

Correction to the article
Finite generation of the cohomology of some skew group algebras
Van C. Nguyen and Sarah Witherspoon

Correction to the article Finite generation of the cohomology of some skew group algebras

Van C. Nguyen and Sarah Witherspoon

Volume 8:7 (2014), 1647-1657

For the class of examples in Section 5 of the article in question, the proof of finite generation of cohomology is incomplete. We give here a proof of existence of a polynomial subalgebra needed there. The rest of the proof of finite generation given by the authors then applies.

Let k be a field of characteristic $p>2$. Let A be the augmented k-algebra generated by a and b, with relations

$$
a^{p}=0, \quad b^{p}=0, \quad b a=a b+\frac{1}{2} a^{2}
$$

and augmentation $\varepsilon: A \rightarrow k$ given by $\varepsilon(a)=\varepsilon(b)=0$. Let G be a cyclic group of order p with generator g, acting on A by

$$
g(a)=a, \quad g(b)=a+b
$$

The corresponding skew group algebra $A \# k G$ is a pointed Hopf algebra described in [Cibils et al. 2009, Corollary 3.14]. We remark that in Section 4 of the article we are correcting, referred to as [NW 2014], we used the left G-module structure with $g(a)=a$ and $g(b)=b-a$, whereas the authors in [Cibils et al. 2009; Nguyen et al. 2017] used the right G-module structure given as above. We will apply the results in [Nguyen et al. 2017] to prove that the cohomology $\mathrm{H}^{*}(A \# k G, k):=\operatorname{Ext}_{A \neq k G}^{*}(k, k)$ is finitely generated, and this will fill a gap in the proof in [NW 2014, Section 5]. Thus we will now also adopt the choices of group actions in [Cibils et al. 2009; Nguyen et al. 2017] instead of that in [NW 2014]. This change does not affect the results discussed in [NW 2014, Section 4].

Let k be an $A \# k G$-module via the augmentation map ε. To prove finite generation of $\mathrm{H}^{*}(A \# k G, k)$, we wish to apply [NW 2014, Theorem 3.1]. We use results in [Nguyen et al. 2017], where the notation is slightly different, with x in place of a and y in place of b. There it is shown that there are 2-cocycles ξ_{a}, ξ_{b} in $\mathrm{H}^{*}(A, k)$ generating a polynomial subring $k\left[\xi_{a}, \xi_{b}\right]$. These 2 -cocycles are not both G-invariant, as was claimed in [NW 2014]; specifically, in [Nguyen et al. 2017] it is shown that ξ_{a} is G-invariant while ξ_{b} is not. The claimed G-invariance was used in [NW 2014, Section 5] to show that ξ_{a} and ξ_{b} are

[^0]in the image $\operatorname{Im}\left(\operatorname{res}_{A \# k G, A}\right)$ of the restriction map from $\mathrm{H}^{*}(A \# k G, k)$ to $\mathrm{H}^{*}(A, k)$. However, results in [Nguyen et al. 2017, Section 5.1] imply directly that ξ_{a}, ξ_{b} are in $\operatorname{Im}\left(\operatorname{res}_{A \# k G, A}\right)$; the needed elements in $\mathrm{H}^{*}(A \# k G, k)$ are constructed explicitly using a twisted tensor product resolution in [Nguyen et al. 2017, Section 3.3]. Now the rest of the finite generation proof in [NW 2014, Section 5] can proceed as before, since it is shown there that the rest of the hypotheses of [NW 2014, Theorem 3.1] are satisfied. An alternative proof is given in [Nguyen et al. 2017, Section 5.1].

References

[Cibils et al. 2009] C. Cibils, A. Lauve, and S. Witherspoon, "Hopf quivers and Nichols algebras in positive characteristic", Proc. Amer. Math. Soc. 137:12 (2009), 4029-4041. MR Zbl
[Nguyen et al. 2017] V. C. Nguyen, X. Wang, and S. Witherspoon, "Finite generation of some cohomology rings via twisted tensor product and Anick resolutions", preprint, 2017. To appear in J. Pure Appl. Algebra. arXiv
[NW 2014] V. C. Nguyen and S. Witherspoon, "Finite generation of the cohomology of some skew group algebras", Algebra Number Theory 8:7 (2014), 1647-1657. MR Zbl

