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On a conjecture of Kato and Kuzumaki
Diego Izquierdo

In 1986, Kato and Kuzumaki stated several conjectures in order to give a diophan-
tine characterization of cohomological dimension of fields in terms of projective
hypersurfaces of small degree and Milnor K -theory. We establish these con-
jectures for finite extensions of C(x1, . . . , xn) and C(x1, . . . , xn)((t)), and we
prove new local-global principles over number fields and global fields of positive
characteristic in the context of Kato and Kuzumaki’s conjectures.

Introduction

In 1986, in the article [Kato and Kuzumaki 1986], Kato and Kuzumaki stated a set of
conjectures which aimed at giving a diophantine characterization of cohomological
dimension of fields. For this purpose, they introduced variants of the Ci -properties
of fields involving Milnor K -theory and projective hypersurfaces of small degree,
and they hoped that these variants would characterize fields of small cohomological
dimension.

More precisely, fix a field L and two nonnegative integers q and i . Let K M
q (L)

be the q-th Milnor K -group of L . For each finite extension L ′ of L , one can define
a norm morphism NL ′/L : K M

q (L
′)→ K M

q (L); see [Kato 1980, section 1.7]. Thus,
if Z is a scheme of finite type over L , one can introduce the subgroup Nq(Z/L) of
K M

q (L) generated by the images of the norm morphisms NL ′/L when L ′ describes
the finite extensions of L such that Z(L ′) 6= ∅. One then says that the field L is
Cq

i if, for each n ≥ 1, for each finite extension L ′ of L and for each hypersurface Z
in Pn

L ′ of degree d with d i
≤ n, one has Nq(Z/L ′) = K M

q (L
′). For example, the

field L is C0
i if, for each finite extension L ′ of L , every hypersurface Z in Pn

L ′ of
degree d with d i

≤ n has a 0-cycle of degree 1. The field L is Cq
0 if, for each tower

of finite extensions L ′′/L ′/L , the norm morphism NL ′′/L ′ : K M
q (L

′′)→ K M
q (L

′) is
surjective.

Kato and Kuzumaki conjectured that, for i ≥ 0 and q ≥ 0, a perfect field is
Cq

i if and only if it is of cohomological dimension at most i + q. This conjecture
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generalizes a question raised by Serre [1965] asking whether the cohomological
dimension of a Ci -field is at most i . In an unpublished paper, Acquista [2005]
proved Kato and Kuzumaki’s conjecture for i = 0: in other words, a perfect field
is Cq

0 if and only if it is of cohomological dimension at most q. As it was already
pointed out at the end of Kato and Kuzumaki’s original paper [1986], such a
result also follows from the Bloch–Kato conjecture, which has been established
by Rost and Voevodsky. However, it turns out that the conjectures of Kato and
Kuzumaki are wrong in general. For example, Merkurjev [1991] constructed a
field of characteristic 0 and of cohomological dimension 2 which did not satisfy
property C0

2 . Similarly, Colliot-Thélène and Madore [2004] produced in a field of
characteristic 0 and of cohomological dimension 1 which did not satisfy property
C0

1 . These counterexamples were all constructed by a method using transfinite
induction due to Merkurjev and Suslin. The conjecture of Kato and Kuzumaki is
therefore still completely open for fields that usually appear in number theory or in
algebraic geometry.

Very recently Wittenberg [2015] made an important step forward: he proved that
p-adic fields, the field C((t1))((t2)) and totally imaginary number fields all satisfy
property C1

1 . His method consists of introducing and proving a property which is
stronger than property C1

1 : more precisely, he says that a field L is strongly C1
1 if,

for each finite extension L ′ of L , each proper scheme Z over L ′ and each coherent
sheaf E on Z , the Euler–Poincaré characteristic χ(Z , E) kills the abelian group
K M

q (L
′)/Nq(Z/L ′). It turns out that this notion behaves much better with respect

to dévissage than the C1
1 -property of Kato and Kuzumaki: this allows Wittenberg

to use methods that had been previously developed in [Esnault et al. 2015].
Wittenberg’s article leaves open the question of the C1

1 -property for the following
fields: the field of rational functions C(x, y), the field of Laurent series in two
variables C((x, y)), and the fields C(x)((y)) and C((x))(y). That the property is
satisfied by C(x, y) and C(x)((y)) is a particular case of the general theorems that
are established in the present paper (see theorems C and D below).

The article is divided into three parts that can be read almost independently and
that deal with Kato and Kuzumaki’s conjectures for different fields. In the first
section, we focus on the cases of number fields and of function fields of curves
over finite fields. In the case of number fields, we establish a local-global principle
in the context of the conjecture of Kato and Kuzumaki for varieties containing a
geometrically integral closed subscheme. Such a result was previously only known
for smooth, projective, geometrically irreducible varieties (see theorem 4 of [Kato
and Saito 1983]) or for proper varieties of Euler–Poincaré characteristic equal to 1
[Wittenberg 2015, Proposition 6.2]:

Theorem A (Theorem 1.4, number field case). Let K be a number field and let �K

be the set of places of K. Let Z be a K -variety containing a geometrically integral
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closed subscheme. For each v ∈�K , let Kv be the completion of K with respect to
v and Zv be the Kv-scheme Z ×K Kv. Then

Ker
(

K×/N1(Z/K )→
∏
v∈�K

K×v /N1(Zv/Kv)

)
= 0.

This theorem, which is established by using Hilbertianity properties of number
fields as well as results due to Demarche and Wei [2014] concerning the local-global
principle for torsors under normic tori, then allows us to deduce a simplified and
more effective proof of Wittenberg’s result concerning the C1

1 -property for totally
imaginary number fields (see Corollary 1.9 and page 438). The explicitness of
our proof allows us to give new and more precise results in some situations (see
Proposition 1.14).

In the case of global fields of positive characteristic, we prove a local-global
principle similar to the one in Theorem A but which involves a variant of the group
N1(Z/K ):

Theorem B (Theorem 1.4, function field case). Let K be the function field of a
curve over a finite field of characteristic p > 0 and let �K be the set of places
of K. Let Z be a proper K -scheme containing a geometrically irreducible closed
subscheme. For v ∈ �K , let Kv be the completion of K with respect to v and Zv
be the Kv-scheme Z ×K Kv . Let N s

1(Z/K ) be the subgroup of K× spanned by the
images of the norm homomorphisms NLs/K : L×s → K× where L describes finite
extensions of K such that Z(L) 6=∅ and Ls stands for the separable closure of K
in L. Then

Ker
(

K×/N s
1(Z/K )→

∏
v∈�K

K×v /N s
1(Zv/Kv)

)
= 0.

This theorem then allows us to prove that global fields of positive characteristic
have the C1

1 -property “away from p” (Theorem 1.18).
In the second part, by means of a surprisingly simple argument, we prove Kato

and Kuzumaki’s conjectures for function fields over C of arbitrary dimension:

Theorem C (Theorem 2.2). Let k be an algebraically closed field of characteristic 0.
Then the function field of an n-dimensional integral k-variety satisfies the Cq

i -
property for all i ≥ 0 and q ≥ 0 such that i + q = n.

In particular, this shows that the field C(x, y) satisfies the C1
1 -property, and hence

answers question (3) in paragraph 7.3 of [Wittenberg 2015] positively.
In the third and last part, we prove Kato and Kuzumaki’s properties for complete

discrete valuation fields whose residue field is the function field of a variety over
an algebraically closed field of characteristic zero:



432 Diego Izquierdo

Theorem D (Theorem 3.9). Let k be an algebraically closed field of characteristic
zero. Let K be the function field of an n-dimensional integral k-variety. Then the
complete field K ((t)) satisfies the Cq

i -property for all i, q ≥ 0 such that i+q = n+1.

This theorem, whose proof relies on subtle refinements of Artin’s approximation
theorem, implies in particular that C(x)((t)) is C1

1 .

Remark 0.1. The C1
1 -property for the fields C(x, y) and C(x)((t)), which is a

special case of theorems C and D, cannot be obtained by the methods developed in
[Wittenberg 2015] because those fields are not strongly C1

1 (see remark 7.6 there).

