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For any k ≥ 1, we study the distribution of the difference between the number of integers n ≤ x with
ω(n) = k or �(n) = k in two different arithmetic progressions, where ω(n) is the number of distinct
prime factors of n and �(n) is the number of prime factors of n counted with multiplicity. Under some
reasonable assumptions, we show that, if k is odd, the integers with�(n)= k have preference for quadratic
nonresidue classes; and if k is even, such integers have preference for quadratic residue classes. This result
confirms a conjecture of Richard Hudson. However, the integers with ω(n)= k always have preference
for quadratic residue classes. Moreover, as k increases, the biases become smaller and smaller for both of
the two cases.

1. Introduction and statement of results

First, we consider products of k primes in arithmetic progressions. Let

πk(x; q, a)= |{n ≤ x : ω(n)= k, n ≡ a mod q}|,
and

Nk(x; q, a)= |{n ≤ x :�(n)= k, n ≡ a mod q}|,
where ω(n) is the number of distinct prime divisors of n, and �(n) is the number of prime divisors of n
counted with multiplicity. For example, when k = 1, N1(x; q, a) is the number of primes π(x; q, a) in
the arithmetic progression a mod q; and π1(x; q, a) counts the number of prime powers pl ≤ x for all
l ≥ 1 in the arithmetic progression a mod q.

Dirichlet [1837] showed that, for any a and q with (a, q)= 1, there are infinitely many primes in the
arithmetic progression a mod q . Moreover, for any (a, q)= 1,

π(x; q, a)∼ x
φ(q) log x

,

where φ is Euler’s totient function [Davenport 2000]. Analogous asymptotic formulas are available for
products of k primes. Landau [1909] showed that, for each fixed integer k ≥ 1,

Nk(x) := |{n ≤ x :�(n)= k}| ∼ x
log x

(log log x)k−1

(k− 1)! .
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The same asymptotic is also true for the function πk(x) := |{n≤ x :ω(n)= k}|. For more precise formulas,
see [Tenenbaum 1995, II.6, Theorems 4 and 5]. Using similar methods as in [Tenenbaum 1995; Davenport
2000], one can show that, for any fixed residue class a mod q with (a, q)= 1,

Nk(x; q, a)∼ πk(x; q, a)∼ 1
φ(q)

x
log x

(log log x)k−1

(k− 1)! .

For the case of counting primes (�(n) = 1), Chebyshev [1853] observed that there seem to be
more primes in the progression 3 mod 4 than in the progression 1 mod 4. That is, it appears that
π(x; 4, 3) ≥ π(x; 4, 1). In general, for any a 6≡ b mod q and (a, q) = (b, q) = 1, one can study the
behavior of the functions

1ωk (x; q, a, b) := πk(x; q, a)−πk(x; q, b),

1�k (x; q, a, b) := Nk(x; q, a)− Nk(x; q, b).

Denote 1(x; q, a, b) := 1�1(x; q, a, b). Littlewood [1914] proved that 1(x; 4, 3, 1) changes sign
infinitely often. Actually, 1(x; 4, 3, 1) is negative for the first time at x = 26, 861 [Leech 1957].
Knapowski and Turán published a series of papers starting with [1962] about the sign changes and
extreme values of the functions 1(x; q, a, b). And such problems are colloquially known today as “prime
race problems”. Irregularities in the distribution, that is, a tendency for 1(x; q, a, b) to be of one sign is
known as “Chebyshev’s bias”. For a nice survey of such works, see [Ford and Konyagin 2002; Granville
and Martin 2006].

Chebyshev’s bias can be well understood in the sense of logarithmic density. We say a set S of positive
integers has logarithmic density, if the following limit exists:

δ(S)= lim
x→∞

1
log x

∑
n≤x
n∈S

1
n
.

Let δ fk (q; a, b)= δ(P fk (q; a, b)), where P fk (q; a, b) is the set of integers with 1 fk (n; q, a, b) > 0, and
f =� or ω. In order to study the Chebyshev’s bias and the existence of the logarithmic density, we need
the following assumptions:

(1) The extended Riemann hypothesis (ERHq) for Dirichlet L-functions modulo q .

(2) The linear independence conjecture (LIq), the imaginary parts of the zeros of all Dirichlet L-functions
modulo q are linearly independent over Q.

Under these two assumptions, Rubinstein and Sarnak [1994] showed that, for Chebyshev’s bias for
primes (�(n) = 1), the logarithmic density δ�1(q; a, b) exists, and in particular, δ�1(4; 3, 1) ≈ 0.996
which indicates a strong bias for primes in the arithmetic progression 3 mod 4. Recently, using the
same assumptions, Ford and Sneed [2010] studied the Chebyshev’s bias for products of two primes with
�(n)= 2 by transforming this problem into manipulations of some double integrals. They connected
1�2(x; q, a, b) with 1(x; q, a, b), and showed that δ�2(q; a, b) exists and the bias is in the opposite
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direction to the case of primes, in particular, δ�2(4; 3, 1)≈ 0.10572 which indicates a strong bias for the
arithmetic progression 1 mod 4.

By orthogonality of Dirichlet characters, we have

1�k (x; q, a, b)= 1
φ(q)

∑
χ 6=χ0 mod q

(χ(a)−χ(b))
∑
n≤x

�(n)=k

χ(n), (1-1)

and

1ωk (x; q, a, b)= 1
φ(q)

∑
χ 6=χ0 mod q

(χ(a)−χ(b))
∑
n≤x

ω(n)=k

χ(n). (1-2)

The inner sums over n are usually analyzed using analytic methods. Neither the method of Rubinstein
and Sarnak [1994] nor the method of Ford and Sneed [2010] readily generalizes to handle the cases of
more prime factors (k ≥ 3). From the point of view of L-functions, the most natural sum to consider is∑

n1···nk≤x
n1···nk≡a mod q

3(n1) · · ·3(nk). (1-3)

However, estimates for 1�k (x; q, a, b) or 1ωk (x; q, a, b) cannot be readily recovered from such an
analogue by partial summation. Ford and Sneed [2010] overcome this obstacle in the case k = 2 by means
of the 2-dimensional integral∫ ∞

0

∫ ∞
0

∑
p1 p2≤x

χ(p1 p2) log p1 log p2

pu1
1 pu2

2
du1 du2.

Analysis of an analogous k-dimensional integral leads to an explosion of cases, depending on the relative
sizes of the variables u j , and becomes increasingly messy as k increases.

We take an entirely different approach, working directly with the unweighted sums. We express the
associated Dirichlet series in terms of products of the logarithms of Dirichlet L-functions, then apply
Perron’s formula, and use Hankel contours to avoid the zeros of L(s, χ) and the point s = 1

2 . Using the
same assumptions (1) and (2), we show that, for any k ≥ 1, both

δ�k (q; a, b) and δωk (q; a, b)

exist. Moreover, we show that, as k increases, if a is a quadratic nonresidue and b is a quadratic residue,
the bias oscillates with respect to the parity of k for the case �(n)= k, but δωk (q; a, b) increases from
below 1

2 monotonically.
For some of our results, we need only a much weaker substitute for condition LIq, which we call the

simplicity hypothesis (SHq): ∀χ 6= χ0 mod q, L
( 1

2 , χ
) 6= 0 and the zeros of L(s, χ) are simple. Let

N (q, a) := #{u mod q : u2 ≡ a mod q}.
Then, using the weaker assumptions SHq and ERHq, we prove the following theorems.



308 Xianchang Meng

Theorem 1. Assume ERHq and SHq. Then, for any fixed k ≥ 1, and fixed large T0,

1�k (x; q, a, b)= 1
(k− 1)!

√
x(log log x)k−1

log x

{
(−1)k

φ(q)

∑
χ 6=χ0

(χ(a)−χ(b))
∑
|γχ |≤T0

L
(

1
2+iγχ ,χ

)
=0

x iγχ

1
2 + iγχ

+ (−1)k

2k−1

N (q, a)− N (q, b)
φ(q)

+6k(x; q, a, b, T0)

}
,

where

lim sup
Y→∞

1
Y

∫ Y

1
|6k(ey; q, a, b, T0)|2 dy� log2 T0

T0
.

Since 1�1(x; q, a, b)=1(x; q, a, b), we get the following corollary.

Corollary 1.1. Assume ERHq and SHq. Then, for any fixed k ≥ 2,

1�k (x; q, a, b) log x√
x(log log x)k−1

= (−1)k+1

(k− 1)!
(

1− 1
2k−1

)
N (q, a)− N (q, b)

φ(q)
+ (−1)k+1

(k− 1)!
1(x; q, a, b) log x√

x
+6′k(x; q, a, b),

where, as Y →∞,
1
Y

∫ Y

1
|6′k(ey; q, a, b)|2 dy = o(1).

In the above theorem, the constant (−1)k/(2k−1) · (N (q, a)− N (q, b))/(φ(q)) represents the bias in
the distribution of products of k primes counted with multiplicity. Richard Hudson conjectured that, as k
increases, the bias would change directions according to the parity of k. Our result above confirms his con-
jecture (under ERHq and SHq). Figures 1.1 and 1.2 show the graphs corresponding to (q, a, b)= (4, 3, 1)
for 2 log x/(

√
x(log log x)2) ·1�3(x; 4, 3, 1) and 6 log x/(

√
x(log log x)3) ·1�4(x; 4, 3, 1), plotted on

a logarithmic scale from x = 103 to x = 108. In these graphs, the functions do not appear to be
oscillating around 1

4 and − 1
8 respectively as predicted in our theorem. This is caused by some terms of

order 1/log log x and even lower order terms, and log log 108 ≈ 2.91347 and 1/log log 108 ≈ 0.343233.
However, we can still observe the expected direction of the bias through these graphs.

For the distribution of products of k primes counted without multiplicity, we have the following
theorem. In this case, the bias will be determined by the constant (N (q, a)− N (q, b))/(2k−1φ(q)) in
the theorem below.

Theorem 2. Assume ERHq and SHq. Then, for any fixed k ≥ 1, and fixed large T0,

1ωk (x; q, a, b)= 1
(k− 1)!

√
x(log log x)k−1

log x

{
(−1)k

φ(q)

∑
χ 6=χ0

(χ(a)−χ(b))
∑
|γχ |≤T0

L
(

1
2+iγχ ,χ

)
=0

x iγχ

1
2 + iγχ

+ N (q, a)− N (q, b)
2k−1φ(q)

+ 6̃k(x; q, a, b, T0)

}
,
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Figure 1.1.
2 log x√

x(log log x)2
1�3(x; 4, 3, 1)

where

lim sup
Y→∞

1
Y

∫ Y

1
|6̃k(ey; q, a, b, T0)|2 dy� log2 T0

T0
.

Corollary 2.1. Assume ERHq and SHq. Then, for any fixed k ≥ 1,

1ωk (x; q, a, b) log x√
x(log log x)k−1

=
(

1
2k−1 + (−1)k+1

)
N (q, a)− N (q, b)
(k− 1)!φ(q) + (−1)k+1

(k− 1)!
1(x; q, a, b) log x√

x
+ 6̃′k(x; q, a, b),

where, as Y →∞,
1
Y

∫ Y

1
|6̃′k(ey; q, a, b)|2 dy = o(1).

