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We give a construction of quasiminimal fields equipped with pseudo-analytic maps, generalizing Zilber’s
pseudo-exponential function. In particular we construct pseudo-exponential maps of simple abelian
varieties, including pseudo-℘-functions for elliptic curves. We show that the complex field with the
corresponding analytic function is isomorphic to the pseudo-analytic version if and only if the appropriate
version of Schanuel’s conjecture is true and the corresponding version of the strong exponential-algebraic
closedness property holds. Moreover, we relativize the construction to build a model over a fairly arbitrary
countable subfield and deduce that the complex exponential field is quasiminimal if it is exponentially-
algebraically closed. This property states only that the graph of exponentiation has nonempty intersection
with certain algebraic varieties but does not require genericity of any point in the intersection. Furthermore,
Schanuel’s conjecture is not required as a condition for quasiminimality.
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1. Introduction

1A. Exponential fields. The field C of complex numbers is well-known to be strongly minimal, that is,
any subset of C definable in the ring language is either finite or cofinite. Consequently, the model theory of
C is very tame: there is a very well-understood behaviour of the models (one model of each uncountable
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cardinality, known as uncountable categoricity) and of the definable sets (they have finite Morley rank
and we can understand them geometrically in terms of algebraic varieties). The other most important
mathematical field, the field R of real numbers, is o-minimal, which means that although the class of
models is not well-behaved (not classifiable), there is a very good geometric understanding of the definable
sets (they are the semialgebraic sets). Remarkably, Wilkie [1996] showed that when the real exponential
function ex is adjoined, the structure Rexp is still o-minimal. Adjoining the complex exponential function
ez to C gives the structure Cexp, which cannot be well-behaved in terms of the class of models or the
definable sets because it interprets the ring Z. However, Zilber suggested that in the model Cexp itself,
the influence of Z might only extend to the countable subsets of C. He made the following conjecture.

Conjecture 1.1 (Zilber’s weak quasiminimality conjecture). The complex exponential field Cexp =

〈C;+ , · , exp〉 is quasiminimal: every subset of C definable in Cexp is either countable or cocountable.

A slightly stronger version of the conjecture which avoids reference to definable sets is that every
automorphism-invariant subset is countable or cocountable. As far as we are aware, all known approaches
to the conjecture would give this stronger result anyway. If the conjecture is true then the solution sets of
exponential polynomial equations, which we can call complex exponential varieties, would be expected to
have good geometric properties similar to those of algebraic varieties, provided we avoid some exceptional
cases like Z. If the conjecture is false, another possibility is that R is definable as a subset of C. The field
R with Z as a definable subset is so-called second-order arithmetic, and the definable sets are extremely
wild, with no geometric properties in general.

As one approach to his conjecture, Zilber [2000; 2005b] showed how to construct a quasiminimal
exponential field we call B using a variant of Hrushovski’s predimension method [1993]. He called B a
pseudo-exponential field with the idea that the exponential map is a pseudo-analytic function.

Zilber’s approach was to prove that a certain list of axioms ECFSK,CCP in the infinitary logic Lω1,ω(Q)
behaves in an analogous way to a strongly minimal first-order theory. In particular, all its models are
quasiminimal and it is uncountably categorical.

Theorem 1.2. Up to isomorphism, there is exactly one model of the axioms ECFSK,CCP of each uncount-
able cardinality, and it is quasiminimal.

This theorem appears in [Zilber 2005b]. Some gaps in the proof were filled in the unpublished note
[Bays and Kirby 2013], which this paper supersedes. In this paper we give a new construction of B and
hence a complete proof of Theorem 1.2. The theorem suggests a stronger form of the quasiminimality
conjecture which evidently implies Conjecture 1.1.

Conjecture 1.3 (Zilber’s strong quasiminimality conjecture). Cexp is isomorphic to the unique model B

of ECFSK,CCP of cardinality continuum.

The axioms in ECFSK,CCP will be explained in Section 8, but briefly, there are two algebraic axioms
which are obviously true in Cexp and then three more axioms: Schanuel’s conjecture, strong exponential-
algebraic closedness, and the countable closure property. Schanuel’s conjecture is a conjecture of
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transcendental number theory which can be seen as saying that certain systems of exponential polynomial
equations do not have solutions. Strong exponential-algebraic closedness roughly says that a system of
equations has solutions (even generic over any given finite set) unless that would contradict Schanuel’s
conjecture. The countable closure property says roughly that such systems of equations which are
balanced, in the sense of having the same number of equations as variables, have only countably many
solutions. Zilber proved the countable closure property for Cexp, so we have the following reformulation.

Theorem 1.4 [Zilber 2005b]. Conjecture 1.3 is true if and only if Schanuel’s conjecture is true and Cexp

is strongly exponentially-algebraically closed.

Theorems 1.2 and 1.4 together imply that if Cexp satisfies Schanuel’s conjecture and is strongly
exponentially-algebraically closed then it is quasiminimal. Schanuel’s conjecture is considered out of
reach, since even the very simple consequence that the numbers e and π are algebraically independent is
unknown. Proving strong exponential-algebraic closedness involves finding solutions of certain systems
of equations and then showing they are generic, the latter step usually done using Schanuel’s conjecture.
A weaker condition is exponential-algebraic closedness which requires the same systems of equations
to have solutions, but says nothing about their genericity. We are able to remove the dependence on
Schanuel’s conjecture completely from Conjecture 1.1:

Theorem 1.5. If Cexp is exponentially-algebraically closed then it is quasiminimal.

1B. A more general construction: 0-fields. Our construction is more general and we can use it to
construct also a pseudo-analytic version of the Weierstrass ℘-functions, the exponential maps of simple
abelian varieties, and more generally other pseudo-analytic subgroups of the product of two commutative
algebraic groups. For example, we prove an analogous form of Theorems 1.2 and 1.4 for ℘-functions.
The list of axioms ℘CFSK,CCP(E) and the other notions used in the statement of the theorem will be
explained in Section 9C of the paper.

Theorem 1.6. Given an elliptic curve E over a number field K0 ⊆ C, the list ℘CFSK,CCP(E) of axioms
is uncountably categorical and every model is quasiminimal. Furthermore, if ℘ is the Weierstrass
function associated to E(C), so expE = [℘ : ℘

′
: 1] : C→ E(C) is the exponential map of E(C), then

C℘ := 〈C;+ , · , expE 〉 |H ℘CFSK,CCP(E) if and only if the analogue of Schanuel’s conjecture for ℘ holds
and C℘ is strongly ℘-algebraically closed.

In the most general form, we consider what we call 0-fields, which are fields F of characteristic 0
equipped with a subgroup 0(F) of a product G1(F)×G2(F), where G1 and G2 are commutative algebraic
groups. The complete definition is given in Section 3A, where we also explain how the examples we
consider fit into cases (EXP), generalizing the exponential and Weierstrass ℘-functions above, (COR),
generalizing analytic correspondences between nonisogenous elliptic curves, and (DEQ), generalizing the
solution sets of certain differential equations.

