect of conjugation by GL(d) on the varieties1-Rep(≥S)

and 1-Rep(S).
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3.4 (1-Rep(≥S) under the GL(d)-action). Viewed as subvarieties of Repd(3),
the varieties 1-Rep(≥S) and 1-Rep(S) fail to be stable under the GL(d)-action
in all nontrivial cases. However, each of these varieties carries a conjugation action
by the subgroup GL(S) of GL(d) which consists of the sequences (g1, . . . , gn)

with the property that each gi leaves the subspaces
⊕

j≥l K( j,i) invariant for all l.
Caveat: the GL(S)-action does not separate the isomorphism classes of the pertinent
modules in general.

By part (I) of Lemma 3.2, the closure of 1-Rep(≥S) under the GL(d)-action
on Repd(3) is contained in the closed subvariety

⋃
S′≥S Rep S′ of Repd(3). In

fact, in view of the lemma,

Rep S= GL(d).(1-Rep(S))⊆ GL(d).(1-Rep(≥S))⊆
⋃

S′≥S

Rep S′.

Either inclusion may be proper. This is obvious for the first. Regarding the second,
let 3= KQ/〈β2

〉, for instance, where

Q := 1 α
// 2 βee .

Moreover, take S := (S2
1 , S2

2) and S̃ := (S2
1 ⊕ S2, S2). Then S̃≥ S, but the module

N := S2
1 ⊕3e2 in Rep(S̃) is not isomorphic to a module in 1-Rep(≥S). Indeed,

since K(0,2) = 0 and dimK(1,2) = 2 in the decomposition of K 4 induced by S, we
have S2

2 ⊆ soc M for all M in 1-Rep(≥S), while this is not the case for N .

3B. The closure of Rep S in Repd(3). We start with an elementary lemma char-
acterizing the modules corresponding to the points in 1-Rep(≥S). For a given
realizable semisimple sequence S = (S0, . . . ,SL) with dim S = d, we fix a de-
composition of K |d| induced by S as in Definition 3.1. As we already pointed out,
modulo isomorphism of varieties, this choice has no bearing on 1-Rep(≥S).

Definition 3.5 (filtrations governed by S). Let M be a3-module. A filtration of M
governed by S is any chain of submodules

M = M0 ⊇ M1 ⊇ · · · ⊇ ML+1 = 0

such that each factor Ml/Ml+1 is isomorphic to Sl ; in other words, J Ml ⊆ Ml+1

and dim Ml/Ml+1 = dim Sl for 0 ≤ l ≤ L . Filtrations with these properties will
also be referred to more briefly as S-filtrations.

Lemma and Definition 3.6 (the variety Filt S). Let 3 = KQ/I be an arbitrary
basic finite-dimensional K -algebra. Moreover, let S be a semisimple sequence with
dim S= d. Then the following conditions are equivalent for a 3-module M :

(1) M belongs to GL(d).(1-Rep(≥S)), the GL(d)-stable hull of 1-Rep(≥S).

(2) M has a filtration governed by S.
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In particular, GL(d).(1-Rep(≥S)) is independent of the choice of a decomposi-
tion of K |d| induced by S. Motivated by the above equivalence, we will denote this
subvariety of Repd(3) by Filt S.

Proof. (1) =⇒ (2): Suppose that M is represented by some point f = ( fα) ∈
1-Rep(≥S). This means that, up to isomorphism, M equals K d , equipped with
the 3-module structure of Lemma 3.2. In particular, we obtain a filtration of M
governed by S by setting Ml =

⊕
j≥l, 1≤i≤n K( j,i).

(2) =⇒ (1): Given an S-filtration (Ml)0≤l≤L+1 of M , we take M(l,i) to be a vector
space complement of ei Ml+1 in ei Ml for 0≤ l ≤ L . Moreover, we set f = ( fα)α∈Q1 ,
where fα(x)= αx for x ∈ M . Then the decomposition M =

⊕
0≤l≤L , 1≤i≤n M(l,i)

satisfies conditions (i)–(iii) of Lemma 3.2, and thus can be shifted to a decomposition⊕
0≤l≤L , 1≤i≤n K(l,i) of K d induced by S via a suitable family h = (h(l,i)) of

isomorphisms h(l,i) : M(l,i)→ K(l,i). We conclude that h f h−1
∈1-Rep(≥S) and

that Mh f h−1 ∼= M . �

The upcoming remarks (1)–(3) will be tacitly used throughout the sequel.

Remarks 3.7. (1) Filt S is always nonempty, irrespective of whether S is real-
izable. Indeed, the semisimple module

⊕
0≤l≤L Sl has a filtration governed

by S.

(2) For any M ∈ 3-mod, the chain M ⊇ JM ⊇ · · · ⊇ J L+1 M = 0 is the only
filtration of M governed by S(M); moreover, if S′ is any semisimple sequence
governing a filtration of M , then S′ ≤ S(M).

(3) The socle layering S∗(M) of M governs the socle filtration, provided the tradi-
tional indexing of the latter is reversed; i.e., if S∗(M)= (S∗0, . . . ,S∗m, 0, . . . , 0)
with S∗m 6= 0, then the filtration

socm M = M ⊇ socm−1 M ⊇ · · · ⊇ soc0 M = soc M ⊇ 0

is governed by the semisimple sequence (S∗m, . . . ,S∗0, 0, . . . , 0) (which is not
necessarily realizable). In particular, (S∗m, . . . ,S∗0, 0, . . . , 0)≤ S(M).

(4) K. Bongartz pointed out to us that the upcoming Theorem 3.8 may alternatively
be derived from a useful result of Steinberg. We state it below, but omit
detail. We do fully anchor our own steppingstone to Theorem 3.8 (namely
Theorem 3.9), though. The embedding of GRASS(S) into a flag variety, as
specified there, is instrumental in a further analysis of the closure of GRASS(S)
in GRASSd(3).

Lemma [Steinberg 1974, Lemma 2, p. 68]. Let V be a quasiprojective variety
carrying a morphic action by a connected linear algebraic group G. Moreover,
let U be a closed subvariety of V which is stable under the action of some par-
abolic subgroup of G. Then the G-stable hull G.U of U in V is in turn closed.
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Theorem 3.8. Let 3 be an arbitrary basic finite-dimensional algebra, and let S be
a semisimple sequence in3-mod with dim S= d. Then the GL(d)-stable set Filt S,
which consists of the points in Repd(3) encoding modules with S-filtrations, is a
closed subvariety of Repd(3).

In particular, Rep S ⊆ Filt S, meaning that every module in Rep S has an
S-filtration.

To prove Theorem 3.8, we switch back and forth between the affine and projective
settings, Repd(3) and GRASSd(3), using Proposition 2.1 to transfer information
from one to the other. Again, we denote by P the3-projective cover of

⊕
1≤i≤n Sdi

i
in whose submodule lattice the points of GRASSd(3) are located. We start by
establishing a natural embedding of GRASS(S) into a projective variety consisting
of submodule flags DL+1 ⊆ DL ⊆ · · · ⊆ D0 = P of P which are governed by S.
It is this embedding which makes information about the closure of GRASS(S) in
GRASSd(3) more accessible.

Theorem 3.9. Consider the subset U of the partial flag variety Flag(∂0, . . . ,∂L+1,P)
of P , where ∂i := (dim P−|d|)+

∑L
l=L+1−i |dim Sl |, consisting of the3-submodule

flags

0⊆ DL+1 ⊆ DL ⊆ · · · ⊆ D0 = P with Dl/Dl+1 ∼= Sl for 0≤ l ≤ L .

Then U is closed, and there is a natural embedding of varieties

8 : GRASS(S)→ U,

which induces an isomorphism onto its image.

Proof of Theorem 3.9. Recall that a module N belongs to GRASS(S), meaning
that N ∼= P/C with C ∈ GRASS(S), precisely when

dim Sl = dim J l N/J l+1 N = dim(C + J l P)/(C + J l+1 P)

for all eligible l. Set d(L+1)
= d and d(l) = d−

∑
l≤r≤L dim Sr for 0 ≤ l ≤ L . In

particular, we obtain GRASSd(L+1)(3)= GRASSd(3), and GRASSd(0)(3)= {P}.
Clearly, U is a subset of the projective variety

GRASSd(L+1)(3)×GRASSd(L)(3)× · · ·×GRASSd(0)(3);

namely, U consists of those points (DL+1, . . . , D0) in the direct product that corre-
spond to flags DL+1 ⊆ DL ⊆ · · · ⊆ D0 = P of 3-submodules of P satisfying

J Dl ⊆ Dl+1 and dim Dl/Dl+1 = dim Sl for 0≤ l ≤ L . (‡)

To verify that the set U is closed in the given direct product of module Grassmannians,
note that the equalities under (‡), specifying the dimension vectors of the consecutive
quotients Dl/Dl+1, are actually automatic; this is due to the placement of the Dl in
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GRASSd(l)(3), respectively. As for the inclusions under (‡): it is well-known that,
given any f ∈ EndK (P), the requirement “ f (Dl) ⊆ Dl+1 for all l” cuts a closed
subset out of the variety{

(Dl) ∈
∏

0≤l≤L+1

GRASSd(l)(3)
∣∣∣ Dl+1 ⊆ Dl for 0≤ l ≤ L

}
of partial submodule flags. Applying this to the linear maps P → P given by
x 7→ αx for α ∈ Q1, and investing the fact that the displayed partial flag variety is
closed in the given product of Grassmannians, one finds that U is indeed closed. In
particular, U is a projective variety.

We have a natural embedding of GRASS(S) into U, namely

8 : GRASS(S)→ U, C 7→ (C + J L+1 P,C + J L P, . . . ,C + J P,C + J 0 P),

where the leftmost entry C + J L+1 P of the sequence equals C , and the rightmost
entry equals P .

To see that 8 is a morphism, we use the open affine cover (GRASS(σ ))σ of
GRASS(S), where σ traces the skeleta with layering S and GRASS(σ ) 6= ∅.
For that purpose, recall the following description of GRASS(σ ) from [Huisgen-
Zimmermann 2009]. We view the 3-projective cover P of S0 as a direct summand
of the projective cover P =

⊕
1≤r≤|d|3zr of

⊕
0≤l≤L Sl , say P =

⊕
1≤r≤t 3zr .

On identifying the top elements zr of P with those of Ptrunc (see Definitions 2.2),
we retrieve each of the subsets σ of Ptrunc as a subset of P ; as such, σ consists of |d|
linearly independent elements of P . Define s := dim P − |d|, and let Schu(σ ) be
the big open Schubert cell of Gr(s, P) consisting of the vector space complements
of the subspace

⊕
p∈σ K p in P . Then GRASS(σ ) := GRASS(S) ∩ Schu(σ )

is open in GRASS(S), and the union of the GRASS(σ ), with σ as specified,
equals GRASS(S); see [Huisgen-Zimmermann 2009, Observation 3.6]. By [ibid.,
Theorem 3.17], the GRASS(σ ) are affine; in fact, they can readily be realized as
closed subsets of the K -space

∧s P relative to the Plücker coordinates [c1∧· · ·∧cs]

of Schu(σ ).
Hence it suffices to show that, for each such skeleton σ , the restriction 8σ of 8

to GRASS(σ ) is a morphism. For 0≤ j ≤ L , let σ j be the set of all paths of length j
in σ . Enumerate the elements of σ so that increasing indices correspond to weakly
decreasing lengths. If tl := |σl |+ · · ·+ |σL |, we thus obtain

⊔
l≤ j≤L σ j in the form⊔

l≤ j≤L

σ j = { p1, . . . , ptl } for 0≤ l ≤ L .

We deduce that, given any K -basis c1, . . . , cs for a point C ∈ GRASS(σ ), the
elements c1, . . . , cs, p1, . . . , ptl form a K -basis for C + J l P : indeed, J l P is
generated by the paths in P of the form q zr , where q is a path of length ≥ l in KQ
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and r ≤ |d|. Moreover, by the definition of GRASS(σ ), p1, . . . , ptl induce a basis
for J l(P/C)= (J l P +C)/C . This shows that the restriction 8σ sends any point
C ∈ GRASS(σ ) to(
[c1∧· · ·∧cs], [c1∧· · ·∧cs ∧ p1∧· · ·∧ ptL ], . . . , [c1∧· · ·∧cs ∧ p1∧· · ·∧ pt0]

)
,

whence 8σ is indeed a morphism.
Finally, we observe that 8 induces an isomorphism onto its image. Indeed, the

inverse is the restriction to Im(8) of the projection onto the leftmost component of
the direct product of the GRASSd(l)(3), namely the restriction of

9 :
∏

0≤l≤L+1

GRASSd(l)(3)→ GRASSd(3), (DL+1, . . . , D0) 7→ DL+1,

to Im(8). Therefore 8−1
: Im(8)→ GRASS(S) is a morphism. �

Proof of Theorem 3.8. We refer to the notation in the proof of Theorem 3.9. Since
U is a projective variety, so is 9(U). In particular, 9(U) is closed in GRASSd(3).

By condition (‡) spelled out in the proof of Theorem 3.9, the image 9(U) ⊆
GRASSd(3) consists precisely of those points C ∈ GRASSd(3) which have the
property that P/C has a filtration governed by S; in particular 9(U) is stable
under the Aut3(P)-action of GRASSd(3). In light of Lemma and Definition 3.6,
Proposition 2.1 thus matches up 9(U) with the GL(d)-stable subset Filt S of
Repd(3) and tells us that Filt S is in turn closed.

For the final claim, it suffices to observe that Rep S⊆ Filt S. �

Theorem 3.8 prompts us to introduce a new module invariant, which will turn
out to be highly informative in gauging the overlaps among the closed varieties
Rep S.

Definition 3.10 (the module invariant 0). For M ∈ 3-mod, let 0(M) denote the
number of realizable semisimple sequences which govern some filtration of M .

Corollary 3.11. The map 0• : Repd(3)→ N sending x to 0(Mx) is upper semi-
continuous.

In particular, whenever C is an irreducible component of some Rep S such that
1 ∈ 0•(C), the closure C is an irreducible component of Repd(3).

Proof. Let R be the set of all realizable semisimple sequences with dimension
vector d. Moreover, for a ∈N, let R(a) be the collection of all those intersections⋂

i Filt(S(i))which involve at least a distinct sequences S(i)∈R. Then the preimage
0−1
•
([a,∞)) is the union of the sets in R(a). Since each Filt(S(i)) is closed in

Repd(3) by Theorem 3.8 and R(a) is finite, the union 0−1
•
([a,∞)) is closed. This

proves the claim regarding upper semicontinuity.
To justify the final assertion, suppose that C is properly contained in some

irreducible component C′ of Repd(3). Then C′ is an irreducible component of
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some Rep S′ with S′ < S. Since Rep S′ ⊆ Filt(S′) by Theorem 3.8, all modules
in C have a filtration governed by S′ in this situation, whence 0(M) > 1 for all
M ∈ Rep S. �

Now let D = HomK (−, K ) :3-mod→mod-3 be the standard duality. Clearly,
M ∈3-mod contains a descending submodule chain governed by S= (S0, . . . ,SL)

if and only if D(M) contains an ascending chain M ′
−1=0⊆M ′0⊆· · ·⊆M ′L=D(M)

which is cogoverned by D(S) = (D(S0), . . . , D(SL)), in the sense that each of
the consecutive quotients M ′l/M ′l−1 is isomorphic to D(Sl). We define Cofilt S′

to be the subset of Repd(3) whose points correspond to the modules which are
cogoverned by a semisimple sequence S′. The duality D̂ : Repd(3-mod) →
Repd(mod-3) of [Huisgen-Zimmermann and Shipman 2017, Section 2.C] thus
yields the following dual of Theorem 3.8; we spell it out since, in size comparisons
of C(i) versus C( j), for irreducible components C(k) of Rep S, one gains mileage
in combining Theorem 3.8 with its dual. (Recall that the process of filtering the
irreducible components of Repd(3) out of

{C | C is a component of some Rep S with dim S= d}

rests on comparisons of this ilk.)

Theorem 3.12 (dual of Theorem 3.8). If S∗ = (S∗0, . . . ,S∗L) is a semisimple se-
quence in3-mod with dimension vector d, let Corep S∗ (resp. Cofilt S∗) be the set
of all points in Repd(3) which correspond to modules with socle series S∗ (resp.
to modules with filtrations cogoverned by S∗).

Then Cofilt(S∗) is a closed subvariety of Repd(3), and hence Corep S∗ ⊆

Cofilt S∗. In particular, if C is an irreducible component of Rep S such that,
generically, the modules in C have socle layering S∗, then C ⊆ Filt S∩Cofilt S∗.

�

We close the section with an example to the effect that, in general, the inclusion
Rep S⊆ Filt S may be proper and the final implication of Corollary 3.11 need not
be reversible. This contrasts with the situation where 3=3trunc, as we will see in
Section 4.

Example 3.13. Consider the quiver Q of Example 2.5 with r = 2 and s= 1, and set

3= KQ/〈β1α2, α2β1, all paths of length 4〉.

Let d := (2, 2), S := (S1, S2, S1, S2), and S′ := (S2
1 , S2

2 , 0, 0). Then the varieties
Rep S and Rep S′ are irreducible, and generically their modules have hypergraphs
as shown in Figure 1, whence both are contained in Filt S. Clearly, Rep S 6⊆Rep S′,
due to the generic Loewy lengths of the modules in Rep S and Rep S′. By com-
paring generic α2-ranks, one finds, moreover, that Rep S′ 6⊆ Rep S. In conclusion,
both Rep S and Rep S′ are components of Filt S. In fact, both of these closures are
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Figure 1. Hypergraphs of generic modules for Rep S (left) and
Rep S′ (right) for Example 3.13.

even irreducible components of Repd(3), the latter failing to satisfy the sufficient
condition of Corollary 3.11. Indeed, 0(M)= 2 for all M in Rep S′.

It is readily verified that the total number of components of Repd(3) is three,
the remaining component being Rep S′′ = Filt(S′′) for S′′ = (S2, S1, S2, S1). By
contrast, on replacing 3 by the associated truncated path algebra 3trunc, two of the
three components of Repd(3) fuse into a single component of Repd(3trunc); see
Example 6.1(b) below. �

4. The main results for truncated 3

Throughout this section, 3 stands for a truncated path algebra of Loewy length
L + 1, i.e., 3 = 3trunc. In particular, the irreducible components of Repd(3)

are among the Rep S, where S traces the d-dimensional realizable semisimple
sequences. The upcoming theory characterizes these components in terms of their
generic radical layerings S (or, equivalently, in terms of their generic modules in
the sense of Section 5 below). As in the special cases already mastered — the local
case and that of an acyclic quiver Q — the classification may be implemented on a
computer; see Section 5B. However, the general algorithm is considerably more
labor-intensive than the 2-test which applies to the local and acyclic cases.

As we will recall in Section 5, the generic properties of the modules in any
component Rep S may be accessed via a single generic module G(S). A key asset
of the truncated situation lies in the fact that such a module G(S) is available on
sight from S; detail will follow in Section 5A below.

Moreover, it is particularly easy to recognize realizability of semisimple se-
quences over truncated path algebras. We recall the following from [Huisgen-
Zimmermann 2016, Criterion 3.2]:

Realizability Criterion 4.1. Let B = (Bi j ) be the adjacency matrix of Q, i.e., Bi j

is the number of arrows from ei to e j . Then S= (S0, . . . ,SL) is realizable if and
only if dim Sl ≤ (dim Sl−1) · B for all 1≤ l ≤ L; the latter, in turn, is equivalent to
realizability of the two-term sequences (Sl,Sl+1) in (3/J 2)-mod for l < L . �
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In more intuitive terms: S is realizable if and only if there exists an abstract
skeleton with layering S. Moreover, note that in the positive case, any such skeleton
belongs to the generic set of skeleta of the modules in Rep S.

Next, we find that the description of 1-Rep(≥S) may be simplified in the
truncated situation, in that requirement (iii) of Lemma 3.2 is now void.

Observation 4.2 (1-Rep(≥S) is an affine space). Referring to the decomposition
of K d induced by S in Definition 3.1, we obtain that 1-Rep(≥S) consists of those
points f = ( fα)α ∈ (End3(K d))Q1 which satisfy the following conditions: for any
arrow α from ei to e j ,

• fα(K(l,r))= 0 for all r 6= i , and

• fα(K(l,i))⊆
⊕

l+1≤m≤L K(m, j).

In particular, 1-Rep(≥S) is a full affine space in this situation. Indeed, the
image of the closed immersion 1-Rep(≥S) ↪→ Repd(3), which we presented
in 3.3, consists of all sequences of di×di matrices of the described lower triangular
format. Consequently, Filt S, being a morphic image of GL(d)×1-Rep(≥S), is
irreducible as well.

This observation, in turn, allows us to derive a full characterization of the modules
in Rep S from Theorem 3.8.

Theorem 4.3. Suppose3 is a truncated path algebra and S a realizable semisimple
sequence. Then

Rep S= Filt S.

In other words, a module M belongs to Rep S precisely when M has a filtration
governed by S.

Dually, Corep S∗ = Cofilt S∗, where S∗ is the generic socle layering of the
modules in Rep S. If Rep S is an irreducible component of Repd(3), then

Corep S∗ = Cofilt S∗ = Filt S= Rep S.

Proof. Concerning the first equality: In light of Observation 4.2, the variety
1-Rep(≥S) is irreducible. Therefore the open subset 1-Rep S is dense in it,
meaning that the closure 1-Rep S in Repd(3) contains 1-Rep(≥ S). Moreover,
1-Rep S⊆1-Rep(≥S) by construction, whence we obtain

1-Rep(≥S)⊆1-Rep S⊆ Rep S.

Given that Rep S is GL(d)-stable, it follows that Filt S⊆Rep S due to Lemma and
Definition 3.6. The reverse inclusion was established in Theorem 3.8. The second
assertion follows by duality (see Theorem 3.12 and [Huisgen-Zimmermann and
Shipman 2017, Corollary 3.4.b]).
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In particular, duality guarantees that the varieties Corep S∗ are again irreducible.
For arbitrary S we find, moreover, that Rep S⊆ Corep S∗, since the modules in a
dense open subset of Rep S have socle layering S∗. Therefore, Rep S=Corep S∗

whenever Rep S is an irreducible component of Repd(3). �

The following consequence, addressing the relative sizes of the closures Rep S, is
now immediate. It was independently obtained by I. Shipman with different methods;
he also developed an algorithm for checking the considered inclusion via matrices
of dimension vectors (Shipman, personal communication, 2016). Algorithmic
counterparts to the upcoming Corollary 4.4 and Theorem 4.5 will be addressed in
Section 5B.

Corollary 4.4 (comparing the varieties Rep S). Let 3 be a truncated path algebra.
Moreover, suppose that S and S′ are realizable semisimple sequences with the same
dimension vector. Then Rep S⊆ Rep S′ if and only if (generically) the modules in
Rep S have filtrations governed by S′. �

The upper semicontinuous map 0• : Repd(3)→ N of Corollary 3.11 detects all
irreducible components of Repd(3). Indeed, S is the generic radical layering of an
irreducible component of Repd(3) if and only if 0• attains the value 1 on Rep S.
We record this as follows.

Theorem 4.5. Let3 be a truncated path algebra. If S(1), . . . ,S(m) are the distinct
d-dimensional semisimple sequences S with 1 ∈ 0•(Rep S), then

Filt(S(1))= Rep S(1), . . . , Filt(S(m))= Rep S(m)

are the distinct irreducible components of Repd(3).

Proof. Suppose S is a realizable d-dimensional semisimple sequence. If 1 ∈
0•(Rep S), then Rep S 6⊆ Filt(S′)= Rep S′ for any semisimple sequence S′ 6= S,
whence Rep S is an irreducible component of Repd(3).

If, on the other hand, 1 /∈0•(Rep S), then every module in Rep S is contained in
some variety Filt S′, where S′ is a realizable semisimple sequence different from S.
Therefore,

Rep S⊆
⋃

S′ realizable
S′ 6=S

Filt S′ =
⋃

S′realizable
S′ 6=S

Rep S′,

the final equality being part of Theorem 4.3. Irreducibility of Rep S thus implies
Rep S ⊆ Rep S′ for some S′ 6= S, which shows that Rep S fails to be maximal
irreducible. �
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5. Applications of Section 4: Generic modules for
the components over truncated path algebras

Barring Example 5.2(b), 3 will, throughout this section, stand for a truncated path
algebra of Loewy length L + 1. Moreover, d will be a dimension vector of 3.

If one extends the base field K of 3 to an algebraically closed field of infinite
transcendence degree over its prime field K0, neither the description of the com-
ponents of Repd(3) nor the generic properties of their modules will be affected;
see [Huisgen-Zimmermann and Shipman 2017, Section 2.B]. This means that,
in developing a generic representation theory for the irreducible components of
Repd(3), one does not lose generality in assuming that trdeg(K : K0)=∞.

5A. Generic modules. Assume that K has infinite transcendence degree over K0,
and let S be a realizable d-dimensional semisimple sequence. Given that 3 =
3trunc, we will denote the coordinatized projective 3trunc-projective cover Ptrunc =⊕

1≤r≤t 3zr of S0 (see Section 2) more simply by P .
Let σ be any skeleton with layering S. Then the following module G = G(S) is

generic for Rep S in the strict sense of [Babson et al. 2009, Definition 4.2]:

G = P/C, where C =
∑

q σ -critical

3

(
q−

∑
p∈σq

cq, p p
)

for some family (cq, p)q σ -critical, p∈σq of scalars which is algebraically independent
over K0. That G is generic means that G has all those generic properties of the
modules in Rep S which are invariant under Morita self-equivalences 3-mod→
3-mod induced by automorphisms of K over K0. Moreover, G is unique relative to
this property, up to such a Morita self-equivalence. We refer to [ibid., Theorem 5.12],
and to [ibid., Section 4] for a more general statement addressing arbitrary path
algebras modulo relations.

Filtrations of generic modules. In particular, the preceding comments ensure that
tests for semisimple sequences which generically govern filtrations of the modules
in Rep S may be confined to “the” generic module G = G(S).

Caveat: Suppose G is a generic module for an irreducible component of Repd(3).
While the combination of Corollary 3.11 and Theorem 4.5 guarantees that the radical
layering S(G) is the only realizable semisimple sequence to govern a filtration
of G, there will in general be further, nonrealizable, sequences governing suitable
filtrations. For instance, let Q be the quiver 4←−1 α

−→2−→3 and3 any truncated
path algebra based on Q. If d=(0, 1, 1, 1), then Repd(3) is irreducible with generic
module G=3α⊕S4 for any truncation3 of KQ. In particular, S(G)= (S2⊕S4, S3)

is the only realizable semisimple sequence governing all modules with dimension
vector d. If 3 has Loewy length 2, the sequence (S2, S3 ⊕ S4) also governs a
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filtration of G; if the Loewy length of 3 is 3, then (S2, S3, S4) and (S4, S2, S3) are
additional (nonrealizable) semisimple sequences governing filtrations of G.

5B. Algorithmic aspect of Corollary 4.4 and Theorem 4.5. Section 5A tells us
that, for any two realizable d-dimensional semisimple sequences S and S′, we have

Rep S⊆ Rep S′ ⇐⇒ G(S) ∈ Filt S′.

From Lemma and Definition 3.6 we know, moreover, that Filt S′ is the GL(d)-
stable hull of 1-Rep(≥S′). Hence, if the point (Gα)α∈Q1 ∈ Rep S represents the
isomorphism class of G(S), the question of whether G(S) lies in Filt S′ boils
down to the question of whether the matrices Gα are “simultaneously” similar (i.e.,
similar by way of a single element of GL(d)) to matrices having the lower triangular
format Fα characterizing the points in 1-Rep(≥ S′). This format is spelled out
in 3.3.

Given that there are only finitely many d-dimensional semisimple sequences to
be compared, this means in particular that the decision of whether or not Rep S is
a component of Repd(3) is algorithmic.

5C. Interconnections among the components. The following statement rephrases
a result of Crawley-Boevey and Schröer [2002, Theorem 1.1] in terms of generic
modules: if G is a generic module for an irreducible component C of Repd(3) and
G =

⊕
1≤ j≤s G j is a decomposition into direct summands, then each G j is generic

for an irreducible component of Repdim G j
(3). Over a truncated path algebra, this

result may be sharpened as follows.
Call a submodule M of N layer-stably embedded in N if J l M = M ∩ J l N for

all l ≤ L . As a consequence of Theorem 4.5, we obtain:

Theorem 5.1. Suppose that 3 is a truncated path algebra and Rep S is an irre-
ducible component of Repd(3) with generic module G. If G ′ ⊆G is a layer-stably
embedded submodule of G with S(G ′) = S′ and dim G ′ = d ′, then Rep S′ is an
irreducible component of Repd ′(3) with generic module G ′.

Proof. Let H := G ′ be layer-stably embedded in G. From [Huisgen-Zimmermann
and Shipman 2017, Corollary 3.2] we know that H is generic for Rep S′ =

Rep S(H). Thus only the status of Rep S′ as a potential component of Repd ′(3)

needs to be addressed.
Assume that Rep S′ fails to be an irreducible component of Repd ′(3). In view

of Theorem 4.5, this means that H has a filtration governed by some realizable
semisimple sequence S′′ which is strictly smaller than S′, say H = H0⊇ H1⊇· · ·⊇

HL ⊇ HL+1= 0; by definition, S′′l = Hl/Hl+1. We aim at constructing a submodule
filtration G = G0 ⊇ · · · ⊇ GL ⊇ 0 which, in turn, is governed by a realizable
semisimple sequence Ŝ strictly smaller than S. Another application of Theorem 4.5
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will then show that Rep S is not an irreducible component of Repd(3), contrary
to our hypothesis.

For l ≤ L , let πl : G → G/J l+1G denote the quotient map. We recursively
choose submodules Ul of J l G such that

J l+1G ⊆Ul ⊆ J l G, Ul ⊆ JUl−1, J l G/J l+1G = πl(J l H)⊕πl(Ul). (5-1)

First, semisimplicity of G/JG implies that G/JG = π0(H)⊕ π0(U0) for some
U0 ⊆G, and since U0 may be replaced by U0+ JG, there is no loss of generality in
assuming that JG ⊆U0. If U0, . . . ,Uk for some k < L have been chosen so as to
satisfy (5-1), we have J k G = J k H +Uk by Nakayama’s lemma, whence J k+1G =
J k+1 H + JUk . Consequently, J k+1G/J k+2G = πk+1(J k+1 H)⊕ πk+1(Uk+1) for
some Uk+1 ⊆ JUk . On replacing Uk+1 by Uk+1 + J k+2G, we obtain (5-1) for
l = k+ 1. Finally, set UL+1 := 0.