Preliminaries. Let L be any field and let q be a nonnegative integer. The q-th
Milnor K -group of L is by definition the group K M

0 (K )= Z if q = 0 and

K M
q (L) := L×⊗Z · · · ⊗Z L×︸ ︷︷ ︸

q times

/〈x1⊗ · · ·⊗ xq | there exist i, j, i 6= j, xi + x j = 1〉

if q> 0. For x1,...,xq ∈ L×, the symbol {x1,...,xq} denotes the class of x1⊗···⊗xq

in K M
q (L). More generally, for r and s nonnegative integers such that r + s = q,

there is a natural pairing

K M
r (L)× K M

s (L)→ K M
q (L),

which we will denote { · , · }.
When L ′ is a finite extension of L , one can construct a norm homomorphism

NL ′/L : K M
q (L

′)→ K M
q (L) (see section 1.7 of [Kato 1980]) satisfying the following

properties:

• for q = 0, the map NL ′/L : K M
0 (L

′)→ K M
0 (L) is given by multiplication by

[L ′ : L];

• for q = 1, the map NL ′/L : K M
1 (L

′)→ K M
1 (L) coincides with the usual norm

L ′×→ L×;

• if r and s are nonnegative integers such that r+s= q , we have NL ′/L({x, y})=
{x, NL ′/L(y)} for x ∈ K M

r (L) and y ∈ K M
s (L

′);

• if L ′′ is a finite extension of L ′, we have NL ′′/L = NL ′/L ◦ NL ′′/L ′ .

For each L-scheme of finite type, we denote by Nq(Z/L) the subgroup of K M
q (L)

generated by the images of the maps NL ′/L : K M
q (L

′)→ K M
q (L) when L ′ describes

the finite extensions of L such that Z(L ′) 6= ∅. In particular, N0(Z/L) is the
subgroup of Z generated by the index of Z (i.e., the gcd of the degrees [L ′ : L] when
L ′ describes the finite extensions of L such that Z(L ′) 6= ∅). For i ≥ 0, we say
that L satisfies the Cq

i -property if, for every finite extension L ′ of L and for every
hypersurface Z in Pn

L ′ of degree d with d i
≤ n, we have Nq(Z/L ′)= K M

q (L
′). In

particular, L is C0
i if, for each finite extension L ′ of L , every hypersurface Z in Pn

L ′

of degree d with d i
≤ n has index 1.
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The field L is Cq
0 if, for each tower of finite extensions L ′′/L ′/L , the norm

NL ′′/L ′ : K M
q (L

′′)→ K M
q (L

′) is surjective. As was already pointed out by Kato
and Kuzumaki at the end of [Kato and Kuzumaki 1986], by using the Bloch–Kato
conjecture which identifies the groups K M

q (L)/n and Hq(L , µ⊗q
n ) for n prime to

the characteristic of L and which has been proved by Rost and Voevodsky, one can
show that a field of characteristic zero is Cq

0 if and only if it is of cohomological
dimension at most q .

1. Global fields

Proof of theorems A and B. This section is devoted to number fields and function
fields of curves over finite fields. The main goal consists of establishing theorems
A and B. Whenever K is a global field, �K stands for the set of places of K, and
for v ∈�K , we denote by Kv the completion of K with respect to v and by Ov the
ring of integers in Kv.

We start with a preliminary lemma concerning Hilbertian fields. For a definition
of Hilbertian fields, the reader may refer to section 12.1 of [Fried and Jarden 2008].

Lemma 1.1. Let K be a Hilbertian field and fix an algebraic closure K of K. Let F
be a finite Galois extension of K and let Y be a geometrically integral K -variety.
Then there exists a finite extension F0 of K such that Y (F0) 6=∅ and F0 ∩ F = K.

Proof. Of course, we can assume that dim Y >0. By applying Bertini’s theorem to an
open dense quasiprojective subset of Y, one shows that Y contains a quasiprojective
geometrically integral curve C over K. Since Y is geometrically reduced, one
can find a curve C ′ in P2

K birationally equivalent to C. Let g ∈ K [X, Y, Z ] be
a homogeneous polynomial which is irreducible over K and such that C ′ is the
curve defined by the equation g = 0. Let U ′ be a nonempty subset of C ′ which is
isomorphic to an open subset of C. We now distinguish two cases:

• if K has characteristic p>0, we know that g∈K [X,Y,Z ]\K [X p,Y p,Z p
], and

we can thus assume without loss of generality that g∈K [X,Y,Z ]\K [X p,Y,Z ].
Hence we may consider an integer m ≥ 1 and a polynomial h ∈ K [Y,Z ] \ {0}
such that p does not divide m and the coefficient of Xm in g is h. We also
consider the set

H := {(y, z) ∈ F2
| g(X, y, z) ∈ F[X ] is irreducible, h(y, z) 6= 0}.

• if K has characteristic 0, we can assume without loss of generality that g 6∈
K [Y, Z ] and we consider the set

H := {(y, z) ∈ F2
| g(X, y, z) ∈ F[X ] is irreducible}.

To unify notation with the positive characteristic case, we also set h(Y, Z) :=
1 ∈ K [Y, Z ].
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As g is irreducible over F and separable in the variable X, the set H is by definition
a separable Hilbert subset of F2. According to [Fried and Jarden 2008, Corol-
lary 12.2.3], H contains a separable Hilbert subset H ′ of K 2. Since K is a Hilbertian
field, the second paragraph of Section 12.1 of the same work implies that H ′ is
Zariski dense in K 2. In particular, the set H ′ is infinite, and there exists an infinite
number of pairs (y, z)∈K 2 such that g(X, y, z) is irreducible over F and h(y, z) 6=0.
Each of these pairs corresponds to a point w ∈ (C ′)(1) such that K (w)∩ F = K and
the extension K (w)/K is separable. Since C ′ \U ′ is finite, we conclude that there
exists w ∈ (U ′)(1) such that K (w) is a finite separable extension of K satisfying
K (w)∩ F = K. By setting F0 = K (w), we get Y (F0) 6=∅ and F0 ∩ F = K. �

Corollary 1.2. Let K be a Hilbertian field and fix an algebraic closure K of K.
Let F be a finite Galois extension of K and let Y be a geometrically irreducible
K -variety. Then there exists a finite extension F0 of K such that Y (F0) 6= ∅ and
F0 ∩ F = K.

Proof. If K has characteristic 0, the corollary immediately follows from Lemma 1.1.
Assume that K has positive characteristic. Let K ′ be a purely inseparable finite ex-
tension of K such that (YK ′)

red is geometrically integral. By Lemma 1.1, there exists
a finite extension F1 of K ′ such that Y (F1) 6=∅ and F1∩(K ′ ·F)= K ′, where K ′ ·F
denotes the subfield of K generated by K ′ and F. Then we also have F1∩F = K. �

We now introduce a variant of the group N1(Z/K ) which will allow us to treat
in a unified way number fields and function fields of curves over finite fields:

Definition 1.3. Let K be a field and let Z be a K -scheme of finite type. We denote
by N s

1(Z/K ) the subgroup of K× spanned by the images of the norm morphisms
NLs/K : L×s → K×, where L describes finite extensions of K such that Z(L) 6=∅
and Ls stands for the separable closure of K in L .

Note that, if K is a field of characteristic 0 and Z is a K -scheme of finite type,
then N s

1(Z/K )= N1(Z/K ). We are now ready to prove the main theorem of this
section:

Theorem 1.4. Let K be a number field or the function field of a curve over a finite
field. Let Z be a K -variety containing a geometrically irreducible closed subscheme.
For v ∈�K , we denote by Zv the Kv-scheme Z ×K Kv. Then

Ker
(

K×/N s
1(Z/K )→

∏
v∈�K

K×v /N s
1(Zv/Kv)

)
= 0.

Notation 1.5. Whenever M denotes a Galois module over K, we define the first
Tate–Shafarevich group of M by

X1(K ,M) := Ker
(

H 1(K ,M)→
∏
v∈�K

H 1(Kv,M)
)
.
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Proof. In the sequel, we fix an algebraic closure K of K : all finite extensions of K
will therefore be considered as subfields of K .

Now fix x ∈ K× whose class modulo N s
1(Z/K ) lies in

Ker
(

K×/N s
1(Z/K )→

∏
v∈�K

K×v /N s
1(Zv/Kv)

)
.

