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Sparsity of p-divisible unramified liftings for
subvarieties of abelian varieties with trivial stabilizer

Danny Scarponi

By means of the theory of strongly semistable sheaves and the theory of the Greenberg transform, we
generalize to higher dimensions a result on the sparsity of p-divisible unramified liftings which played
a crucial role in Raynaud’s proof of the Manin–Mumford conjecture for curves. We also give a bound
for the number of irreducible components of the first critical scheme of subvarieties of an abelian variety
which are complete intersections.

1. Introduction

The Manin–Mumford conjecture is a significant question concerning the intersection of a subvariety
X of an abelian variety A with the group of torsion points of A. Raised independently by Manin and
Mumford, the conjecture was originally formulated in the case of curves. Suppose that A is an abelian
variety over a number field K and that C is a smooth subcurve of A of genus at least two. Then only
finitely many torsion points of A(K ) lie in C . In 1983, Raynaud proved this conjecture and generalized it
to higher dimensions: if A/K is as above and X/K is a smooth subvariety of A which does not contain
any translate of a nontrivial abelian subvariety, then the set of torsion points of A(K ) lying in X is finite
[Raynaud 1983b; 1983c].

Let us fix K , X and A as above. Let U be a nonempty open subscheme of SpecOK not containing any
ramified primes and such that A/K extends to an abelian scheme A/U and X extends to a smooth closed
integral subscheme X of A. For any p ∈U , let R and Rn be the ring of Witt vectors and Witt vectors of
length n+ 1, respectively, with coordinates in the algebraic closure k(p) of the residue field of p. Recall
that R is a DVR with maximal ideal generated by p such that R0 = R/p = k(p). Denote by Xpn and Apn

the Rn-schemes X ×U Spec Rn and A×U Spec Rn , respectively, and consider the reduction map

p Ap1(R1)∩ Xp1(R1)→ Xp0(R0). (1)

In [Raynaud 1983b] it was shown that, if X is a curve, the image of (1) is not Zariski dense in Xp0 ,
i.e., it is a finite set. This local result is crucial in Raynaud’s proof of the Manin–Mumford conjecture
for curves, since it easily implies that only finitely many prime-to-p torsion points of A(K ) lie on X
[Raynaud 1983b, Théorème II].
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It is quite natural to expect that a similar result also holds in higher dimensions. More explicitly, one
can ask: is it true that, if a smooth subvariety X of A does not contain any translate of a nontrivial abelian
subvariety, the image of (1) is not Zariski dense? In this paper we give a positive answer to this question
(see Theorem 5.3).

Theorem 1.1 (sparsity of p-divisible unramified liftings). Suppose that X has trivial stabilizer. For all
p ∈U above a prime p > (dim X)2 deg(�X ) such that Xp0 has trivial stabilizer, the image of

p Ap1(R1)∩ Xp1(R1)→ Xp0(R0)

is not Zariski dense in Xp0 .

Here deg(�X ) refers to the degree of the cotangent bundle �X computed with respect to any fixed
very ample line bundle on X .

Notice that if X does not contain any translate of a nontrivial abelian subvariety, then it has finite
stabilizer. Therefore, replacing A and X with their quotients by the stabilizer of X , one can assume the
stabilizer is trivial (see the beginning of the next section for the definition of stabilizer).

A different generalization of Raynaud’s local result was given by Rössler [2013] who proved that, if
the torsion points of A(Frac(R)) are not dense in X (Frac(R)), then for m big enough the image of

pm Apm (Rm)∩ Xpm (Rm)→ Xp0(R0) (2)

is not Zariski dense in Xp0 [Rössler 2013, Theorem 4.1]. Theorem 1.1 makes Rössler’s result effective,
showing that if the stabilizer of X is trivial, then it is sufficient to consider the map (2) for m = 1.

The proof of Theorem 1.1 strongly relies on Rössler’s paper [2016] and is done by contradiction. First
we use some basic properties of the Greenberg transform to show that, if the image of (1) is Zariski
dense in Xp0 , the absolute Frobenius FXp0 : Xp0 → Xp0 lifts to an endomorphism of Xp1 . A well-known
consequence of this liftability is the existence of a map of sheaves of differentials F∗Xp0

�Xp0→�Xp0 which
is nonzero. If X is a curve, such a map cannot exist, since deg(F∗Xp0

�Xp0 ) is strictly bigger than deg(�Xp0 ).
This simple observation was in fact used by Raynaud to prove Lemma I.5.4 in [Raynaud 1983a]. By
means of the theory of strongly semistable sheaves developed by Rössler [2016], we show that when X
has dimension higher than one, there are no nontrivial maps from F∗Xp0

�Xp0 to �Xp0 . This gives us the
wanted contradiction.