Now define Gl := Hl +Ul for l ≤ L + 1. That the consecutive factors of the
sequence

G = G0 ⊇ G1 ⊇ · · · ⊇ GL ⊇ GL+1 = 0 (5-2)

are semisimple, i.e., JGl ⊆Gl+1 for l ≤ L , is straightforward from our construction.
Indeed, JHl ⊆ Hl+1 and

JUl ⊆ J l+1G = J l+1 H +Ul+1 ⊆ Hl+1+Ul+1.

Let Ŝ be the semisimple sequence governing the filtration (5-2). Remark 3.7(2)
tells us that Ŝ≤ S.

Suppose m is minimal with the property that J m H $ Hm . Such an index m
exists, since S′′ < S′. Then m ≥ 1. Using layer-stability of H in G, we derive

J mG = J m H +Um $ Hm +Um = Gm .

On the other hand, Gl = J l G for l < m, so that the first discrepancy between the
downward filtration (5-2) and the radical filtration of G occurs at l = m. More
specifically,

dimŜm−1=dim(Gm−1/Gm)<dim(Gm−1/J mG)=dim J m−1G/J mG=dimSm−1.

This yields Ŝ< S.
It remains to be verified that Ŝ is realizable. To do so, we make repeated use of

Realizability Criterion 4.1. Again, B is the adjacency matrix of Q. First we note
that realizability of S and S′′ entails

dim J l G/J l+1G ≤ (dim J l−1G/J l G) · B,

dim Hl/Hl+1 ≤ (dim Hl−1/Hl) · B
(5-3)

for 1≤ l ≤ L . Therefore dim Gl/Gl+1 ≤ (dim Gl−1/Gl) · B for 1≤ l ≤ m− 2.
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Invoking (5-1), we find that, for 1≤ l ≤ L ,

Gl/J l+1G = (Hl + J l+1G)/J l+1G⊕ (Ul/J l+1G)

and
Gl+1/J l+1G = (Hl+1+ J l+1G)/J l+1G,

where the sum in the first equation is direct because Hl ∩Ul ⊆ H ∩ J l G = J l H
implies Hl ∩Ul = J l H ∩Ul ⊆ J l+1G. We also have

(Hl + J l+1G)/(Hl+1+ J l+1G)∼= Hl/Hl+1,

since layer-stability of H in G guarantees that Hl ∩ J l+1G ⊆ J l+1 H ⊆ Hl+1.
Consequently,

Gl/Gl+1 ∼= (Hl/Hl+1)⊕ (Ul/J l+1G) for 1≤ l ≤ L . (5-4)

Since Ul ⊆ JUl−1 we obtain, moreover, that

dim Ul/J l+1G≤dim JUl−1/J (J l G)≤ (dim Ul−1/J l G)·B for 1≤ l≤ L . (5-5)

Combining (5-5) with (5-3) and (5-4) yields dim Gl/Gl+1 ≤ (dim Gl−1/Gl) · B for
1≤ l ≤ L , which shows that Ŝ is realizable as required. �

The following examples demonstrate: (a) that the conclusion of Theorem 5.1
does not extend to arbitrary top-stably embedded submodules G ′ of G, i.e., to
submodules G ′ satisfying only J G ′ = G ′ ∩ JG, and (b) that Theorem 5.1 has no
analogue for nontruncated 3 in general.

Examples 5.2 (demonstrating the sharpness of Theorem 5.1). Consider the quivers

Q1 : 1 //
%%

2 // 3 4ee 5oo Q2 : 4

δ
%%

1 //
992

β
// 3

(a) Let 3 be the truncated path algebra of Loewy length 3 based on the quiver Q1.
For d = (1, 1, 1, 1, 1), the variety Repd(3) has two irreducible components, with
generic radical layerings

S(1) := (S1⊕ S5, S3⊕ S4, S2) and S(2) := (S1⊕ S5, S2⊕ S4, S3)

and generic modules G1 and G2 as graphed below:

1 5 1 5

G1 : 3 4 G2 : 2
⊕

4

2 3
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Clearly, the top-stably embedded submodule G ′ of G1 generated by any element z=
e1z ∈G1 has dimension vector d ′ := (1, 1, 1, 0, 0). On the other hand, the sequence
S(G ′)= (S1, S2⊕ S3, 0) fails to be the generic radical layering of an irreducible
component of Repd ′(3), the latter variety being irreducible with uniserial generic
modules.

(b) Now let 3= KQ2/〈βδ〉 and d := (1, 1, 1, 1). Then, again, Repd(3) consists
of two irreducible components. Their generic modules are graphed below:

1 4 1 4
•

G1 : 3 2 G2 : 2
⊕

3

The submodule G ′ of G1 generated by any element z = e1z ∈ G1 has dimension
vector d ′ := (1, 1, 1, 0) and is layer-stably embedded in G1 this time. Nonetheless,
Rep S(G ′) fails to be an irreducible component of Repd ′(3). Indeed, once again,
Repd ′(3) is irreducible and its generic modules are uniserial. �

6. Examples illustrating the theory. The interplay
Repd(3)←→ Repd(3trunc)

6A. Illustrations of the truncated case. In this subsection, 3 denotes a truncated
path algebra.

In sifting the radical layerings of the components of Repd(3) out of the set
Seq(d), it is computationally advantageous to supplement 0• by the map 2 of
equation (1-1), or by the upgraded map 2+ to be introduced next.

Example 4.8 in [Huisgen-Zimmermann 2016] shows that 2 fails to detect all
irreducible components in the general truncated case. However, in that instance
(as in many others), supplementing 2 by path ranks compensates for the blind
spots of 2. Here the path rank of a finite-dimensional 3-module M is the tuple
(dim pM)p ∈ Zτ , where τ is the set of paths in KQ \ I . Set f (M)= (− dim pM)p,
and let f ∗(M) be the negative of the path rank of the right 3-module D(M).
Clearly, the map

2+ : Repd(3)→ Seq(d)×Seq(d)×Zτ ×Zτ ,

x 7→ (S(Mx),S∗(Mx), f (Mx), f ∗(Mx)),

is in turn upper semicontinuous. Therefore, it is generically constant on the varieties
Rep S. In particular, those closures Rep S on which 2+ attains its minimal values
(relative to the componentwise partial order on the codomain) are components of
Repd(3). Yet, part (c) of the next example attests to the fact that the augmented
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upper semicontinuous map2+ still leaves certain components undetected in general.
We use 0• to fill in what 2+ fails to pick up.

Example 6.1. Let 3 be the truncated path algebra of Loewy length 4 based on the
quiver Q of Example 2.5, and take d = (2, 2). The semisimple sequences which are
in the running as potential generic radical layerings of components of Repd(3) are

S(1) = (S1, S2, S1, S2), S(4) = (S2, S2
1 , S2, 0), S(7) = (S1⊕ S2, S1⊕ S2, 0, 0),

S(2) = (S2, S1, S2, S1), S(5) = (S2
1 , S2

2 , 0, 0), S(8) = (S1⊕ S2, S1, S2, 0),

S(3) = (S1, S2
2 , S1, 0), S(6) = (S2

2 , S2
1 , 0, 0), S(9) = (S1⊕ S2, S2, S1, 0).

The list excludes the sequences which are not realizable for any choice of r and s,
such as (S1, S1⊕ S2, S2, 0) and (S1, S2, S1⊕ S2, 0), as well as the radical layering
S(0) of the semisimple module, given that Rep S(0) is contained in all nonempty
varieties Rep S. Except for S(3) and S(4), all sequences on the list are realizable
for arbitrary positive integers r, s.

Theorem 4.5 allows us to discard S( j) for j = 7, 8, 9 from the list of possi-
ble generic radical layerings of irreducible components: indeed, the modules in
Rep S(7) are generically decomposable, which makes it evident that they have
filtrations governed by both S(1) and S(2). Any generic module G8 for Rep S(8)

has hypergraph
1

α1αr · · ·

2

β1 β2 βs· · ·

1
α1 α2 αr· · ·

2

Clearly, G8 is generated by elements z1 = e1z1 and z2 = e2z2, and the following
submodule chain is governed by S(1):

G8 ⊇3z2 ⊇3β1z2 ⊇3α1β1z2 ⊇ 0.

Consequently, Rep S(8)⊆Filt S(1) by Corollary 4.4. An analogous argument shows
Rep S(9) ⊆ Filt S(2).

On the other hand, C j := Rep S( j) for j = 1, 2 are components of Repd(3) for
all choices of r, s ≥ 1 by Theorem 4.5, since 0(U )= 1 for any uniserial module U .
Hence only the sequences S( j) for 3 ≤ j ≤ 6 require discussion by cases. We
consider only the cases when r ≥ s, due to the symmetry of the quiver Q.

(a) Let r = s = 1. Then Repd(3) has precisely two irreducible components,
namely C j = Rep S( j) for j = 1, 2. We rule out the remaining sequences. First,
S(3) and S(4) fail to be realizable when r = s = 1. Generically, the modules in
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Rep S(5) are direct sums of two uniserials with radical layering (S1, S2, 0, 0), and
such a module has a filtration governed by S(1). Thus, Rep S(5) ⊆ Filt S(1) = C1.
Similarly, Rep S(6) ⊆ C2.

(b) Let r = 2, s= 1. Then Repd(3) again has precisely two irreducible components,
C1 and C2. Concerning S(3): a generic module G3 for Rep S(3) has a hypergraph of
the form

1
α1 α2

2

β1

2

β11

In particular, the socle of G3 = 3z contains a copy of S2, namely 3(α1− kα2)z
for a suitable scalar k ∈ K ∗. We deduce that the submodule chain

G3 ⊇ JG3 ⊇3(α1− kα2)z+3β1α1z ⊇3(α1− kα2)z ⊇ 0

is governed by S(1), showing Rep S(3) ⊆ Filt S(1) = C1. (On the side, we mention
that Rep S(3) is not contained in C2 because the sequences S(2) and S(3) are not
comparable under the dominance order.)

The sequence S(4) fails to be realizable for s = 1. As for S(5): generically, the
modules in Rep S(5) decompose in the form shown at the end of Example 2.5(a),
whence Rep S(5) ⊆ C1. (Clearly, Rep S(5) 6⊆ C2, because S(5) is not comparable
to S(2).) A routine check shows that Rep S(6) is contained in C2, but not in C1.

(c) Let r ≥ 3, s = 1. Then the variety Repd(3) has three irreducible compo-
nents, namely C j = Rep S( j), for j = 1, 2, 5. The status of C1, C2 being clear, we
focus on the variety Rep S(5) with generic module G5 as depicted at the end of
Example 2.5(b). Again, we prove our claim regarding C5 via Theorem 4.5: to see
that S(5) = S(G5) is the only realizable semisimple sequence governing a filtration
of G5, we note that the only other realizable sequence not ruled out by 2 (i.e.,
with a 2-value less than 2(G5)) is S(1). To verify, without computational effort,
that S(1) does not govern any filtration of G5, it suffices to observe that, for any
module N in Filt S(1), we have S1 ⊆ N/3x for some x ∈ e2 N . On the other hand,
it is readily checked that S1 6⊆ G5/3x for all elements x ∈ e2G5, which shows
0(G5)= 1 as required. Finally, to link up with the remarks preceding Example 6.1,
we point out that 2+(G1) < 2

+(G5), whence the 2+-test fails to detect the status
of Rep S(5) as an irreducible component of Repd(3).

To see that S( j) for j = 3, 4, 6 do not arise as generic radical layerings of
irreducible components of Repd(3), one may follow the patterns of part (b).

(d) Moving to r ≥ 3 and s = 2 raises the number of irreducible components of
Repd(3) to five. We first show that Rep S(3) is now a component. Generically, the
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modules in Rep S(3) have hypergraph

1
α1 α2

· · ·

2
................................................................................................................................................

...

...
..

β1

2

β2

α3
αr

1

Again, the only Rep S( j) (for j ≤ 6) potentially containing Rep S(3) is Rep S(1) =

Filt S(1). Since the modules in Filt S(1) clearly contain a copy of S2 in their socle,
while G3 does not, this possibility is ruled out, and our claim is justified.

The discussion of Rep S(4) is analogous, in that the only Rep S( j) (for j ≤ 6)
potentially containing Rep S(4) is Rep S(2)=Filt S(2), and the modules in Filt S(2)

contain a copy of S1 in their socle, while a generic module for Rep S(4) does not.
As in part (c), one shows that Rep S(5) is a component of Repd(3). On the

other hand, Rep S(6) still fails to be a component; the argument used in part (b) (in
that case, to exclude Rep S(5) from the list of components for r = 2) may now be
applied to s = 2.

(e) Finally, let r ≥ 3 and s ≥ 3. Then all of the varieties Rep S( j) for j = 1, . . . , 6
are irreducible components of Repd(3). The argument backing the status of S(6)

follows the reasoning we used to confirm Rep S(5) as a component of Repd(3)

in part (c). For r = s = 3, hypergraphs of generic modules for the components
Rep S( j) for j = 1, 3, 5 are shown below:

1
α1

1
α1

αr

2

β1
β2βs · · ·

α2
αr

· · ·

2
..........................................................................................................................

...

...
..

β1

β2βs · · ·

α2
αr−1

· · ·

2
β1

1
α1

1
βs· · ·

2
.....
..
..
..
..
..
....
..
.............

....

...
.....................................................................................................
..
...
....

1
α1

1
α1

2
.......................................................................................................................................................................................

...

...
..

α2
αr

· · ·

2

α2
αr

· · ·

Due to symmetry, the generic structure of the modules in the remaining components
is obtained by swapping the roles played by the vertices 1 and 2. �
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Consequences of the “truncated” theory, exemplified by Example 6.1.

(1) Allocation of modules to the components. Once the irreducible components
Rep S( j) of Repd(3) have been pinned down, by way of Theorem 4.5, say, one is in
a position to list the components containing any given d-dimensional 3-module M .
Indeed, compiling this list amounts to deciding which of the S( j) govern filtrations of
M ; as was pointed out in Section 5B, there is an algorithm for carrying out this task.

In Example 6.1 with r =3 and s≥1, for instance, any module M with hypergraph

1

α1

1
α1 α2

α3

2
.......................................................................................................................

..

...
......

α2
α3

2

belongs to the components C1 = Filt S(1) and C5 = Filt S(5), but does not have a
filtration governed by S( j) for j ∈ {2, 3, 4, 6}. Therefore, M belongs to precisely
two of the irreducible components of Repd(3), namely to C1 and C5.

(2) Comparing the generic behavior of the finite-dimensional 3-modules to that
of the finite-dimensional KQ-modules. Examples 6.1(a)–(e) place a spotlight on
the fact that, in the presence of oriented cycles, the generic representation theory
of the path algebra KQ may be “disjoint” from that of its truncations in the fol-
lowing sense: for r, s ≥ 1, we have J (KQ) = 0, and for d = (2, 2) the modules
in the irreducible variety Repd(KQ) are generically simple. Since generically
the latter modules are not annihilated by any path in KQ, we find the variety
Repd(KQ/〈the paths of length 4〉) to be contained in the boundary of a dense open
subset of Repd(KQ).

6B. Information on the components of Repd(3) from those of Rep d(3trunc).
We conclude with a first installment of observations on how to pull information about
the components of Repd(3) from knowledge of the components of Repd(3trunc).
Suppose that the distinct irreducible components of Repd(3trunc) are

Rep3trunc
S(1) = Filt3trunc(S

(1)), . . . , Rep3trunc
S(m) = Filt3trunc(S

(m)).

Moreover, suppose that C is an irreducible component of some Rep3 S with generic
module G (recall that, for any 3, these components and their generic modules
may be algorithmically accessed from quiver and relations of 3). To compare with
Repd(3trunc), one first determines which among the S( j) govern a filtration of G.
Suppose the pertinent sequences are S(1), . . . ,S(r), that is, C ⊆ Filt3 S( j) precisely
when j ≤ r .

Observation 6.2. The closure C is an irreducible component of Repd(3) if and
only if C is maximal irreducible in Filt3 S( j) for all j ≤ r .
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Proof. The claim is immediate from the fact that every irreducible subvariety D of
Repd(3) which contains C is contained in one of the intersections

Repd(3)∩Filt3trunc S( j)
= Filt3 S( j). �

This leads to a lower bound for the number of irreducible components of Repd(3).
Computing it in specific instances typically requires a nonnegligible effort, as it
is not simply based on the number of components of Repd(3trunc). The bound
is sharp in general. Indeed, if 1 denotes the algebra of Example 6.1(e) and 3=
1/〈βiα jβk | i, j, k ∈ {1, 2, 3}〉, then 1 = 3trunc and the number of irreducible
components of Repd(3) coincides with the lower bound given below.

Corollary 6.3. Again, let d be a dimension vector of a basic K -algebra 3, and
adopt the above notation for the irreducible components of Repd(3trunc). Moreover,
set

A j := Repd(3trunc)
∖ ⋃

i≤m
i 6= j

Filt3trunc S(i) for j ≤ m.

Then the number of irreducible components of Repd(3) is bounded from below by
the number of A j which have nonempty intersection with Repd(3).

Proof. Suppose A1, . . . , As are the A j which intersect Repd(3) nontrivially, and
let U j be an irreducible subvariety of A j ∩ Repd(3) for j ≤ s. Among the
Filt3trunc S(i), the variety Filt S( j) is then the only one to contain U j . Consequently,
any maximal irreducible subset D j of Repd(3) containing U j is an irreducible
component of Repd(3) by the preceding observation. By construction, the result-
ing D j are pairwise different. �
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Sparsity of p-divisible unramified liftings for
subvarieties of abelian varieties with trivial stabilizer

Danny Scarponi

By means of the theory of strongly semistable sheaves and the theory of the Greenberg transform, we
generalize to higher dimensions a result on the sparsity of p-divisible unramified liftings which played
a crucial role in Raynaud’s proof of the Manin–Mumford conjecture for curves. We also give a bound
for the number of irreducible components of the first critical scheme of subvarieties of an abelian variety
which are complete intersections.

1. Introduction

The Manin–Mumford conjecture is a significant question concerning the intersection of a subvariety
X of an abelian variety A with the group of torsion points of A. Raised independently by Manin and
Mumford, the conjecture was originally formulated in the case of curves. Suppose that A is an abelian
variety over a number field K and that C is a smooth subcurve of A of genus at least two. Then only
finitely many torsion points of A(K ) lie in C . In 1983, Raynaud proved this conjecture and generalized it
to higher dimensions: if A/K is as above and X/K is a smooth subvariety of A which does not contain
any translate of a nontrivial abelian subvariety, then the set of torsion points of A(K ) lying in X is finite
[Raynaud 1983b; 1983c].

Let us fix K , X and A as above. Let U be a nonempty open subscheme of SpecOK not containing any
ramified primes and such that A/K extends to an abelian scheme A/U and X extends to a smooth closed
integral subscheme X of A. For any p ∈U , let R and Rn be the ring of Witt vectors and Witt vectors of
length n+ 1, respectively, with coordinates in the algebraic closure k(p) of the residue field of p. Recall
that R is a DVR with maximal ideal generated by p such that R0 = R/p = k(p). Denote by Xpn and Apn

the Rn-schemes X ×U Spec Rn and A×U Spec Rn , respectively, and consider the reduction map

p Ap1(R1)∩ Xp1(R1)→ Xp0(R0). (1)

In [Raynaud 1983b] it was shown that, if X is a curve, the image of (1) is not Zariski dense in Xp0 ,
i.e., it is a finite set. This local result is crucial in Raynaud’s proof of the Manin–Mumford conjecture
for curves, since it easily implies that only finitely many prime-to-p torsion points of A(K ) lie on X
[Raynaud 1983b, Théorème II].
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Keywords: Manin–Mumford conjecture, number fields, p-divisible unramified liftings, Greenberg transform, strongly semistable
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It is quite natural to expect that a similar result also holds in higher dimensions. More explicitly, one
can ask: is it true that, if a smooth subvariety X of A does not contain any translate of a nontrivial abelian
subvariety, the image of (1) is not Zariski dense? In this paper we give a positive answer to this question
(see Theorem 5.3).

Theorem 1.1 (sparsity of p-divisible unramified liftings). Suppose that X has trivial stabilizer. For all
p ∈U above a prime p > (dim X)2 deg(�X ) such that Xp0 has trivial stabilizer, the image of

p Ap1(R1)∩ Xp1(R1)→ Xp0(R0)

is not Zariski dense in Xp0 .

Here deg(�X ) refers to the degree of the cotangent bundle �X computed with respect to any fixed
very ample line bundle on X .

Notice that if X does not contain any translate of a nontrivial abelian subvariety, then it has finite
stabilizer. Therefore, replacing A and X with their quotients by the stabilizer of X , one can assume the
stabilizer is trivial (see the beginning of the next section for the definition of stabilizer).

A different generalization of Raynaud’s local result was given by Rössler [2013] who proved that, if
the torsion points of A(Frac(R)) are not dense in X (Frac(R)), then for m big enough the image of

pm Apm (Rm)∩ Xpm (Rm)→ Xp0(R0) (2)

is not Zariski dense in Xp0 [Rössler 2013, Theorem 4.1]. Theorem 1.1 makes Rössler’s result effective,
showing that if the stabilizer of X is trivial, then it is sufficient to consider the map (2) for m = 1.

The proof of Theorem 1.1 strongly relies on Rössler’s paper [2016] and is done by contradiction. First
we use some basic properties of the Greenberg transform to show that, if the image of (1) is Zariski
dense in Xp0 , the absolute Frobenius FXp0 : Xp0 → Xp0 lifts to an endomorphism of Xp1 . A well-known
consequence of this liftability is the existence of a map of sheaves of differentials F∗Xp0

�Xp0→�Xp0 which
is nonzero. If X is a curve, such a map cannot exist, since deg(F∗Xp0

�Xp0 ) is strictly bigger than deg(�Xp0 ).
This simple observation was in fact used by Raynaud to prove Lemma I.5.4 in [Raynaud 1983a]. By
means of the theory of strongly semistable sheaves developed by Rössler [2016], we show that when X
has dimension higher than one, there are no nontrivial maps from F∗Xp0

�Xp0 to �Xp0 . This gives us the
wanted contradiction.

In the last section of this paper, we consider subvarieties of abelian varieties which are complete
intersections. If Gr1 denotes the Greenberg transform of level 1 (see Section 3), then we know that the
first critical scheme

Crit1(X ,A) := [p]∗Gr1(Ap1)∩Gr1(Xp1)

is a scheme over R0 such that

Crit1(X ,A)(R0)= p Ap1(R1)∩ Xp1(R1).
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Using exactly the same technique that allowed Buium [1996] to give an effective form of the Manin–
Mumford conjecture in the case of curves, we get a bound for the number of irreducible components of
Crit1(X ,A) when X is a complete intersection (not necessarily with trivial stabilizer).

Theorem 1.2. Let K be a number field, A/K be an abelian variety of dimension n and let L be a very
ample line bundle on A. Let c ∈ N be positive and let H1, H2, . . . , Hc ∈ |L| be general. Suppose that
X := H1 ∩ H2 ∩ · · · ∩ Hc is smooth. There exists a nonempty open subscheme V ⊆ SpecOK (see the
beginning of Section 6 for its definition) such that if p ∈ V , the number of irreducible components of
Crit1(X ,A) is bounded by

p2n
( n−c∑

h=0

(2n−2c
h

)( c
n−c−h

)
pn−c−h

)
(Ln)2.

Here (Ln) denotes the intersection number of L .
We conclude the introduction with the following remark. Since the field of definition of points in

the prime-to-p torsion Torp(A(K )) is unramified at p and the specialization map A(R)→ Ap1(R1) is
injective on the prime-to-p torsion, we have an injection

Torp(A(K ))∩ X (K )⊆ p Ap1(R1)∩ Xp1(R1).

This implies that, if X is a complete intersection such that Crit1(X ,A)(R0) is finite, then the bound
in Theorem 1.2 is a bound for the cardinality of Torp(A(K )) ∩ X (K ), i.e., an effective form of the
Manin–Mumford conjecture for the prime-to-p torsion.

2. Notations

We fix the following notations

• K a number field,

• K an algebraic closure of K ,

• A/K an abelian variety,

• X ⊆ A a closed integral subscheme, smooth over K ,

• StabA(X) the translation stabilizer of X in A, i.e., the closed subgroup scheme of A characterized
uniquely by the fact that for any K -scheme S and any morphism b : S→ A, translation by b on the
product A×K S maps the subscheme X ×K S to itself if and only if b factors through StabA(X) (for
its existence we refer the reader to [SGA 3 II 1970, Exemple 6.5(e), Expose VIII]),

• U an open subscheme of SpecOK not containing any ramified prime and such that A/K extends to
an abelian scheme A/U and X extends to a smooth closed integral subscheme X of A.

For any prime number p, any unramified prime p of K above p and any n ≥ 0, we denote by

• k(p) the residue field OK /p for p,
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• Kp the completion of K with respect to p,

• K̂ unr
p the completion of the maximal unramified extension of Kp,

• R := W (k(p)) and Rn := Wn(k(p)) the ring of Witt vectors and the ring of Witt vectors of length
n + 1, respectively, with coordinates in k(p). We recall that R can be identified with the ring of
integers of K̂ unr

p and R0 with k(p),

• Xpn the Rn-scheme X ×U Spec Rn Apn the Rn-scheme A×U Spec Rn .

3. The Greenberg transform and the critical schemes

Now we recall some basic facts about the Greenberg transform (for more details, see [Greenberg 1961;
1963; Bosch et al. 1990, pp. 276–277]).

Fix a prime number p and an unramified prime p of K above p.
For any n ≥ 0, the Greenberg transform of level n is a covariant functor Grn from the category of

Rn-schemes locally of finite type, to the category of R0-schemes locally of finite type. If Yn is an
Rn-scheme locally of finite type, Grn(Yn) is a R0-scheme with the property

Yn(Rn)= Grn(Yn)(R0).

More precisely, we can interpret Rn as the set of k(p)-valued points of a ring scheme Rn over k(p). For
any R0-scheme T , we define Wn(T ) as the ringed space over Rn consisting of T as a topological space
and of HomR0(T,Rn) as a structure sheaf. By definition Grn(Yn) represents the functor from the category
of schemes over R0 to the category of sets given by

T 7→ HomRn (Wn(T ), Yn)

where Hom stands for homomorphisms of ringed spaces. In other words, the functor Grn is right adjoint
to the functor Wn .

The functor Grn respects closed immersions, open immersions, fiber products, smooth, étale morphisms
and is the identity for n = 0. Furthermore it sends group schemes over Rn to group schemes over R0.
The canonical morphism Rn+1→ Rn gives rise to a functorial transition morphism πn+1 : Grn+1→ Grn .

Let Yn be a scheme over Rn locally of finite type. Then for any m < n we define

Ym := Yn ×Rn Rm .

Let us call FY0 : Y0→ Y0 the absolute Frobenius endomorphism of Y0 and �Y0/R0 the sheaf of relative
differentials.

For any finite rank locally free sheaf F over Y0 we will write

V (F) := Spec(Sym(F∨))

for the vector bundle over Y0 associated to F.
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Suppose now that Yn is smooth over Rn , so that �Y0/R0 is locally free. A key result about the Greenberg
transform is the following fact [Greenberg 1963, Section 2]:

π1 : Gr1(Y1)→ Gr0(Y0)= Y0

is a torsor under the Frobenius tangent bundle

V (F∗Y0
�∨Y0/R0

).

Let X , A, X , A and U be as fixed in the previous section and suppose that p ∈U . We refer the reader
to Section II.1 in [Raynaud 1983a] for more details on what we will recall from now till the end of the
section. For any n ≥ 0, the kernel of

Grn(Apn )→ Gr0(Ap0)= Ap0

is unipotent, killed by pn . Thus, the scheme-theoretic image [pn
]∗Grn(Apn ) of multiplication by

pn in Grn(Apn ) is the greatest abelian subvariety of Grn(Apn ) and, since R0 is algebraically closed,
[pn
]∗Grn(Apn )(R0)= pn Grn(Apn )(R0).

We define the n-critical scheme as

Critn(X ,A) := [pn
]∗Grn(Apn )∩Grn(Xpn ).

Notice that Critn(X ,A) is a scheme over R0 and that Crit0(X ,A)= Xp0 .
The transition morphisms πn+1 :Grn+1(Apn+1)→Grn(Apn ) lead to a projective system of R0-schemes

· · · → Crit2(X ,A)→ Crit1(X ,A)→ Crit0(X ,A)= Xp0,

whose connecting morphisms are both affine and proper, hence finite. In fact, transition morphisms are
affine and the subscheme [pn

]∗Grn(Apn ) is proper, being the greatest abelian subvariety of Grn(Apn ).
We shall write Excn(X ,A) for the scheme theoretic image of the morphism Critn(X ,A)→ Xp0 .

4. The geometry of vector bundles in positive characteristic

In this section we recall some results on the geometry of vector bundles in positive characteristic by
Langer [2004] and Rössler [2016]. These results will play a crucial role in the proof of Lemma 5.1 and
Theorem 5.3.

Let us start with some basic definitions and facts regarding semistable sheaves in positive characteristic.
Let Y be a smooth projective variety over an algebraically closed field l0 of positive characteristic. We

write as before �Y/ l0 for the sheaf of differentials of Y over l0 and FY : Y → Y for the absolute Frobenius
endomorphism of Y . Now let L be a very ample line bundle on Y . If V is a torsion free coherent sheaf
on Y , we shall write

µ(V )= µL(V )= degL(V )/ rk(V )
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for the slope of V (with respect to L). Here rk(V ) is the rank of V , i.e., the dimension of the stalk of V
at the generic point of Y . Furthermore,

degL(V ) :=
∫

Y
c1(V ) · c1(L)dim(Y )−1

where c1(·) refers to the first Chern class with values in an arbitrary Weil cohomology theory and the
integral

∫
Y stands for the push-forward morphism to Spec l0 in that theory. Recall that V is called

semistable (with respect to L) if for every coherent subsheaf W of V , we have µ(W )≤ µ(V ) and it is
called strongly semistable if Fn,∗

Y V is semistable for all n ≥ 0.
In general, there exists a filtration

0= V0 ⊆ V1 ⊆ · · · ⊆ Vr−1 ⊆ Vr = V

of V by subsheaves, such that the quotients Vi/Vi−1 are all semistable and such that the slopes µ(Vi/Vi−1)

are strictly decreasing for i ≥ 1. This filtration is unique and is called the Harder–Narasimhan (HN)
filtration of V . We will say that V has a strongly semistable HN filtration if all the quotients Vi/Vi−1 are
strongly semistable. We shall write

µmin(V ) := µ(Vr/Vr−1) and µmax(V ) := µ(V1).

