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We prove that the actions mentioned in the title are translations. We show also that for certain Ga-actions
on affine fourfolds the categorical quotient of the action is automatically an affine algebraic variety and
describe the geometric structure of such quotients.

Introduction

An algebraic action Ga of the additive group C+ of complex numbers on a complex algebraic variety X is
free if it has no fixed points. When X is a Euclidean space Cn with a coordinate system (x1, . . . , xn) the
simplest example of such an action is a translation for which the action of an element t ∈ C+ is given by
(x1, x2, . . . , xn) 7→ (x1+ t, x2, . . . , xn). It turns out that for n≤ 3 these notions are “essentially” the same.
More precisely, when n ≤ 3 every nontrivial free Ga-action on Cn in a suitable polynomial coordinate
system is a translation1 (see [Gutwirth 1961; Rentschler 1968] for n = 2 and [Kaliman 2004] for n = 3).

Starting with n = 4 the similar statement does not hold and the basic example of Winkelmann [1990]
gives a triangular2 free Ga-action which is not a translation. In his example the geometric quotient of
the action is not Hausdorff while for a translation on Cn, the geometric quotient is isomorphic to Cn−1.
Recently Dubouloz, Finston, and Jaradat [Dubouloz et al. 2014] proved that every triangular action on
Cn which is proper (in particular, it is free and has a Hausdorff geometric quotient), is a translation in a
suitable coordinate system. Note that every triangular action preserves at least one of the coordinates, and
one of the aims of this paper is the following generalization of the Finston–Dubouloz–Jaradat result:

Theorem 0.1. Every proper Ga-action on C4 that preserves a coordinate is a translation in a suitable
polynomial coordinate system.3

MSC2010: primary 14R20; secondary 14L30, 32M17.
Keywords: proper Ga-action on affine 4-space.

1In fact, for n ≤ 3 every connected one-dimensional unipotent algebraic subgroup of Cremona group of Cn is conjugate to
such a translation [Popov 2015, Corollary 5].

2Recall that a Ga-action on Cn is triangular if in a suitable polynomial coordinate system it is of the form (x1, . . . , xn) 7→
(x1, x2+ tp2(x1), x3+ tp3(x1, x2), . . . , xn+ tpn(x1, . . . xn−1)), where each pi is a polynomial. For n ≥ 3 not every Ga-action
on Cn is triangulable (i.e., triangular in a suitable polynomial coordinate system) [Bass 1984].

3Neena Gupta informed the author that she and S. M. Bhatwadekar had recently obtained an independent proof of Theorem 0.1.
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Its proof involves investigation of categorical quotients of Ga-actions on C4. Namely, let X be an
affine algebraic variety equipped with a Ga-action 8 : Ga × X → X. Denote by C[X ]8 the subring
of 8-invariant regular functions in the ring C[X ] of regular functions on X and by Spec C[X ]8 (resp.
Spec C[X ]) the spectrum of C[X ]8 (resp. C[X ]). Then the natural embedding C[X ]8 ↪→ C[X ] induces a
map Spec C[X ] → Spec C[X ]8. The fact that C[X ]8 is finitely generated is equivalent to the fact that
Spec C[X ]8 can be viewed as an affine algebraic variety denoted by X//8. It is called the categorical
quotient of the action and the map of the spectra yields the quotient morphism % : X → X//8 in the
category of affine algebraic varieties. If dim X ≤ 3 then C[X ]8 is always finitely generated by a theorem
of Zariski [1954]. In higher dimensions this fact is not necessarily true by Nagata’s counterexample to the
fourteenth Hilbert problem. Furthermore, extending Nagata’s counterexample, Daigle and Freudenburg
[1999] showed for a Ga-action on Cn, the ring of invariant functions may not be finitely generated starting
from dimension n≥ 5. In dimension 4 the same authors showed that the ring of regular functions invariant
with respect to a triangular Ga-action on C4 is automatically finitely generated [Daigle and Freudenburg
2001] and later Bhatwadekar and Daigle [2009] proved that it remains finitely generated if one considers
instead of triangular Ga-actions the wider class of Ga-actions preserving a coordinate.4 In this paper we
establish a stronger fact contained in the next theorem together with a generalization of Theorem 0.1.

Theorem 0.2. Let ϕ : X→ B be a surjective morphism of a factorial affine algebraic Ga-variety X (i.e.,
X is equipped with some Ga-action 8 ) of dimension 4 into a smooth affine curve B. Suppose also that

• the action preserves each fiber of ϕ;

• the generic fiber of ϕ is a three-dimensional variety Y (over the field K of rational functions on B) for
which the ring of invariants of the Ga-action (induced by 8) on Y is the polynomial ring K [z, w];5

• for every b ∈ B the fiber Xb = ϕ
−1(b) admits a nonconstant morphism into a curve if and only if this

curve is a polynomial one (i.e., the normalization of the curve is the line C).

Then

(1) the ring of8-invariant functions is finitely generated and, thus, it can be viewed as the ring of regular
functions on an affine algebraic variety Q = X//8;

(2) there is an affine modification ψ : Q→ B×C2 such that for some nonempty Zariski dense subset
B∗ ⊂ B the restriction of ψ over B∗ is an isomorphism and every singular fiber of ψ is of form
C ×C where C is a polynomial curve.

(3) Furthermore, if one requires additionally that

• 8 is proper and X is Cohen–Macaulay,
• each fiber Xb is normal,

4The author is grateful to Neena Gupta for drawing his attention to the paper of Bhatwadekar and Daigle.
5This assumption that the ring of invariants of the induced action is isomorphic to K [z, w] can be replaced by the following:

for a general b∈ B the categorical quotient of the restriction of8 to the fiber Xb=ϕ
−1(b) is isomorphic to C2 (see Theorem 5.7).
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• and the restriction 8b of 8 to Xb is a translation (in particular, Xb is naturally isomorphic to a
direct product (Xb//8b)×C),

then the quotient Q is locally trivial C2-bundle over B (and in particular it is a vector bundle by
[Bass et al. 1976/77]), X is naturally isomorphic to Q×C, and 8 is generated by a translation on
the second factor of X ' Q×C.

Let us emphasize that the fact that X is a direct product Q×C is a rather rare event for regular Ga-
actions while in the category of rational actions of a connected linear algebraic group G on an algebraic
variety Y (over an algebraically closed field of any characteristic) this variety is automatically birationally
isomorphic to the product of Ps and the rational quotient of Y with respect to a Borel subgroup of G (see
[Matsumura 1963; Popov 2016]). It is also worth mentioning that the requirement that the restriction
of 8 to any Xb is a translation in (3) can be can be replaced by some topological assumptions. For
instance, if each fiber Xb is smooth and factorial with trivial second and third homology groups then
8|Xb is automatically a translation by [Kaliman 2004, Theorem 5.1]. In particular, this is true when Xb is
a smooth contractible threefold since by the Gurjar theorem [1980, Theorem 1] (see also [Fujita 1982])
such a threefold is factorial.

This leads to the following application of Theorem 0.2.

Corollary 0.3. Let ϕ : X→ B be a surjective morphism of a smooth factorial affine algebraic fourfold
X into a smooth curve B such that X is equipped with a proper Ga-action 8 preserving every fiber
Xb= ϕ

−1(b), b ∈ B of ϕ. Suppose that each Xb is a smooth contractible threefold such that the restriction
of 8 to Xb has the plane as the quotient.6

Then there exits a categorical quotient of the action Q = X//8 in the category of affine algebraic
varieties. Furthermore, Q is a two-dimensional vector bundle over B and X is naturally isomorphic to
Q×C while 8 is generated by a translation on the second factor of X ' Q×C.

Indeed, it is straightforward that the assumptions of Corollary 0.3 imply all assumptions of Theorem 0.2
with a possible exception of the condition on the generic fiber of ϕ. But this last condition follows from
a combination of the Kambayashi [Kambayashi 1975] and the Kraft–Russell [Kraft and Russell 2014]
theorems (see Theorem 5.4 and Example 5.6 below for details).

When X 'C4, B'C, and ϕ is a coordinate function the assumptions of Corollary 0.3 are automatically
true and we have Theorem 0.1.

Some of the results mentioned before (including Theorem 0.1) are extended in the last section of this
paper where using the Lefschetz principle we show that similar facts (see, Theorems 9.11 and 9.12)
remain valid if we consider varieties X and B not over the field of complex numbers C but over any (not
necessarily algebraically closed) field of characteristic zero.

6For Xb = C3 the quotient of a nontrivial Ga-action is always isomorphic to C2 due to Miyanishi’s theorem [1980] and this
is also true for smooth contractible threefolds with negative logarithmic Kodaira dimension [Kaliman and Saveliev 2004] like the
Russell cubic {x + x2 y+ z2

+ t3
= 0} ⊂ C4

x,y,z,t .
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1. General facts

Theorem 1.1. Let ϕ : X→ Y be a birational morphism of irreducible affine algebraic varieties such that
Y is normal and there is a subvariety Z of Y with codimension at least 2 for which the restriction of ϕ to
X \ϕ−1(Z) is a surjective morphism onto Y \ Z. Suppose also that for every point y ∈ Y \ Z the preimage
ϕ−1(y) is finite. Then ϕ : X→ Y is an isomorphism.

Proof. The Zariski Main theorem (e.g., see [Grothendieck 1964, Théorème 8.12.6] or [Hartshorne 1977,
Chapter III, Corollary 11.4]) implies that the restriction of ϕ yields an isomorphism between X \ϕ−1(Z)
and Y \ Z . By the Hartogs theorem the composition of the inverse map ϕ−1

: Y \ Z→ X \ϕ−1(Z) with
the inclusion X \ϕ−1(Z) ↪→ X extends to a morphism Y → X and we are done. �

Corollary 1.2. Let ϕ : X→ Y be a morphism of irreducible affine algebraic varieties, and E ⊂ X and
D ⊂ Y be irreducible divisors such that the restriction of ϕ yields an isomorphism X \ E → Y \ D.
Suppose also that Y is normal and ϕ(E) is Zariski dense in D. Then ϕ : X→ Y is an isomorphism.

Proof. The dimension argument implies that for a general point y in D the preimage ϕ−1(y) is finite.
Hence it is finite outside a proper closed subvariety Z of D and we are done by Theorem 1.1. �

The next fact and the modified proof of Theorem 1.4 below were suggested by the referee.

Proposition 1.3. Let % : X→ Q be a morphism of irreducible affine algebraic varieties such that Q is
normal and R = Q \%(X) is of codimension at least 2 in Q. Then every regular function f on X which is
constant on the general fibers of % descends to a unique regular function g on Q.

Proof. Let us show first that f is a lift of a rational function g on Q. That is, one needs to establish the
regularity of g on a Zariski dense open subset Q0 of Q \ R. We can suppose that the restriction of %
to X0 = %

−1(Q0) is flat by [Grothendieck 1964, Théorème 6.9.1] and, therefore, being surjective it is
faithfully flat [Atiyah and Macdonald 1969, Ch. 3, Exercise 16]. Consider Y = X0×Q0 X0. Then the two
natural projections Y → X0 generate two homomorphisms e1 : C[X0] → C[Y ] and e2 : C[X0] → C[Y ].
Since f is constant on general fibers of % we see that f |X0 ∈ Ker(e1 − e2). In combination with the
faithful flatness of the natural morphism C[Q0] → C[X0] this implies that f must be a lift of a regular
function g|Q0 [Fantechi et al. 2005, Lemma 2.61]. Hence g is a rational function on Q.

Assume that there exists a divisor T in Q such that a general point t0 ∈ T does not belong to the
indeterminacy set of g and g(t0) =∞. We can suppose that also t0 /∈ R, i.e., %−1(t0) 6= ∅. Hence for
a germ of a curve C in X through x0 ∈ %

−1(t0) one has f (c)→ f (x0) as c ∈ C approaches x0. This
implies that g(%(c))→ f (x0) 6= ∞ as %(c) approaches t0, a contradiction. That is, g is regular on Q
outside a subvariety of codimension at least 2. Since Q is normal, the Hartogs theorem implies that g is
regular on Q and we are done. �

Theorem 1.4. Let % : X→ Q be a morphism of irreducible affine algebraic varieties and8 :Ga×X→ X
be a nontrivial Ga-action on X which preserves each fiber of %. Let Q be normal and P be a subvariety
of Q with codimension at least 2 such that Q \ P ⊂ %(X). Suppose also that for every point q ∈ Q \ P
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the preimage %−1(q) is a curve and for a general point q ∈ Q \ P the preimage %−1(q) is an irreducible
curve. Then % : X→ Q is the categorical quotient morphism in the category of affine algebraic varieties.
In particular, the subring of Ga-invariants in the ring of regular functions on X is finitely generated.