For the distribution of 1(x; q, a, b), Rubinstein and Sarnak [1994] showed the following theorem.
This is the version from [Ford and Sneed 2010].

Theorem RS. Assume ERHq and LIq. For any a 6≡ b mod q and (a, q)= (b, q)= 1, the function

u1(eu; q, a, b)
eu/2
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Figure 1.2.
6 log x√

x(log log x)3
1�4(x; 4, 3, 1)

has a probabilistic distribution. This distribution has mean (N (q, b)− N (q, a))/φ(q), is symmetric with
respect to its mean, and has a continuous density function.

Corollaries 1.1, 2.1, and Theorem RS imply the following result.

Theorem 3. Let a 6≡b mod q and (a, q)= (b, q)=1. Assuming ERHq and LIq, for any k≥1, δ�k (q; a, b)
and δωk (q; a, b) exist. More precisely, if a and b are both quadratic residues or both quadratic nonresidues,
then δ�k (q; a, b)= δωk (q; a, b)= 1

2 . Moreover, if a is a quadratic nonresidue and b is a quadratic residue,
then, for any k ≥ 1,

1− δ�2k−1(q; a, b) < δ�2k (q; a, b) < 1
2 < δ�2k+1(q; a, b) < 1− δ�2k (q; a, b),

δωk (q; a, b) < δωk+1(q; a, b) < 1
2 ,

δ�2k (q; a, b)= δω2k (q; a, b), and δ�2k−1(q; a, b)+ δω2k−1(q; a, b)= 1.

Remark. The above results confirm a conjecture of Richard Hudson proposed years ago in his communi-
cations with Ford. Borrowing the methods from [Rubinstein and Sarnak 1994, Section 4], we are able to
calculate δ�k (q; a, b) and δωk (q; a, b) precisely for special values of q , a, and b. In particular, we record
in Table 1.1 the logarithmic densities up to products of 10 primes for two cases: q = 3, a = 2, b = 1, and
q = 4, a = 3, b = 1.
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k δ�k (3; 2, 1) δωk (3; 2, 1) δ�k (4; 3, 1) δωk (4; 3, 1)

1 0.99906† 0.00094 0.9959† 0.0041
2 0.069629 0.069629 0.10572‡ 0.10572
3 0.766925 0.233075 0.730311 0.269689
4 0.35829 0.35829 0.380029 0.380029
5 0.571953 0.428047 0.380029 0.380029
6 0.463884 0.463884 0.469616 0.469616
7 0.518075 0.481925 0.515202 0.484798
8 0.49096 0.49096 0.492398 0.492398
9 0.50452 0.49548 0.503801 0.496199
10 0.49774 0.49774 0.498099 0.498099

Table 1.1. For q = 3, a = 2 and b = 1 (left-hand side) and q = 4, a = 3 and b = 1
(right-hand side). † [Rubinstein and Sarnak 1994] ‡ [Ford and Sneed 2010]

For fixed q and large k, we give asymptotic formulas for δ�k (q; a, b) and δωk (q; a, b).

Theorem 4. Assume ERHq and LIq. Let A(q) be the number of real characters mod q. Let a be a
quadratic nonresidue and b be a quadratic residue, and (a, q)= (b, q)= 1. Then, for any nonnegative
integer K , and any ε > 0,

δ�k (q;a,b)=
1
2
+ (−1)k−1

2π

K∑
j=0

(
1

2k−1

)2 j+1
(−1) j A(q)2 j+1C j (q;a,b)

(2 j+1)! +Oq,K ,ε

(
1

(2k−1)2K+3−ε

)
, (1-4)

δωk (q;a,b)=
1
2
− 1

2π

K∑
j=0

(
1

2k−1

)2 j+1
(−1) j A(q)2 j+1C j (q;a,b)

(2 j+1)! +Oq,K ,ε

(
1

(2k−1)2K+3−ε

)
, (1-5)

where C j (q; a, b) is some constant depending on j , q, a, and b. In particular, for K = 0,

δ�k (q; a, b)= 1
2
+ (−1)k−1 A(q)C0(q; a, b)

2kπ
+ Oq,ε

(
1

(2k)3−ε

)
,

δωk (q; a, b)= 1
2
− A(q)C0(q; a, b)

2kπ
+ Oq,ε

(
1

(2k)3−ε

)
.

Remark. We have a formula for C j (q; a, b),

C j (q; a, b)=
∫ ∞
−∞

x2 j8q;a,b(x) dx,

where

8q;a,b(z)=
∏
χ 6=χ0

∏
γχ>0

L
(

1
2+iγχ

)
=0

J0

(
2|χ(a)−χ(b)|z√

1
4 + γ 2

χ

)
,
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and J0(z) is the Bessel function,

J0(z)=
∞∑

m=0

(−1)m
( z

2

)2m

(m!)2 .

Numerically, C0(3; 2, 1) ≈ 3.66043 and C0(4; 3, 1) ≈ 3.08214. When q is large, using the method in
[Fiorilli and Martin 2013, Section 2], we can find asymptotic formulas for C j (q; a, b),

C j (q; a, b)= (2 j − 1)!!√2π
V (q; a, b) j+1/2 + O j

(
1

V (q; a, b) j+3/2

)
,

where (2 j − 1)!! = (2 j − 1)(2 j − 3) · · · 3 · 1, (−1)!! = 1, and

V (q; a, b)=
∑

χ mod q

|χ(b)−χ(a)|2
∑
γχ∈R

L
(

1
2+iγχ ,χ

)
=0

1
1
4 + γ 2

χ

.

By Proposition 3.6 in [Fiorilli and Martin 2013], under ERHq, V (q; a, b)∼ 2φ(q) log q .

2. Formulas for the associated Dirichlet series and origin of the bias

Let χ be a nonprincipal Dirichlet character, and denote

F fk (s, χ) :=
∑

f (n)=k

χ(n)
ns ,

where f = � or ω. The formulas for F fk (s, χ) are needed to analyze the character sums in (1-1) and
(1-2). The purpose of this section is to express F fk (s, χ) in terms of Dirichlet L-functions, and to explain
the source of the biases in the functions 1�k (x; q, a, b) and 1ωk (x; q, a, b).

Throughout the paper, the notation log z will always denote the principal branch of the logarithm of a
complex number z.

2A. Symmetric functions. Let x1, x2, . . . be an infinite collection of indeterminates. We say a formal
power series P(x1, x2, . . .) with bounded degree is a symmetric function if it is invariant under all finite
permutations of the variables x1, x2, . . ..

The n-th elementary symmetric function en = en(x1, x2, . . .) is defined by the generating function∑∞
n=0 enzn =∏∞i=1(1+ xi z). Thus, en is the sum of all square-free monomials of degree n. Similarly,

the n-th homogeneous symmetric function hn = hn(x1, x2, . . .) is defined by the generating function∑∞
n=0 hnzn =∏∞i=1 1/(1− xi z). We see that, hn is the sum of all possible monomials of degree n. And

the n-th power symmetric function pn = pn(x1, x2, . . .) is defined to be pn = xn
1 + xn

2 + · · · .
The following result is due to Newton or Girard (see [Macdonald 1995, Chapter 1, (2.11) and (2.11’),

page 23] or [Mendes and Remmel 2015, Chapter 2, Theorems 2.8 and 2.9]).
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Lemma 5. For any integer k ≥ 1,

khk =
k∑

n=1

hk−n pn, (2-1)

kek =
k∑

n=1

(−1)n−1ek−n pn. (2-2)

2B. Formula for F�k(s, χ). For <(s) > 1, we define

F(s, χ) :=
∑

p

χ(p)
ps ,

the sum being over all primes p. Since

log L(s, χ)=
∞∑

m=1

∑
p

χ(pm)

mpms , (2-3)

we then have
F(s, χ)= log L(s, χ)− 1

2 log L(2s, χ2)+G(s), (2-4)

where G(s) is absolutely convergent for <(s)≥ σ0 for any fixed σ0 >
1
3 . Henceforth, σ0 will be a fixed

abscissa > 1
3 , say σ0 = 0.34. Because L(s, χ) is an entire function for nonprincipal characters χ , formula

(2-4) provides an analytic continuation of F(s, χ) to any simply connected domain within the half-plane
{s : <(s)≥ σ0} which avoids the zeros of L(s, χ) and the zeros and possible pole of L(2s, χ2).

For any complex number s with <(s)≥ σ0 >
1
3 , let x p = χ(p)/ps if p is a prime, 0 otherwise. Then,

by (2-1) in Lemma 5, we have the following relation

k F�k (s, χ)=
k∑

n=1

F�k−n (s, χ)F(ns, χn). (2-5)

For example, for k = 1, F�1(s, χ)= F(s, χ). For k = 2,

2F�2(s, χ)= F2(s, χ)+ F(2s, χ2).

For k = 3,
3!F�3(s, χ)= 2F�2(s, χ)F(s, χ)+ 2F(s, χ)F(2s, χ2)+ 2F(3s, χ3)

= F3(s, χ)+ 3F(s, χ)F(2s, χ2)+ 2F(3s, χ3).

For k = 4,

4!F�4(s, χ)= 3!F�3(s, χ)F(s, χ)+ 3!F�2(s, χ)F(2s, χ2)+ 3!F(s, χ)F(3s, χ2)+ 3!F(4s, χ4)

= F4(s, χ)+ 6F2(s, χ)F(2s, χ2)+ 8F(s, χ)F(3s, χ3)+ 6F(4s, χ4)+ 3F2(2s, χ2).

For any integer l ≥ 1, we define the set

S(k)m,l := {(n1, · · · , nl) | n1+ · · ·+ nl = k−m, 2≤ n1 ≤ n2 ≤ · · · ≤ nl, n j ∈ N(1≤ j ≤ l)}
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Let S(k)m = ⋃l≥1 S(k)m,l . Thus any element of S(k)m is a partition of k − m with each part ≥ 2. For any
n= (n1, n2, · · · , nl) ∈ S(k)m , denote

F(ns, χ) :=
l∏

j=1

F(n j s, χn j ).

Hence, by (2-5) and induction on k, we deduce the following result.

Lemma 6. For k = 1, F�1(s, χ)= F(s, χ). For any k ≥ 2, we have

k!F�k (s, χ)= Fk(s, χ)+
k−2∑
m=0

Fm(s, χ)Fnm(s, χ), (2-6)

where Fnm(s, χ)=
∑

n∈S(k)m
a(k)m (n)F(ns, χ) for some a(k)m (n) ∈ N.

2C. Formula for Fωk(s, χ). By definition, we have

Fωk (s, χ)=
∑

p1<p2<···<pk

k∏
n=1

( ∞∑
j=1

χ(p j
n)

p j
n

)
.

Denote

F̃(s, χ) :=
∑

p

(
χ(p)

ps +
χ(p2)

p2s + · · ·
)
,

and for any u ∈ N+,

F̃(s, χ; u) :=
∑

p

(
χ(p)

ps +
χ(p2)

p2s + · · ·
)u

=
∑

p

∞∑
j=u

(
Du( j)

χ(p j )

p js

)
,

where Du( j)= ( j−1
u−1

)
is the number of ways of writing j as sum of u ordered positive integers.