By the very definition of HN filtration, we have

V is semistable ⇔ µmin(V )= µmax(V ).

An important consequence of the definitions is the following fact; if V and W are two torsion free sheaves
on Y and µmin(V ) > µmax(W ), then HomY (V,W )= 0.

For more on the theory of semistable sheaves, see the monograph [Huybrechts and Lehn 2010].
The following two theorems are key results from Langer.

Theorem 4.1 [Langer 2004, Theorem 2.7]. If V is a torsion free coherent sheaf on Y , then there exists
n0 ≥ 0 such that Fn,∗

Y V has a strongly semistable HN filtration for all n ≥ n0.

If V is a torsion free coherent sheaf on Y , we now define

µmin(V ) := lim
r→∞

µmin(F
r,∗
Y V ) char(l0)

r and µmax(V ) := lim
r→∞

µmax(F
r,∗
Y V )/ char(l0)

r .

Note that Theorem 4.1 implies that the two sequences µmin(F
r,∗
Y V )/ char(l0)

r and µmax(F
r,∗
Y V )/ char(l0)

r

become constant when r is sufficiently large, so the above definitions of µmin and µmax make sense.
Furthermore the sequences µmin(F

r,∗
Y V ) char(l0)

r and µmax(F
r,∗
Y V ) char(l0)

r are respectively weakly
decreasing and weakly increasing, therefore we have

µmin(V )≥ µmin(V ) and µmax(V )≥ µmax(V ).

Let us define
α(V ) :=max{µmin(V )−µmin(V ), µmax(V )−µmax(V )}.
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Theorem 4.2 [Langer 2004, Cororollary 6.2]. If V is of rank r , then

α(V )≤
r − 1

char(l0)
max{µmax(�Y/ l0), 0}.

In particular, if µmax(�Y/ l0)≥ 0 and char(l0)≥ d = dim Y ,

µmax(�Y/ l0)≤
char(l0)

char(l0)+ 1− d
µmax(�Y/ l0).

We conclude this section with the following two lemmas from Rössler.

Lemma 4.3 [Rössler 2016, Lemma 3.8]. Suppose that there is a closed l0-immersion i : Y ↪→ B, where
B is an abelian variety over l0. Suppose that StabB(Y )= 0. Then �∨Y is globally generated and for any
dominant proper morphism φ : Y0→ Y , where Y0 is integral, we have H 0(Y0, φ

∗�∨Y )= 0. Furthermore,
we have µmin(�Y ) > 0.

Lemma 4.4 [Rössler 2016, Cororollary 3.11]. Let V be a finite rank, locally free sheaf over Y. Suppose that

• for any surjective finite map φ : Y ′→ Y with Y ′ integral, we have H 0(Y ′, φ∗V )= 0,

• V∨ is globally generated.

Then H 0(Y, Fn,∗
Y V ⊗�Y/ l0)= 0 for n sufficiently big.

Furthermore, let T → Y be a torsor under V (Fn0,∗
Y V ), where n0 satisfies H 0(Y, Fn,∗

Y V ⊗�Y/ l0)= 0
for all n > n0. Let φ : Y ′→ Y be a finite surjective morphism and suppose that Y ′ is integral. Then we
have the implication

φ∗T is a trivial V (φ∗(Fn0,∗
Y V ))-torsorH⇒ T is a trivial V (Fn0,∗

Y V )-torsor.

The main ingredient of the proof of Lemma 4.4 is a result by Szpiro and Lewin-Ménégaux which we
will need later.

Proposition 4.5 [Szpiro 1981, Expose 2, Proposition 1]. If V is a vector bundle over Y such that
H 0(Y, F∗Y V ⊗�Y/ l0)= 0, then the map

H 1(Y, V )→ H 1(Y, F∗Y V )

is injective.

5. Sparsity of p-divisible unramified liftings

In this section we prove our result on the sparsity of p-divisible unramified liftings (see Theorem 5.3).
Let K , A, X and U be as fixed in Section 2 and let StabA(X) be trivial. The construction of the

stabilizer commutes with the base change, so we have

StabA(X)= StabA(X )×U Spec K .
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Since StabA(X) is trivial, by generic flatness and finiteness, we can restrict the map π : StabA(X )→U
to the inverse image of a nonempty open subscheme U ′ ⊂U to obtain a finite flat commutative group
scheme of degree one

π|π−1(U ′) : π
−1(U ′)→U ′.

This implies that π|π−1(U ′) is an isomorphism and for any q ∈U ′ we have that StabAq0 (Xq0) is trivial. We
will denote by Ũ ⊆U the nonempty open subscheme

Ũ := {q ∈U | StabAq0 (Xq0) is trivial}.

For any p ∈U we denote by Fk(p) the Frobenius endomorphism on k(p) and by FR1 the endomorphism
of R1 induced by Fk(p) by functoriality. We define

X ′p0 := Xp0 ×Fk(p)
k(p) and X ′p1 := Xp1 ×FR1

R1

and we write
FXp0/k(p) : Xp0 → X ′p0

for the relative Frobenius on Xp0 . For brevity’s sake, from now on we will write

�Xp0 , �X ′
p0
, �Xp1 , �X ′

p1
and �X

instead of
�Xp0/k(p), �X ′

p0/k(p)
, �Xp1/R1, �X ′

p1/R1 and �X/K .

Observe that since U is normal, A is projective over U [Raynaud 1970, Theorem XI 1.4]. Therefore there
exists a U -very ample line bundle L on X . For any p ∈U different from the generic point ξ , let us denote
by Lp the inverse image of L on Xp0 . Similarly we denote by Lξ the inverse image of L on X . From now
on, for any vector bundle Gp over Xp0 , we will write deg(Gp) for the degree of Gp with respect to Lp.
Analogously, if Gξ is a vector bundle over X , we will write deg(Gξ ) for the degree of Gξ with respect
to Lξ . Now consider the vector bundle �X/U over X . For any natural number m, the map from U to Z

defined by

p 7→ χ((�X/U ⊗ Lm)p)= χ(�Xp0 ⊗ Lm
p ) and ξ 7→ χ((�X/U ⊗ Lm)ξ )= χ(�X ⊗ Lm

ξ )

(here χ refers to the Euler characteristic) is constant on U [Mumford 1970, Chapter II, Section 5].
Therefore we have the equality

χ(�Xp0 ⊗ Lm
p )= χ(�X ⊗ Lm

ξ )

for all m ∈ N and for all p ∈ U . In other words, the Hilbert polynomial of �Xp0 with respect to Lp

coincides with the Hilbert polynomial of �X with respect to Lξ . Since the degree of a vector bundle we
defined at the beginning of this section can be described in terms of its Hilbert polynomial [Huybrechts
and Lehn 2010, Definition 1.2.11], we obtain that for every p ∈U we have deg(�Xp0 )= deg(�X ).

The following lemma is a fundamental step to prove our sparsity Theorem 5.3.
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Lemma 5.1. Let K , A, X and U be as fixed in Section 2, let StabA(X) be trivial and let n be the dimension
of X over K . Then

HomXp0 (F
k,∗
Xp0
�Xp0 , �Xp0 )= 0

for any k ≥ 1 and any p ∈ Ũ above a prime p > n2 deg(�X ).

Proof. Let us notice first that, if n = 1, then X is a curve of genus g at least 2 and

HomXp0 (F
k,∗
Xp0
�Xp0 , �Xp0 )= 0

is a simple consequence of the fact

deg(Fk,∗
Xp0
�Xp0 )= pk(2g− 2) > 2g− 2= deg�Xp0 .

To treat the general case, let us fix p ∈ Ũ above a prime p > n2 deg(�X ). We know that if

µmin(F
k,∗
Xp0
�Xp0 ) > µmax(�Xp0 )

then HomXp0 (F
k,∗
Xp0
�Xp0 , �Xp0 )= 0. Since µmin ≥µmin and µmax ≥µmax, it is sufficient to show that, for

every k ≥ 1
µmin(F

k,∗
Xp0
�Xp0 ) > µmax(�Xp0 ). (3)

Since StabAp0 (Xp0) is trivial, we can apply Lemma 4.3 to obtain µmin(�Xp0 ) > 0. In particular
µmin(�Xp0 ) > 0 and deg(�Xp0 ) > 0. Using this and the equality µmin(F

k,∗
Xp0
�Xp0 )= pkµmin(�Xp0 ), we

see that (3) is implied by
pµmin(�Xp0 ) > µmax(�Xp0 ). (4)

Theorem 4.2 gives us the following inequality

pµmin(�Xp0 )≥ pµmin(�Xp0 )+ (1− n)µmax(�Xp0 ),

so that (4) is satisfied if
pµmin(�Xp0 ) > nµmax(�Xp0 ). (5)

Since p > n2 deg(�X )≥ n, we can apply the second part of Theorem 4.2

µmax(�Xp0 )≤
p

p+ 1− n
µmax(�Xp0 ),

so that inequality (5) is implied by

(p+ 1− n)µmin(�Xp0 ) > nµmax(�Xp0 ). (6)

If �Xp0 is semistable, (6) gives p > 2n− 1. Otherwise, we can estimate µmax(�Xp0 ) and µmin(�Xp0 )

in the following way. We know that

µmax(�Xp0 )=
deg(M)
rk(M)
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for some subsheaf 0 6= M ( �Xp0 . Therefore we have µmax(�Xp0 ) ≤ deg(M). Furthermore, since
µmin(�Xp0 ) > 0, we have that deg(�Xp0/M) > 0. This and the additivity of the degree on short exact
sequences gives us

µmax(�Xp0 )≤ deg(M)≤ deg(�Xp0 )− 1.

Similarly,

µmin(�Xp0 )=
deg(Q)
rk(Q)

for some Q quotient of �Xp0 , so µmin(�Xp0 )≥ 1/n. Inequality (6) is then implied by

p > n2 deg(�Xp0 )+ (n− 1− n2).

Since n− 1− n2 is always negative, we are reduced to p > n2 deg(�Xp0 ). Now deg(�Xp0 ) is greater or
equal to one, so n2 deg(�Xp0 )≥ 2n− 1 for any n. This ensures us that the condition

p > n2 deg(�Xp0 )

is sufficient to have µmin(F
k,∗
Xp0
�Xp0 ) > µmax(�Xp0 ) for every k ≥ 1 whether �Xp0 is semistable or not.

To conclude it is enough to remember that deg(�Xp0 ) coincides with deg(�X ). �

Corollary 5.2. The map
H 1(Xp0, F∗Xp0

�∨Xp0
)→ H 1(Xp0, Fk,∗

Xp0
�∨Xp0

)

is injective for every k ≥ 1 and every p ∈ Ũ above a prime p > n2 deg(�X ).

Proof. Lemma 5.1 and Proposition 4.5 imply that

H 1(Xp0, Fh,∗
Xp0
�∨Xp0

)→ H 1(Xp0, Fh+1,∗
Xp0

�∨Xp0
)

is injective for every h ≥ 0. Therefore the composition

H 1(Xp0, F∗Xp0
�∨Xp0

) H 1(Xp0, F2,∗
Xp0
�∨Xp0

) · · · H 1(Xp0, Fk,∗
Xp0
�∨Xq0

)

is an injective map. �

We are now ready to prove our sparsity result.

Theorem 5.3. With the same hypotheses as in Lemma 5.1, for any p ∈ Ũ above a prime p > n2 deg(�X ),
the set

{P ∈ Xp0(R0) | P lifts to an element of p Ap1(R1)∩ Xp1(R1)}

is not Zariski dense in Xp0 .

Proof. Let us fix p as in the hypotheses. Since

Crit1(X ,A)(R0)= p Ap1(R1)∩ Xp1(R1),

we have that
{P ∈ Xp0(R0) | P lifts to an element of p Ap1(R1)∩ Xp1(R1)}
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coincides with the image of Crit1(X ,A)(R0)→ Xp0(R0).
Let us assume by contradiction that this image is dense in Xp0(R0). This implies that π1 :Gr1(Xp1)→Xp0

is a trivial torsor; the argument we use to show this is taken from Rössler (see the beginning of the proof
of Theorem 2.2 in [Rössler 2016]). First of all the closed map Crit1(X ,A)→ Xp0 is surjective and so we
can choose an irreducible component

Crit1(X ,A)0 ↪→ Crit1(X ,A)

which dominates Xp0 . Lemmas 4.3 and 5.1 allow us to apply the second part of Lemma 4.4 with V =�∨Xp0
,

Y = Xp0 , n0 = 1, T = Gr1(Xp1) and φ equal to Crit1(X ,A)0→ Xp0 . We have that φ∗Gr1(Xp1) is trivial
as a V (φ∗F∗Xp0

�∨Xp0
)-torsor, since Crit1(X ,A)0 is contained in Gr1(Xp1). Hence π1 : Gr1(Xp1)→ Xp0

is trivial as a V (F∗Xp0
�∨Xp0

)-torsor. Let us take a section σ : Xp0 → Gr1(Xp1). By the definition of the
Greenberg transform, the map σ over R0 corresponds to a map σ :W1(Xp0)→ Xp1 over R1. We can
precompose σ with the morphism t : Xp1 →W1(Xp0) corresponding to

W1(OXp0 )→OXp1

(a0, a1) 7→ ã p
0 + ã1 p,

where ãi lifts ai . Consider the following diagram

Xp1 W1(Xp0) Xp1

Xp0 Xp0 Xp0

FX
p0

σ

Id

t

Its left square is commutative, since the composition

Xp0 −→ Xp1
t
−→W1(Xp0)

simply corresponds to the map
W1(OXp0 )→OXp0

(a0, a1) 7→ a p
0 .

For the commutativity of the right square, notice that by the very definition of the transition morphism
π1 : Gr1(Xp1)→ Xp0 we have a commutative diagram

HomR1(W1(Xp0), Xp1) HomR0(Xp0,Gr1(Xp1))

HomR0(Xp0, Xp0)

reduction mod p
(π1 ◦−)
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In particular, IdXp0 = π1 ◦ σ = (reduction mod p)(σ ), which is exactly what we wanted to verify. We
obtain therefore that σ ◦ t : Xp1 → Xp1 is a lift of the Frobenius FXp0 .

The diagram below is also commutative

Xp1 W1(Xp0) Xp1

Spec(R1) Spec(R1) Spec(R1)
FR1

σ

Id

t

In fact, by definition, σ is a morphism over R1, so the right square is commutative. The commutativity
of the left square is easy to check, since we know explicitly t and FR1 . Therefore σ ◦ t is a lift of the
Frobenius FXp0 compatible with FR1 ; this implies the existence of a morphism of R1-schemes

F̃ : Xp1 → X ′p1

lifting the relative Frobenius FXp0/R0 .
As shown in part (b) of the proof of Théorème 2.1 in [Deligne and Illusie 1987], since the image

of F̃∗ :�X ′
p1
→ F̃∗�Xp1 is contained in pF̃∗�Xp1 and the multiplication by p induces an isomorphism

p : FXp0/R0,∗�Xp0 −→
∼ pF̃∗�Xp1 , there exists a unique map

f := p−1 F̃∗ :�X ′
p0
→ FXp0/R0,∗�Xp0 ,

making the diagram below commutative.

�X ′
p1

pF̃∗�Xp1

�X ′
p0

FXp0/R0,∗�Xp0

f

p

F̃∗

Proposition 3 in [Xin 2016] states that the adjoint of f ,

f : F∗Xp0
�Xp0 = F∗Xp0/R0

�X ′
p0
→�Xp0 ,

is generically bijective. This clearly contradicts Lemma 5.1. �

6. The number of irreducible components of the critical scheme of complete intersections

In this last section we provide an upper bound for the number of irreducible components of the critical
scheme Crit1(X ,A) in the case in which X is a smooth complete intersection.

Let A/K be an abelian variety of dimension n and let L be a very ample line bundle on A. Let c ∈N

be positive and let H1, H2, . . . , Hc ∈ |L| be general. We define X := H1∩H2∩· · ·∩Hc. Suppose that X
is smooth.
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Let us take a sufficiently small open V ⊆Spec(OK ) such that A extends over V to an abelian scheme A,
L extends to a V -very ample line bundle L, Hi extends to Hi for every i and X :=H1 ∩H2 ∩ · · · ∩Hc is
smooth. We can restrict V if necessary and suppose K/Q is unramified at p.

Theorem 6.1. Let K be a number field, A/K be an abelian variety of dimension n and let L be a very
ample line bundle on A. Let c ∈ N be positive and let H1, H2, . . . , Hc ∈ |L| be general. Suppose that
X := H1 ∩ H2 ∩ · · · ∩ Hc is smooth. If p is in the open subscheme V defined above, then the number of
irreducible components of Crit1(X ,A) is bounded by

p2n
( n−c∑

h=0

(2n−2c
h

)( c
n−c−h

)
pn−c−h

)
(Ln)2.

Here (Ln) denotes the intersection number of L .

Proof. To obtain Theorem 6.1, we follow the approach of [Buium 1996, Theorem 1.11], proving the
Manin–Mumford conjecture for curves; we first show that Crit1(X ,A) can be realized as the intersection
of two projective varieties (see P(EX ) and [p]∗Gr1(Ap1) below) and then use the product of their degrees
to bound the number of its irreducible components. Since X is not necessarily of dimension one, the
computation of the degree of P(EX ) is slightly more demanding here than the corresponding one in
Buium’s work.

Let us fix p ∈ V . The torsors Gr1(Xp1)→ Xp0 and Gr1(Ap1)→ Ap0 correspond to elements ηX ∈

H 1(Xp0, F∗Xp0
�∨Xp0

) and ηA ∈ H 1(Ap0, F∗Ap0
�∨Ap0

), respectively. Under the natural isomorphisms

H 1(Xp0, F∗Xp0
�∨Xp0

)' Ext1(F∗Xp0
�Xp0 ,OXp0 ) and H 1(Ap0, F∗Ap0

�∨Ap0
)' Ext1(F∗Ap0

�Ap0 ,OAp0 ),

ηX and ηA correspond to extensions of vector bundles

0→OXp0 → EX → F∗Xp0
�Xp0 → 0 and 0→OAp0 → E A→ F∗Ap0

�Ap0 → 0.

For any locally free sheaf W over a base S of finite type over a field, we shall write P(W ) for the projective
bundle associated to W , i.e., the S-scheme representing the functor on S-schemes

T 7→ {isomorphism classes of surjective morphisms of OT -modules WT → Q,
where Q is locally free of rank 1}.

As shown in paragraph 1 of [Martin-Deschamps 1984], the two extensions above give us two divisors

DX := P(F∗Xp0
�Xp0 )⊆ P(EX ) and DA := P(F∗Ap0

�Ap0 )⊆ P(E A),

belonging respectively to the linear systems |OP(EX )(1)| and |OP(E A)(1)|, and

Gr1(Xp1)' P(EX ) \ DX and Gr1(Ap1)' P(E A) \ DA.
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If i denotes the closed immersion i : Xp0 → Ap0 , then it is not difficult to show that there is a natural
restriction homomorphism i∗E A→ EX prolonging the homomorphism i∗�Ap0 →�Xp0 . The homomor-
phism i∗E A→ EX is clearly surjective, so it induces a closed immersion j :P(EX ) ↪→P(E A) prolonging
Gr1(Xp1) ↪→ Gr1(Ap1). Therefore we have a commutative diagram

[p]∗Gr1(Ap1)

Gr1(Xp1) Gr1(Ap1)

P(EX ) P(E A)

Xp0 Ap0

πX πA

T

j

i

Let us denote by Lp the base change of L to Ap0 . It is standard to prove that

H := π∗ALp⊗OP(E A)(1)

is very ample on P(E A) [Buium and Voloch 1996, p. 4]. We have

H|P(EX ) = π
∗

X i∗Lp⊗OP(EX )(1) and H|[p]∗ Gr1(Ap1 ) = T ∗Lp,

since DA ∈ |OP(E A)(1)| and [p]∗Gr1(Ap1) ⊆ Gr1(Ap1) ' P(E A) \ DA. We know that [p]∗Gr1(Ap1) is
the maximal abelian subvariety of Gr1(Ap1) and we know that the multiplication by p map on Gr1(Ap1)

factors through the isogeny T . This implies that T has degree at most p2n , so we have the following
estimate

degH([p]∗Gr1(Ap1))≤ p2n(Ln
p).

Let us now consider degH(P(EX )). It coincides with∫
P(EX )

c1(H|P(EX ))
2n−2c (7)

where c1 stands for the first Chern class in the Chow ring and
∫

P(EX )
stands for the push-forward morphism

to Spec(R0) in the Chow theory. Since

c1(H|P(EX ))= c1(π
∗

X i∗Lp)+ c1(OP(EX )(1))
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we can rewrite (7) as ∫
P(EX )

2n−2c∑
h=0

(
2n− 2c

h

)
c1(π

∗

X i∗Lp)
h
· c1(OP(EX )(1))

2n−2c−h .

Equivalently ∫
Xp0

2n−2c∑
h=0

(
2n− 2c

h

)
c1(i∗Lp)

h
·πX,∗(c1(OP(EX )(1))

2n−2c−h)

and by definition of Segre class this is∫
Xp0

2n−2c∑
h=0

(
2n− 2c

h

)
c1(i∗Lp)

h
· sn−c−h(E∨X ).

Notice that the Segre classes of the dual of EX appear in our formula; this is due to the fact that we are
not using Fulton’s geometric notation for the projective bundle associated to a vector bundle (see the note
at the end of B.5.5 in [Fulton 1998]). Since sk = 0 if k < 0, we end up with∫

Xp0

n−c∑
h=0

(2n−2c
h

)
c1(i∗Lp)

h
· sn−c−h(E∨X ).

Now the exact sequence

0→OXp0 → EX → F∗Xp0
�Xp0 → 0

implies

sn−c−h(E∨X )= sn−c−h(F∗Xp0
�∨Xp0

)

and so

sn−c−h(E∨X )= pn−c−hsn−c−h(�
∨

Xp0
)

(here we have used the following fact: the pullback of a cycle η of codimension j through the Frobenius
map coincides with p jη). Therefore we have to study the following sum

n−c∑
h=0

(
2n− 2c

h

)
pn−c−hc1(i∗Lp)

h
· sn−c−h(�

∨

Xp0
). (8)

The short exact sequence

0→�∨Xp0
→ i∗�∨Ap0

→ N → 0

(where N is the normal bundle for i) gives

ct(�
∨

Xp0
)ct(N )= ct(i∗�∨Ap0

)= 1,

so that ct(N )= st(�
∨

Xp0
). Recalling that

ct(N )= (1+ c1(i∗Lp)t)c



426 Danny Scarponi

we obtain

sn−c−h(�
∨

Xp0
)= cn−c−h(N )=

(
c

n− c− h

)
c1(i∗Lp)

n−c−h .

Substituting in (8), we obtain( n−c∑
h=0

(2n−2c
h

)( c
n−c−h

)
pn−c−h

)
c1(i∗Lp)

n−c.

Therefore degH(P(EX )) is( n−c∑
h=0

(2n−2c
h

)( c
n−c−h

)
pn−c−h

)∫
Xp0

c1(i∗Lp)
n−c.

Since Xp0 = H1,p ∩ · · · ∩ Hc,p where H1,p, . . . , Hc,p belong to |Lp|, we have∫
Xp0

c1(i∗Lp)
n−c
=

∫
Ap0

c1(Lp)
n
= (Ln

p)

and

degH(P(EX ))=

( n−c∑
h=0

(2n−2c
h

)( c
n−c−h

)
pn−c−h

)
(Ln

p).

Now Bézout’s theorem in Fulton’s form [1998, p. 148] says that the number of irreducible components in
the intersection of two projective varieties of degrees d1 and d2 cannot exceed d1d2. In particular, the
number of irreducible components of Crit1(X ,A) is less than or equal to

p2n
( n−c∑

h=0

(2n−2c
h

)( c
n−c−h

)
pn−c−h

·

)
(Ln

p)
2.

Notice that (Ln
p)= (L

n), by the same reasoning as before Lemma 5.1. �

Remark 6.2. One can consider any intersection X := H1 ∩ H2 ∩ · · · ∩ Hc where Hi ∈ |L i | for some
very ample line bundles L i . In this more general case, the computations in our proof become a bit more
complex, but it is still possible to give an explicit bound for the number of irreducible components of
Crit1(X ,A). We have

c j (N )=
∑

1≤i1<···<i j≤c

i j∏
k=i1

c1(i∗Lk,p)

which implies

sn−c−h(�
∨

Xp0
)=

∑
1≤i1<···<in−c−h≤c

in−c−h∏
k=i1

c1(i∗Lk,p).

Therefore, defining H := π∗AL1,p⊗OP(E A)(1), then degH(P(EX )) is

n−c∑
h=0

(
2n− 2c

h

)
pn−c−h

∑
1≤i1<···<in−c−h≤c

(∫
Xp0

c1(i∗L1,p)
h

in−c−h∏
k=i1

c1(i∗Lk,p)

)
.
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We have ∫
Xp0

c1(i∗L1,p)
h

in−c−h∏
k=i1

c1(i∗Lk,p)= Ii1,...,in−c−h

where Ii1,...,in−c−h is the following intersection number

Ii1,...,in−c−h := (

h+1 times︷ ︸︸ ︷
L1 · · · L1 ·L2 · L3 · · · Lc · L i1 · L i2 · · · L in−c−h ).

We obtain that degH(P(EX )) is

n−c∑
h=0

(
2n− 2c

h

)
pn−c−h

∑
1≤i1<···<in−c−h≤c

Ii1,...,in−c−h ,

and therefore the number of irreducible components of Crit1(X ,A) is bounded by

p2n(Ln
1)

n−c∑
h=0

(
2n− 2c

h

)
pn−c−h

∑
1≤i1<···<in−c−h≤c

Ii1,...,in−c−h .
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On a conjecture of Kato and Kuzumaki
Diego Izquierdo

In 1986, Kato and Kuzumaki stated several conjectures in order to give a diophan-
tine characterization of cohomological dimension of fields in terms of projective
hypersurfaces of small degree and Milnor K -theory. We establish these con-
jectures for finite extensions of C(x1, . . . , xn) and C(x1, . . . , xn)((t)), and we
prove new local-global principles over number fields and global fields of positive
characteristic in the context of Kato and Kuzumaki’s conjectures.

Introduction

In 1986, in the article [Kato and Kuzumaki 1986], Kato and Kuzumaki stated a set of
conjectures which aimed at giving a diophantine characterization of cohomological
dimension of fields. For this purpose, they introduced variants of the Ci -properties
of fields involving Milnor K -theory and projective hypersurfaces of small degree,
and they hoped that these variants would characterize fields of small cohomological
dimension.

More precisely, fix a field L and two nonnegative integers q and i . Let K M
q (L)

be the q-th Milnor K -group of L . For each finite extension L ′ of L , one can define
a norm morphism NL ′/L : K M

q (L
′)→ K M

q (L); see [Kato 1980, section 1.7]. Thus,
if Z is a scheme of finite type over L , one can introduce the subgroup Nq(Z/L) of
K M

q (L) generated by the images of the norm morphisms NL ′/L when L ′ describes
the finite extensions of L such that Z(L ′) 6= ∅. One then says that the field L is
Cq

i if, for each n ≥ 1, for each finite extension L ′ of L and for each hypersurface Z
in Pn

L ′ of degree d with d i
≤ n, one has Nq(Z/L ′) = K M

q (L
′). For example, the

field L is C0
i if, for each finite extension L ′ of L , every hypersurface Z in Pn

L ′ of
degree d with d i

≤ n has a 0-cycle of degree 1. The field L is Cq
0 if, for each tower

of finite extensions L ′′/L ′/L , the norm morphism NL ′′/L ′ : K M
q (L

′′)→ K M
q (L

′) is
surjective.

Kato and Kuzumaki conjectured that, for i ≥ 0 and q ≥ 0, a perfect field is
Cq

i if and only if it is of cohomological dimension at most i + q. This conjecture

MSC2010: primary 11E76; secondary 12E25, 12E30, 14G27, 19D45, 19F99.
Keywords: Cohomological dimension of fields, Ci property, Milnor K-theory, Number fields,

Function fields.
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generalizes a question raised by Serre [1965] asking whether the cohomological
dimension of a Ci -field is at most i . In an unpublished paper, Acquista [2005]
proved Kato and Kuzumaki’s conjecture for i = 0: in other words, a perfect field
is Cq

0 if and only if it is of cohomological dimension at most q. As it was already
pointed out at the end of Kato and Kuzumaki’s original paper [1986], such a
result also follows from the Bloch–Kato conjecture, which has been established
by Rost and Voevodsky. However, it turns out that the conjectures of Kato and
Kuzumaki are wrong in general. For example, Merkurjev [1991] constructed a
field of characteristic 0 and of cohomological dimension 2 which did not satisfy
property C0

2 . Similarly, Colliot-Thélène and Madore [2004] produced in a field of
characteristic 0 and of cohomological dimension 1 which did not satisfy property
C0

1 . These counterexamples were all constructed by a method using transfinite
induction due to Merkurjev and Suslin. The conjecture of Kato and Kuzumaki is
therefore still completely open for fields that usually appear in number theory or in
algebraic geometry.

