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For any truncated path algebra3 of a quiver, we classify, by way of representation-
theoretic invariants, the irreducible components of the parametrizing varieties
Repd(3) of the 3-modules with fixed dimension vector d. In this situation, the
components of Repd(3) are always among the closures Rep S, where S traces
the semisimple sequences with dimension vector d, and hence the key to the
classification problem lies in a characterization of these closures.

Our first result concerning closures actually addresses arbitrary basic finite-
dimensional algebras over an algebraically closed field. In the general case, it
corners the closures Rep S by means of module filtrations “governed by S”;
when 3 is truncated, it pins down the Rep S completely.

The analysis of the varieties Rep S leads to a novel upper semicontinuous mod-
ule invariant which provides an effective tool towards the detection of components
of Repd(3) in general. It detects all components when 3 is truncated.

1. Introduction

By strong consensus, a classification of all indecomposable finite-dimensional
representations of a finite-dimensional algebra 3 is an unattainable goal in general.
A far more promising alternative to this impossibly comprehensive problem is
that of generically classifying the finite-dimensional 3-modules. This amounts to
understanding the generic structure of the modules in the irreducible components of
the varieties Repd(3) which parametrize the 3-modules with dimension vector d.
By its very nature, this quest comes paired with the task of pinning down the
irreducible components of the Repd(3) in representation-theoretic terms.

In the present article, the component problem is solved for arbitrary truncated
path algebras3 over an algebraically closed field K . In tandem, significant headway
is made towards determining the generic features of the modules in the components.
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The classification of the components, in turn, relies on a characterization of
the modules in the closures of certain representation-theoretically defined locally
closed subvarieties of Repd(3). Our initial round of results regarding such closures,
including the description of an associated upper semicontinuous module invariant
which serves to test for inclusions, holds for arbitrary basic finite-dimensional
K -algebras. The findings lead to partial lists of components in this broad scenario.
The results become tight on specialization to the truncated case.

Throughout, we assume K to be an algebraically closed field and3 a basic finite-
dimensional K -algebra. This means that, up to isomorphism,3=KQ/I for a quiver
Q and an admissible ideal I in the path algebra. The maximal length of a path in
KQ\ I will be denoted by L; in other words, L is minimal with respect to J L+1

= 0,
where J is the Jacobson radical of3. Consequently, the radical layering S(M) of a
3-module M has no more than L+1 nonzero entries: S(M)= (J l M/J l+1 M)0≤l≤L .
By Repd(3), we denote the standard affine variety parametrizing the 3-modules
with dimension vector d. This variety is partitioned into finitely many locally closed
subvarieties Rep S corresponding to the semisimple sequences S with dimension
vector d; these are the sequences S = (S0, . . . ,SL) of (isomorphism classes of)
semisimple 3-modules with dim S :=

∑
0≤l≤L dim Sl = d; here Rep S consists of

those points x in Repd(3) which represent modules Mx with S(Mx)= S.
The closures Rep S are relevant to the problem of describing the irreducible

components of Repd(3): indeed, it is readily seen that the components of the ambi-
ent variety are always among those of the Rep S, where S traces the d-dimensional
semisimple sequences. Less obviously, the components of the subvarieties Rep S,
and hence those of their closures, may be obtained from Q and I by way of a
straightforward algorithm, each component tagged by a “generic minimal projective
presentation” of the modules it encodes (see [Babson et al. 2009] and [Huisgen-
Zimmermann 2009]). Identifying the components of Repd(3) thus amounts to
a sorting problem: for which components C of Rep S is the closure C maximal
among the irreducible subsets of Repd(3)? This is an extremely taxing question
in general, calling for a thorough understanding of the boundaries of the varieties
Rep S.

Our strategy consists of moving back and forth between the varieties Repd(3)

and GRASSd(3); the latter is a closed subvariety of a vector space Grassmannian
which parametrizes the modules with dimension vector d by suitable submodules
of a projective cover of the semisimple module with this dimension vector (see
Section 2 and [Huisgen-Zimmermann 2009; Huisgen-Zimmermann and Goodearl
2012]). The irreducible components of the projective variety GRASSd(3) may be
studied by “spreading them out” within a suitable flag variety (Theorem 3.9), and
the subsequent transfer of information GRASSd(3)←→ Repd(3) is modeled on
the influential work [Gabriel 1975]. In a first step, we show:
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Theorem A (cf. Theorem 3.8 and Theorem 4.3; see also Remark 3.7(4)). Let
3 = KQ/I be a path algebra modulo relations, L + 1 its Loewy length, and
S = (S0, . . . ,SL) a d-dimensional semisimple sequence in 3-mod. Then every
module in the closure Rep S has a filtration by submodules,

M = M0 ⊇ M1 ⊇ · · · ⊇ ML+1 = 0,

which is “governed by S” in the sense that each quotient Ml/Ml+1 is isomorphic
to Sl (0≤ l ≤ L). In fact, the set Filt S consisting of those points in Repd(3) that
correspond to modules with at least one filtration governed by S is always closed.

If 3 is a truncated path algebra, i.e., 3= KQ/〈all paths of length L + 1〉, and
Rep S is nonempty, then

Rep S= Filt S.

For general 3, the inclusion Rep S ⊆ Filt S may be proper. The question
of whether a point in Repd(3) belongs to Filt S may be answered by testing for
similarity of certain matrices. By contrast, to date, there is no algorithm for deciding
whether a module belongs to Rep S.

A semisimple sequence S is called realizable if Rep S 6= ∅. (When 3 is a
truncated path algebra, realizability is checked via mere inspection of the quiver;
see [Huisgen-Zimmermann 2016, Criterion 3.2] and Realizability Criterion 4.1
below.)

Corollary B (cf. Corollary 3.11). For M ∈ 3-mod, let 0(M) be the number of
those realizable semisimple sequences that govern at least one filtration of M. Then

0• : Repd(3)→ N, x 7→ 0(Mx),

is an upper semicontinuous function.
In particular, whenever C is an irreducible component of some Rep S such that

1 ∈ 0•(C), the closure C is an irreducible component of Repd(3).

In the second part of the paper, we derive consequences for truncated path
algebras. As is suggested by Theorem A, the component problem simplifies con-
siderably in this situation. Notably, the subvarieties Rep S are all irreducible, and
generic minimal projective presentations of the modules in Rep S are immediate
from quiver and Loewy length (see [Babson et al. 2009, Section 5] and Section 5A
below). In some prominent special cases, particularly manageable solutions to the
problem of sifting out the inclusion-maximal ones among the closures Rep S are
already available (see [Huisgen-Zimmermann 2016; Huisgen-Zimmermann and
Shipman 2017]): for instance, if 3 is either local or based on an acyclic quiver Q,
the semisimple sequences singled out by the minimal values of the following
upper semicontinuous map furnish a complete, nonrepetitive parametrization of the
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components Rep S of Repd(3):

2= (S
•
,S∗
•
) : Repd(3)→ Seq(d)×Seq(d), x 7→ (S(Mx),S∗(Mx)); (1-1)

here the codomain of 2 is partially ordered by the componentwise dominance order
on the set Seq(d) of all d-dimensional semisimple sequences (see Section 2), and
S∗(Mx) stands for the socle layering of the module Mx (the dual of the radical
layering). The unique minimal sequence S∗(Mx) attained on Rep S, that is, the
generic socle layering of the modules in Rep S, is supplied by a closed formula
based on S, Q and L [Huisgen-Zimmermann and Shipman 2017, Theorem 3.8],
which makes the 2-test very user-friendly. But for general truncated 3, the map
2 fails to detect all components, even when supplemented by further standard
semicontinuous module invariants, such as path ranks or assortments of annihilator
dimensions. The map 0•, on the other hand, compensates for the blind spots of 2:

Theorem C (cf. Theorem 4.5). If 3 is any truncated path algebra, the irreducible
components of Repd(3) are precisely those closures Rep S on which 0• attains
the value 1.

In other words, Rep S is maximal among the irreducible subsets of Repd(3) if
and only if there exists a module N in Rep S such that N ⊇ JN ⊇ · · · ⊇ J L+1 N is
the only filtration of N which is governed by a realizable semisimple sequence.

In deciding which semisimple sequences S are the generic radical layerings of
the irreducible components of Repd(3), Theorem C thus permits exclusive reliance
on 0•. However, in practice, combining 0• with the test map 2 is considerably
more efficient.

In the pursuit of a generic approach to the structure of 3-modules, the hereditary
case, pioneered in [Kac 1980; 1982] and [Schofield 1992], serves as a model. We
further point to a selection of existing contributions to the component problem
over nonhereditary algebras: General tools were developed in [Crawley-Boevey
and Schröer 2002] and [Babson et al. 2009]. Solutions to the problem over spe-
cific classes of tame algebras were given in [Barot and Schröer 2001; Carroll
and Weyman 2013; Donald and Flanigan 1977; Geiss and Schröer 2003; 2005;
Morrison 1980; Riedtmann et al. 2011; Schröer 2004] for instance; solutions for
certain classes of wild nonhereditary algebras can be found in [Bleher et al. 2015;
Huisgen-Zimmermann 2016; Huisgen-Zimmermann and Shipman 2017]. As is to
be expected, meaningful classifications of the irreducible components of Repd(3)

in the quoted instances are throughout obtained via partial lists of generic properties
of the modules in the components. For a more detailed discussion of prior work on
the topic we refer to the introduction of [Huisgen-Zimmermann 2016].