Hrushovski used Fraïssé’s amalgamation method, which produces countable structures. Zilber wanted
uncountable structures so he instead framed his constructions in terms of existentially closed models
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within a certain category. He gave a framework of quasiminimal excellent classes [Zilber 2005a], building
on Shelah’s notion of an excellent Lω1,ω-sentence [1983], to prove the uniqueness of the uncountable
models. The second author showed in [Kirby 2010b] that the quasiminimal excellence conditions can
be checked just on the countable models, and with Hart, Hyttinen and Kesälä we proved in [Bays et al.
2014b] that the most complicated of the conditions to check — excellence — follows from the other
conditions. So in this paper we recast the construction in 4 stages:

(1) We start with a suitable base 0-field Fbase, and describe a category C(Fbase) of so-called strong
extensions of Fbase.

(2) We apply a suitable version of Fraïssé’s amalgamation theorem to the category to produce a countable
model M(Fbase).

(3) We check that M(Fbase) satisfies the conditions to be part of a quasiminimal class, and deduce there
is a unique model of cardinality continuum, which we denote by M(Fbase).

(4) We give the axioms 0CFCCP(Fbase) describing the class.

As a more general form of Theorem 1.2, we prove:

Theorem 1.7. Given an essentially finitary 0-field Fbase of type (EXP), (COR), or (DEQ), the list of
axioms 0CFCCP(Fbase) is uncountably categorical and every model is quasiminimal.

Our notion of 0-fields is algebraic and not every example is related to an analytic prototype. However
cases (EXP) and (COR) do have many analytic examples, given in Definitions 3.1 and 3.2. We call these
analytic 0-fields. For these we are able to prove the countable closure property, extending Zilber’s result
for Cexp and the equivalent result in [Jones et al. 2016] for ℘-functions.

Theorem 1.8. Let C0 be an analytic 0-field. Then C0 satisfies the countable closure property.

One of the key ideas of this paper is that the amalgamation construction is done over a base 0-field
Fbase, and that everything is done relative to that base. Pushing this idea further, we can also work over a
base which is closed with respect to the quasiminimal pregeometry on the model Fbase. This involves
modifying the amalgamation construction, so we only consider extensions of Fbase in which Fbase remains
closed with respect to the pregeometry. There is a direct analogy with extensions of differential fields.
The closed base field takes the role of the field of constants, and we consider extension fields in which
there are no new constants. This is useful because the differential field versions of Schanuel’s conjecture
then apply to say that Schanuel’s conjecture is true relative to the base in the analytic 0-fields.

In the paper [Kirby and Zilber 2014] it was shown that, assuming the conjecture on intersections
with tori (CIT, also known as the multiplicative Zilber–Pink conjecture), any exponential field satisfying
Schanuel’s conjecture and exponential-algebraic closedness is actually strongly exponentially-algebraically
closed. In this paper we are able to adapt that idea to show unconditionally that the difference between
0-closedness and strong 0-closedness (the analogues of exponential-algebraic closedness and strong
exponential-algebraic closedness) disappears if we consider the generic version, meaning relative to a
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closed base. Instead of the CIT we use a theorem which we call the horizontal semiabelian weak Zilber–
Pink, a theorem about intersections of families of algebraic varieties with cosets of algebraic subgroups
of semiabelian varieties. This method allows us to prove Theorem 1.5 and a more general version:

Theorem 1.9. Let C0 be an analytic 0-field. If C0 is 0-closed then it is quasiminimal.

1C. An overview of the paper. In Section 2 we explain our conventions on viewing algebraic varieties
and their profinite covers in a model-theoretic way. We also explain the relationship between subgroups
and endomorphisms of the commutative algebraic groups we study.

In Section 3 we define our 0-fields and their finitely generated extensions. We prove that finitely
generated extensions of suitable (so-called essentially finitary) 0-fields are determined by good bases, and
that these good bases exist and are determined by finite data from a countable range of possibilities. This
is the key step in proving the form of ℵ0-stability which is essential for the existence of quasiminimal
models. The main tool here is Kummer theory over torsion for abelian varieties.

In Section 4 we introduce the predimension notion and use it to define which extensions of 0-fields
are strong. We also use it to define a pregeometry on 0-fields. Then we show that there is a unique
full-closure of an essentially finitary 0-field, and classify the strong finitely generated extensions of
0-fields and of full 0-fields. This completes stage (1) of the construction as described above.

Section 5 covers stage (2) of the construction. We recall a category-theoretic version of Fraïssé’s
amalgamation theorem which is suitably general for us. Then, starting with a suitable base 0-field Fbase, we
consider the category C(Fbase) of strong extensions of Fbase and apply the amalgamation theorem to get a
countable Fraïssé limit M(Fbase). We also consider a variant amalgamating only the 0-algebraic extensions
and another variant where we consider only extensions which are purely 0-transcendental over Fbase.

In Section 6 we show that the Fraïssé limit models we have produced are quasiminimal pregeometry
structures, and hence give rise to uncountably categorical classes. In this way we get the uncountable
models, in particular the model M(Fbase) of cardinality continuum. This is stage (3).

In Section 7 we give a classification of the finitely generated strong extensions of 0-fields, and in
Section 8 we use it to axiomatize our models and prove Theorem 1.7. This completes stage (4).

In Section 9 we consider specific instances of our 0-fields including pseudo-exponentiation, pseudo-
Weierstrass ℘-functions, and others, and prove Theorem 1.2 and half of Theorem 1.6.

In Section 10 we compare our models to the complex analytic prototypes. For Weierstrass ℘-functions
we relate the Schanuel property to the André–Grothendieck conjecture on the periods of 1-motives,
using work of Bertolin, finishing the proof of Theorem 1.6. We briefly discuss the literature on steps
towards proving the 0-closedness and strong 0-closedness properties for analytic 0-fields. Then we
prove Theorem 1.8.

In Section 11 we consider 0-fields which may not be 0-closed but are generically so. These are
the 0-fields produced by the variant construction in which the base Fbase remains closed with respect
to the pregeometry. We state and prove the horizontal semiabelian weak Zilber–Pink, and then prove
Theorems 1.5 and 1.9.
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2. Algebraic background

2A. Algebraic varieties and groups. We use the standard model-theoretic foundations for algebraic
varieties and algebraic groups, as described by Pillay [1998], roughly following Weil. In particular, we
work in the theory ACF0 with parameters for a field K0. Any variety V is considered as a definable set,
and using elimination of imaginaries it is in definable bijection with a constructible subset of affine space.
We always assume we have chosen such a bijection, although we will not mention it explicitly. Given
any field extension F of K0, we write V (F) for the points of V all of whose coordinates lie in F . In
this way, V is a functor from the category of field extensions of its field of definition to the category of
sets. Similarly, given any subset A ⊆ V (F), we can form the subfield of F which is generated by (the
coordinates of) the points in A.

In the same way, a commutative algebraic group G, defined over K0, is considered as a functor from
the category of field extensions of K0 to the category of abelian groups. If G is an algebraic O-module,
that is, the ring O acts on G via regular endomorphisms, defined over K0, we can also consider it as a
functor to the category of O-modules.