Proof. Note that by the assumption every general fiber of % is nothing but an orbit of 8. Thus every
8-invariant function f is constant on the general fibers of %. By Proposition 1.3, f is a lift of a regular
function on Q. Hence the ring of regular functions on Q coincides with the ring C[X ]8 of invariants and
we are done. �

Now the dimension argument as in the proof of Corollary 1.2 implies the following:

Corollary 1.5. Let % : X → Q be a morphism of irreducible affine algebraic varieties such that Q is
normal and let 8 : Ga × X→ X be a nontrivial Ga-action on X preserving every fiber of %. Let E ⊂ X
and D ⊂ Q be irreducible divisors such that X \ E and Q \ D are affine algebraic varieties for which
%(X \ E)= Q \ D and %|X\E) : X \ E→ Q \ D is the categorical quotient morphism of the action 8|X\E .
Suppose also that %(E) is Zariski dense in D.

Then % : X→ Q is the categorical quotient morphism of 8.

Proposition 1.6 (cf., [Kaliman 2004, Lemma 2.1]). Let % : X→ Q be a dominant morphism of normal
affine algebraic varieties. Suppose that the general fibers of % are irreducible and there are no nonconstant
invertible regular functions on such fibers. Suppose also that Q \ %(X) is of codimension at least 2 in Q.
Then

(1) for every principal irreducible divisor D in X, which does not meet general fibers of %, the closure of
%(D) is the support of a principal irreducible divisor in Q;

(2) if X is a factorial variety so is Q;

(3) if X is factorial the preimage of any irreducible reduced divisor T in Q is an irreducible reduced
divisor in X.

Proof. In (1) D is the zero locus of a regular function f . Since f does not vanish on general fibers
and they are irreducible we see that f is constant on each general fiber. By Proposition 1.3, f = g ◦ %
where g ∈ C[Q]. Let us show that the zero locus of g coincides with the closure of %(D). Assume to the
contrary that there is a divisor F ⊂ g−1(0) \ %(D) in Q. Choose a rational function h on Q whose poles
are contained in the closure T of F and a regular function e on Q that vanishes on T ∩%(D)= T ∩%(X)
but not at general points of T. Then for sufficiently large k the function (ekh)◦% is regular on X. Since it
is constant on every general fiber of X we conclude by Proposition 1.3 that ekh is regular on Q contrary
to the fact that this function has poles on T. Thus we have (1).

Let T be an irreducible reduced Weil divisor in Q and let D be an irreducible component of %−1(T )
that is a divisor in X (such a component exists because Q \%(X) is of codimension at least 2 in Q). Under
the assumption of (2), D = f ∗(0) for a regular function f on X since X is factorial. By (1), T = %(D)
and it coincides with the zeros of g ∈C[X ] where f = g ◦%. Furthermore, if e is another regular function
on Q that vanishes on T then it is divisible by g since e ◦ % is divisible by f , and by Proposition 1.3,
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e ◦ %/g ◦ % is the lift of a regular function on Q. That is, T = g∗(0). This implies that every irreducible
element in C[Q] has a zero locus which is reduced irreducible and principal. In particular, this element is
prime and, therefore, we have (2).

Assume that D1 and D2 are reduced irreducible components of %−1(T ). Since X is factorial Di = f ∗i (0).
By the argument above fi = gi ◦% for regular functions gi on Q. Furthermore gi vanishes on T only and
thus g1/g2 is an invertible regular function. This implies that D1 = D2 and we have (3). �

Corollary 1.7. Let X be a normal affine algebraic variety and % : X→ Q be a quotient morphism of a
nontrivial Ga-action on X (in the category of affine algebraic varieties). Then Q \ %(X) has codimension
at least 2 in Q. Furthermore, if X is factorial so is Q.

Proof. Note that Q is normal since X is. If Q \ %(X) contains a divisor F of Q then as in Statement (1)
of Proposition 1.6 we can construct a rational function g on Q with poles on F whose lift to X is regular.
By construction this lift is Ga-invariant, i.e., g must be regular. A contradiction. This implies the first
statement while the second one follows from Proposition 1.6. �

2. Basic definitions and properties of affine modifications

Definition 2.1. Recall that an affine modification is any birational morphism σ : X̂ → X of affine
algebraic varieties [Kaliman and Zaidenberg 1999]. In particular, there exists a divisor D ⊂ X such that
for D̂ = σ−1(D) the restriction of σ yields an isomorphism X̂ \ D̂→ X \ D. There is some freedom in
the choice of D and we can always suppose that D is a principal effective divisor given by zeros of a
regular function f ∈ A := C[X ]. This is the case which we consider in the present paper. When such f
is fixed we call D the divisor of modification, D̂ is called the exceptional divisor of modification, and the
closure Z of σ(D̂) in X is called the center of modification. The advantage of a principal divisor D is
that the algebra Â = C[X̂ ] can be viewed as a subalgebra A[I/ f ] in the field Frac(A) of fractions of A
where I is an ideal in A (see [Kaliman and Zaidenberg 1999]).

It is worth mentioning that I is not determined uniquely, i.e., one can find another ideal J ⊂ A for
which Â = A[J/ f ]. We suppose further that I is the largest among such ideals J and we call I the ideal
of the modification. (Treating A as a subalgebra of Â one can see that I is the intersection of A and the
principal ideal generated by f in Â.)

Notation 2.2. The symbols X, Z , D, X̂ , D̂, I, f in this section have the same meaning as in Definition 2.1.

Example 2.3. Let I be generated by regular functions f, g1, . . . , gn ∈C[X ]. Consider the closed subspace
Y of X ×Cn

v1,...,vn
given by the system of equations f v j = g j ( j = 1, . . . , n) and the proper transform X̂

of X under the natural projection Y → X (i.e., X̂ is the only irreducible component of Y whose image
in X under the projection is dense in X ). Then the restriction σ : X̂ → X of the natural projection is
our affine modification. Note that D (resp. D̂) coincides with the zero locus of f (resp. f ◦ σ ) and the
center Z is given by the equations f = g1 = · · · = gn = 0.
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Remark 2.4. (1) The geometrical construction behind the modification in Example 2.3 is the following.
Consider blowing up τ : X̃→ X of X with respect to the ideal sheaf generated by f and g1, . . . , gn .
Delete from X̃ divisors on which the zero multiplicity of f ◦ τ is more than the zero multiplicity of
at least one of the functions g j ◦ τ . The resulting variety is X̂ .

(2) Note that the replacement in Example 2.3 of functions f, g1, . . . , gn by functions h f, hg1, . . . , hgn

respectively (where h ∈ C[X ] is nonzero) does not change the modification σ : X̂→ X. In order to
avoid this ambiguity we have to fix f . We are not going to specify such f ’s for affine modifications
considered below since the choice of f will be clear from the context in each particular case.

Definition 2.5. (1) Let the center of modification Z in Example 2.3 be a set-theoretical complete
intersection in X given by the zeros f = g1 = · · · = gn = 0 (i.e., Z coincides with the set of common
zeros of these functions and the codimension of Z in X is n+ 1). Then we call such σ : X̂ → X
a Davis modification. Its main property is that D̂ is naturally isomorphic to Z ×Cn and that the
support of X̂ coincides with the support of Y .7

(2) Let Z be a strict complete intersection in X given by f = g1 = · · · = gn = 0; that is, Z is not only a
set-theoretical complete intersection but also the defining ideal of the (reduced) subvariety Z in X
coincides with the ideal I generated by f, g1, . . . , gn . Then we call σ a simple modification. In this
case X̂ coincides with Y as a scheme. Note also that the zero multiplicity of f ◦ σ is 1 at general
points of D̂.

Here are some useful properties of simple modifications from [Kaliman 2002] which we shall need
later.

Proposition 2.6. Let σ : X̂→ X be a simple modification. Then

(1) X̂ is smooth over points from Zreg ∩ Dreg ∩ Xreg;

(2) X̂ is Cohen–Macauley provided X is Cohen–Macauley;

(3) furthermore, if in (2) X is normal and none of irreducible components of the center Z of σ is
contained in the singularities of X or D then X̂ is normal.

3. Pseudoaffine modifications

From a geometrical point of view it is sometimes convenient for us to consider a neighborhood U ⊂ X of
some point z ∈ Z in the standard topology (we call such U a Euclidean neighborhood) and the restriction
σ |Û : Û→U where Û is any connected component of σ−1(U ). Since U and Û are not algebraic varieties
but only complex spaces let us consider the analogue of affine modifications in the analytic setting.8

7Indeed, the preimage of Z in Y is naturally isomorphic to Z ×Cn and therefore has dimension dim X − 1. On the other
hand counting the number of equations defining Y in X ×Cn we see that every irreducible component of Y has dimension at
least dim X. This implies that Y is irreducible (since all irreducible components of Y but one are contained in the preimage of Z )
and thus D̂ ' Z ×Cn.

8One can adhere to the algebraic setting by viewing U as an étale neighborhood of z in X.
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Definition 3.1. Let X be an irreducible complex Stein space and ψ : X→W be a meromorphic map into
a projective algebraic variety W with a fixed ample divisor H such that ψ is holomorphic over W \ H. A
minimal resolution π : X̃→ X of indeterminacy points for ψ leads to a holomorphic map ψ̃ : X̃→W.
Removing from X̃ the preimage of H we obtain X̂ which, together with the natural projection σ : X̂→ X,
will be called a pseudoaffine modification. Consider the Weil divisor ψ̃∗(H) and its pushforward (as a
cycle ) D by π : X̃→ X. Then D is the divisor of the modification, D̂ = σ−1(D)⊂ X̂ is its exceptional
divisor, and the closure Z of σ(D̂) is its center. The restriction of σ induces, of course, a biholomorphism
between X̂ \ D̂ and X \ D. Note also that similarly to the algebraic setting σ |D̂ : D̂ → σ(D̂) is, by
construction, the restriction of the proper morphism π |T : T → Z where T is the closure of D̂ in X̃ . The
latter observation is important for the next remark.

Remark 3.2. Though we mostly omit explicit formulations it should be emphasized that practically all
the facts valid for affine modifications have similar analytic analogues for pseudoaffine modifications
(e.g., see Proposition 3.6 below).

Example 3.3. Let us switch to the analytic setting in Example 2.3 by assuming that X is a Stein variety,
f, g1, . . . , gn are holomorphic functions on X. As before, Y is given in X ×Cn

v1,...,vn
by equations

f v j = g j , j = 1, . . . , n

and X̂ is the proper transform of X under the natural projection Y → X. Then the restriction σ : X̂→ X
of the natural projection is a pseudoaffine modification with D (resp. D̂) being the zero locus of f (resp.
f ◦ σ ) and the center Z given by the equations f = g1 = · · · = gn = 0.

Definition 3.4. If in Example 3.3 Z is a set-theoretical complete intersection in X given by the zeros

f = g1 = · · · = gn = 0,

then we call σ a Davis pseudoaffine modification. If furthermore Z is a strict complete intersection given
by these function then σ is a simple pseudoaffine modification.

Remark 3.5. (1) For any pair U, Û as in the beginning of this section the restriction Û→U of a simple
(resp. Davis) affine modification σ : X̂ → X is automatically a simple (resp. Davis) pseudoaffine
modification.

(2) Note that when X, D, and Z are smooth for a simple pseudoaffine modification then for every point
z ∈ Z the collection { f, g1, . . . , gn} can be extended to a local coordinate system in a Euclidean
neighborhood U of z in X. In particular, if n = 1 we can treat U as a germ of Cn at the origin
with coordinates (u, v, w1, . . . , wn−2) such that D is given in U by u = 0, Z by u = v = 0, and the
preimage of U in X̂ is viewed as a subvariety of U ×Cw given by the equation uw = v.

(3) Similarly to the algebraic setting the exceptional divisor of a Davis pseudoaffine modification is a
the product of its center and a Euclidean space.

The following analytic version of Proposition 2.6 for simple pseudoaffine modifications remains valid
with a verbatim proof.
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Proposition 3.6. Let σ : X̂→ X be a simple pseudoaffine modification of irreducible Stein spaces. Then

(1) X̂ is smooth over smooth points from Z that are not contained in the singularities of D or X ;

(2) X̂ is Cohen–Macaulay provided X is Cohen–Macaulay;

(3) furthermore, if in (2) X is normal and none of irreducible components of the center Z of σ is
contained in the singularities of X or D then X̂ is normal.