We want to prove that x ∈ N s
1(Z/K ). To do so, we consider a finite normal extension

L of K such that Z(L) 6= ∅. Let Ls be the separable closure of K in L: it is a
finite Galois extension of K. Let S ⊆�K be the set of places v of K satisfying one
of the following properties:

(i) v is finite and the extension Ls/K is ramified at v;

(ii) v is finite and x is not a unit in Ov;

(iii) v is infinite.

Of course, S is a finite subset of �K .
Now fix v ∈�K . Two main cases arise:

• Assume in the first place that v ∈�K \ S. In this case, v is a finite place, and
as the extension Lsv/Kv is unramified, we know that NLsv/Kv

(Ls
×
v ) contains

O×v . Since x ∈O×v , we conclude that x ∈ NLsv/Kv
(Ls
×
v ).

• Assume now that v ∈ S and fix an algebraic closure Kv of Kv . By assumption,
x ∈ N s

1(Zv/Kv). Let then M (v)
1 , . . . ,M (v)

nv be finite extensions of Kv contained
in Kv such that, if M (v)

i,s denotes the separable closure of Kv in M (v)
i , we have x ∈

〈NM (v)
i,s /Kv (M

(v)
i,s
×

) | 1≤ i ≤ nv〉 ⊆ K×v and Z(M (v)
i ) 6=∅ for each i . According

to Greenberg’s approximation theorem [1966, Theorem 1] if v is finite and
Tarski–Seidenberg principle if v is real [Pirutka ≥ 2018, Corollary 4.1.6], we
have Z(M (v)

i ∩ K ) 6=∅. We can therefore consider a finite extension L(v)i of
K contained in M (v)

i ∩ K such that Z(L(v)i ) 6= ∅. Let L(v)i,s be the separable
closure of K in L(v)i . The valuation on M (v)

i induces by restriction a place w
of L(v)i which divides v and such that the completion of L(v)i,s with respect to w
is a subextension of M (v)

i,s /Kv. Hence

NM (v)
i,s /Kv

(M (v)
i,s
×

)⊆ NL(v)i,s ⊗K Kv/Kv
((L(v)i,s ⊗K Kv)

×)⊆ K×v .

Since x ∈ 〈NM (v)
i,s /Kv

(M (v)
i,s
×

) | 1≤ i ≤ nv〉 ⊆ K×v , we deduce that

x ∈ 〈NL(v)i,s ⊗K Kv/Kv
((L(v)i,s ⊗K Kv)

×) | 1≤ i ≤ nv〉 ⊆ K×v .



436 Diego Izquierdo

To summarize, we have just proved that, if T is the normic torus R1
E/K (Gm) with

E = Ls ×
∏
v∈S

∏nv
i=1 L(v)i,s and if [x] stands for the image of x in

H 1(K , T )= K×/NE/K (E×),
then

[x] ∈X1(K , T ). (1)

Now let F be the smallest finite Galois extension of K containing Ls and all the
L(v)i,s . Since Z contains a geometrically irreducible closed subscheme, Corollary 1.2
shows that Z has a point in a finite extension F0 of K such that F0∩F = K. Denote
by F0,s the separable closure of K in F0.

According to Theorem 1 of [Demarche and Wei 2014], since F0,s ∩ F = K and
the extension F/K is Galois, we have

X1(K , Q)= 0,

where Q denotes the normic torus R1
E ′/K (Gm), with E ′= Ls×F0,s×

∏
v∈S

∏nv
i=1 L(v)i,s .

Noting that the torus T naturally embeds in Q and using (1), we conclude that the
class of x in H 1(K , Q) is trivial. Since Z(L) 6=∅, Z(F0) 6=∅ and Z(L(v)i ) 6=∅
for each v and each i , this shows that x ∈ N s

1(Z/K ) as desired. �

Remark 1.6. Let K be a number field and keep the notation and the assumptions
of Theorem 1.4. The proof implies that, if L1, . . . , Lr are finite extensions of K
such that

〈NL i⊗K Kv/Kv
((L i ⊗K Kv)

×) | 1≤ i ≤ r〉 = K×v

for each v ∈�K , then there exists a finite extension Lr+1 of K such that

〈NL i/K (L×i ) | 1≤ i ≤ r + 1〉 = K×.

Moreover, if L is a finite Galois extension of K containing all the L i , the field Lr+1

can be chosen to be any finite extension of K which is linearly disjoint from L .

Number fields. In this paragraph, we focus on the case when K is a number field.
We give a new proof of the C1

1 -property for totally imaginary number fields, and
we see how this proof allows one to study some concrete examples.

Property C1
1 for totally imaginary number fields. In Theorem 1.4, the assump-

tion that Z contains a geometrically integral closed subscheme cannot be re-
moved. Indeed, one can for example choose K = Q, take for Z a variety over
L =Q(

√
13,
√

17) having a rational point in L and see Z as a K -variety. In this
case, Theorem 1.4 fails since the affine Q-variety defined by the equation

NL/Q(x + y
√

13+ z
√

17+ t
√

221)=−1

does not satisfy the local-global principle.
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Nevertheless, the assumption that Z contains a geometrically integral closed
subscheme can be slightly weakened:

Corollary 1.7. Let K be a number field and let Z be K -variety. For v ∈ �K , we
denote by Zv the Kv-scheme Z ×K Kv. Assume that there exist finite extensions
K1, . . . , Kr of K such that Z Ki contains a geometrically integral closed subscheme
for each i and the gcd of the degrees [Ki : K ] is 1. Then

Ker
(

K×/N1(Z/K )→
∏
v∈�K

K×v /N1(Zv/Kv)

)
= 0.

Remark 1.8. This corollary was previously only known for smooth, projective,
geometrically irreducible K -varieties [Kato and Saito 1983, Theorem 4] and for
proper varieties with Euler–Poincaré characteristic equal to 1 [Wittenberg 2015,
Proposition 6.2]. It generalizes those results according to Proposition 3.3 there.

Proof. According to Theorem 1.4, for each i , we have

Ker
(

K×i /N1(Z Ki /Ki )→
∏

w∈�Ki

K×i,w/N1(Z Ki,w/Ki,w)

)
= 0.

Therefore a restriction-corestriction argument shows that the group

Ker
(

K×/N1(Z/K )→
∏
v∈�K

K×v /N1(Zv/Kv)

)
is of [Ki : K ]-torsion for each i , hence trivial. �

Wittenberg [2015, Theorem 6.1] has recently proved property C1
1 for totally

imaginary number fields. Theorem 1.4 allows us to obtain this result by a different
method. The passage from local results to global results is simpler and more explicit
than in Section 6 there.

Corollary 1.9. Let K be a number field and let Z be a hypersurface of degree d
in Pn

K such that d ≤ n and N1(Zv/Kv) = K×v for each real place v of K. Then
N1(Z/K )= K×.

Proof. By Exercise I.7.2(c) of [Hartshorne 1977], we know that the Euler–Poincaré
characteristic χ(Z ,OZ ) :=

∑
i≥0 dimK H i

Zar(Z ,OZ ) is equal to 1. Hence, [Witten-
berg 2015, Proposition 3.3] establishes the existence of finite extensions K1, . . . , Kr

of K satisfying the assumptions of Corollary 1.7. We deduce that

Ker
(

K×/N1(Z/K )→
∏
v∈�K

K×v /N1(Zv/Kv)

)
= 0.
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But by Corollary 5.5 there, we have N1(Zv/Kv)= K×v for each finite place v of K.
By assumption, we also know that N1(Zv/Kv)= K×v for each infinite place v of K.
We conclude that N1(Z/K )= K×. �

Remark 1.10. Instead of using [Wittenberg 2015, Proposition 3.3] and Corollary 1.7
to prove that

Ker
(

K×/N1(Z/K )→
∏
v∈�K

K×v /N1(Zv/Kv)

)
= 0,

we could have combined Theorem 2 of [Kollár 2007] (which asserts that a projective
hypersurface in Pn

K of degree d with d ≤ n always contains a geometrically integral
closed subscheme) with Theorem 1.4. The proof of Proposition 3.3 of [Wittenberg
2015] is nevertheless more elementary than the one of Theorem 2 of [Kollár 2007].