We add a few comments on the foundational nature of truncated path algebras
with respect to the component problem. Clearly, given an arbitrary basic K -algebra
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3= KQ/I , there is a unique truncated path algebra 3trunc having the same quiver
and Loewy length as 3. In the general situation, the varieties Rep S typically break
up into multiple components. Given that all of them are contained in irreducible
components of Repd(3trunc), it is advantageous to first determine the latter, say

Rep3trunc
S(1) = Filt3trunc(S

(1)), . . . , Rep3trunc
S(m) = Filt3trunc(S

(m)),

before aiming at the irreducible components of Repd(3). Indeed, this confines
the need for size comparisons among the closures of components of the varieties
Rep3 S to the subvarieties Filt3trunc S( j)

∩Repd(3); see Section 6B.

Overview. In Section 2, we provide background for the proofs of the main results
and introduce a recurring example. Section 3 addresses the general case, where
3 is basic but otherwise unrestricted. In Sections 4 and 5, we apply the findings
to truncated path algebras. Section 4 contains the announced classification of
the irreducible components of Repd(3), while in Section 5, we discuss generic
modules and apply the results of Section 4 to exhibit interconnections among the
components. Section 6, finally, illustrates the theory and addresses the interplay
Repd(3)←→ Repd(3trunc).

2. Conventions and prerequisites

To repeat: throughout, we assume3=KQ/I to be a basic finite-dimensional algebra
over K = K with Jacobson radical J and Loewy length L + 1. The composition
pq of paths stands for “p after q” when start(p) = end(q), while pq = 0 in KQ
otherwise. By 3trunc we denote the truncated path algebra associated to 3, namely,

3trunc = KQ/〈the paths of length L + 1〉;

we make no notational distinction between the 3- and 3trunc-structures of the
objects in 3-mod. The vertices e1, . . . , en of Q will be identified with the paths of
length zero in KQ, as well as with the corresponding primitive idempotents in 3.
An element x of a 3-module M is said to be normed by ei if x = ei x , and a normed
element in M\JM is called a top element of M . A full sequence of top elements of M
is a generating set of M consisting of top elements which are K -linearly independent
modulo JM . The simple module 3ei/Jei corresponding to the vertex ei will be
denoted by Si , and isomorphic semisimple modules will be identified.

The dominance order on the set Seq(d) of all semisimple sequences with dimen-
sion vector d is defined as follows:

(S0, . . . ,SL)≤ (S
′

0, . . . ,S′L) ⇐⇒

⊕
0≤ j≤l

S j ⊆
⊕

0≤ j≤l

S′j for 0≤ l ≤ L .



384 Kenneth R. Goodearl and Birge Huisgen-Zimmermann

Recall that the radical and socle layerings of a 3-module M are denoted by S(M)
and S∗(M). For basic properties of these semisimple sequences, we refer to
[Huisgen-Zimmermann 2016, Section 2.B].

We fix our notation for the parametrizing varieties of the d-dimensional 3-
modules. The affine variety Repd(3) is{

(xα)α∈Q1 ∈

∏
α∈Q1

HomK (K dstart(α), K dend(α))

∣∣∣ the xα satisfy all relations in I
}
,

where Q1 is the set of arrows of Q. The orbits of the obvious conjugation action on
Repd(3) by the group GL(d) :=

∏
1≤i≤n GLdi (K ) are in natural bijection with the

isomorphism classes of the d-dimensional3-modules. Given S∈Seq(d), we denote
by Rep S the locally closed subvariety of Repd(3) which consists of the points x
for which the corresponding module Mx has radical layering S. Clearly, the varieties
Rep S, where S traces the semisimple sequences with dim S= d, partition Repd(3).
However, in general, this (finite) partition falls short of being a stratification of
Repd(3) in the strict sense, in that closures of strata need not be unions of strata.

To introduce the projective parametrizing variety GRASSd(3), we fix a projective
3-module P whose top P/J P has dimension vector d, and set d = |d|. The
variety GRASSd(3) is the closed subvariety of the vector space Grassmannian
Gr((dim P − d), P) consisting of those points C ∈ Gr((dim P − d), P) which are
3-submodules of P with the property that dim(P/C)= d. This time, the group
action whose orbits determine the isomorphism classes of the quotients P/C in
3-mod is the canonical action of Aut3(P) on GRASSd(3). The role played by
Rep S in the affine setting is taken over by GRASS(S), the locally closed subvariety
consisting of those C ∈ GRASSd(3) for which S(P/C)= S.

The following connection between the affine and projective parametrizing va-
rieties was proved in [Bongartz and Huisgen-Zimmermann 2001, Proposition C];
it was inspired by [Gabriel 1975], as is explained in some detail in Remark 3 of
[Bongartz and Huisgen-Zimmermann 2001, Section 2]. We restate the result for
convenient reference.

Proposition 2.1. Consider the natural isomorphism from the lattice of GL(d)-
stable subsets of Repd(3) on one hand to the lattice of Aut3(P)-stable subsets
of GRASSd(3) on the other, which pairs orbits encoding isomorphic modules.
This correspondence preserves and reflects openness, closures, irreducibility, and
smoothness.

In describing generic projective resolutions of the modules in an irreducible
component of Repd(3), a key invariant of a d-dimensional 3-module M is its
set of skeleta. These skeleta live in a projective cover of M in 3trunc-mod. In the
following definitions, we fix a semisimple sequence S with dim S= d.
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Definitions 2.2 (coordinatized projective modules and skeleta).

(1) Let Ptrunc be a projective cover of S0 in 3trunc-mod. This cover is referred to
as a coordinatized projective module when it comes equipped with a fixed full
sequence of top elements z1, . . . , zt , where t = dim S0. In particular, we obtain a
decomposition Ptrunc =

⊕
1≤r≤t 3trunc zr . A path of length l in the coordinatized

projective module Ptrunc is any nonzero element p = p zr where p is a path of
length l in Q; thus each zr is now viewed as a path of length zero. Note that we have
a well-defined concept of path length in 3trunc, and hence also in Ptrunc. Clearly,
each path p= p zr ∈ Ptrunc is normed by a primitive idempotent, namely by end(p),
and the primitive idempotent norming zr is start(p).

(2) An (abstract) skeleton with layering S is a set σ consisting of paths in Ptrunc

which satisfies the following two conditions:

• It is closed under initial subpaths, i.e., whenever p zr ∈ σ , and q is an initial
subpath of p (meaning p = q ′q for some path q ′), the path q zr again belongs
to σ .

• For 0≤ l ≤ L , the number of those paths of length l in σ which end in a given
vertex ei coincides with the multiplicity of Si in the semisimple module Sl .

Note that any skeleton σ with layering S includes the paths z1, . . . , zt of length
zero.

(3) Let M ∈ 3-mod. An abstract skeleton σ is a skeleton of M if M has a full
sequence z1, . . . , zt of top elements, each zr normed by the same vertex as zr , such
that

• {p zr | p zr ∈ σ } is a K -basis for M , and

• the layering of σ coincides with the radical layering S(M) of M .

In this situation, we also say that σ is a skeleton of M relative to z1, . . . , zt .

Clearly, the set of skeleta of any finite-dimensional 3-module M is nonempty,
and the set of all skeleta of modules with fixed dimension vector d is finite. The rel-
evance of skeleta towards a generic understanding of the modules in the irreducible
components of Repd(3) is underlined by the following fact:

Observation 2.3. Let P be the power set of the set of all skeleta with dimension
vector d. Then the map

Repd(3)→ P, x 7→ {skeleta of Mx},

is generically constant on each irreducible component of Repd(3).
To see this, let C ⊆ Repd(3) be an irreducible component, and S the generic

radical layering of its modules. Then C∩Rep S is open in C, and for any skeleton σ
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with layering S, the set

Rep(σ ) := {x ∈ Repd(3) | σ is a skeleton of Mx}

is an open subvariety of Rep S; see [Huisgen-Zimmermann 2007, Lemma 3.8].
Hence, a skeleton σ with layering S arises as a skeleton of the modules in a dense
open subset of C precisely when C∩Rep(σ ) is nonempty. Given that there are only
finitely many eligible skeleta, this proves the claim.

Next, we recall more discerning graphical invariants associated to a finite-
dimensional 3-module, namely its hypergraphs; see Definition 3.9 of [Babson
et al. 2009].

Definitions 2.4 (σ -critical paths and hypergraphs). Again, we let Ptrunc be a co-
ordinatized projective 3trunc-module with top S0 and assume σ ⊆ Ptrunc to be an
abstract skeleton with layering S. Recall that the distinguished top elements zr of
Ptrunc coincide with the paths of length zero in σ .

(1) A σ -critical path is a path q ∈ Ptrunc \ σ such that every proper initial subpath
of q belongs to σ . Thus, q = αq ′, where q ′ ∈ σ and α is an arrow; in particular,
length(q) > 0. Given a σ -critical path q, we define a subset σq ⊆ σ as follows:

σq := {paths p ∈ σ | length( p)≥ length(q) and end( p)= end(q)}.

The final condition in the definition of σq means that all paths in σq are normed
(on the left) by the same vertex as q.

(2) Suppose M ∈ 3-mod has skeleton σ relative to a full sequence z1, . . . , zt

of top elements. The 3-structure of M is then determined by the family of
expansion coefficients corresponding to the σ -critical paths q = q zr ∈ Ptrunc,
namely

q zr =
∑

p=pzs∈σq

cq, p p zs (2-1)

for unique scalars c p,q ∈ K .

(3) We refer to any pair

G = (σ, (τq)q σ -critical) with τq ⊆ σq for all σ -critical paths q

as an (undirected) hypergraph in Ptrunc. The set τq is called the support set
of q. Empty support sets are allowed.