Lemma 3.7. Let ψ : Y → X be a holomorphic map of irreducible normal Stein spaces such that for
some principal effective reduced divisor D ⊂ X and every x ∈ X \ D the preimage ψ−1(x) is a curve.
Suppose that the divisor E =ψ∗(D) is reduced and irreducible, ψ(E) is not contained in the singularities
of X or D, and for a general point y ∈ E the variety ψ−1(ψ(y)) is a surface. Then for such a point
y ∈ Y (resp. for z = ψ(y) ∈ X ), there exists a local analytic coordinate system (u′, v′, v′′, w′) on Y at y
(resp. (u, v, w) on X at z) where w′ = (w′1, . . . , w

′

n−2) (resp. w = (w1, . . . , wn−2)) for which the local
coordinate form of ψ is given by

(u′, v′, v′′, w′) 7→ (u, v, w)= (u′, (u′)lq(u′, v′, v′′, w′), w′),

where l ≥ 1 is the minimal zero multiplicity of the (n× n)-minors in the Jacobi matrix of ψ at y and the
function q(0, v′, v′′, w′) depends on v′ or v′′.

Proof. Since y is a general point of E we see that it is a smooth point of E and X and by the assumption z
is a smooth point of Z = ψ(E), D, and X. Thus locally D is given by u = 0 and Z by u = v = 0, where
the holomorphic functions u and v can be included in a local coordinate system (u, v, w) on X at z.
If u′ = u ◦ψ then by the assumption E is given locally near y by u′ = 0. Since dim E − dim Z = 2,
by [Chirka 1989, Appendix, Theorem 2] there exists a local coordinate system (v′, v′′, w′) on E such
that the coordinate form of ψ |E : E → D is given by v = 0 and w = w′. Extending functions v′, v′′,
and w′ holomorphically to a neighborhood of y in Y we get a local coordinate system (u′, v′, v′′, w′)
in this neighborhood. Furthermore, the extension w′ can be chosen as w′ = w ◦ψ . Hence ψ is given
locally by u = u′, w = w′, and v = (u′)lq(u′, v′, v′′, w′), where q(0, v′, v′′, w′) is not identically zero. If
q(0, v′, v′′, w′) is independent of v′ or v′′, then replacing v by v− ulq(0, w), we increase l (which is
at least 1 since otherwise ψ(E) is not contained in Z ). On the other hand l cannot be larger than the
minimal zero multiplicity of the (n× n)-minors in the Jacobi matrix of ψ at y. Hence we can suppose
that q(0, v′, v′′, w′) depends on v′ or v′′ in which case l is such a multiplicity. �

Proposition 3.8. Let the assumptions of Lemma 3.7 hold. Suppose also that

−→ Xm
σm
−→ Xm−1

σm−1
−→· · ·

σ2
−→ X1

σ1
−→ X0 := X

is a sequence of simple pseudoaffine modifications such that

(i) there exists a holomorphic map ψm : Y → Xm for which ψ = σ1 ◦ · · · ◦ σm ◦ψm ;

(ii) for ψi = σi+1 ◦ · · · ◦ σm ◦ψm the closure of ψi (E) coincides with Zi ⊂ Di , where Zi and Di are the
center and the divisor of σi+1 respectively;
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(iii) general points of Zi are contained in the smooth parts of X i and Di .9

Then such a sequence cannot be extended to the left indefinitely.

Proof. Let y be a general point in E such that ψi (y) = zi ∈ Zi which implies that near these points
Zi , Di , E, Y, X are smooth. By Lemma 3.7 we can consider local coordinate systems (u′, v′, v′′, w′)
on Y at y and (ui , vi , wi ) on X i at zi such that ψi is given locally by ui = u′, wi = w

′, and vi =

(u′)lq(u′, v′, v′′, w′). By Remark 3.5 (2) for a local coordinate system (ui+1, vi+1, wi+1) on X i+1 the
coordinate form of σi+1 is (ui , vi , wi )= (ui+1, ui+1vi+1, wi+1). Hence a local form of ψi+1 is ui+1 =

u′, wi+1 = w
′, and vi+1 = (u′)li−1q(u′, v′, v′′, w′). That is, in this construction li+1 = li − 1. Since such

powers cannot be negative we get the desired conclusion. �

Remark 3.9. In fact, we showed that m in Proposition 3.8 cannot exceed the minimal zero multiplicity l
of the (n× n)-minors in the Jacobi matrix of ψ from Lemma 3.7.

Similarly, we have the following.

Proposition 3.10. Let σ : X̂→ X be a pseudoaffine modification with center Z , divisor D, and exceptional
divisor D̂. Suppose that none of components of Z is contained in Xsing ∪ Dsing, and the image of every
component of D̂ is of codimension 1 in D. Let

−→ Xn
σn
−→ Xn−1

σn−1
−→· · ·

σ2
−→ X1

σ1
−→ X0 := X

be a sequence of simple modifications with similar conditions on centers and such that σ factors through
the composition of these simple modifications. Then such a sequence cannot be extended to the left
indefinitely without violating the fact that σ factors through the composition.

Proof. For local analytic coordinate systems at general points y ∈ D̂ and z = σ(y) ∈ Z ⊂ X , consider
the zero multiplicity k of the Jacobian of σ at y (clearly this multiplicity is independent of the choice of
local coordinate system and the choice of a general point y) and let ki be the similar multiplicity for the
modification σi ◦ · · · ◦σ1 : X i → X. Since σi+1 : X i+1→ X i contracts the exceptional divisor in X i+1 we
see that ki+1 > ki . On the other hand if σ factors through σi ◦ · · · ◦ σ1 one must have ki ≤ k. This yields
the desired conclusion. �

Definition 3.11. (1) Given two (pseudo)affine modifications σ : X̂→ X and δ : X̃→ X with the same
center Z and divisor D ⊂ X , we say that σ dominates δ if it factors through δ. For instance, consider
the normalization ν : X̃ ′→ X̃ and let δ′ = δ ◦ ν : X̃ ′→ X. Then δ is dominated by δ′.

(2) Let f, g, and h be holomorphic functions on a Stein manifold X and σ : X̂ → X be a simple
pseudoaffine modification with a smooth divisor D = f ∗(0) and a smooth center Z given by a strict
complete intersection f = h = 0. Suppose that Z is also a set-theoretical complete intersection
given by f k

= g = 0 and X̃ ⊂ X ×Cw is given by f kw = g. Then we call the Davis modification
δ : X̃→ X (induced by the natural projection) homogeneous (of degree k) if f I k−1 and g generate
the ideal I k where I is the defining ideal of Z in the ring of holomorphic functions on X.

9Actually, (iii) follows automatically from the Proposition 3.6.
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Lemma 3.12. Let X be a germ of Cn at the origin with coordinates (u, v, w1, . . . , wn−2) and let σ :
X̂ → X and I be as in Definition 3.11 (2) with f = u and h = v. Suppose also that g and δ are as in
Definition 3.11 (2) without δ being a priori homogeneous. Then δ is homogeneous if and only if and only if
the function g is of the form g = evk

+ a, where a is in f I k−1 and e is an invertible holomorphic function.

Proof. Since f = u and I is generated by u and v one can see that f I k−1 is generated by functions
uk, uk−1v, . . . , uvk−1. That is, the ideal I k is generated by f I k−1 and vk and also by f I k−1 and g. This
is possible if and only if g = evk

+ a, where a ∈ f I k−1 and e is an invertible holomorphic function. �

Proposition 3.13. Let σ : X̂→ X and δ : X̃→ X be as in Definition 3.11 (2). Then X̂ is a normalization
of X̃ and in particular σ dominates δ.

Proof. Since normalization is a local operation, by Remark 3.5 (2), we can view X as a germ of Cn at the
origin with coordinates (u, v, w1, . . . , wn−2) such that D is given by u = 0, Z by u = v = 0 (i.e., X̂ can
be viewed as the hypersurface in X ×Cw given by the equation uw = v). By Lemma 3.12 g = evk

+ a,
where a ∈ f I k−1 and e is an invertible holomorphic function. Changing e we can suppose that the Taylor
series of a does not contain monomials divisible by vk. Hence u = g/ f k

= g/uk
= ewk

+ c, where c is a
polynomial in w of degree at most k− 1 whose coefficients are holomorphic functions on X. Thus w is
integral over the ring of holomorphic functions on X̃ which concludes the proof. �

Remark 3.14. (1) Note that for a simple pseudoaffine modification from Definition 3.11 (2) with a
given divisor D the function f is determined uniquely up to an invertible factor. This implies that
for a given k ≥ 1 the notion of a homogeneous modification of degree k from Definition 3.11 (2) is
determined not as much by f and h but by D and the defining ideal I (or equivalently the center Z ).

(2) In particular if δ : X̃→ X is a pseudoaffine modification with a divisor D and a center Z such that
dim Z = dim X − 2 then for a smooth point z of Z that is not in Xsing ∪ Dsing we can say whether δ
is locally homogeneous at z or not (where in the former case there exists a Euclidean neighborhood
U of z in X such that for every connected component Ũ of δ−1(U ) the modification δ|Ũ : Ũ→U is
homogeneous).

Proposition 3.15. Let X be a normal irreducible Stein space which is Cohen–Macaulay, δ : X̃→ X be
a Davis modification with an irreducible divisor D and a center Z of codimX Z = 2 such that none of
the irreducible components of Z is contained in Xsing ∪ Dsing. Suppose also that Z is a strict complete
intersection of the form f = h = 0, where D = f ∗(0) and that at general points of Z this modification δ
is locally homogeneous. Let σ : X̂→ X be a simple pseudoaffine modification associated with divisor D
and center Z. Then X̂ is a normalization of X̃ and thus σ dominates δ.

Proof. First note that X̂ is a normal Stein space by Proposition 3.6. Let z be a general point of Z , i.e.,
z is a smooth point of Z and it is not contained in some subvariety P ⊂ Z of codimZ P ≥ 1 such that
Z ∩(Xsing∪Dsing)⊂ P. Then by Proposition 3.13 there exists a Euclidean neighborhood U of z in X such
that σ−1(U ) is a normalization of δ−1(U ). That is, we have a biholomorphism ψ between σ−1(X \ P)
and a normalization of δ−1(X \P). Since P is of codimension at least 3 in X and δ is a Davis modification
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the codimension of δ−1(P) in X̃ is at least of 2 (because by Remark 3.5(3) δ−1(P)' P ×C). Hence the
Hartogs theorem implies that ψ extends to a biholomorphism between X̂ and a normalization of X̃ which
is the desired conclusion. �

4. Semifinite modifications

Notation 4.1. Let T be a germ of an analytic set at the origin o of Cm, Hol(T ) be the ring of holomorphic
functions on T, and D = T ×C. We consider a hypersurface Z in D such that π |Z : Z → T is finite
where π : D→ T is the natural projection. We also suppose that Z coincides (as a set) with the zeros of
an analytic function h.

Lemma 4.2. Let Notation 4.1 hold and w be a coordinate on the second factor of D = T ×C. Then h
can be chosen as a monic polynomial in w with coefficients from Hol(T ), i.e., h ∈ Hol(T )[w].

Proof. Let π−1(o) ∩ Z consist of points z1, . . . , zn , where zi = (o, wi ) ∈ T × C. By the Weierstrass
preparation theorem, for every zi there is a Euclidean neighborhood in D in which h coincides with
ei hi (w), where ei is an invertible function and hi ∈ Hol(T )[w] is a monic polynomial in w−wi . Note
that Z coincides with the zeros of the product h1h2 · · · hm because of the finiteness of π |Z : Z→ T. Thus
replacing h with the product h1h2 · · · hm we get the desired conclusion. �

Lemma 4.3. Let Notation 4.1 hold and the zero multiplicity of h at general points of Z be n. Then
g = h1/n is a holomorphic function on D and in particular the defining ideal of Z in the ring Hol(T )[w]
is the principal ideal generated by g.

Proof. By Lemma 4.2 we can suppose that h is a monic polynomial in w. Consider the restriction of h
to any fiber. It is a polynomial whose roots have multiplicities divisible by n (since for general fibers
such multiplicities are exactly n). Thus the restriction of g to any fiber of π : D→ T can be chosen as a
nonzero monic polynomial in w. Therefore, choosing such a restriction on π−1(o) we define by continuity
a unique branch of h1/n on D as g. Note that g is holomorphic outside a subset K = Z ∩ π−1(Tsing)

and because of the assumption on h we see that g = wk
+ rk−1w

k−1
+ · · ·+ r1w+ r0, where each ri is a

continuous function on T holomorphic on T \ K. Hence the first statement will follow from the claim.