Some concrete examples over number fields. It is interesting to notice that the
proof we have given of the C1

1 -property for totally imaginary number fields is quite
explicit: by this, we mean that in many numerical examples, it allows us to establish
more precise results than just the C1

1 -property. To see this, we first establish the
following lemma:

Lemma 1.11. Let n ≥ 1 be an integer. Let M be a field of characteristic prime to n.
Fix an algebraic closure M of M. Assume that M contains all n-th roots of unity
and that M×/M×n is isomorphic to (Z/nZ)2. Let a0, . . . , an be n+ 1 elements of
M×. For 0≤ i, j ≤ n with i 6= j, set Mi j = M

( n
√

ai a−1
j

)
. Then

M× = 〈NMi j/M(M×i j ) | 1≤ i, j ≤ n, i 6= j〉.

Proof. Write n = pr1
1 · · · p

rs
s with p1, . . . , ps pairwise distinct prime numbers and

r1, . . . , rs positive integers. Since 〈NMi j/M(M×i j ) | 1 ≤ i, j ≤ n, i 6= j〉 contains
M×n and

M×/M×n ∼=

s∏
t=1

M×/M× prt
t ,

it is enough to show that for each t ∈ {1, . . . , s}, the group M× is spanned by the
subgroups M× prt

t and NMi j/M(M×i j ) for 1≤ i, j ≤ n, i 6= j.
We henceforth fix t ∈ {1, . . . , s}. If there exist integers i and j with 0≤ i, j ≤ n

and i 6= j such that ai a−1
j ∈ M× prt

t , there is nothing to prove. We can therefore
assume that ai a−1

j 6∈ M× prt
t for all 0≤ i, j ≤ n with i 6= j.

For 0 ≤ i, j ≤ n with i 6= j, let ei j be the largest divisor of prt
t such that there

exists yi j ∈ M× satisfying yei j
i j = ai a−1

j . The following properties are satisfied for
0≤ i, j ≤ n with i 6= j :

(i) the integer prt
t does not divide ei j , because ai a−1

j 6∈ M× prt
t ,
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(ii) the order of yi j in M×/M× prt
t is prt

t because M×/M× prt
t is isomorphic to

(Z/prt
t Z)2,

(iii) one has yei j
i j = yei0

i0 · y
−e j0
j0 ,

and we want to prove that the group M×/M× prt
t is spanned by the NMi j/M(M×i j ) for

0≤ i , j ≤ n, i 6= j. Since the group NMi j/M(M×i j ) contains yi j for each i and j and
M×/M× prt

t is isomorphic to (Z/prt
t Z)2, it is enough to prove the following abstract

sublemma provided that one chooses 3= M×/M× prt
t , xi j = yi j for 1≤ i, j ≤ prt

t
with i 6= j and xi i = yi0 for i ∈ {1, . . . , prt

t }. �

Sublemma 1.12. Let p be a prime number and r ≥ 1 an integer. Set n = pr and
let 3 = (Z/nZ)2. For each i ∈ {1, . . . , n} and each j ∈ {1, . . . , n}, let xi j be an
element of 3 and let ei j be a positive integer. Assume that

(i) for 1≤ i , j ≤ n, the integer pr does not divide ei j .

(ii) for each i and each j, the order of xi j in 3 is n.

(iii) for each i and each j such that i 6= j, one has ei j xi j = ei i xi i − e j j x j j .

Then 3 is spanned by all the xi j .

Proof. Consider an automorphism φ of3 such that φ(x1,1)= (1, 0). By assumptions
(i) and (ii), we have ei j xi j 6= 0 for all i and j. Hence φ(e11x11), . . . , φ(ennxnn) are
pairwise distinct and nonzero. According to the pigeonhole principle, we deduce
that we are in one of the following situations:

Case 1: there exists i0 ∈ {1, . . . , n} such that φ(ei0i0 xi0i0) ∈ {0}× (Z/nZ\{0}). We
then conclude that x11 and xi0i0 span 3.

Case 2: there exist i0, j0 ∈ {1, . . . , n} such that φ(ei0i0 xi0i0) − φ(e j0 j0 x j0 j0) ∈

{0}× (Z/nZ \ {0}). We conclude that x11 and xi0 j0 span the group 3. �

In the sequel, we will also need the following easy lemma:

Lemma 1.13. Let n be a positive integer and let q(n) be the number of prime
divisors of n. Let X be a generating set of 1 := Z/nZ. Then X contains a subset
X ′ which has at most q(n) elements and which spans 1.

Proof. We proceed by induction on q(n).
If q(n)= 1, then n = pa for some prime number p and some integer a. The set

X contains an element x which is not divisible by p, and one can simply choose
X ′ = {x}.

Now let q be a positive integer and assume that the lemma is known when
q(n) ≤ q. Take n ≥ 1 such that q(n) = q + 1 and write n = pa1

1 · · · p
aq+1
q+1 for

p1, . . . , pq+1 pairwise distinct prime numbers and a1, . . . , aq+1 positive integers.
The set X contains an element x which is not divisible by pq+1. The quotient group
1/〈x〉 is spanned by the image X of X in 1/〈x〉. Since 1/〈x〉 is a cyclic group
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whose order m satisfies q(m) ≤ q, the induction hypothesis shows that one can
find a subset X0 of X which has at most q elements and which spans 1/〈x〉. By
choosing any lifting X0 ⊆ X of X0 ⊆ X having at most q elements, one sees that
{x} ∪ X0 is a subset of X which has at most q(n) elements and which spans 1. �

Lemma 1.11 applies to p-adic fields containing n-th roots of unity and such that
p does not divide n. From this, our proof of Kato and Kuzumaki’s conjecture yields
the following proposition:

Proposition 1.14. Let n ≥ 1 be an integer. Let K be a totally imaginary number
field containing n-th roots of unity. Let f ∈ K [X0, . . . , Xn] be a homogeneous
polynomial of degree n of the form

f = a0 Xn
0 + · · ·+ an Xn

n + g(X0, . . . , Xn),

where each monomial appearing in g contains at least three different variables. Set

N = 1
2 n(n+ 1)+ 1+ [K :Q]q(n)(q(n)+ 1),

where q(n) denotes the number of prime divisors of n. Then there exist N finite
extensions K1, . . . , KN of K such that

(i) the equation f = 0 has nontrivial solutions in Ki for each i ,

(ii) K× is spanned by the subgroups NKi/K (K×i ) for 1≤ i ≤ N.

Proof. For 0≤ i < j ≤ n, consider the field Ki j = K
( n
√

ai a−1
j

)
. Fix v a place of K

not dividing n and denote by k(v) the residue field of Kv. Since K contains n-th
roots of unity, n divides the order of k(v)×. Hence Proposition II.5.7 of [Neukirch
1999] implies that K×v /K×v

n ∼= (Z/nZ)2. Lemma 1.11 then shows that K×v is
spanned by the subgroups NKi j⊗K Kv/Kv

((Ki j ⊗K Kv)
×).

Fix now v a place of K dividing n. Since the maximal unramified extension
of Kv is a C1-field [Lang 1952, Theorem 12], there exists a finite unramified
extension Lv,0 of Kv such that the equation f = 0 has a nontrivial solution in Lv,0.
As Lv,0/Kv is unramified, the group NLv,0/Kv

(Lv,0×) contains O×v . Moreover, by
Corollary 5.5 of [Wittenberg 2015], the group K×v is spanned by the images of the
norm morphisms NM/Kv

when M describes finite extensions of Kv such that the
equation f = 0 has nontrivial solutions in M ; hence, by applying Lemma 1.13 to
the group 1 = (K×v /K×v

n
)
/
(O×v /O×v

n
) (which is isomorphic to Z/nZ), one can

find q(n) finite extensions Lv,1, . . . , Lv,q(n) of Kv such that the equation f = 0
has nontrivial solutions in Lv,i for each i and the subgroup of K×v spanned by the
subgroups NLv,i/Kv

(L×v,i ) contains a uniformizer. Hence the group K×v is spanned by
the subgroups NLv,i⊗K Kv/Kv

(L×v,i ) for 0≤ i ≤ q(n). By Greenberg’s approximation
theorem, we deduce that there exist finite extensions Mv,0,Mv,1, . . . ,Mv,q(n) of K
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such that the equation f = 0 has nontrivial solutions in Mv,i for 0≤ i ≤ q(n) and
K×v is spanned by the subgroups NMv,i⊗K Kv/Kv

((Mv,i ⊗K Kv)
×).