Very recently Wittenberg [2015] made an important step forward: he proved that
p-adic fields, the field C((t1))((t2)) and totally imaginary number fields all satisfy
property C1

1 . His method consists of introducing and proving a property which is
stronger than property C1

1 : more precisely, he says that a field L is strongly C1
1 if,

for each finite extension L ′ of L , each proper scheme Z over L ′ and each coherent
sheaf E on Z , the Euler–Poincaré characteristic χ(Z , E) kills the abelian group
K M

q (L
′)/Nq(Z/L ′). It turns out that this notion behaves much better with respect

to dévissage than the C1
1 -property of Kato and Kuzumaki: this allows Wittenberg

to use methods that had been previously developed in [Esnault et al. 2015].
Wittenberg’s article leaves open the question of the C1

1 -property for the following
fields: the field of rational functions C(x, y), the field of Laurent series in two
variables C((x, y)), and the fields C(x)((y)) and C((x))(y). That the property is
satisfied by C(x, y) and C(x)((y)) is a particular case of the general theorems that
are established in the present paper (see theorems C and D below).

The article is divided into three parts that can be read almost independently and
that deal with Kato and Kuzumaki’s conjectures for different fields. In the first
section, we focus on the cases of number fields and of function fields of curves
over finite fields. In the case of number fields, we establish a local-global principle
in the context of the conjecture of Kato and Kuzumaki for varieties containing a
geometrically integral closed subscheme. Such a result was previously only known
for smooth, projective, geometrically irreducible varieties (see theorem 4 of [Kato
and Saito 1983]) or for proper varieties of Euler–Poincaré characteristic equal to 1
[Wittenberg 2015, Proposition 6.2]:

Theorem A (Theorem 1.4, number field case). Let K be a number field and let �K

be the set of places of K. Let Z be a K -variety containing a geometrically integral
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closed subscheme. For each v ∈�K , let Kv be the completion of K with respect to
v and Zv be the Kv-scheme Z ×K Kv. Then

Ker
(

K×/N1(Z/K )→
∏
v∈�K

K×v /N1(Zv/Kv)

)
= 0.

This theorem, which is established by using Hilbertianity properties of number
fields as well as results due to Demarche and Wei [2014] concerning the local-global
principle for torsors under normic tori, then allows us to deduce a simplified and
more effective proof of Wittenberg’s result concerning the C1

1 -property for totally
imaginary number fields (see Corollary 1.9 and page 438). The explicitness of
our proof allows us to give new and more precise results in some situations (see
Proposition 1.14).

In the case of global fields of positive characteristic, we prove a local-global
principle similar to the one in Theorem A but which involves a variant of the group
N1(Z/K ):

Theorem B (Theorem 1.4, function field case). Let K be the function field of a
curve over a finite field of characteristic p > 0 and let �K be the set of places
of K. Let Z be a proper K -scheme containing a geometrically irreducible closed
subscheme. For v ∈ �K , let Kv be the completion of K with respect to v and Zv
be the Kv-scheme Z ×K Kv . Let N s

1(Z/K ) be the subgroup of K× spanned by the
images of the norm homomorphisms NLs/K : L×s → K× where L describes finite
extensions of K such that Z(L) 6=∅ and Ls stands for the separable closure of K
in L. Then

Ker
(

K×/N s
1(Z/K )→

∏
v∈�K

K×v /N s
1(Zv/Kv)

)
= 0.

This theorem then allows us to prove that global fields of positive characteristic
have the C1

1 -property “away from p” (Theorem 1.18).
In the second part, by means of a surprisingly simple argument, we prove Kato

and Kuzumaki’s conjectures for function fields over C of arbitrary dimension:

Theorem C (Theorem 2.2). Let k be an algebraically closed field of characteristic 0.
Then the function field of an n-dimensional integral k-variety satisfies the Cq

i -
property for all i ≥ 0 and q ≥ 0 such that i + q = n.

In particular, this shows that the field C(x, y) satisfies the C1
1 -property, and hence

answers question (3) in paragraph 7.3 of [Wittenberg 2015] positively.
In the third and last part, we prove Kato and Kuzumaki’s properties for complete

discrete valuation fields whose residue field is the function field of a variety over
an algebraically closed field of characteristic zero:
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Theorem D (Theorem 3.9). Let k be an algebraically closed field of characteristic
zero. Let K be the function field of an n-dimensional integral k-variety. Then the
complete field K ((t)) satisfies the Cq

i -property for all i, q ≥ 0 such that i+q = n+1.

This theorem, whose proof relies on subtle refinements of Artin’s approximation
theorem, implies in particular that C(x)((t)) is C1

1 .

Remark 0.1. The C1
1 -property for the fields C(x, y) and C(x)((t)), which is a

special case of theorems C and D, cannot be obtained by the methods developed in
[Wittenberg 2015] because those fields are not strongly C1

1 (see remark 7.6 there).

Preliminaries. Let L be any field and let q be a nonnegative integer. The q-th
Milnor K -group of L is by definition the group K M

0 (K )= Z if q = 0 and

K M
q (L) := L×⊗Z · · · ⊗Z L×︸ ︷︷ ︸

q times

/〈x1⊗ · · ·⊗ xq | there exist i, j, i 6= j, xi + x j = 1〉

if q> 0. For x1,...,xq ∈ L×, the symbol {x1,...,xq} denotes the class of x1⊗···⊗xq

in K M
q (L). More generally, for r and s nonnegative integers such that r + s = q,

there is a natural pairing

K M
r (L)× K M

s (L)→ K M
q (L),

which we will denote { · , · }.
When L ′ is a finite extension of L , one can construct a norm homomorphism

NL ′/L : K M
q (L

′)→ K M
q (L) (see section 1.7 of [Kato 1980]) satisfying the following

properties:

• for q = 0, the map NL ′/L : K M
0 (L

′)→ K M
0 (L) is given by multiplication by

[L ′ : L];

• for q = 1, the map NL ′/L : K M
1 (L

′)→ K M
1 (L) coincides with the usual norm

L ′×→ L×;

• if r and s are nonnegative integers such that r+s= q , we have NL ′/L({x, y})=
{x, NL ′/L(y)} for x ∈ K M

r (L) and y ∈ K M
s (L

′);

• if L ′′ is a finite extension of L ′, we have NL ′′/L = NL ′/L ◦ NL ′′/L ′ .

For each L-scheme of finite type, we denote by Nq(Z/L) the subgroup of K M
q (L)

generated by the images of the maps NL ′/L : K M
q (L

′)→ K M
q (L) when L ′ describes

the finite extensions of L such that Z(L ′) 6= ∅. In particular, N0(Z/L) is the
subgroup of Z generated by the index of Z (i.e., the gcd of the degrees [L ′ : L] when
L ′ describes the finite extensions of L such that Z(L ′) 6= ∅). For i ≥ 0, we say
that L satisfies the Cq

i -property if, for every finite extension L ′ of L and for every
hypersurface Z in Pn

L ′ of degree d with d i
≤ n, we have Nq(Z/L ′)= K M

q (L
′). In

particular, L is C0
i if, for each finite extension L ′ of L , every hypersurface Z in Pn

L ′

of degree d with d i
≤ n has index 1.
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The field L is Cq
0 if, for each tower of finite extensions L ′′/L ′/L , the norm

NL ′′/L ′ : K M
q (L

′′)→ K M
q (L

′) is surjective. As was already pointed out by Kato
and Kuzumaki at the end of [Kato and Kuzumaki 1986], by using the Bloch–Kato
conjecture which identifies the groups K M

q (L)/n and Hq(L , µ⊗q
n ) for n prime to

the characteristic of L and which has been proved by Rost and Voevodsky, one can
show that a field of characteristic zero is Cq

0 if and only if it is of cohomological
dimension at most q .

1. Global fields

Proof of theorems A and B. This section is devoted to number fields and function
fields of curves over finite fields. The main goal consists of establishing theorems
A and B. Whenever K is a global field, �K stands for the set of places of K, and
for v ∈�K , we denote by Kv the completion of K with respect to v and by Ov the
ring of integers in Kv.

We start with a preliminary lemma concerning Hilbertian fields. For a definition
of Hilbertian fields, the reader may refer to section 12.1 of [Fried and Jarden 2008].

Lemma 1.1. Let K be a Hilbertian field and fix an algebraic closure K of K. Let F
be a finite Galois extension of K and let Y be a geometrically integral K -variety.
Then there exists a finite extension F0 of K such that Y (F0) 6=∅ and F0 ∩ F = K.

Proof. Of course, we can assume that dim Y >0. By applying Bertini’s theorem to an
open dense quasiprojective subset of Y, one shows that Y contains a quasiprojective
geometrically integral curve C over K. Since Y is geometrically reduced, one
can find a curve C ′ in P2

K birationally equivalent to C. Let g ∈ K [X, Y, Z ] be
a homogeneous polynomial which is irreducible over K and such that C ′ is the
curve defined by the equation g = 0. Let U ′ be a nonempty subset of C ′ which is
isomorphic to an open subset of C. We now distinguish two cases:

• if K has characteristic p>0, we know that g∈K [X,Y,Z ]\K [X p,Y p,Z p
], and

we can thus assume without loss of generality that g∈K [X,Y,Z ]\K [X p,Y,Z ].
Hence we may consider an integer m ≥ 1 and a polynomial h ∈ K [Y,Z ] \ {0}
such that p does not divide m and the coefficient of Xm in g is h. We also
consider the set

H := {(y, z) ∈ F2
| g(X, y, z) ∈ F[X ] is irreducible, h(y, z) 6= 0}.

• if K has characteristic 0, we can assume without loss of generality that g 6∈
K [Y, Z ] and we consider the set

H := {(y, z) ∈ F2
| g(X, y, z) ∈ F[X ] is irreducible}.

To unify notation with the positive characteristic case, we also set h(Y, Z) :=
1 ∈ K [Y, Z ].
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As g is irreducible over F and separable in the variable X, the set H is by definition
a separable Hilbert subset of F2. According to [Fried and Jarden 2008, Corol-
lary 12.2.3], H contains a separable Hilbert subset H ′ of K 2. Since K is a Hilbertian
field, the second paragraph of Section 12.1 of the same work implies that H ′ is
Zariski dense in K 2. In particular, the set H ′ is infinite, and there exists an infinite
number of pairs (y, z)∈K 2 such that g(X, y, z) is irreducible over F and h(y, z) 6=0.
Each of these pairs corresponds to a point w ∈ (C ′)(1) such that K (w)∩ F = K and
the extension K (w)/K is separable. Since C ′ \U ′ is finite, we conclude that there
exists w ∈ (U ′)(1) such that K (w) is a finite separable extension of K satisfying
K (w)∩ F = K. By setting F0 = K (w), we get Y (F0) 6=∅ and F0 ∩ F = K. �

Corollary 1.2. Let K be a Hilbertian field and fix an algebraic closure K of K.
Let F be a finite Galois extension of K and let Y be a geometrically irreducible
K -variety. Then there exists a finite extension F0 of K such that Y (F0) 6= ∅ and
F0 ∩ F = K.

Proof. If K has characteristic 0, the corollary immediately follows from Lemma 1.1.
Assume that K has positive characteristic. Let K ′ be a purely inseparable finite ex-
tension of K such that (YK ′)

red is geometrically integral. By Lemma 1.1, there exists
a finite extension F1 of K ′ such that Y (F1) 6=∅ and F1∩(K ′ ·F)= K ′, where K ′ ·F
denotes the subfield of K generated by K ′ and F. Then we also have F1∩F = K. �

We now introduce a variant of the group N1(Z/K ) which will allow us to treat
in a unified way number fields and function fields of curves over finite fields:

Definition 1.3. Let K be a field and let Z be a K -scheme of finite type. We denote
by N s

1(Z/K ) the subgroup of K× spanned by the images of the norm morphisms
NLs/K : L×s → K×, where L describes finite extensions of K such that Z(L) 6=∅
and Ls stands for the separable closure of K in L .

Note that, if K is a field of characteristic 0 and Z is a K -scheme of finite type,
then N s

1(Z/K )= N1(Z/K ). We are now ready to prove the main theorem of this
section:

Theorem 1.4. Let K be a number field or the function field of a curve over a finite
field. Let Z be a K -variety containing a geometrically irreducible closed subscheme.
For v ∈�K , we denote by Zv the Kv-scheme Z ×K Kv. Then

Ker
(

K×/N s
1(Z/K )→

∏
v∈�K

K×v /N s
1(Zv/Kv)

)
= 0.

Notation 1.5. Whenever M denotes a Galois module over K, we define the first
Tate–Shafarevich group of M by

X1(K ,M) := Ker
(

H 1(K ,M)→
∏
v∈�K

H 1(Kv,M)
)
.
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Proof. In the sequel, we fix an algebraic closure K of K : all finite extensions of K
will therefore be considered as subfields of K .

Now fix x ∈ K× whose class modulo N s
1(Z/K ) lies in

Ker
(

K×/N s
1(Z/K )→

∏
v∈�K

K×v /N s
1(Zv/Kv)

)
.

We want to prove that x ∈ N s
1(Z/K ). To do so, we consider a finite normal extension

L of K such that Z(L) 6= ∅. Let Ls be the separable closure of K in L: it is a
finite Galois extension of K. Let S ⊆�K be the set of places v of K satisfying one
of the following properties:

(i) v is finite and the extension Ls/K is ramified at v;

(ii) v is finite and x is not a unit in Ov;

(iii) v is infinite.

Of course, S is a finite subset of �K .
Now fix v ∈�K . Two main cases arise:

• Assume in the first place that v ∈�K \ S. In this case, v is a finite place, and
as the extension Lsv/Kv is unramified, we know that NLsv/Kv

(Ls
×
v ) contains

O×v . Since x ∈O×v , we conclude that x ∈ NLsv/Kv
(Ls
×
v ).

• Assume now that v ∈ S and fix an algebraic closure Kv of Kv . By assumption,
x ∈ N s

1(Zv/Kv). Let then M (v)
1 , . . . ,M (v)

nv be finite extensions of Kv contained
in Kv such that, if M (v)

i,s denotes the separable closure of Kv in M (v)
i , we have x ∈

〈NM (v)
i,s /Kv (M

(v)
i,s
×

) | 1≤ i ≤ nv〉 ⊆ K×v and Z(M (v)
i ) 6=∅ for each i . According

to Greenberg’s approximation theorem [1966, Theorem 1] if v is finite and
Tarski–Seidenberg principle if v is real [Pirutka ≥ 2018, Corollary 4.1.6], we
have Z(M (v)

i ∩ K ) 6=∅. We can therefore consider a finite extension L(v)i of
K contained in M (v)

i ∩ K such that Z(L(v)i ) 6= ∅. Let L(v)i,s be the separable
closure of K in L(v)i . The valuation on M (v)

i induces by restriction a place w
of L(v)i which divides v and such that the completion of L(v)i,s with respect to w
is a subextension of M (v)

i,s /Kv. Hence

NM (v)
i,s /Kv

(M (v)
i,s
×

)⊆ NL(v)i,s ⊗K Kv/Kv
((L(v)i,s ⊗K Kv)

×)⊆ K×v .

Since x ∈ 〈NM (v)
i,s /Kv

(M (v)
i,s
×

) | 1≤ i ≤ nv〉 ⊆ K×v , we deduce that

x ∈ 〈NL(v)i,s ⊗K Kv/Kv
((L(v)i,s ⊗K Kv)

×) | 1≤ i ≤ nv〉 ⊆ K×v .



436 Diego Izquierdo

To summarize, we have just proved that, if T is the normic torus R1
E/K (Gm) with

E = Ls ×
∏
v∈S

∏nv
i=1 L(v)i,s and if [x] stands for the image of x in

H 1(K , T )= K×/NE/K (E×),
then

[x] ∈X1(K , T ). (1)

Now let F be the smallest finite Galois extension of K containing Ls and all the
L(v)i,s . Since Z contains a geometrically irreducible closed subscheme, Corollary 1.2
shows that Z has a point in a finite extension F0 of K such that F0∩F = K. Denote
by F0,s the separable closure of K in F0.

According to Theorem 1 of [Demarche and Wei 2014], since F0,s ∩ F = K and
the extension F/K is Galois, we have

X1(K , Q)= 0,

where Q denotes the normic torus R1
E ′/K (Gm), with E ′= Ls×F0,s×

∏
v∈S

∏nv
i=1 L(v)i,s .

Noting that the torus T naturally embeds in Q and using (1), we conclude that the
class of x in H 1(K , Q) is trivial. Since Z(L) 6=∅, Z(F0) 6=∅ and Z(L(v)i ) 6=∅
for each v and each i , this shows that x ∈ N s

1(Z/K ) as desired. �

Remark 1.6. Let K be a number field and keep the notation and the assumptions
of Theorem 1.4. The proof implies that, if L1, . . . , Lr are finite extensions of K
such that

〈NL i⊗K Kv/Kv
((L i ⊗K Kv)

×) | 1≤ i ≤ r〉 = K×v

for each v ∈�K , then there exists a finite extension Lr+1 of K such that

〈NL i/K (L×i ) | 1≤ i ≤ r + 1〉 = K×.

Moreover, if L is a finite Galois extension of K containing all the L i , the field Lr+1

can be chosen to be any finite extension of K which is linearly disjoint from L .

Number fields. In this paragraph, we focus on the case when K is a number field.
We give a new proof of the C1

1 -property for totally imaginary number fields, and
we see how this proof allows one to study some concrete examples.

Property C1
1 for totally imaginary number fields. In Theorem 1.4, the assump-

tion that Z contains a geometrically integral closed subscheme cannot be re-
moved. Indeed, one can for example choose K = Q, take for Z a variety over
L =Q(

√
13,
√

17) having a rational point in L and see Z as a K -variety. In this
case, Theorem 1.4 fails since the affine Q-variety defined by the equation

NL/Q(x + y
√

13+ z
√

17+ t
√

221)=−1

does not satisfy the local-global principle.
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Nevertheless, the assumption that Z contains a geometrically integral closed
subscheme can be slightly weakened:

Corollary 1.7. Let K be a number field and let Z be K -variety. For v ∈ �K , we
denote by Zv the Kv-scheme Z ×K Kv. Assume that there exist finite extensions
K1, . . . , Kr of K such that Z Ki contains a geometrically integral closed subscheme
for each i and the gcd of the degrees [Ki : K ] is 1. Then

Ker
(

K×/N1(Z/K )→
∏
v∈�K

K×v /N1(Zv/Kv)

)
= 0.

Remark 1.8. This corollary was previously only known for smooth, projective,
geometrically irreducible K -varieties [Kato and Saito 1983, Theorem 4] and for
proper varieties with Euler–Poincaré characteristic equal to 1 [Wittenberg 2015,
Proposition 6.2]. It generalizes those results according to Proposition 3.3 there.

Proof. According to Theorem 1.4, for each i , we have

Ker
(

K×i /N1(Z Ki /Ki )→
∏

w∈�Ki

K×i,w/N1(Z Ki,w/Ki,w)

)
= 0.

Therefore a restriction-corestriction argument shows that the group

Ker
(

K×/N1(Z/K )→
∏
v∈�K

K×v /N1(Zv/Kv)

)
is of [Ki : K ]-torsion for each i , hence trivial. �

Wittenberg [2015, Theorem 6.1] has recently proved property C1
1 for totally

imaginary number fields. Theorem 1.4 allows us to obtain this result by a different
method. The passage from local results to global results is simpler and more explicit
than in Section 6 there.

Corollary 1.9. Let K be a number field and let Z be a hypersurface of degree d
in Pn

K such that d ≤ n and N1(Zv/Kv) = K×v for each real place v of K. Then
N1(Z/K )= K×.

Proof. By Exercise I.7.2(c) of [Hartshorne 1977], we know that the Euler–Poincaré
characteristic χ(Z ,OZ ) :=

∑
i≥0 dimK H i

Zar(Z ,OZ ) is equal to 1. Hence, [Witten-
berg 2015, Proposition 3.3] establishes the existence of finite extensions K1, . . . , Kr

of K satisfying the assumptions of Corollary 1.7. We deduce that

Ker
(

K×/N1(Z/K )→
∏
v∈�K

K×v /N1(Zv/Kv)

)
= 0.
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But by Corollary 5.5 there, we have N1(Zv/Kv)= K×v for each finite place v of K.
By assumption, we also know that N1(Zv/Kv)= K×v for each infinite place v of K.
We conclude that N1(Z/K )= K×. �

Remark 1.10. Instead of using [Wittenberg 2015, Proposition 3.3] and Corollary 1.7
to prove that

Ker
(

K×/N1(Z/K )→
∏
v∈�K

K×v /N1(Zv/Kv)

)
= 0,

we could have combined Theorem 2 of [Kollár 2007] (which asserts that a projective
hypersurface in Pn

K of degree d with d ≤ n always contains a geometrically integral
closed subscheme) with Theorem 1.4. The proof of Proposition 3.3 of [Wittenberg
2015] is nevertheless more elementary than the one of Theorem 2 of [Kollár 2007].

Some concrete examples over number fields. It is interesting to notice that the
proof we have given of the C1

1 -property for totally imaginary number fields is quite
explicit: by this, we mean that in many numerical examples, it allows us to establish
more precise results than just the C1

1 -property. To see this, we first establish the
following lemma:

Lemma 1.11. Let n ≥ 1 be an integer. Let M be a field of characteristic prime to n.
Fix an algebraic closure M of M. Assume that M contains all n-th roots of unity
and that M×/M×n is isomorphic to (Z/nZ)2. Let a0, . . . , an be n+ 1 elements of
M×. For 0≤ i, j ≤ n with i 6= j, set Mi j = M

( n
√

ai a−1
j

)
. Then

M× = 〈NMi j/M(M×i j ) | 1≤ i, j ≤ n, i 6= j〉.

Proof. Write n = pr1
1 · · · p

rs
s with p1, . . . , ps pairwise distinct prime numbers and

r1, . . . , rs positive integers. Since 〈NMi j/M(M×i j ) | 1 ≤ i, j ≤ n, i 6= j〉 contains
M×n and

M×/M×n ∼=

s∏
t=1

M×/M× prt
t ,

it is enough to show that for each t ∈ {1, . . . , s}, the group M× is spanned by the
subgroups M× prt

t and NMi j/M(M×i j ) for 1≤ i, j ≤ n, i 6= j.
We henceforth fix t ∈ {1, . . . , s}. If there exist integers i and j with 0≤ i, j ≤ n

and i 6= j such that ai a−1
j ∈ M× prt

t , there is nothing to prove. We can therefore
assume that ai a−1

j 6∈ M× prt
t for all 0≤ i, j ≤ n with i 6= j.

For 0 ≤ i, j ≤ n with i 6= j, let ei j be the largest divisor of prt
t such that there

exists yi j ∈ M× satisfying yei j
i j = ai a−1

j . The following properties are satisfied for
0≤ i, j ≤ n with i 6= j :

(i) the integer prt
t does not divide ei j , because ai a−1

j 6∈ M× prt
t ,
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(ii) the order of yi j in M×/M× prt
t is prt

t because M×/M× prt
t is isomorphic to

(Z/prt
t Z)2,

(iii) one has yei j
i j = yei0

i0 · y
−e j0
j0 ,

and we want to prove that the group M×/M× prt
t is spanned by the NMi j/M(M×i j ) for

0≤ i , j ≤ n, i 6= j. Since the group NMi j/M(M×i j ) contains yi j for each i and j and
M×/M× prt

t is isomorphic to (Z/prt
t Z)2, it is enough to prove the following abstract

sublemma provided that one chooses 3= M×/M× prt
t , xi j = yi j for 1≤ i, j ≤ prt

t
with i 6= j and xi i = yi0 for i ∈ {1, . . . , prt

t }. �

Sublemma 1.12. Let p be a prime number and r ≥ 1 an integer. Set n = pr and
let 3 = (Z/nZ)2. For each i ∈ {1, . . . , n} and each j ∈ {1, . . . , n}, let xi j be an
element of 3 and let ei j be a positive integer. Assume that

(i) for 1≤ i , j ≤ n, the integer pr does not divide ei j .

(ii) for each i and each j, the order of xi j in 3 is n.

(iii) for each i and each j such that i 6= j, one has ei j xi j = ei i xi i − e j j x j j .

Then 3 is spanned by all the xi j .

Proof. Consider an automorphism φ of3 such that φ(x1,1)= (1, 0). By assumptions
(i) and (ii), we have ei j xi j 6= 0 for all i and j. Hence φ(e11x11), . . . , φ(ennxnn) are
pairwise distinct and nonzero. According to the pigeonhole principle, we deduce
that we are in one of the following situations:

Case 1: there exists i0 ∈ {1, . . . , n} such that φ(ei0i0 xi0i0) ∈ {0}× (Z/nZ\{0}). We
then conclude that x11 and xi0i0 span 3.

Case 2: there exist i0, j0 ∈ {1, . . . , n} such that φ(ei0i0 xi0i0) − φ(e j0 j0 x j0 j0) ∈

{0}× (Z/nZ \ {0}). We conclude that x11 and xi0 j0 span the group 3. �

In the sequel, we will also need the following easy lemma:

Lemma 1.13. Let n be a positive integer and let q(n) be the number of prime
divisors of n. Let X be a generating set of 1 := Z/nZ. Then X contains a subset
X ′ which has at most q(n) elements and which spans 1.

Proof. We proceed by induction on q(n).
If q(n)= 1, then n = pa for some prime number p and some integer a. The set

X contains an element x which is not divisible by p, and one can simply choose
X ′ = {x}.

Now let q be a positive integer and assume that the lemma is known when
q(n) ≤ q. Take n ≥ 1 such that q(n) = q + 1 and write n = pa1

1 · · · p
aq+1
q+1 for

p1, . . . , pq+1 pairwise distinct prime numbers and a1, . . . , aq+1 positive integers.
The set X contains an element x which is not divisible by pq+1. The quotient group
1/〈x〉 is spanned by the image X of X in 1/〈x〉. Since 1/〈x〉 is a cyclic group
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whose order m satisfies q(m) ≤ q, the induction hypothesis shows that one can
find a subset X0 of X which has at most q elements and which spans 1/〈x〉. By
choosing any lifting X0 ⊆ X of X0 ⊆ X having at most q elements, one sees that
{x} ∪ X0 is a subset of X which has at most q(n) elements and which spans 1. �

Lemma 1.11 applies to p-adic fields containing n-th roots of unity and such that
p does not divide n. From this, our proof of Kato and Kuzumaki’s conjecture yields
the following proposition:

Proposition 1.14. Let n ≥ 1 be an integer. Let K be a totally imaginary number
field containing n-th roots of unity. Let f ∈ K [X0, . . . , Xn] be a homogeneous
polynomial of degree n of the form

f = a0 Xn
0 + · · ·+ an Xn

n + g(X0, . . . , Xn),

where each monomial appearing in g contains at least three different variables. Set

N = 1
2 n(n+ 1)+ 1+ [K :Q]q(n)(q(n)+ 1),

where q(n) denotes the number of prime divisors of n. Then there exist N finite
extensions K1, . . . , KN of K such that

(i) the equation f = 0 has nontrivial solutions in Ki for each i ,

(ii) K× is spanned by the subgroups NKi/K (K×i ) for 1≤ i ≤ N.

Proof. For 0≤ i < j ≤ n, consider the field Ki j = K
( n
√

ai a−1
j

)
. Fix v a place of K

not dividing n and denote by k(v) the residue field of Kv. Since K contains n-th
roots of unity, n divides the order of k(v)×. Hence Proposition II.5.7 of [Neukirch
1999] implies that K×v /K×v

n ∼= (Z/nZ)2. Lemma 1.11 then shows that K×v is
spanned by the subgroups NKi j⊗K Kv/Kv

((Ki j ⊗K Kv)
×).

Fix now v a place of K dividing n. Since the maximal unramified extension
of Kv is a C1-field [Lang 1952, Theorem 12], there exists a finite unramified
extension Lv,0 of Kv such that the equation f = 0 has a nontrivial solution in Lv,0.
As Lv,0/Kv is unramified, the group NLv,0/Kv

(Lv,0×) contains O×v . Moreover, by
Corollary 5.5 of [Wittenberg 2015], the group K×v is spanned by the images of the
norm morphisms NM/Kv

when M describes finite extensions of Kv such that the
equation f = 0 has nontrivial solutions in M ; hence, by applying Lemma 1.13 to
the group 1 = (K×v /K×v

n
)
/
(O×v /O×v

n
) (which is isomorphic to Z/nZ), one can

find q(n) finite extensions Lv,1, . . . , Lv,q(n) of Kv such that the equation f = 0
has nontrivial solutions in Lv,i for each i and the subgroup of K×v spanned by the
subgroups NLv,i/Kv

(L×v,i ) contains a uniformizer. Hence the group K×v is spanned by
the subgroups NLv,i⊗K Kv/Kv

(L×v,i ) for 0≤ i ≤ q(n). By Greenberg’s approximation
theorem, we deduce that there exist finite extensions Mv,0,Mv,1, . . . ,Mv,q(n) of K
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such that the equation f = 0 has nontrivial solutions in Mv,i for 0≤ i ≤ q(n) and
K×v is spanned by the subgroups NMv,i⊗K Kv/Kv

((Mv,i ⊗K Kv)
×).

Let M be a Galois extension of K containing all the Ki j and all the Mv,i . Let L
be a finite field extension of K which is linearly disjoint from M and such that the
equation f = 0 has a nontrivial zero in L . Such an extension L exists by Theorem
2 of [Kollár 2007] and by Lemma 1.1. Then, by Remark 1.6, the group K× is
spanned by the subgroups NKi j/K (K×i j ) (for 0 ≤ i < j ≤ n), NMv,i/K (M×v,i ) (for
0 ≤ i ≤ q(n)) and NL/K (L×). The corollary follows since the number of finite
extensions of K that enter the game here is at most N. �

Here is a concrete example:

Example 1.15. Consider the case where K =Q(i) and

f = X2
0 + 2X2

1 + aX2
2 ∈ K [X0, X1, X2]

for some a ∈ Z such that a is congruent to 1, 3, 9, 11, 17, 19, 25 or 27 modulo 32.
Let v2 be the unique place of K above 2 and note that we have

1+ i = NKv2 (
√

2)/Kv2

(
1+ 1

2(1− i)
√

2
)
,

hence
1+ i ∈ NKv2 (

√
2)/Kv2

(
Kv2(
√

2)×
)
. (2)

Moreover, one easily checks that the assumptions on a imply that the extension
Kv2(
√

a)/Kv2 is unramified. Hence

O×v2
⊆ NKv2 (

√
a)/Kv2

(
Kv2(
√

a)×
)
. (3)

From the inclusions (2) and (3), we get that the group K×v2
is spanned by the sub-

groups NKv2 (
√

2)/Kv2
(Kv2(

√
2)×) and NKv2 (

√
a)/Kv2

(Kv2(
√

a)×). Using Lemma 1.11,
we deduce that for each place v of K, the group K×v is spanned by the subgroups
NKv(

√
b)/Kv (Kv(

√
b)×) for b ∈ {2, a, 2a}. One can then easily check that the exten-

sions K (
√

2,
√

a) and K (
√

a+ 2) are always linearly disjoint over K. Therefore
K× is spanned by the subgroups NK (

√
b)/K (K (

√
b)×) for b ∈ {2, a, 2a, a+ 2}. Of

course, for such b, the equation f = 0 has nontrivial solutions in K (
√

b).