In informal terms: the vertices of these hypergraphs are the elements of σ ,
and a typical (hyper)edge, labeled by an arrow γ ∈ Q1, connects a vertex
p ∈ σ to the vertex γ p if γ p ∈ σ and to the support set τγ p of vertices if γ p
is σ -critical.
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(4) A hypergraph G as above is called a hypergraph of a 3-module M (relative to
a full sequence z1, . . . , zt of top elements of M) if σ is a skeleton of M and,
in the expansion (2-1) above, cq, p 6= 0 precisely when p ∈ τq .

While hypergraphs pin down families of modules, as opposed to individual
isomorphism classes, they provide a useful tool for communicating, in a visually
suggestive format, the generic structure of the modules in the components. For
our diagrammatic representations of hypergraphs, we refer to [Babson et al. 2009],
[Derksen et al. 2014], and to the example below. This example will serve as a staple
in the sequel.

Example 2.5. Let 3= KQ/〈the paths of length 4〉 =3trunc, where Q is the quiver

1
α1

++

α2

��

αr
...

��

2
β1

kk

β2

__

βs

...

VV

(a) First suppose that r = 2 and s= 1. Choose S := (S1, S2, S1, S2), and let Ptrunc=

3truncz be the corresponding 3trunc-projective cover of S0 = S1, coordinatized by
a fixed top element z. Generically, the modules in Rep S then have a hypergraph
of the form

1
α1

2

β1

α2

1
α1 α2

2
.............

..
...
..
..
..
....
..............

..

...

..

.......................................................................................

..

...
....

This diagram is to be read as follows: the radical layering of any module G having
the above hypergraph (relative to a top element z ∈ G, say) is S, and the skeleton
chosen to represent G is σ := {z, α1z, β1α1z, α1β1α1z}; the edges corresponding
to paths in the skeleton σ are drawn as solid edges, while the dashed edges stand
for the terminal arrows of σ -critical paths. Moreover, the diagram contains the
information that the support sets τq for the two σ -critical paths q = α2z and
q = α2β1α1z in Ptrunc (in the sense of Definitions 2.4), are τα2 z = {α1z, α1β1α1z}
and τα2β1α1 z = {α1β1α1z}. Indeed, the “dotted pool” indicates that the element α2z
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of G is a K -linear combination of α1z and α1β1α1z with coefficients in K ∗; on
the other hand, given that the set τα2β1α1 z is a singleton, no extra pooling device
is required to communicate the condition that α2β1α1z ∈ G be a nonzero scalar
multiple of α1β1α1z.

Next, we consider the semisimple sequence S′ := (S2
1 , S2

2 , 0, 0). The modules in
Rep S′ generically look as follows, relative to top elements z1, z2, say:

1
α1

1
α1

2
....................................................................................................................

...

...
..

α2

2

α2

Here, the dotted pool serves double duty in indicating that both α2z1 and α2z2 are
linear combinations of α1z1 and α1z2 with (unspecified) nonzero coefficients. In
the sequel, we will use the fact that, generically, the modules in Rep S′ decompose
in the form

1
α1 α2

⊕ 1
α1 α2

2 2

(b) Now let r = 3. The hypergraphs

(I) (II) (III)

1

z1

α1

1

z2

α2

1

z3

•
1

z1

α1

1

z2

α2
1

z3

α3

1

z1

α1

1

z2

α2

1

z3

α3

2 2 2
...................................................................................

...

...
..

2

are hypergraphs of modules Mi =
(⊕

1≤ j≤33z j
)
/Ui , where z j = e1 for j = 1, 2, 3.

Here the submodule U1 is generated by α2z2 − α1z1, α3z3 and α j zk for j 6= k,
while U2 is generated by α2z2−α1z1, α3z3−α1z1 and α j zk for j 6= k; finally, U3

is generated by α3z3 − (α1z1 + α2z2) and α j zk for j 6= k. The chosen reference
skeleton of M1 and M2 is σ := {z1, z2, z3, α1z1}, and that of M3 is σ ∪{α2z2}. Note
that the dimension of JM3 is 2, the number of displayed vertices in the second row
of the hypergraph.

Generically, the modules with radical layering S′ := (S2
1 , S2

2 , 0, 0) are indecom-
posable and have hypergraphs of the form

1

z1

α1

1

z2

α1

2
..........................................................................................................................................................

...

...
..

α2
α3

2

α2
α3
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The modules in Rep S, where S := (S1, S2, S1, S2), generically have a hyper-
graph akin to the first one shown in part (a). �

3. The main results for general 3

3A. Pared-down parametrizing varieties. Towards a description of Rep S, we
present lower-dimensional, more manageable varieties parametrizing the modules
with radical layering S.

Definition 3.1 (decompositions of K |d| induced by semisimple sequences). Let
S= (S0, . . . ,SL) be a realizable semisimple sequence in 3-mod with dim S= d,
and write d = |d|. Consider a vector space decomposition of K d which is induced
by S in the following sense: namely,

K d
=

⊕
0≤l≤L
1≤i≤n

K(l,i)

with the property that dimK(l,i) = dim ei Sl for all eligible indices l and i . Set
Kl =

⊕
1≤i≤n K(l,i) for l ≤ L , and KL+1 = K(L+1,i) = 0. Given a family ( fα)α∈Q1

of K -endomorphisms of K d , the following notation will be convenient: whenever
p = αl · · ·α1 is a path of positive length l in Q, we set f p = fαl ◦ · · · ◦ fα1 ; if p is
a path of length 0, say p = ei , then f p is defined to be the canonical projection
K d
→
⊕

0≤l≤L K(l,i) ⊆ K d relative to the above decomposition. Thus, we obtain
a K -algebra homomorphism KQ→ EndK (K d) such that p 7→ f p for all paths p
in Q.

By Q≥l we denote the set of paths of length at least l in Q. The following lemma
is an upgraded version of [Huisgen-Zimmermann 2016, Lemma 5.1] and is proved
analogously.

Lemma 3.2 (triangular points in Repd(3)). We refer to the above notation. Suppose
that f = ( fα)α∈Q1 is a family of K -linear maps K d

→ K d satisfying the following
three conditions: For any arrow α from ei to e j and any index l ∈ {0, . . . , L},

(i) fα(K(l,r))= 0 for all r 6= i ;

(ii) fα(K(l,i))⊆
⊕

l+1≤m≤L K(m, j);

(iii) whenever c1, . . . , cm ∈ K and p1, . . . , pm are paths of length ≤ L in Q, which
have a common starting vertex and a common terminal vertex,∑

1≤ j≤m

c j p j ∈ I =⇒

∑
1≤ j≤m

c j f p j = 0.

Then the following statements (I)–(III) hold:
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(I) The tuple f is a point in Repd(3), and the radical layering of the correspond-
ing3-module M f satisfies S(M f )≥S. Moreover, all3-modules with radical
layering S are represented by suitable points f ∈ Repd(3) satisfying (i)–(iii).

(II) J l M f =
∑

p∈Q≥l
Im( f p) for all l ∈ {0, . . . , L}.

(III) S(M f )= S precisely when, for each h ∈ {0, . . . , L}, the linear map

(K0)
Q≥h →

⊕
l≥h

Kl, (xq)q∈Q≥h 7→

∑
q

fq(xq),

has maximal rank, namely
∑

l≥h dimKl . �

The lemma prompts an analysis of the following two subvarieties of Repd(3).

3.3 (the varieties 1-Rep(≥S) and 1-Rep S). Keep S and a decomposition of K d

induced by S fixed. The collection of all f = ( fα) satisfying conditions (i)–(iii) of
Lemma 3.2 is a closed subvariety of Repd(3) which we denote by 1-Rep(≥S).
Indeed, the inclusion map

1-Rep(≥S) ↪→ Repd(3)

provided by part (I) of Lemma 3.2 is a closed immersion.
To see this, take B(l,µ) = (b1

(l,µ), . . . , bdl,µ
(l,µ)) to be an ordered basis for K(l,µ) and

B to be the lexicographically ordered union of the B(l,µ). Relative to this basis
for K d , the image of the above embedding consists of all those families (Fα) of
matrices in Repd(3) such that each Fα has a strictly lower triangular form of the
following ilk:

• the only nonzero entries in any column labeled (l, µ)( j) are confined to posi-
tions with lower label (l + 1, ν), . . . , (L , ν), provided α is an arrow eµ→ eν ,
and

• condition (iii) of Lemma 3.2 is satisfied.

The latter requirement translates into polynomial equations for the entries of the Fα .
This shows that the considered embedding is indeed a closed immersion.

Moreover, observe that, up to isomorphism, the variety1-Rep(≥S) is determined
by S, irrespective of the choice of a decomposition K d

=
⊕

l,i K(l,i) induced
by S. Lemma and Definition 3.6 below will show that the GL(d)-stable hull
GL(d).(1-Rep(≥S))⊆ Repd(3) is, in fact, unique in the strict sense.

We will identify1-Rep(≥S)with its image under the above immersion whenever
convenient. The subset of 1-Rep(≥S) consisting of the points which correspond
to modules with radical layering S will be denoted by 1-Rep S. In view of part
(III) of Lemma 3.2, 1-Rep S is an open subvariety of 1-Rep(≥S).

Next, we consider the effect of conjugation by GL(d) on the varieties1-Rep(≥S)

and 1-Rep(S).
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3.4 (1-Rep(≥S) under the GL(d)-action). Viewed as subvarieties of Repd(3),
the varieties 1-Rep(≥S) and 1-Rep(S) fail to be stable under the GL(d)-action
in all nontrivial cases. However, each of these varieties carries a conjugation action
by the subgroup GL(S) of GL(d) which consists of the sequences (g1, . . . , gn)

with the property that each gi leaves the subspaces
⊕

j≥l K( j,i) invariant for all l.
Caveat: the GL(S)-action does not separate the isomorphism classes of the pertinent
modules in general.