Let M be a Galois extension of K containing all the Ki j and all the Mv,i . Let L
be a finite field extension of K which is linearly disjoint from M and such that the
equation f = 0 has a nontrivial zero in L . Such an extension L exists by Theorem
2 of [Kollár 2007] and by Lemma 1.1. Then, by Remark 1.6, the group K× is
spanned by the subgroups NKi j/K (K×i j ) (for 0 ≤ i < j ≤ n), NMv,i/K (M×v,i ) (for
0 ≤ i ≤ q(n)) and NL/K (L×). The corollary follows since the number of finite
extensions of K that enter the game here is at most N. �

Here is a concrete example:

Example 1.15. Consider the case where K =Q(i) and

f = X2
0 + 2X2

1 + aX2
2 ∈ K [X0, X1, X2]

for some a ∈ Z such that a is congruent to 1, 3, 9, 11, 17, 19, 25 or 27 modulo 32.
Let v2 be the unique place of K above 2 and note that we have

1+ i = NKv2 (
√

2)/Kv2

(
1+ 1

2(1− i)
√

2
)
,

hence
1+ i ∈ NKv2 (

√
2)/Kv2

(
Kv2(
√

2)×
)
. (2)

Moreover, one easily checks that the assumptions on a imply that the extension
Kv2(
√

a)/Kv2 is unramified. Hence

O×v2
⊆ NKv2 (

√
a)/Kv2

(
Kv2(
√

a)×
)
. (3)

From the inclusions (2) and (3), we get that the group K×v2
is spanned by the sub-

groups NKv2 (
√

2)/Kv2
(Kv2(

√
2)×) and NKv2 (

√
a)/Kv2

(Kv2(
√

a)×). Using Lemma 1.11,
we deduce that for each place v of K, the group K×v is spanned by the subgroups
NKv(

√
b)/Kv (Kv(

√
b)×) for b ∈ {2, a, 2a}. One can then easily check that the exten-

sions K (
√

2,
√

a) and K (
√

a+ 2) are always linearly disjoint over K. Therefore
K× is spanned by the subgroups NK (

√
b)/K (K (

√
b)×) for b ∈ {2, a, 2a, a+ 2}. Of

course, for such b, the equation f = 0 has nontrivial solutions in K (
√

b).

Global fields of positive characteristic. In this paragraph, we focus on the case
when K is a global field of positive characteristic. We prove of the C1

1 -property «
away from p », and, as in the case of number fields, we see how the proof allows
one to study some concrete examples.

We start by introducing a variant of the group N1(Z/K ) which will allow us to
study the C1

1 -property away from p for global fields of positive characteristic:
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Definition 1.16. Let K be a field of characteristic p > 0. Let Z be a K -scheme of
finite type. We denote by N p

1 (Z/K ) the set of x ∈ K× such that there exists an
integer r ≥ 1 satisfying x pr

∈ N1(Z/K ).

The following proposition is a consequence of Theorem 1.4:

Proposition 1.17. Let K be the function field of a curve over a finite field of
characteristic p > 0. Let Z be a K -variety containing a geometrically irreducible
closed subscheme. For v ∈ �K , we denote by Zv the Kv-scheme Z ×K Kv. Then
the abelian group

Ker
(

K×/N1(Z/K )→
∏
v∈�K

K×v /N p
1 (Zv/Kv)

)
is a p-primary group.

Proof. Consider an element x ∈ K× whose class modulo N1(Z/K ) lies in

Ker
(

K×/N1(Z/K )→
∏
v∈�K

K×v /N p
1 (Zv/Kv)

)
.

By assumption, for each v ∈�K , there exists rv ≥ 0 such that x prv
∈ N1(Zv/Kv)⊆

N s
1(Zv/Kv). Furthermore, there exists an integer m ≥ 0 such that xm

∈ N s
1(Zv/Kv)

for each v ∈�K . We conclude that there exists r ≥ 0 such that x pr
∈ N s

1(Zv/Kv)

for each v ∈�K . According to Theorem 1.4, this shows that x pr
∈ N s

1(Z/K ). We
can therefore consider finite extensions K1, . . . , Kn of K such that, if Ki,s denotes
the separable closure of K in Ki , we have x pr

∈ 〈NKi,s/K (K×i,s) | 1 ≤ i ≤ n〉 and
Z(Ki ) 6=∅ for each i . Since all the degrees [Ki : Ki,s] are powers of p, this implies
that there exists an integer r ′ ≥ 0 such that (x pr

)pr ′

∈ 〈NKi/K (K×i ) | 1≤ i ≤ n〉. We
conclude that x pr+r ′

∈ N1(Z/K ), which finishes the proof of the corollary. �

We are now ready to prove the C1
1 -property away from p for global fields of

characteristic p.

Theorem 1.18. Let K be the function field of a curve over a finite field of charac-
teristic p > 0 and let Z be a hypersurface of degree d in Pn

K such that d ≤ n. Then
the exponent of the group K×/N1(Z/K ) is a power of p.

For the proof, it is useful to recall from [Wittenberg 2015] that a field L is
said to be strongly C1

1 away from p if, for each finite extension L ′ of L , each
proper scheme Z over L ′ and each coherent sheaf E on Z , the Euler–Poincaré
characteristic χ(Z , E) kills every element of K M

q (L
′)/Nq(Z/L ′) whose order is

not divisible by p.

Proof. If A is a torsion abelian group, we denote by A{p′} the subgroup of A
constituted by elements of A whose order is not divisible by p. For each proper
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K -scheme Z , we define

H1(Z/K )= K×/N1(Z/K )

and we denote by nZ the exponent of the abelian group H1(Z/K ){p′} if Z is
nonempty or 0 otherwise. We say that Z satisfies property P if Z is normal. We
are now going to check the three assumptions that appear in Proposition 2.1 of
[Wittenberg 2015].

(1) This is obvious, because a morphism of proper K -schemes Y → Z induces a
surjective morphism H1(Y/K )→ H1(Z/K ).

(2) Let Z be a proper normal K -scheme. Let K ′ be the algebraic closure of K in
K (Z). Then Z is naturally endowed with a structure of proper geometrically
irreducible K ′-scheme. According to Proposition 1.17,

Ker
(

H1(Z/K ′)→
∏
v∈�K

H1(Zv/K ′v)
)
{p′} = 0.

Moreover, since K ′v is strongly C1
1 away from p for each v ∈�K according

to Corollary 4.7 of [Wittenberg 2015], the group H1(Zv/K ′v){p
′
} is killed

by χK ′(Z ,OZ ). We deduce that the group H1(Z/K ′){p′} is also killed by
χK ′(Z ,OZ ). But χK (Z ,OZ ) = [K ′ : K ]χK ′(Z ,OZ ). Hence a restriction-
corestriction argument shows that χK (Z ,OZ ) kills H1(Z/K ){p′}. The integer
nZ has therefore to divide χK (Z ,OZ ).

(3) It suffices to choose the normalization morphism.

We can therefore apply Proposition 2.1 of [Wittenberg 2015] and deduce that the
field K is strongly C1

1 away from p. The corollary then follows from the fact an
(n − 1)-dimensional projective hypersurface of degree d with d ≤ n has Euler–
Poincaré characteristic 1. �

Remark 1.19. While Corollary 1.9 was already proved in [Wittenberg 2015],
Theorem 1.18 is new.

In the same way as in the case of number fields, one can get more precise results.
For example, one can prove the following proposition similarly to Proposition 1.14:

Proposition 1.20. Let n≥1 be an integer. Let K be the function field of a curve over
a finite field and assume that K contains n-th roots of unity. Let f ∈ K [X0, . . . , Xn]

be a homogeneous polynomial of degree n of the form

f = a0 Xn
0 + · · ·+ an Xn

n + g(X0, . . . , Xn),

where each monomial appearing in g contains at least three different variables. As-
sume that the projective hypersurface defined by f = 0 is geometrically irreducible.
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Set

N = 1
2 n(n+ 1)+ 1.

Then there exist N finite extensions K1, . . . , KN of K such that

(i) the equation f = 0 has nontrivial solutions in Ki for each i ,

(ii) K× is spanned by the subgroups NKi/K (K×) for 1≤ i ≤ N.