Global fields of positive characteristic. In this paragraph, we focus on the case
when K is a global field of positive characteristic. We prove of the C1

1 -property «
away from p », and, as in the case of number fields, we see how the proof allows
one to study some concrete examples.

We start by introducing a variant of the group N1(Z/K ) which will allow us to
study the C1

1 -property away from p for global fields of positive characteristic:
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Definition 1.16. Let K be a field of characteristic p > 0. Let Z be a K -scheme of
finite type. We denote by N p

1 (Z/K ) the set of x ∈ K× such that there exists an
integer r ≥ 1 satisfying x pr

∈ N1(Z/K ).

The following proposition is a consequence of Theorem 1.4:

Proposition 1.17. Let K be the function field of a curve over a finite field of
characteristic p > 0. Let Z be a K -variety containing a geometrically irreducible
closed subscheme. For v ∈ �K , we denote by Zv the Kv-scheme Z ×K Kv. Then
the abelian group

Ker
(

K×/N1(Z/K )→
∏
v∈�K

K×v /N p
1 (Zv/Kv)

)
is a p-primary group.

Proof. Consider an element x ∈ K× whose class modulo N1(Z/K ) lies in

Ker
(

K×/N1(Z/K )→
∏
v∈�K

K×v /N p
1 (Zv/Kv)

)
.

By assumption, for each v ∈�K , there exists rv ≥ 0 such that x prv
∈ N1(Zv/Kv)⊆

N s
1(Zv/Kv). Furthermore, there exists an integer m ≥ 0 such that xm

∈ N s
1(Zv/Kv)

for each v ∈�K . We conclude that there exists r ≥ 0 such that x pr
∈ N s

1(Zv/Kv)

for each v ∈�K . According to Theorem 1.4, this shows that x pr
∈ N s

1(Z/K ). We
can therefore consider finite extensions K1, . . . , Kn of K such that, if Ki,s denotes
the separable closure of K in Ki , we have x pr

∈ 〈NKi,s/K (K×i,s) | 1 ≤ i ≤ n〉 and
Z(Ki ) 6=∅ for each i . Since all the degrees [Ki : Ki,s] are powers of p, this implies
that there exists an integer r ′ ≥ 0 such that (x pr

)pr ′

∈ 〈NKi/K (K×i ) | 1≤ i ≤ n〉. We
conclude that x pr+r ′

∈ N1(Z/K ), which finishes the proof of the corollary. �

We are now ready to prove the C1
1 -property away from p for global fields of

characteristic p.

Theorem 1.18. Let K be the function field of a curve over a finite field of charac-
teristic p > 0 and let Z be a hypersurface of degree d in Pn

K such that d ≤ n. Then
the exponent of the group K×/N1(Z/K ) is a power of p.

For the proof, it is useful to recall from [Wittenberg 2015] that a field L is
said to be strongly C1

1 away from p if, for each finite extension L ′ of L , each
proper scheme Z over L ′ and each coherent sheaf E on Z , the Euler–Poincaré
characteristic χ(Z , E) kills every element of K M

q (L
′)/Nq(Z/L ′) whose order is

not divisible by p.

Proof. If A is a torsion abelian group, we denote by A{p′} the subgroup of A
constituted by elements of A whose order is not divisible by p. For each proper
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K -scheme Z , we define

H1(Z/K )= K×/N1(Z/K )

and we denote by nZ the exponent of the abelian group H1(Z/K ){p′} if Z is
nonempty or 0 otherwise. We say that Z satisfies property P if Z is normal. We
are now going to check the three assumptions that appear in Proposition 2.1 of
[Wittenberg 2015].

(1) This is obvious, because a morphism of proper K -schemes Y → Z induces a
surjective morphism H1(Y/K )→ H1(Z/K ).

(2) Let Z be a proper normal K -scheme. Let K ′ be the algebraic closure of K in
K (Z). Then Z is naturally endowed with a structure of proper geometrically
irreducible K ′-scheme. According to Proposition 1.17,

Ker
(

H1(Z/K ′)→
∏
v∈�K

H1(Zv/K ′v)
)
{p′} = 0.

Moreover, since K ′v is strongly C1
1 away from p for each v ∈�K according

to Corollary 4.7 of [Wittenberg 2015], the group H1(Zv/K ′v){p
′
} is killed

by χK ′(Z ,OZ ). We deduce that the group H1(Z/K ′){p′} is also killed by
χK ′(Z ,OZ ). But χK (Z ,OZ ) = [K ′ : K ]χK ′(Z ,OZ ). Hence a restriction-
corestriction argument shows that χK (Z ,OZ ) kills H1(Z/K ){p′}. The integer
nZ has therefore to divide χK (Z ,OZ ).

(3) It suffices to choose the normalization morphism.

We can therefore apply Proposition 2.1 of [Wittenberg 2015] and deduce that the
field K is strongly C1

1 away from p. The corollary then follows from the fact an
(n − 1)-dimensional projective hypersurface of degree d with d ≤ n has Euler–
Poincaré characteristic 1. �

Remark 1.19. While Corollary 1.9 was already proved in [Wittenberg 2015],
Theorem 1.18 is new.

In the same way as in the case of number fields, one can get more precise results.
For example, one can prove the following proposition similarly to Proposition 1.14:

Proposition 1.20. Let n≥1 be an integer. Let K be the function field of a curve over
a finite field and assume that K contains n-th roots of unity. Let f ∈ K [X0, . . . , Xn]

be a homogeneous polynomial of degree n of the form

f = a0 Xn
0 + · · ·+ an Xn

n + g(X0, . . . , Xn),

where each monomial appearing in g contains at least three different variables. As-
sume that the projective hypersurface defined by f = 0 is geometrically irreducible.
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Set

N = 1
2 n(n+ 1)+ 1.

Then there exist N finite extensions K1, . . . , KN of K such that

(i) the equation f = 0 has nontrivial solutions in Ki for each i ,

(ii) K× is spanned by the subgroups NKi/K (K×) for 1≤ i ≤ N.

2. Function fields of varieties over an algebraically closed field

In this section, we are going to establish Kato and Kuzumaki’s conjectures for
function fields of varieties over an algebraically closed field of characteristic 0.
We have already recalled that the Bloch–Kato conjecture implies that a field of
characteristic 0 is Cq

0 if and only if it is of cohomological dimension at most q.
The proposition that follows is a particular case of this result. Anyway, we give an
elementary proof, because its ideas will be useful in the sequel in order to establish
Theorems 2.2 and 3.9:

Proposition 2.1. Let k be an algebraically closed field of characteristic 0. Then
the field K = k(t1, . . . , tq) satisfies property Cq

0 .

Proof. We proceed by induction on q . The result is obvious for q = 0. Assume now
that we have proved the proposition for some q ≥ 0 and consider the field K =
k(t1, . . . , tq+1). Let L1 be a finite extension of K and L2 be a finite extension of L1.
Let u1, . . . , uq+1 be elements of L×1 . We are going to prove that {u1, . . . , uq+1} ∈

NL2/L1(K
M
q+1(L2)).

To do so, we construct a family (w1, . . . , ws) of elements in L×1 in the following
way:

• if u1, . . . , uq+1 are not algebraically independent over k, we consider a tran-
scendence basis (v1, . . . , vr ) of the extension L1/k(u1, . . . , uq+1) and we set
(w1, . . . , ws)= (u1, . . . , uq+1, v1, . . . , vr−1);

• if u1, . . . , uq+1 are algebraically independent over k, we set (w1, . . . , ws)=

(u1, . . . , uq).

Let M1 (resp. M2) be the algebraic closure of k(w1, . . . , ws) in L1 (resp. L2).
Let C1 (resp. C2) be a geometrically integral curve over M1 (resp. M2) such that
M1(C1)= L1 (resp. M2(C2)= L2). Since M1(C1) is a C1 field and M2(C2)/M1(C1)

is a finite extension, Propositions 10 and 11 of Section X.7 of [Serre 1979] imply
that uq+1 ∈ NM2(C2)/M1(C1)

(M2(C2)
×). And so there exist a finite extension F of

M2 and y ∈ F(C2)
× such that uq+1 = NF(C2)/F(C1)(y). Moreover, by the inductive

assumption, M1 satisfies property Cq
0 , and hence there exists x ∈ K M

q (F) such that
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{u1, . . . , uq} = NF/M1(x). We deduce that

NL2/L1(NF(C2)/L2({x, y}))= NF(C2)/M1(C1)({x, y})

= NF(C1)/M1(C1)(NF(C2)/F(C1)({x, y}))

= NF(C1)/M1(C1)({x, uq+1})

= {u1, . . . , uq+1}.

We have therefore proved that {u1, . . . , uq+1} ∈ NL2/L1(K
M
q+1(L2)). As a conse-

quence, the field K satisfies the Cq
0 -property. �

We are now ready to establish Kato and Kuzumaki’s conjectures for the function
field of a variety over an algebraically closed field of characteristic 0:

Theorem 2.2. Let k be an algebraically closed field of characteristic 0. Then the
function field of a q-dimensional integral k-variety satisfies the C j

i -property for all
i ≥ 0 and j ≥ 0 such that i + j = q.

Proof. Let K be the function field of a q-dimensional integral k-variety. Let i ≥ 0
and j ≥ 0 be integers such that i+ j = q . If j = 0, there is nothing to prove because
the field K is Cq . If i = 0, the result follows from the previous proposition. Hence
we can now assume that i 6= 0 and j 6= 0.

Fix a finite extension L of K. Let Z be a hypersurface of degree d in Pn
L

with d i
≤ n and let u1, . . . , u j be elements of L×. We will show that the sym-

bol {u1, . . . , u j } is in Nj (Z/K ). Let (v1, . . . , vr ) be a transcendence basis of
the extension L/k(u1, . . . , u j ) (with r ≥ 0). Let M be the algebraic closure of
k(u1, . . . , u j , vq− j+1, . . . , vr ) in L (so that the transcendence degree of M/k is j)
and let X be a geometrically integral M-variety of dimension i such that M(X)= L .
Since the field M(X) is Ci , the variety Z has points in M(X). Therefore, there
exists a finite extension F of M such that Z(F(X)) 6= ∅. Moreover, since the
norm NF/M : K M

j (F)→ K M
j (M) is surjective according to Proposition 2.1 and

{u1, . . . , u j } ∈ K M
j (M), we get {u1, . . . , u j } ∈ NF/M(K M

j (F)). As a consequence,
{u1, . . . , u j } ∈ NF(X)/M(X)(K M

j (F(X))), and K has the C j
i -property. �

Remark 2.3. In the previous theorem, we have in fact proved that, if L is a finite
extension of k(t1, . . . , tq) and Z is a hypersurface of degree d in Pn

L with d i
≤ n,

then for each j-symbol x ∈ K M
j (L), there exists a finite extension M of L such

that Z(M) 6=∅ and x ∈ NM/L(K M
j (M)). In particular, if i = q − 1 and j = 1, for

each element x in L×, there exists a finite extension M of L such that Z(M) 6=∅
and x ∈ NM/L(M×).
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3. Local fields with a function field as residue field

Problem and strategy. The goal of this section is to prove the conjectures of Kato
and Kuzumaki for complete discrete valuation fields whose residue field is the
function field of a variety over an algebraically closed field of characteristic 0. In
particular, this applies to the field C(x)((t)), for which properties C2

0 and C0
2 are

already known and for which we are going to establish property C1
1 .

The main difficulty we face in order to establish the C1
1 -property for the field

K = C(x)((t)) lies in proving that, if Z is a hypersurface in Pn
K of degree d ≤ n,

then t ∈ N1(Z/K ). To do so, we are going to show that if we adjoin all the roots
of t to K, then the field K∞ we obtain is C1: this will imply that Z(K∞) 6= ∅.
In order to establish the C1-property for K∞, we will have to establish a modular
criterion allowing us to determine whether an affine variety over K∞ has a rational
point (Corollary 3.8). For this purpose we will heavily use the constructions of the
article [Greenberg 1966].

Greenberg’s approximation theorem revisited. We start by recalling the theorem:

Theorem 3.1 [Greenberg 1966, Theorem 1]. Let R be a henselian discrete valuation
ring with field of fractions K. Let t be a uniformizer of R. Let F = (F1, . . . , Fr ) be
a system of r polynomials in n variables with coefficients in R. We assume that K
has characteristic 0. Then there exist integers N ≥ 1, c ≥ 1 and s ≥ 0 (depending
exclusively on the ideal F R[X ] of R[X ] generated by F1, . . . , Fr ) such that, for
each ν ≥ N and each x ∈ Rn satisfying

F(x)≡ 0 mod tν,

there exists y ∈ Rn such that

y ≡ x mod t [ν/c]−s and F(y)= 0.

In particular, if the system F = 0 has solutions modulo tm for each m ≥ 1, then
it has a solution in R.

From now on, fix a henselian discrete valuation ring R with field of fractions K.
Assume that K has characteristic 0 and fix an algebraic closure K of K. Let t be
a uniformizer of R and choose a compatible system {t1/q

}q≥1 of roots of t in K :
by this, we mean that the elements t1/q of K satisfy the relation (t1/(qq ′))q

′

= t1/q

for each q, q ′ ≥ 1. For q ≥ 1, we set Kq = K (t1/q) and Rq = OKq . We also
set K∞ =

⋃
q≥1 Kq and R∞ =

⋃
q≥1 Rq . We want to establish a similar result to

Theorem 3.1 for the field K∞. In that respect, we start by proving a simple lemma
in commutative algebra.

Definition 3.2. We say that an ideal I of R[X ] is t-saturated if, for each f ∈ R[X ]
such that t f ∈ I, we have f ∈ I.
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Remark 3.3. Of course, the previous definition is independent of the choice of the
uniformizer t . But since in the sequel we will have to replace R by Rq , it will be
useful to systematically track a uniformizer of the ring we will be working on.

Lemma 3.4. Let I be an ideal of R[X ].

(i) If I is t-saturated, then IRq [X ] is t1/q -saturated for each q ≥ 1.

(ii) If I is radical and t-saturated, then IRq [X ] is radical for each q ≥ 1.

Proof. (i) Assume that I is t-saturated. Fix an integer q ≥ 1 and let f ∈ Rq [X ] such
that t1/q f ∈ IRq [X ]. Write t1/q f =

∑r
i=1 fi gi , with fi ∈ I and gi ∈ Rq [X ]. For

each i ∈ {1, . . . , n}, let hi be a polynomial in R[X ] such that t1/q divides gi −hi in
Rq (i.e., the valuation of gi − hi is strictly positive); this can be achieved because
R and Rq have the same residue field. We can now write

t1/q f =
r∑

i=1

fi (gi − hi )+

r∑
i=1

fi hi .

Thus, t divides
∑r

i=1 fi hi in R[X ]. Since I is t-saturated and
∑r

i=1 fi hi ∈ I, we
deduce that

∑r
i=1 fi hi/t ∈ I. The equality

f =
r∑

i=1

fi
gi − hi

t1/q + t (q−1)/q
·

∑r
i=1 fi hi

t

then implies that f ∈ IRq [X ] and hence the ideal IRq [X ] is t1/q -saturated.
(ii) Assume that I is radical and t-saturated. Fix q ≥ 1 and let f be a polynomial

in Rq [X ] such that f n
∈ IRq [X ] for some n> 0. Since I is radical, one immediately

checks that IK [X ] is also radical. This implies that IKq [X ] is also radical, because
the extension Kq/K is separable. Hence f ∈ IKq [X ]. This means that there exists
r ≥ 1 such that tr/q f ∈ IRq [X ]. Since IRq [X ] is t1/q-saturated (by part (i)), we
deduce that f ∈ IRq [X ]. Hence the ideal IRq [X ] is indeed radical. �

In order to prove a similar result to Theorem 3.1 for K∞, we need to work
simultaneously with all the fields Kq , which all satisfy Theorem 3.1. More precisely,
if we fix a system of polynomial equations over R, we can see it as a system of
equations with coefficients in Rq for each q ≥ 1; Theorem 3.1 then gives us integers
Nq , cq and sq , and our goal in the sequel is to control these integers when q varies.
It is therefore quite natural to introduce the following technical definition:

Definition 3.5. Let F = (F1, . . . , Fr ) be a system of r polynomials in n variables
with coefficients in R.

(i) Fix q ∈ N. We say that a triplet (N , c, s) ∈ N × N × N0 is associated to
(R, t, q, F) if it satisfies the following property: for each ν ≥ N and each
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x ∈ Rn
q such that

F(x)≡ 0 mod tν/q ,

there exists y ∈ Rn
q such that

y ≡ x mod t ([ν/c]−s)/q and F(y)= 0.

(ii) We say that a 4-tuple (q0, N , c, s) ∈ N×N×N×N0 is (R, t, F)-admissible
if, for each q ≥ 1, the triplet (q N , c, qs) is associated to (R, t, qq0, F).

We are now ready to state the following theorem:

Theorem 3.6. Let R be a henselian discrete valuation ring with field of fractions K.
Assume that K has characteristic 0 and fix a uniformizer t of R. For q ≥ 1, we set
Kq = K (t1/q) and Rq =OKq . Let F = (F1, . . . , Fr ) be a system of r polynomials
in n variables with coefficients in R. Then there exists a 4-tuple (q0, N , c, s) which
is (R, t, F)-admissible.

In order to establish this theorem, we are going to use considerably the construc-
tions developed in the proof of Theorem 3.1 (see [Greenberg 1966]).

Proof. Denote by V the affine K -variety defined by F=0 and let m be its dimension.
We are going to prove by induction on m that there exists a (R, t, F)-admissible
4-tuple of integers.

• If m =−1 (i.e., V =∅), there exists a nonzero u ∈ R∩ F R[X ]. Then the 4-tuple
(1, valR(u)+ 1, 1, 0) is (R, t, F)-admissible, since for these values of q0, N , c, s,
the assumption appearing in Definition 3.5(i) fails.

• Now assume that m ≥ 0.

◦ Assume in the first place that F R[X ] is radical and t-saturated, and that VK∞ is
irreducible. In this case, Lemma 3.4 shows that the ideal F Rq [X ] of Rq [X ] is radical
for each q ≥ 1. Let J be the jacobian matrix of F and let D be the system of minors
of size n−m in J. By the inductive assumption, there exists a 4-tuple (q ′0, N ′, c′, s ′)
which is (R, t, F, D)-admissible. For I ⊆ {1, . . . , r} with |I | = n−m, denote by
F I the system constituted by the polynomials Fi for i ∈ I. Let VI be the K -variety
defined by the system F I = 0. Let V+I be the union of the irreducible components of
VI which are m-dimensional and different from V. Let G I be a system of generators
of the ideal of V+I in R[X ]. By the inductive assumption, there exists a 4-tuple
(q0,I , NI , cI , sI ) which is (R, t,G I , F)-admissible. Set

q0 = q ′0
∏

|I |=n−m
I⊆{1,...,n}

q0,I .
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According to the proof of Theorem 1 of [Greenberg 1966], for each q ≥ 1, the
triplet (N (q), c(q), s(q)) defined by

N (q)
= 2+ 2qq0 max

{
N ′

q ′0
,max

{ NI

q0,I
| I ⊆ {1, . . . , n}, |I | = n−m

}}
c(q) = 2 max{c′,max{cI | I ⊆ {1, . . . , n}, |I | = n−m}}

s(q) = 1+ qq0 max
{

s ′

q ′0
,max

{ sI

q0,I
| I ⊆ {1, . . . , n}, |I | = n−m

}}
is associated to (R, t, qq0, F). We deduce that the 4-tuple (q0, N , c, s) defined by

N = 2+ 2q0 max
{

N ′

q ′0
,max

{ NI

q0,I
| I ⊆ {1, . . . , n}, |I | = n−m

}}
c = 2 max{c′,max{cI | I ⊆ {1, . . . , n}, |I | = n−m}}

s = 1+ q0 max
{

s ′

q ′0
,max

{ sI

q0,I
| I ⊆ {1, . . . , n}, |I | = n−m

}}
is (R, t, F)-admissible.

◦ We no longer make any assumptions on the ideal F R[X ] or the variety VK∞ .
Let q ′0 ≥ 1 be an integer such that the irreducible components W1, . . . ,Wu of VKq′0
remain irreducible over K∞. For each j ∈ {1, . . . , u}, let I ′j be the prime ideal of
Kq ′0[X ] defining Wj . Consider the ideal

I j := I ′j ∩ Rq ′0[X ].

Let G j be a system of generators of I j . The ideal I j is radical and t1/q ′0-saturated.
Moreover, the Kq ′0-variety defined by I j is Wj ; it is a variety of dimension at most
m and (Wj )K∞ is irreducible. We deduce that there exists a 4-tuple (q0, j , Nj , c j , s j )

which is (Rq ′0, t1/q ′0,G j )-admissible. Note now that there exists an integer w ∈ N∗

such that (I ′1 · · · I
′
u)
w
⊆ F Kq ′0[X ]. Hence there exists v ∈ N∗ such that

tuvw/q ′0(I1 · · · Iu)
w
⊆ F Rq ′0[X ]. (4)

Set q0= q ′0
∏

j q0, j , and consider an integer q ≥ 1. Denote by val : Rqq0→Z∪{∞}

the valuation on Rqq0 , and introduce the integers

N (q)
= uwqq0

q ′0

(
max

{ Nj

q0, j

}
+ v

)
,

c(q) = uwmax{c j },

s(q) = 1+ qq0

q ′0

(
v+max

{ s j

q0, j

})
.
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Fix ν ≥ N (q) and x ∈ Rn
qq0

such that F(x) ≡ 0 mod tν/(qq0). If we are given
polynomials g1 ∈ I1 Rqq0[X ], . . . , gu ∈ Iu Rqq0[X ], the inclusion (4) implies that

ν ≤ val
[

tuvw/q ′0

( u∏
j=1

g j (x)
)w]
=

qq0

q ′0
uvw+w

∑
j

val(g j (x)).

Hence there exists an integer j0 ∈ {1, . . . , u} such that

val(g j0(x))≥
ν

uw
−

qq0

q ′0
v.

Since this is true whatever the chosen polynomials g1 ∈ I1 Rqq0[X ], . . . , gu ∈

Iu Rqq0[X ] are, we conclude that there exists j1 ∈ {1, . . . , u} such that

for all g ∈ I j1 Rqq0[X ], val(g(x))≥
ν

uw
−

qq0

q ′0
v. (5)

As ν ≥ N (q), we also have
ν

uw
−

qq0

q ′0
v ≥

qq0

q ′0q0, j0
N j0 . (6)

Since the 4-tuple (q0, j0, N j0, c j0, s j0) is (Rq ′0, t1/q ′0,G j0)-admissible, the triplet
((qq0/q ′0q0, j )N j0, c j0, (qq0/q ′0q0, j0)s j0) is associated to (Rq ′0, t1/q ′0, (qq0/q ′0),G j0).
We then deduce from (5) and (6) that there exists y ∈ Rn

qq0
such that

y ≡ x mod tµ/(qq0) and G j0(y)= 0,

where µ= [ν/c j0uw] − (qq0/q ′0c j0)v− 1− (qq0/q ′0q0, j0)s j0 . This implies that

y ≡ x mod t ([ν/c
(q)
]−s(q))/(qq0) and F(y)= 0,

and hence the triplet (N (q), c(q), s(q)) is associated to (R, t, qq0, F). Therefore the
4-tuple (q0, N , c, s) defined by

N = uwq0

q ′0

(
max

{ Nj

q0, j

}
+ v

)
, c = uwmax{c j }, s = 1+ q0

q ′0

(
v+max

{ s j

q0, j

})
is (R, t, F)-admissible. �

Corollary 3.7. Let R be a henselian discrete valuation ring with field of fractions K.
Assume that K has characteristic 0 and fix a uniformizer t of R. For q ≥ 1, we set
Kq = K (t1/q) and Rq =OKq . We also set K∞=

⋃
q≥1 Kq and R∞=

⋃
q≥1 Rq . Let

F = (F1, . . . , Fr ) be a system of r polynomials in n variables with coefficients in
R∞. There exists M ∈Q>0, γ ∈N and σ ∈Q>0 satisfying the following property:
for each rational number µ≥ M and each x ∈ Rn

∞
such that

F(x)≡ 0 mod tµ,
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there exists y ∈ Rn
∞

such that

y ≡ x mod tµ/γ−σ and F(y)= 0.

Proof. By replacing R by Rq for some sufficiently large q , we can assume that the
system F has coefficients in R. According to Theorem 3.6, there exists a (R, t, F)-
admissible 4-tuple (q0, N , c, s). Set M = N/q0, γ = c and σ = (s + 1)/q0.
Consider µ ∈Q such that µ≥ M and write µ= a/b with a, b ∈ N. Assume that
there exists x ∈ Rn

∞
such that F(x)≡ 0 mod tµ. Let q1 ≥ 1 be such that x ∈ Rn

q1
.

We know that, for each q ≥ 1, the triplet (q N , c, qs) is associated to (R, t, qq0, F).
In particular, the triplet (bq1 N , c, bq1s) is associated to (R, t, bq1q0, F). Since
F(x)≡ 0 mod tµ and µ≥ N/q0, we deduce that there exists y ∈ Rn

bq0q1
such that

F(y)= 0 and

y ≡ x mod tλ with λ=
1

bq1q0

([aq1q0

c

]
− bq1s

)
.

This finishes the proof because λ≥ µ/c− σ . �

Corollary 3.8. Under the assumptions of Corollary 3.7, if the congruence F(x)≡ 0
mod tν has solutions in R∞ for each integer ν ≥ 1, then the equation F(x)= 0 has
solutions in R∞.

Statement for the field C(x1, . . . , xm)((t)). We are finally ready to establish Kato
and Kuzumaki’s conjectures for complete discrete valuation fields whose residue
field is the function field of a variety over an algebraically closed field of character-
istic 0:

Theorem 3.9. Let k be an algebraically closed field of characteristic zero and fix
m ≥ 1. Let Y be an m-dimensional integral k-variety and set K = k(Y )((t)). Then
the complete field K satisfies the C j

i -property for all i ≥ 0 and j ≥ 0 such that
i + j = m+ 1.

Proof. Since the field K is Cm+1 and has cohomological dimension m+ 1, we can
assume that j 6= 0 and i 6= 0. In the sequel, we fix an algebraic closure K of K. All
fields will be understood as subfields of K .

Let Z be a hypersurface of Pn
K of degree d , with d i

≤ n. We want to prove that
Nj (Z/K )= K M

j (K ).
Fix first a j -tuple (u1,...,u j )∈ k(Y )× j. We are going to prove that {u1,...,u j } ∈

Nj (Z/K ). For this purpose, let (v1,...,vr ) be a transcendence basis of the ex-
tension k(Y )/k(u1,...,u j ) and denote by M the algebraic closure of the field
k(u1,...,u j ,vm− j+1,...,vr ) in K ; it is a field of transcendence degree j over k. Let
Y ′ be a geometrically integral M-variety of dimension i−1 such that k(Y )=M(Y ′).
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The field M(Y ′) is Ci−1, and therefore the field

KM :=
⋃

F/M finite

F(Y ′)((t))

is Ci . We deduce that Z(KM) 6= ∅, and hence there exists a finite extension
F of M such that Z(F(Y ′)((t))) 6= ∅. Since M is C j

0 , we have {u1, . . . , u j } ∈

NF/M(K M
j (F)), and hence {u1, . . . , u j } ∈ Nj (Z/K ) as desired.

Fix now a ( j − 1)-tuple (u1, . . . , u j−1) ∈ k(Y )× j−1. We are going to prove that
{u1, . . . , u j−1, t} ∈ Nj (Z/K ). For this purpose, consider a homogeneous polyno-
mial f ∈ k(Y )[[t]][X0, . . . , Xn] defining Z . Let (v1, . . . , vr ) be a transcendence
basis of the extension k(Y )/k(u1, . . . , u j−1) and denote by M the algebraic closure
of k(u1, . . . , u j−1, vm− j+2, . . . , vr ) in K : it is a field of transcendence degree j−1
over k. Let Y ′ be a geometrically integral M-variety of dimension i such that
k(Y )= M(Y ′). We set

KM :=
⋃

F/M finite

F(Y ′)((t)), RM :=
⋃

F/M finite

F(Y ′)[[t]].

The ring RM is a henselian discrete valuation ring with fraction field KM , uni-
formizer t and residue field M(Y ′). We also set

K∞ :=
⋃
q≥1

KM(t1/q), R∞ :=
⋃
q≥1

RM [t1/q
].

Let m∞ be the maximal ideal of R∞ and fix an integer ν ≥ 1. Let fν and gν be
homogeneous polynomials of degree d, fν ∈ M((t))(Y ′)[X0, . . . , Xn] and gν ∈
R∞[X0, . . . , Xn] such that

f = fν + tνgν .

Since M((t))(Y ′) is Ci and is contained in K∞, there exists (x0,...,xn)∈ Rn+1
∞
\mn+1
∞

such that fν(x0,...,xn)= 0. We therefore have

f (x0, . . . , xn)≡ 0 mod tν .

Since this is satisfied for each ν≥ 1, we deduce from Corollary 3.8 that Z(K∞) 6=∅.
We can then consider a finite extension F/M and an integer q ≥ 1 such that
Z(F(Y ′)((t1/q))) 6=∅. As M has the C j−1

0 -property, there exists x ∈ K M
j−1(F) such

that NF/K (x)= {u1, . . . , u j−1}. Hence:

NF(Y ′)((t1/q ))/K ({x, t1/q
})= NF(Y ′)((t))/M(Y ′)((t))

(
NF(Y ′)((t1/q ))/F(Y ′)((t))({x, t1/q

})
)

= NF(Y ′)((t))/M(Y ′)((t))({x,±t})

= {u1, . . . , u j−1,±t}.