In the last section of this paper, we consider subvarieties of abelian varieties which are complete
intersections. If Gr1 denotes the Greenberg transform of level 1 (see Section 3), then we know that the
first critical scheme

Crit1(X ,A) := [p]∗Gr1(Ap1)∩Gr1(Xp1)

is a scheme over R0 such that

Crit1(X ,A)(R0)= p Ap1(R1)∩ Xp1(R1).
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Using exactly the same technique that allowed Buium [1996] to give an effective form of the Manin–
Mumford conjecture in the case of curves, we get a bound for the number of irreducible components of
Crit1(X ,A) when X is a complete intersection (not necessarily with trivial stabilizer).

Theorem 1.2. Let K be a number field, A/K be an abelian variety of dimension n and let L be a very
ample line bundle on A. Let c ∈ N be positive and let H1, H2, . . . , Hc ∈ |L| be general. Suppose that
X := H1 ∩ H2 ∩ · · · ∩ Hc is smooth. There exists a nonempty open subscheme V ⊆ SpecOK (see the
beginning of Section 6 for its definition) such that if p ∈ V , the number of irreducible components of
Crit1(X ,A) is bounded by

p2n
( n−c∑

h=0

(2n−2c
h

)( c
n−c−h

)
pn−c−h

)
(Ln)2.

Here (Ln) denotes the intersection number of L .
We conclude the introduction with the following remark. Since the field of definition of points in

the prime-to-p torsion Torp(A(K )) is unramified at p and the specialization map A(R)→ Ap1(R1) is
injective on the prime-to-p torsion, we have an injection

Torp(A(K ))∩ X (K )⊆ p Ap1(R1)∩ Xp1(R1).

This implies that, if X is a complete intersection such that Crit1(X ,A)(R0) is finite, then the bound
in Theorem 1.2 is a bound for the cardinality of Torp(A(K )) ∩ X (K ), i.e., an effective form of the
Manin–Mumford conjecture for the prime-to-p torsion.

2. Notations

We fix the following notations

• K a number field,

• K an algebraic closure of K ,

• A/K an abelian variety,

• X ⊆ A a closed integral subscheme, smooth over K ,

• StabA(X) the translation stabilizer of X in A, i.e., the closed subgroup scheme of A characterized
uniquely by the fact that for any K -scheme S and any morphism b : S→ A, translation by b on the
product A×K S maps the subscheme X ×K S to itself if and only if b factors through StabA(X) (for
its existence we refer the reader to [SGA 3 II 1970, Exemple 6.5(e), Expose VIII]),

• U an open subscheme of SpecOK not containing any ramified prime and such that A/K extends to
an abelian scheme A/U and X extends to a smooth closed integral subscheme X of A.

For any prime number p, any unramified prime p of K above p and any n ≥ 0, we denote by

• k(p) the residue field OK /p for p,
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• Kp the completion of K with respect to p,

• K̂ unr
p the completion of the maximal unramified extension of Kp,

• R := W (k(p)) and Rn := Wn(k(p)) the ring of Witt vectors and the ring of Witt vectors of length
n + 1, respectively, with coordinates in k(p). We recall that R can be identified with the ring of
integers of K̂ unr

p and R0 with k(p),

• Xpn the Rn-scheme X ×U Spec Rn Apn the Rn-scheme A×U Spec Rn .

3. The Greenberg transform and the critical schemes

Now we recall some basic facts about the Greenberg transform (for more details, see [Greenberg 1961;
1963; Bosch et al. 1990, pp. 276–277]).

Fix a prime number p and an unramified prime p of K above p.
For any n ≥ 0, the Greenberg transform of level n is a covariant functor Grn from the category of

Rn-schemes locally of finite type, to the category of R0-schemes locally of finite type. If Yn is an
Rn-scheme locally of finite type, Grn(Yn) is a R0-scheme with the property

Yn(Rn)= Grn(Yn)(R0).

More precisely, we can interpret Rn as the set of k(p)-valued points of a ring scheme Rn over k(p). For
any R0-scheme T , we define Wn(T ) as the ringed space over Rn consisting of T as a topological space
and of HomR0(T,Rn) as a structure sheaf. By definition Grn(Yn) represents the functor from the category
of schemes over R0 to the category of sets given by

T 7→ HomRn (Wn(T ), Yn)

where Hom stands for homomorphisms of ringed spaces. In other words, the functor Grn is right adjoint
to the functor Wn .

The functor Grn respects closed immersions, open immersions, fiber products, smooth, étale morphisms
and is the identity for n = 0. Furthermore it sends group schemes over Rn to group schemes over R0.
The canonical morphism Rn+1→ Rn gives rise to a functorial transition morphism πn+1 : Grn+1→ Grn .

Let Yn be a scheme over Rn locally of finite type. Then for any m < n we define

Ym := Yn ×Rn Rm .

Let us call FY0 : Y0→ Y0 the absolute Frobenius endomorphism of Y0 and �Y0/R0 the sheaf of relative
differentials.

For any finite rank locally free sheaf F over Y0 we will write

V (F) := Spec(Sym(F∨))

for the vector bundle over Y0 associated to F.
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Suppose now that Yn is smooth over Rn , so that �Y0/R0 is locally free. A key result about the Greenberg
transform is the following fact [Greenberg 1963, Section 2]:

π1 : Gr1(Y1)→ Gr0(Y0)= Y0

is a torsor under the Frobenius tangent bundle

V (F∗Y0
�∨Y0/R0

).