By (2-3), we have

F̃(s, χ)= F̃(s, χ; 1)=
∑

p

∞∑
j=1

χ(p j )

p js = log L(s, χ)+ 1
2 log L(2s, χ2)+ G̃1(s) (2-7)

and

F̃(s, χ; 2)=
∑

p

∞∑
j=2

( j − 1)
χ(p j )

p js = log L(2s, χ2)+ G̃2(s), (2-8)

where G̃1(s) and G̃2(s) are absolutely convergent for <(s) ≥ σ0. Formula (2-7) provides an analytic
continuation of F̃(s, χ) to any simply connected domain within the half-plane {s : <(s) ≥ σ0} which
avoids the zeros of L(s, χ) and the zeros and possible pole of L(2s, χ2). Moreover, for any fixed u ≥ 3,
F̃(s, χ; u) is absolutely convergent for <(s)≥ σ0.
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For any complex number s with <(s)≥ σ0, take x p =∑∞j=1
χ(p j )

p js if p is a prime, 0 otherwise. Then
by (2-2) in Lemma 5, we get the following formula,

k Fωk (s, χ)= Fωk−1(s, χ)F̃(s, χ)−
k∑

n=2

(−1)n Fωk−n (s, χ)F̃(s, χ; n). (2-9)

For example, for k = 1, Fω1(s, χ)= F̃(s, χ). For k = 2,

2Fω2(s, χ)= F̃2(s, χ)− F̃(s, χ; 2).
For k = 3,

3!Fω3(s, χ)= 2Fω2(s, χ)F̃(s, χ)− 2Fω1(s, χ)F̃(s, χ; 2)+ 2F̃(s, χ; 3)
= F̃3(s, χ)− 3F̃(s, χ)F̃(s, χ; 2)+ 2F̃(s, χ; 3).

For k = 4,

4!Fω4(s, χ)= 3!Fω3(s, χ)F̃(s, χ)− 3!Fω2(s, χ)F̃(s, χ; 2)+ 3!F̃(s, χ)F̃(s, χ; 3)− 3!F̃(s, χ; 4)
= F̃4(s, χ)− 6F̃2(s, χ)F̃(s, χ; 2)+ 8F̃(s, χ)F̃(s, χ; 3)− 6F̃(s, χ; 4)+ 3F̃2(s, χ; 2).

Hence, by (2-9) and induction on k, we get the following result.

Lemma 7. For k = 1, Fω1(s, χ)= F̃(s, χ). For any k ≥ 2, we have

k!Fωk (s, χ)= F̃k(s, χ)+
k−2∑
m=0

F̃m(s, χ)F̃nm(s, χ), (2-10)

where F̃nm(s, χ) =
∑

n∈S(k)m
b(k)m (n)F̃(ns, χ) for some b(k)m (n) ∈ Z, and for any n = (n1, . . . , nl) ∈ S(k)m ,

F̃(ns, χ) :=∏l
j=1 F̃(s, χ; n j ).

2D. Origin of the bias. In this section, we heuristically explain the origin of the bias in our theorems.

(1) Analytical aspect. In order to get formulas for 1�k (x; q, a, b) and 1ωk (x; q, a, b), our strategy is to
apply Perron’s formula to the associated Dirichlet series F�k (s, χ) and Fωk (s, χ), then we choose special
contours to avoid the singularities of these Dirichlet series. See Section 3 for the details.

First, we have a look at the case of counting primes in arithmetic progressions. If we only count primes,
by (2-4), we have

F�1(s, χ)= F(s, χ)=
∑

p

χ(p)
ps = log L(s, χ)− 1

2 log L(2s, χ2)+G(s).

The main contributions for 1�1(x; q, a, b) are from the first two terms,

log L(s, χ)− 1
2 log L(2s, χ2).

The first term log L(s, χ) counts all the primes with weight 1 and prime squares with weight 1
2 . The higher

order powers of primes are negligible since they only contribute O(x1/3). The singularities of log L(s, χ),
i.e., the zeros of L(s, χ), on the critical line contribute the oscillating terms in our result. In our proof, we
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use special Hankel contours to avoid the singularities of log L(s, χ) and extract these oscillating terms
(Lemma 12). See Sections 3 and 4 for the details of how to handle these singularities. The second term
−1

2 log L(2s, χ2) counts the prime squares with weight − 1
2 and contributes the bias term. When χ is a

real character, the point s = 1
2 is a pole of L(2s, χ2), and hence the integration of − 1

2 log L(2s, χ2) over
the Hankel contour around s = 1

2 contributes a bias term with order of magnitude
√

x/log x . Using the
orthogonality of Dirichlet characters, and the formula

∑
χ real(χ(a)− χ(b)) = N (q, a)− N (q, b), we

get the expected size of the bias.
Another natural and convenient function to consider is −L ′(s, χ)/L(s, χ) = ∑∞n=1 χ(n)3(n)/n

s ,
which is much easier to analyze than log L(s, χ). This weighted form counts each prime p and its powers
with weight log p. Similar to log L(s, χ), all the singularities of the function −L ′(s, χ)/L(s, χ) on the
critical line are the nontrivial zeros of L(s, χ) and thus there is no bias for this weighted counting function∑

n≤x
n≡a mod q

3(n)−
∑
n≤x

n≡b mod q

3(n).

Thus, partial summation is used to extract the sum∑
n≤x

n≡a mod q

3(n)
log n

−
∑
n≤x

n≡b mod q

3(n)
log n

from the above weighted form, which is possible because log n is a smooth function. However, there is
no way to do this with the analogue (1-3) to recover the unweighted counting function 1�k (x; q, a, b) or
1ωk (x; q, a, b).

If we count all the prime powers with the same weight 1, by (2-7), we have

Fω1(s, χ)= F̃(s, χ)= log L(s, χ)+ 1
2 log L(2s, χ2)+ G̃1(s).

In this case, the bias is from the second term 1
2 log L(2s, χ2) for real character χ which counts the prime

squares with positive weight 1
2 . This is why the bias is opposite to the case of counting only primes.

For the general case, when we derive the formula for 1�k (x; q, a, b) using analytic methods, by (2-6)
in Lemma 6, the main contributions for F�k (s, χ) will be from 1

k!F
k(s, χ), which is essentially

1
k!
(
log L(s, χ)− 1

2 log L(2s, χ2)
)k
.

In the expansion of the above formula, the term 1
k! logk L(s, χ) contributes the oscillating terms (see (4-9)

and (4-13))
(−1)k

(k− 1)!
√

x(log log x)k−1

log x

∑
L
(

1
2+iγχ ,χ

)
=0

x iγχ

1
2 + iγχ

.

When χ is real, the term

1
k!
(−1

2 log L(2s, χ2)
)k = (−1)k

k!2k (log L(2s, χ2))k



Chebyshev’s bias for products of k primes 317

contributes a bias term (see (4-10) and (4-14))

1
(k− 1)!

(−1)k

2k−1

√
x(log log x)k−1

log x
.

Then summing over all the real characters, we get the expected bias term in our formula for1�k (x; q, a, b).
The factor (−1)k/2k−1 explains why the bias has different directions depending on the parity of k and
why the bias decreases as k increases. Other terms with factors of the form logk− j L(s, χ) log j (2s, χ2)

for 1≤ j ≤ k− 1 only contribute oscillating terms with lower orders of log log x which can be put into
the error term in our formula (see Lemma 14).

Similarly, for the case of 1ωk (x; q, a, b), by (2-10) in Lemma 7, the main contributions for Fωk (s, χ)
are from

1
k! F̃

k(s, χ)= 1
k!
(
log L(s, χ)+ 1

2 log L(2s, χ2)+ G̃1(s)
)k
.

The main terms are from the contributions of the terms 1
k! logk L(s, χ) and 1

k!
( 1

2 log L(2s, χ2)
)k . Thus,

the main oscillating terms are the same as that of 1�k (x; q, a, b), and the bias term has the same size
without direction change.

Through the above analysis, we see that the biases are mainly affected by the powers of±1
2 log L(2s, χ2)

for real characters which count the products of prime squares.

(2) Combinatorial aspect. Instead of giving precise prediction of the size of the bias as above, here
we use a simpler combinatorial intuition to roughly explain the behavior of the bias. We borrowed this
combinatorial explanation from Hudson [1980].

Pick a large number X . Let S1 be the set of primes p ≡ 1 mod 4 up to X , and S2 be the set of
primes p ≡ 3 mod 4 up to X . Using these primes, we generate the set V (2) := {pq : p, q ∈ S1 ∪
S2, p and q can be the same}.

Let V (2)
1 := {n ∈ V (2) : n ≡ 1 mod 4}, and V (2)

2 := {n ∈ V (2) : n ≡ 3 mod 4}. Then, the integers in V (2)
1

come from either products of two primes from S1 or products of two primes from S2. The integers in
V (2)

2 are the product of two primes pq with p ∈ S1 and q ∈ S2. Thus,

|V (2)
1 | =

( |S1|
2

)
+ |S1| +

( |S2|
2

)
+ |S2| = |S1|2+ |S2|2

2
+ |S1| + |S2|

2
,

and
|V (2)

2 | = |S1| · |S2|.
It is clear that |V (2)

1 |> |V (2)
2 |. Note that 1

2(|S1| + |S2|) counts the squares of primes with weight 1
2 which

makes a crucial difference between V (2)
1 and V (2)

2 .
Let V (0)

1 = {1} and V (0)
2 =∅. For any k ≥ 1, denote

V (k)
1 := {n = p1 · · · pk : p j ∈ S1 ∪ S2 for all 1≤ j ≤ k, n ≡ 1 mod 4},

V (k)
2 := {n = p1 · · · pk : p j ∈ S1 ∪ S2 for all 1≤ j ≤ k, n ≡ 3 mod 4},

where the p j can be the same. Note that V (1)
1 = S1 and V (1)

2 = S2.
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We give inductive formulas for |V (k)
1 | and |V (k)

2 |. The elements of V (k)
1 and V (k)

2 are generated by
integers of the form p j nk− j for p ∈ S1 or S2 and nk− j ∈ V (k− j)

1 or V (k− j)
2 (1 ≤ j ≤ k). By (2-1) in

Lemma 5, we have

k|V (k)
1 | = (|V (k−1)

1 | · |S1|+|V (k−1)
2 | · |S2|)︸ ︷︷ ︸

pnk−1

+ |V (k−2)
1 |(|S1|+|S2|)︸ ︷︷ ︸

p2nk−2

+ (|V (k−3)
1 | · |S1|+|V (k−3)

2 | · |S2|)︸ ︷︷ ︸
p3nk−3

+ · · ·

and

k|V (k)
2 | = (|V (k−1)

2 | · |S1|+|V (k−1)
1 | · |S2|)︸ ︷︷ ︸

pnk−1

+ |V (k−2)
2 |(|S1|+|S2|)︸ ︷︷ ︸

p2nk−2

+ (|V (k−3)
2 | · |S1|+|V (k−3)

1 | · |S2|)︸ ︷︷ ︸
p3nk−3

+ · · · .