Claim. Let g be a (not a priori continuous) function on D, holomorphic outside a proper analytic subset K
that does not contain any fiber of π . Suppose also that g is a polynomial inw. Then g is holomorphic on D.

Taking a smaller T, if necessary, one can suppose that the image K0 of K under the natural projection
D→Cw is relatively compact. In particular, the function rkw

k
0+rk−1w

k−1
0 +· · ·+r1w0+r0 is holomorphic

on T for every w0 in C \ K0. Since we have an infinite number of such w0’s, every coefficient ri is also
holomorphic on T, which concludes the proof of the Claim.

To see that Z is a principal divisor in D consider any function f ∈ Hol(T )[w] vanishing on Z . Then
the quotient f/g is again holomorphic on D by the Claim which yields the desired conclusion. �

Lemma 4.4. Let Notation 4.1 hold and T be singular. Then so is Z.
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Proof. Assume that Z is smooth at some point z ∈ Z ∩ π−1(o). Let g be a function as in Lemma 4.3.
Extend g to a function g̃ ∈Hol(Cm, o)[w] whose zeros define an extension Z̃ of Z . Note that if the partial
derivative of g̃ with respect to w is nonzero at z then by the implicit function theorem Z̃ is biholomorphic
to (Cm, o) and therefore Z is locally biholomorphic to T which implies that Z is singular. Hence we
assume that this derivative is zero.

Let I be the defining ideal of T in Hol(Cm, o) and k be the dimension of T. Choose any m−k elements
from I and consider their Jacobi matrix (with respect to coordinates z1, . . . , zm of Cm). Since T is singular
at o, any (m − k)-minor M of this matrix vanishes at o. By Lemma 4.3 the defining ideal L of Z in
(Cm, o)×Cw is generated by I and g̃. Take any m+1−k elements from L and consider their Jacobi matrix
with respect to the coordinates (w, z1, . . . , zm). It follows from the previous argument about the partial
derivative of g̃ with respect to w and about the (m− k)-minor M that any (m+ 1− k)-minor of this new
Jacobi matrix vanishes at o. This is contrary to the fact that Z is smooth at z which concludes the proof. �

Example 4.5. Lemma 4.4 is one of the central technical results in this paper. The assumption that Z
coincides with zeros of a global analytic function is very important. Indeed, consider the case when T is a
semicubic parabola x2

− y3
= 0 in C2

x,y . Then there is a closed immersion of C into D = T ×C⊂ C3
x,y,w

given by t 7→ (t3, t2, t) such that the image is a smooth Weil divisor whose projection to the singular T
is finite. Lemma 4.4 is not applicable here because this Weil divisor is not Q-Cartier.

Remark 4.6. If T is not unibranch at o then the argument is much easier and, furthermore, Z is not
unibranch at any point z0 above o as well. Indeed, let T1 and T2 be distinct irreducible components of
T at o. Then D has irreducible branches T1×C and T2×C meeting along the line L = o×C. Since
the zeros of h contain the point z0 ∈ L but not the line L itself the zeros Zi of h in Ti ×C produce two
different branches Z1 and Z2 of Z at z0.

Proposition 4.7. Let T be an affine algebraic variety, D = T ×C, and Z be an algebraic hypersurface
in D such that π |Z : Z→ T is finite where π : D→ T is the natural projection. Suppose that for every
point t0 ∈ T there is a Euclidean neighborhood U ⊂ T such that Z ∩π−1(U ) is an analytic Q-principal
divisor in π−1(U ), i.e., for some natural k > 0 and a holomorphic function g on π−1(U ) the divisor
k Z ∩π−1(U ) coincides with g∗(0).

Then Z is an effective reduced principal divisor in D.

Proof. Let w be a function on D = T ×C induced by a coordinate on the second factor. The field C(Z)
of rational functions on Z is a finite separable extension of the field C(T ) and it is generated by w|Z
over C(T ). Let g(w)= wn

+ rn−1(t)wn−1
+ · · ·+ r1(t)w+ r0(t) be the minimal monic polynomial for

w over C(T ). In particular Z ∩π−1(U ) is given by the zeros of this rational function g. By Lemma 4.3
Z ∩π−1(U ) is a principal divisor in π−1(U ) which implies that the function g is holomorphic. Therefore
g is regular (e.g., see [Kaliman 1991, Theorem 5]). This yields the desired conclusion. �

Definition 4.8. Let σ : X̂→ X be an affine modification of normal affine algebraic varieties such that X
is Cohen–Macaulay and
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(a) its divisor D = f ∗(0) (where f ∈ C[X ]) is a reduced principal divisor in X isomorphic to a direct
product D ' T ×C;

(b) the restriction π |Z : Z→ T of the natural projection π : D→ T to the center Z of σ is finite;

(c) none of irreducible components of Z is contained in the singularities of X (note that for the
singularities of D a similar fact also holds);

(d) for any point z of Z there is a Euclidean neighborhood U in X for which the restriction σ |Û : Û→U
of σ to Û = σ−1(U ) factors through some Davis pseudoaffine modification δ : Ũ → U with the
following property: the restriction of δ over a neighborhood U ′ ⊂U of any general point z′ ∈ Z ∩U
is homogeneous of degree k (where k does not depend on different irreducible components of Z ∩U ).

Then we call such a σ a semifinite affine modification.

Proposition 4.9. Let σ : X̂ → X be a semifinite affine modification with D ' T × C and Z as in
Definition 4.8. Then σ dominates a simple modification (with the same center and divisor) and if T is
singular so is the center Z.

Proof. Let a Davis modification δ : Ũ →U from Definition 4.8 (d) be defined by the ideal ( f k, g). By
condition (d), δ is locally homogeneous at general points of Z∩U which in combination with Lemma 3.12
implies that for some k ≥ 1 the divisor k Z ∩U coincides with g∗(0) ∩U. That is, we are under the
assumptions of Proposition 4.7. Hence Z = h∗(0), where h ∈ C[D]. Thus extending h to a regular
function on X (denoted by the same symbol) we see that Z is a strict complete intersection given by
f = h = 0. These functions f and h induce a simple affine modification τ : X ′→ X with divisor D and
center Z such that X ′ is a normal affine algebraic variety by Proposition 2.6. Furthermore, X̂ and X ′ are
also normal as analytic sets by [Zariski and Samuel 1960, Chapter 13, Theorem 32]. By Proposition 3.15
τ−1(U ) is an analytic normalization of Ũ . Since X̂ is normal then the holomorphic map σ−1(U )→ Ũ
(induced by the domination of δ by σ ) factors through the normalization of Ũ . This yields a desired
holomorphic map from X̂ to X ′ which is a morphism since its restriction over X \ D is an algebraic
isomorphism. That is, σ dominates τ . The second statement follows from Lemma 4.4. �

5. Applications of Kambayashi’s theorem

Notation 5.1. In this section ϕ : X → B will be a morphism of complex factorial affine algebraic
varieties, 8 will be a Ga-action on X which preserves the fibers of ϕ. We do not assume a priori that the
C[B]-algebra C[X ]8 of 8-invariant regular functions is finitely generated.

However, such an algebra can be viewed (and will be viewed) as a direct limit lim
−−→

Aα of its finitely
generated C[B]-subalgebras Aα (with respect to the partial order generated by inclusions) where α belongs
to some index set and each Aα can be treated as the ring C[Qα] of regular functions of some affine
algebraic variety Qα . Replacing Aα with its integral closure we suppose that each of these Qα is normal
(the fact that this transition preserves affineness is a standard result, e.g., [Eisenbud 1995, Theorem 4.14]).
Furthermore, by the Rosenlicht Theorem (e.g., see [Vinberg and Popov 1989, Theorem 2.3]) Qα can
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be chosen so that the morphism %α : X→ Qα induced by the natural embedding Aα ⊂ C[X ] separates
general orbits of 8. As in [Flenner et al. 2016] we introduce the following.

Definition 5.2. A normal affine variety Qα as before will be called a partial quotient of X by 8 and the
morphism %α : X→ Qα (separating general orbits of 8) will be called a partial quotient morphism.

Remark 5.3. Note that including the coordinate functions of the morphism ϕ into a ring Aα we can
always choose a partial quotient morphism that is constant on the fibers of ϕ.

Theorem 5.4. Let ϕ : X→ B and8 be as in Notation 5.1 and the generic fiber of ϕ be a three-dimensional
variety Y (over the field K of rational functions on B). Let K̃ be the algebraic closure K and Ỹ be the
variety over K̃ obtained from Y by the field extension. Suppose that % : X → Q is a partial quotient
morphism such that ϕ factors through %. Suppose also that the ring of invariants of the Ga-action on Ỹ
(induced by 8) is a polynomial ring in two variables over K̃ . Then there is a morphism ψ : Q→ B×C2

such that for some nonempty Zariski dense open subset B∗ ⊂ B the restriction of ψ over B∗ is an
isomorphism.

Proof. By the Kambayashi theorem [1975] the ring of invariants of the induced action on Y is also a
polynomial ring in two variables over K. Hence for some B∗ as above and X∗ = ϕ−1(B∗), the induced
action on X∗ has the categorical quotient isomorphic to B∗ × C2. Assume that B \ B∗ is a principal
effective divisor, which can be done without loss of generality. Let f be a regular function on B
with zero locus B \ B∗ (we denote the lifts of f to X or Q by the same symbol). For every regular
function h ∈ C[X∗] there exists natural k for which f kh extends to a regular function on X. Hence
for sufficiently large k1 and k2 the composition of the quotient morphism %0 : X∗→ B∗×C2

u1,u2
with

the isomorphism κ : B∗×C2
u1,u2
→ B∗×C2

u1,u2
given by (b, u1, u2) 7→ (b, f k1u1, f k2u2) extends to a

morphism τ : X→ B×C2 (note that τ |X∗ : X∗→ B∗×C2 can be viewed now as the quotient morphism).
Similarly, since f ∈C[X ] and each ui ∈C[X∗] are8-invariant we see that f k1u1 and f k2u2 can be viewed
as regular functions on the normal variety Q. Thus τ = ψ ◦ θ , where θ : X→ Q and ψ : Q→ B×C are
morphisms. By the universal property of quotient morphisms, θ |X∗ : X∗→ Q \ f −1(0) factors through
τ |X∗ , which implies that ψ is invertible over B∗. This yields the desired conclusion. �

Remark 5.5. By construction ψ is an affine modification. Another observation is that if the general
fibers of ϕ do not admit nonconstant invertible functions then for every irreducible divisor T in B the
variety ϕ−1(T ) is reduced and irreducible by Proposition 1.6. Actually, in this case there is no need to
assume that B is factorial since it follows automatically from the fact that X is factorial.

Example 5.6. Let Notation 5.1 hold and every general fiber of ϕ be isomorphic to the same affine
algebraic threefold V. Suppose that 8 induces an action on each general fiber of ϕ with the categorical
quotient isomorphic to C2. Then we claim that the above conclusion about the partial quotient Q as a
modification of B×C2 over B is valid.

Indeed, by [Kraft and Russell 2014] there exists a Zariski dense open subset B∗ ⊂ B and an unramified
covering B̂∗→ B∗ such that X̂∗ = X×B∗ B̂∗ is naturally isomorphic to B̂∗×V over B̂∗. In particular, the
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induced action on the generic fiber of X̂∗→ B̂∗ has the ring of invariants isomorphic to the polynomial
ring K̂ [x1, x2] where K̂ is the field of rational functions on B̂∗. Note that this ring is obtained from the ring
of invariants on the generic fiber Y of X∗→ B∗ via a field extension [K̂ : K ]. Hence by the Kambayashi
theorem the latter ring of invariants is K [x1, x2] and we are under the assumption of Theorem 5.4.

In fact, as suggested by the referee, we can strengthen Theorem 5.4 and Example 5.6 as follows:

Theorem 5.7. Let Notation 5.1 hold and let 8 induce an action on each general fiber of ϕ with the
categorical quotient isomorphic to C2. Let Y and K be as in Theorem 5.4. Then the ring of invariants
of the Ga-action on Y (induced by 8) is a polynomial ring in two variables over K. In particular, for a
partial quotient morphism % : X→ Q for which ϕ factors through % (i.e., for some morphism κ : Q→ B
one has ϕ = κ ◦ %) there is a morphism ψ : Q→ B×C2 over B such that for a nonempty Zariski dense
open subset B∗ ⊂ B the restriction of ψ over B∗ is an isomorphism.

In preparation for the proof of this theorem we need the next (certainly well-known) fact.