2. Function fields of varieties over an algebraically closed field

In this section, we are going to establish Kato and Kuzumaki’s conjectures for
function fields of varieties over an algebraically closed field of characteristic 0.
We have already recalled that the Bloch–Kato conjecture implies that a field of
characteristic 0 is Cq

0 if and only if it is of cohomological dimension at most q.
The proposition that follows is a particular case of this result. Anyway, we give an
elementary proof, because its ideas will be useful in the sequel in order to establish
Theorems 2.2 and 3.9:

Proposition 2.1. Let k be an algebraically closed field of characteristic 0. Then
the field K = k(t1, . . . , tq) satisfies property Cq

0 .

Proof. We proceed by induction on q . The result is obvious for q = 0. Assume now
that we have proved the proposition for some q ≥ 0 and consider the field K =
k(t1, . . . , tq+1). Let L1 be a finite extension of K and L2 be a finite extension of L1.
Let u1, . . . , uq+1 be elements of L×1 . We are going to prove that {u1, . . . , uq+1} ∈

NL2/L1(K
M
q+1(L2)).

To do so, we construct a family (w1, . . . , ws) of elements in L×1 in the following
way:

• if u1, . . . , uq+1 are not algebraically independent over k, we consider a tran-
scendence basis (v1, . . . , vr ) of the extension L1/k(u1, . . . , uq+1) and we set
(w1, . . . , ws)= (u1, . . . , uq+1, v1, . . . , vr−1);

• if u1, . . . , uq+1 are algebraically independent over k, we set (w1, . . . , ws)=

(u1, . . . , uq).

Let M1 (resp. M2) be the algebraic closure of k(w1, . . . , ws) in L1 (resp. L2).
Let C1 (resp. C2) be a geometrically integral curve over M1 (resp. M2) such that
M1(C1)= L1 (resp. M2(C2)= L2). Since M1(C1) is a C1 field and M2(C2)/M1(C1)

is a finite extension, Propositions 10 and 11 of Section X.7 of [Serre 1979] imply
that uq+1 ∈ NM2(C2)/M1(C1)

(M2(C2)
×). And so there exist a finite extension F of

M2 and y ∈ F(C2)
× such that uq+1 = NF(C2)/F(C1)(y). Moreover, by the inductive

assumption, M1 satisfies property Cq
0 , and hence there exists x ∈ K M

q (F) such that
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{u1, . . . , uq} = NF/M1(x). We deduce that

NL2/L1(NF(C2)/L2({x, y}))= NF(C2)/M1(C1)({x, y})

= NF(C1)/M1(C1)(NF(C2)/F(C1)({x, y}))

= NF(C1)/M1(C1)({x, uq+1})

= {u1, . . . , uq+1}.

We have therefore proved that {u1, . . . , uq+1} ∈ NL2/L1(K
M
q+1(L2)). As a conse-

quence, the field K satisfies the Cq
0 -property. �

We are now ready to establish Kato and Kuzumaki’s conjectures for the function
field of a variety over an algebraically closed field of characteristic 0:

Theorem 2.2. Let k be an algebraically closed field of characteristic 0. Then the
function field of a q-dimensional integral k-variety satisfies the C j

i -property for all
i ≥ 0 and j ≥ 0 such that i + j = q.

Proof. Let K be the function field of a q-dimensional integral k-variety. Let i ≥ 0
and j ≥ 0 be integers such that i+ j = q . If j = 0, there is nothing to prove because
the field K is Cq . If i = 0, the result follows from the previous proposition. Hence
we can now assume that i 6= 0 and j 6= 0.

Fix a finite extension L of K. Let Z be a hypersurface of degree d in Pn
L

with d i
≤ n and let u1, . . . , u j be elements of L×. We will show that the sym-

bol {u1, . . . , u j } is in Nj (Z/K ). Let (v1, . . . , vr ) be a transcendence basis of
the extension L/k(u1, . . . , u j ) (with r ≥ 0). Let M be the algebraic closure of
k(u1, . . . , u j , vq− j+1, . . . , vr ) in L (so that the transcendence degree of M/k is j)
and let X be a geometrically integral M-variety of dimension i such that M(X)= L .
Since the field M(X) is Ci , the variety Z has points in M(X). Therefore, there
exists a finite extension F of M such that Z(F(X)) 6= ∅. Moreover, since the
norm NF/M : K M

j (F)→ K M
j (M) is surjective according to Proposition 2.1 and

{u1, . . . , u j } ∈ K M
j (M), we get {u1, . . . , u j } ∈ NF/M(K M

j (F)). As a consequence,
{u1, . . . , u j } ∈ NF(X)/M(X)(K M

j (F(X))), and K has the C j
i -property. �

Remark 2.3. In the previous theorem, we have in fact proved that, if L is a finite
extension of k(t1, . . . , tq) and Z is a hypersurface of degree d in Pn

L with d i
≤ n,

then for each j-symbol x ∈ K M
j (L), there exists a finite extension M of L such

that Z(M) 6=∅ and x ∈ NM/L(K M
j (M)). In particular, if i = q − 1 and j = 1, for

each element x in L×, there exists a finite extension M of L such that Z(M) 6=∅
and x ∈ NM/L(M×).
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3. Local fields with a function field as residue field

Problem and strategy. The goal of this section is to prove the conjectures of Kato
and Kuzumaki for complete discrete valuation fields whose residue field is the
function field of a variety over an algebraically closed field of characteristic 0. In
particular, this applies to the field C(x)((t)), for which properties C2

0 and C0
2 are

already known and for which we are going to establish property C1
1 .

The main difficulty we face in order to establish the C1
1 -property for the field

K = C(x)((t)) lies in proving that, if Z is a hypersurface in Pn
K of degree d ≤ n,

then t ∈ N1(Z/K ). To do so, we are going to show that if we adjoin all the roots
of t to K, then the field K∞ we obtain is C1: this will imply that Z(K∞) 6= ∅.
In order to establish the C1-property for K∞, we will have to establish a modular
criterion allowing us to determine whether an affine variety over K∞ has a rational
point (Corollary 3.8). For this purpose we will heavily use the constructions of the
article [Greenberg 1966].

Greenberg’s approximation theorem revisited. We start by recalling the theorem:

Theorem 3.1 [Greenberg 1966, Theorem 1]. Let R be a henselian discrete valuation
ring with field of fractions K. Let t be a uniformizer of R. Let F = (F1, . . . , Fr ) be
a system of r polynomials in n variables with coefficients in R. We assume that K
has characteristic 0. Then there exist integers N ≥ 1, c ≥ 1 and s ≥ 0 (depending
exclusively on the ideal F R[X ] of R[X ] generated by F1, . . . , Fr ) such that, for
each ν ≥ N and each x ∈ Rn satisfying

F(x)≡ 0 mod tν,

there exists y ∈ Rn such that

y ≡ x mod t [ν/c]−s and F(y)= 0.

In particular, if the system F = 0 has solutions modulo tm for each m ≥ 1, then
it has a solution in R.

From now on, fix a henselian discrete valuation ring R with field of fractions K.
Assume that K has characteristic 0 and fix an algebraic closure K of K. Let t be
a uniformizer of R and choose a compatible system {t1/q

}q≥1 of roots of t in K :
by this, we mean that the elements t1/q of K satisfy the relation (t1/(qq ′))q

′

= t1/q

for each q, q ′ ≥ 1. For q ≥ 1, we set Kq = K (t1/q) and Rq = OKq . We also
set K∞ =

⋃
q≥1 Kq and R∞ =

⋃
q≥1 Rq . We want to establish a similar result to

Theorem 3.1 for the field K∞. In that respect, we start by proving a simple lemma
in commutative algebra.

Definition 3.2. We say that an ideal I of R[X ] is t-saturated if, for each f ∈ R[X ]
such that t f ∈ I, we have f ∈ I.
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Remark 3.3. Of course, the previous definition is independent of the choice of the
uniformizer t . But since in the sequel we will have to replace R by Rq , it will be
useful to systematically track a uniformizer of the ring we will be working on.

Lemma 3.4. Let I be an ideal of R[X ].

(i) If I is t-saturated, then IRq [X ] is t1/q -saturated for each q ≥ 1.

(ii) If I is radical and t-saturated, then IRq [X ] is radical for each q ≥ 1.

Proof. (i) Assume that I is t-saturated. Fix an integer q ≥ 1 and let f ∈ Rq [X ] such
that t1/q f ∈ IRq [X ]. Write t1/q f =

∑r
i=1 fi gi , with fi ∈ I and gi ∈ Rq [X ]. For

each i ∈ {1, . . . , n}, let hi be a polynomial in R[X ] such that t1/q divides gi −hi in
Rq (i.e., the valuation of gi − hi is strictly positive); this can be achieved because
R and Rq have the same residue field. We can now write

t1/q f =
r∑

i=1

fi (gi − hi )+

r∑
i=1

fi hi .