Thus,

k(|V (k)
1 | − |V (k)

2 |)
= (|V (k−1)

1 | · |S1| + |V (k−1)
2 | · |S2|)− (|V (k−1)

2 | · |S1| + |V (k−1)
1 | · |S2|)+ (|V (k−2)

1 | − |V (k−2)
2 |)

(|S1| + |S2|)+ (|V (k−3)
1 | · |S1| + |V (k−3)

2 | · |S2|)− (|V (k−3)
2 | · |S1| + |V (k−3)

1 | · |S2|)+ · · ·
= (|V (k−1)

1 | − |V (k−1)
2 |)(|S1| − |S2|)+ (|V (k−2)

1 | − |V (k−2)
2 |)(|S1| + |S2|)

+ (|V (k−3)
1 | − |V (k−3)

2 |)(|S1| − |S2|)+ · · · . (2-11)

For 1≤ j ≤ k−1, suppose |V ( j)
1 |< |V ( j)

2 | for odd j and |V ( j)
1 |> |V ( j)

2 | for even j . Therefore, by (2-11)
and induction, we deduce that |V (k)

1 |< |V (k)
2 | for odd k and |V (k)

1 |> |V (k)
2 | for even k. This provides us a

heuristic explanation for the bias oscillation of 1�k (x; 4, 3, 1).
This heuristic also works for the quadratic residues and nonresidues modulo q whenever q has a

primitive root. Because in this case, all the residues form a cyclic group (we thank the referee for pointing
this out). When q has no primitive root, one should consider the group structure of the residue classes if
we want to give a similar heuristic as above.

For example, for q = 8, we know that 1 mod 8 is the only quadratic residue, and

32 ≡ 52 ≡ 72 ≡ 1 mod 8, 3 · 5≡ 7 mod 8, 5 · 7≡ 3 mod 8, and 3 · 7≡ 5 mod 8. (2-12)

If we define V (1)
j := {p ≡ j mod 8, p ≤ X} for j = 1, 3, 5, and 7. For any k ≥ 2, let

V (k)
j := {n = p1 · · · pk ≡ j mod 8, pi ∈ V (1)

1 ∪ V (1)
3 ∪ V (1)

5 ∪ V (1)
7 , 1≤ i ≤ k}, for j = 1, 3, 5, 7.

Then similar to q = 4, using (2-12) and Lemma 5, we have

k|V (k)
1 | =

(|V (k−1)
1 | · |V (1)

1 | + |V (k−1)
3 | · |V (1)

3 | + |V (k−1)
5 | · |V (1)

5 | + |V (k−1)
7 | · |V (1)

7 |
)︸ ︷︷ ︸

pnk−1

+ |V (k−2)
1 |(|V (1)

1 | + |V (1)
3 | + |V (1)

5 | + |V (1)
7 |

)︸ ︷︷ ︸
p2nk−2

+ · · ·
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k|V (k)
3 | =

(|V (k−1)
3 | · |V (1)

1 | + |V (k−1)
1 | · |V (1)

3 | + |V (k−1)
5 | · |V (1)

7 | + |V (k−1)
7 | · |V (1)

5 |
)︸ ︷︷ ︸

pnk−1

+ |V (k−2)
3 |(|V (1)

1 | + |V (1)
3 | + |V (1)

5 | + |V (1)
7 |

)︸ ︷︷ ︸
p2nk−2

+ · · ·

and similarly for k|V (k)
5 | and k|V (k)

7 |. For 1 ≤ l ≤ k − 1, suppose |V (l)
1 | < |V (l)

3 | ∼ |V (l)
5 | ∼ |V (l)

7 | for
odd l, by the formulas for k|V (k)

j | ( j = 1, 3, 5, 7) and induction on k, we will derive the expected bias
phenomenon.

3. Contour integral representation

In this section, we express the inner sums in (1-1) and (1-2) as integrals over truncated Hankel contours
(see Lemma 10 below).

Let
ψ fk (x, χ) :=

∑
n≤x

f (n)=k

χ(n),

where f =� or ω. By Perron’s formula [Karatsuba 1993, Chapter V, Theorem 1] we have the following
lemma.

Lemma 8. For any T ≥ 2,

ψ fk (x, χ)=
1

2π i

∫ c+iT

c−iT
F fk (s, χ)

x s

s
ds+ O

(
x log x

T
+ 1

)
,

where c = 1+ 1/log x , and f =� or ω.

Starting from Lemma 8, we will shift the contour to the left, in a way which avoids the singularities of
the integrand. We will then require estimates of the integrand along the various parts of the new contour.

Lemma 9. Assume ERHq. Then, for any 0< δ < 1
6 and for all χ 6= χ0 mod q , there exists a sequence of

numbers T= {Tn}∞n=0 satisfying n ≤ Tn ≤ n+ 1 such that, for T ∈ T,

F fk (σ + iT )= O(logk T ),
( 1

2 − δ < σ < 2
)

where f =� or ω.

Proof. Using the similar method as in [Titchmarsh 1986, Theorem 14.16], one can show that, for any
ε > 0 and for all χ 6= χ0 mod q , there exists a sequence of numbers T= {Tn}∞n=0 satisfying n≤ Tn ≤ n+1
such that, T−εn � |L(σ + iTn, χ)| � T δ+ε

n ),
( 1

2 − δ < σ < 2
)
. Hence, by formulas (2-4), (2-6), (2-7),

(2-8), and (2-10), we get the conclusion of this lemma. �

Let ρ be a zero of L(s, χ),1ρ be the distance of ρ to the nearest other zero, and Dγ :=minT∈T(|γ−T |).
For each zero ρ, and X > 0, let H(ρ, X) denote the truncated Hankel contour surrounding the point s = ρ
with radius 0< rρ ≤min

( 1
x ,

1
31ρ,

1
2 Dγ ,

1
3

∣∣ρ− 1
2

∣∣), which includes the circle |s− ρ| = rρ excluding the
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−T

0

T

ρ = 1
2 + iγ

1
2 − δ 1

2
1 1+ 1

log x

Figure 3.1. Integration contour

point s = ρ− rρ , and the half-line (ρ− X, ρ− r ] traced twice with arguments +π and −π respectively.
Let 10 be the distance of 1

2 to the nearest zero. Let H(1
2 , X) denote the corresponding truncated Hankel

contour surrounding s = 1
2 with radius r0 =min

( 1
x ,

10
3

)
.

Take δ = 1
10 . By Lemma 8, we pull the contour to the left to the line <(s)= 1

2 − δ using the truncated
Hankel contour H(ρ, δ) to avoid the zeros of L(s, χ) and using H

( 1
2 , δ

)
to avoid the point s = 1

2 . See
Figure 3.1.

Then we have the following lemma.

Lemma 10. Assume ERHq, and L
(1

2 , χ
) 6= 0 (χ 6= χ0). Then, for any fixed k ≥ 1, and T ∈ T,

ψ fk (x, χ)=
∑
|γ |≤T

1
2π i

∫
H(ρ,δ)

F fk (s, χ)
x s

s
ds+ a(χ)

1
2π i

∫
H
(

1
2 ,δ
)F fk (s, χ)

x s

s
ds

+ O
(

x log x
T
+ x(log T )k

T
+ x1/2−δ(log T )k+1

)
,

where a(χ)= 1 if χ is real, 0 otherwise, and f = ω or �.
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Proof. By formulas (2-6) and (2-10), if χ is not real, s = 1
2 is not a singularity of F fk (s, χ). Hence the

second term is zero if χ is not real. By Lemma 9, the integral on the horizontal line is

� (log T )k
∫ c

1
2−δ

xσ

|σ + iT | dσ �
xc(log T )k

T
� x(log T )k

T
. (3-1)

Under the assumption ERHq, the integral on the vertical line <(s)= 1
2 − δ is

�
∫ T

−T

x1/2−δ logk(|t | + 2)∣∣ 1
2 − δ+ i t

∣∣ dt � x1/2−δ(log T )k+1. (3-2)

By (3-1), (3-2), and Lemma 8, we get the desired error term in this lemma. �

4. Proof of the main theorems

In this section, we give the full proof of Theorems 1 and 2, by quoting Lemmas 12, 13, 14, and 15 of
which the proofs will appear in later sections.

Proof of Theorems 1 and 2. Let γ be the imaginary part of a zero of L(s, χ) in the critical strip. We have
the following lemma.

Lemma 11 [Ford and Sneed 2010, Lemma 2.2]. Let χ be a Dirichlet character modulo q. Let N (T, χ)
denote the number of zeros of L(s, χ) with 0< <(s) < 1 and |=(s)|< T . Then

(1) N (T, χ)= O(T log(qT )) for T ≥ 1,

(2) N (T, χ)− N (T − 1, χ)= O(log(qT )) for T ≥ 1,

(3) uniformly for s = σ + i t and σ ≥−1,

L ′(s, χ)
L(s, χ)

=
∑
|γ−t |<1

1
s− ρ + O(log q(|t | + 2)). (4-1)

For simplicity, we denote
1

0 j (u)
:=
[

d j

dz j

(
1
0(z)

)]
z=u
.

The following lemma is the starting lemma to give us the bias terms and oscillating terms in our main
theorems. This lemma may have independent use, we will give the proof in Section 8.

Lemma 12. Let H(a, δ) be the truncated Hankel contour surrounding a complex number a (<(a) > 2δ)
with radius 0< r � 1

x . Then, for any integer k ≥ 1,

1
2π i

∫
H(a,δ)

logk(s−a)
x s

s
ds= (−1)k xa

a log x

{
k(log log x)k−1+

k∑
j=2

(k
j

)
(log log x)k− j 1

0 j (0)

}
+Ok

( |xa−δ/3|
|a|

)

+ Ok

( |xa|
|a|2 log2 x

(log log x)k−1
)
+ Ok

( |xa|
|a|2|<(a)− δ|

(log log x)k−1

(log x)3

)
.
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Remark. By (5-3) in the proof of Lemma 16, one can easily show that∣∣∣∣ 1
0 j (0)

∣∣∣∣� 0( j + 1). (4-2)

By Lemma 10, we need to examine the integration over the truncated Hankel contours H(ρ, δ) and
H
( 1

2 , δ
)
. By (2-4) and (2-7), and the assumptions of our theorems, on each truncated Hankel contour

H(ρ, δ), we integrate the formula (4-1) in Lemma 11 to obtain

F(s, χ)= log(s− ρ)+ Hρ(s), (4-3)

F̃(s, χ)= log(s− ρ)+ H̃ρ(s), (4-4)

where
Hρ(s)=

∑
0<|γ ′−γ |≤1

log(s− ρ ′)+ O(log|γ |),

H̃ρ(s)=
∑

0<|γ ′−γ |≤1

log(s− ρ ′)+ O(log|γ |).

If χ is real, s = 1
2 is a pole of L(2s, χ2). So, by (2-4) and (2-7), on the truncated Hankel contour H

( 1
2 , δ

)
,

for a real character χ , we write

F(s, χ)= 1
2 log

(
s− 1

2

)+ HB(s), (4-5)

F̃(s, χ)=− 1
2 log

(
s− 1

2

)+ H̃B(s), (4-6)

where HB(s)= O(1) and H̃B(s)= O(1).
Denote

Iρ(x) := 1
2π i

∫
H(ρ,δ)

k!F�k (s, χ)
x s

s
ds, IB(x) := 1

2π i

∫
H
(

1
2 ,δ
) k!F�k (s, χ)

x s

s
ds,

and

Ĩρ(x) := 1
2π i

∫
H(ρ,δ)

k!Fωk (s, χ)
x s

s
ds, ĨB(x) := 1

2π i

∫
H
(

1
2 ,δ
) k!Fωk (s, χ)

x s

s
ds.