Ga denotes the additive group, Ga(F)= 〈F;+ 〉, and Gm the multiplicative group, Gm(F)= 〈F×; · 〉.
An algebraic group is connected if it has no proper finite index algebraic subgroups. The connected

component Go of an algebraic group G is the largest connected algebraic subgroup.
We write G[m] for the m-torsion subgroup of an algebraic group G.
If G is a commutative algebraic group over a field of characteristic 0, we write LG for the (commutative)

Lie algebra of G, the tangent space at the identity considered as an algebraic group. So LG ∼=G
dim(G)
a . If

θ : G→ G ′ is an algebraic group homomorphism, then Lθ : LG→ LG ′ is the derivative at the identity.
For algebraic groups over C, these definitions agree with the usual definitions for complex Lie groups.

2B. Subgroups and endomorphisms. Any connected algebraic subgroup H of a power Gn
m of the multi-

plicative group can be defined by a system of monomial equations: H = ker(M) for some integer square
matrix M ∈Matn(Z) acting multiplicatively. Then LH ≤ LGn

m = Gn
a is the kernel of the same matrix

acting additively.
As we observe in the following lemma, the picture is almost the same when we replace Gm with

an abelian variety G and Z with its endomorphism ring End(G): up to finite index, subgroups are
defined by O-linear equations, namely those which define the corresponding Lie subalgebra. With a few
self-contained exceptions, this lemma is essentially all we will use of the theory of abelian varieties.

Lemma 2.1. Suppose G is Gm or an abelian variety over a field of characteristic 0, and O = End(G) is
its endomorphism ring. Then

(i) any connected algebraic subgroup H ≤ Gn is the connected component of the kernel of an endomor-
phism η ∈ End(Gn)∼=Matn(O),

H = ker(η)o;

(ii) LH ≤ LGn is then the kernel of Lη ∈ End(LGn).
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Proof. (i) By Poincaré’s complete reducibility theorem [Mumford 1970, p. 173], there exists an algebraic
subgroup H ′ such that the summation map 6 : H×H ′→Gn is an isogeny, that is, a surjective homomor-
phism with finite kernel. Let m be the exponent of the kernel of6. Then θ(6(h, h′)) := (mh,mh′) defines
an isogeny θ : Gn

→ H × H ′. Let π2 : H × H ′→ H ′ be the projection. Then (π2 ◦ θ ◦6)(h, h′)= mh′,
so ker(π2 ◦ θ)

o
= (6(H × H ′[m]))o = (H + H ′[m])o = H .

(ii) As H⊆ker(η), the derivative Lη of η at 0 vanishes on LH , so LH6ker(Lη). Also, ker(Lη)= L ker(η),
so we have

dim(ker(Lη))= dim(L ker(η))

= dim(ker(η)) since 0 is a smooth point

= dim H since H has finite index in ker(η)

= dim LH again since 0 is a smooth point.

So LH has finite index in ker(Lη), but ker(Lη)6 LGn, which is torsion-free, so ker(Lη) is connected,
and hence LH = ker(Lη). �

2C. Division points and the profinite cover.

Definition 2.2. Let G be a commutative group and let a ∈ G. A division point of a in G is any b ∈ G
such that, for some m ∈ N+, mb = a.

A division sequence for a in G is a sequence (am)m∈N+ in G such that a1 = a and for all m, n ∈ N+

we have nanm = am .

If (am)m∈N+ is a division sequence for a in G we can define a group homomorphism θ :Q→ G by
θ(r/m)= ram for r ∈ Z and m ∈ N+. This gives a bijective correspondence between division sequences
for a in G and group homomorphisms θ :Q→ G such that θ(1)= a.

Definition 2.3. The profinite cover Ĝ of a commutative group G is the group of all homomorphisms
Q→ G, with the group structure defined pointwise in G. We write ρG : Ĝ → G for the evaluation
homomorphism given by ρG(θ)= θ(1).

Thus the set of division sequences for a in G is in bijective correspondence with ρ−1
G (a), and we think

of elements of Ĝ both as homomorphisms from Q and as division sequences.
The group Ĝ itself is divisible and torsion-free. The image of ρG is the subgroup of divisible points

of G, and ρG is injective if and only if G is torsion-free. In general, ker(ρG) is a profinite group built
from the torsion of G (in fact, it is the product over primes l of the l-adic Tate modules of G).

For an element a ∈ G, we will often use the notation â for a chosen element of Ĝ such that ρG(â)= a.
Of course, â is determined by a only when ρG is injective, that is, when G is torsion-free.

If f : G→ H is a group homomorphism, we can lift it to a homomorphism f̂ : Ĝ→ Ĥ defined by
θ 7→ f ◦θ . In particular, if G⊆ H is a subgroup then Ĝ is naturally a subgroup of Ĥ . (In category-theoretic
language, ˆ is a covariant representable functor and in fact ρG : Ĝ→ G is the universal arrow from the
category of divisible, torsion-free abelian groups into G.)
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When G is a commutative algebraic group we think of Ĝ also as a functor, so we write Ĝ(F) rather
than Ĝ(F) for the group of division sequences of the group G(F).

Model-theoretically we think of Ĝ as the set of division sequences from G, which is a set of infinite
tuples satisfying the divisibility conditions. It can be seen as an inverse limit of definable sets, sometimes
called a pro-definable set [Kamensky 2007].

Remark 2.4. Suppose that G is a Lie group, for example the complex points of a complex algebraic
group, and exp : LG → G is the exponential map. For a ∈ LG, the sequence (exp(a/m))m∈N+ is a
division sequence in G. In fact, the division sequences which arise this way are precisely those which
converge topologically to the identity of G [Bays et al. 2014c, Remark 2.20].

3. 0-fields

3A. 0-fields. In this section we describe the analytic examples we are studying and give the definition
of a 0-field, which is intended to capture and generalize the model-theoretic algebra of the examples.

Definition 3.1 (analytic 0-fields of type (EXP)). The graph of the usual complex exponential function is
a subgroup of Ga(C)×Gm(C). Similarly, if A(C) is a complex abelian variety (or more generally any
commutative complex algebraic group) of dimension d, then the graph 0 of the exponential map of A
is a subgroup of LA(C)× A(C). Here LA(C) is the Lie algebra of A and we can identify it with the
group Gd

a (C). In this paper we only consider the cases when A is Gm or A is a simple abelian variety of
dimension d . We combine these by saying A is a simple semiabelian variety.

We write O for the ring End(A) of algebraic endomorphisms of A. In many cases O=Z, but sometimes,
for example if A is an elliptic curve with complex multiplication, then O properly extends Z. Any η ∈O
acts on LA as the derivative dη, a linear map. Thus O naturally acts on LA(C) as a subring of GLd(C),
and 0 is an O-submodule of LA(C)× A(C).

In the case where A is an elliptic curve E , embedded in projective space P2 in the usual way
via its Weierstrass equation, the exponential map of E(C) is written in homogeneous coordinates as
z 7→ (℘ (z) : ℘ ′(z) : 1), where ℘ is the Weierstrass ℘-function associated with E .

We call all of these examples analytic 0-fields of type (EXP).