By part (I) of Lemma 3.2, the closure of 1-Rep(≥S) under the GL(d)-action
on Repd(3) is contained in the closed subvariety

⋃
S′≥S Rep S′ of Repd(3). In

fact, in view of the lemma,

Rep S= GL(d).(1-Rep(S))⊆ GL(d).(1-Rep(≥S))⊆
⋃

S′≥S

Rep S′.

Either inclusion may be proper. This is obvious for the first. Regarding the second,
let 3= KQ/〈β2

〉, for instance, where

Q := 1 α
// 2 βee .

Moreover, take S := (S2
1 , S2

2) and S̃ := (S2
1 ⊕ S2, S2). Then S̃≥ S, but the module

N := S2
1 ⊕3e2 in Rep(S̃) is not isomorphic to a module in 1-Rep(≥S). Indeed,

since K(0,2) = 0 and dimK(1,2) = 2 in the decomposition of K 4 induced by S, we
have S2

2 ⊆ soc M for all M in 1-Rep(≥S), while this is not the case for N .

3B. The closure of Rep S in Repd(3). We start with an elementary lemma char-
acterizing the modules corresponding to the points in 1-Rep(≥S). For a given
realizable semisimple sequence S = (S0, . . . ,SL) with dim S = d, we fix a de-
composition of K |d| induced by S as in Definition 3.1. As we already pointed out,
modulo isomorphism of varieties, this choice has no bearing on 1-Rep(≥S).

Definition 3.5 (filtrations governed by S). Let M be a3-module. A filtration of M
governed by S is any chain of submodules

M = M0 ⊇ M1 ⊇ · · · ⊇ ML+1 = 0

such that each factor Ml/Ml+1 is isomorphic to Sl ; in other words, J Ml ⊆ Ml+1

and dim Ml/Ml+1 = dim Sl for 0 ≤ l ≤ L . Filtrations with these properties will
also be referred to more briefly as S-filtrations.

Lemma and Definition 3.6 (the variety Filt S). Let 3 = KQ/I be an arbitrary
basic finite-dimensional K -algebra. Moreover, let S be a semisimple sequence with
dim S= d. Then the following conditions are equivalent for a 3-module M :

(1) M belongs to GL(d).(1-Rep(≥S)), the GL(d)-stable hull of 1-Rep(≥S).

(2) M has a filtration governed by S.
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In particular, GL(d).(1-Rep(≥S)) is independent of the choice of a decomposi-
tion of K |d| induced by S. Motivated by the above equivalence, we will denote this
subvariety of Repd(3) by Filt S.

Proof. (1) =⇒ (2): Suppose that M is represented by some point f = ( fα) ∈
1-Rep(≥S). This means that, up to isomorphism, M equals K d , equipped with
the 3-module structure of Lemma 3.2. In particular, we obtain a filtration of M
governed by S by setting Ml =

⊕
j≥l, 1≤i≤n K( j,i).

(2) =⇒ (1): Given an S-filtration (Ml)0≤l≤L+1 of M , we take M(l,i) to be a vector
space complement of ei Ml+1 in ei Ml for 0≤ l ≤ L . Moreover, we set f = ( fα)α∈Q1 ,
where fα(x)= αx for x ∈ M . Then the decomposition M =

⊕
0≤l≤L , 1≤i≤n M(l,i)

satisfies conditions (i)–(iii) of Lemma 3.2, and thus can be shifted to a decomposition⊕
0≤l≤L , 1≤i≤n K(l,i) of K d induced by S via a suitable family h = (h(l,i)) of

isomorphisms h(l,i) : M(l,i)→ K(l,i). We conclude that h f h−1
∈1-Rep(≥S) and

that Mh f h−1 ∼= M . �

The upcoming remarks (1)–(3) will be tacitly used throughout the sequel.

Remarks 3.7. (1) Filt S is always nonempty, irrespective of whether S is real-
izable. Indeed, the semisimple module

⊕
0≤l≤L Sl has a filtration governed

by S.

(2) For any M ∈ 3-mod, the chain M ⊇ JM ⊇ · · · ⊇ J L+1 M = 0 is the only
filtration of M governed by S(M); moreover, if S′ is any semisimple sequence
governing a filtration of M , then S′ ≤ S(M).

(3) The socle layering S∗(M) of M governs the socle filtration, provided the tradi-
tional indexing of the latter is reversed; i.e., if S∗(M)= (S∗0, . . . ,S∗m, 0, . . . , 0)
with S∗m 6= 0, then the filtration

socm M = M ⊇ socm−1 M ⊇ · · · ⊇ soc0 M = soc M ⊇ 0

is governed by the semisimple sequence (S∗m, . . . ,S∗0, 0, . . . , 0) (which is not
necessarily realizable). In particular, (S∗m, . . . ,S∗0, 0, . . . , 0)≤ S(M).

(4) K. Bongartz pointed out to us that the upcoming Theorem 3.8 may alternatively
be derived from a useful result of Steinberg. We state it below, but omit
detail. We do fully anchor our own steppingstone to Theorem 3.8 (namely
Theorem 3.9), though. The embedding of GRASS(S) into a flag variety, as
specified there, is instrumental in a further analysis of the closure of GRASS(S)
in GRASSd(3).

Lemma [Steinberg 1974, Lemma 2, p. 68]. Let V be a quasiprojective variety
carrying a morphic action by a connected linear algebraic group G. Moreover,
let U be a closed subvariety of V which is stable under the action of some par-
abolic subgroup of G. Then the G-stable hull G.U of U in V is in turn closed.
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Theorem 3.8. Let 3 be an arbitrary basic finite-dimensional algebra, and let S be
a semisimple sequence in3-mod with dim S= d. Then the GL(d)-stable set Filt S,
which consists of the points in Repd(3) encoding modules with S-filtrations, is a
closed subvariety of Repd(3).

In particular, Rep S ⊆ Filt S, meaning that every module in Rep S has an
S-filtration.

To prove Theorem 3.8, we switch back and forth between the affine and projective
settings, Repd(3) and GRASSd(3), using Proposition 2.1 to transfer information
from one to the other. Again, we denote by P the3-projective cover of

⊕
1≤i≤n Sdi

i
in whose submodule lattice the points of GRASSd(3) are located. We start by
establishing a natural embedding of GRASS(S) into a projective variety consisting
of submodule flags DL+1 ⊆ DL ⊆ · · · ⊆ D0 = P of P which are governed by S.
It is this embedding which makes information about the closure of GRASS(S) in
GRASSd(3) more accessible.

Theorem 3.9. Consider the subset U of the partial flag variety Flag(∂0, . . . ,∂L+1,P)
of P , where ∂i := (dim P−|d|)+

∑L
l=L+1−i |dim Sl |, consisting of the3-submodule

flags

0⊆ DL+1 ⊆ DL ⊆ · · · ⊆ D0 = P with Dl/Dl+1 ∼= Sl for 0≤ l ≤ L .

Then U is closed, and there is a natural embedding of varieties

8 : GRASS(S)→ U,

which induces an isomorphism onto its image.

Proof of Theorem 3.9. Recall that a module N belongs to GRASS(S), meaning
that N ∼= P/C with C ∈ GRASS(S), precisely when

dim Sl = dim J l N/J l+1 N = dim(C + J l P)/(C + J l+1 P)

for all eligible l. Set d(L+1)
= d and d(l) = d−

∑
l≤r≤L dim Sr for 0 ≤ l ≤ L . In

particular, we obtain GRASSd(L+1)(3)= GRASSd(3), and GRASSd(0)(3)= {P}.
Clearly, U is a subset of the projective variety

GRASSd(L+1)(3)×GRASSd(L)(3)× · · ·×GRASSd(0)(3);

namely, U consists of those points (DL+1, . . . , D0) in the direct product that corre-
spond to flags DL+1 ⊆ DL ⊆ · · · ⊆ D0 = P of 3-submodules of P satisfying

J Dl ⊆ Dl+1 and dim Dl/Dl+1 = dim Sl for 0≤ l ≤ L . (‡)

To verify that the set U is closed in the given direct product of module Grassmannians,
note that the equalities under (‡), specifying the dimension vectors of the consecutive
quotients Dl/Dl+1, are actually automatic; this is due to the placement of the Dl in
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GRASSd(l)(3), respectively. As for the inclusions under (‡): it is well-known that,
given any f ∈ EndK (P), the requirement “ f (Dl) ⊆ Dl+1 for all l” cuts a closed
subset out of the variety{

(Dl) ∈
∏

0≤l≤L+1

GRASSd(l)(3)
∣∣∣ Dl+1 ⊆ Dl for 0≤ l ≤ L

}
of partial submodule flags. Applying this to the linear maps P → P given by
x 7→ αx for α ∈ Q1, and investing the fact that the displayed partial flag variety is
closed in the given product of Grassmannians, one finds that U is indeed closed. In
particular, U is a projective variety.

We have a natural embedding of GRASS(S) into U, namely

8 : GRASS(S)→ U, C 7→ (C + J L+1 P,C + J L P, . . . ,C + J P,C + J 0 P),

where the leftmost entry C + J L+1 P of the sequence equals C , and the rightmost
entry equals P .

To see that 8 is a morphism, we use the open affine cover (GRASS(σ ))σ of
GRASS(S), where σ traces the skeleta with layering S and GRASS(σ ) 6= ∅.
For that purpose, recall the following description of GRASS(σ ) from [Huisgen-
Zimmermann 2009]. We view the 3-projective cover P of S0 as a direct summand
of the projective cover P =

⊕
1≤r≤|d|3zr of

⊕
0≤l≤L Sl , say P =

⊕
1≤r≤t 3zr .