We define a function T (x) as follows: for Tn′ ∈T satisfying e2n+1 ≤ Tn′ ≤ e2n+1 + 1, let T (x)= Tn′ for
e2n ≤ x ≤ e2n+1

. In particular, we have

x ≤ T (x)≤ 2x2, (x ≥ e2).

Thus, by Lemma 10, for T = T (x),

ψ�k (x, χ)=
1
k!
∑
|γ |≤T

Iρ(x)+ a(χ)
k! IB(x)+ O(x1/2−δ/2), (4-7)

ψωk (x, χ)=
1
k!
∑
|γ |≤T

Ĩρ(x)+ a(χ)
k! ĨB(x)+ O(x1/2−δ/2). (4-8)
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We will see later that
∑
|γ |≤T Iρ(x) and

∑
|γ |≤T Ĩρ(x) will contribute the oscillating terms, i.e., the

summation over zeros, in our theorems, and IB(x) and ĨB(x) will contribute the bias terms.
Next, we want to find the main contributions for Iρ(x), IB(x), Ĩρ(x), and ĨB(x). By (2-6) and (4-3),

we have

Iρ(x)= 1
2π i

∫
H(ρ,δ)

(log(s− ρ))k x s

s
ds+ 1

2π i

∫
H(ρ,δ)

k∑
j=1

(k
j

)
(log(s− ρ))k− j (Hρ(s)) j x s

s
ds

+ 1
2π i

∫
H(ρ,δ)

k−2∑
m=0

Fm(s, χ)Fnm(s, χ)
x s

s
ds

=: IMρ
(x)+ EMρ

(x)+ ERρ (x), (4-9)

and by (2-6) and (4-5),

IB(x)= 1
2k

1
2π i

∫
H
(

1
2 ,δ
)(log

(
s− 1

2

))k x s

s
ds+ 1

2π i

∫
H
(

1
2 ,δ
) k∑

j=1

(k
j

)( 1
2 log

(
s−1

2

))k− j
(HB(s)) j x s

s
ds

+ 1
2π i

∫
H
(

1
2 ,δ
) k−2∑

m=0

Fm(s, χ)Fnm(s, χ)
x s

s
ds

=: BM(x)+ EB(x)+ ER(x). (4-10)

Here, IMρ
(x) and BM(x) will make main contributions to Iρ(x) and IB(x), respectively. Similarly, by

(2-10) and (4-4), we have

Ĩρ(x)= 1
2π i

∫
H(ρ,δ)

(log(s− ρ))k x s

s
ds+ 1

2π i

∫
H(ρ,δ)

k∑
j=1

(k
j

)
(log(s− ρ))k− j (H̃ρ(s)) j x s

s
ds

+ 1
2π i

∫
H(ρ,δ)

k−2∑
m=0

F̃m(s, χ)F̃nm(s, χ)
x s

s
ds

=: ĨMρ
(x)+ ẼMρ

(x)+ ẼRρ (x), (4-11)

and by (2-10) and (4-6),

ĨB(x)= (−1)k

2k

1
2π i

∫
H
(

1
2 ,δ
)(log

(
s− 1

2

))k x s

s
ds+ 1

2π i

∫
H
(

1
2 ,δ
) k∑

j=1

(k
j

)(− 1
2 log

(
s− 1

2

))k− j
(H̃B(s)) j x s

s
ds

+ 1
2π i

∫
H
(

1
2 ,δ
) k−2∑

m=0

F̃m(s, χ)F̃nm(s, χ)
x s

s
ds

=: B̃M(x)+ ẼB(x)+ ẼR(x). (4-12)

Here, ĨMρ
(x) and B̃M(x) will make main contributions to Ĩρ(x) and ĨB(x), respectively.
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Applying Lemma 12, we have

IMρ
(x)= ĨMρ

(x)= (−1)k
√

x
log x

x iγ

1
2 + iγ

{
k(log log x)k−1+

k∑
j=2

(k
j

)
(log log x)k− j 1

0 j (0)

}

+ Ok

(
1
|γ |2
√

x(log log x)k−1

(log x)2

)
+ Ok

(
x1/2−δ/3

|γ |
)
, (4-13)

BM(x)= (−1)k
√

x
2k−1 log x

{
k(log log x)k−1+

k∑
j=2

(k
j

)
(log log x)k− j 1

0 j (0)

}

+ Ok

(√
x(log log x)k−1

(log x)2

)
+ Ok(x1/2−δ/3), (4-14)

and

B̃M(x)= (−1)k BM(x). (4-15)

For the bias terms, by (4-10), (4-12), (4-14), and (4-15), we have

IB(x)= (−1)k
√

x
2k−1 log x

{
k(log log x)k−1+

k∑
j=2

(k
j

)
(log log x)k− j 1

0 j (0)

}

+ EB(x)+ ER(x)+ Ok

(√
x(log log x)k−1

(log x)2

)
+ Ok(x1/2−δ/3), (4-16)

and

ĨB(x)=
√

x
2k−1 log x

{
k(log log x)k−1+

k∑
j=2

(k
j

)
(log log x)k− j 1

0 j (0)

}

+ ẼB(x)+ ẼR(x)+ Ok

(√
x(log log x)k−1

(log x)2

)
+ Ok(x1/2−δ/3). (4-17)

We will prove the following result in Section 5.

Lemma 13. For the bias terms,

IB(x)= (−1)kk
2k−1

√
x

log x
(log log x)k−1+ Ok

(√
x(log log x)k−2

log x

)
,

ĨB(x)= k
2k−1

√
x

log x
(log log x)k−1+ Ok

(√
x(log log x)k−2

log x

)
.
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Then for the oscillating terms, by (4-9), (4-11), and (4-13), and Lemma 11, for T = T (x),

∑
|γ |≤T

Iρ(x)= (−1)kk
√

x(log log x)k−1

log x

∑
|γ |≤T

x iγ

1
2 + iγ

+ (−1)k
√

x
log x

k∑
j=2

(k
j

)(log log x)k− j

0 j (0)

∑
|γ |≤T

x iγ

1
2 + iγ

+
∑
|γ |≤T

EMρ
(x)+

∑
|γ |≤T

ERρ (x)+ Ok

(√
x(log log x)k−1

log2 x

)
,

(4-18)

and∑
|γ |≤T

Ĩρ(x)= (−1)kk
√

x(log log x)k−1

log x

∑
|γ |≤T

x iγ

1
2 + iγ

+ (−1)k
√

x
log x

k∑
j=2

(k
j

)(log log x)k− j

0 j (0)

∑
|γ |≤T

x iγ

1
2 + iγ

+
∑
|γ |≤T

ẼMρ
(x)+

∑
|γ |≤T

ẼRρ (x)+ Ok

(√
x(log log x)k−1

log2 x

)
. (4-19)

The first terms in the above formulas are the main oscillating terms in our theorems. We will show in
Section 6 that the other terms are small in average. For T = T (x), denote

61(x;χ) := log x√
x

∑
|γ |≤T

EMρ
(x)= log x

∑
|γ |≤T

x iγ E ′Mρ
(x), (4-20)

62(x;χ) := log x√
x

∑
|γ |≤T

ERρ (x)= log x
∑
|γ |≤T

x iγ E ′Rρ (x), (4-21)

where E ′Mρ
(x)= EMρ

(x)/xρ , and E ′Rρ (x)= ERρ (x)/xρ . Similarly, denote

6̃1(x;χ) := log x√
x

∑
|γ |≤T

ẼMρ
(x)= log x

∑
|γ |≤T

x iγ Ẽ ′Mρ
(x), (4-22)

6̃2(x;χ) := log x√
x

∑
|γ |≤T

ẼRρ (x)= log x
∑
|γ |≤T

x iγ Ẽ ′Rρ (x), (4-23)

where Ẽ ′Mρ
(x)= ẼMρ

(x)/xρ and Ẽ ′Rρ (x)= ẼRρ (x)/xρ .
Then we have the following lemma (see Sections 6A and 6B for the proof).

Lemma 14. For the error terms from the Hankel contours around zeros, we have∫ Y

2
(|61(ey;χ)|2+ |62(ey;χ)|2) dy = o(Y (log Y )2k−2),∫ Y

2
(|6̃1(ey;χ)|2+ |6̃2(ey;χ)|2) dy = o(Y (log Y )2k−2).

Moreover, we also need to bound the lower order sum

S1(x;χ) := (−1)k
k∑

j=2

(k
j

)
(log log x)k− j 1

0 j (0)

∑
|γ |≤T

x iγ

1
2 + iγ

, (4-24)
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and the error from the truncation by a fixed large T0,

S2(x, T0;χ) :=
∑
|γ |≤T

x iγ

1
2 + iγ

−
∑
|γ |≤T0

x iγ

1
2 + iγ

. (4-25)

Then we have the following result (See Section 6C for the proof).

Lemma 15. For the lower order sum and error from the truncation, we have∫ Y

2
|S1(ey;χ)|2 dy = o(Y (log Y )2k−2),

and for fixed large T0,∫ Y

2
|S2(ey, T0;χ)|2 dy� Y

log2 T0

T0
+ log Y

log3 T0

T0
+ log5 T0.

Combining Lemmas 13, 14, and 15 with (4-7), (4-8), (4-18), and (4-19), we get, for fixed large T0,

ψ�k (x, χ)=
(−1)k

(k− 1)!
√

x
log x

(log log x)k−1
( ∑
|γ |≤T0

x iγ

1
2 + iγ

+6(x, T0;χ)
)

+ a(χ)
(−1)k

(k− 1)!
√

x
log x

(log log x)k−1, (4-26)

where

lim sup
Y→∞

1
Y

∫ Y

1
|6(ey, T0;χ)|2 dy� log2 T0

T0
.

Also,

ψωk (x, χ)=
(−1)k

(k− 1)!
√

x
log x

(log log x)k−1
( ∑
|γ |≤T0

x iγ

1
2 + iγ

+ 6̃(x, T0;χ)
)

+ a(χ)
1

(k− 1)!
√

x
log x

(log log x)k−1, (4-27)

where

lim sup
Y→∞

1
Y

∫ Y

1
|6̃(ey, T0;χ)|2 dy� log2 T0

T0
.

Note that
∑

χ 6=χ0
(χ(a)−χ(b))a(χ)= N (q, a)− N (q, b). Hence, combining (4-26) and (4-27) with

(1-1) and (1-2), we get the conclusions of Theorem 1 and Theorem 2. Now we finish the proof of
Theorems 1 and 2 modulo the proofs of Lemmas 12, 13, 14, and 15. �

5. The bias terms

In this section, we examine the bias terms and give the proof of Lemma 13.



Chebyshev’s bias for products of k primes 327

5A. Estimates on the horizontal line. In order to examine the corresponding integration on the horizontal
line in the Hankel contour, we prove the following estimate which we will use many times later to analyze
the error terms in our theorems.

Lemma 16. For any integers k ≥ 1 and m ≥ 0, we have∫ δ

0
|(log σ − iπ)k − (log σ + iπ)k |σm x−σ dσ �m,k

(log log x)k−1

(log x)m+1 .