Definition 3.2 (analytic 0-fields of type (COR)). The exponential map of a complex elliptic curve
factors through Gm(C), giving an analytic map θ : Gm(C)→ E(C). More generally, there are analytic
correspondences between semiabelian varieties. We take G1 and G2 both to be simple complex semiabelian
varieties of the same dimension d, and assume G1 and G2 are not isogenous. Suppose End(G1) and
End(G2) are both isomorphic to a ring O, and furthermore there is a C-vector space isomorphism
ψ : LG1→ LG2 which respects the actions of O. We choose such a ψ and take 0 to be the image of
the graph of ψ under expG1×G2

: LG1(C)× LG2(C)→ G1(C)×G2(C). Then 0 is an O-submodule of
G1(C)×G2(C), and a complex Lie-subgroup. The graph of the map θ is an example of such a 0, but in
general 0 need not be the graph of a function.
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We call these examples analytic 0-fields of type (COR). By an analytic 0-field we mean one of type
(EXP) or type (COR).

Definition 3.3 (differential equation examples). If f (t) is a holomorphic function in a neighbourhood
of 0 ∈ C, then the pair (x, y)=

(
f (t), exp( f (t))

)
satisfies the differential equation Dx = Dy/y, where

D = d/dt . We can consider the set 0 of solutions of the differential equation not just in a field of
functions but in a differentially closed field F . Then 0 is a subgroup of Ga(F)×Gm(F). The paper
[Kirby 2009] studies this situation for the differential equations satisfied by the exponential maps of
semiabelian varieties S. While these S do not have to be simple, they do have to be defined over the
constant field C of F . In these cases the group 0 is quite closely related to the graph of the exponential
map and can be analyzed via a similar amalgamation construction.

We capture all of these three types of examples in the notion of a 0-field. We next give the assumptions
we use on the algebraic groups, and then define 0-fields. The assumptions we make are not the most
general possible, but they are what we use throughout this paper.

Definition 3.4 (conventions for K0, G2, O, and kO). We take K0 to be a countable field of characteristic 0,
which must be a number field except in case (DEQ) below. Let G2 be a simple semiabelian variety defined
over K0. We write O for the ring End(G2) of algebraic (that is, regular) group endomorphisms of G2 and
assume that they are also all defined over K0. Let kO denote the ring Q⊗Z O.

Remarks 3.5. The ring O has no zero divisors because G2 is simple. So O embeds in kO. If O = Z then
kO is just Q. Every nonzero algebraic group endomorphism of a simple abelian variety is an isogeny, so
becomes invertible in kO. Hence kO is a division ring, and the O-torsion of any O-module is exactly the
Z-torsion.

Definition 3.6 (conventions for G1, G, and the torsion). We consider two cases for the choice of G1,
corresponding to the above analytic examples.

Case (EXP): We take G1 = Gd
a , where d = dim G2. We identify G1 with the Lie algebra LG2, that is,

the tangent space at the identity of G2. As in the analytic case, this identification makes G1 into an
algebraic O-module, that is, an O-module in which every element of O acts as a regular map.

Case (COR): G1 is also a simple semiabelian variety defined over K0, and with all its algebraic
endomorphisms defined over K0. We assume G1 is not isogenous to G2, but End(G1)∼=O and we
choose an isomorphism, so G1×G2 becomes an algebraic O-module over K0.

Let G = G1×G2, and write πi : G→ Gi for the projection maps of the product, for i = 1, 2. We
write the groups G1, G2, and G additively.

For i = 1, 2 the torsion of Gi is contained in Gi (K
alg
0 ), and hence is bounded. We write Tori for the

torsion of Gi (F) for any F such that G(F) contains Tor(G(K alg
0 )). The torsion of G(F) is written Tor(G).

It is equal to (Tor1×Tor2)∩G(F).

Remarks 3.7. Note that for any algebraically closed field F extending K0 the groups Gi (F) and G(F) are
divisible O-modules. Furthermore, G(F)/Tor(G) is divisible and torsion-free, and thus a kO-vector space.
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Definition 3.8 (0-fields). A 0-field (with respect to the O-module G) is a field extension A of K0

equipped with a divisible O-submodule 0(A) of G(A) such that

(1) A is generated as a field by 0(A),

(2) the projection πi (0(A)) in Gi (A) contains Tori for i = 1, 2.

We write 0i (A) for the projections πi (0(A)). The 0-field A is full if, in addition, A is algebraically
closed and the projections 0i (A) are equal to Gi (A).

The kernels of a 0-field A are defined to be

ker1(A) := {x ∈ G1(A) | (x, 0) ∈ 0(A)},

ker2(A) := {y ∈ G2(A) | (0, y) ∈ 0(A)}.

When A is full and ker2(A) is trivial, 0(A) is the graph of a surjective O-module homomorphism
from G1(F) to G2(F) with kernel ker1(F) as in the analytic examples of type (EXP). However the case
(EXP) for our 0-fields is more general.

The most difficult part of this paper uses the Kummer theory of semiabelian varieties over number fields.
This is not needed for the differential equations examples, or more generally in the following variant.

Definition 3.9 (case (DEQ)). A 0-field in case (DEQ) is the same as above except that we require the
full torsion group Tor(G) to be contained in 0(A), and we relax the assumption that K0 is a number field
so it can be any countable field of characteristic 0.

Definition 3.10 (extensions of 0-fields). An extension of a 0-field A is a 0-field B together with an
inclusion of fields A ⊆ B over K0 such that 0(A)⊆ 0(B) and for i = 1, 2 we have keri (A)= keri (B).
We also say that A is a 0-subfield of B.

We refer to the last condition in the definition by saying that the extension preserves the kernels.

One could also consider extensions of 0-fields which do not preserve the kernels, and this would be
necessary for an analysis of the first-order theory such as that done in the paper [Kirby and Zilber 2014].
However, we do not consider such extensions in this paper.

Remarks 3.11 (0-fields as model-theoretic structures). (1) Model-theoretically, we consider a 0-field
as a structure in the 1-sorted first-order language L0 = 〈+ , · ,− , 0, (ca)a∈K0〉, where 0 is a relation
symbol of appropriate arity to denote a subset of the group G, and we have parameters for the
field K0. Later, we will also be adding parameters for a base 0-field Fbase.

(2) However, our notion of 0-field extension corresponds to an injective L0-homomorphism, not
necessarily an L0-embedding. Specifically, it is not necessary in an extension A ↪→ B of 0-fields
that 0(B)∩G(A)=0(A), although that will be true in most cases we will consider later, for example
when the extension is strong (see Definition 4.3).

(3) Although we use the 1-sorted language with the sort being that of the underlying field, we also refer
to elements of 0 as being from the sort 0, rather than from the definable set 0. Model theorists used
to working with Leq will see there is no important difference.
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(4) By definition, the 0-field A is determined by the submodule 0(A) of G(F). Furthermore, an
extension A ↪→ B is determined by the inclusion of submodules 0(A) ↪→ 0(B). Thus, if F is
a monster model of ACF0, the category of 0-fields is equivalent to the category of divisible O-
submodules of G(F) (whose projections contain Tor1 and Tor2), with embeddings, in a first-order
language with relation symbols for all of the Zariski-closed subsets of G(F) which are defined
over K0. This is more or less the setting in [Zilber 2005b].

Remark 3.12. One might also consider the case that G1 and G2 are equal (or isogenous, which comes to
essentially the same thing). 0 can then be considered as the graph of a new (quasi)endomorphism of G1.
The situation is complicated by the need to consider the extension of the algebraic endomorphism ring
generated by 0. Analytic examples include raising to a complex power on Gm, which is analyzed with a
different setup in [Zilber 2003; 2015].