On identifying the top elements zr of P with those of Ptrunc (see Definitions 2.2),
we retrieve each of the subsets σ of Ptrunc as a subset of P ; as such, σ consists of |d|
linearly independent elements of P . Define s := dim P − |d|, and let Schu(σ ) be
the big open Schubert cell of Gr(s, P) consisting of the vector space complements
of the subspace

⊕
p∈σ K p in P . Then GRASS(σ ) := GRASS(S) ∩ Schu(σ )

is open in GRASS(S), and the union of the GRASS(σ ), with σ as specified,
equals GRASS(S); see [Huisgen-Zimmermann 2009, Observation 3.6]. By [ibid.,
Theorem 3.17], the GRASS(σ ) are affine; in fact, they can readily be realized as
closed subsets of the K -space

∧s P relative to the Plücker coordinates [c1∧· · ·∧cs]

of Schu(σ ).
Hence it suffices to show that, for each such skeleton σ , the restriction 8σ of 8

to GRASS(σ ) is a morphism. For 0≤ j ≤ L , let σ j be the set of all paths of length j
in σ . Enumerate the elements of σ so that increasing indices correspond to weakly
decreasing lengths. If tl := |σl |+ · · ·+ |σL |, we thus obtain

⊔
l≤ j≤L σ j in the form⊔

l≤ j≤L

σ j = { p1, . . . , ptl } for 0≤ l ≤ L .

We deduce that, given any K -basis c1, . . . , cs for a point C ∈ GRASS(σ ), the
elements c1, . . . , cs, p1, . . . , ptl form a K -basis for C + J l P : indeed, J l P is
generated by the paths in P of the form q zr , where q is a path of length ≥ l in KQ
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and r ≤ |d|. Moreover, by the definition of GRASS(σ ), p1, . . . , ptl induce a basis
for J l(P/C)= (J l P +C)/C . This shows that the restriction 8σ sends any point
C ∈ GRASS(σ ) to(
[c1∧· · ·∧cs], [c1∧· · ·∧cs ∧ p1∧· · ·∧ ptL ], . . . , [c1∧· · ·∧cs ∧ p1∧· · ·∧ pt0]

)
,

whence 8σ is indeed a morphism.
Finally, we observe that 8 induces an isomorphism onto its image. Indeed, the

inverse is the restriction to Im(8) of the projection onto the leftmost component of
the direct product of the GRASSd(l)(3), namely the restriction of

9 :
∏

0≤l≤L+1

GRASSd(l)(3)→ GRASSd(3), (DL+1, . . . , D0) 7→ DL+1,

to Im(8). Therefore 8−1
: Im(8)→ GRASS(S) is a morphism. �

Proof of Theorem 3.8. We refer to the notation in the proof of Theorem 3.9. Since
U is a projective variety, so is 9(U). In particular, 9(U) is closed in GRASSd(3).

By condition (‡) spelled out in the proof of Theorem 3.9, the image 9(U) ⊆
GRASSd(3) consists precisely of those points C ∈ GRASSd(3) which have the
property that P/C has a filtration governed by S; in particular 9(U) is stable
under the Aut3(P)-action of GRASSd(3). In light of Lemma and Definition 3.6,
Proposition 2.1 thus matches up 9(U) with the GL(d)-stable subset Filt S of
Repd(3) and tells us that Filt S is in turn closed.

For the final claim, it suffices to observe that Rep S⊆ Filt S. �

Theorem 3.8 prompts us to introduce a new module invariant, which will turn
out to be highly informative in gauging the overlaps among the closed varieties
Rep S.

Definition 3.10 (the module invariant 0). For M ∈ 3-mod, let 0(M) denote the
number of realizable semisimple sequences which govern some filtration of M .

Corollary 3.11. The map 0• : Repd(3)→ N sending x to 0(Mx) is upper semi-
continuous.

In particular, whenever C is an irreducible component of some Rep S such that
1 ∈ 0•(C), the closure C is an irreducible component of Repd(3).

Proof. Let R be the set of all realizable semisimple sequences with dimension
vector d. Moreover, for a ∈N, let R(a) be the collection of all those intersections⋂

i Filt(S(i))which involve at least a distinct sequences S(i)∈R. Then the preimage
0−1
•
([a,∞)) is the union of the sets in R(a). Since each Filt(S(i)) is closed in

Repd(3) by Theorem 3.8 and R(a) is finite, the union 0−1
•
([a,∞)) is closed. This

proves the claim regarding upper semicontinuity.
To justify the final assertion, suppose that C is properly contained in some

irreducible component C′ of Repd(3). Then C′ is an irreducible component of



396 Kenneth R. Goodearl and Birge Huisgen-Zimmermann

some Rep S′ with S′ < S. Since Rep S′ ⊆ Filt(S′) by Theorem 3.8, all modules
in C have a filtration governed by S′ in this situation, whence 0(M) > 1 for all
M ∈ Rep S. �

Now let D = HomK (−, K ) :3-mod→mod-3 be the standard duality. Clearly,
M ∈3-mod contains a descending submodule chain governed by S= (S0, . . . ,SL)

if and only if D(M) contains an ascending chain M ′
−1=0⊆M ′0⊆· · ·⊆M ′L=D(M)

which is cogoverned by D(S) = (D(S0), . . . , D(SL)), in the sense that each of
the consecutive quotients M ′l/M ′l−1 is isomorphic to D(Sl). We define Cofilt S′

to be the subset of Repd(3) whose points correspond to the modules which are
cogoverned by a semisimple sequence S′. The duality D̂ : Repd(3-mod) →
Repd(mod-3) of [Huisgen-Zimmermann and Shipman 2017, Section 2.C] thus
yields the following dual of Theorem 3.8; we spell it out since, in size comparisons
of C(i) versus C( j), for irreducible components C(k) of Rep S, one gains mileage
in combining Theorem 3.8 with its dual. (Recall that the process of filtering the
irreducible components of Repd(3) out of

{C | C is a component of some Rep S with dim S= d}

rests on comparisons of this ilk.)

Theorem 3.12 (dual of Theorem 3.8). If S∗ = (S∗0, . . . ,S∗L) is a semisimple se-
quence in3-mod with dimension vector d, let Corep S∗ (resp. Cofilt S∗) be the set
of all points in Repd(3) which correspond to modules with socle series S∗ (resp.
to modules with filtrations cogoverned by S∗).

Then Cofilt(S∗) is a closed subvariety of Repd(3), and hence Corep S∗ ⊆

Cofilt S∗. In particular, if C is an irreducible component of Rep S such that,
generically, the modules in C have socle layering S∗, then C ⊆ Filt S∩Cofilt S∗.

�

We close the section with an example to the effect that, in general, the inclusion
Rep S⊆ Filt S may be proper and the final implication of Corollary 3.11 need not
be reversible. This contrasts with the situation where 3=3trunc, as we will see in
Section 4.

Example 3.13. Consider the quiver Q of Example 2.5 with r = 2 and s= 1, and set

3= KQ/〈β1α2, α2β1, all paths of length 4〉.

Let d := (2, 2), S := (S1, S2, S1, S2), and S′ := (S2
1 , S2

2 , 0, 0). Then the varieties
Rep S and Rep S′ are irreducible, and generically their modules have hypergraphs
as shown in Figure 1, whence both are contained in Filt S. Clearly, Rep S 6⊆Rep S′,
due to the generic Loewy lengths of the modules in Rep S and Rep S′. By com-
paring generic α2-ranks, one finds, moreover, that Rep S′ 6⊆ Rep S. In conclusion,
both Rep S and Rep S′ are components of Filt S. In fact, both of these closures are
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Figure 1. Hypergraphs of generic modules for Rep S (left) and
Rep S′ (right) for Example 3.13.

even irreducible components of Repd(3), the latter failing to satisfy the sufficient
condition of Corollary 3.11. Indeed, 0(M)= 2 for all M in Rep S′.

It is readily verified that the total number of components of Repd(3) is three,
the remaining component being Rep S′′ = Filt(S′′) for S′′ = (S2, S1, S2, S1). By
contrast, on replacing 3 by the associated truncated path algebra 3trunc, two of the
three components of Repd(3) fuse into a single component of Repd(3trunc); see
Example 6.1(b) below. �

4. The main results for truncated 3

Throughout this section, 3 stands for a truncated path algebra of Loewy length
L + 1, i.e., 3 = 3trunc. In particular, the irreducible components of Repd(3)

are among the Rep S, where S traces the d-dimensional realizable semisimple
sequences. The upcoming theory characterizes these components in terms of their
generic radical layerings S (or, equivalently, in terms of their generic modules in
the sense of Section 5 below). As in the special cases already mastered — the local
case and that of an acyclic quiver Q — the classification may be implemented on a
computer; see Section 5B. However, the general algorithm is considerably more
labor-intensive than the 2-test which applies to the local and acyclic cases.

As we will recall in Section 5, the generic properties of the modules in any
component Rep S may be accessed via a single generic module G(S). A key asset
of the truncated situation lies in the fact that such a module G(S) is available on
sight from S; detail will follow in Section 5A below.

Moreover, it is particularly easy to recognize realizability of semisimple se-
quences over truncated path algebras. We recall the following from [Huisgen-
Zimmermann 2016, Criterion 3.2]:

Realizability Criterion 4.1. Let B = (Bi j ) be the adjacency matrix of Q, i.e., Bi j

is the number of arrows from ei to e j . Then S= (S0, . . . ,SL) is realizable if and
only if dim Sl ≤ (dim Sl−1) · B for all 1≤ l ≤ L; the latter, in turn, is equivalent to
realizability of the two-term sequences (Sl,Sl+1) in (3/J 2)-mod for l < L . �
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In more intuitive terms: S is realizable if and only if there exists an abstract
skeleton with layering S. Moreover, note that in the positive case, any such skeleton
belongs to the generic set of skeleta of the modules in Rep S.