Thus, t divides
∑r

i=1 fi hi in R[X ]. Since I is t-saturated and
∑r

i=1 fi hi ∈ I, we
deduce that

∑r
i=1 fi hi/t ∈ I. The equality

f =
r∑

i=1

fi
gi − hi

t1/q + t (q−1)/q
·

∑r
i=1 fi hi

t

then implies that f ∈ IRq [X ] and hence the ideal IRq [X ] is t1/q -saturated.
(ii) Assume that I is radical and t-saturated. Fix q ≥ 1 and let f be a polynomial

in Rq [X ] such that f n
∈ IRq [X ] for some n> 0. Since I is radical, one immediately

checks that IK [X ] is also radical. This implies that IKq [X ] is also radical, because
the extension Kq/K is separable. Hence f ∈ IKq [X ]. This means that there exists
r ≥ 1 such that tr/q f ∈ IRq [X ]. Since IRq [X ] is t1/q-saturated (by part (i)), we
deduce that f ∈ IRq [X ]. Hence the ideal IRq [X ] is indeed radical. �

In order to prove a similar result to Theorem 3.1 for K∞, we need to work
simultaneously with all the fields Kq , which all satisfy Theorem 3.1. More precisely,
if we fix a system of polynomial equations over R, we can see it as a system of
equations with coefficients in Rq for each q ≥ 1; Theorem 3.1 then gives us integers
Nq , cq and sq , and our goal in the sequel is to control these integers when q varies.
It is therefore quite natural to introduce the following technical definition:

Definition 3.5. Let F = (F1, . . . , Fr ) be a system of r polynomials in n variables
with coefficients in R.

(i) Fix q ∈ N. We say that a triplet (N , c, s) ∈ N × N × N0 is associated to
(R, t, q, F) if it satisfies the following property: for each ν ≥ N and each
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x ∈ Rn
q such that

F(x)≡ 0 mod tν/q ,

there exists y ∈ Rn
q such that

y ≡ x mod t ([ν/c]−s)/q and F(y)= 0.

(ii) We say that a 4-tuple (q0, N , c, s) ∈ N×N×N×N0 is (R, t, F)-admissible
if, for each q ≥ 1, the triplet (q N , c, qs) is associated to (R, t, qq0, F).

We are now ready to state the following theorem:

Theorem 3.6. Let R be a henselian discrete valuation ring with field of fractions K.
Assume that K has characteristic 0 and fix a uniformizer t of R. For q ≥ 1, we set
Kq = K (t1/q) and Rq =OKq . Let F = (F1, . . . , Fr ) be a system of r polynomials
in n variables with coefficients in R. Then there exists a 4-tuple (q0, N , c, s) which
is (R, t, F)-admissible.

In order to establish this theorem, we are going to use considerably the construc-
tions developed in the proof of Theorem 3.1 (see [Greenberg 1966]).

Proof. Denote by V the affine K -variety defined by F=0 and let m be its dimension.
We are going to prove by induction on m that there exists a (R, t, F)-admissible
4-tuple of integers.

• If m =−1 (i.e., V =∅), there exists a nonzero u ∈ R∩ F R[X ]. Then the 4-tuple
(1, valR(u)+ 1, 1, 0) is (R, t, F)-admissible, since for these values of q0, N , c, s,
the assumption appearing in Definition 3.5(i) fails.

• Now assume that m ≥ 0.

◦ Assume in the first place that F R[X ] is radical and t-saturated, and that VK∞ is
irreducible. In this case, Lemma 3.4 shows that the ideal F Rq [X ] of Rq [X ] is radical
for each q ≥ 1. Let J be the jacobian matrix of F and let D be the system of minors
of size n−m in J. By the inductive assumption, there exists a 4-tuple (q ′0, N ′, c′, s ′)
which is (R, t, F, D)-admissible. For I ⊆ {1, . . . , r} with |I | = n−m, denote by
F I the system constituted by the polynomials Fi for i ∈ I. Let VI be the K -variety
defined by the system F I = 0. Let V+I be the union of the irreducible components of
VI which are m-dimensional and different from V. Let G I be a system of generators
of the ideal of V+I in R[X ]. By the inductive assumption, there exists a 4-tuple
(q0,I , NI , cI , sI ) which is (R, t,G I , F)-admissible. Set

q0 = q ′0
∏

|I |=n−m
I⊆{1,...,n}

q0,I .
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According to the proof of Theorem 1 of [Greenberg 1966], for each q ≥ 1, the
triplet (N (q), c(q), s(q)) defined by

N (q)
= 2+ 2qq0 max

{
N ′

q ′0
,max

{ NI

q0,I
| I ⊆ {1, . . . , n}, |I | = n−m

}}
c(q) = 2 max{c′,max{cI | I ⊆ {1, . . . , n}, |I | = n−m}}

s(q) = 1+ qq0 max
{

s ′

q ′0
,max

{ sI

q0,I
| I ⊆ {1, . . . , n}, |I | = n−m

}}
is associated to (R, t, qq0, F). We deduce that the 4-tuple (q0, N , c, s) defined by

N = 2+ 2q0 max
{

N ′

q ′0
,max

{ NI

q0,I
| I ⊆ {1, . . . , n}, |I | = n−m

}}
c = 2 max{c′,max{cI | I ⊆ {1, . . . , n}, |I | = n−m}}

s = 1+ q0 max
{

s ′

q ′0
,max

{ sI

q0,I
| I ⊆ {1, . . . , n}, |I | = n−m

}}
is (R, t, F)-admissible.

◦ We no longer make any assumptions on the ideal F R[X ] or the variety VK∞ .
Let q ′0 ≥ 1 be an integer such that the irreducible components W1, . . . ,Wu of VKq′0
remain irreducible over K∞. For each j ∈ {1, . . . , u}, let I ′j be the prime ideal of
Kq ′0[X ] defining Wj . Consider the ideal

I j := I ′j ∩ Rq ′0[X ].

Let G j be a system of generators of I j . The ideal I j is radical and t1/q ′0-saturated.
Moreover, the Kq ′0-variety defined by I j is Wj ; it is a variety of dimension at most
m and (Wj )K∞ is irreducible. We deduce that there exists a 4-tuple (q0, j , Nj , c j , s j )

which is (Rq ′0, t1/q ′0,G j )-admissible. Note now that there exists an integer w ∈ N∗

such that (I ′1 · · · I
′
u)
w
⊆ F Kq ′0[X ]. Hence there exists v ∈ N∗ such that

tuvw/q ′0(I1 · · · Iu)
w
⊆ F Rq ′0[X ]. (4)

Set q0= q ′0
∏

j q0, j , and consider an integer q ≥ 1. Denote by val : Rqq0→Z∪{∞}

the valuation on Rqq0 , and introduce the integers

N (q)
= uwqq0

q ′0

(
max

{ Nj

q0, j

}
+ v

)
,

c(q) = uwmax{c j },

s(q) = 1+ qq0

q ′0

(
v+max

{ s j

q0, j

})
.
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Fix ν ≥ N (q) and x ∈ Rn
qq0

such that F(x) ≡ 0 mod tν/(qq0). If we are given
polynomials g1 ∈ I1 Rqq0[X ], . . . , gu ∈ Iu Rqq0[X ], the inclusion (4) implies that

ν ≤ val
[

tuvw/q ′0

( u∏
j=1

g j (x)
)w]
=

qq0

q ′0
uvw+w

∑
j

val(g j (x)).

Hence there exists an integer j0 ∈ {1, . . . , u} such that

val(g j0(x))≥
ν

uw
−

qq0

q ′0
v.