Proposition 5.8. Let κ : Q→ B be a dominant morphism of algebraic varieties such that Q is normal.
Then for a general point b ∈ B the variety κ−1(b) is normal.

Proof. Replacing B by a Zariski dense open subset (and Q by its preimage) we can suppose that κ is
flat [Grothendieck 1964, Théorème 6.9.1]. Let ω be a generic point of B. Then the fiber of κ over ω is
normal (e.g., see [Atiyah and Macdonald 1969, Proposition 5.13]) which is equivalent to the fact that
this fiber is geometrically normal10 since we work over a field of characteristic zero. On the other hand
the set of (not necessarily closed) points in B for which the fibers over them are geometrically normal
is open [Grothendieck 1966, Théorème 12.1.6]. Since this set is nonempty it contains general (closed)
points of B and we are done. �

Proof of Theorem 5.7. Let Qb be the fiber κ−1(b) over a general point b ∈ B and Qb
' C2 be the

categorical quotient of the action 8|ϕ−1(b). By the universal property of quotient morphisms one has a
morphism ψb : Qb

→ Qb. Since % separates general orbits ψb must be birational.
Assume that for a curve Cb ⊂ Qb the image ψb(Cb) is a point qb ∈ Qb. By Corollary 1.7 the preimage

of Cb in ϕ−1(b) is a surface Sb, i.e., %(Sb)= qb. By [Shafarevich 1994, Chapter I, Section 6.3, Corollary]
the closure T of the set {q ∈ Q |dim %−1(q)= 2} is a subvariety. Let L be the union of the one-dimensional
components of T (it is nonempty since qb ∈ T for general b). Note that %−1(L) is a closed 8-stable
threefold V. By the Hironaka flattening theorem [Hironaka 1975] there exists of a proper birational
morphism π : Q̂ → Q such that for the irreducible component X̂ of X ×Q Q̂ dominant over X the
natural projection %̂ : X̂ → Q̂ is flat, i.e., all of its fibers are one-dimensional or empty. This implies
π−1(L) contains a surface P̂ = %̂(V̂ ) where V̂ is the proper transform of V in X̂ . Choose a curve Ĉ ⊂ P̂
whose image in B is dense and such that %̂−1(ĉ) 6= ∅ for a general point ĉ ∈ Ĉ . Let R̂ be a closed

10Recall that a scheme Z over a field k is geometrically normal if it is normal and, furthermore, it remains normal under any
field extension of k. In the case of a perfect field k (e.g., a field of characteristic zero) every normal scheme is automatically
geometrically normal.
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surface in Q̂ that meets P̂ along Ĉ and let R be the closure of π(R̂) (note that R contains L). Then
the closure of %−1(R \ L) contains a 8-stable threefold W that meets V over general points of B (since
%̂−1(ĉ) 6= ∅). Because X is factorial the threefold W is the zero locus of a regular function h ∈ C[X ]
which, by construction, does not vanish on general fibers of %. That is, it is constant on general fibers
and, therefore, 8-invariant. By construction h is not constant on the surface V ∩ ϕ−1(b) for general b
(this follows from the fact that W meets V ∩ϕ−1(b) along a curve). Enlarging a set of generators of the
ring C[Q] by h (and taking the integral closure to preserve the normality of Q assumed in Definition 5.2)
we obtain another partial quotient for which the image of V is a surface. That is, the set T as before
becomes at most finite and for a general b ∈ B this curve Cb does not exist.

Hence the morphism ψb : Qb
→ Qb is quasifinite now in addition to being birational. Assume that it

is not an embedding. Then by the Zariski main theorem Qb is not normal for general b ∈ B, contrary to
Proposition 5.8. Hence ψb : Qb

→ Qb is an embedding.
Let Db be the complement to the image of Qb in Qb. Suppose that Db is a curve for a general

b ∈ B (since Qb and Qb are affine the alternative is an empty Db). The set Qb \ %(ϕ
−1(b)) consists of

Db and a finite set by Corollary 1.7. Since %(X) is a constructible set by [Hartshorne 1977, Chap. II,
Exercise 3.19] we see that Q \ %(X) is an algebraic variety. Consider the irreducible components of
this variety which are dominant over B and remove those of them that have dimension dim B. Then we
are left with D :=

⋃
b∈B Db because Qb \ (%(ϕ

−1(b))∪ Db) is finite. That is, D is an algebraic variety
and Q \ D is a quasiaffine variety. The general fibers Qb \ Db of the natural morphism Q \ D→ B are
isomorphic to C2. By [Kaliman and Zaidenberg 2001] for a Zariski dense open subset B∗ ⊂ B the variety
Q∗ = κ−1(B∗) \ D naturally isomorphic to B∗×C2. Hence for X∗ = ϕ−1(B∗) we get a partial quotient
morphism %|X∗ : X∗→ B∗×C2.

Let %′ : X∗→ Q′ be another partial quotient morphism for 8|X∗ into a normal variety Q′ (over B∗)
such that % factors through %′, i.e., % = θ ◦ %′ for a morphism θ : Q′→ B∗×C2. Suppose that Q′b is the
fiber of the natural morphism Q′→ B∗ over a point b ∈ B∗, i.e., the restriction of θ yields a morphism
θb : Q′b→ Qb ' Qb

' C2. By the universal property of quotient morphisms we have a natural morphism
Qb
→ Q′b, i.e., θb is invertible. Hence θ is bijective. By the Zariski main theorem, θ is an isomorphism.

This implies that %|X∗ : X∗→ B∗×C2 is the categorical quotient morphism. In particular, for Y and K
as in Theorem 5.4 the ring of invariants of the Ga-action on Y (induced by 8) is a polynomial ring in two
variables over K. Now the desired conclusion follows from Theorem 5.4. �

6. Criterion for existence of an affine quotient

Notation 6.1. Let B be a unibranch germ of a smooth complex algebraic curve at point o (i.e., o is the
zero locus of some f ∈ C[B]) and ϕ : X→ B be a morphism from a complex factorial affine algebraic
variety X equipped with a Ga-action 8 which preserves each fiber of ϕ. We suppose also that % : X→ Q
is a partial quotient morphism of the action 8. Let ψ : Q→ Q0 be a morphism over B into a smooth
affine algebraic variety Q0 over B and τ = ψ ◦ %. The divisor in X (resp. Q, resp. Q0) over o will be
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denoted by E (resp. D, resp. D0). We suppose that the morphism Q0→ B is smooth (and in particular D0

is a smooth reduced divisor) and that ψ induces an isomorphism Q \D→ Q0 \D0. We suppose also that
E = ϕ∗(o) is reduced and denote by Z0 the closure of τ(E) in D0. We consider the Stein factorization
(e.g., see [Hartshorne 1977, Chapter III, Corollary 11.5]) of a proper extension E→ Z0 of the morphism
τ |E : E → Z0. Its restriction to E enables us to treat τ |E : E → Z0 as a composition of a surjective
morphism λ : E→ V with connected general fibers and a quasifinite morphism θ : V → Z0.

Theorem 1.1 implies the following:

Lemma 6.2. Let Notation 6.1 hold and Z0 (and therefore ψ(D)) be Zariski dense in D0. Then ψ is an
isomorphism.

Convention 6.3. With an exception of Corollary 6.10 we suppose throughout this section that Z0 is a
divisor in D0 and furthermore

(i) the morphism θ : V → Z0 from Notation 6.1 is in fact finite;

(ii) for every point z0 ∈ Z0 the preimage τ−1(z0) is a surface.

Remark 6.4. Note that Convention 6.3 holds automatically when E is isomorphic to C3 (under the
assumption that Z0 is a curve). Indeed, τ−1(z0) cannot be three-dimensional (otherwise it coincides with
E and τ(E) is a point, not a curve). Then both V and Z0 must be polynomial curves and a nonconstant
morphism of polynomial curve is always finite. In fact, this argument works not only when E ' C3. It is
enough to assume that there is no nonconstant morphism from E into any nonpolynomial curve.

Notation 6.5. Let Notation 6.1 hold. Our aim is to present ψ : Q→ Q0 over B as a composition

Q =: Qn
σn
−→ Qn−1

σn−1
−→· · ·

σ2
−→ Q1

σ1
−→ Q0

of simple affine modifications σi : Qi → Qi−1 over B. Let ψi = σ1 ◦ · · · ◦σi : Qi → Q0 and suppose that
ψ can be presented as ψ = ψi ◦ δi for a modification δi : Q→ Qi . Let τi = δi ◦ % and thus τ = ψi ◦ τi .
We suppose that the zero locus of f ◦ψi is reduced and coincides with Di :=ψ

−1
i (D0) (which is nothing

but the divisor of modification σi+1) while the center Zi of σi+1 coincides with τi (E). Note that under
such assumptions every Qi is normal and Cohen–Macaulay by Proposition 2.6 and induction starting
from smooth Q0 and D0.

Lemma 6.6. Suppose that for some i one has a sequence of simple affine modifications

Qi
σi
−→ Qi−1

σi−1
−→· · ·

σ2
−→ Q1

σ1
−→ Q0

such that ψ : Q → Q0 factors through ψi : Qi → Q0 and, therefore, ψ = ψi ◦ δi . Let δi : Q → Qi

be a semifinite affine modification. Then the sequence can be extended to a sequence of simple affine
modifications

Qi+1
σi+1
−→ Qi

σi
−→· · ·

σ2
−→ Q1

σ1
−→ Q0

such that Di (resp. Zi ) is the divisor (resp. center) of σi+1 and ψ : Q → Q0 factors through ψi+1 :

Qi+1→ Q0, i.e., ψ = ψi+1 ◦ δi+1.
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Proof. The statement follows from Proposition 4.9. �

In order to establish when δi is semifinite we need the following technical fact.

Lemma 6.7. For any point x0 ∈ E there is the analytic germ S at x0 of an algebraic subvariety of X of
dimension dim X − 2 such that

(i) S0 := τ(S) is a germ of an analytic hypersurface in Q0 at z0 = τ(x0);

(ii) the map τ |S : S→ S0 is finite;

(iii) for every general point z ∈ Z0 near z0 there is a local coordinate system (u, v, w) on Q0 at z for
which D0 is given locally by u = 0, Z0 by u = v = 0, and every irreducible branch of the germ of
S0 at z by an equation of form e := v − uld(u, w) = 0 where d is holomorphic and l is the zero
multiplicity of the function e ◦ τ at general points of E.

Proof. Consider two regular functions h and e on E with the set P of common zeros such that near any
general point P is locally a strict complete intersection given by h = e = 0 and for z0 = τ(x0) the set
P ∩ τ−1(z0) contains x0 as an isolated component (which is possible since τ−1(z0) is a surface). Extend
h and e regularly to X. Without loss of generality we can suppose that the set of common zeros of these
extensions is an (n− 2)-dimensional subvariety T of X where n = dim X. Denote by S (resp. R) the
analytic germ of T (resp. P) at x0 and by T0 the closure of τ(T ) in Q. Let S0 be the analytic germ of the
hypersurface T0 ⊂ Q0 at z0. For the restriction κ : S→ T0 of τ the preimage κ−1(z0)= x0 is a singleton.
Hence [Grauert and Remmert 1979, Chapter 1, Section 3, Theorem 2] implies that the holomorphic map
τ |S : S→ S0 is finite. Thus we have (i) and (ii).

By construction S meets E transversely at a general point x of R. Let z = τ(x) and (u′, v′, v′′, w′)
(resp. (u, v, w)) be a local analytic coordinate system at x ∈ X (resp. z ∈ Q0) as in Lemma 3.7. That is,
locally E (resp. D0, resp. Z0) is given by u′ = 0 (resp. u = 0, resp. u = v = 0) and τ is given by u = u′,
w = w′, and v = (u′)lq(u′, v′, v′′, w′).

The finiteness of τ |S implies that τ |S∩E : S ∩ E → S0 ∩ D0 is étale over the general point z ∈ Z0.
Thus E ∩ S is given locally by equations of form v′ = h1(w

′) and v′′ = h2(w
′), where h1 and h2 are

holomorphic functions. Since S meets E transversely we also see that S must be given locally by equations
of form v′ = h1(w

′)+ u′g1(u′, v′, v′′, w′) and v′′ = h2(w
′)+ u′g2(u′, v′, v′′, w′) where g1 and g2 are

holomorphic functions. Furthermore, by the implicit function theorem these equations can be rewritten as
v′= h1(w

′)+u′g̃1(u′, w′) and v′′= h2(w
′)+u′g̃2(u′, w′) for some other holomorphic functions g̃1 and g̃2.