Next, we find that the description of 1-Rep(≥S) may be simplified in the
truncated situation, in that requirement (iii) of Lemma 3.2 is now void.

Observation 4.2 (1-Rep(≥S) is an affine space). Referring to the decomposition
of K d induced by S in Definition 3.1, we obtain that 1-Rep(≥S) consists of those
points f = ( fα)α ∈ (End3(K d))Q1 which satisfy the following conditions: for any
arrow α from ei to e j ,

• fα(K(l,r))= 0 for all r 6= i , and

• fα(K(l,i))⊆
⊕

l+1≤m≤L K(m, j).

In particular, 1-Rep(≥S) is a full affine space in this situation. Indeed, the
image of the closed immersion 1-Rep(≥S) ↪→ Repd(3), which we presented
in 3.3, consists of all sequences of di×di matrices of the described lower triangular
format. Consequently, Filt S, being a morphic image of GL(d)×1-Rep(≥S), is
irreducible as well.

This observation, in turn, allows us to derive a full characterization of the modules
in Rep S from Theorem 3.8.

Theorem 4.3. Suppose3 is a truncated path algebra and S a realizable semisimple
sequence. Then

Rep S= Filt S.

In other words, a module M belongs to Rep S precisely when M has a filtration
governed by S.

Dually, Corep S∗ = Cofilt S∗, where S∗ is the generic socle layering of the
modules in Rep S. If Rep S is an irreducible component of Repd(3), then

Corep S∗ = Cofilt S∗ = Filt S= Rep S.

Proof. Concerning the first equality: In light of Observation 4.2, the variety
1-Rep(≥S) is irreducible. Therefore the open subset 1-Rep S is dense in it,
meaning that the closure 1-Rep S in Repd(3) contains 1-Rep(≥ S). Moreover,
1-Rep S⊆1-Rep(≥S) by construction, whence we obtain

1-Rep(≥S)⊆1-Rep S⊆ Rep S.

Given that Rep S is GL(d)-stable, it follows that Filt S⊆Rep S due to Lemma and
Definition 3.6. The reverse inclusion was established in Theorem 3.8. The second
assertion follows by duality (see Theorem 3.12 and [Huisgen-Zimmermann and
Shipman 2017, Corollary 3.4.b]).
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In particular, duality guarantees that the varieties Corep S∗ are again irreducible.
For arbitrary S we find, moreover, that Rep S⊆ Corep S∗, since the modules in a
dense open subset of Rep S have socle layering S∗. Therefore, Rep S=Corep S∗

whenever Rep S is an irreducible component of Repd(3). �

The following consequence, addressing the relative sizes of the closures Rep S, is
now immediate. It was independently obtained by I. Shipman with different methods;
he also developed an algorithm for checking the considered inclusion via matrices
of dimension vectors (Shipman, personal communication, 2016). Algorithmic
counterparts to the upcoming Corollary 4.4 and Theorem 4.5 will be addressed in
Section 5B.

Corollary 4.4 (comparing the varieties Rep S). Let 3 be a truncated path algebra.
Moreover, suppose that S and S′ are realizable semisimple sequences with the same
dimension vector. Then Rep S⊆ Rep S′ if and only if (generically) the modules in
Rep S have filtrations governed by S′. �

The upper semicontinuous map 0• : Repd(3)→ N of Corollary 3.11 detects all
irreducible components of Repd(3). Indeed, S is the generic radical layering of an
irreducible component of Repd(3) if and only if 0• attains the value 1 on Rep S.
We record this as follows.

Theorem 4.5. Let3 be a truncated path algebra. If S(1), . . . ,S(m) are the distinct
d-dimensional semisimple sequences S with 1 ∈ 0•(Rep S), then

Filt(S(1))= Rep S(1), . . . , Filt(S(m))= Rep S(m)

are the distinct irreducible components of Repd(3).

Proof. Suppose S is a realizable d-dimensional semisimple sequence. If 1 ∈
0•(Rep S), then Rep S 6⊆ Filt(S′)= Rep S′ for any semisimple sequence S′ 6= S,
whence Rep S is an irreducible component of Repd(3).

If, on the other hand, 1 /∈0•(Rep S), then every module in Rep S is contained in
some variety Filt S′, where S′ is a realizable semisimple sequence different from S.
Therefore,

Rep S⊆
⋃

S′ realizable
S′ 6=S

Filt S′ =
⋃

S′realizable
S′ 6=S

Rep S′,

the final equality being part of Theorem 4.3. Irreducibility of Rep S thus implies
Rep S ⊆ Rep S′ for some S′ 6= S, which shows that Rep S fails to be maximal
irreducible. �



400 Kenneth R. Goodearl and Birge Huisgen-Zimmermann

5. Applications of Section 4: Generic modules for
the components over truncated path algebras

Barring Example 5.2(b), 3 will, throughout this section, stand for a truncated path
algebra of Loewy length L + 1. Moreover, d will be a dimension vector of 3.

If one extends the base field K of 3 to an algebraically closed field of infinite
transcendence degree over its prime field K0, neither the description of the com-
ponents of Repd(3) nor the generic properties of their modules will be affected;
see [Huisgen-Zimmermann and Shipman 2017, Section 2.B]. This means that,
in developing a generic representation theory for the irreducible components of
Repd(3), one does not lose generality in assuming that trdeg(K : K0)=∞.

5A. Generic modules. Assume that K has infinite transcendence degree over K0,
and let S be a realizable d-dimensional semisimple sequence. Given that 3 =
3trunc, we will denote the coordinatized projective 3trunc-projective cover Ptrunc =⊕

1≤r≤t 3zr of S0 (see Section 2) more simply by P .
Let σ be any skeleton with layering S. Then the following module G = G(S) is

generic for Rep S in the strict sense of [Babson et al. 2009, Definition 4.2]:

G = P/C, where C =
∑

q σ -critical

3

(
q−

∑
p∈σq

cq, p p
)

for some family (cq, p)q σ -critical, p∈σq of scalars which is algebraically independent
over K0. That G is generic means that G has all those generic properties of the
modules in Rep S which are invariant under Morita self-equivalences 3-mod→
3-mod induced by automorphisms of K over K0. Moreover, G is unique relative to
this property, up to such a Morita self-equivalence. We refer to [ibid., Theorem 5.12],
and to [ibid., Section 4] for a more general statement addressing arbitrary path
algebras modulo relations.

Filtrations of generic modules. In particular, the preceding comments ensure that
tests for semisimple sequences which generically govern filtrations of the modules
in Rep S may be confined to “the” generic module G = G(S).

Caveat: Suppose G is a generic module for an irreducible component of Repd(3).
While the combination of Corollary 3.11 and Theorem 4.5 guarantees that the radical
layering S(G) is the only realizable semisimple sequence to govern a filtration
of G, there will in general be further, nonrealizable, sequences governing suitable
filtrations. For instance, let Q be the quiver 4←−1 α

−→2−→3 and3 any truncated
path algebra based on Q. If d= (0, 1, 1, 1), then Repd(3) is irreducible with generic
module G=3α⊕S4 for any truncation3 of KQ. In particular, S(G)= (S2⊕S4, S3)

is the only realizable semisimple sequence governing all modules with dimension
vector d. If 3 has Loewy length 2, the sequence (S2, S3 ⊕ S4) also governs a
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filtration of G; if the Loewy length of 3 is 3, then (S2, S3, S4) and (S4, S2, S3) are
additional (nonrealizable) semisimple sequences governing filtrations of G.

5B. Algorithmic aspect of Corollary 4.4 and Theorem 4.5. Section 5A tells us
that, for any two realizable d-dimensional semisimple sequences S and S′, we have

Rep S⊆ Rep S′ ⇐⇒ G(S) ∈ Filt S′.

From Lemma and Definition 3.6 we know, moreover, that Filt S′ is the GL(d)-
stable hull of 1-Rep(≥S′). Hence, if the point (Gα)α∈Q1 ∈ Rep S represents the
isomorphism class of G(S), the question of whether G(S) lies in Filt S′ boils
down to the question of whether the matrices Gα are “simultaneously” similar (i.e.,
similar by way of a single element of GL(d)) to matrices having the lower triangular
format Fα characterizing the points in 1-Rep(≥ S′). This format is spelled out
in 3.3.

Given that there are only finitely many d-dimensional semisimple sequences to
be compared, this means in particular that the decision of whether or not Rep S is
a component of Repd(3) is algorithmic.

5C. Interconnections among the components. The following statement rephrases
a result of Crawley-Boevey and Schröer [2002, Theorem 1.1] in terms of generic
modules: if G is a generic module for an irreducible component C of Repd(3) and
G =

⊕
1≤ j≤s G j is a decomposition into direct summands, then each G j is generic

for an irreducible component of Repdim G j
(3). Over a truncated path algebra, this

result may be sharpened as follows.
Call a submodule M of N layer-stably embedded in N if J l M = M ∩ J l N for

all l ≤ L . As a consequence of Theorem 4.5, we obtain:

Theorem 5.1. Suppose that 3 is a truncated path algebra and Rep S is an irre-
ducible component of Repd(3) with generic module G. If G ′ ⊆G is a layer-stably
embedded submodule of G with S(G ′) = S′ and dim G ′ = d ′, then Rep S′ is an
irreducible component of Repd ′(3) with generic module G ′.