Let X , A, X , A and U be as fixed in the previous section and suppose that p ∈U . We refer the reader
to Section II.1 in [Raynaud 1983a] for more details on what we will recall from now till the end of the
section. For any n ≥ 0, the kernel of

Grn(Apn )→ Gr0(Ap0)= Ap0

is unipotent, killed by pn . Thus, the scheme-theoretic image [pn
]∗Grn(Apn ) of multiplication by

pn in Grn(Apn ) is the greatest abelian subvariety of Grn(Apn ) and, since R0 is algebraically closed,
[pn
]∗Grn(Apn )(R0)= pn Grn(Apn )(R0).

We define the n-critical scheme as

Critn(X ,A) := [pn
]∗Grn(Apn )∩Grn(Xpn ).

Notice that Critn(X ,A) is a scheme over R0 and that Crit0(X ,A)= Xp0 .
The transition morphisms πn+1 :Grn+1(Apn+1)→Grn(Apn ) lead to a projective system of R0-schemes

· · · → Crit2(X ,A)→ Crit1(X ,A)→ Crit0(X ,A)= Xp0,

whose connecting morphisms are both affine and proper, hence finite. In fact, transition morphisms are
affine and the subscheme [pn

]∗Grn(Apn ) is proper, being the greatest abelian subvariety of Grn(Apn ).
We shall write Excn(X ,A) for the scheme theoretic image of the morphism Critn(X ,A)→ Xp0 .

4. The geometry of vector bundles in positive characteristic

In this section we recall some results on the geometry of vector bundles in positive characteristic by
Langer [2004] and Rössler [2016]. These results will play a crucial role in the proof of Lemma 5.1 and
Theorem 5.3.

Let us start with some basic definitions and facts regarding semistable sheaves in positive characteristic.
Let Y be a smooth projective variety over an algebraically closed field l0 of positive characteristic. We

write as before �Y/ l0 for the sheaf of differentials of Y over l0 and FY : Y → Y for the absolute Frobenius
endomorphism of Y . Now let L be a very ample line bundle on Y . If V is a torsion free coherent sheaf
on Y , we shall write

µ(V )= µL(V )= degL(V )/ rk(V )
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for the slope of V (with respect to L). Here rk(V ) is the rank of V , i.e., the dimension of the stalk of V
at the generic point of Y . Furthermore,

degL(V ) :=
∫

Y
c1(V ) · c1(L)dim(Y )−1

where c1(·) refers to the first Chern class with values in an arbitrary Weil cohomology theory and the
integral

∫
Y stands for the push-forward morphism to Spec l0 in that theory. Recall that V is called

semistable (with respect to L) if for every coherent subsheaf W of V , we have µ(W )≤ µ(V ) and it is
called strongly semistable if Fn,∗

Y V is semistable for all n ≥ 0.
In general, there exists a filtration

0= V0 ⊆ V1 ⊆ · · · ⊆ Vr−1 ⊆ Vr = V

of V by subsheaves, such that the quotients Vi/Vi−1 are all semistable and such that the slopes µ(Vi/Vi−1)

are strictly decreasing for i ≥ 1. This filtration is unique and is called the Harder–Narasimhan (HN)
filtration of V . We will say that V has a strongly semistable HN filtration if all the quotients Vi/Vi−1 are
strongly semistable. We shall write

µmin(V ) := µ(Vr/Vr−1) and µmax(V ) := µ(V1).

By the very definition of HN filtration, we have

V is semistable ⇔ µmin(V )= µmax(V ).

An important consequence of the definitions is the following fact; if V and W are two torsion free sheaves
on Y and µmin(V ) > µmax(W ), then HomY (V,W )= 0.

For more on the theory of semistable sheaves, see the monograph [Huybrechts and Lehn 2010].
The following two theorems are key results from Langer.

Theorem 4.1 [Langer 2004, Theorem 2.7]. If V is a torsion free coherent sheaf on Y , then there exists
n0 ≥ 0 such that Fn,∗

Y V has a strongly semistable HN filtration for all n ≥ n0.

If V is a torsion free coherent sheaf on Y , we now define

µmin(V ) := lim
r→∞

µmin(F
r,∗
Y V ) char(l0)

r and µmax(V ) := lim
r→∞

µmax(F
r,∗
Y V )/ char(l0)

r .

Note that Theorem 4.1 implies that the two sequences µmin(F
r,∗
Y V )/ char(l0)

r and µmax(F
r,∗
Y V )/ char(l0)

r

become constant when r is sufficiently large, so the above definitions of µmin and µmax make sense.
Furthermore the sequences µmin(F

r,∗
Y V ) char(l0)

r and µmax(F
r,∗
Y V ) char(l0)

r are respectively weakly
decreasing and weakly increasing, therefore we have

µmin(V )≥ µmin(V ) and µmax(V )≥ µmax(V ).