In an earlier draft of this paper we tried to incorporate this into our setup, and in fact produced an
example where 0 was the graph of a multivalued endomorphism θ on Gm, lifting to a generic action of
the ring Q[θ, θ−1

] on the profinite cover Ĝm. However, this is subtly different from giving an action of
the field Q(θ), which is what occurs for complex powers.

While we expect that such 0 can be treated along the lines of this paper, much as we expect that
the simplicity assumption on the semiabelian variety could be relaxed, these elaborations are left to
future work.

3B. Finitely generated extensions.

Definition 3.13. Let B be a 0-field, and let {A j | j ∈ J } be a set of 0-subfields of B (each with the same
kernels as B). We define

∧
j∈J A j to be the 0-subfield A of B such that 0(A)=

⋂
j∈J 0(A j ).

Lemma 3.14. The 0-field
∧

j∈J A j is a 0-subfield of B.

The proof is straightforward, but we give the details because they show exactly where all the hypotheses
of the definitions are used.

Proof. Let A =
∧

j∈J A j . Since 0(A) is defined as the intersection of a set of O-submodules of 0(B), it
is also an O-submodule of 0(B). A is defined as the subfield of B generated by the coordinates of the
points in 0(A), so 0(A) is an O-submodule of G(A).

If a ∈ ker1(B), then (a, 0) ∈ 0(A j ) for all j ∈ J because ker1(A j ) = ker1(B), so (a, 0) ∈ 0(A). So
ker1(A)= ker1(B) and similarly ker2(A)= ker2(B).

If a ∈Tor1=Tor1(B) then there is b∈G2(B) such that (a, b)∈0(B). Furthermore, for any b′ ∈G2(B)
we have (a, b′)∈0(B) if and only if b′−b ∈ ker2(B). For each j ∈ J, A j is a 0-subfield of B, so 01(A j )

contains Tor1(B), so there is b′ such that (a, b′) ∈ 0(A j ). But ker2(A j )= ker2(B) by assumption, so we
have (a, b) ∈ 0(A j ), and since this holds for all j we have (a, b) ∈ 0(A). Thus 01(A) contains Tor1(B),
and similarly 02(A) contains Tor2(B).

In particular, 0(A) contains all the torsion from 0(B), so since it is the intersection of divisible
O-submodules, it is itself divisible as an O-submodule of G(A). Hence, A is a 0-subfield of B. �
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Definition 3.15. Let B be a 0-field and X ⊆ 0(B) a subset. We say that

A =
∧
{A′, a 0-subfield of B (with the same kernels as B) | X ⊆ 0(A′)}

is the 0-subfield generated by X , and write it as 〈X〉B or, more usually with the B suppressed, as 〈X〉.
We say A is a finitely generated 0-field if 0(A) is of finite rank as an O-module, or equivalently as a

Z-module. Equivalently, A is generated by a finite subset and ker1(A) and ker2(A) are of finite rank.
Note that a finitely generated 0-field is not usually finitely generated as a field, because we insist that

0(A) is a divisible O-submodule.
If Y is a subset of 0(A), we say that A is finitely generated over Y if there is a finite subset X of 0(A)

such that A is the 0-subfield of itself generated by X ∪Y . In particular, for Y a 0-subfield of A, we have
the notion of a finitely generated extension of 0-fields. It is easy to see that an extension A ↪→ B of
0-fields is finitely generated if and only if ldimkO(0(B)/0(A)) is finite.

Definition 3.16. The intersection of full 0-subfields of B (with the same kernels as B) is again a full
0-subfield. Thus we can define a full 0-field A to be finitely generated as a full 0-field if there is a finite
subset X of A such that

A =
∧
{A′, a full 0-subfield of A (with the same kernels as A) | X ⊆ 0(A′)}.

Likewise, there is the notion of being finitely generated as a full 0-field extension.

Except in trivial cases, a finitely generated full 0-field is not finitely generated as a 0-field, and a
finitely generated full 0-field extension is not finitely generated as a 0-field extension.

Definition 3.17. Recall that an O-submodule H of G is pure in G if whenever x ∈ G and nx ∈ H for
some n ∈ N+, then x ∈ H .

Lemma 3.18. If A is the 0-subfield of B generated by X , then 0(A) is the pure O-submodule of 0(B)
generated by X ∪π−1

1 (Tor1)∪π
−1
2 (Tor2).

Proof. This pure O-submodule together with the field it generates is a 0-subfield of B with the same
kernels as B, so it suffices to see that it is contained in 0(A′) for any A′ in the definition of 〈X〉B .
0(A′) contains X by definition, and since πi (0(A′))= Tori and A′ has the same kernels as B, it also

contains π−1
i (Tori ). Hence it also contains Tor(G)∩0(B). Since it is divisible, it follows that it is pure

in 0(B). �

3C. Good bases. Let A be a 0-field, and B a finitely generated 0-field extension of A. So the linear
dimension ldimkO(0(B)/0(A)) is finite. Thus we can find a basis for the extension, by which we mean
a tuple b= (b1, . . . , bn) ∈ 0(B)n of minimal length n such that b∪0(A) generates 0(B), or equivalently
such that b1+0(A), . . . , bn +0(A) is a basis for the quotient kO-vector space 0(B)/0(A).

We consider the locus Loc(b/A) of b, that is, the smallest Zariski-closed subset of G, defined over A
and containing b.
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Definition 3.19. A basis b ∈ 0(B)n for a finitely generated extension A ↪→ B of 0-fields is good if the
isomorphism type of the extension is determined up to isomorphism by the locus Loc(b/A). That is,
whenever B ′ is another extension of A which is generated by a basis b′ such that Loc(b′/A)= Loc(b/A)
then there is an isomorphism of 0-fields B ∼= B ′ fixing A pointwise which takes b to b′.

Proposition 3.20. Suppose we are in case (DEQ), that is, Tor(G)⊆0. Let A ↪→ B be a finitely generated
extension of 0-fields. Then every basis of the extension is good.

Proof. Suppose b is a basis of B over A, and we have another extension B ′ of A with basis b′ such that
Loc(b′/A)= Loc(b/A). There is a (not necessarily unique) field isomorphism θ : B ∼= B ′ over A which
takes b to b′. Now, for an element c ∈ G(B), we have c ∈ 0(B) if and only if there is m ∈ N such that
mc is in the O-linear span of 0(A) and b, because 0(B) is divisible and contains all the torsion of G. It
follows that c ∈ 0(B) if and only if θ(c) ∈ 0(B ′), so θ is an isomorphism of 0-field extensions. So b is a
good basis. �

In the proof it is critical that Tor(G)⊆ 0 since otherwise some division points of the basis will be in 0
but others will not. In general we can specify an extension B of A by specifying a choice of division
sequence b̂ for a basis b such that b̂ ∈ 0̂(B).

Definition 3.21. A 0-field is essentially finitary if it is finitely generated or if it is a finitely generated
extension of a countable full 0-field.

Proposition 3.22 (existence of good bases). Let A be an essentially finitary 0-field, and let B be a finitely
generated 0-field extension of A (with the same kernels as A). Let b be a basis for the extension. Then
there is m ∈ N+ such that any m-th division point of b in 0(B) is a good basis. Furthermore, in case
(DEQ) we may take m = 1, so every basis is good, and we may even remove the assumption that A is
essentially finitary.