Proof. Let H := G ′ be layer-stably embedded in G. From [Huisgen-Zimmermann
and Shipman 2017, Corollary 3.2] we know that H is generic for Rep S′ =

Rep S(H). Thus only the status of Rep S′ as a potential component of Repd ′(3)

needs to be addressed.
Assume that Rep S′ fails to be an irreducible component of Repd ′(3). In view

of Theorem 4.5, this means that H has a filtration governed by some realizable
semisimple sequence S′′ which is strictly smaller than S′, say H = H0⊇ H1⊇· · ·⊇

HL ⊇ HL+1= 0; by definition, S′′l = Hl/Hl+1. We aim at constructing a submodule
filtration G = G0 ⊇ · · · ⊇ GL ⊇ 0 which, in turn, is governed by a realizable
semisimple sequence Ŝ strictly smaller than S. Another application of Theorem 4.5
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will then show that Rep S is not an irreducible component of Repd(3), contrary
to our hypothesis.

For l ≤ L , let πl : G → G/J l+1G denote the quotient map. We recursively
choose submodules Ul of J l G such that

J l+1G ⊆Ul ⊆ J l G, Ul ⊆ JUl−1, J l G/J l+1G = πl(J l H)⊕πl(Ul). (5-1)

First, semisimplicity of G/JG implies that G/JG = π0(H)⊕ π0(U0) for some
U0 ⊆G, and since U0 may be replaced by U0+ JG, there is no loss of generality in
assuming that JG ⊆U0. If U0, . . . ,Uk for some k < L have been chosen so as to
satisfy (5-1), we have J k G = J k H +Uk by Nakayama’s lemma, whence J k+1G =
J k+1 H + JUk . Consequently, J k+1G/J k+2G = πk+1(J k+1 H)⊕ πk+1(Uk+1) for
some Uk+1 ⊆ JUk . On replacing Uk+1 by Uk+1 + J k+2G, we obtain (5-1) for
l = k+ 1. Finally, set UL+1 := 0.

Now define Gl := Hl +Ul for l ≤ L + 1. That the consecutive factors of the
sequence

G = G0 ⊇ G1 ⊇ · · · ⊇ GL ⊇ GL+1 = 0 (5-2)

are semisimple, i.e., JGl ⊆Gl+1 for l ≤ L , is straightforward from our construction.
Indeed, JHl ⊆ Hl+1 and

JUl ⊆ J l+1G = J l+1 H +Ul+1 ⊆ Hl+1+Ul+1.

Let Ŝ be the semisimple sequence governing the filtration (5-2). Remark 3.7(2)
tells us that Ŝ≤ S.

Suppose m is minimal with the property that J m H $ Hm . Such an index m
exists, since S′′ < S′. Then m ≥ 1. Using layer-stability of H in G, we derive

J mG = J m H +Um $ Hm +Um = Gm .

On the other hand, Gl = J l G for l < m, so that the first discrepancy between the
downward filtration (5-2) and the radical filtration of G occurs at l = m. More
specifically,

dimŜm−1=dim(Gm−1/Gm)<dim(Gm−1/J mG)=dim J m−1G/J mG=dimSm−1.

This yields Ŝ< S.
It remains to be verified that Ŝ is realizable. To do so, we make repeated use of

Realizability Criterion 4.1. Again, B is the adjacency matrix of Q. First we note
that realizability of S and S′′ entails

dim J l G/J l+1G ≤ (dim J l−1G/J l G) · B,

dim Hl/Hl+1 ≤ (dim Hl−1/Hl) · B
(5-3)

for 1≤ l ≤ L . Therefore dim Gl/Gl+1 ≤ (dim Gl−1/Gl) · B for 1≤ l ≤ m− 2.
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Invoking (5-1), we find that, for 1≤ l ≤ L ,

Gl/J l+1G = (Hl + J l+1G)/J l+1G⊕ (Ul/J l+1G)

and
Gl+1/J l+1G = (Hl+1+ J l+1G)/J l+1G,

where the sum in the first equation is direct because Hl ∩Ul ⊆ H ∩ J l G = J l H
implies Hl ∩Ul = J l H ∩Ul ⊆ J l+1G. We also have

(Hl + J l+1G)/(Hl+1+ J l+1G)∼= Hl/Hl+1,

since layer-stability of H in G guarantees that Hl ∩ J l+1G ⊆ J l+1 H ⊆ Hl+1.
Consequently,

Gl/Gl+1 ∼= (Hl/Hl+1)⊕ (Ul/J l+1G) for 1≤ l ≤ L . (5-4)

Since Ul ⊆ JUl−1 we obtain, moreover, that

dim Ul/J l+1G≤dim JUl−1/J (J l G)≤ (dim Ul−1/J l G)·B for 1≤ l≤ L . (5-5)

Combining (5-5) with (5-3) and (5-4) yields dim Gl/Gl+1 ≤ (dim Gl−1/Gl) · B for
1≤ l ≤ L , which shows that Ŝ is realizable as required. �

The following examples demonstrate: (a) that the conclusion of Theorem 5.1
does not extend to arbitrary top-stably embedded submodules G ′ of G, i.e., to
submodules G ′ satisfying only J G ′ = G ′ ∩ JG, and (b) that Theorem 5.1 has no
analogue for nontruncated 3 in general.

Examples 5.2 (demonstrating the sharpness of Theorem 5.1). Consider the quivers

Q1 : 1 //
%%

2 // 3 4ee 5oo Q2 : 4

δ
%%

1 //
992

β
// 3

(a) Let 3 be the truncated path algebra of Loewy length 3 based on the quiver Q1.
For d = (1, 1, 1, 1, 1), the variety Repd(3) has two irreducible components, with
generic radical layerings

S(1) := (S1⊕ S5, S3⊕ S4, S2) and S(2) := (S1⊕ S5, S2⊕ S4, S3)

and generic modules G1 and G2 as graphed below:

1 5 1 5

G1 : 3 4 G2 : 2
⊕

4

2 3
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Clearly, the top-stably embedded submodule G ′ of G1 generated by any element z=
e1z ∈G1 has dimension vector d ′ := (1, 1, 1, 0, 0). On the other hand, the sequence
S(G ′)= (S1, S2⊕ S3, 0) fails to be the generic radical layering of an irreducible
component of Repd ′(3), the latter variety being irreducible with uniserial generic
modules.

(b) Now let 3= KQ2/〈βδ〉 and d := (1, 1, 1, 1). Then, again, Repd(3) consists
of two irreducible components. Their generic modules are graphed below:

1 4 1 4
•

G1 : 3 2 G2 : 2
⊕

3

The submodule G ′ of G1 generated by any element z = e1z ∈ G1 has dimension
vector d ′ := (1, 1, 1, 0) and is layer-stably embedded in G1 this time. Nonetheless,
Rep S(G ′) fails to be an irreducible component of Repd ′(3). Indeed, once again,
Repd ′(3) is irreducible and its generic modules are uniserial. �

6. Examples illustrating the theory. The interplay
Repd(3)←→ Repd(3trunc)

6A. Illustrations of the truncated case. In this subsection, 3 denotes a truncated
path algebra.

In sifting the radical layerings of the components of Repd(3) out of the set
Seq(d), it is computationally advantageous to supplement 0• by the map 2 of
equation (1-1), or by the upgraded map 2+ to be introduced next.

Example 4.8 in [Huisgen-Zimmermann 2016] shows that 2 fails to detect all
irreducible components in the general truncated case. However, in that instance
(as in many others), supplementing 2 by path ranks compensates for the blind
spots of 2. Here the path rank of a finite-dimensional 3-module M is the tuple
(dim pM)p ∈Zτ , where τ is the set of paths in KQ \ I . Set f (M)= (− dim pM)p,
and let f ∗(M) be the negative of the path rank of the right 3-module D(M).
Clearly, the map

2+ : Repd(3)→ Seq(d)×Seq(d)×Zτ ×Zτ ,

x 7→ (S(Mx),S∗(Mx), f (Mx), f ∗(Mx)),

is in turn upper semicontinuous. Therefore, it is generically constant on the varieties
Rep S. In particular, those closures Rep S on which 2+ attains its minimal values
(relative to the componentwise partial order on the codomain) are components of
Repd(3). Yet, part (c) of the next example attests to the fact that the augmented
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upper semicontinuous map2+ still leaves certain components undetected in general.
We use 0• to fill in what 2+ fails to pick up.

Example 6.1. Let 3 be the truncated path algebra of Loewy length 4 based on the
quiver Q of Example 2.5, and take d = (2, 2). The semisimple sequences which are
in the running as potential generic radical layerings of components of Repd(3) are

S(1) = (S1, S2, S1, S2), S(4) = (S2, S2
1 , S2, 0), S(7) = (S1⊕ S2, S1⊕ S2, 0, 0),

S(2) = (S2, S1, S2, S1), S(5) = (S2
1 , S2

2 , 0, 0), S(8) = (S1⊕ S2, S1, S2, 0),

S(3) = (S1, S2
2 , S1, 0), S(6) = (S2

2 , S2
1 , 0, 0), S(9) = (S1⊕ S2, S2, S1, 0).

The list excludes the sequences which are not realizable for any choice of r and s,
such as (S1, S1⊕ S2, S2, 0) and (S1, S2, S1⊕ S2, 0), as well as the radical layering
S(0) of the semisimple module, given that Rep S(0) is contained in all nonempty
varieties Rep S. Except for S(3) and S(4), all sequences on the list are realizable
for arbitrary positive integers r, s.

Theorem 4.5 allows us to discard S( j) for j = 7, 8, 9 from the list of possi-
ble generic radical layerings of irreducible components: indeed, the modules in
Rep S(7) are generically decomposable, which makes it evident that they have
filtrations governed by both S(1) and S(2). Any generic module G8 for Rep S(8)

has hypergraph
1

α1αr · · ·

2

β1 β2 βs· · ·

1
α1 α2 αr· · ·

2

Clearly, G8 is generated by elements z1 = e1z1 and z2 = e2z2, and the following
submodule chain is governed by S(1):

G8 ⊇3z2 ⊇3β1z2 ⊇3α1β1z2 ⊇ 0.