Let us define
α(V ) :=max{µmin(V )−µmin(V ), µmax(V )−µmax(V )}.
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Theorem 4.2 [Langer 2004, Cororollary 6.2]. If V is of rank r , then

α(V )≤
r − 1

char(l0)
max{µmax(�Y/ l0), 0}.

In particular, if µmax(�Y/ l0)≥ 0 and char(l0)≥ d = dim Y ,

µmax(�Y/ l0)≤
char(l0)

char(l0)+ 1− d
µmax(�Y/ l0).

We conclude this section with the following two lemmas from Rössler.

Lemma 4.3 [Rössler 2016, Lemma 3.8]. Suppose that there is a closed l0-immersion i : Y ↪→ B, where
B is an abelian variety over l0. Suppose that StabB(Y )= 0. Then �∨Y is globally generated and for any
dominant proper morphism φ : Y0→ Y , where Y0 is integral, we have H 0(Y0, φ

∗�∨Y )= 0. Furthermore,
we have µmin(�Y ) > 0.

Lemma 4.4 [Rössler 2016, Cororollary 3.11]. Let V be a finite rank, locally free sheaf over Y. Suppose that

• for any surjective finite map φ : Y ′→ Y with Y ′ integral, we have H 0(Y ′, φ∗V )= 0,

• V∨ is globally generated.

Then H 0(Y, Fn,∗
Y V ⊗�Y/ l0)= 0 for n sufficiently big.

Furthermore, let T → Y be a torsor under V (Fn0,∗
Y V ), where n0 satisfies H 0(Y, Fn,∗

Y V ⊗�Y/ l0)= 0
for all n > n0. Let φ : Y ′→ Y be a finite surjective morphism and suppose that Y ′ is integral. Then we
have the implication

φ∗T is a trivial V (φ∗(Fn0,∗
Y V ))-torsorH⇒ T is a trivial V (Fn0,∗

Y V )-torsor.

The main ingredient of the proof of Lemma 4.4 is a result by Szpiro and Lewin-Ménégaux which we
will need later.

Proposition 4.5 [Szpiro 1981, Expose 2, Proposition 1]. If V is a vector bundle over Y such that
H 0(Y, F∗Y V ⊗�Y/ l0)= 0, then the map

H 1(Y, V )→ H 1(Y, F∗Y V )

is injective.

5. Sparsity of p-divisible unramified liftings

In this section we prove our result on the sparsity of p-divisible unramified liftings (see Theorem 5.3).
Let K , A, X and U be as fixed in Section 2 and let StabA(X) be trivial. The construction of the

stabilizer commutes with the base change, so we have

StabA(X)= StabA(X )×U Spec K .
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Since StabA(X) is trivial, by generic flatness and finiteness, we can restrict the map π : StabA(X )→U
to the inverse image of a nonempty open subscheme U ′ ⊂U to obtain a finite flat commutative group
scheme of degree one

π|π−1(U ′) : π
−1(U ′)→U ′.

This implies that π|π−1(U ′) is an isomorphism and for any q ∈U ′ we have that StabAq0 (Xq0) is trivial. We
will denote by Ũ ⊆U the nonempty open subscheme

Ũ := {q ∈U | StabAq0 (Xq0) is trivial}.

For any p ∈U we denote by Fk(p) the Frobenius endomorphism on k(p) and by FR1 the endomorphism
of R1 induced by Fk(p) by functoriality. We define

X ′p0 := Xp0 ×Fk(p)
k(p) and X ′p1 := Xp1 ×FR1

R1

and we write
FXp0/k(p) : Xp0 → X ′p0

for the relative Frobenius on Xp0 . For brevity’s sake, from now on we will write

�Xp0 , �X ′
p0
, �Xp1 , �X ′

p1
and �X

instead of
�Xp0/k(p), �X ′

p0/k(p)
, �Xp1/R1, �X ′

p1/R1 and �X/K .

Observe that since U is normal, A is projective over U [Raynaud 1970, Theorem XI 1.4]. Therefore there
exists a U -very ample line bundle L on X . For any p ∈U different from the generic point ξ , let us denote
by Lp the inverse image of L on Xp0 . Similarly we denote by Lξ the inverse image of L on X . From now
on, for any vector bundle Gp over Xp0 , we will write deg(Gp) for the degree of Gp with respect to Lp.
Analogously, if Gξ is a vector bundle over X , we will write deg(Gξ ) for the degree of Gξ with respect
to Lξ . Now consider the vector bundle �X/U over X . For any natural number m, the map from U to Z

defined by

p 7→ χ((�X/U ⊗ Lm)p)= χ(�Xp0 ⊗ Lm
p ) and ξ 7→ χ((�X/U ⊗ Lm)ξ )= χ(�X ⊗ Lm

ξ )

(here χ refers to the Euler characteristic) is constant on U [Mumford 1970, Chapter II, Section 5].
Therefore we have the equality

χ(�Xp0 ⊗ Lm
p )= χ(�X ⊗ Lm

ξ )

for all m ∈ N and for all p ∈ U . In other words, the Hilbert polynomial of �Xp0 with respect to Lp

coincides with the Hilbert polynomial of �X with respect to Lξ . Since the degree of a vector bundle we
defined at the beginning of this section can be described in terms of its Hilbert polynomial [Huybrechts
and Lehn 2010, Definition 1.2.11], we obtain that for every p ∈U we have deg(�Xp0 )= deg(�X ).