The bulk of the proof is contained in the following Kummer-theoretic results.

Definition 3.23. For a commutative algebraic group H , we write T̂ (H) for the kernel of the map
ρH : Ĥ→ H . So T̂ (H) is the group of division sequences of the identity of H (which is the product over
primes l of the l-adic Tate modules Tl(H) of H , whence the notation).

Proposition 3.24. Let H = A×Gr
m be the product of an abelian variety and an algebraic torus. Suppose

that A is defined over a number field K0, and moreover that every endomorphism of A is also defined
over K0. Let D be either Tor(H) or H(L) for an algebraically closed field extension L of K0 and let K
be a finitely generated field extension of K0(D). Let a ∈ H(K ) and suppose that a is free in H over D,
that is, in no coset H ′+γ for a proper algebraic subgroup H ′ of H and γ ∈ D. Let â = (am)m∈N+ be a
division sequence for a in Ĥ(K alg) and consider the Kummer map ξa : Gal(K alg/K )→ T̂ (H) given by

ξa(σ )= (σ (am)− am)m∈N+ .

Then ξa does not depend on the choice of division sequence â, so is well-defined, and the image of ξa is of
finite index in T̂ (H).
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Remark 3.25. For the groups T̂ (H) which occur in this theorem, the finite index subgroups are precisely
those which are open in the profinite topology, so the conclusion of the proposition is that ξa(Gal(K alg/K ))
is open in T̂ (H).

Proof of Proposition 3.24. It is straightforward that ξa is well-defined.
First, suppose D = Tor(H) and K is a finite extension of K0(D)— so by increasing K0, we may

assume K = K0(D). The result then follows from Kummer theory for abelian varieties. For the case
H = A, we refer to [Bertrand 2011, Theorem 5.2], and for the generalization to H = A×Gn

m we refer to
[Bays et al. 2014c, Proposition A.9].

Suppose now that D = H(L), where L is an algebraically closed field. In this case, the result has a
Galois-theoretic proof given as [Bays et al. 2014a, Section 3, Claim 2]. In the case that K = K0(D, a),
the result follows directly from that claim; in general, it follows on noting that

ξa(Gal(K alg/K ))∼= Gal(K (â)/K )∼= Gal(K0(D, â)/K ∩ K0(D, â)),

and K ∩ K0(D, â) is a finite extension of K0(D, a).
See also references in the introduction of [Bays et al. 2014a] for alternative proofs, and [Bertrand 2011,

Theorem 5.3] for an analytic proof.
Finally, suppose D = Tor(H) and K is a finitely generated extension of K0(D). The result in this case

follows from the first two cases. This can be seen model-theoretically in the context of [Bays et al. 2014c]
as a matter of transitivity of atomicity, but we give here a direct argument.

Say B is the minimal algebraic subgroup of H such that, writing θ : H → H/B for the quotient map,
we have θ(a) ∈ (H/B)(Qalg). Let K ′ = K ∩Qalg, so K is a regular extension of K ′ and K ′ is a finite
extension of K0(D). Consider the diagram

1

��

0

��

Gal(K alg/Qalg(K ))

��

ξa
// T̂ (B)

��

Gal(K alg/K )

��

ξa
// T̂ (H)

��

Gal(Qalg/K ′)

��

ξθ(a)
// T̂ (H/B)

��

1 0

where the middle horizontal map is the Kummer map for a, the top map is its restriction, and the bottom
map is the Kummer map for θ(a). The vertical sequences are exact.
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Say a ∈ aB + H(Qalg), where aB ∈ B. By minimality of B, we have that aB is free in B over B(Qalg).
Now the top map agrees with the Kummer map ξaB in B, and so by the second case above, the map
has finite index image. Now since a is free in H over Tor(H), we have that θ(a) is free in H/B over
Tor(H/B), so by the first case applied to H/B, the bottom map in the above diagram also has finite index
image. It follows that the central map has finite index image, as required. �

Now we prove that good bases exist.

Proof of Proposition 3.22. Let b̂ ∈ 0̂(B)n be a division sequence of the basis b, and write b̂ = (bm)m∈N+ .
Then 0(B) is precisely the O-linear span of 0(A) and the bm , so to specify B up to isomorphism
it is enough to specify the ACF-type of b̂ over A. A is an essentially finitary 0-field, so it is either
finitely generated or a finitely generated extension of a countable full 0-field A0. In the former case, let
D = Tor(G) and in the latter case let D = G(A0). For i = 1, 2, write bi = πi (b) and Di = πi (D), and let
ai be a kO-basis for πi (0(A)) over Di .

We consider the different cases in turn.

Case (EXP): Since the extensions are kernel-preserving, (a2, b2) is kO-linearly independent over D2,
and so is free in Gn+k

2 over D2.
So, by Proposition 3.24, ξa2,b2

(
Gal(K0(D, a, b)alg/K0(D, a, b))

)
has finite index in T̂ (Gn+k

2 ). In
particular, its intersection with 0× T̂ (Gn

2) is of finite index.
Since A is generated as a field by K0(D, a) and the division points of a2, it follows that the image

4 := ξb2

(
Gal(A(b)alg/A(b))

)
has finite index in T̂ (Gn

2). So if m is the exponent of the finite quotient
T̂ (Gn

2)/4, then mT̂ (Gn
2) is a subgroup of 4.

Hence, if b′ is an m-th division point of b we have ξb′2

(
Gal(A(b′)alg/A(b′))

)
= T̂ (Gn

2). So all division
sequences of b′ have the same ACF-type over A(b′), and hence b′ is a good basis for B over A.

Case (COR): Again, since the extensions are kernel-preserving, (ai , bi ) is free over Di for i = 1, 2. Since
G1 and G2 are simple and nonisogenous, every algebraic subgroup of Gk+n is of the form H1× H2 for
Hi a subgroup of Gk+n

i , so it follows that (a, b) is free in Gk+n over D. Since A is generated as a field
by K0(D) and the division points of a1 and of a2, we conclude as in case (EXP).

Case (DEQ): This was covered in Proposition 3.20. �

Corollary 3.26. If A is an essentially finitary 0-field there are, up to isomorphism, only countably many
finitely generated kernel-preserving extensions of A.

Proof. Each extension B has a good basis b, and is determined by Loc(b/A). Since A is countable there
are only countably many algebraic varieties defined over it. �

4. Predimension and strong extensions

4A. Predimension. We define a predimension function δ as follows:
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Definition 4.1. Let A ⊆ B be 0-fields. For any 0-subfield X of B that is finitely generated over A, let

δ(X/A) := trd(X/A)− d ldimkO(0(X)/0(A)),

recalling d = dim G1 = dim G2.
Note that since X is assumed to be finitely generated over A, the linear dimension ldimkO(0(X)/0(A))

is finite, and since O acts by K0-definable functions and X is the field generated by0(X), the transcendence
degree trd(X/A) is also finite. Hence the predimension is well-defined.

As a convention, for any finite b ⊂ 0(B), we set

δ(b/A) := δ(X/A),

where X = 〈Ab〉, the 0-subfield of B generated by b∪ A.