Consequently, Rep S(8)⊆Filt S(1) by Corollary 4.4. An analogous argument shows
Rep S(9) ⊆ Filt S(2).

On the other hand, C j := Rep S( j) for j = 1, 2 are components of Repd(3) for
all choices of r, s ≥ 1 by Theorem 4.5, since 0(U )= 1 for any uniserial module U .
Hence only the sequences S( j) for 3 ≤ j ≤ 6 require discussion by cases. We
consider only the cases when r ≥ s, due to the symmetry of the quiver Q.

(a) Let r = s = 1. Then Repd(3) has precisely two irreducible components,
namely C j = Rep S( j) for j = 1, 2. We rule out the remaining sequences. First,
S(3) and S(4) fail to be realizable when r = s = 1. Generically, the modules in
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Rep S(5) are direct sums of two uniserials with radical layering (S1, S2, 0, 0), and
such a module has a filtration governed by S(1). Thus, Rep S(5) ⊆ Filt S(1) = C1.
Similarly, Rep S(6) ⊆ C2.

(b) Let r = 2, s= 1. Then Repd(3) again has precisely two irreducible components,
C1 and C2. Concerning S(3): a generic module G3 for Rep S(3) has a hypergraph of
the form

1
α1 α2

2

β1

2

β11

In particular, the socle of G3 = 3z contains a copy of S2, namely 3(α1− kα2)z
for a suitable scalar k ∈ K ∗. We deduce that the submodule chain

G3 ⊇ JG3 ⊇3(α1− kα2)z+3β1α1z ⊇3(α1− kα2)z ⊇ 0

is governed by S(1), showing Rep S(3) ⊆ Filt S(1) = C1. (On the side, we mention
that Rep S(3) is not contained in C2 because the sequences S(2) and S(3) are not
comparable under the dominance order.)

The sequence S(4) fails to be realizable for s = 1. As for S(5): generically, the
modules in Rep S(5) decompose in the form shown at the end of Example 2.5(a),
whence Rep S(5) ⊆ C1. (Clearly, Rep S(5) 6⊆ C2, because S(5) is not comparable
to S(2).) A routine check shows that Rep S(6) is contained in C2, but not in C1.

(c) Let r ≥ 3, s = 1. Then the variety Repd(3) has three irreducible compo-
nents, namely C j = Rep S( j), for j = 1, 2, 5. The status of C1, C2 being clear, we
focus on the variety Rep S(5) with generic module G5 as depicted at the end of
Example 2.5(b). Again, we prove our claim regarding C5 via Theorem 4.5: to see
that S(5) = S(G5) is the only realizable semisimple sequence governing a filtration
of G5, we note that the only other realizable sequence not ruled out by 2 (i.e.,
with a 2-value less than 2(G5)) is S(1). To verify, without computational effort,
that S(1) does not govern any filtration of G5, it suffices to observe that, for any
module N in Filt S(1), we have S1 ⊆ N/3x for some x ∈ e2 N . On the other hand,
it is readily checked that S1 6⊆ G5/3x for all elements x ∈ e2G5, which shows
0(G5)= 1 as required. Finally, to link up with the remarks preceding Example 6.1,
we point out that 2+(G1) < 2

+(G5), whence the 2+-test fails to detect the status
of Rep S(5) as an irreducible component of Repd(3).

To see that S( j) for j = 3, 4, 6 do not arise as generic radical layerings of
irreducible components of Repd(3), one may follow the patterns of part (b).

(d) Moving to r ≥ 3 and s = 2 raises the number of irreducible components of
Repd(3) to five. We first show that Rep S(3) is now a component. Generically, the
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modules in Rep S(3) have hypergraph

1
α1 α2

· · ·

2
................................................................................................................................................

...

...
..

β1

2

β2

α3
αr

1

Again, the only Rep S( j) (for j ≤ 6) potentially containing Rep S(3) is Rep S(1) =

Filt S(1). Since the modules in Filt S(1) clearly contain a copy of S2 in their socle,
while G3 does not, this possibility is ruled out, and our claim is justified.

The discussion of Rep S(4) is analogous, in that the only Rep S( j) (for j ≤ 6)
potentially containing Rep S(4) is Rep S(2)=Filt S(2), and the modules in Filt S(2)

contain a copy of S1 in their socle, while a generic module for Rep S(4) does not.
As in part (c), one shows that Rep S(5) is a component of Repd(3). On the

other hand, Rep S(6) still fails to be a component; the argument used in part (b) (in
that case, to exclude Rep S(5) from the list of components for r = 2) may now be
applied to s = 2.

(e) Finally, let r ≥ 3 and s ≥ 3. Then all of the varieties Rep S( j) for j = 1, . . . , 6
are irreducible components of Repd(3). The argument backing the status of S(6)

follows the reasoning we used to confirm Rep S(5) as a component of Repd(3)

in part (c). For r = s = 3, hypergraphs of generic modules for the components
Rep S( j) for j = 1, 3, 5 are shown below:

1
α1

1
α1

αr

2

β1
β2βs · · ·

α2
αr

· · ·

2
..........................................................................................................................

...

...
..

β1

β2βs · · ·

α2
αr−1

· · ·

2
β1

1
α1

1
βs· · ·

2
.....
..
..
..
..
..
....
..
.............

....

...
.....................................................................................................
..
...
....

1
α1

1
α1

2
.......................................................................................................................................................................................

...

...
..

α2
αr

· · ·

2

α2
αr

· · ·

Due to symmetry, the generic structure of the modules in the remaining components
is obtained by swapping the roles played by the vertices 1 and 2. �
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Consequences of the “truncated” theory, exemplified by Example 6.1.

(1) Allocation of modules to the components. Once the irreducible components
Rep S( j) of Repd(3) have been pinned down, by way of Theorem 4.5, say, one is in
a position to list the components containing any given d-dimensional 3-module M .
Indeed, compiling this list amounts to deciding which of the S( j) govern filtrations of
M ; as was pointed out in Section 5B, there is an algorithm for carrying out this task.

In Example 6.1 with r =3 and s≥1, for instance, any module M with hypergraph

1

α1

1
α1 α2

α3

2
.......................................................................................................................

..

...
......

α2
α3

2

belongs to the components C1 = Filt S(1) and C5 = Filt S(5), but does not have a
filtration governed by S( j) for j ∈ {2, 3, 4, 6}. Therefore, M belongs to precisely
two of the irreducible components of Repd(3), namely to C1 and C5.

(2) Comparing the generic behavior of the finite-dimensional 3-modules to that
of the finite-dimensional KQ-modules. Examples 6.1(a)–(e) place a spotlight on
the fact that, in the presence of oriented cycles, the generic representation theory
of the path algebra KQ may be “disjoint” from that of its truncations in the fol-
lowing sense: for r, s ≥ 1, we have J (KQ) = 0, and for d = (2, 2) the modules
in the irreducible variety Repd(KQ) are generically simple. Since generically
the latter modules are not annihilated by any path in KQ, we find the variety
Repd(KQ/〈the paths of length 4〉) to be contained in the boundary of a dense open
subset of Repd(KQ).

6B. Information on the components of Repd(3) from those of Rep d(3trunc).
We conclude with a first installment of observations on how to pull information about
the components of Repd(3) from knowledge of the components of Repd(3trunc).
Suppose that the distinct irreducible components of Repd(3trunc) are

Rep3trunc
S(1) = Filt3trunc(S

(1)), . . . , Rep3trunc
S(m) = Filt3trunc(S

(m)).

Moreover, suppose that C is an irreducible component of some Rep3 S with generic
module G (recall that, for any 3, these components and their generic modules
may be algorithmically accessed from quiver and relations of 3). To compare with
Repd(3trunc), one first determines which among the S( j) govern a filtration of G.
Suppose the pertinent sequences are S(1), . . . ,S(r), that is, C ⊆ Filt3 S( j) precisely
when j ≤ r .

Observation 6.2. The closure C is an irreducible component of Repd(3) if and
only if C is maximal irreducible in Filt3 S( j) for all j ≤ r .
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Proof. The claim is immediate from the fact that every irreducible subvariety D of
Repd(3) which contains C is contained in one of the intersections

Repd(3)∩Filt3trunc S( j)
= Filt3 S( j). �

This leads to a lower bound for the number of irreducible components of Repd(3).
Computing it in specific instances typically requires a nonnegligible effort, as it
is not simply based on the number of components of Repd(3trunc). The bound
is sharp in general. Indeed, if 1 denotes the algebra of Example 6.1(e) and 3=
1/〈βiα jβk | i, j, k ∈ {1, 2, 3}〉, then 1 = 3trunc and the number of irreducible
components of Repd(3) coincides with the lower bound given below.

Corollary 6.3. Again, let d be a dimension vector of a basic K -algebra 3, and
adopt the above notation for the irreducible components of Repd(3trunc). Moreover,
set

A j := Repd(3trunc)
∖ ⋃

i≤m
i 6= j

Filt3trunc S(i) for j ≤ m.

Then the number of irreducible components of Repd(3) is bounded from below by
the number of A j which have nonempty intersection with Repd(3).

Proof. Suppose A1, . . . , As are the A j which intersect Repd(3) nontrivially, and
let U j be an irreducible subvariety of A j ∩ Repd(3) for j ≤ s. Among the
Filt3trunc S(i), the variety Filt S( j) is then the only one to contain U j . Consequently,
any maximal irreducible subset D j of Repd(3) containing U j is an irreducible
component of Repd(3) by the preceding observation. By construction, the result-
ing D j are pairwise different. �
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