The following lemma is a fundamental step to prove our sparsity Theorem 5.3.
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Lemma 5.1. Let K , A, X and U be as fixed in Section 2, let StabA(X) be trivial and let n be the dimension
of X over K . Then

HomXp0 (F
k,∗
Xp0
�Xp0 , �Xp0 )= 0

for any k ≥ 1 and any p ∈ Ũ above a prime p > n2 deg(�X ).

Proof. Let us notice first that, if n = 1, then X is a curve of genus g at least 2 and

HomXp0 (F
k,∗
Xp0
�Xp0 , �Xp0 )= 0

is a simple consequence of the fact

deg(Fk,∗
Xp0
�Xp0 )= pk(2g− 2) > 2g− 2= deg�Xp0 .

To treat the general case, let us fix p ∈ Ũ above a prime p > n2 deg(�X ). We know that if

µmin(F
k,∗
Xp0
�Xp0 ) > µmax(�Xp0 )

then HomXp0 (F
k,∗
Xp0
�Xp0 , �Xp0 )= 0. Since µmin ≥µmin and µmax ≥µmax, it is sufficient to show that, for

every k ≥ 1
µmin(F

k,∗
Xp0
�Xp0 ) > µmax(�Xp0 ). (3)

Since StabAp0 (Xp0) is trivial, we can apply Lemma 4.3 to obtain µmin(�Xp0 ) > 0. In particular
µmin(�Xp0 ) > 0 and deg(�Xp0 ) > 0. Using this and the equality µmin(F

k,∗
Xp0
�Xp0 )= pkµmin(�Xp0 ), we

see that (3) is implied by
pµmin(�Xp0 ) > µmax(�Xp0 ). (4)

Theorem 4.2 gives us the following inequality

pµmin(�Xp0 )≥ pµmin(�Xp0 )+ (1− n)µmax(�Xp0 ),

so that (4) is satisfied if
pµmin(�Xp0 ) > nµmax(�Xp0 ). (5)

Since p > n2 deg(�X )≥ n, we can apply the second part of Theorem 4.2

µmax(�Xp0 )≤
p

p+ 1− n
µmax(�Xp0 ),

so that inequality (5) is implied by

(p+ 1− n)µmin(�Xp0 ) > nµmax(�Xp0 ). (6)

If �Xp0 is semistable, (6) gives p > 2n− 1. Otherwise, we can estimate µmax(�Xp0 ) and µmin(�Xp0 )

in the following way. We know that

µmax(�Xp0 )=
deg(M)
rk(M)
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for some subsheaf 0 6= M ( �Xp0 . Therefore we have µmax(�Xp0 ) ≤ deg(M). Furthermore, since
µmin(�Xp0 ) > 0, we have that deg(�Xp0/M) > 0. This and the additivity of the degree on short exact
sequences gives us

µmax(�Xp0 )≤ deg(M)≤ deg(�Xp0 )− 1.

Similarly,

µmin(�Xp0 )=
deg(Q)
rk(Q)

for some Q quotient of �Xp0 , so µmin(�Xp0 )≥ 1/n. Inequality (6) is then implied by

p > n2 deg(�Xp0 )+ (n− 1− n2).

Since n− 1− n2 is always negative, we are reduced to p > n2 deg(�Xp0 ). Now deg(�Xp0 ) is greater or
equal to one, so n2 deg(�Xp0 )≥ 2n− 1 for any n. This ensures us that the condition

p > n2 deg(�Xp0 )

is sufficient to have µmin(F
k,∗
Xp0
�Xp0 ) > µmax(�Xp0 ) for every k ≥ 1 whether �Xp0 is semistable or not.

To conclude it is enough to remember that deg(�Xp0 ) coincides with deg(�X ). �

Corollary 5.2. The map
H 1(Xp0, F∗Xp0

�∨Xp0
)→ H 1(Xp0, Fk,∗

Xp0
�∨Xp0

)

is injective for every k ≥ 1 and every p ∈ Ũ above a prime p > n2 deg(�X ).

Proof. Lemma 5.1 and Proposition 4.5 imply that

H 1(Xp0, Fh,∗
Xp0
�∨Xp0

)→ H 1(Xp0, Fh+1,∗
Xp0

�∨Xp0
)

is injective for every h ≥ 0. Therefore the composition

H 1(Xp0, F∗Xp0
�∨Xp0

) H 1(Xp0, F2,∗
Xp0
�∨Xp0

) · · · H 1(Xp0, Fk,∗
Xp0
�∨Xq0

)

is an injective map. �

We are now ready to prove our sparsity result.