Proof. Let I represent the integral in the lemma. Then, we have

I ≤ 2
k∑

j=1

(k
j

)
π j
∫ δ

0
|log σ |k− jσm x−σ dσ �k

k∑
j=1

∫ δ

0
|log σ |k− jσm x−σ dσ (5-1)

Using a change of variable, σ log x = t , we have∫ δ

0
|log σ |k− jσm x−σ dσ ≤ 1

(log x)m+1

∫ δ log x

0
|log t − log log x |k− j tme−t dt

≤ 1
(log x)m+1

k− j∑
l=0

(k− j
l

)
(log log x)k− j−l

∫ δ log x

0
|log t |l tme−t dt

�k
1

(log x)m+1

k− j∑
l=0

(log log x)k− j−l
∫ δ log x

0
|log t |l tme−t dt. (5-2)

Next, we estimate∫ δ log x

0
|log t |l tme−t dt ≤

(∫ 1

0
+
∫ ∞

1

)
|log t |l tme−t dt =: Il1 + Il2 . (5-3)

For the first integral in (5-3),

Il1 =
∫ 1

0
|log t |l tme−t dt ≤

∫ 1

0
|log t |l dt

t→1/et=
∫ ∞

0

t l

et dt = 0(l + 1).

For the second integral in (5-3),

Il2 =
∫ ∞

1

tm(log t)l

et dt t→et=
∫ ∞

0

t l

eet−(m+1)t dt �m 0(l + 1). (5-4)

Then, by (5-2)-(5-4), we have∫ δ

0
|log σ |k− jσm x−σ dσ �k

1
(log x)m+1

k− j∑
l=0

(log log x)k− j−l Om,l(1)�m,k
(log log x)k− j

(log x)m+1 . (5-5)

Thus, by (5-1),

I �m,k
(log log x)k−1

(log x)m+1 .

Hence, we get the conclusion of this lemma. �
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5B. The bias terms. We have the following estimate for the integral over the truncated Hankel contour
H
( 1

2 , δ
)
.

Lemma 17. Assume the function f (s)= O(1) on H
( 1

2 , δ
)
. Then, for any integer m ≥ 0,∣∣∣∣∫

H
(

1
2 ,δ
)(log

(
s− 1

2

))m f (s)
x s

s
ds
∣∣∣∣�m

√
x(log log x)m−1

log x
.

Proof. Since the left-hand side is 0 when m = 0, we assume m ≥ 1 in the following proof. By Lemma 16,
we have∣∣∣∣∫

H
(

1
2 ,δ
)(log

(
s− 1

2

))m f (s)
x s

s
ds
∣∣∣∣≤ ∣∣∣∣∫ δ

r0

(
(log σ − iπ)m − (log σ + iπ)m

)
f
( 1

2 − σ
) x1/2−σ

1
2 − σ

dσ
∣∣∣∣

+ O
(∫ π

−π
(log 1/r0+π)m x1/2+r0

1
2 − r0

r0 dα
)

�√x
(∫ δ

0
|(log σ − iπ)m − (log σ + iπ)m |x−σ dσ + (log x +π)m

x

)
�m

√
x(log log x)m−1

log x
. (5-6)

This completes the proof of this lemma. �

In the following, we prove the asymptotic formulas for the bias terms.

Proof of Lemma 13. Since HB(s)= O(1), by (4-10), (4-12), and Lemma 17,

|EB(x)| �
k∑

j=1

∣∣∣∣∫
H
(

1
2 ,δ
)(log

(
s− 1

2

))k− j
(HB(s)) j x s

s
ds
∣∣∣∣

�
√

x
log x

k∑
j=1

(log log x)k− j−1

�k

√
x

log x
(log log x)k−2. (5-7)

Similarly,

|ẼB(x)| �
k∑

j=1

∣∣∣∣∫
H
(

1
2 ,δ
)(log

(
s− 1

2

))k− j
(H̃B(s)) j x s

s
ds
∣∣∣∣

�k

√
x

log x
(log log x)k−2. (5-8)

In the following, we estimate ER(x) in (4-10) and ẼR(x) in (4-12). If χ is not real, ER(x)= ẼR(x)= 0.
If χ is real, by (2-4), on H

( 1
2 , δ

)
, we write

F(2s, χ2)=− log
(
s− 1

2

)+ H2(s). (5-9)
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On H
( 1

2 , δ
)
, |H2(s)| = O(1). By (2-6), we have

|ER(x)| �
k−2∑
m=0

∑
n∈S(k)m

∣∣∣∣∫
H
(

1
2 ,δ
)Fm(s, χ)F(ns, χ) x s

s
ds
∣∣∣∣. (5-10)

For each 0≤ m ≤ k− 2, we write

Fm(s, χ)F(ns, χ)= Fm(s, χ)Fm′(2s, χ2)Gn(s),

where m+ 2m′ ≤ k, and Gn(s)= O(1) on H(1
2 , δ). Thus, by (4-5), (5-9), and Lemma 17,∣∣∣∣∫

H
(

1
2 ,δ
) Fm(s, χ)F(ns, χ) x s

s
ds
∣∣∣∣

�
∣∣∣∣∫

H
(

1
2 ,δ
)(log

(
s− 1

2

)+ HB(s)
)m(log

(
s− 1

2

)− H2(s)
)m′Gn(s)

x s

s
ds
∣∣∣∣

�
m∑

j1=0

m′∑
j2=0

∣∣∣∣∫
H
(

1
2 ,δ
)(log

(
s− 1

2

))m+m′− j1− j2
(HB(s)) j1(H2(s)) j2 Gn(s)

x s

s
ds
∣∣∣∣

�
m∑

j1=0

m′∑
j2=0

√
x

log x
(log log x)m+m′− j1− j2−1

�k

√
x

log x
(log log x)k−2. (5-11)

In the last step, we used the conditions 0≤ m ≤ k− 2 and m+ 2m′ ≤ k.
Combining (5-10) and (5-11), we deduce that

|ER(x)| �k

√
x

log x
(log log x)k−2. (5-12)

Similarly, if χ is real, by (2-8), we write

F̃(s, χ; 2)=− log
(
s− 1

2

)+ H̃2(s), (5-13)

where H̃2(s)= O(1) on H
( 1

2 , δ
)
. Using a similar argument as above, by (4-6), (5-13), and Lemma 17,

we have

|ẼR(x)| �
k−2∑
m=0

∑
n∈S(k)m

∣∣∣∣∫
H
(

1
2 ,δ
) F̃m(s, χ)F̃(ns, χ)

x s

s
ds
∣∣∣∣�k

√
x

log x
(log log x)k−2. (5-14)

By (4-10), (4-14), (5-7), and (5-12), we get

IB(x)= (−1)k
√

x
2k−1 log x

{
k(log log x)k−1+

k∑
j=2

(k
j

)
(log log x)k− j 1

0 j (0)

}
+ Ok

(√
x(log log x)k−2

log x

)
.
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Then, by (4-2), ∣∣∣∣ k∑
j=2

(k
j

)
(log log x)k− j 1

0 j (0)

∣∣∣∣�k (log log x)k−2.

Hence,

IB(x)= (−1)kk
2k−1

√
x

log x
(log log x)k−1+ Ok

(√
x(log log x)k−2

log x

)
. (5-15)

Similarly, by (4-12), (4-15), (5-8), and (5-14), we have

ĨB(x)= k
2k−1

√
x

log x
(log log x)k−1+ Ok

(√
x(log log x)k−2

log x

)
. (5-16)

This completes the proof of Lemma 13. �

6. Average order of the error terms

In Section 6A and Section 6B, we examine the error terms from the Hankel contours around zeros and
give the proof of Lemma 14. In Section 6C, we examine the lower order sum and the error from the
truncation, and give the proof of Lemma 15.

6A. Error terms from the Hankel contours around zeros. In this section, we give the proof of Lemma 14.
The following lemma gives an average estimate for the integral over Hankel contours around zeros, which
is the key lemma for our proof.

Lemma 18. Let ρ be a zero of L(s, χ). Assume the function g(s) � (log|γ |)c on H(ρ, δ) for some
constant c ≥ 0, and

Hρ(s)=
∑

0<|γ ′−γ |≤1

log(s− ρ ′)+ O(log|γ |) on H(ρ, δ). (6-1)

For any integers m, n ≥ 0, denote

E(x; ρ) :=
∫

H(ρ,δ)
(log(s− ρ))m(Hρ(s))ng(s)

x s−ρ

s
ds.

Then, for T = T (x), we have∫ Y

2

∣∣∣∣y ∑
|γ |≤T (ey)

eiγ y E(ey; ρ)
∣∣∣∣2 dy = o(Y (log Y )2m+2n−2).

We will give the proof of Lemma 18 in next subsection. We use it in this section to prove Lemma 14 first.

Proof of Lemma 14. By (4-20), we have

|61(x;χ)|2 =
∣∣∣∣log x

∑
|γ |≤T

x iγ E ′Mρ
(x)
∣∣∣∣2� k∑

j=1

∣∣∣∣log x
∑
|γ |≤T

x iγ Eρ, j (x)
∣∣∣∣2, (6-2)
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where

Eρ, j (x)=
∫

H(ρ,δ)
(log(s− ρ))k− j (Hρ(s)) j x s−ρ

s
ds.

By Lemma 18, take m = k− j , n = j , and g(s)≡ 1, (i.e., c = 0),∫ Y

2

∣∣∣∣y ∑
|γ |≤T (ey)

eiγ y Eρ, j (ey)

∣∣∣∣2 dy = o(Y (log Y )2k−2).

Thus, ∫ Y

2
|61(ey;χ)|2 dy = o(Y (log Y )2k−2). (6-3)

By definition (4-9) and (4-21), we have

|62(x;χ)|2�
k−2∑
m=0

∑
n∈S(k)m

∣∣∣∣log x
∑
|γ |≤T

x iγ
∫

H(ρ,δ)
Fm(s, χ)F(ns, χ) x s−ρ

s
ds
∣∣∣∣2

�
k−2∑
m=0

∑
n∈S(k)m

m∑
j=0

∣∣∣∣log x
∑
|γ |≤T

x iγ Em, j (x, χ; n)
∣∣∣∣2, (6-4)

where

Em, j (x, χ; n)=
∫

H(ρ,δ)
(log(s− ρ))m− j (Hρ(s)) j F(ns, χ) x s−ρ

s
ds.

Since on H(ρ, δ), we know F(ns, χ)= O((log|γ |) 1
2 (k−m)), by Lemma 18, we get∫ Y

2

∣∣∣∣y ∑
|γ |≤T (ey)

eiγ y Em, j (ey, χ; n)
∣∣∣∣2 dy = o(Y (log Y )2m−2).

Hence, by (6-4), we deduce that∫ Y

2
|62(ey;χ)|2 dy = o(Y (log Y )2k−2). (6-5)

Combining (6-3) and (6-5), we get the first formula in Lemma 14.
For 6̃1(x;χ) and 6̃2(x, χ), by (4-22), using a similar argument with Lemma 18,∫ Y

2
|6̃1(ey;χ)|2 dy�

k∑
j=1

∫ Y

2

∣∣∣∣y ∑
|γ |≤T (ey)

eiγ y Ẽρ, j (ey)

∣∣∣∣2 dy = o(Y (log Y )2k−2), (6-6)

where

Ẽρ, j (x)=
∫

H(ρ,δ)
(log(s− ρ))k− j (H̃ρ(s)) j x s−ρ

s
ds.

