Correction to the article Finite generation of the cohomology of some skew group algebras

Algebra &

Number

Theory

Volume 12

2018

No. 2

Van C. Nguyen and Sarah Witherspoon

Correction to the article Finite generation of the cohomology of some skew group algebras

Van C. Nguyen and Sarah Witherspoon

Volume 8:7 (2014), 1647–1657

For the class of examples in Section 5 of the article in question, the proof of finite generation of cohomology is incomplete. We give here a proof of existence of a polynomial subalgebra needed there. The rest of the proof of finite generation given by the authors then applies.

Let *k* be a field of characteristic p > 2. Let *A* be the augmented *k*-algebra generated by *a* and *b*, with relations

$$a^{p} = 0, \quad b^{p} = 0, \quad ba = ab + \frac{1}{2}a^{2},$$

and augmentation $\varepsilon : A \to k$ given by $\varepsilon(a) = \varepsilon(b) = 0$. Let *G* be a cyclic group of order *p* with generator *g*, acting on *A* by

$$g(a) = a, \quad g(b) = a + b.$$

The corresponding skew group algebra A#kG is a pointed Hopf algebra described in [Cibils et al. 2009, Corollary 3.14]. We remark that in Section 4 of the article we are correcting, referred to as [NW 2014], we used the left *G*-module structure with g(a) = a and g(b) = b - a, whereas the authors in [Cibils et al. 2009; Nguyen et al. 2017] used the right *G*-module structure given as above. We will apply the results in [Nguyen et al. 2017] to prove that the cohomology $H^*(A\#kG, k) := Ext^*_{A\#kG}(k, k)$ is finitely generated, and this will fill a gap in the proof in [NW 2014, Section 5]. Thus we will now also adopt the choices of group actions in [Cibils et al. 2009; Nguyen et al. 2017] instead of that in [NW 2014]. This change does not affect the results discussed in [NW 2014, Section 4].

Let k be an A#kG-module via the augmentation map ε . To prove finite generation of H^{*}(A#kG, k), we wish to apply [NW 2014, Theorem 3.1]. We use results in [Nguyen et al. 2017], where the notation is slightly different, with x in place of a and y in place of b. There it is shown that there are 2-cocycles ξ_a , ξ_b in H^{*}(A, k) generating a polynomial subring $k[\xi_a, \xi_b]$. These 2-cocycles are not both G-invariant, as was claimed in [NW 2014]; specifically, in [Nguyen et al. 2017] it is shown that ξ_a is G-invariant while ξ_b is not. The claimed G-invariance was used in [NW 2014, Section 5] to show that ξ_a and ξ_b are

MSC2010: primary 16E40; secondary 16T05.

Keywords: cohomology, Hopf algebras, skew group algebras.

in the image Im(res_{*A*#*k*G,*A*}) of the restriction map from H^{*}(*A*#*k*G, *k*) to H^{*}(*A*, *k*). However, results in [Nguyen et al. 2017, Section 5.1] imply directly that ξ_a , ξ_b are in Im(res_{*A*#*k*G,*A*}); the needed elements in H^{*}(*A*#*k*G, *k*) are constructed explicitly using a twisted tensor product resolution in [Nguyen et al. 2017, Section 3.3]. Now the rest of the finite generation proof in [NW 2014, Section 5] can proceed as before, since it is shown there that the rest of the hypotheses of [NW 2014, Theorem 3.1] are satisfied. An alternative proof is given in [Nguyen et al. 2017, Section 5.1].