We conclude that {u1, . . . , u j−1, t} ∈ Nj (Z/K ).
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Since the group K M
j (K )/d is spanned by symbols of the form {u1, . . . , u j } and

{u1, . . . , u j−1, t} with (u1, . . . , u j ) ∈ k(Y )× j, we get Nj (Z/K )= K M
j (K ). �

Remark 3.10. Let k be an algebraically closed field of characteristic 0 and let Y
be an integral k-variety of dimension m. The previous proof shows in fact that, if
M is an extension of transcendence degree j − 1 over k contained in k(Y ) and if
Y ′ is an integral M-variety such that M(Y ′)= k(Y ), then the field

K∞ =
⋃
q≥1

⋃
F/M finite

F(Y ′)((t))(t1/q)

is Cm+1− j . In particular, the field
⋃

q≥1 C(x)((t))(t1/q) is C1.
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Height bounds and the Siegel property
Martin Orr

Let G be a reductive group defined over Q and let S be a Siegel set in G(R). The Siegel property tells us
that there are only finitely many γ ∈G(Q) of bounded determinant and denominator for which the translate
γ.S intersects S. We prove a bound for the height of these γ which is polynomial with respect to the
determinant and denominator. The bound generalises a result of Habegger and Pila dealing with the case
of GL2, and has applications to the Zilber–Pink conjecture on unlikely intersections in Shimura varieties.

In addition we prove that if H is a subset of G, then every Siegel set for H is contained in a finite
union of G(Q)-translates of a Siegel set for G.

1. Introduction

A Siegel set is a subset of the real points G(R) of a reductive Q-algebraic group of a certain nice form.
The notion of a Siegel set was introduced by Borel and Harish-Chandra [1962], in order to prove the
finiteness of the covolume of arithmetic subgroups of G(R). In this paper we use a variant of the notion
due to Borel [1969] which takes into account the Q-structure of the group G, and gives an intrinsic
construction of fundamental sets for arithmetic subgroups in G(R).

Let S⊂ G(R) be a Siegel set (see Section 2 for the precise definition). The primary theorem of this
paper is a bound for the height of elements of

S.S−1
∩ G(Q)= {γ ∈ G(Q) : γ.S∩S 6=∅}

in terms of their determinant and denominators. This gives a quantitative version of [Borel 1969,
Corollaire 15.3], which asserts that S.S−1

∩G(Q) has only finitely many elements with given determinant
and denominators. This in turn implies a quantitative version of the Siegel property, one of the key
properties of Siegel sets.

Theorem 1.1. Let G be a reductive Q-algebraic group and let S⊂G(R) be a Siegel set. Let ρ : G→GLn

be a faithful Q-algebraic group representation.
There exists a constant C1 (depending on G, S and ρ) such that, for all

γ ∈S.S−1
∩G(Q),

if N = |det ρ(γ )| and D is the maximum of the denominators of entries of ρ(γ ), then

H(ρ(γ ))≤max(C1 N Dn, D).

MSC2010: primary 11F06; secondary 11G18.
Keywords: reduction theory, Siegel sets, unlikely intersections.
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This theorem was inspired by a result of Habegger and Pila [2012, Lemma 5.2]. They dealt with the
case G = GL2, as a step in proving some cases of the Zilber–Pink conjecture on unlikely intersections
in Y (1)n . We are motivated by applications of Theorem 1.1 to the Zilber–Pink conjecture in higher-
dimensional Shimura varieties, which is the subject of work in progress by the author. The key point for
these applications is that the bound is polynomial in the determinant N .

The second main theorem of this paper compares Siegel sets for the group G with Siegel sets for a
subgroup H ⊂ G, which can be seen as a result on the functoriality of Siegel sets with respect to injections
of Q-algebraic groups. This theorem is used in the proof of Theorem 1.1 to reduce to the case G = GLn .
It also has its own applications to the Zilber–Pink conjecture.

Theorem 1.2. Let G and H be reductive Q-algebraic groups, with H ⊂ G. Let SH be a Siegel set in
H(R). Then there exist a finite set C ⊂ G(Q) and a Siegel set SG ⊂ G(R) such that

SH ⊂ C.SG.

Theorem 4.1 gives some additional information about how the Siegel sets SG and SH are related to
each other (in terms of the associated Siegel triples).

1A. Previous results: height bounds. The primary inspiration for Theorem 1.1 is the following result
of Habegger and Pila.

Proposition 1.3 [Habegger and Pila 2012, Lemma 5.2]. Let F denote the standard fundamental domain
for the action of SL2(Z) on the upper half-plane.

There exists a constant C2 such that: for all points x, y ∈ F , if the associated elliptic curves are related
by an isogeny of degree N , then there exists γ ∈M2(Z) such that

γ x = y, det γ = N and H(γ )≤ C2 N 10.

In order to relate Proposition 1.3 to Theorem 1.1, recall that the upper half-plane H can be identified
with the symmetric space GL2(R)

+/R× SO2(R), with GL2(R)
+ acting on H by Möbius transformations.

Under this identification, the standard fundamental domain

F =
{
z ∈H : − 1

2 ≤ Re z ≤ 1
2 , |z| ≥ 1

}
is contained in the image of the standard Siegel set

S=�1/2 A√3/2K ⊂ GL2(R),

as defined in Section 2A.
We further identify the quotient SL2(Z)\H with the moduli space Y (1) of elliptic curves over C. It is

easy to prove that the elliptic curves associated with points x, y ∈H are related by an isogeny of degree
N if and only if there exists γ ∈M2(Z) such that

γ x = y and det γ = N . (1)
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Theorem 1.1 tells us that any γ satisfying (1) has height at most C1 N , improving on the exponent 10
which appears in Proposition 1.3.

Theorem 1.1 also implies a uniform version of the following previous result of the author (which is a
combination of [Orr 2015, Lemma 3.3] with [Orr 2017, Theorem 1.3]).

Proposition 1.4. Let Fg denote the standard fundamental domain for the action of Sp2g(Z) on the Siegel
upper half-space of rank g. Fix a point x ∈ Fg.

There exist constants C3 and C4 such that for all points y ∈ Fg, if the principally polarised abelian
varieties associated with x and y are related by a polarised isogeny of degree N , then there exists a matrix
γ ∈ GSp2g(Q)

+ such that
γ x = y and H(γ )≤ C3 N C4 .

In Proposition 1.4, the constant C3 depends on the fixed point x ∈ Fg and only the other point y is
allowed to vary. On the other hand, we can apply Theorem 1.1 to the symmetric space Hg in a similar
way to that sketched above for H. This gives a much stronger result in which the constant is uniform in
both x and y. Hence Theorem 1.1 can be used to prove results on unlikely intersections in Ag ×Ag for
which Proposition 1.4 is not sufficient.

Note that [Orr 2015, Lemma 3.3] gives a height bound for unpolarised as well as polarised isogenies.
It is not possible to directly deduce a uniform version of this bound for unpolarised isogenies from
Theorem 1.1 because [Orr 2015, Lemma 3.3] concerns the homogeneous space GL2g(R)/GLg(C) while
Theorem 1.1 applies to the symmetric space GL2g(R)/R

×O2g(R).

1B. Previous results: Siegel sets and subgroups. Let H be a reductive Q-algebraic subgroup of G =
GLn . Borel and Harish-Chandra [1962, Theorem 6.5] gave a recipe for constructing a fundamental set for
H(R) which is contained in a finite union of G(Q)-translates of a Siegel set for G. However it is not
obvious how the resulting fundamental set is related to a Siegel set for H . Theorem 1.2 resolves this by
directly relating Siegel sets for G and H .

Theorem 1.2 can also be interpreted as a result about functoriality of Siegel sets. According to a remark
on [Borel 1969, p. 86], if f : H→ G is a surjective morphism of reductive Q-algebraic groups and SH

is a Siegel set in H(R), then f (SH) is contained in a Siegel set in G(R). Theorem 1.2 gives a similar
result for injective morphisms of reductive Q-algebraic groups, where the conclusion must be weakened
to saying that the image of a Siegel set is contained in a finite union of G(Q)-translates of a Siegel set.
We can of course combine these to conclude that for an arbitrary morphism f : H→ G, the image of a
Siegel set SH ⊂ H(R) is contained in a finite union of G(Q)-translates of a Siegel set in G(R).

The proof of Theorem 1.2 gives an explicit bound for the size of the set C ⊂ G(Q), namely #C is at
most the size of the Q-Weyl group of G. The uniform nature of this bound is less powerful than it might
at first appear because the Siegel set SG depends on SH .

1C. Application to unlikely intersections. The author’s motivation for studying Theorem 1.1 is due to
its applications to the Zilber–Pink conjecture on unlikely intersections in Shimura varieties [Pink 2005,
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Conjecture 1.2]. To illustrate these applications, consider the following special case of the Zilber–Pink
conjecture.

Conjecture 1.5. Let g ≥ 2 and let Ag denote the moduli space of principally polarised abelian varieties
of dimension g over C. For each point s ∈ Ag, let (As, λs) denote the associated principally polarised
abelian variety. Let

6 = {(s1, s2) ∈Ag ×Ag : there exists an isogeny As1 → As2}.

Let V ⊂Ag ×Ag be an irreducible algebraic curve. If V ∩6 is infinite, then V is contained in a proper
special subvariety of Ag ×Ag.

Habegger and Pila [2012] used Proposition 1.3 to prove a result similar to Conjecture 1.5 but for the
Shimura variety An

1 (n ≥ 3) instead of Ag×Ag (g ≥ 2) (for reasons of dimension, Conjecture 1.5 is false
for A1×A1).

In work currently in progress, the author of this paper proves Conjecture 1.5 subject to certain technical
conditions and a restricted definition of the set6. This work requires the uniform version of Proposition 1.4
which is implied by the GSp2g case of Theorem 1.1. Because Theorem 1.1 applies to all reductive groups,
not just GSp2g, it should also be useful for proving statements similar to Conjecture 1.5 where Ag is
replaced by an arbitrary Shimura variety. However, at present it is not known how to prove the Galois
bounds which would be required for such a statement.

1D. Outline of paper. Section 2 contains the definition of Siegel sets and the associated notation used
throughout the paper. In Section 3 we prove Theorem 1.1 for standard Siegel sets in GLn , and combine
this with Theorem 1.2 to deduce the general statement of Theorem 1.1. The proof of the GLn case
is entirely self-contained. Finally Section 4 contains the proof of Theorem 1.2, relying on results on
parabolic subgroups and roots from [Borel and Tits 1965].

1E. Notation. If G is a real algebraic group, then we write G(R)+ for the identity component of G(R)
in the Euclidean topology.

We use a naive definition for the height of a matrix with rational entries, as in [Pila and Wilkie 2006]:
if γ ∈Mn(Q), then its height is

H(γ )= max
1≤i, j≤n

H(γi j )

where the height of a rational number a/b (written in lowest terms) is max(|a|, |b|). For an algebraic
group G other than GLn , we define the heights of elements of G(Q) via a choice of faithful representation
G→ GLn .

In order to avoid writing uncalculated constant factors in every inequality in the proof of Theorem 1.1,
we use the notation

X � Y
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to mean that there exists a constant C , depending only on the group G, the representation ρ and the Siegel
set S, such that

|X | ≤ C |Y |.

2. Definition of Siegel sets

The definitions of Siegel sets used by different authors (for example, [Borel 1969; Ash et al. 2010]) vary
in minor ways, so we state here the precise definition used in this paper. At the same time, we define the
notation which we shall use in Sections 3 and 4 for the various ingredients in the construction of Siegel sets.

2A. Standard Siegel sets in GLn. Before defining Siegel sets in general, we begin with the simpler
special case of “standard Siegel sets” in GLn . Our definition of standard Siegel sets follows [Borel 1969,
Définition 1.2]. However, we use the reverse order of multiplication for elements of GLn and therefore
reverse the inequalities in the definition of At .

Make the following definitions (all of these are special cases of the corresponding notations for general
Siegel sets):

(1) P ⊂ GLn is the Borel subgroup consisting of upper triangular matrices.

(2) K = On(R) is the maximal compact subgroup consisting of orthogonal matrices.

(3) S⊂ P is the maximal Q-split torus consisting of diagonal matrices.

(4) At is the set {α ∈ S(R)+ : α j/α j+1 ≥ t for all j} for any real number t > 0.

(5) �u is the compact set

{ν ∈ P(R) : νi i = 1 for all i and |νi j | ≤ u for 1≤ i < j ≤ n}

for any real number u > 0.

A standard Siegel set in GLn is a set of the form

S=�u At K ⊂ GLn(R)

for some positive real numbers u and t .
According to [Borel 1969, Théorèmes 1.4 and 4.6], if t ≤

√
3

2 and u ≥ 1
2 , then S is a fundamental set

for GLn(Z) in GLn(R).

2B. Definition of Siegel sets in general. Let G be a reductive Q-algebraic group. In order to define a
Siegel set in G(R), we begin by making choices of the following subgroups of G

(1) P a minimal parabolic Q-subgroup of G,

(2) K a maximal compact subgroup of G(R).

Lemma 2.1. For any P and K , there exists a unique R-torus S⊂ P satisfying the conditions

(i) S is P(R)-conjugate to a maximal Q-split torus in P ,
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(ii) S is stabilised by the Cartan involution associated with K .

Proof. This follows from the lemma in [Ash et al. 2010, Chapter II, section 3.7]. �

We define a Siegel triple for G to be a triple (P, S, K ) satisfying the conditions of Lemma 2.1. We
remark that these conditions could equivalently be stated as:

(i) S is a lift of the unique maximal Q-split torus in P/Ru(P).

(ii) Lie S(R) is orthogonal to Lie K with respect to the Killing form of G.

Define the following further pieces of notation:

(1) U is the unipotent radical of P .

(2) M is the preimage in ZG(S) of the maximal Q-anisotropic subgroup of P/U . (Note that by [Borel
and Tits 1965, Corollaire 4.16], ZG(S) is a Levi subgroup of P and hence maps isomorphically
onto P/U .)

(3) 1 is the set of simple roots of G with respect to S, using the ordering induced by P . (The roots
of G with respect to S form a root system because S is conjugate to a maximal Q-split torus in G.)

(4) At = {α ∈ S(R)+ : χ(α)≥ t for all χ ∈1} for any real number t > 0.

A Siegel set in G(R) (with respect to (P, S, K )) is a set of the form

S=�At K

where � is a compact subset of U(R)M(R)+ and t is a positive real number.

2C. Comparison with other definitions. In order to reduce confusion caused by definitions of Siegel
sets which vary from one author to another, we explain how our definition compares with the definitions
used in [Borel and Harish-Chandra 1962; Borel 1969; Ash et al. 2010].

First we compare with [Ash et al. 2010, Chapter II, Section 4.1].

(1) In [Ash et al. 2010], Siegel sets are subsets of the symmetric space G(R)/K , while for us they
are K -right-invariant subsets of G(R). These two perspectives are related by the quotient map
G(R)→ G(R)/K .

(2) In [Ash et al. 2010], � is any compact subset of P(R), while we require � to be contained in
U(R)M(R)+. Every Siegel set in the sense of [Ash et al. 2010] is contained in a Siegel set in our
sense and vice versa, so this difference does not matter in applications. We impose the stricter
condition on � because it ensures that Siegel sets are related to the horospherical decomposition in
G(R)/K (as explained in [Borel and Ji 2006, Section I.1.9]).

Now we compare with [Borel 1969, Définition 12.3]. Note that differences (3) and (4) are significant.

(1) We multiply together �, At and K in the opposite order from [Borel 1969]. This change forces us
to reverse the inequalities in the definition of At .
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(2) In [Borel 1969], � is required to be a compact neighbourhood of the identity in U(R)M(R)+ while
we allow any compact subset.

(3) Instead of our condition (i) for S, [Borel 1969] imposes the condition that S must be a maximal
Q-split torus in P . This stronger condition is inconvenient when we also impose condition (ii),
because there does not exist a maximal Q-split torus satisfying condition (ii) for every choice of P
and K . In particular, Theorem 1.2 does not hold if SG is required to be Q-split.

(4) Our condition (ii) for S is not part of the definition of Siegel set in [Borel 1969]. In [Borel 1969], a
Siegel set is called normal if condition (ii) is satisfied. We include condition (ii) in the definition of
a Siegel set because without it the Siegel property does not necessarily hold. Indeed most of the
theorems in [Borel 1969, Chapter 15] apply only to Siegel sets satisfying condition (ii), even though
the word “normal” is omitted from their statements. Similarly this paper’s Theorem 1.1 does not
hold without condition (ii) on S.

The definition of “Siegel domain” in [Borel and Harish-Chandra 1962, Section 4] is less fine than the
definition used in this paper, or the one in [Borel 1969], because it takes into account only the structure
of G as a real algebraic group and not its structure as a Q-algebraic group. Consequently [Borel and
Harish-Chandra 1962] could not use their Siegel domains directly to construct fundamental sets for
arithmetic subgroups in G(R); instead they constructed such fundamental sets using an embedding of G
into GLn and standard Siegel sets in GLn(R).

2D. Siegel sets and fundamental sets. The importance of Siegel sets is due to their use in constructing
fundamental sets for an arithmetic subgroup 0 in G(R). We say that a set �⊂ G(R) is a fundamental set
for 0 if the following conditions are satisfied:

(F0) �.K =� for a suitable maximal compact subgroup K ⊂ G(R).

(F1) 0.�= G(R).

(F2) For every θ ∈ G(R), the set
{γ ∈ 0 : γ.�∩ θ.� 6=∅}

is finite (the Siegel property).

The following two theorems show that, if we make suitable choices of Siegel set S⊂ G(R) and finite
set C ⊂ G(Q), then C.S is a fundamental set for 0 in G(R).

Theorem 2.2 [Borel 1969, Théorème 13.1]. Let 0 be an arithmetic subgroup of G(Q). Let (P, S, K ) be
a Siegel triple for G(R).

There exist a Siegel set S⊂ G(R) with respect to (P, S, K ) and a finite set C ⊂ G(Q) such that

G(R)= 0.C.S.

Theorem 2.3 [Borel 1969, Théorème 15.4]. Let 0 be an arithmetic subgroup of G(Q). Let S⊂ G(R) be
a Siegel set.
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For any finite set C ⊂ G(Q) and any element θ ∈ G(Q), the set

{γ ∈ 0 : γ.C.S∩ θ.C.S 6=∅}

is finite.

As remarked in Section 2C, Theorem 2.3 requires the torus S used in the definition of a Siegel set
to satisfy condition (ii) from Section 2B, even though this condition is erroneously omitted from the
statement in [Borel 1969].

This paper’s Theorem 1.1 implies [loc. cit., Corollaire 15.3] and therefore it implies Theorem 2.3,
by the same argument as in the proof of [loc. cit., Théorème 15.4]. Since our proof of Theorem 1.1 is
independent of Borel’s proof of [loc. cit., Corollaire 15.3], this gives a new proof of Theorem 2.3.

3. Proof of main height bound

In this section we prove Theorem 1.1. Most of the section deals with the case of standard Siegel sets in GLn .
At the end we show how to deduce the general statement of Theorem 1.1 from this case, using Theorem 1.2.

Thus let G =GLn and let S be a standard Siegel set in G. As in the statement of Theorem 1.1, we are
given an element

γ ∈S.S−1
∩ G(Q),

with N =|det γ | and with D denoting the maximum of the denominators of entries of γ . Since γ ∈S.S−1,
using the notation from Section 2A, we can write

γ = νβκα−1µ−1 (2)

with α, β ∈ At , µ, ν ∈�u and κ ∈ K . Rearranging this equation, we obtain

γµα = νβκ. (3)

Our aim is to bound the height of γ by a polynomial in N and D. The proof has three stages. First we
compare entries of the diagonal matrices α and β, showing that α j� Dβi for certain pairs of indices (i, j).
Secondly, we prove that

β j � N Dn−1αi (4)

whenever i and j lie in the same segment of a certain partition of {1, . . . , n}. Finally we expand out (2)
and use inequality (4).

3A. Partitioning the indices. An important device in the proof of Theorem 1.1 for standard Siegel sets
is a partition of the set of indices {1, . . . , n} into subintervals which we call “segments” (depending on γ ).
The segments are defined to be the subintervals of {1, . . . , n} such that

(i) γ is block upper triangular with respect to the chosen partition,

(ii) γ is not block upper triangular with respect to any finer partition of {1, . . . , n} into subintervals.
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We define a leading entry to be a pair of indices (i, j) ∈ {1, . . . , n}2 such that γi j is the left-most
nonzero entry in the i-th row of γ .

The following lemma describes segments in terms of leading entries. This lemma also has a converse,
which we will not need: if i > j and there exists a sequence satisfying condition (∗), then i and j are in
the same segment.

Lemma 3.1. If i > j and i and j are in the same segment, then there exists a sequence of leading entries
(i1, j1), . . . , (is, js) such that

i ≤ i1, jp ≤ i p+1 for every p ∈ {1, . . . , s− 1}, and js ≤ j. (∗)

Proof. First, for each k such that j < k ≤ i , we show that there exists a leading entry (i ′, j ′) such that
j ′ < k ≤ i ′. Because segments give the finest partition according to which γ is block upper triangular, γ
cannot be block upper triangular with respect to the partition

{1, . . . , k− 1}, {k, . . . , n}.

So there exists some i ′ ≥ k such that the i ′-th row of γ has a nonzero entry in the first k−1 columns.
Choosing j ′ to be the index of the left-most nonzero entry in the i ′-th row, we get the desired leading
entry with j ′ < k ≤ i ′.

Let s = i − j . For each p such that 1≤ p ≤ s we apply the above argument to k = i − p+ 1 and get a
leading entry (i p, jp) such that jp < i − p+ 1≤ i p. The resulting sequence (i1, j1), . . . , (is, js) satisfies
condition (∗). �

We define Q to be the subgroup of GLn consisting of block upper triangular matrices according to the
segments defined above (thus Q depends on γ ). Observe that Q could equivalently be defined as the
smallest standard parabolic subgroup of GLn which contains γ .

We define L to be the subgroup of GLn consisting of block diagonal matrices according to the same
partition into segments. Thus L could equivalently be defined as the Levi subgroup of Q containing the
torus of diagonal matrices.

3B. Example partitions for GL3. To illustrate the definition of segments and Lemma 3.1, we show the
various cases which occur for GL3. Table 1 shows classes of matrix in GL3, depending on the region of
zeros adjacent to the bottom left corner of the matrix, and gives the associated partitions of {1, 2, 3} into
segments. Every matrix in GL3 falls into exactly one of the classes in Table 1.

In Table 1, ∗ represents an entry which must be nonzero, while · represents an entry which may be
either zero or nonzero. Every entry to the left of a ∗ is zero, so each ∗ is a leading entry. For rows which
do not contain a ∗, there is not enough information to determine the leading entry; these rows’ leading
entries are not important for Lemma 3.1.

Comparing the two classes of matrices in the right-hand column of Table 1, we see that it is possible for
matrices to have different patterns of zeros adjacent to the bottom left corner, yet still be associated with
the same partition of {1, 2, 3}. This is related to the fact that matrices in the lower class of this column do
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γ segments γ segments

∗ · ·0 ∗ ·
0 0 ∗

 {1}, {2}, {3}

 · · ·· · ·

∗ · ·

 {1, 2, 3}

∗ · ·0 · ·
0 ∗ ·

 {1}, {2, 3}

 · · ·∗ · ·

0 ∗ ·

 {1, 2, 3}

 · · ·∗ · ·

0 0 ∗

 {1, 2}, {3}

Table 1. Partitions into segments for γ ∈ GL3.

not form a subgroup of GL3: the smallest standard parabolic subgroup containing such a matrix is the
full group GL3, the same as for the upper class.

On the other hand, the difference between the two classes in the right-hand column of Table 1 is
important for finding sequences of leading entries as in Lemma 3.1. In the upper class of this column,
the sequence consisting just of the leading entry (3, 1) satisfies condition (∗) for every pair (i, j). In the
lower class, in order to construct a sequence satisfying condition (∗) which goes from i = 3 to j = 1, we
need both the leading entries (3, 2) and (2, 1).

3C. Ratios between diagonal matrices (leading entries). In the first stage of the proof, we compare α j

with βi when (i, j) is a leading entry. This is based on comparing the lengths of the i-th rows on either
side of (3).

Lemma 3.2. If (i, j) is a leading entry for γ , then

α j � Dβi .

Proof. Recall (3):

γµα = νβκ.

Because κ ∈ On(R), multiplying by κ on the right does not change the length of a row vector. Hence
expanding out the lengths of the i-th rows on either side of (3) gives

n∑
p=1

( n∑
q=1

γiqµqp

)2

α2
p =

n∑
p=1

ν2
i pβ

2
p. (5)

Look first at the right-hand side of (5), comparing it to β2
i . Because ν is upper triangular, nonzero

terms on the right-hand side of (5) must have p ≥ i and hence (by the definition of At ) βp� βi . Since ν
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is in the fixed compact set �u , there is a uniform bound for the entries νi p. Thus we get

n∑
p=1

ν2
i pβ

2
p� β2

i . (6)

Now look at the left-hand side of (5), comparing it to α2
j . We pull out the p = j term. Because squares

are nonnegative we have ( n∑
q=1

γiqµq j

)2

α2
j ≤

n∑
p=1

( n∑
q=1

γiqµqp

)2

α2
p. (7)

Because (i, j) is a leading entry, if γiq 6= 0 then q ≥ j . Because µ is upper triangular, if µq j 6= 0 then
q ≤ j . Combining these facts, the only nonzero term on the left-hand side of (7) is the term with q = j .
In other words,

γ 2
i jµ

2
j jα

2
j =

( n∑
q=1

γiqµq j

)2

α2
j . (8)

Because µ ∈�u , we have µ j j = 1. Because (i, j) is a leading entry, γi j 6= 0. Because entries of γ are
rational numbers with denominator at most D, this implies that |γi j |≥ D−1. Combining these facts, we get

D−2
≤ γ 2

i jµ
2
j j . (9)

Using successively the inequalities and equations (9), (8), (7), (5) and (6) gives

D−2α2
j � β2

i . �

3D. Ratios between diagonal matrices (in each segment). In the second stage of the proof of Theorem 1.1,
we prove a series of inequalities comparing entries of α and β. This concludes with an inequality between
αi and β j valid whenever i and j are in the same segment. (Note that the final inequality, Lemma 3.5, is
in the opposite direction to the starting point of Lemma 3.2.)

Lemma 3.3. For all k ∈ {1, . . . , n},
αk � Dβk .

Proof. The key point is that there exists a leading entry (i, j) such that

j ≤ k ≤ i.

To prove this, observe that since γ is invertible there must be some i ≥ k such that the i-th row of γ
contains a nonzero entry in or to the left of the k-th column. Choosing j to be the index of the left-most
nonzero entry in the i-th row of γ gives the required leading entry.

Taking such a leading entry (i, j), we can use Lemma 3.2 (for the middle inequality) and the definition
of At (for the outer inequalities) to prove that

αk � α j � Dβi � Dβk . �
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Lemma 3.4. For every set J ⊂ {1, . . . , n},∏
j∈J

β j � N Dn−#J
∏
j∈J

α j .

Proof. Because α and β are diagonal matrices with positive diagonal entries,∏
j∈J

β j · detα =
∏
j∈J

β j ·

n∏
k=1

αk � Dn−#J
∏
j∈J

α j ·

n∏
k=1

βk = Dn−#J
∏
j∈J

α j · detβ (10)

where the middle inequality uses Lemma 3.3 for all indices k ∈ {1, . . . , n} \ J .
All of µ, ν and κ have determinant ±1. Hence (3) implies that

detβ = N detα.

Combining this with inequality (10) proves the lemma. �

Lemma 3.5. If i and j are in the same segment, then

β j � N Dn−1αi .

Proof. If i ≤ j , then we apply Lemma 3.4 to the singleton { j} to obtain

β j � N Dn−1α j .

Combining this with α j � αi proves the lemma in the case i ≤ j .
Otherwise, i > j so we can use Lemma 3.1 to find a sequence of leading entries (i1, j1), . . . , (is, js)

satisfying condition (∗). We may assume that i1, . . . , is are distinct — otherwise we could simply delete
the subsequence between two occurrences of the same i p. Similarly, we may assume that none of i1, . . . , is

are equal to j .
Therefore we can apply Lemma 3.4 to the set {i1, . . . , is, j} to get

β j

s∏
p=1

βi p � N Dn−(s+1)α j

s∏
p=1

αi p . (11)

For each p ∈ {1, . . . , s− 1}, the fact that jp ≤ i p+1 and Lemma 3.2 tell us that

αi p+1 � α jp � Dβi p .

Similarly because js ≤ j we have

α j � α js � Dβis .

Multiplying these inequalities together and also multiplying by β j gives the first inequality below, while
(11) gives the second:

β jα j

s∏
p=2

αi p � Dsβ j

s∏
p=1

βi p � N Dn−1α j

s∏
p=1

αi p .
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Canceling α j
∏s

p=2 αi p shows that
β j � N Dn−1αi1 .

Since i ≤ i1, we have αi1 � αi . This completes the proof of the lemma. �

3E. Conclusion of proof for standard Siegel sets. In the final stage of the proof, we expand out (2).
When we do this, we get terms of the form βpκpqα

−1
q . In order to bound this using Lemma 3.5, we need

to know that κpq is zero if p and q are not in the same segment. In other words we have to begin by
proving that κ is in the group L(R) of block diagonal matrices.

Lemma 3.6. κ ∈ L(R).

Proof. By construction, γ , µ, α, ν, β are all in the group Q(R) of block upper triangular matrices. Hence
(2) tells us that also κ ∈ Q(R).

If a matrix is both block upper triangular and orthogonal, then it is block diagonal according to the
same blocks (because the inverse-transpose of a block upper triangular matrix is block lower triangular).
In other words,

Q(R)∩ K ⊂ L(R).

This proves the lemma. �

Lemma 3.7. For all i, j ∈ {1, . . . , n}, we have

|γi j | � N Dn−1.

Proof. We expand out the matrix product in (2), which we recall:

γ = νβκα−1µ−1.

Because α and β are diagonal, the pq-th entry of βκα−1 is equal to

βpκpqα
−1
q .