Note that δ(b/A)= trd(b/A)− d ldimkO(b/0(A)).

Lemma 4.2. Let A ⊆ B be 0-fields.

(1) Finite character for δ:
If b ⊆ 0(B) is finite, there is a finitely generated 0-subfield A0 of A such that for any intermediate
0-field A0 ⊆ A′ ⊆ A, we have δ(b/A)= δ(b/A′).

(2) Addition formula for δ:
Let X, Y be 0-subfields of B finitely generated over A with X ⊆ Y . Then

δ(Y/A)= δ(Y/X)+ δ(X/A).

(3) Submodularity of δ:
Suppose X, Y are 0-subfields of B with X finitely generated over X ∧Y . Then, abbreviating 〈X ∪Y 〉
by XY , we have

δ(XY/Y )6 δ(X/X ∧ Y ).

Proof. (1) Immediate since transcendence degree and kO-linear dimension have finite character.

(2) Note that the addition formula holds with transcendence degree or linear dimension in place of δ, so
it also holds for δ by linearity.

(3) The submodularity condition is true when δ is replaced by transcendence degree. Linear dimension is
modular, which means

ldimkO(0(XY )/0(Y ))= ldimkO(0(X)/0(X ∧ Y )),

so by subtracting we get the required submodularity of δ. �

4B. Strong extensions.

Definition 4.3. An extension A ⊆ B of 0-fields is said to be a strong extension if for every 0-subfield X
of B that is finitely generated over A, δ(X/A)> 0. In this case, we also say that A is a strong 0-subfield
of B, and write AC B.
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For arbitrary 0-fields A, B, an embedding A ↪→ B is said to be a strong embedding if the image of A
is a strong 0-subfield of B. To denote that an embedding is strong we use the notation A

C
↪→ B.

The method of predimensions and strong (also known as self-sufficient) extensions has been widely
used since it was introduced by Hrushovski [1993]. We now give a few basic results which are well-known
in general, but fundamental to the later development so it would be inappropriate to omit them. Some of
the proofs are slightly more involved for this setting than the more well-known settings, especially those
where no field is present.

Lemma 4.4. The composition of strong embeddings is strong.

Proof. Suppose AC B and BCC . Clearly the kernels of C are the same as those of A, since both are the
same as those of B. Let X ⊆C be finitely generated over A. Then δ(X/A)= δ(X/X ∧ B)+δ(X ∧ B/A)
by the addition formula. We have δ(X/X ∧ B)> δ(XB/B) by submodularity, and δ(XB/B)> 0 because
BCC . Also, δ(X ∧ B/A)> 0 because AC B. So δ(X/A)> 0. �

Given a strong extension AC B of 0-fields, and an intermediate 0-field X , finitely generated over A,
it follows that AC X but it may not be the case that X C B. However, as Y varies over finitely generated
extensions of X inside B, the predimension δ(Y/A) takes integer values bounded below by 0 because
AC B. Thus we can replace X by a finitely generated extension X ′ of X , inside B, such that δ(X ′/A) is
minimal, and from the addition formula for δ it follows that X ′C B.

The next lemma shows that we can find this X ′ in a canonical way. It is crucial for understanding the
finitely generated 0-fields we will amalgamate, and it will allow us to understand the types in our models
and prove there are only countably many of them.

Lemma 4.5. Suppose B is a 0-field and for each j ∈ J , A j is a strong 0-subfield of B. Then
∧

j∈J A j is
also strong in B.

Proof. First we prove that if A1, A2C B then A1 ∧ A2C A1. So suppose X is a finitely generated 0-field
extension of A1 ∧ A2 inside A1. Then

δ(X/A1 ∧ A2)= δ(X/X ∧ A2)> δ(X A2/A2)> 0

using submodularity and the fact that A2CB. So A1∧A2CA1, but A1CB so, by Lemma 4.4, A1∧A2CB.
It follows by induction that if J is finite,

∧
j∈J A j C B.

Now suppose that J is infinite and that X is a 0-subfield of B which is finitely generated as an extension
of A =

∧
j∈J A j . Then we have

A = A∧ X =
∧
j∈J

(A j ∧ X).

Each 0-field A j ∧ X is in the lattice of 0-fields intermediate between A and X . This lattice is isomorphic
to the lattice of vector subspaces of the finite-dimensional vector space 0(X)/0(A) and so has no infinite
chains. Thus there is a finite subset J0 of J such that, writing AJ0 =

∧
j∈J0

A j , we have

A =
∧
j∈J

(A j ∧ X)=
∧
j∈J0

(A j ∧ X)= AJ0 ∧ X.



510 Martin Bays and Jonathan Kirby

Now using the result for finite intersections we have that AJ0 C B, so using also submodularity we have

δ(X/A)= δ(X/AJ0 ∧ X)> δ(AJ0 X/AJ0)> 0,

and hence AC B as required. �

Consider again a strong extension AC B of 0-fields, and an intermediate 0-field X .

Definition 4.6. We define the hull of X in B (also known as the strong closure of X or the self-sufficient
closure of X ) by

dXeB :=
∧
{Y a strong 0-subfield of B | X ⊆ Y }.

The previous lemma shows that dXeB is indeed strong in Y , and we observe also that if X is finitely
generated as an extension of A then so is dXeB . Furthermore, if B C C then it is immediate that
dXeC = dXeB , so we often drop the subscript B.

Lemma 4.7. The hull operator has finite character. That is, if AC B and X is an intermediate 0-field,

dXeB =
⋃
{dX0eB | X0 ⊆ X and X0 is a finitely generated extension of A}.

Proof. Let U be the union in the statement of the lemma. It is immediate from the definition of the hull
that if X0 ⊆ X then dX0eB ⊆ dXeB . It follows that U ⊆ dXeB . Also X ⊆U . Now U is a directed union
of strong 0-subfields of B, and since δ has finite character, it follows that U C B. So dXeB ⊆ U , as
required. �

Finally in this section we give a useful lemma giving a simple sufficient condition for an extension of
a strong 0-subfield also to be strong.

Lemma 4.8. If AC B and A ⊆ A′ ⊆ B with δ(A′/A)= 0, then A′C B.

Proof. Let X ⊆ B be a finitely generated extension of A′. Then

δ(X/A′)= δ(X/A)− δ(A′/A)= δ(X/A)> 0. �

4C. Pregeometry. In this section, F is any full 0-field strongly extending a 0-subfield Fbase. We will
use the predimension function δ to define a pregeometry on F . We could drop the assumptions that
F is full and that F strongly extends some Fbase and give a definition along the lines of that done for
exponential fields in [Kirby 2010a] and for Weierstrass ℘-functions in [Jones et al. 2016]. However, it is
sufficient for our purposes and much more straightforward to do it this way.

Definition 4.9. A 0-subfield A of F , extending Fbase, is 0-closed in F , written A Ccl F , if for any
A ⊆ B ⊆ F with B finitely generated over A and δ(B/A)6 0 we have B = A.

Lemma 4.10. (1) If ACcl F then AC F.

(2) If ACcl F then A is a full 0-subfield of F.

(3) If A j Ccl F for j ∈ J and A =
∧

j∈J A j then ACcl F.