Plugging these expressions for v′ and v′′ with u′ = u and w = w′ into equation v = (u′)lq(u′, v′, v′′, w′)
we get the desired form of equation e = 0 in (iii). Note that the function e ◦ τ is given by

e ◦ τ(u′, v′, v′′, w′)= (u′)l[q(u′, v′, v′′, w′)h(u′, w′)].

Since q(0, v′, v′′, w′) depends on v′ or v′′ by Lemma 3.7, we see that the expression in the brackets is
not identically zero on E , which shows that l is the zero multiplicity of e ◦ τ at a general point of E . �

Lemma 6.8. The morphism δi is always semifinite unless Zi = τi (E) is dense in Di .
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Proof. As we mentioned in Notation 6.5, the variety Qi is normal and Cohen–Macaulay, and the divisor
Di = ( f ◦ψi )

∗(0) is principal. Furthermore, by construction, Di = Zi−1×C for i ≥ 1. Thus we have
condition (a) from Definition 4.8. The finite morphism V → Z0 (from Notation 6.1 and Convention 6.3)
factors through maps θi : V→ Zi , Zi→ Zi−1 and Zi−1→ Z0 each of which must be, therefore, finite, i.e.,
we have condition (b) from Definition 4.8. Condition (c) follows from construction and Proposition 2.6.
It remains to check condition (d).

Consider the following construction of an analytic germ of an algebraic variety S in X of dimS = n−2
where dim X = n. Let M be the set of points in V above z0 (by Convention 6.3 M is finite and nonempty).
For every y ∈ M choose any x ∈ E above y. Consider the analytic germ S(y) of an (n− 2)-dimensional
algebraic subvariety of X at x such that S0(y) := τ(S(y)) is an analytic hypersurface in Q0 and the
restriction of τ yields a finite map S(y)→ S0(y) (the existence of such an S(y) is provided by Lemma 6.7).

Let V (y) be the analytic germ of V at y and k(y) be the degree of the finite morphism E∩S(y)→V (y)
induced by λ : E → V from Notation 6.1. In general k(y) may depend on y but we allow S(y) to be
nonreduced and then, replacing each S(y) (and, therefore, S0(y)) with a multiple of it, we can suppose
that k(y)= k for every y ∈ M.11 Since the variety Q0 is smooth every S0(y) coincides with h∗0y(0) for
some holomorphic function h0y . By Lemma 6.7 for a local analytic coordinate system (u, v, w) at a
general point z ∈ Z0 this function h0y can be viewed as (v− uld(u, w))k where l is the zero multiplicity
of (v− uld) ◦ τ on E .

Let S =
⋃

y∈M S(y), S0 =
⋃

y∈M S0(y), and h0 =
∏

y∈M h0y , i.e., S0 = h∗0(0). Then by construction
τ |S : S→ S0 is finite and S0 meets D0 along the analytic germ of Z0 at z0. For m being the degree of the
finite morphism θ : V → Z0 from Convention 6.3, this implies that near point z the function h0 can be
viewed as a product of km factors of the form v− uld(u, w). Hence the zero multiplicity of h0 ◦ τ at
general points of E is klm.

Let Si (y)= τi (S(y)) and Si = τi (S)=
⋃

y∈M Si (y). Note that the finiteness of τ |S : S→ S0 implies
that Si is an analytic set in Qi and (τi )|S : S→ Si is also finite. Furthermore, by construction Si meets Di

along the union of analytic germs of Zi at the points from ψ−1
i (z0)∩Si . Assume by induction that for a

germ of some holomorphic function hi on Qi the variety Si coincides with h∗i (0) and the zero multiplicity
of hi ◦ τi at general points of E is kli mi where mi is the degree of the finite morphism θi : V → Zi and
li = l − i (note that li must be greater than zero since otherwise Zi is dense in Di ).

Hence the function hi/ f kmi has a holomorphic lift to the normal variety X. Furthermore, it is constant
along each fiber of % and it can be also pushed to a holomorphic function on the normal variety Q. This
implies that δi factors through the Davis modification κ : Q′→ Qi of Qi along Di with ideal generated
by f kmi and hi . By Lemma 6.7 for a general point z′ of Zi there is a Euclidean neighborhood with a local
coordinate system (u′, v′, w′) such that Di is given locally by u′ = 0, Zi by u′ = v′ = 0, and up to an
invertible factor hi can be presented locally as a product of kmi factors of form v′− u′d(u′, w′). Hence

11We use here the following definition: if r is the degree of a finite morphism W →U of reduced analytic sets and Wm is the
m-multiple of W then we put the degree of the morphism Wm→U equal to mr . Treating Wm as a union of m disjoint samples
of W one can see that this extended notion of degree has all the properties of the standard degree.
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by Lemma 3.12 κ is locally homogeneous at z′. Thus δi is semifinite and there is a simple modification
σi+1 : Qi+1→ Qi as required in Lemma 6.6.

In order to finish induction it remains to prove the existence of a function hi+1. Note that over z′ the
function hi ◦σi+1 has zero multiplicity kmi at general points of Di+1⊂ Qi+1. Thus hi+1= hi ◦σi+1/ f kmi

is a regular function on the normal variety Qi+1 that does not vanish at general points of Di+1. In
particular hi+1 vanishes only on the proper transform of Si which is, by construction, Si+1. This is the
desired function and we are done. �

Theorem 6.9. Let Notation 6.1 and Convention 6.3 hold. Then C[X ]8 is finitely generated and Q= X//8
coincides with the affine algebraic variety Qn from Notation 6.5 for some n.

Proof. By Proposition 3.8 the sequence

Qn
σn
−→ Qn−1

σi
−→· · ·

σ2
−→ Q1

σ1
−→ Q0

of simple modifications from Notation 6.5 cannot be extended indefinitely to the left. Hence by Lemmas
6.6 and 6.8 we can suppose that for some n the image τn(E) is dense in Dn . Suppose that % : X→ Q is
any partial quotient morphism over Qn . Then δn(D) is dense in Dn since τn factors through δn . Then by
Lemma 6.2 Q is isomorphic to Qn .

Recall that C[X ]8 = lim
−−→

C[Qα], where Qα is a partial quotient. Since every such a quotient over Qn

is Qn itself we see that C[X ]8 = C[Qn], which yields the desired conclusion. �

Corollary 6.10. Let X be four-dimensional and let Notation 6.1 hold without assuming Convention 6.3.
Suppose that E admits a nonconstant morphism into a curve if and only if this curve is a polynomial one.

Then Convention 6.3 holds and thus C[X ]8 is finitely generated. In particular Statement (1) of
Theorem 0.2 is true.

Proof. By Remark 6.4, Convention 6.3 is true if Z0 is not a point. Assume it is a point z0. Since Q0

and D0 = f ∗(0) are smooth we can suppose that z0 is locally a strict complete intersection given by
f = g1 = g2 = 0. Note that gi ◦ τ vanishes on E . Hence (gi/ f ) ◦ τ is a regular Ga-invariant function
on the normal variety X. This implies that ψ : Q→ Q0 factors through σ1 : Q1→ Q0, where σ1 is the
simple modification along D0 with the ideal generated by f, g1 and g2. By construction Q1 is smooth
and the exceptional divisor is D1 ' C2. Thus we can replace the pair (Q0, D0) with (Q1, D1). If the
center of ψ after this replacement is still a point we observe that it is again a strict complete intersection
f = h1 = h2 = 0 with hi = (gi/ f ) ◦ σ1. That is, the zero multiplicity of the lift hi (to X ) on E is less
than the one of gi ◦ τ . Continue this procedure. As soon as one of these multiplicities becomes zero the
variety Z0 becomes at least a curve. Thus we are done. �

Another consequence of the equality Q = Qn in Theorem 6.9 is that the fiber of the morphism Q→ B
over o is Dn ' Zn−1×C. By the assumption of Theorem 0.2, Zn−1 is a polynomial curve. Hence:

Corollary 6.11. Statement (2) of Theorem 0.2 is true.
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7. Proper actions

Definition 7.1. Recall that an action of an algebraic group G on a variety X is proper if the morphism
G× X→ X × X that sends (g, x) ∈ G× X to (x, g.x) ∈ X × X is proper.

It is well known that every proper Ga-action is automatically free. Some geometrical properties of
such actions are described below.

Proposition 7.2. Let X be a normal affine algebraic variety equipped with a proper Ga-action 8 and
let Ci be a sequence of general orbits of 8. Suppose that C ⊂ X is a closed curve such that for every
c ∈ C and every neighborhood V ⊂ X of c (in the standard topology) there exists i0 for which Ci meets V
whenever i ≥ i0. Then C is an orbit of 8, i.e., C ' C (in particular it is smooth and connected).

Proof. Assume that C meets two disjoint orbits C ′ and C ′′ of 8 and choose points c′i , c′′i ∈ Ci such that
c′i→ c′ ∈C ′∩C and c′′i → c′′ ∈C ′′∩C as i→∞. Note that c′′i = ti .c′i . This sequence of numbers {ti } in
the group C+ goes to∞. Indeed, otherwise switching to a subsequence we can suppose that limi→∞ ti = t
and by continuity c′′ = t.c′, which is impossible since the last two points are in distinct orbits. But this
implies that the preimage (in G × X ) of a small neighborhood of the point (c′, c′′) ∈ X × X contains
points of form (ti , c′i ) ∈ C+× X going to infinity, contrary to properness.

Hence C meets only one orbit O of 8. Hence C \ O = ∅, since otherwise C meets other orbits.
Therefore, C = O ∩C which implies that C = O ' C (in particular, 8 is free) and we are done. �

Corollary 7.3. Suppose that for some q ∈ Q the fiber %−1(q) is a curve. Then %−1(q)' C.

Let us fix notation for the rest of this section.

Notation 7.4. We suppose that B is a unibranch germ of a smooth complex algebraic curve at point
o = f ∗(0) (where f ∈ C[B]) and ϕ : X → B is a morphism from a complex factorial affine algebraic
variety X equipped with a Ga-action 8 which preserves each fiber of ϕ and such that the fiber E = ϕ∗(o)
is reduced.

We suppose also that Convention 6.3 is true for some partial quotient morphism % : X → Q of the
action 8 and a morphism ψ : Q → Q0 into a smooth affine algebraic variety Q0 over B described
in Notation 6.1. Recall that in this case by Theorem 6.9 C[X ]8 is finitely generated and Q = X//8
coincides with an affine algebraic variety Qn from Notation 6.5 for some n, and, particular, in that notation
τn : X → Qn is the quotient morphism. Furthermore, let Dn be the divisor in Qn over o ∈ B. Then it
follows from the construction of Qn that Dn ' Zn−1×C and from the proof of Theorem 6.9 that τn(E)
is dense in Dn .

Proposition 7.5. Let α : E→ R be the quotient morphism of the restriction of 8 to E. Then there is a
natural affine modification β : R→ Dn over Zn−1.

Proof. The density of τn(E) in Dn implies that for a general point q ∈ Dn its preimage τ−1
n (q) is a curve.

By Corollary 7.3 this curve is isomorphic to C.
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By the universal property of quotient morphisms the map τn|E : E→ Dn factors through α, i.e., there
exists β : R→ Dn for which τn|E = β ◦α. Since τn−1 (which maps E onto Zn−1) factors through τn we
see that β is a morphism over Zn−1. Note that β−1(q) is a point since τ−1

n (q) is a connected curve. Thus
β is birational. Any birational morphism of affine algebraic varieties is an affine modification [Kaliman
and Zaidenberg 1999] and we are done. �

Remark 7.6. Proposition 7.5 implies that β is an isomorphism over a Zariski dense open subset D∗n of Dn .
Furthermore removing a proper subvariety from D∗n one can suppose that for every point in β−1(D∗n) the
fiber of α over this point is an orbit of 8. Let Q′ = (Q \ Dn)∪ D∗n . Note that by construction every fiber
of % over point of Q∗ is an orbit of 8 and the codimension of Q \ Q′ = Dn \ D∗n in Q is at least 2.

Recall that when X is four-dimensional and there is no nonconstant morphism from E into any
nonpolynomial curve then by Remark 6.4, Convention 6.3 holds, Zn−1 is a polynomial curve, and thus the
normalization of Dn = Zn−1×C is C2. In particular, if E is normal then R is normal (being the quotient
space of normal E) and we can mention the following interesting fact (which won’t be used later).

Corollary 7.7. Let the assumption of Corollary 6.10 hold and E be normal. Then R is an affine modi-
fication of C2. Furthermore, for a factorial E one has R ' C2 and normalization of morphism β is a
birational morphism β ′ : C2

→ C2.