Theorem 5.3. With the same hypotheses as in Lemma 5.1, for any p ∈ Ũ above a prime p > n2 deg(�X ),
the set

{P ∈ Xp0(R0) | P lifts to an element of p Ap1(R1)∩ Xp1(R1)}

is not Zariski dense in Xp0 .

Proof. Let us fix p as in the hypotheses. Since

Crit1(X ,A)(R0)= p Ap1(R1)∩ Xp1(R1),

we have that
{P ∈ Xp0(R0) | P lifts to an element of p Ap1(R1)∩ Xp1(R1)}
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coincides with the image of Crit1(X ,A)(R0)→ Xp0(R0).
Let us assume by contradiction that this image is dense in Xp0(R0). This implies that π1 :Gr1(Xp1)→Xp0

is a trivial torsor; the argument we use to show this is taken from Rössler (see the beginning of the proof
of Theorem 2.2 in [Rössler 2016]). First of all the closed map Crit1(X ,A)→ Xp0 is surjective and so we
can choose an irreducible component

Crit1(X ,A)0 ↪→ Crit1(X ,A)

which dominates Xp0 . Lemmas 4.3 and 5.1 allow us to apply the second part of Lemma 4.4 with V =�∨Xp0
,

Y = Xp0 , n0 = 1, T = Gr1(Xp1) and φ equal to Crit1(X ,A)0→ Xp0 . We have that φ∗Gr1(Xp1) is trivial
as a V (φ∗F∗Xp0

�∨Xp0
)-torsor, since Crit1(X ,A)0 is contained in Gr1(Xp1). Hence π1 : Gr1(Xp1)→ Xp0

is trivial as a V (F∗Xp0
�∨Xp0

)-torsor. Let us take a section σ : Xp0 → Gr1(Xp1). By the definition of the
Greenberg transform, the map σ over R0 corresponds to a map σ :W1(Xp0)→ Xp1 over R1. We can
precompose σ with the morphism t : Xp1 →W1(Xp0) corresponding to

W1(OXp0 )→OXp1

(a0, a1) 7→ ã p
0 + ã1 p,

where ãi lifts ai . Consider the following diagram

Xp1 W1(Xp0) Xp1

Xp0 Xp0 Xp0

FX
p0

σ

Id

t

Its left square is commutative, since the composition

Xp0 −→ Xp1
t
−→W1(Xp0)

simply corresponds to the map
W1(OXp0 )→OXp0

(a0, a1) 7→ a p
0 .

For the commutativity of the right square, notice that by the very definition of the transition morphism
π1 : Gr1(Xp1)→ Xp0 we have a commutative diagram

HomR1(W1(Xp0), Xp1) HomR0(Xp0,Gr1(Xp1))

HomR0(Xp0, Xp0)

reduction mod p
(π1 ◦−)
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In particular, IdXp0 = π1 ◦ σ = (reduction mod p)(σ ), which is exactly what we wanted to verify. We
obtain therefore that σ ◦ t : Xp1 → Xp1 is a lift of the Frobenius FXp0 .

The diagram below is also commutative

Xp1 W1(Xp0) Xp1

Spec(R1) Spec(R1) Spec(R1)
FR1

σ

Id

t

In fact, by definition, σ is a morphism over R1, so the right square is commutative. The commutativity
of the left square is easy to check, since we know explicitly t and FR1 . Therefore σ ◦ t is a lift of the
Frobenius FXp0 compatible with FR1 ; this implies the existence of a morphism of R1-schemes

F̃ : Xp1 → X ′p1

lifting the relative Frobenius FXp0/R0 .
As shown in part (b) of the proof of Théorème 2.1 in [Deligne and Illusie 1987], since the image

of F̃∗ :�X ′
p1
→ F̃∗�Xp1 is contained in pF̃∗�Xp1 and the multiplication by p induces an isomorphism

p : FXp0/R0,∗�Xp0 −→
∼ pF̃∗�Xp1 , there exists a unique map

f := p−1 F̃∗ :�X ′
p0
→ FXp0/R0,∗�Xp0 ,

making the diagram below commutative.

�X ′
p1

pF̃∗�Xp1

�X ′
p0

FXp0/R0,∗�Xp0

f

p

F̃∗

Proposition 3 in [Xin 2016] states that the adjoint of f ,

f : F∗Xp0
�Xp0 = F∗Xp0/R0

�X ′
p0
→�Xp0 ,

is generically bijective. This clearly contradicts Lemma 5.1. �

6. The number of irreducible components of the critical scheme of complete intersections

In this last section we provide an upper bound for the number of irreducible components of the critical
scheme Crit1(X ,A) in the case in which X is a smooth complete intersection.

Let A/K be an abelian variety of dimension n and let L be a very ample line bundle on A. Let c ∈N

be positive and let H1, H2, . . . , Hc ∈ |L| be general. We define X := H1∩H2∩· · ·∩Hc. Suppose that X
is smooth.
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Let us take a sufficiently small open V ⊆Spec(OK ) such that A extends over V to an abelian scheme A,
L extends to a V -very ample line bundle L, Hi extends to Hi for every i and X :=H1 ∩H2 ∩ · · · ∩Hc is
smooth. We can restrict V if necessary and suppose K/Q is unramified at p.