If p and q are not in the same segment, then Lemma 3.6 tells us that κpq = 0. On the other hand if p and
q are in the same segment, then we can apply Lemma 3.5 to bound βpα

−1
q . Furthermore, because κ is in

the compact subgroup K , there is a uniform upper bound for entries of κ . We conclude that

βpκpqα
−1
q � N Dn−1. (12)

Because µ and ν are in the fixed compact set �u and because all elements of �u are invertible, there
is a uniform upper bound for entries of ν and of µ−1. Thus inequality (12) together with (2) implies the
lemma. �

To complete the proof of Theorem 1.1 for standard Siegel sets in GLn , we just have to note that the
definition of H(γ ) implies that

H(γ )≤ D max(1, |γi j |)
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where the maximum is over all indices (i, j) ∈ {1, . . . , n}2. Hence Lemma 3.7 implies that

H(γ )≤max(D,C5 N Dn),

where C5 denotes the implied constant from Lemma 3.7.

3F. Deducing general case from standard Siegel sets. To complete the proof of Theorem 1.1, we deduce
the general statement from the case of standard Siegel sets in GLn . This has two steps. Lemma 3.8
allows us to generalise from standard Siegel sets to arbitrary Siegel sets in GLn . Theorem 1.2 (proved in
Section 4) allows us to generalise from GLn to arbitrary reductive groups G.

Lemma 3.8. Let S be a Siegel set in GLn(R). Then there exist γ ∈ GLn(Q) and σ ∈ GLn(R) such that
γ−1.S.γ σ is contained in a standard Siegel set.

Proof. Let (P, S, K ) be the Siegel triple associated with the Siegel set S, and write S=�.At .K using
the notation of Section 2B.

Let (P0, S0, K0) be the standard Siegel triple in GLn . Write A0,t and �0,u for the sets called At and
�u in the definition of standard Siegel sets.

Since P and P0 are minimal Q-parabolic subgroups of GLn , there exists γ ∈ GLn(Q) such that
P0 = γ

−1 Pγ .
Since K0 and γ−1Kγ are maximal compact subgroups of GLn(R), there exists σ ∈ GLn(R) such that

γ−1Kγ = σK0σ
−1. Applying the Iwasawa decomposition

GLn(R)= U0(R).S0(R)
+.K0,

we may assume that σ = τβ where β ∈ S0(R)
+ and τ ∈ U0(R).

Under this assumption, σ ∈ P0(R). Hence σ−1γ−1.P .γ σ = P0. By Lemma 2.1, σ−1γ−1.S.γ σ = S0.
Thus σ−1γ−1.At .γ σ = A0,t .

Now
γ−1Sγ σ = γ−1�γ.σ.σ−1γ−1 Atγ σ.σ

−1γ−1Kγ σ = γ−1�γ.τβ.A0,t .K0.

Here γ−1�γτ is a compact subset of U0(R) so it is contained in �0,u for a suitable u > 0. Meanwhile
β.A0,t is contained in A0,s for a suitable s > 0. Thus γ−1Sγ σ is contained in the standard Siegel set
�0,u .A0,s .K0, as required. �

4. Siegel sets and subgroups

In this section we prove Theorem 1.2. The proof gives additional information on the relationship between
the Siegel triples for G and H , as follows.

Theorem 4.1. Let G and H be reductive Q-algebraic groups, with H ⊂ G. Let SH be a Siegel set in
H(R) with respect to the Siegel triple (PH , SH , K H). Then there exist a Siegel set SG ⊂ G(R) and a
finite set C ⊂ G(Q) such that

SH ⊂ C.SG.
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Furthermore if (PG, SG, KG) denotes the Siegel triple associated with SG , then Ru(PH)⊂ Ru(PG),
SH = SG ∩ H and K H = KG ∩ H(R).

We denote sets used in the construction of the Siegel sets SG and SH by the notation from Section 2B
with the subscript G or H added as appropriate. Thus we write

SH =�H .AH,t .K H ,

where �H is a compact subset of UH(R)MH(R)
+, K H is a maximal compact subgroup of H(R) and

AH,t = {α ∈ SH(R)
+
: χ(α)≥ t for all χ ∈1H}.

4A. Reduction to a split torus SH . We begin by reducing the proof of Theorem 4.1 to the case in which
the torus SH is Q-split. Note that, even when SH is Q-split, it is not always possible to choose a Q-split
torus for SG .

According to the definition of a Siegel set, we can choose u ∈ PH(R) such that uSHu−1 is a maximal
Q-split torus in PH . Using the Levi decomposition PH = Z H(SH)nUH , we may assume that u ∈UH(R).

Now �Hu−1 is a compact subset of UH(R).u MH(R)
+u−1 so

SH .u−1
=�Hu−1.u AH,t u−1.uK Hu−1.

is a Siegel set with respect to the Siegel triple (PH , uSHu−1, uK Hu−1).
We prove below that Theorem 4.1 holds when SH is Q-split. Hence there exist a Siegel set S′G ⊂ G(R)

and a finite set C ⊂ G(Q) such that

SH .u−1
⊂ C.S′G.

Let (PG, S′G, K ′G) denote the Siegel triple associated with S′G . According to Theorem 4.1, UH ⊂

Ru(PG) and so u ∈ Ru(PG)(R). Therefore

SG =S′G.u

is a Siegel set for G(R) with respect to the Siegel triple (PG, u−1 S′Gu, u−1K ′Gu). We clearly have
SH ⊂ C.SG and the Siegel triple associated with SG satisfies the conditions of Theorem 4.1 relative to
(PH , SH , K H).

4B. Choosing the Siegel triple. We henceforth assume that SH is Q-split. As the first step in proving
Theorem 4.1 for this case, we choose a Siegel triple (PG, SG, KG) for G.

The main difficulty lies in choosing PG . The obvious idea is to choose a minimal parabolic Q-subgroup
of G which contains PH , but such a subgroup does not always exist (for example, if G is Q-split and H
is Q-anisotropic). Instead we construct a larger parabolic Q-subgroup Q ⊂ G which contains PH , and
then define PG to be a minimal parabolic Q-subgroup of Q.

Let us write

Z = ZG(SH).
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Lemma 4.2. There exists a parabolic Q-subgroup Q ⊂ G such that

(i) Z is a Levi subgroup of Q, and

(ii) UH ⊂ Ru(Q).

Proof. Let 8+H denote the set of roots 8(SH , PH). By [Borel and Tits 1965, Proposition 3.1] there exists
an order >Q on X∗(SH) with respect to which all elements of 8+H are positive.

Let

8Q = {χ ∈8(SH , G) : χ >Q 0}

and let Q denote the group G8Q (using the notation of [loc. cit., Paragraph 3.8] with respect to the
torus SH ). By [loc. cit., Théorème 4.15], Q is a parabolic Q-subgroup of G and Z is a Levi subgroup of
Q.

Since all weights of SH on UH are contained in8+H , which is a subset of8Q , [loc. cit., Proposition 3.12]
tells us that UH ⊂G∗8Q

, again using the notation of [loc. cit., Paragraph 3.8]. By [loc. cit., Théorème 3.13],
G∗8Q
= Ru(Q). This completes the proof that UH ⊂ Ru(Q). �

We will make no use of the following lemma, but it sheds some light on the significance of the group Q.

Lemma 4.3. PH = Q ∩ H .

Proof. We use the notation from the proof of Lemma 4.2. By construction, we have that 8(SH , PH)=

8+H ⊂8Q . Hence by [Borel and Tits 1965, Proposition 3.12], PH ⊂ G8Q = Q.
For the reverse inclusion, observe that 8(SH , Q ∩ H) ⊂ 8+H . Hence applying [loc. cit., Proposi-

tion 3.12], this time inside H , we get

Q ∩ H ⊂ H8+H
= PH . �

Choose the following subgroups of G:

(1) PG , a minimal parabolic Q-subgroup of Q.

(2) KG , a maximal compact subgroup of G(R) containing K H .

Define the following notation for subgroups of G which are uniquely determined by PG and KG:

(1) SG is the unique torus such that (PG, SG, KG) is a Siegel triple for G.

(2) UG = Ru(PG).

(3) PZ = PG ∩ Z and UZ = Ru(PZ).

(4) K Z = KG ∩ Z(R).

Lemma 4.4. K Z is a maximal compact subgroup of Z(R).

Proof. Let 2 be the Cartan involution of G associated with the maximal compact subgroup KG . Because
K H = KG ∩ H(R), 2 restricts to the Cartan involution of H associated with K H .
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From the definition of Siegel triple applied to (PH , SH , K H), 2 stabilizes SH . Hence 2 also stabi-
lizes Z. Therefore the fixed points of 2 in Z(R), namely K Z, form a maximal compact subgroup of
Z(R). �

Lemma 4.5. SH ⊂ SG .

Proof. Note that Z is a reductive group defined over Q, because SH is defined over Q. Thus it makes sense
to talk about Siegel triples in Z. By [Borel and Tits 1965, Proposition 4.4], PZ is a minimal parabolic
Q-subgroup of Z.

By Lemma 2.1, there exists a unique torus SZ ⊂ Z such that (PZ, SZ, K Z) is a Siegel triple for Z.
This means that:

(i) SZ is PZ(R)-conjugate to a maximal Q-split torus in PZ. Note that a maximal Q-split torus in PZ is
also a maximal Q-split torus in PG .

(ii) The Cartan involution of Z associated with K Z normalises SZ. This involution is the restriction of
the Cartan involution of G associated with KG .

Thus SZ satisfies the conditions of Lemma 2.1 with respect to (PG, KG). By the uniqueness in Lemma 2.1,
we conclude that SZ = SG .

Because SZ is Z(R)-conjugate to a maximal Q-split torus in Z, it contains every Q-split subtorus of
the centre of Z. In particular SH ⊂ SZ. �

Let S′G be a maximal Q-split torus in PZ. Because (PZ, SZ, K Z) is a Siegel triple, there exists
u ∈ PZ(R) such that S′G = uS′Zu−1. Because of the Levi decomposition PZ = ZG(SG)n UZ, we may
assume that u ∈ UZ(R).

The following lemma is not needed in our proof of Theorem 1.2, but it contains extra information
about SG which is included in the statement of Theorem 4.1.

Lemma 4.6. SH = SG ∩ H .

Proof. Let q denote the quotient map PG → PG/UG . Observe that UG ∩ PH is a normal unipotent
subgroup of PH , so it is contained in UH . On the other hand,

UH ⊂ Ru(Q)∩ PH ⊂ UG ∩ PH .

Hence UG ∩ PH = UH , so q restricts to the quotient map PH → PH/UH .
According to the definition of a Siegel triple, q(SG) is a maximal Q-split torus in PG/UG . Furthermore,

SG ∩ H ⊂ Q ∩ H = PH . Hence q(SG ∩ H) is a Q-split torus in PH/UH .
Since SH ⊂ SG ∩ H and q(SH) is a maximal Q-split torus in PH/UH , we conclude that q(SH) =

q(SG ∩ H). Because SG ∩UG = {1}, q|SG is injective. Thus SH = SG ∩ H . �

4C. Comparing AH,t with AG,t ′ . We now compare the sets AH,t ⊂ SH(R) and AG,t ′ ⊂ SG(R). We
would like to have AH,t ⊂ AG,t ′ , but it is not always possible to choose t ′ ∈R>0 such that this holds. This
is because there may be simple roots in 8(SG, G) whose restrictions to SH are not positive combinations
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of simple roots in 8(SH , H). The values of such a root are bounded below by a positive constant on
AG,t ′ but can be arbitrarily close to zero on AH,t .

Instead we show that for a suitable value of t ′, every α ∈ AH,t ′ can be conjugated into AG,t ′ by an
element of the Weyl group NG(SG)/ZG(SG). This element of the Weyl group must also satisfy certain
other conditions which will be used later in the proof of Theorem 4.1.

Write
W = NG(SG)/ZG(SG) and W ′ = NG(S′G)/ZG(S′G).

Since S′G = uSGu−1, conjugation by u induces an isomorphism W →W ′.

Proposition 4.7. There exists t ′ > 0 (depending only on G, H , and t) such that for every α ∈ AH,t , there
exists w ∈W such that:

(i) UZ ⊂ wUGw
−1.

(ii) UH ⊂ wUGw
−1.

(iii) α ∈ wAG,tw
−1.

Note that the statement of the proposition makes sense because wUGw
−1 and wAG,t ′w

−1 do not
depend on the choice of representative of w in NG(SG).

Construction of Qα . Suppose that we are given α ∈ AH,t . In order to find w ∈W as in Proposition 4.7,
we construct a parabolic subgroup PG,α = wPGw

−1 by a refinement of the construction of PG from
Section 4B. First we construct a larger parabolic subgroup Qα which satisfies conditions (i) and (ii) from
Lemma 4.2, as well as the following additional condition:

(iii) There exists t ′ > 0 (independent of α) such that, for every α ∈ AH,t and every χ ∈ 8(SH , Qα),
χ(α)≥ t ′.

Similar to the proof of Lemma 4.2, we construct Qα by choosing a suitable order >α on X∗(SH).
Given α ∈ SH(R)

+, choose a set 9α ⊂ 8(SH , G) which is maximal with respect to the following
conditions:

(a) The set 8+H ∪9α is R>0-independent. (Recall that 8+H =8(SH , PH).)

(b) For all χ ∈9α, χ(α)≥ 1.

There always exists at least one set satisfying conditions (a) and (b), namely the empty set. Since
8(SH , G) is finite, we deduce that there is a maximal set 9α satisfying the conditions.

By (a) there exists an order >α on X∗(SH) with respect to which all elements of 8+H ∪9α are positive.
Let

8α = {χ ∈8(SH , G) : χ >α 0}

and let Qα = G8α (in the notation of [Borel and Tits 1965, Paragraph 3.8] with respect to SH ).
The only condition on the order >Q in the proof of Lemma 4.2 was that all elements of 8+H are

positive with respect to >Q . By definition, >α satisfies this condition. Hence the proof of Lemma 4.2
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also applies to Qα . We conclude that Qα is a parabolic Q-subgroup of G satisfying conclusions (i) and
(ii) of Lemma 4.2.

Lemma 4.8. Every root χ ∈8α is a R>0-combination of 1H ∪9α.

Proof. If χ ∈9α, the result is trivial. So we may assume that χ 6∈9α.
Since χ >α 0, 9α ∪ {χ} satisfies (a). Since χ 6∈9α , the maximality of 9α tells us that 9α ∪ {χ} does

not satisfy (b). Thus χ(α) < 1.
Hence 9α ∪ {−χ} satisfies (b). But −χ <α 0, so −χ 6∈ 9α. Again by the maximality of 9α, we

conclude that 9α ∪ {−χ} does not satisfy (a). Thus there exist mi , n j , x ∈ R>0, χi ∈8
+

H and ψ j ∈9α

such that ∑
i

miχi +
∑

j

n jψ j + x(−χ)= 0.

(The coefficient of −χ in this equation must be nonzero because 8+H ∪9α is R>0-independent.)
We can rearrange this equation to write χ as a R>0-combination of 8+H ∪9α . Since every element of

8+H is a R>0-combination of elements of 1H , we deduce that χ is a R>0-combination of 1H ∪9α. �

Lemma 4.9. There exists t ′ > 0 (depending on G, H and t but not on α) such that for every α ∈ AH,t

and every χ ∈8α, χ(α)≥ t ′.

Proof. Consider all pairs (χ,4) where χ ∈8G and 4 is a subset of 8G such that χ can be written as a
R>0-combination of elements of 4. There are only finitely many such pairs, so we can find M (depending
only on the root system 8G) such that, for every such pair, there exist mi ∈ R>0 and ξi ∈4 satisfying

χ =
∑

i

miξi and
∑

i

mi ≤ M.

Suppose that χ ∈8α. Using Lemma 4.8, we can write χ as a combination

χ =
∑

i

miχi +
∑

j

n jψ j

where χi ∈1H , ψ j ∈9α , mi , ni ∈R>0. By the definition of M , we may assume that
∑

i mi+
∑

j n j ≤M .
By the definition of AH,t , we have χi (α)≥ t for all i . By condition (b) on 9α , we have ψ j (α)≥ 1 for

all j . Therefore χ(α)≥min(1, t)M . �

Proof of Proposition 4.7. Because Qα satisfies conclusion (i) of Lemma 4.2, Z is a Levi subgroup of Qα .
Let PG,α = PZ n Ru(Qα). By [Borel and Tits 1965, Proposition 4.4], PG,α is a minimal Q-parabolic
subgroup of G.

By [Borel and Tits 1965, Corollaire 5.9], the Weyl group W ′ acts transitively on the minimal parabolic
Q-subgroups of G containing the maximal Q-split torus S′G . Since S′G ⊂ PZ ⊂ PG,α, we conclude that
there exists w′ ∈W ′ (depending on α) such that PG,α = w

′PGw
′−1.
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Let w be the element of W which corresponds to w′ ∈W ′ via conjugation by u. Since u ∈ UZ(R)⊂

PG(R)∩ PG,α(R), we have
PG,α = wPGw

−1.

Since Qα satisfies conclusion (ii) of Lemma 4.2, we have

UH ⊂ Ru(Qα)⊂ Ru(PG,α)= wUGw
−1.

Furthermore PZ ⊂ PG,α and so UZ ⊂ Ru(PG,α). This proves conclusions (i) and (ii) of Proposition 4.7.
Since PG,α ⊂ Qα, if χ ∈8(SG, PG,α) then χ|SH ∈8α. Hence by Lemma 4.9,

χ(α)≥ t ′ for all α ∈ AH,t and χ ∈8(SG, PG,α).

Noting that
wAG,t ′w

−1
= {β ∈ SG(R)

+
: χ(β)≥ t ′ for all simple roots of PG,α}

we conclude that α ∈ wAG,t ′w
−1, proving conclusion (iii) of Proposition 4.7. �

4D. Weyl group representatives. We need to choose two representatives for each element w in the Weyl
group W = NG(SG)/ZG(SG).

Firstly we would like to choose representatives for W in G(Q). However this is not usually possible
because the torus SG is not defined over Q. Instead, recall that conjugation by u induces an isomorphism
W → W ′. Given w ∈ W , let w′ denote the corresponding element of W ′. By [Borel and Tits 1965,
Théorème 5.3], we can choose w′

Q
∈ G(Q) which represents w′. We then get a representative for w by

setting
wQ = u−1w′Q u.

Secondly we choose representatives for W in KG .

Lemma 4.10. Let G be a reductive Q-algebraic group. Let (PG, SG, KG) be a Siegel triple in G. Every
w ∈ NG(SG)/ZG(SG) has a representative wK ∈ KG .

Proof. Let TG be a maximal R-split torus in G which contains SG .
Let N = NG(SG)∩ NG(TG). Because SG is conjugate to a maximal Q-split torus of G, [Borel and

Tits 1965, Corollaire 5.5] implies that

NG(SG)= N.ZG(SG).

Therefore we can choose σ ∈ N(C) such that w = σ.ZG(SG).
According to the final displayed equation from [Borel and Tits 1965, Section 14], every element of

NG(TG)/ZG(TG) has a representative in KG . In particular, there exists wK ∈ NG(TG)(R)∩ KG which
represents σ.ZG(TG). Then

wKσ
−1
∈ ZG(TG)(C)⊂ ZG(SG)(C).

It follows that wK normalises SG and represents w ∈ NG(SG)/ZG(SG). �
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Since the Cartan involution of G associated with KG stabilizes SG , it also stabilizes ZG(SG). Hence
KG ∩ ZG(SG)(R) is a maximal compact subgroup of ZG(SG)(R). By [Hochschild 1965, Chapter XV,
Theorem 3.1], KG ∩ ZG(SG)(R) meets every connected component of ZG(SG)(R). When choosing wK

as in Lemma 4.10, we may therefore assume that wK ∈ wQ.ZG(SG)(R)
+.

We will need the following lemma about wQ and w′
Q

. This lemma does not hold for every element
of W , so we restrict our attention to elements which satisfy conditions (i) and (ii) of Proposition 4.7, that
is, elements of the set

W †
= {w ∈W : UZ ⊂ wUGw

−1 and UH ⊂ wUGw
−1
}.

Lemma 4.11. If w ∈W †, then w′−1
Q
wQ ∈ UG(R).

Proof. By definition,

w′−1
Q
wQ = uw−1

Q
u−1wQ.

Because w ∈W † and u ∈ UZ(R), we have

w−1
Q

u−1wQ ∈ UG(R).

Multiplying this by u ∈ UG(R) proves the lemma. �

4E. Construction of the compact set �G . By the Langlands decomposition in PH , the multiplication map

UH(R)×MH(R)
+
→ UH(R).MH(R)

+

is a homeomorphism. Hence there exist compact sets �UH ⊂ UH(R) and �MH ⊂ MH(R)
+ such that

�H ⊂�UH .�MH . (13)

Since MH need not be contained in MG , we need to further decompose �MH . Let BZ be a minimal
R-parabolic subgroup of Z = ZG(SH) contained in PZ. By the Iwasawa decomposition in Z, the
multiplication map BZ(R)

+
× K Z→ Z(R) is a homeomorphism so there exists a compact set �BZ ⊂

BZ(R)
+ such that

�MH ⊂�BZ .K Z. (14)

For eachw∈W †, choosewK ,wQ andw′
Q

as in Section 4D. We havewKw
−1
Q
∈ ZG(SG)(R)

+
⊂ PZ(R)

+

and BZ(R)
+
⊂ PZ(R)

+, so �BZ .wKw
−1
Q

is a compact subset of PZ(R)
+. Noting that ZG(SG) is a Levi

subgroup of PZ, the Langlands decomposition in PZ [Borel and Ji 2006, Equation (I.1.8)] tells us that
the multiplication map

UZ(R)×MG(R)
+
× SG(R)

+
→ PZ(R)

+

is a homeomorphism. Therefore there exist compact sets �[w]UZ
⊂ UZ(R), �

[w]
MG
⊂ MG(R)

+ and �[w]SG
⊂

SG(R)
+ such that

�BZ .wKw
−1
Q
⊂�

[w]
UZ
.�
[w]
MG
.�
[w]
SG
. (15)
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Let

�G =
⋃
w∈W †

w′−1
Q
.�UH .�

[w]
UZ
.�
[w]
MG
.wQ.

Since W † is finite, �G is compact.

Lemma 4.12. �G ⊂ UG(R)MG(R)
+.

Proof. For each w ∈W †, by Lemma 4.11, w′−1
Q
wQ ∈ UG(R). Using the definition of W †, we have

w−1
Q
�UHwQ ⊂ UG(R) and w−1

Q
�
[w]
UZ
wQ ⊂ UG(R).

Multiplying these together, we conclude that

w′−1
Q
.�UH .�

[w]
UZ
.wQ ⊂ UG(R). (16)

Since SG is G(R)-conjugate to a maximal Q-split torus in G, we can use [Borel and Tits 1965,
Corollaire 5.4] to show that MG is normal in NG(SG). It follows that wQ normalises MG(R)

+ and so

w−1
Q
�
[w]
MG
wQ ⊂ MG(R)

+. (17)

Combining (16) and (17) proves the lemma. �

Lemma 4.13. For each w ∈W †, w′−1
Q
�H ⊂�G.w

−1
K .�

[w]
SG
.K Z.

Proof. Noting that wQw
−1
K commutes with SG , we can rearrange (15) to obtain

�BZ ⊂�
[w]
UZ
.�
[w]
MG
.wQw

−1
K .�

[w]
SG
.

Combining this with (13) and (14), we get

�H ⊂�UH .�MH ⊂�UH .�BZ .K Z ⊂�UH .�
[w]
UZ
.�
[w]
MG
.wQw

−1
K .�

[w]
SG
.K Z.

We can now read off the lemma using the definition of �G . �

4F. The Siegel set for G. For each w ∈W †, w−1
K �

[w]
SG
wK is a compact subset of SG(R)

+. Hence there
exists s > 0 such that χ(β)≥ s for all χ ∈1G and all β ∈w−1

K �
[w]
SG
wK (since W † is finite, we can choose

a single value of s which works for all w ∈W †).
Let SG be the Siegel set

SG =�G.AG,t ′s .KG ⊂ G(R),

using t ′ from Proposition 4.7 and �G from Section 4E. Let C be the finite set

C = {w′Q : w ∈W †
} ⊂ G(Q).

Proposition 4.14. SH ⊂ C.SG .
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Proof. Given σ ∈SH , we can write
σ = µακ

with µ ∈�H , α ∈ AH,t and κ ∈ K H .
By Proposition 4.7, we can choose w ∈W † such that α ∈ wAG,t ′w

−1. By Lemma 4.13, we can write

w′−1
Q
µ= νw−1

K βλ

where ν ∈�G , β ∈�[w]SG
and λ ∈ K Z. Therefore

w′−1
Q
σ = νw−1

K βλακ.

Since λ ∈ K Z ⊂ Z(R), λ commutes with α ∈ SH(R) so we can rewrite this as

w′−1
Q
σ = ν.w−1

K βαwK .w
−1
K λκ.

By definition, ν ∈ �G . By the definition of s, we have w−1
K βwK ∈ AG,s while w−1

K αwK ∈ AG,t ′ by
Proposition 4.7. Hence

w−1
K βαwK ∈ AG,t ′s .

Finally, w−1
K , λ and κ are all in the group KG , so their product is also in KG .

Thus we have shown that w′−1
Q
σ ∈SG , and so σ ∈ C.SG . �
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Quadric surface bundles over surfaces
and stable rationality

Stefan Schreieder

We prove a general specialization theorem which implies stable irrationality for a wide class of quadric
surface bundles over rational surfaces. As an application, we solve, with the exception of two cases, the
stable rationality problem for any very general complex projective quadric surface bundle over P2, given
by a symmetric matrix of homogeneous polynomials. Both exceptions degenerate over a plane sextic
curve, and the corresponding double cover is a K3 surface.

1. Introduction

Recently, Hassett, Pirutka, and Tschinkel [Hassett et al. 2016b; 2016c; 2017] found the first three examples
of families of quadric surface bundles over P2, where the very general member is not stably rational. In
each case, the degeneration locus is a plane octic curve. Smooth quadric surface bundles over rational
surfaces typically deform to smooth bundles with a section, hence to smooth rational fourfolds. This
allowed them to produce the first examples of smooth nonrational varieties that deform to rational ones.

In [Schreieder 2018], we introduced a variant of the method of Voisin [2015] and Colliot-Thélène and
Pirutka [2016a], which allowed us to disprove stable rationality via a degeneration argument where a
universally CH0-trivial resolution of the special fiber is not needed. The purpose of this paper is to show
that one can use this technique to simplify the arguments in [Hassett et al. 2016b; 2016c; 2017] and to
apply them to large classes of quadric surface bundles.

The main result is the following general specialization theorem without resolutions; see Section 1.1
below for what it means that a variety specializes to another variety.

Theorem 1. Let X and Y be complex projective varieties of dimension four. Suppose that X specializes
to Y and that there is a morphism f : Y → S to a rational surface S, such that

(1) the generic fiber of f is a smooth quadric surface Q over K = C(S),

(2) the discriminant d ∈ K ∗/(K ∗)2 of Q is nontrivial, and

(3) H 2
nr (C(Y )/C,Z/2) 6= 0.

Then X is not stably rational.

MSC2010: primary 14E08, 14M20; secondary 14J35, 14D06.
Keywords: rationality problem, stable rationality, decomposition of the diagonal, unramified cohomology, Brauer group, Lüroth

problem.
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Since H 2
nr (C(Y )/C,Z/2)= H 2

nr (K (Y )/C,Z/2), the assumptions in the above theorem concern only
the generic fiber of f . In particular, f need not be flat and there is no assumption on the singularities
of Y at points which do not dominate S. A universally CH0-trivial resolution of Y is not needed. For a
more general version which works also if the discriminant of Q is possibly trivial, X and Y have arbitrary
dimension, and the generic fiber of f is only stably birational to Q, see Theorem 9 below.

The second unramified cohomology group in item (3) coincides with the 2-torsion subgroup of the
Brauer group of any resolution of singularities of Y . Pirutka [2016, Theorem 3.17] computed this group
explicitly for any quadric surface over C(P2) which satisfies (2). This gives rise to many examples to
which the above theorem applies. In this paper we will apply it only to a single example of Hassett,
Pirutka, and Tschinkel [Hassett et al. 2016b, Proposition 11].

The proof of Theorem 1 uses results of Pirutka [2016] on the unramified cohomology of quadric
surfaces over C(P2), together with our aforementioned method from [Schreieder 2018], which builds on
[Voisin 2015; Colliot-Thélène and Pirutka 2016a].

To give an application of Theorem 1, let us consider a generically nondegenerate line bundle valued
quadratic form q : E→ OP2(n), where E=

⊕3
i=0 OP2(−ri ) is split and such that the quadratic form qs on

the fiber Es is nonzero for all s ∈P2. Then, X = {q = 0} ⊂P(E) defines a quadric surface bundle over P2.
We may also regard q as a symmetric matrix A = (ai j ), where ai j is a global section of OP2(ri + r j + n).
Locally over P2, X is given by

3∑
i, j=0

ai j zi z j = 0, (1)

where zi denotes a local coordinate which trivializes OP2(−ri )⊂ E.
If X is smooth, its deformation type depends only on the integers di := 2ri + n; we call any such

quadric surface bundle of type (d0, d1, d2, d3). The degeneration locus of X → P2 is a plane curve of
degree

∑
i di , which is always even. If some di is negative, then ai i = 0 and so X→ P2 admits a section;

hence, X is rational. We may thus from now on restrict ourselves to the case di ≥ 0 for all i .

Corollary 2. Let d0, d1, d2, and d3 be nonnegative integers of the same parity, and let X→ P2 be a very
general complex projective quadric surface bundle of type (d0, d1, d2, d3). If

∑
i di 6= 6, then

(1) X is rational if
∑

i di ≤ 4 or if di = d j = 0 for some i 6= j and

(2) X is not stably rational otherwise.

As we will see in the proof, the bundles in item (1) of the above corollary have a rational section, and
so already the generic fiber of X over P2 is rational.