Communicated by Susan Montgomery
Received 2017-10-27 Accepted 2018-02-15
nguyen@hood.edu Department of Mathematics, Hood College, Frederick, MD, United States
sjw@math.tamu.edu Department of Mathematics, Texas A\&M University, College Station, TX, United States

Algebra \& Number Theory

msp.org/ant

EDITORS

Managing Editor Editorial Board Chair
Bjorn Poonen
Massachusetts Institute of Technology
Cambridge, USA
David Eisenbud
University of California
Berkeley, USA

BoARd of EDITORS

Richard E. Borcherds	University of California, Berkeley, USA	Martin Olsson	University of California, Berkeley, USA
J-L. Colliot-Thélène	CNRS, Université Paris-Sud, France	Raman Parimala	Emory University, USA
Brian D. Conrad	Stanford University, USA	Jonathan Pila	University of Oxford, UK
Samit Dasgupta	University of California, Santa Cruz, USA	Anand Pillay	University of Notre Dame, USA
Hélène Esnault	Freie Universität Berlin, Germany	Michael Rapoport	Universität Bonn, Germany
Gavril Farkas	Humboldt Universität zu Berlin, Germany	Victor Reiner	University of Minnesota, USA
Hubert Flenner	Ruhr-Universität, Germany	Peter Sarnak	Princeton University, USA
Sergey Fomin	University of Michigan, USA	Joseph H. Silverman	Brown University, USA
Edward Frenkel	University of California, Berkeley, USA	Michael Singer	North Carolina State University, USA
Andrew Granville	Université de Montréal, Canada	Christopher Skinner	Princeton University, USA
Joseph Gubeladze	San Francisco State University, USA	Vasudevan Srinivas	Tata Inst. of Fund. Research, India
Roger Heath-Brown	Oxford University, UK	J. Toby Stafford	University of Michigan, USA
Craig Huneke	University of Virginia, USA	Pham Huu Tiep	University of Arizona, USA
Kiran S. Kedlaya	Univ. of California, San Diego, USA	Ravi Vakil	Stanford University, USA
János Kollár	Princeton University, USA	Michel van den Bergh	Hasselt University, Belgium
Yuri Manin	Northwestern University, USA	Marie-France Vignéras	Université Paris VII, France
Philippe Michel	École Polytechnique Fédérale de Lausanne	Kei-Ichi Watanabe	Nihon University, Japan
Susan Montgomery	University of Southern California, USA	Shou-Wu Zhang	Princeton University, USA
Shigefumi Mori	RIMS, Kyoto University, Japan		

PRODUCTION
production@msp.org
Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2018 is US $\$ 340 /$ year for the electronic version, and $\$ 535 /$ year ($+\$ 55$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra \& Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW ${ }^{\circledR}$ from MSP.
PUBLISHED BY

- mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers

Algebra \& Number Theory

Volume 12 No. 2018

Proper G_{a}-actions on \mathbb{C}^{4} preserving a coordinate 227
Shulim Kaliman
Nonemptiness of Newton strata of Shimura varieties of Hodge type 259
Dong Uk Lee
Towards Boij-Söderberg theory for Grassmannians: the case of square matrices 285
Nicolas Ford, Jake Levinson and Steven V Sam
Chebyshev's bias for products of k primes 305
Xianchang Meng
D-groups and the Dixmier-Moeglin equivalence 343
Jason Bell, Omar León Sánchez and Rahim Moosa
Closures in varieties of representations and irreducible components 379
Kenneth R. Goodearl and Birge Huisgen-Zimmermann
Sparsity of p-divisible unramified liftings for subvarieties of abelian varieties with trivial stabilizer 411
Danny Scarponi
On a conjecture of Kato and Kuzumaki 429
DIEGO IZQUIERDO
Height bounds and the Siegel property 455
MARTIN ORR
Quadric surface bundles over surfaces and stable rationality 479
Stefan Schreieder
Correction to the article Finite generation of the cohomology of some skew group algebras 491Van C. Nguyen and Sarah Witherspoon

[^0]: MSC2010: primary 16E40; secondary 16 T 05.
 Keywords: cohomology, Hopf algebras, skew group algebras.