Theorem 6.1. Let K be a number field, A/K be an abelian variety of dimension n and let L be a very
ample line bundle on A. Let c ∈ N be positive and let H1, H2, . . . , Hc ∈ |L| be general. Suppose that
X := H1 ∩ H2 ∩ · · · ∩ Hc is smooth. If p is in the open subscheme V defined above, then the number of
irreducible components of Crit1(X ,A) is bounded by

p2n
( n−c∑

h=0

(2n−2c
h

)( c
n−c−h

)
pn−c−h

)
(Ln)2.

Here (Ln) denotes the intersection number of L .

Proof. To obtain Theorem 6.1, we follow the approach of [Buium 1996, Theorem 1.11], proving the
Manin–Mumford conjecture for curves; we first show that Crit1(X ,A) can be realized as the intersection
of two projective varieties (see P(EX ) and [p]∗Gr1(Ap1) below) and then use the product of their degrees
to bound the number of its irreducible components. Since X is not necessarily of dimension one, the
computation of the degree of P(EX ) is slightly more demanding here than the corresponding one in
Buium’s work.

Let us fix p ∈ V . The torsors Gr1(Xp1)→ Xp0 and Gr1(Ap1)→ Ap0 correspond to elements ηX ∈

H 1(Xp0, F∗Xp0
�∨Xp0

) and ηA ∈ H 1(Ap0, F∗Ap0
�∨Ap0

), respectively. Under the natural isomorphisms

H 1(Xp0, F∗Xp0
�∨Xp0

)' Ext1(F∗Xp0
�Xp0 ,OXp0 ) and H 1(Ap0, F∗Ap0

�∨Ap0
)' Ext1(F∗Ap0

�Ap0 ,OAp0 ),

ηX and ηA correspond to extensions of vector bundles

0→OXp0 → EX → F∗Xp0
�Xp0 → 0 and 0→OAp0 → E A→ F∗Ap0

�Ap0 → 0.

For any locally free sheaf W over a base S of finite type over a field, we shall write P(W ) for the projective
bundle associated to W , i.e., the S-scheme representing the functor on S-schemes

T 7→ {isomorphism classes of surjective morphisms of OT -modules WT → Q,
where Q is locally free of rank 1}.

As shown in paragraph 1 of [Martin-Deschamps 1984], the two extensions above give us two divisors

DX := P(F∗Xp0
�Xp0 )⊆ P(EX ) and DA := P(F∗Ap0

�Ap0 )⊆ P(E A),

belonging respectively to the linear systems |OP(EX )(1)| and |OP(E A)(1)|, and

Gr1(Xp1)' P(EX ) \ DX and Gr1(Ap1)' P(E A) \ DA.
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If i denotes the closed immersion i : Xp0 → Ap0 , then it is not difficult to show that there is a natural
restriction homomorphism i∗E A→ EX prolonging the homomorphism i∗�Ap0 →�Xp0 . The homomor-
phism i∗E A→ EX is clearly surjective, so it induces a closed immersion j :P(EX ) ↪→P(E A) prolonging
Gr1(Xp1) ↪→ Gr1(Ap1). Therefore we have a commutative diagram

[p]∗Gr1(Ap1)

Gr1(Xp1) Gr1(Ap1)

P(EX ) P(E A)

Xp0 Ap0

πX πA

T

j

i

Let us denote by Lp the base change of L to Ap0 . It is standard to prove that

H := π∗ALp⊗OP(E A)(1)

is very ample on P(E A) [Buium and Voloch 1996, p. 4]. We have

H|P(EX ) = π
∗

X i∗Lp⊗OP(EX )(1) and H|[p]∗ Gr1(Ap1 ) = T ∗Lp,

since DA ∈ |OP(E A)(1)| and [p]∗Gr1(Ap1) ⊆ Gr1(Ap1) ' P(E A) \ DA. We know that [p]∗Gr1(Ap1) is
the maximal abelian subvariety of Gr1(Ap1) and we know that the multiplication by p map on Gr1(Ap1)

factors through the isogeny T . This implies that T has degree at most p2n , so we have the following
estimate

degH([p]∗Gr1(Ap1))≤ p2n(Ln
p).

Let us now consider degH(P(EX )). It coincides with∫
P(EX )

c1(H|P(EX ))
2n−2c (7)

where c1 stands for the first Chern class in the Chow ring and
∫

P(EX )
stands for the push-forward morphism

to Spec(R0) in the Chow theory. Since

c1(H|P(EX ))= c1(π
∗

X i∗Lp)+ c1(OP(EX )(1))
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we can rewrite (7) as ∫
P(EX )

2n−2c∑
h=0

(
2n− 2c

h

)
c1(π

∗

X i∗Lp)
h
· c1(OP(EX )(1))

2n−2c−h .