Similarly, by (4-23) and Lemma 18,∫ Y

2
|6̃2(ey;χ)|2 dy�

k−2∑
m=0

∑
n∈S(k)m

m∑
j=0

∫ Y

2

∣∣∣∣y ∑
|γ |≤T (ey)

eiγ yẼm, j (ey, χ; n)
∣∣∣∣2 dy = o(Y (log Y )2k−2), (6-7)
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where

Ẽm, j (x, χ; n)=
∫

H(ρ,δ)
(log(s− ρ))m− j (H̃ρ(s)) j F̃(ns, χ)

x s−ρ

s
ds.

Combining (6-6) and (6-7), we get the second formula in Lemma 14. �

6B. Estimates for integral over Hankel contours around zeros. We need the following results to finish
the proof of Lemma 18.

Lemma 19 [Ford and Sneed 2010, Lemma 2.4]. Assume L
( 1

2 , χ
) 6= 0. For A ≥ 0 and real l ≥ 0,

∑
|γ1|,|γ2|≥A
|γ1−γ2|≥1

logl(|γ1| + 3) logl(|γ2| + 3)
|γ1||γ2||γ1− γ2| �l

(log(A+ 3))2l+3

A+ 1
.

Lemma 20. For any integers N , j ≥ 1, and 0< |δn| ≤ 1, we have

∫ δ

0

∣∣∣∣ N∑
n=1

log(σ + iδn)

∣∣∣∣ j

x−σ dσ � j
1

log x

{
min

(
N log log x, log

1
1N

)
+ Nπ

} j

,

where 1N =∏N
n=1|δn|.

Proof. Let I denote the integral in the lemma. We consider two cases: 1N ≥
( 1

log x

)N and 1N <
( 1

log x

)N .

(1) If 1N ≥ (1/log x)N , we have

I �
(

log
1
1N
+ Nπ

) j ∫ δ

0
x−σ dσ � 1

log x

(
log

1
1N
+ Nπ

) j

� 1
log x

(N log log x + Nπ) j . (6-8)

(2) If 1N < (1/log x)N , we write

I =
(∫ (1N )

1/N

0
+
∫ 1/log x

(1N )1/N
+
∫ δ

1/log x

)∣∣∣∣ N∑
n=1

log(σ + iδn)

∣∣∣∣ j

x−σ dσ =: I1+ I2+ I3. (6-9)

First, we estimate I1,

I1�
(

log
1
1N
+ Nπ

) j ∫ (1N )
1/N

0
x−σ dσ � (1N )

1/N
(

log
1
1N
+ Nπ

) j

. (6-10)

For 0 < t < 1, consider the function f (t) = t1/N
(
log 1

t + Nπ
) j . Since the critical point of f (t) is

t = eN (π−1) > 1, by (6-10), we have

I1� f
(

1
(log x)N

)
= 1

log x
(N log log x + Nπ) j � 1

log x

(
log

1
1N
+ Nπ

) j

. (6-11)
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Next, we estimate I3. Using the change of variable σ log x = t , we get

I3�
∫ δ

1/log x

(
N log

1
σ
+ Nπ

) j

x−σ dσ

= 1
log x

∫ δ log x

1
(N log log x − N log t + Nπ) j e−t dt

= N j

log x

j∑
l=0

( j
l

)
(log log x +π) j−l

∫ δ log x

1
(− log t)le−t dt

� j
N j

log x

j∑
l=0

(log log x +π) j−l
∫ ∞

1

t l

et dt

� j
(N log log x + Nπ) j

log x

� 1
log x

(
log

1
1N
+ Nπ

) j

. (6-12)

For I2, similar to I3, using the change of variable σ log x = t , we get

I2�
∫ 1/log x

(1N )1/N

(
N log

1
σ
+ Nπ

) j

x−σ dσ

= 1
log x

∫ 1

(1N )1/N log x
(N log log x − N log t + Nπ) j e−t dt

= N j

log x

j∑
l=0

( j
l

)
(log log x +π) j−l

∫ 1

(1N )1/N log x
(− log t)le−t dt

(
t→ 1

et

)

� j
N j

log x

j∑
l=0

(log log x +π) j−l
∫ ∞

0

t l

et dt

� j
(N log log x + Nπ) j

log x

� 1
log x

(
log

1
1N
+ Nπ

) j

. (6-13)

Combining (6-11), (6-12), (6-13), with (6-9), we get

I � j
(N log log x + Nπ) j

log x
� j

1
log x

(
log

1
1N
+ Nπ

) j

. (6-14)

By (6-8) and (6-14), we get the conclusion of this lemma. �

In the following, we use the above lemmas to prove Lemma 18.



334 Xianchang Meng

Proof of Lemma 18. If m = 0, E(x; ρ)= 0 and hence the integral is 0. In the following, we assume m ≥ 1.
Let 0ρ represent the circle in the Hankel contour H(ρ, δ). Then,

E(x; ρ)=
∫

H(ρ,δ)
(log(s− ρ))m(Hρ(s))ng(s)

x s−ρ

s
ds

=
∫ δ

rρ

(
(log σ − iπ)m− (log σ + iπ)m

)(
Hρ
( 1

2−σ + iγ
))ng

(1
2−σ + iγ

) x−σ
1
2 − σ + iγ

dσ

+
∫
0ρ

(log(s− ρ))m(Hρ(s))ng(s)
x s−ρ

s
ds

=: Eh(x; ρ)+ Er (x; ρ). (6-15)

For the second integral in (6-15), since rρ ≤ 1
x , by Lemma 11,

|Er (x; ρ)| � (log|γ |)crρxrρ

|γ |
(

log
1
rρ
+π

)m( ∑
0<|γ−γ ′|≤1

log
(

1
|γ ′− γ | − rρ

)
+ O(log|γ |)

)n

� (log|γ |)crρxrρ

|γ |
(

log
1
rρ
+π

)m

(log|γ |)n
(

log
(

1
rρ

)
+ O(1)

)n

� (log|γ |)n+c

|γ |
(log(1/rρ)+π)m+n

1/rρ
� (log|γ |)n+c

|γ |
1

x1−ε . (6-16)

Denote

6(x; g) :=
∣∣∣∣ ∑
|γ |≤T

x iγ E(x; ρ)
∣∣∣∣2� ∣∣∣∣ ∑

|γ |≤T

x iγ Eh(x; ρ)
∣∣∣∣2+ ∣∣∣∣ ∑

|γ |≤T

x iγ Er (x; ρ)
∣∣∣∣2. (6-17)

By (6-16), and T (x)� x2, we get∣∣∣∣ ∑
|γ |≤T

x iγ Er (x; ρ)
∣∣∣∣2� 1

x2−ε

( ∑
|γ |≤T (x)

(log|γ |)n+c

|γ |
)2

� 1
x2−ε . (6-18)

For the first sum in (6-17),∣∣∣∣ ∑
|γ |≤T

x iγ Eh(x; ρ)
∣∣∣∣2 = ( ∑

|γ1−γ2|≤1
|γ1|,|γ2|≤T

+
∑

|γ1−γ2|>1
|γ1|,|γ2|≤T

)
x i(γ1−γ2)Eh(x; ρ1)Eh(x; ρ2)=:61(x; g)+62(x; g).

By (6-15),

|Eh(x; ρ)| � (log|γ |)c
|γ |

m∑
j=1

∫ δ

0
|log σ |m− j

∣∣Hρ( 1
2 − σ + iγ

)∣∣nx−σ dσ. (6-19)
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Let

S j (x) :=
∫ δ

0
|log σ |m− j

∣∣Hρ( 1
2 − σ + iγ

)∣∣nx−σ dσ

≤
(∫ δ

0
|log σ |2(m− j)x−σdσ

) 1
2
(∫ δ

0

∣∣Hρ( 1
2 − σ + iγ

)∣∣2nx−σ dσ
) 1

2

. (6-20)

By (5-5) in the proof of Lemma 16,∫ δ

0
|log σ |2(m− j)x−σ dσ � (log log x)2(m− j)

log x
. (6-21)

By condition (6-1) and the Cauchy–Schwarz inequality,∣∣Hρ( 1
2 − σ + iγ

)∣∣2n �
∣∣∣∣ ∑
0<|γ ′−γ |≤1

log(σ + i(γ ′− γ ))
∣∣∣∣2n

+ (log|γ |)2n.

Then, by Lemma 20, ∫ δ

0

∣∣Hρ( 1
2 − σ + iγ

)∣∣2nx−σ dσ � (Mγ (x))2n + (log|γ |)2n

log x
, (6-22)

where Mγ (x) = min(N (γ ) log log x, log 1/1N (γ )), N (γ ) is the number of zeros γ ′ in the range 0 <
|γ ′− γ | ≤ 1, and 1N (γ ) =

∏
0<|γ ′−γ |≤1|γ ′− γ |.

Thus, by (6-21) and (6-22),

S j (x)� (log log x)m− j

log x
((Mγ (x))n + (log|γ |)n).

Substituting this into (6-19), we get

|Eh(x; ρ)| � (log|γ |)c
|γ |

m∑
j=1

(log log x)m− j

log x
((Mγ (x))n + (log|γ |)n)

� (log|γ |)c
|γ |

(log log x)m−1

log x
((Mγ (x))n + (log|γ |)n). (6-23)

Then, by Lemma 11, we have

|61(x; g)| �
∑
|γ |≤T

log(|γ |)( max
|γ ′−γ |<1

|Eh(x; ρ ′)|)2

� (log log x)2(m−1)

log2 x

∑
γ

(log|γ |)2c

|γ |2 ((Mγ (x))2n + (log|γ |)2n)

= (log log x)2m+2n−2

log2 x
o(1). (6-24)

Thus, for each positive integer l, ∫ 2l+1

2l
61(ey; g) dy = o

(
l2m+2n−2

2l

)
. (6-25)
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In the following, we examine 62(x; g). By (6-15),

62(x; g)=
∑

|γ1−γ2|>1
|γ1|,|γ2|≤T

x i(γ1−γ2)Eh(x; ρ1)Eh(x; ρ2). (6-26)

For e2l ≤ x ≤ e2l+1
, T = T (x)= Tl ′ is a constant, and so we define

J (x; g) :=
∑

|γ1−γ2|>1
|γ1|,|γ2|≤Tl′

x i(γ1−γ2)

∫ δ

rρ1

∫ δ

rρ2

Rρ1(σ1; x)Rρ2(σ2; x) dσ1 dσ2

i(γ1− γ2)− (σ1+ σ2)
, (6-27)

where

Rρ(σ ; x)=
(
(log σ − iπ)m − (log σ + iπ)m

)
H n
ρ

(1
2 − σ + iγ

)g
(1

2 − σ + iγ
)
x−σ

1
2 − σ + iγ

.