References

- [Cibils et al. 2009] C. Cibils, A. Lauve, and S. Witherspoon, "Hopf quivers and Nichols algebras in positive characteristic", *Proc. Amer. Math. Soc.* **137**:12 (2009), 4029–4041. MR Zbl
- [Nguyen et al. 2017] V. C. Nguyen, X. Wang, and S. Witherspoon, "Finite generation of some cohomology rings via twisted tensor product and Anick resolutions", preprint, 2017. To appear in *J. Pure Appl. Algebra*. arXiv
- [NW 2014] V. C. Nguyen and S. Witherspoon, "Finite generation of the cohomology of some skew group algebras", *Algebra Number Theory* **8**:7 (2014), 1647–1657. MR Zbl

Communicated by Susan Montgomery Received 2017-10-27 Accepted 2018-02-15

nguyen@hood.edu

sjw@math.tamu.edu

Department of Mathematics, Hood College, Frederick, MD, United States Department of Mathematics, Texas A&M University, College Station, TX, United States

Algebra & Number Theory

msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen Massachusetts Institute of Technology Cambridge, USA EDITORIAL BOARD CHAIR David Eisenbud University of California Berkeley, USA

BOARD OF EDITORS

Richard E. Borcherds	University of California, Berkeley, USA	Martin Olsson	University of California, Berkeley, USA
J-L. Colliot-Thélène	CNRS, Université Paris-Sud, France	Raman Parimala	Emory University, USA
Brian D. Conrad	Stanford University, USA	Jonathan Pila	University of Oxford, UK
Samit Dasgupta	University of California, Santa Cruz, USA	Anand Pillay	University of Notre Dame, USA
Hélène Esnault	Freie Universität Berlin, Germany	Michael Rapoport	Universität Bonn, Germany
Gavril Farkas	Humboldt Universität zu Berlin, Germany	Victor Reiner	University of Minnesota, USA
Hubert Flenner	Ruhr-Universität, Germany	Peter Sarnak	Princeton University, USA
Sergey Fomin	University of Michigan, USA	Joseph H. Silverman	Brown University, USA
Edward Frenkel	University of California, Berkeley, USA	Michael Singer	North Carolina State University, USA
Andrew Granville	Université de Montréal, Canada	Christopher Skinner	Princeton University, USA
Joseph Gubeladze	San Francisco State University, USA	Vasudevan Srinivas	Tata Inst. of Fund. Research, India
Roger Heath-Brown	Oxford University, UK	J. Toby Stafford	University of Michigan, USA
Craig Huneke	University of Virginia, USA	Pham Huu Tiep	University of Arizona, USA
Kiran S. Kedlaya	Univ. of California, San Diego, USA	Ravi Vakil	Stanford University, USA
János Kollár	Princeton University, USA	Michel van den Bergh	Hasselt University, Belgium
Yuri Manin	Northwestern University, USA	Marie-France Vignéras	Université Paris VII, France
Philippe Michel	École Polytechnique Fédérale de Lausanne	Kei-Ichi Watanabe	Nihon University, Japan
Susan Montgomery	University of Southern California, USA	Shou-Wu Zhang	Princeton University, USA
Shigefumi Mori	RIMS, Kyoto University, Japan		

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2018 is US \$340/year for the electronic version, and \$535/year (+\$55, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/ © 2018 Mathematical Sciences Publishers

Algebra & Number Theory

Volume 12 No. 2 2018

Proper G_a -actions on \mathbb{C}^4 preserving a coordinate SHULIM KALIMAN	227
Nonemptiness of Newton strata of Shimura varieties of Hodge type DONG UK LEE	259
Towards Boij–Söderberg theory for Grassmannians: the case of square matrices NICOLAS FORD, JAKE LEVINSON and STEVEN V SAM	285
Chebyshev's bias for products of k primes XIANCHANG MENG	305
D-groups and the Dixmier-Moeglin equivalence JASON BELL, OMAR LEÓN SÁNCHEZ and RAHIM MOOSA	343
Closures in varieties of representations and irreducible components KENNETH R. GOODEARL and BIRGE HUISGEN-ZIMMERMANN	379
Sparsity of <i>p</i> -divisible unramified liftings for subvarieties of abelian varieties with trivial stabilizer DANNY SCARPONI	411
On a conjecture of Kato and Kuzumaki DIEGO IZQUIERDO	429
Height bounds and the Siegel property MARTIN ORR	455
Quadric surface bundles over surfaces and stable rationality STEFAN SCHREIEDER	479
Correction to the article Finite generation of the cohomology of some skew group algebras VAN C. NGUYEN and SARAH WITHERSPOON	491