Equivalently ∫
Xp0

2n−2c∑
h=0

(
2n− 2c

h

)
c1(i∗Lp)

h
·πX,∗(c1(OP(EX )(1))

2n−2c−h)

and by definition of Segre class this is∫
Xp0

2n−2c∑
h=0

(
2n− 2c

h

)
c1(i∗Lp)

h
· sn−c−h(E∨X ).

Notice that the Segre classes of the dual of EX appear in our formula; this is due to the fact that we are
not using Fulton’s geometric notation for the projective bundle associated to a vector bundle (see the note
at the end of B.5.5 in [Fulton 1998]). Since sk = 0 if k < 0, we end up with∫

Xp0

n−c∑
h=0

(2n−2c
h

)
c1(i∗Lp)

h
· sn−c−h(E∨X ).

Now the exact sequence

0→OXp0 → EX → F∗Xp0
�Xp0 → 0

implies

sn−c−h(E∨X )= sn−c−h(F∗Xp0
�∨Xp0

)

and so

sn−c−h(E∨X )= pn−c−hsn−c−h(�
∨

Xp0
)

(here we have used the following fact: the pullback of a cycle η of codimension j through the Frobenius
map coincides with p jη). Therefore we have to study the following sum

n−c∑
h=0

(
2n− 2c

h

)
pn−c−hc1(i∗Lp)

h
· sn−c−h(�

∨

Xp0
). (8)

The short exact sequence

0→�∨Xp0
→ i∗�∨Ap0

→ N → 0

(where N is the normal bundle for i) gives

ct(�
∨

Xp0
)ct(N )= ct(i∗�∨Ap0

)= 1,

so that ct(N )= st(�
∨

Xp0
). Recalling that

ct(N )= (1+ c1(i∗Lp)t)c
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we obtain

sn−c−h(�
∨

Xp0
)= cn−c−h(N )=

(
c

n− c− h

)
c1(i∗Lp)

n−c−h .

Substituting in (8), we obtain( n−c∑
h=0

(2n−2c
h

)( c
n−c−h

)
pn−c−h

)
c1(i∗Lp)

n−c.

Therefore degH(P(EX )) is( n−c∑
h=0

(2n−2c
h

)( c
n−c−h

)
pn−c−h

)∫
Xp0

c1(i∗Lp)
n−c.

Since Xp0 = H1,p ∩ · · · ∩ Hc,p where H1,p, . . . , Hc,p belong to |Lp|, we have∫
Xp0

c1(i∗Lp)
n−c
=

∫
Ap0

c1(Lp)
n
= (Ln

p)

and

degH(P(EX ))=

( n−c∑
h=0

(2n−2c
h

)( c
n−c−h

)
pn−c−h

)
(Ln

p).

Now Bézout’s theorem in Fulton’s form [1998, p. 148] says that the number of irreducible components in
the intersection of two projective varieties of degrees d1 and d2 cannot exceed d1d2. In particular, the
number of irreducible components of Crit1(X ,A) is less than or equal to

p2n
( n−c∑

h=0

(2n−2c
h

)( c
n−c−h

)
pn−c−h

·

)
(Ln

p)
2.

Notice that (Ln
p)= (L

n), by the same reasoning as before Lemma 5.1. �

Remark 6.2. One can consider any intersection X := H1 ∩ H2 ∩ · · · ∩ Hc where Hi ∈ |L i | for some
very ample line bundles L i . In this more general case, the computations in our proof become a bit more
complex, but it is still possible to give an explicit bound for the number of irreducible components of
Crit1(X ,A). We have

c j (N )=
∑

1≤i1<···<i j≤c

i j∏
k=i1

c1(i∗Lk,p)

which implies

sn−c−h(�
∨

Xp0
)=

∑
1≤i1<···<in−c−h≤c

in−c−h∏
k=i1

c1(i∗Lk,p).

Therefore, defining H := π∗AL1,p⊗OP(E A)(1), then degH(P(EX )) is

n−c∑
h=0

(
2n− 2c

h

)
pn−c−h

∑
1≤i1<···<in−c−h≤c

(∫
Xp0

c1(i∗L1,p)
h

in−c−h∏
k=i1

c1(i∗Lk,p)

)
.
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We have ∫
Xp0

c1(i∗L1,p)
h

in−c−h∏
k=i1

c1(i∗Lk,p)= Ii1,...,in−c−h

where Ii1,...,in−c−h is the following intersection number

Ii1,...,in−c−h := (

h+1 times︷ ︸︸ ︷
L1 · · · L1 ·L2 · L3 · · · Lc · L i1 · L i2 · · · L in−c−h ).

We obtain that degH(P(EX )) is

n−c∑
h=0

(
2n− 2c

h

)
pn−c−h

∑
1≤i1<···<in−c−h≤c

Ii1,...,in−c−h ,

and therefore the number of irreducible components of Crit1(X ,A) is bounded by

p2n(Ln
1)

n−c∑
h=0

(
2n− 2c

h

)
pn−c−h

∑
1≤i1<···<in−c−h≤c

Ii1,...,in−c−h .
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