Thus, ∫ e2l+1

e2l

∑
|γ1−γ2|>1
|γ1|,|γ2|≤Tl′

x i(γ1−γ2)Eh(x; ρ1)Eh(x; ρ2)
dx
x
= J (e2l+1; g)− J (e2l ; g). (6-28)

By (6-27), (6-19), and (6-23), and Lemma 19, for e2l ≤ x ≤ e2l+1

|J (x; g)|�
∑

|γ1−γ2|>1

(log|γ1|)c(log|γ2|)c
|γ1||γ2||γ1− γ2|

(
(log log x)m−1

log x

)2

((Mγ1(x))
n+(log|γ1|)n)((Mγ2(x))

n+(log|γ2|)n)

� (log log x)2m+2n−2

log2 x

∑
|γ1−γ2|>1

(log|γ1|)n+c(log|γ2|)n+c

|γ1||γ2||γ1− γ2|

� (log log x)2m+2n−2

log2 x
. (6-29)

Hence, by (6-26), (6-28), and (6-29), we get, for any positive integer l,∫ 2l+1

2l
62(ey; g) dy = o

(
l2m+2n−2

2l

)
. (6-30)

Therefore, by (6-18), (6-25) and (6-30),∫ Y

2

∣∣∣∣y ∑
|γ |≤T (ey)

eiγ y E(ey; ρ)
∣∣∣∣2 dy�

∑
l≤ log Y

log 2+1

22l
∫ 2l+1

2l
6(ey; g) dy (6-31)

� 1+
∑

l≤ log Y
log 2+1

22l
∫ 2l+1

2l
(61(ey; g)+62(ey; g)) dy (6-32)

= o(Y (log Y )2m+2n−2). (6-33)

This completes the proof of Lemma 18. �
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6C. Lower order sum and error from the truncation. In this section, we examine the lower order sum
and the error from the truncation by a fixed large T0, and give the proof of Lemma 15.

Proof of Lemma 15. For the lower order sum, by (4-24), we have∫ Y

2
|S1(ey;χ)|2 dy�

k∑
j=2

(log Y )2k−2 j
∫ Y

2

∣∣∣∣ ∑
|γ |≤T (ey)

eiγ y

1
2 + iγ

∣∣∣∣2 dy.

For the inner integral, by Lemma 11 and Lemma 19, and the definition of T = T (x),∫ Y

2

∣∣∣∣ ∑
|γ |≤T (ey)

eiγ y

1
2 + iγ

∣∣∣∣2 dy ≤
∑

l≤ log Y
log 2+1

∫ 2l+1

2l

( ∑
|γ1−γ2|≤1
|γ1|,|γ2|≤Tl′

+
∑

|γ1−γ2|>1
|γ1|,|γ2|≤Tl′

)
ei(γ1−γ2)y( 1

2 + iγ1
)(1

2 − iγ2
) dy

�
∑

l≤ log Y
log 2+1

(
2l
∑
γ

log|γ |
|γ |2 +

∑
γ1,γ2

1
|γ1||γ2||γ1− γ2|

)
� Y.

Thus, ∫ Y

2
|S1(ey;χ)|2 dy�

k∑
j=2

Y (log Y )2k−2 j = o(Y (log Y )2k−2)).

Next, we examine S2(x, T0;χ). For fixed T0, let X0 be the largest x such that T = T (x)≤ T0. Since
x ≤ T (x)≤ 2x2, log X0 � log T0. By Lemma 11 and Lemma 19,∫ Y

2
|S2(ey, T0;χ)|2 dy≤

∫ log X0

2

∣∣∣∣ ∑
|γ |≤T0

1
|γ |
∣∣∣∣2 dy+

∫ Y

log X0

∣∣∣∣ ∑
T0≤|γ |≤T (ey)

eiγ y

1
2 + iγ

∣∣∣∣2 dy

� log5 T0+
∑

log log X0
log 2 ≤l≤ log Y

log 2+1

∫ 2l+1

2l

( ∑
|γ1−γ2|≤1

T0≤|γ1|,|γ2|≤Tl′

+
∑

|γ1−γ2|>1
T0≤|γ1|,|γ2|≤Tl′

)
ei(γ1−γ2)y( 1

2 + iγ1
)(1

2 − iγ2
)dy

� log5 T0+
∑

log log X0
log 2 ≤l≤ log Y

log 2+1

(
2l
∑
|γ |≥T0

log|γ |
|γ |2 +

∑
|γ1|,|γ2|≥T0

1
|γ1||γ2||γ1− γ2|

)

� Y
log2 T0

T0
+ log Y

log3 T0

T0
+ log5 T0.

This completes the proof of this lemma. �

7. Asymptotic formulas for the logarithmic densities

In this section, we give the proof of Theorem 4.

Proof of Theorem 4. For large q , Fiorilli and Martin [2013] gave an asymptotic formula for δ�1(q; a, b).
Lamzouri [2013] also derived such an asymptotic formula using another method. Here, we want to derive
asymptotic formulas for δ�k (q; a, b) and δωk (q; a, b) for fixed q and large k.
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Let a be a quadratic nonresidue mod q and b be a quadratic residue mod q , and (a, q)= (b, q)= 1.
Letting λk = 1/2k−1, similar to formula (2.10) of [Fiorilli and Martin 2013], we have, under ERHq and LIq,

δ�k (q; a, b)= 1
2
+ (−1)k

2π

∫ ∞
−∞

sin(λk(N (q; a)− N (q; b))x
x

8q;a,b(x) dx .

Noting that N (q, a)− N (q, b)=−A(q),

δ�k (q; a, b)= 1
2
+ (−1)k−1

2π

∫ ∞
−∞

sin(λk A(q)x)
x

8q;a,b(x) dx . (7-1)

For any ε > 0,∫ ∞
−∞

sin(λk A(q)x)
x

8q;a,b(x) dx =
(∫ 1/λεk

−∞
+
∫ 1/λεk

−1/λεk

+
∫ ∞

1/λεk

)
sin(λk A(q)x)

x
8q;a,b(x) dx . (7-2)

By Proposition 2.17 in [Fiorilli and Martin 2013], |8q;a,b(t)| ≤ e−0.0454φ(q)t for t ≥ 200. So for large
enough k,∫ ∞

1/λεk

sin(λk A(q)x)
x

8q;a,b(x) dx � λk

∫ ∞
1/λεk

e−0.0454φ(q)x dx �q,J,ε λ
J
k , for any J > 0. (7-3)

The integral over x ≤−1/λεk is also bounded by λJ
k .

By Lemma 2.22 in [Fiorilli and Martin 2013], for each nonnegative integer K and real number C > 1,
we have, uniformly for |z| ≤ C ,

sin z
z
=

K∑
j=0

(−1) j z2 j

(2 j + 1)! + OC,K (|z|2K+2).

Thus, the second integral in (7-2) is equal to

λk A(q)
∫ 1/λεk

−1/λεk

sin(λk A(q)x)
λk A(q)x

8q;a,b(x) dx

=
K∑

j=0

λ
2 j+1
k

(−1) j A(q)2 j+1

(2 j + 1)!
∫ 1/λεk

−1/λεk

x2 j8q;a,b(x) dx + Oq,K (λ
2K+3−ε
k )

=
K∑

j=0

λ
2 j+1
k

(−1) j A(q)2 j+1

(2 j + 1)!
∫ ∞
−∞

x2 j8q;a,b(x) dx + Oq,K ,ε(λ
2K+3−ε
k ). (7-4)

Combining (7-1), (7-3), and (7-4), we get the asymptotic formula (1-4) for δ�k (q; a, b). Similarly, or
by the results in Theorem 3, we have the asymptotic formula (1-5) for δωk (q; a, b). �

8. The source of main terms and proof of Lemma 12

In this section, we give the proof of the main lemma we used for extracting out the bias terms and
oscillating terms from the integrals over Hankel contours.
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Let H(0, X) be the truncated Hankel contour surrounding 0 with radius r . Lau and Wu [2002] proved
the following lemma.

Lemma 21 [Lau and Wu 2002, Lemma 5]. For X > 1, z ∈ C and j ∈ Z+, we have

1
2π i

∫
H(0,X)

w−z(logw) j ew dw = (−1) j d j

dz j

(
1
0(z)

)
+ E j,z(X),

where

|E j,z(X)| ≤ eπ |=(z)|

2π

∫ ∞
X

(log t +π) j

t<(z)et dt.

Proof of Lemma 12. We have the equality

1
s
= 1

a
+ a− s

a2 +
(a− s)2

a2s
.

With the above equality, we write the integral in the lemma as

1
2π i

∫
H(a,δ)

logk(s− a)
(

1
a
+ a− s

a2 +
(a− s)2

a2s

)
x s ds =: I1+ I2+ I3.

For I3, using Lemma 16, we get∫
H(a,δ)

logk(s− a)
(a− s)2

a2s
x s ds

≤
∣∣∣∣∫ δ

r

(
(log σ−iπ)k − (log σ+iπ)k

)
σ 2x−σ

xa

a2(a−σ) dσ
∣∣∣∣+ ∫ π

−π
x<(a)+r(log 1

r+π
)k r2

|a|2|<(a)−r |r, dα

� |xa|
|a|2|<(a)− δ|

(∫ δ

0
|(log σ − iπ)k − (log σ + iπ)k |σ 2x−σ dσ + (log 1

r +π)k
(1/r)3

)
�k

|xa|
|a|2|<(a)− δ|

(
(log log x)k−1

(log x)3
+ 1

x3−ε

)
�k

|xa|
|a|2|<(a)− δ|

(log log x)k−1

(log x)3
. (8-1)

We estimate I2 similarly. By Lemma 16,∫
H(a,δ)

logk(s− a)
a− s

a2 x s ds

≤
∣∣∣∣∫ δ

r
((log σ − iπ)k − (log σ + iπ)k)σ x−σ

xa

a2 dσ
∣∣∣∣+ ∫ π

−π
x<(a)+r(log 1

r +π
)k r
|a|2 r dα

� |x
a|
|a|2

(∫ δ

0
|(log σ − iπ)k − (log σ + iπ)k |σ x−σ dσ +

(
log 1

r +π
)k

(1/r)2

)
�k
|xa|
|a|2

(
(log log x)k−1

(log x)2
+ 1

x2−ε

)
�k
|xa|
|a|2

(log log x)k−1

(log x)2
. (8-2)
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For I1, using change of variable (s− a) log x = w, by Lemma 21, we get

I1 = 1
2π i

1
log x

∫
H(0,δ log x)

(logw− log log x)k
xaew

a
dw

= xa

a log x
(−1)k(log log x)k

1
2π i

∫
H(0,δ log x)

ew dw

+ (−1)k−1k
xa

a log x
(log log x)k−1 1

2π i

∫
H(0,δ log x)

ew logw dw

+ xa

a log x

k∑
j=2

(k
j

) 1
2π i

∫
H(0,δ log x)

(− log log x)k− j (logw) j ew dw

= (−1)k xa

a log x

{
k(log log x)k−1+

k∑
j=2

(k
j

)
(log log x)k− j 1

0 j (0)

}

+ xa

a log x

k∑
j=1

(k
j

)
E j,0(δ log x)(− log log x)k− j . (8-3)

By Lemma 21,

|E j,0(δ log x)| ≤ 1
2π

∫ ∞
δ log x

(log t +π) j

et dt � j e−
1
2 δ log x

∫ ∞
1
2 δ log x

(log t) j

et/2 dt � j x−δ/2.

Hence, we get∣∣∣∣ xa

a log x

k∑
j=1

(k
j

)
E j,0(δ log x)(− log log x)k− j

∣∣∣∣�k
x<(a)

|a| log x

k∑
j=1

x−δ/2(log log x)k− j�k
|xa−δ/3|
|a| . (8-4)

Combining (8-1), (8-2), (8-3), and (8-4), we get the conclusion of Lemma 12. �
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