Proof. Since β is a morphism over the curve Zn−1 we see that β ′ : R → C2 is a morphism over the
normalization Znorm

n−1 ' C of Zn−1. Note that by Corollary 1.7 R is factorial, being the quotient space
of the factorial threefold E . This implies that all fibers of the C-fibration R→ Znorm

n−1 are reduced and
irreducible. Hence R ' C2 and we are done. �

Proposition 7.8. Let β be as in Proposition 7.5 and suppose that one of the following conditions is
satisfied:

(a) β is finite, E is smooth outside codimension 2, and every fiber of α : E→ R is a curve with a possible
exception of a finite number of such fibers;

(b) β is quasifinite and the assumption of Theorem 0.2 (3) holds (in particular, X is Cohen–Macaulay,
8 is proper, each fiber Xb of ϕ : X → B (including E) is normal, and, being the image of E , the
curve Zn−1 is a polynomial one).

Then Zn−1 (and therefore Dn = Zn−1×C) is smooth and β is an isomorphism.

Proof. The assumptions on α and β imply that there is a finite subset M ⊂ Dn such that for every
q ∈ Dn \M the preimage τ−1

n (q) is a curve.
Recall that X is Cohen–Macaulay which implies that the morphism % is faithfully flat over Q \ M

(e.g., see [Matsumura 1970, Chapter 2 (3.J) and Theorem 3] and [Eisenbud 1995, Theorem 18.6]). Hence
8 is locally a translation over Q \ M by [Deveney et al. 1994, Theorem 2.8] (see also [Deveney and
Finston 1999, Theorem 1.2]). This implies that Zn−1 is smooth since otherwise Dn \M and therefore
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(Dn \M)×C⊂ E are not smooth outside codimension 2. It remains to note that, being birational and
finite, β is an isomorphism by the Zariski main theorem.

For the second statement, consider the normalization κ : Rnorm
→ Dnorm

n 'C2 of β. Since β is birational
by Proposition 7.5 and quasifinite by the assumption, the morphism κ is an embedding. Since both Rnorm

and Dnorm
n are affine we see that Dnorm

n \ κ(Rnorm) is either empty or a Cartier divisor. Since Dnorm
n ' C2,

such a divisor must be given by zeros of a regular function g. Then g admits a regular lift to the normal
variety E that does not vanish. This contradicts the assumption that E does not admit nonconstant
morphisms into a nonpolynomial curve. Thus κ(Rnorm) = Dnorm

n and as before the assumption on α
implies that there is a finite subset M ⊂ Dn such that for every q ∈ Dn \ M the preimage τ−1

n (q) is a
curve. Hence we can repeat the previous argument and get the desired conclusion. �

Remark 7.9. (1) Let Q′ be as in Remark 7.6. Note that exactly the same argument as in Proposition 7.8
for the set Q \M implies that the action 8 over Q′ is locally trivial12 even without the assumption
that β is quasifinite.

(2) Actually, following [Kaliman 2002] one can extract Sathaye’s theorem [1983] from the argument
in the proof of Proposition 7.8. Indeed, under the assumption of Sathaye’s theorem, Dn = C2 and
thus Zn−1 ' C. Since Zn−1 is smooth, every polynomial curve Zi is smooth by Lemma 4.4 and
therefore Zi ' C. Hence every Di = Zi−1 ×C is the plane and by the Abhyankar–Moh–Suzuki
theorem Zi can be viewed as a coordinate line in Di . It is a straightforward fact that a modification
σi+1 : Qi+1→ Qi with such center Zi and divisor Di leads to Qi+1 isomorphic to Qi which implies
that Qn ' B×C2.

(3) The assumption on properness of 8 is crucial in Proposition 7.8. In the absence of properness
Winkelmann [1990] constructed a free action on X=C4

x1,x2,x3,x4
such that the quotient Q is isomorphic

to the hypersurface in C4
x1,u,v,w given by

x1w = v
2
− u2
− u3.

Both X and Q are considered over the curve B = Cx1 and in particular the zero fiber D of the
morphism Q→ B is given by v2

− u2
− u3

= 0 in C3
u,v,w. That is, D is not a plane but it is the

product of C and Zn−1 where Zn−1 is a polynomial curve with one node as singularity (in accordance
with Theorem 0.2 (2)).

8. Some facts about fibered products

In order to establish quasifiniteness required in Proposition 7.8 we need some auxiliary facts.

Notation 8.1. Let % : X→ Q be a dominant morphism of normal quasiprojective algebraic varieties and
S be an irreducible closed subvariety of X such that for a Zariski dense open subset S′ of S the restriction
%|S′ : S′→ Q is quasifinite. Suppose that k = dim X − dim S is the dimension of general fibers of %.

12That is, %−1(Q′) can be covered by 8-stable affine open subsets on each of which the action admits an equivariant
trivialization.
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Lemma 8.2. Consider an irreducible germ 0 ⊂ S of a general curve through s ∈ S (in particular,
0 \ s ⊂ S′ and the dimension of %−1(%(0 \ s)) is k+ 1). Then the dimension of the fiber F in the closure
of %−1(%(0 \ s)) (in X ) over s is k.

Proof. By the semicontinuity theorem [Shafarevich 1994, Chapter I, Section 6.3, Corollary] the dimension
of F is at least k. On the other hand it cannot be greater than k since otherwise it is not contained in the
closure of the (k+ 1)-dimensional variety %−1(%(0 \ s)). �

Note that for a fixed s this fiber F may in general depend on the choice of 0, i.e., F = F(0).

Definition 8.3. Suppose that F0(0) is the component of F(0) containing s. We say that the data in
Notation 8.1 satisfies Condition (A) if for every s ∈ S the set

⋃
0 F0(0) consists of a finite number of

k-dimensional varieties.

Example 8.4. (1) If X = S then Condition (A) holds automatically.

(2) Suppose that % : X→ Q is the quotient morphism of a proper Ga-action 8 and S is a hypersurface
of X such that %(S) is Zariski dense in Q. Then for a general germ 0 as in Definition 8.3 and every
point s ′ ∈ 0 \ s the fiber %−1(%(s ′)) is a union of orbits of 8. The set

⋃
0 F0(0) contains, of course,

the orbit of 8 through s and by Proposition 7.2 it contains nothing else. Thus Condition (A) holds.

Proposition 8.5. Let Notation 8.1 hold and Condition (A) be satisfied. Suppose that X̃ is the irreducible
component of X ×Q S such that it contains S̃ = {(s, s) | s ∈ S}. Denote by λ : X̃→ S the restriction to X̃
of the natural projection.

Then for every irreducible subvariety P ⊂ S \ S′ the dimension of λ−1(P) coincides with m+ k where
m = dim P.

Proof. Suppose that for l≥ 0 the subvariety P(l)⊂ P consists of points s ∈ P for which dim λ−1(s)= k+l.
Our aim is to show that dim P(l)≤ m− l and thus dim λ−1(P)= m+ k.

Let s ∈ S, 0, F be as in Definition 8.3 and let the closure of %−1(%(0 \ s)) ∩ S meets F at points
s1, . . . , sr (i.e., each irreducible component of F passes at least through one of these points). Note that for
a fixed s this set {s1, . . . , sr }may in general depend on the choice of 0, i.e., si = si (0). Suppose that M(s)
is the union

⋃
i
⋃
0 si (0). By definition of X̃ for every s ′ ∈ 0 \ s one has λ−1(s ′)' %−1((%(s ′)). Hence

by Lemma 8.2 and Condition (A), the variety λ−1(s)=
⋃
0 F(0) has dimension at most dim M(s)+ k.

In particular P(l) is contained in the set

{s ∈ P | dim M(s)≥ l}

and we need to estimate the dimension of this last set.
For this we need to use the Hironaka flattening theorem [1975] which implies the existence of a proper

birational morphism Q̂→ Q such that for the union Ŝ of irreducible components of S×Q Q̂ with the
dominant projections to S the induced morphism Ŝ→ Q̂ is quasifinite. We have the commutative diagram
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Ŝ
β - S

Q̂

θ
?

α- Q

γ

?

where the morphisms α and β are birational and the morphism θ and γ |S′ are quasifinite.
Let P =

⋃
i Pi , where Pi are disjoint (not necessarily closed) irreducible varieties such that for any

irreducible component V of β−1(Pi ) all fibers of the morphism β|V : V → Pi are of the same dimension.
Varying i and V consider the collection C1,C2, . . . of irreducible subvarieties of Q̂ that are of the form
C j = θ(V ). Observe that, stratifying the varieties Pi ’s further, one can suppose that for indices j 6= l the va-
rieties C j and Cl are either equal or disjoint. Denote by I the set of all pairs (i, j) for which there exist V ⊂
β−1(Pi ) with θ(V )=C j and put Ci j = V (in particular dim C j = dim Ci j because of quasifiniteness of θ ).

Let ni j be the dimension of a fiber Fi j ⊂β
−1(s) of the morphism β|Ci j :Ci j→ Pi . In particular dim Pi =

dim C j − ni j ≤ m. Hence for n j =mini {ni j |(i, j) ∈ I } one has dim Pi ≤ m+ n j − ni j for any (i, j) ∈ I.
Let s ∈ Pi , i.e., β−1(s) =

⋃
j Fi j . For every where (t j) ∈ I we put F t

i j = θ
−1(θ(Fi j )) ∩ Ct j , i.e.,

dim F t
i j = ni j because of quasifiniteness. Note that

dimβ(F t
i j )=max(0, ni j − nt j )≤ ni j − n j ≤max

j
(ni j − n j ).

Thus l := dimβ(
⋃

t F t
i j )≤max j (ni j − n j ) while dim Pi ≤ m−max j (ni j − n j )≤ m− l.

Since we started with a point s ∈ Pi for the desired inequality dim P(l) ≤ m − l it suffices to show
that M(s) ⊂

⋃
j β(

⋃
t F t

i j ) (since the last set is contained in Pi ). But this follows from the fact that
the proper transform of 0 (mentioned in the definition of M(s)) in Ŝ meets β−1(s) and therefore
meets some Fi j . By quasifiniteness the proper transform (in Ŝ) of every component in the closure of
%−1(%(0 \ s))∩ S meets some F t

i j . This implies that this closure passes through a point in β(F t
i j ) which

yields M(s)⊂
⋃

j β(
⋃

t F t
i j ) and we get dim λ−1(P)≤ m+ k, i.e., dim λ−1(P)≤ dim %−1(%(P)). �

Corollary 8.6. If Condition (A) holds and %−1(%(P)) is at least of codimension 2 in X then λ−1(P) has
codimension at least 2 in X̃ .

9. Main theorems

Notation 9.1. Up to the proof of Theorem 0.2 below we adhere to the assumptions of Proposition 7.5
and, in particular, Notation 6.1. That is, B is the germ of a smooth algebraic curve at point o= f ∗(0),
ϕ : X → B is a morphism of factorial varieties, 8 is a Ga-action on X, Q = Qn is the categorical
quotient X//8 in the category of affine algebraic varieties, τn = %, and %(E) is dense in Dn =: D. Since
β is birational by Proposition 7.5, there is a Zariski dense open R∗ ⊂ R such that the restriction of
β|R∗ : R∗→ D ⊂ Q to R∗ is an embedding.

Suppose also (as in Theorem 0.2 (3)) that the restriction of our proper Ga-action 8 to E is a translation.
In particular, the quotient morphism α : E→ R admits a section whose image in E , by abuse of notation,
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will be denoted by R. The image of R∗ in this section will keep notation R∗ as well (i.e., %|R∗ : R∗→ D
is an embedding).

The section R coincides with the zero locus of a regular function on E which has simple zeros at every
point of R. Extend this function to a regular function h on X and consider the zero locus h−1(0)=: S⊂ X
of this extension.

Lemma 9.2. The function h from Notation 9.1 can be perturbed so that for S∗ = S \ R and Q∗ = Q \ D
the restriction %|S∗ : S∗→ Q∗ is finite. In particular, for S′ = S∗ ∪ R∗ the restriction %|S′ : S′→ Q is
quasifinite.

Proof. Recall that X \ E ' Q∗×C. Let w be a coordinate on the second factor, i.e., h|X\E can be treated
as a polynomial in w with coefficients in C[Q∗]. Let n be the degree of this polynomial and f be as in
Notation 6.1. Then for sufficiently large k the function h+ f kwn+1 is regular on X and the restriction of h+
f kwn+1 to E has only simple zeros on its zero locus R. This h+ f kwn+1 yields the desired perturbation. �

Proposition 9.3. Suppose that X̃ is the irreducible component of X ×Q S containing S̃ = {(s, s) | s ∈ S}.
Then X̃ is naturally isomorphic to S×C, with S̃ being the section of the natural projection λ : X̃→ S.