Up to reordering, the only cases left open by the above corollary are types (1, 1, 1, 3) and (0, 2, 2, 2).
The former corresponds to blow-ups of cubic fourfolds containing a plane, see e.g. [Auel et al. 2017b], and
the latter are Verra fourfolds [Camere et al. 2017; Iliev et al. 2017], i.e., double covers of P2

×P2, branched
along a hypersurface of bidegree (2, 2). In both exceptions, the degeneration locus of the quadric bundle
is a sextic curve in P2, and so the associated double cover is a K3 surface, see e.g. [Auel et al. 2015].
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Specializing to a33 = 0 in (1) shows that all examples in the above corollary deform to smooth quadric
surface bundles with a section, hence to smooth rational fourfolds.

Many quadric surface bundles over P2 are birational to fourfolds which arise naturally in projective
geometry, see e.g. [Schreieder 2018, §3.5]. For instance, Corollary 2 implies that

(I) a very general complex hypersurface of bidegree (d, 2) in P2
×P3 is not stably rational if d ≥ 2,

(II) a very general complex hypersurface X ⊂P5 of degree d+2 and with multiplicity d along a 2-plane
is not stably rational if d ≥ 2, and

(III) a double cover X
2:1
−→ P4, branched along a very general complex hypersurface Y ⊂ P4 of even

degree d + 2 and with multiplicity d along a line, is not stably rational if d ≥ 2.

The case d = 2 in items (I) and (III) corresponds to the aforementioned results in [Hassett et al. 2016b;
2016c]. For stable rationality properties of smooth hypersurfaces and double covers, see [Beauville 2016;
Colliot-Thélène and Pirutka 2016a; 2016b; Hassett et al. 2016c; Okada 2016; Totaro 2016; Voisin 2015];
for results on conic bundles, see [Ahmadinezhad and Okada 2018; Artin and Mumford 1972; Auel et al.
2016; Beauville 2016; Böhning and von Bothmer 2018; Hassett et al. 2016a; Voisin 2015].

In [Schreieder 2018], we studied rationality properties of quadric bundles with arbitrary fiber dimensions.
Our uniform treatment sufficed to prove (I) and (II) for d ≥ 5, and (III) for d ≥ 8. On the other hand,
the results in [Schreieder 2018] left open infinitely many cases in Corollary 2. For instance, the types
(1, 1, d2, d3) and (0, 2, d2, d3) with d2 ≤ 7 and arbitrary d3 are not covered by [Schreieder 2018] and
there are more cases which were not accessible; see [Schreieder 2018, Remark 36].

Our method applies also to quadric surface bundles over other rational surfaces S. We treat in this
paper the case S = P1

×P1 and obtain similar results as those in Corollary 2 above; see Corollaries 11
and 12 below.

1.1. Conventions and notations. All schemes are separated. A variety is an integral scheme of finite
type over a field. A property is said to hold at a very general point of a scheme, if it holds at all closed
points outside a countable union of proper closed subsets.

Let k be an algebraically closed field. We say that a variety X over a field L specializes (or degenerates)
to a variety Y over k, if there is a discrete valuation ring R with residue field k and fraction field F with
an injection of fields F ↪→ L , together with a flat proper morphism X→ Spec R of finite type, such that
Y is isomorphic to the special fiber Y ' X×R k and X ' X×R L is isomorphic to a base change of the
generic fiber. If Y→ B is a flat proper morphism of complex varieties with integral fibers, then for any
closed points 0, t ∈ B with t very general, the fiber Yt specializes to Y0 in the above sense [Schreieder
2018, Lemma 8].

A morphism f : X→ Y of varieties over a field k is universally CH0-trivial, if f∗ : CH0(X × L)
'
−→

CH0(Y × L) is an isomorphism for all field extensions L of k.
A quadric surface bundle is a flat morphism f : X → S between projective varieties such that the

generic fiber is a smooth quadric surface; the degeneration locus is given by all s ∈ S such that f −1(s) is
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singular. If f is not assumed flat, then we call X a weak quadric surface bundle over S. Quadric surface
bundles over surfaces have been studied in detail in [Auel et al. 2015].

We denote by µ2 ⊂ Gm the group of second roots of unity. If X is a proper variety over a field k of
characteristic different from 2, the unramified cohomology group H i

nr (k(X)/k, µ⊗i
2 ) is the subgroup of

all elements of the Galois cohomology group H i (k(X), µ⊗i
2 ) which have trivial residue at all discrete

valuations of rank one on k(X) over k [Colliot-Thélène and Ojanguren 1989]. This is a stable birational
invariant of X [Colliot-Thélène and Ojanguren 1989, Proposition 1.2]. If X is smooth and proper over k,
then H i

nr (k(X)/k, µ⊗i
2 ) coincides with the subgroup of elements of H i (k(X), µ⊗i

2 ) that have trivial
residue at any codimension-one point of X [Colliot-Thélène 1995, Theorem 4.1.1].

2. Second unramified cohomology of quadric surfaces

Let K be a field of characteristic different from 2. It will be convenient to identify the Galois cohomology
group H i (K , µ⊗i

2 ) with the étale cohomology group H i
ét(Spec(K ), µ⊗i

2 ). We also use the identification
H 1(K , µ2) ' K ∗/(K ∗)2, induced by the Kummer sequence. For a, b ∈ K ∗, we denote by (a, b) ∈
H 2(K , µ⊗2

2 ) the cup product of the classes given by a and b. If S is a normal variety over a field k and
with fraction field k(S)= K , then for any α ∈ H 2(K , µ⊗2

2 ), the ramification divisor ram(α)⊂ S is given by
(the closure of) all codimension-one points x ∈ S(1) with ∂2

xα 6=0. Here, ∂2
x : H

2(K , µ⊗2
2 )→ H 1(κ(x), µ2)

denotes the residue induced by the local ring OS,x ⊂ K .
To any nondegenerate quadratic form q over K , one associates the discriminant discr(q) ∈ K ∗/(K ∗)2

and the Clifford invariant cl(q) ∈ H 2(K , µ⊗2
2 ). If q has even dimension, then the discriminant discr(q)

depends only on the quadric hypersurface Q = {q = 0} and the Clifford invariant satisfies cl(λ · q) =
cl(q)+ (λ, discr(q)) for all λ ∈ K ∗ [Lam 1973, Chapter 5, (3.16)]. If Q is a surface, then up to similarity,
q ' 〈1,−a,−b, abd〉 for some a, b, d ∈ K ∗. In this case, discr(q)= d and cl(q)= (−a,−b)+ (ab, d).
We will need the following [Arason 1975; Kahn et al. 1998, Corollary 8]:

Theorem 3. Let K be a field with char(K ) 6= 2, and let f : Q→ Spec K be a smooth projective quadric
surface over K . Denote by d ∈ K ∗/(K ∗)2 the discriminant of Q and by β ∈ H 2(K , µ⊗2

2 ) the Clifford
invariant of some quadratic form q with Q = {q = 0}. Then

f ∗ : H 2(K , µ⊗2
2 )→ H 2

nr (K (Q)/K , µ⊗2
2 )

is an isomorphism if d is nontrivial. If d ∈ (K ∗)2, then ker( f ∗)= {1, β}.

Pirutka [2016, Theorem 3.17] computed the unramified cohomology group H 2
nr (K (Q)/C, µ

⊗2
2 ) of a

smooth quadric surface Q with nonzero discriminant over the function field of a smooth complex surface.
The following reflects one half of her result:

Theorem 4 (Pirutka). Let f : Q → Spec K be a smooth projective quadric surface over the function
field K of some smooth surface S over C. Let d ∈ K ∗/(K ∗)2 denote the discriminant and β ∈ H 2(K , µ⊗2

2 )

the Clifford invariant of some quadratic form q with Q = {q = 0}. If for some α ∈ H 2(K , µ⊗2
2 ) the

pullback f ∗(α) ∈ H 2
nr (K (Q)/K , µ⊗2

2 ) is unramified over C, then the following holds:
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(∗) If the residue ∂2
xα at some codimension-one point x ∈ S(1) is nonzero, then

(a) ∂2
xα = ∂

2
xβ and

(b) d becomes a square in the fraction field of the completion ÔS,x .

Proof. The condition on d is by Hensel’s lemma equivalent to asking that, up to multiplication by a
square, d is a unit in OS,x whose image in κ(x) is a square. The theorem follows therefore from [Pirutka
2016, §3.6.2]. (In [Pirutka 2016, Theorem 3.17], the assumption that d is not a square is only used to
invoke bijectivity of f ∗ via Theorem 3; the assumption that ram(β) is a simple normal crossing divisor
on S is only used in [Pirutka 2016, §3.6.1].) �

Remark 5. Up to replacing S by some blow-up, one can always assume that ram(β) is a simple normal
crossing divisor on S. Under this assumption, the analysis of Pirutka [2016, §3.6.1] shows that the
following converse of the above theorem is also true: if α ∈ H 2(K , µ⊗2

2 ) is such that condition (∗) holds,
then f ∗α ∈ H 2

nr (K (Q)/K , µ⊗2
2 ) is unramified over C; nontriviality can be checked via Theorem 3.

The result of Pirutka [2016, Theorem 3.17] applies to the following important example, due to Hassett,
Pirutka, and Tschinkel [Hassett et al. 2016b, Proposition 11]; for a reinterpretation in terms of conic
bundles, see [Auel et al. 2016].

Proposition 6 (Hassett, Pirutka, and Tschinkel). Let K =C(x, y) be the function field of P2, and consider
the quadratic form q = 〈y, x, xy, F(x, y, 1)〉 over K , where

F(x, y, z)= x2
+ y2
+ z2
− 2(xy+ xz+ yz).

If f : Q→ Spec K denotes the corresponding projective quadric surface over K , then

0 6= f ∗((x, y)) ∈ H 2
nr (K (Q)/C, µ

⊗2
2 ).

3. A vanishing result

The following general vanishing result is the key ingredient of this paper.

Proposition 7. Let Y be a smooth complex projective variety, and let S be a smooth complex projective
surface. Let f : Y 99K S be a dominant rational map whose generic fiber Yη is stably birational to
a smooth quadric surface Q over K = C(S). Suppose that there is some α ∈ H 2(K , µ⊗2

2 ), such that
α′ := f ∗α ∈ H 2

nr (K (Yη)/K , µ⊗2
2 ) is unramified over C. Then for any prime divisor E ⊂ Y which does

not dominate S, the restriction of α′ to E vanishes:

α′|E = 0 ∈ H 2(C(E), µ⊗2
2 ).

Proof. Since unramified cohomology is a functorial stable birational invariant [Colliot-Thélène and
Ojanguren 1989], we may up to replacing Y by Y ×Pm assume that Yη is birational to Q×Pr

K for some
r ≥ 0. This birational map induces a dominant rational map Yη 99K Q.

Since Y is smooth, f is defined at the generic point y of E . By [Merkurjev 2008, Propositions 1.4
and 1.7; Schreieder 2018, §5], we may up to replacing S by a different smooth projective model assume
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that the image x := f (y) ∈ S(1) is a codimension-one point on S. Consider the local ring A := OS,x , and
let Â be its completion with field of fractions K̂ := Frac( Â). The local ring B := OY,y contains A. We
let B̂ be the completion of B and L̂ := Frac(B̂) be its field of fractions. Since Yη 99K Q is dominant,
inclusion of fields induces the sequence

H 2(K , µ⊗2
2 )

ϕ1
−→ H 2(K̂ , µ⊗2

2 )
ϕ2
−→ H 2(K̂ (Q), µ⊗2

2 )
ϕ3
−→ H 2(L̂, µ⊗2

2 ). (2)

Lemma 8. If some γ ∈ H 2(K , µ⊗2
2 ) satisfies ∂2

xγ = 0, then ϕ1(γ )= 0 ∈ H 2(K̂ , µ⊗2
2 ).

Proof. Since ∂2
xγ = 0, the image of γ in H 2(K̂ , µ⊗2

2 ) is contained in H 2
ét(Spec Â, µ⊗2

2 )⊂ H 2(K̂ , µ⊗2
2 )

[Colliot-Thélène 1995, §3.3 and §3.8]. It thus suffices to show that H 2
ét(Spec Â, µ⊗2

2 ) vanishes. Since
Â is a henselian local ring, restriction to the closed point gives an isomorphism H 2

ét(Spec Â, µ⊗2
2 ) '

H 2(κ(x), µ⊗2
2 ) [Milne 1980, Corollary VI.2.7]. By Tsen’s theorem, H 2(κ(x), µ⊗2

2 )= 0. This concludes
the lemma. �

Since f ∗α is unramified, we know that

ϕ3 ◦ϕ2 ◦ϕ1(α) ∈ H 2
ét(Spec B̂, µ⊗2

2 )⊂ H 2(L̂, µ⊗2
2 ) (3)

[Colliot-Thélène 1995, §3.3 and §3.8] and the compatibility of the residue map illustrated in [Colliot-
Thélène and Ojanguren 1989, p. 143]. We aim to show that this class vanishes, which is enough to
conclude the proposition, because α′|E is obtained as the restriction of the above class to the closed point
Spec C(E).

In order to show that (3) vanishes, we choose some quadratic form q with Q = {q = 0} and denote
by d ∈ K ∗/(K ∗)2 and β ∈ H 2(K , µ⊗2

2 ) the discriminant and the Clifford invariant of q, respectively. If
∂2

xα = 0, then (3) vanishes by Lemma 8. If ∂2
xα 6= 0, then ∂2

x (α− β)= 0 by Theorem 4, because Yη is
stably birational to Q and unramified cohomology is a stable birational invariant. By Lemma 8, it then
suffices to show that β maps to zero via (2). By Theorem 4, d becomes a square in K̂ , and so the latter
follows from Theorem 3, applied to ϕ2 in (2). This concludes the proof of the proposition. �

4. Proof of Theorem 1

The following is a generalization of Theorem 1, stated in the introduction. For what it exactly means that
a variety specializes to another variety, see Section 1.1 above.

Theorem 9. Let X be a proper variety which specializes to a complex projective variety Y . Suppose that
there is a dominant rational map f : Y 99K P2 with the properties that

(a) some Zariski open and dense subset U ⊂Y admits a universally CH0-trivial resolution of singularities
Ũ →U such that the induced rational map Ũ 99K P2 is a morphism whose generic fiber is proper
over C(P2) and

(b) the generic fiber Yη of f is stably birational to a smooth projective quadric surface g : Q→ Spec K
over K = C(P2), such that there is a class α ∈ H 2(K , µ⊗2

2 ) whose pullback g∗α is nontrivial and
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unramified over C:

0 6= g∗α ∈ H 2
nr (K (Q)/C, µ

⊗2
2 )= H 2

nr (C(Y )/C, µ
⊗2
2 ).

Then no resolution of singularities of X admits an integral decomposition of the diagonal. In particular,
X is not stably rational.

Proof. Since g∗α 6= 0 is unramified over C and unramified cohomology is a stable birational invariant,
α′ := f ∗α∈ H 2(C(Y ), µ⊗2

2 ) is a nontrivial class which is unramified over C. By Hironaka’s theorem, there
exists a resolution of singularities τ : Ỹ→Y , such that τ−1(U ) identifies with the resolution of singularities
Ũ of U given in (a), and such that E := Ỹ \ Ũ is a simple normal crossing divisor in Ỹ . Our assumption
on Ũ then implies that τ−1(U )→U is universally CH0-trivial. Moreover, each component Ei of E is
smooth and does not dominate P2. Therefore, Proposition 7 implies that the nontrivial class α′ restricts
to zero on Ei for all i and so Theorem 9 follows from the new key technique in [Schreieder 2018, §4]. �

Proof of Theorem 1. Condition (1) in Theorem 1 implies condition (a) in Theorem 9 with Ũ = U . By
Theorem 3, conditions (1), (2), and (3) in Theorem 1 imply condition (b) in Theorem 9. Theorem 1
follows therefore from Theorem 9. �

5. Applications

5.1. Quadric surface bundles over P2. If the symmetric matrix A= (ai j ) in (1) is of diagonal form, i.e.,
ai j = 0 for all i 6= j , then we say that the corresponding quadric surface bundle X is given by the quadratic
form q = 〈a00, . . . , a33〉. The condition that X is flat over P2 means that the ai i have no common zero.
If the homogeneous polynomials ai i degenerate and acquire common zeros, then the same formula still
defines a weak quadric bundle as long as the ai i are nonzero and have no common factor. We will use
such degenerations in the proofs below.

Proof of Corollary 2. In the notation of (1), let A= (ai j )0≤i, j≤3 be the symmetric matrix which corresponds
to the very general quadric surface bundle X of type (d0, d1, d2, d3) over P2. We may without loss of
generality assume 0≤ d0≤ d1≤ d2≤ d3. If d1= 0, then also d0= 0 and ai j ∈C is constant for i, j ∈ {0, 1}.
The quadric {a00z2

0+2a01z0z1+a11z2
1 = 0} thus has a point over C and so X→ P2 has a section. Hence,

X is rational. If di = 1 for all i , then X is a hypersurface of bidegree (1, 2) in P2
×P3 and so projection

to the second factor shows that X is rational. Since the di have all the same parity, this shows that X is
rational if

∑
di ≤ 4 or d1 = 0.

The case di = 2 for all i is due to [Hassett et al. 2016b]; a quick proof follows from [Hassett et al.
2016b, Proposition 11] (= Proposition 6 above) and Theorem 1.

It remains to deal with the case where
∑

i di ≥ 8, d1 ≥ 1, and d3 ≥ 3. Recall that all di are either even
or odd. Consider the weak quadric surface bundle Yi := {qi = 0} ⊂ P(E) of type (d0, d1, d2, d3), given
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by the diagonal forms
q1 := 〈zd0, xd1, xyzd2−2, yzd3−3 F(x, y, z)〉,

q2 := 〈zd0, xzd1−1, xd2−1 y, yzd3−3 F(x, y, z)〉,

q3 := 〈zd0, xd1, yzd2−1, xyzd3−4 F(x, y, z)〉,

where F is the quadratic polynomial from Proposition 6.
Note that Yi is integral, because the entries in the diagonal form are coprime. Consider the natural

projection Yi → P2. The generic fiber is a smooth quadric surface Qi over K = C(P2). Setting
z = 1 shows that Q1 is given by the quadratic form q ′1 = 〈1, xd1, xy, yF(x, y, 1)〉, Q2 is given by
q ′2 = 〈1, x, xd2−1 y, yF(x, y, 1)〉, and Q3 is given by q ′3 = 〈1, xd1, y, xyF(x, y, 1)〉.

If d0 is even, then so is d2. Multiplying through by y, absorbing squares and reordering the entries thus
shows in this case that q ′2 is similar to the quadratic form q = 〈y, x, xy, F(x, y, 1)〉 from Proposition 6.
If d0 is odd, then so is d1 and so q ′1 is isomorphic to 〈1, x, xy, yF(x, y, 1)〉 and q ′3 is isomorphic to
〈1, x, y, xyF(x, y, 1)〉. Again, q ′1 and q ′3 are both similar to q. Hence, H 2

nr (K (Qi )/C, µ
⊗2
2 ) 6= 0 for

i ≡ d0 mod 2 by [Hassett et al. 2016b, Proposition 11] (= Proposition 6 above).
Since d1, d2 ≥ 1 and d3 ≥ 3, the very general quadric surface bundle X ⊂ P(E) as in Corollary 2

degenerates to Y2. If d0 is odd, X also degenerates to Y1 or Y3, depending on whether d2 ≥ 3 or d2 = 1.
Depending on the parity of d0 and the size of d2, we can choose one of the three degenerations together
with Theorem 1 (or 9) to conclude. �

Remark 10. Pirutka informed me that for any total degree d :=
∑

i di ≥ 8, one can reprove some cases
of Corollary 2 via degenerations to similar quadric surface bundles as in [Hassett et al. 2016b], for which
[Pirutka 2016, Theorem 3.17] applies, and for which one can compute universally CH0-trivial resolutions
explicitly [Auel et al. 2017a].

5.2. Quadric surface bundles over P1×P1. As a second example where Theorem 1 applies, we consider
quadric surface bundles X over P1

×P1 that are given by a line bundle valued quadratic form q : E→
O(m, n), where E =

⊕3
i=0 O(−pi ,−qi ) is split. Locally, X := {q = 0} ⊂ P(E) is given by (1) where

ai j is a global section of O(pi + p j +m, qi + q j + n). If ai j = 0 for i 6= j , we say that X is given by
the quadratic form q = 〈a00, . . . , a33〉. If the ai i degenerate and acquire common zeros, then the same
formulas still define a hypersurface in P(E) which is a weak quadric surface bundle over P2 as long as
the ai i are nonzero and have no common factor. The deformation type of X depends only on the integers
di :=m+2pi and ei := n+2qi , and we call (di , ei )0≤i≤3 the type of X . Note that the di as well as the ei

have the same parity for all i . We say that the type (di , ei )0≤i≤3 is lexicographically ordered, if di < di+1,
or di = di+1 and ei ≤ ei+1.

Corollary 11. Let X→ P1
×P1 be a very general quadric surface bundle of lexicographically ordered

type (di , ei )0≤i≤3, with di , ei ≥ 0 and d3, e3 ≥ 3. Then

(1) X is rational if d2 = 0, d1 = e1 = e0 = 0 or e0 = e1 = e2 = 0 and

(2) X is not stably rational otherwise.
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All examples in Corollary 11 deform to smooth rational varieties of dimension four; see for instance
[Schreieder 2018, §3.5]. The condition d3, e3 ≥ 3 in the above theorem could be replaced by a weaker but
more complicated assumption; we collect in Corollary 12 below the remaining cases where our method
works.

Proof of Corollary 11. Let A = (ai j )0≤i, j≤3 be a symmetric matrix, where ai j is a very general global
section of OP1×P1(pi + p j +m, qi + q j + n), and consider the corresponding quadric surface bundle X
over P1

×P1. Here the integers di := 2pi +m and ei := 2qi + n are assumed to satisfy the assumptions
of Corollary 11; i.e., (di , ei )0≤i≤3 is lexicographically ordered with di , ei ≥ 0 and d3, e3 ≥ 3.

If d1 = e1 = e0 = 0, then (ai j )0≤i, j≤1 is a constant matrix and so X has a section. If d2 = 0, then
(ai j )0≤i, j≤2 is a matrix of polynomials which are constant along the first factor. Since any conic bundle
over P1 has a section, X also admits a section. If e0 = e1 = e2 = 0, then (ai j )0≤i, j≤2 is a matrix of
polynomials, constant along the second factor, and so X has a section as before. Since X is general and
di , ei ≥ 0, the generic fiber of X over P1

×P1 is a smooth quadric surface and so X is rational in each of
the above cases.

The case where (e0, e1, e2) 6= (0, 0, 0), (d1, e0, e1) 6= (0, 0, 0), and d2 6= 0 is similar to the proof of
Corollary 2. The main point is that we can always degenerate X to weak quadric surface bundle Y over
P1
×P1 whose generic fiber is isomorphic to the example in Proposition 6. To find such a degeneration,

we consider coordinates x0, x1 and y0, y1 on the first and second factors of P1
×P1, respectively, and

consider the bidegree-(2, 2) polynomial

h := x2
1 y2

0 + x2
0 y2

1 + x2
0 y2

0 − 2(x1 y1x0 y0+ x1x0 y2
0 + y1 y0x2

0). (4)

We then start with the quadratic form q = 〈1, y1, x1, x1 y1h〉. Putting x0 = y0 = 1 shows that the
corresponding quadric surface over K = C(P1

×P1) is isomorphic to the one in Proposition 6. The point
is that the isomorphism type of this quadric surface does not change if we perform any of the following
operations to the quadratic form q:

• multiply some entries with even powers of x1 and y1,

• multiply some entries with arbitrary powers of x0 and y0, or

• reorder the entries of the quadratic form.

Our aim is to produce a quadratic form of given type (ei , di )0≤i≤3 whose entries are coprime, since the
latter guarantees that the associated quadratic form defines a weak quadric surface bundle Y over P1

×P1.
Once this is achieved, Corollary 11 will follow from Proposition 6 and Theorem 1.

By assumption, d2 ≥ 1, and if e0 = e1 = 0, then d1 ≥ 1 and e2 ≥ 1. This leads to Cases A, B, and C
below. We divide into further subcases and provide each time a quadratic form (produced via the above
process) with the properties we want. Recall that the di , as well as the ei , have the same parity.

Case A (e1 ≥ 1). (1) If d0 and e0 are even, then we take

〈xd0
1 ye0

1 , xd1
0 ye1−1

0 y1, xd2−1
0 x1 ye2

0 , xd3−3
0 ye3−3

0 x1 y1h〉.
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(2) If d0 is odd and e0 is even, then we take

〈xd0
0 ye0

1 , xd1
0 ye1−1

0 y1, xd2
1 ye2

0 , xd3−3
0 ye3−3

0 x1 y1h〉.

(3) If d0 is even and e0 is odd, then we take

〈xd0
1 ye0

0 , xd1
0 ye1

1 , xd2−1
0 x1 ye2

0 , xd3−3
0 ye3−3

0 x1 y1h〉.

(4) If d0 and e0 are odd, then we take

〈xd0
0 ye0

0 , xd1
0 ye1

1 , xd2
1 ye2

0 , xd3−3
0 ye3−3

0 x1 y1h〉.

Case B (e0 ≥ 1 and e1 = 0; hence, ei is even for all i). (1) If d0 is even, then we take

〈xd0
1 ye0−1

0 y1, xd1
0 , xd2−1

0 x1 ye2
0 , xd3−3

0 ye3−3
0 x1 y1h〉.

(2) If d0 is odd, then we take

〈xd0
0 ye0−1

0 y1, xd1
0 , xd2

1 ye2
0 , xd3−3

0 ye3−3
0 x1 y1h〉.

Case C (d1, e2 ≥ 1 and e0 = e1 = 0; hence, ei is even for all i). (1) If d0 is even, then we take

〈xd0
1 , xd1−1

0 x1, xd2
0 ye2−1

0 y1, xd3−3
0 ye3−3

0 x1 y1h〉.

(2) If d0 is odd, then we take

〈xd0
0 , xd1

1 , xd2
0 ye2−1

0 y1, xd3−3
0 ye3−3

0 x1 y1h〉.

In each of the above cases, putting x0 = y0 = 1 and reordering the factors if necessary shows that the
corresponding weak quadric surface bundle Y over P1

×P1 has generic fiber which is isomorphic to
〈1, y1, x1, x1 y1 F(x1, y1, 1)〉. Corollary 11 therefore follows from [Hassett et al. 2016b, Proposition 11]
(see Proposition 6 above) and Theorem 1. �

Corollary 12. Let (di , ei )0≤i≤3 be a lexicographically ordered tuple of pairs of nonnegative integers with
di + d j and ei + e j even for all i, j . Suppose that one of the following holds:

(1) d1 ≥ 1, d3 ≥ 2, e1+ e2 ≥ 1, and e3 ≥ 3 or

(2) d1 ≥ 1, d3 ≥ 2, e0 ≥ 1, e1+ e2 ≥ 1, and e2 ≥ 2.

Then a very general complex projective quadric surface bundle X over P1
×P1 of type (di , ei )0≤i≤3 is not

stably rational.

Proof. We start with the quadratic forms q1 := 〈1, x1, x1 y1, y1h〉 and q2 := 〈y1, x1, x1 y1, h〉, where h
is as in (4). If condition (1) holds, then we can use q1 and if (2) holds, then we can use q2 to obtain,
via the procedure explained in the proof of Corollary 11, a quadratic form of type (di , ei )0≤i≤3 whose
coefficients are coprime. This yields a special fiber to which Theorem 1 applies. The details are similar
as in the proof of Corollary 11, and we leave them to the reader. �
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Correction to the article
Finite generation of the cohomology of

some skew group algebras
Van C. Nguyen and Sarah Witherspoon

Volume 8:7 (2014), 1647–1657

For the class of examples in Section 5 of the article in question, the proof of finite generation of
cohomology is incomplete. We give here a proof of existence of a polynomial subalgebra needed there.
The rest of the proof of finite generation given by the authors then applies.

Let k be a field of characteristic p > 2. Let A be the augmented k-algebra generated by a and b, with
relations

a p
= 0, bp

= 0, ba = ab+ 1
2a2,

and augmentation ε : A→ k given by ε(a)= ε(b)= 0. Let G be a cyclic group of order p with generator g,
acting on A by

g(a)= a, g(b)= a+ b.

The corresponding skew group algebra A#kG is a pointed Hopf algebra described in [Cibils et al. 2009,
Corollary 3.14]. We remark that in Section 4 of the article we are correcting, referred to as [NW 2014],
we used the left G-module structure with g(a)= a and g(b)= b− a, whereas the authors in [Cibils et al.
2009; Nguyen et al. 2017] used the right G-module structure given as above. We will apply the results in
[Nguyen et al. 2017] to prove that the cohomology H∗(A#kG, k) := Ext∗A#kG(k, k) is finitely generated,
and this will fill a gap in the proof in [NW 2014, Section 5]. Thus we will now also adopt the choices of
group actions in [Cibils et al. 2009; Nguyen et al. 2017] instead of that in [NW 2014]. This change does
not affect the results discussed in [NW 2014, Section 4].

Let k be an A#kG-module via the augmentation map ε. To prove finite generation of H∗(A#kG, k),
we wish to apply [NW 2014, Theorem 3.1]. We use results in [Nguyen et al. 2017], where the notation is
slightly different, with x in place of a and y in place of b. There it is shown that there are 2-cocycles
ξa, ξb in H∗(A, k) generating a polynomial subring k[ξa, ξb]. These 2-cocycles are not both G-invariant,
as was claimed in [NW 2014]; specifically, in [Nguyen et al. 2017] it is shown that ξa is G-invariant
while ξb is not. The claimed G-invariance was used in [NW 2014, Section 5] to show that ξa and ξb are
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in the image Im(resA#kG,A) of the restriction map from H∗(A#kG, k) to H∗(A, k). However, results in
[Nguyen et al. 2017, Section 5.1] imply directly that ξa, ξb are in Im(resA#kG,A); the needed elements
in H∗(A#kG, k) are constructed explicitly using a twisted tensor product resolution in [Nguyen et al.
2017, Section 3.3]. Now the rest of the finite generation proof in [NW 2014, Section 5] can proceed as
before, since it is shown there that the rest of the hypotheses of [NW 2014, Theorem 3.1] are satisfied.
An alternative proof is given in [Nguyen et al. 2017, Section 5.1].
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