Since this is true whatever the chosen polynomials g1 ∈ I1 Rqq0[X ], . . . , gu ∈

Iu Rqq0[X ] are, we conclude that there exists j1 ∈ {1, . . . , u} such that

for all g ∈ I j1 Rqq0[X ], val(g(x))≥
ν

uw
−

qq0

q ′0
v. (5)

As ν ≥ N (q), we also have
ν

uw
−

qq0

q ′0
v ≥

qq0

q ′0q0, j0
N j0 . (6)

Since the 4-tuple (q0, j0, N j0, c j0, s j0) is (Rq ′0, t1/q ′0,G j0)-admissible, the triplet
((qq0/q ′0q0, j )N j0, c j0, (qq0/q ′0q0, j0)s j0) is associated to (Rq ′0, t1/q ′0, (qq0/q ′0),G j0).
We then deduce from (5) and (6) that there exists y ∈ Rn

qq0
such that

y ≡ x mod tµ/(qq0) and G j0(y)= 0,

where µ= [ν/c j0uw] − (qq0/q ′0c j0)v− 1− (qq0/q ′0q0, j0)s j0 . This implies that

y ≡ x mod t ([ν/c
(q)
]−s(q))/(qq0) and F(y)= 0,

and hence the triplet (N (q), c(q), s(q)) is associated to (R, t, qq0, F). Therefore the
4-tuple (q0, N , c, s) defined by

N = uwq0

q ′0

(
max

{ Nj

q0, j

}
+ v

)
, c = uwmax{c j }, s = 1+ q0

q ′0

(
v+max

{ s j

q0, j

})
is (R, t, F)-admissible. �

Corollary 3.7. Let R be a henselian discrete valuation ring with field of fractions K.
Assume that K has characteristic 0 and fix a uniformizer t of R. For q ≥ 1, we set
Kq = K (t1/q) and Rq =OKq . We also set K∞=

⋃
q≥1 Kq and R∞=

⋃
q≥1 Rq . Let

F = (F1, . . . , Fr ) be a system of r polynomials in n variables with coefficients in
R∞. There exists M ∈Q>0, γ ∈N and σ ∈Q>0 satisfying the following property:
for each rational number µ≥ M and each x ∈ Rn

∞
such that

F(x)≡ 0 mod tµ,
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there exists y ∈ Rn
∞

such that

y ≡ x mod tµ/γ−σ and F(y)= 0.

Proof. By replacing R by Rq for some sufficiently large q , we can assume that the
system F has coefficients in R. According to Theorem 3.6, there exists a (R, t, F)-
admissible 4-tuple (q0, N , c, s). Set M = N/q0, γ = c and σ = (s + 1)/q0.
Consider µ ∈Q such that µ≥ M and write µ= a/b with a, b ∈ N. Assume that
there exists x ∈ Rn

∞
such that F(x)≡ 0 mod tµ. Let q1 ≥ 1 be such that x ∈ Rn

q1
.

We know that, for each q ≥ 1, the triplet (q N , c, qs) is associated to (R, t, qq0, F).
In particular, the triplet (bq1 N , c, bq1s) is associated to (R, t, bq1q0, F). Since
F(x)≡ 0 mod tµ and µ≥ N/q0, we deduce that there exists y ∈ Rn

bq0q1
such that

F(y)= 0 and

y ≡ x mod tλ with λ=
1

bq1q0

([aq1q0

c

]
− bq1s

)
.

This finishes the proof because λ≥ µ/c− σ . �

Corollary 3.8. Under the assumptions of Corollary 3.7, if the congruence F(x)≡ 0
mod tν has solutions in R∞ for each integer ν ≥ 1, then the equation F(x)= 0 has
solutions in R∞.

Statement for the field C(x1, . . . , xm)((t)). We are finally ready to establish Kato
and Kuzumaki’s conjectures for complete discrete valuation fields whose residue
field is the function field of a variety over an algebraically closed field of character-
istic 0:

Theorem 3.9. Let k be an algebraically closed field of characteristic zero and fix
m ≥ 1. Let Y be an m-dimensional integral k-variety and set K = k(Y )((t)). Then
the complete field K satisfies the C j

i -property for all i ≥ 0 and j ≥ 0 such that
i + j = m+ 1.

Proof. Since the field K is Cm+1 and has cohomological dimension m+ 1, we can
assume that j 6= 0 and i 6= 0. In the sequel, we fix an algebraic closure K of K. All
fields will be understood as subfields of K .

Let Z be a hypersurface of Pn
K of degree d , with d i

≤ n. We want to prove that
Nj (Z/K )= K M

j (K ).
Fix first a j -tuple (u1,...,u j )∈ k(Y )× j. We are going to prove that {u1,...,u j } ∈

Nj (Z/K ). For this purpose, let (v1,...,vr ) be a transcendence basis of the ex-
tension k(Y )/k(u1,...,u j ) and denote by M the algebraic closure of the field
k(u1,...,u j ,vm− j+1,...,vr ) in K ; it is a field of transcendence degree j over k. Let
Y ′ be a geometrically integral M-variety of dimension i−1 such that k(Y )=M(Y ′).
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The field M(Y ′) is Ci−1, and therefore the field

KM :=
⋃

F/M finite

F(Y ′)((t))

is Ci . We deduce that Z(KM) 6= ∅, and hence there exists a finite extension
F of M such that Z(F(Y ′)((t))) 6= ∅. Since M is C j

0 , we have {u1, . . . , u j } ∈

NF/M(K M
j (F)), and hence {u1, . . . , u j } ∈ Nj (Z/K ) as desired.

Fix now a ( j − 1)-tuple (u1, . . . , u j−1) ∈ k(Y )× j−1. We are going to prove that
{u1, . . . , u j−1, t} ∈ Nj (Z/K ). For this purpose, consider a homogeneous polyno-
mial f ∈ k(Y )[[t]][X0, . . . , Xn] defining Z . Let (v1, . . . , vr ) be a transcendence
basis of the extension k(Y )/k(u1, . . . , u j−1) and denote by M the algebraic closure
of k(u1, . . . , u j−1, vm− j+2, . . . , vr ) in K : it is a field of transcendence degree j−1
over k. Let Y ′ be a geometrically integral M-variety of dimension i such that
k(Y )= M(Y ′). We set

KM :=
⋃

F/M finite

F(Y ′)((t)), RM :=
⋃

F/M finite

F(Y ′)[[t]].

The ring RM is a henselian discrete valuation ring with fraction field KM , uni-
formizer t and residue field M(Y ′). We also set

K∞ :=
⋃
q≥1

KM(t1/q), R∞ :=
⋃
q≥1

RM [t1/q
].

Let m∞ be the maximal ideal of R∞ and fix an integer ν ≥ 1. Let fν and gν be
homogeneous polynomials of degree d, fν ∈ M((t))(Y ′)[X0, . . . , Xn] and gν ∈
R∞[X0, . . . , Xn] such that

f = fν + tνgν .

Since M((t))(Y ′) is Ci and is contained in K∞, there exists (x0,...,xn)∈ Rn+1
∞
\mn+1
∞

such that fν(x0,...,xn)= 0. We therefore have

f (x0, . . . , xn)≡ 0 mod tν .

Since this is satisfied for each ν≥ 1, we deduce from Corollary 3.8 that Z(K∞) 6=∅.
We can then consider a finite extension F/M and an integer q ≥ 1 such that
Z(F(Y ′)((t1/q))) 6=∅. As M has the C j−1

0 -property, there exists x ∈ K M
j−1(F) such

that NF/K (x)= {u1, . . . , u j−1}. Hence:

NF(Y ′)((t1/q ))/K ({x, t1/q
})= NF(Y ′)((t))/M(Y ′)((t))

(
NF(Y ′)((t1/q ))/F(Y ′)((t))({x, t1/q

})
)

= NF(Y ′)((t))/M(Y ′)((t))({x,±t})

= {u1, . . . , u j−1,±t}.

We conclude that {u1, . . . , u j−1, t} ∈ Nj (Z/K ).
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Since the group K M
j (K )/d is spanned by symbols of the form {u1, . . . , u j } and

{u1, . . . , u j−1, t} with (u1, . . . , u j ) ∈ k(Y )× j, we get Nj (Z/K )= K M
j (K ). �

Remark 3.10. Let k be an algebraically closed field of characteristic 0 and let Y
be an integral k-variety of dimension m. The previous proof shows in fact that, if
M is an extension of transcendence degree j − 1 over k contained in k(Y ) and if
Y ′ is an integral M-variety such that M(Y ′)= k(Y ), then the field

K∞ =
⋃
q≥1

⋃
F/M finite

F(Y ′)((t))(t1/q)

is Cm+1− j . In particular, the field
⋃

q≥1 C(x)((t))(t1/q) is C1.
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