Proof. Let S′ be as in Lemma 9.2 and s∈ S′. Note that %−1(%(s)) is a disjoint union of orbits of8 because of
quasifiniteness of %|S′ . One of these orbits Os passes through s. By construction λ−1(λ(s))⊂%−1(%(s))×s.
Since Os× s is the only component of %−1(%(s))× s that meets S̃ we see that λ−1(λ(s))= Os× s, which
is an orbit of the free action 8̃ on X̃ induced by 8 (in particular 8̃ preserves the fibers of λ). The variety
S̃′ = {(s, s) | s ∈ S′} is a section of 8̃ over S′. Hence λ−1(S′) is naturally isomorphic to S′×C because
the action 8̃ is free. By construction S \ S′ is of codimension at least 2 in S. Hence the same is true for
the subvariety (S \ S′)×C in S×C. By Corollary 8.6 and Example 8.4 (2) X̃ \λ−1(S′) is of codimension
at least 2 in X̃ . By the Hartogs theorem the isomorphism λ−1(S′)' S′×C extends to an isomorphism
X̃ ' S×C since both varieties are affine. This is the desired conclusion. �

Lemma 9.4. For X̃ from Proposition 9.3 the restriction κ : X̃→ X of the natural projection X×Q S→ X
is quasifinite.

Proof. The restriction of κ to λ−1(S′) is quasifinite because of quasifiniteness of %|S′ . Since X̃ \λ−1(S′)=
(S \ S′)×C= R×C it suffices to check that the restriction of κ yields a quasifinite morphism R×C→ E .
The last map is an isomorphism since R is a section of 8|E and we are done. �

Notation 9.5. By the Grothendieck version of the Zariski main theorem (see [Grothendieck 1964,
Théorème 8.12.6]) there is an embedding X̃ → X̂ of X̃ into an algebraic variety X̂ such that κ can be
extended to a finite morphism χ : X̂ → X. Note that the finiteness implies that X̂ is affine since X is.
Furthermore, replacing if necessary X̂ , X̃ , and S with their normalizations, we suppose that these varieties
are normal.

Denote the lift of f ∈ C[B] from Notation 9.1 to X (resp. X̃ , resp. X̂ ) by the same letter f (resp. f̃ ,
resp. f̂ ). Let ν be the locally nilpotent vector field on X associated with the action 8. Since f ∈ Ker ν
the field f kν is also locally nilpotent for every k > 0 and it is associated with a Ga-action 8k on X which
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has the same quotient morphism % : X→ Q. The lift of ν to X̃ (resp. X̂ ) will be denoted by ν̃ (resp. ν̂).
By construction ν̃ (and, hence, f̃ k ν̃) is locally nilpotent on X̃ and ν̂ is a rational vector field on X̂ . Since
X̂ \ f̂ −1(0)⊂ X̃ we see that for sufficiently large k the field f̂ k ν̂ is locally nilpotent on X̂ . We denote by
8̂k the Ga-action associated with the last field.

Proposition 9.6. The action 8̂k admits a quotient morphism %̂ : X̂→ Q̂ in the category of affine algebraic
varieties such that the commutative diagram

X̂
%̂- Q̂

X

χ

?
%- Q

τ

?

holds, where τ is a finite morphism.
Proof. For every function g ∈ C[X̃ ]8̃ and sufficiently large m > 0, the function f̃ m g has a regular
extension to X̂ , i.e., it can be viewed as a function from C[X̂ ]8̂k . Since by construction X̂ \ f̂ −1(0)=
X̃ \ f̃ −1(0)= λ−1(S \ R), where λ : X̃→ S is the quotient morphism of 8̃ (by Proposition 9.3) we see
now that a finite number of functions from C[X̂ ]8̂k separate the orbits of 8̂k contained in λ−1(S \ R).
Consider a partial quotient morphism %̂ : X̂→ Q̂ whose coordinates include these functions. Furthermore,
since the lift of every function from C[Q] to X̂ is a function from C[X̂ ]8̂k we can include the lifts of the
coordinate functions of % into the set of coordinate functions of %̂. Then the commutative diagram as
before make sense.

Let us show that τ is finite. Indeed, by finiteness of χ every function g from C[X̂ ]8̂k is integral over
C[X ]. That is, g is a root of an irreducible monic polynomial P(g) := gn

+an−1gn−1
+· · ·+a1g+a0, where

each ai ∈ C[X ]. Since g is 8̂k-invariant it satisfies also an equation gn
+ at

n−1gn−1
+ · · ·+ at

1g+ at
0 = 0,

where at
i is the result of the action of t ∈ C+ (induced by 8̂k) on ai . However, the minimal polynomial P

should be unique, which implies that ai are 8̂k-invariant and thus C[X̂ ]8̂k is integral over C[Q]. That is,
every function from C[Q̂] is integral over C[Q] and hence τ is finite.

This leads to the commutative diagram
Ê - D̂

E
?

- D
?

where D̂ := τ−1(D), Ê = f̂ −1(0), and the vertical morphisms are finite. Since for a general point q ∈ D
its preimage %−1(q) is a curve in E the diagram implies that for a general point q̂ ∈ D̂ its preimage %̂−1(q̂)
is a curve in Ê . Thus, by Theorem 1.4 %̂ is a quotient morphism which is the desired conclusion. �

Lemma 9.7. Let Q′ = Q∗ ∪ D∗ be as in Remark 7.9. Then

(i) X̂ \ (% ◦χ)−1(Q′) has codimension at least 2 in X̂;
(ii) for every point in Q′ there is a Zariski neighborhood V ⊂ Q′ such that (% ◦ χ)−1(V ) is naturally

isomorphic to V̂ ×C where V̂ = τ−1(V ).
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Proof. Recall that %−1(Q \ Q′) = E \ (%|E)−1(D∗) is of codimension at least 2 in X. Hence (i) is a
consequence of finiteness of χ .

By Remark 7.9 8 is a locally trivial over Q′. In particular, for every point in Q′ there is a Zariski
neighborhood V ⊂Q′ such that %−1(V ) is naturally isomorphic to V×C where the projection %−1(V )→V
is the restriction of %. Note that the restriction of the commutative diagram in Notation 9.5 yields another
commutative diagram

Ŵ - V̂

%−1(V )
?

- V
?

where Ŵ = (% ◦χ)−1(V ). Hence we have Ŵ ' V̂ ×C since %−1(V )' V ×C. This yields (ii). �

Proposition 9.8. Let Ŝ be the closure of S̃ in X̂ . Then Ŝ is a section of the quotient morphism %̂ : X̂→ Q̂.

Proof. If suffices to construct a 8̂k-equivariant morphism ψ : X̂→ Ŝ from X̂ to Ŝ. Indeed, then by the
universal properties of quotient morphisms this morphism factors through Q̂ and, therefore, %̂|Ŝ : Ŝ→ Q̂
is invertible.

Choose as the restriction of such a ψ to X̃ the natural projection λ : X̃ = S×C→ S. Note that for
V̂ ' V ×C from Lemma 9.7(ii) λ agrees on X̃ ∩ V̂ with the natural projection V̂ → V. Hence we can
extend ψ to X̃ ∪χ−1(Q′). Now because of Lemma 9.7(i) and the Hartogs theorem this restriction extends
to X̂ and we are done. �

Remark 9.9. The fact that the morphism α : E→ R has a section may be made weaker for Proposition 9.8.
It suffices, say, to require that there exists is a reduced irreducible principal effective divisor T = h∗(0) in
E such that the restriction α|T : T → R is surjective and quasifinite. Then one can extend h to a regular
function on X and the same proofs as before imply that the result remains valid.

Corollary 9.10. The morphism β : R→ D is quasifinite.

Proof. Let R̃ be the preimage of R ⊂ S in S̃. Note that R̃ is a subvariety of X̃ ⊂ X̂ . On the other hand
since Q̂ is isomorphic to Ŝ ⊃ S̃ by Proposition 9.8, we can treat R̃ as a subvariety of Q̂. Furthermore, by
construction the quotient morphism %̂ yields an automorphism of R̃. Hence the restriction of the morphism
τ ◦ %̂ = % ◦χ to R̃ ⊂ X̂ yields a quasifinite morphism R̃→ D (where τ, χ , %̂ are from Proposition 9.6).
Since morphism %◦χ |R̃ factors through β = %|R : R→ D, the latter is also quasifinite and we are done. �

Proof of Theorem 0.2. Note that Convention 6.3 is valid by Remark 6.4. Hence Theorem 6.9 and thus
Proposition 7.5 is applicable. For the time being consider the case when B is a germ of a smooth curve at
a point o and denote by E the fiber in X over o. Since 8|E is a translation in Theorem 0.2 (3), for every
r ∈ R the preimage α−1(r) is a curve. Thus, taking into consideration Corollary 9.10, we see that the
assumptions of Proposition 7.8 are valid. This implies that the polynomial curve Zn−1 is smooth and
we have Zn−1 ' C and Dn ' C2. Hence the polynomial curve Zn−1 is smooth by Proposition 7.8 and
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we have Zn−1 ' C and Dn ' C2. By assumption Dn is also a smooth reduced fiber of the morphism
Qn→ B and Qn \ Dn ' B∗×C2. Sathaye’s theorem [1983] implies now that Qn is naturally isomorphic
to B×C2. Similarly X = Qn ×C when B is a germ of a curve.

Let us return now to the general case when B is a smooth affine curve. The local statement over germ
of B at o implies the first global claim of Theorem 0.2 (3) while the second one is the consequence of the
fact (see [Serre 1955]) that every affine manifold with a free Ga-action and an affine geometrical quotient
is the direct product of that quotient and C. Thus Statement (3) of Theorem 0.2 is valid while Statements
(1) and (2) are true by Corollaries 6.10 and 6.11. Hence we are done with the proof of Theorem 0.2. �

General case of an affine algebraic variety X over a field k of characteristic zero. Recall that there is
a one-to-one correspondence between the set of Ga-actions on an affine algebraic variety X and the set of
locally nilpotent derivations (LNDs) on the algebra B of regular functions on X (e.g., see [Freudenburg
2006]). Suppose that ν is such an LND associated with a proper Ga-action 8 on X. Then condition that
8 is free (resp. a translation) is equivalent to the fact that the ideal generated by ν(B) coincides with B
(resp. ν(B)= B). To show the validity of Theorem 0.1 for any k of characteristic zero one needs to repeat
the argument of Daigle from [Daigle and Kaliman 2009, Theorem 3.2].

Namely, if a fact is true for varieties over C it is true in the case when X is considered over a field
which is a universal domain13 [Eklof 1973]. Thus consider a field extension k′/k where k′ is a universal
domain. Then ν extends to an LND ν ′ on B′ = k′ ⊗k B associated with a Ga-action 8′. Note that ν ′

is free since ν is. Similarly, 8′ is proper, since properness survives base extension [Hartshorne 1977,
Corollary 4.8]. Thus under the assumptions of Theorem 0.1 (with C replaced by k′) 8′ is a translation by
the argument above, i.e., ν ′ : B′→ B′ is surjective. Since ν ′ is obtained by applying the functor k′⊗k−

to ν and since k′ is a faithfully flat k-module we see that ν : B→ B is also surjective. Therefore 8 is a
translation and we have:

Theorem 9.11. Let k be a field of characteristic zero and 8 be a proper Ga-action on the four-space A4
k

preserving a coordinate. Then 8 is a translation in a suitable polynomial coordinate system.

Similarly the argument before implies the following.

Theorem 9.12. Let the assumptions of Theorem 0.2 hold with the only change that X and B are varieties
over some field k of characteristic zero (and not over C). Suppose also that 8 is proper and the restriction
of 8 to every fiber is a translation (as in Theorem 0.2 (3)). Then 8 is a translation.

Conclusive Remark. In dimension 5 the analogue of Theorem 0.1 is not true by the second of Winkel-
mann’s examples in [Winkelmann 1990]. This raises the question of whether the properness is the right
condition for this type of problems. The author suspects that another condition may be more effective at
least in dimension 4, which leads to the following question:

13Recall that a universal domain is an algebraically closed field containing Q such that it has an infinite transcendence degree
over Q.



Proper Ga-actions on C4 preserving a coordinate 257

Question. Suppose that the quotient of a free Ga-action 8 on C4 is isomorphic to C3. Is it true that 8 is
a translation?
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