Proof. (1) Immediate.
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(2) Suppose a ∈ G1(F) is algebraic over A. Since F is full, there is b ∈ G2(F) with (a, b) ∈ 0(F).
We have trd((a, b)/A) = trd(b/A) 6 dim G2 = d, so δ((a, b)/A) 6 d − d ldimkO((a, b)/0(A)). If
ldimkO((a, b)/0(A)) = 1 then δ((a, b)/A) 6 0, so since A is closed in F we have (a, b) ∈ 0(A).
Otherwise ldimkO((a, b)/0(A))= 0 so again (a, b) ∈ 0(A). A similar argument is used if b ∈ G2(F) is
algebraic over A. Since G1(A) contains all points of G1 that are algebraic over A, A is an algebraically
closed field. Thus A is a full 0-field.

(3) Suppose δ(B/A)6 0. By submodularity and Lemma 4.5, for each j we have

δ(BA j/A j )6 δ(B/A j ∧ B)= δ(B/A)− δ(A j ∧ B/A)6 0,

so B ⊆ A j . Thus B ⊆ A. �

This notion of 0-closedness induces a closure operator on the field F .

Definition 4.11. If A ⊆ F is any subset, the 0-closure of A in F is defined to be the smallest 0-closed
0-subfield containing A:

0clF (A) :=
∧
{BCcl F | A ⊆ B}.

0clF (A) is a 0-subfield of F , and in particular a subset of F , so 0clF induces a map PF→ PF , which
we also denote by 0clF.

Lemma 4.12. For any 0-subfield A of F , we have 0clF (A)=
⋃

B, where B is the set of all 0-subfields
B ⊆ F such that B is a finitely generated 0-field extension of dAeF and δ(B/dAeF )= 0.

Proof. Since 0clF (A)C F we have dAeF ⊆ 0clF (A). So 0clF (A) = 0clF (dAeF ), and thus we may
assume A C F . Let C =

⋃
B. Using the submodularity of δ it is easy to see that the system B of

0-subfields of F is directed, so its union C is a 0-subfield of F .
Suppose that b is a finite tuple from 0(F) such that δ(b/C)6 0. Then by the finite character of δ and

directedness of the union defining C , there is a finitely generated extension B of A inside C such that
δ(B/A)= 0 and δ(b/B)= δ(b/C). Using the addition formula,

0> δ(b/B)= δ(b/A)− δ(B/A)= δ(b/A)> 0.

So δ(b/A)= 0 and hence b ∈ 0(C). Thus C is 0-closed, so 0clF (A)⊆ C .
Now suppose B is a finitely generated 0-field extension of A with δ(B/A)= 0 and A⊆ DCcl F . Then

δ(BD/D)6 δ(B/B ∧ D)= δ(B/A)− δ(B ∧ D/A)6 0

because AC F . So δ(B ∧ D/A)> 0 and thus B ⊆ D. Hence B ⊆ 0clF (A), and so C ⊆ 0clF (A). �

The predimension function δ is a function depending on the sort 0, but 0-closure will be shown to be
a pregeometry on the field sort. The next lemma allows us to move from one sort to the other.

Lemma 4.13. If ACF and a ∈ Fr0clF (A), there is α ∈0(F) such that π1(α)∈G1(F) is interalgebraic
with a over A and δ(α/A)= 1, and the 0-subfield 〈Aα〉 of F generated by A and α satisfies 〈Aα〉C F.
We can choose α such that a is rational over A(π1(α)), and if A is essentially finitary, also such that α is
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a good basis. Furthermore, the locus Loc(α, a/A) can be taken to be a particular algebraic curve defined
over K0, not depending on A or a.

Proof. We have trd(a/A)= 1 (since otherwise a ∈ 0clF (A)). We have fixed an identification of G1 with
a constructible subset of affine space AN for some N , defined over K0. Let f be the projection map from
G1 to the first coordinate where the projection is dominant, and choose a constructible curve X ⊆ G1

by fixing the values of all the other coordinates to be values in K0. Then X and the map f are defined
over K0. Choose α1 ∈ X (F) with f (α1)= a. Then α1 is interalgebraic with a over A, with a rational
over A(α1), and the locus Loc(α1, a/A) is defined over K0.

Since F is full, there is α ∈ 0(F) with π1(α) = α1. Then α ∈ 0clF (Aa) and a ∈ 0clF (Aα). Then
ldimkO(α/0(A)) = 1 and so since δ(α/A) 6= 0 by Lemma 4.12, trd(α/A) = d + 1 and δ(α/A) = 1. If
there were B ⊇ 〈Aα〉 with δ(B/Aα) < 0 then δ(B/A)6 0, which contradicts a /∈ 0clF (A). So 〈Aα〉C F .
If A is essentially finitary then by Proposition 3.22 we can divide α by some m ∈N+ to ensure it is a good
basis. Since α2 is generic in G2(A) over α1, and G2 is defined over K0, we deduce that Loc(α, a/A) is
defined over K0. �

Proposition 4.14. The 0-closed subsets of F are the closed sets of a pregeometry on F.

Proof. It is immediate that for any subsets A⊆ B of F we have A⊆0clF (A), 0clF (0clF (A))=0clF (A),
and 0clF (A)⊆ 0clF (B).

For finite character, suppose b ∈ 0clF (A). By Lemma 4.12 there is a finitely generated extension
dAeF ⊆ B in F such that δ(B/dAeF )= 0 and b ∈ B. Then there is a finite tuple β ∈0(F) with b rational
over β and δ(β/A)= 0. By finite character of δ from Lemma 4.2, there is a finitely generated 0-subfield
A0 of dAeF such that for any A′ with A0 ⊆ A′ ⊆ dAeF we have δ(β/A′)= 0. So by Lemma 4.12 again,
b ∈ 0clF (A0).

The hull operator is a closure operator which by Lemma 4.7 has finite character. We have A0 ⊆ dAeF ,
so there is a finite subset A00 of A such that dA0eF = dA00eF . Hence b ∈ 0clF (A00), and so 0clF has
finite character.

For exchange, suppose ACcl F and that a, b ∈ F r A with b ∈ 0clF (Aa). Using Lemma 4.13, we
choose α, β ∈ 0(F) corresponding to a and b, respectively.

Now β ∈ 0clF (Aα) so there is a finitely generated 0-field extension A⊆ B inside F with β, α ∈ 0(B)
and δ(B/Aα)= 0. Then we have

δ(B/Aβ)= δ(B/A)− δ(β/A)= δ(B/A)− 1= δ(B/A)− δ(α/A)= δ(B/Aα)= 0,

so α ∈ 0clF (Aβ), or equivalently a ∈ 0clF (Ab). �

We write 0dimF for the dimension with respect to the pregeometry 0clF. However, if F1 and F2 are
both full 0-fields with F1Ccl F2 and A⊆ F1 then 0clF1(A)= 0clF2(A). So from now on we will usually
drop the superscript F and just write 0cl and 0dim except where it might cause confusion.

We have the usual connection between the dimension and the predimension function.
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Lemma 4.15. Suppose that AC F and B is a finitely generated 0-field extension of A in F. Then

(1) 0dim(B/A)=min{δ(C/A) | B ⊆ C ⊆ F}, and

(2) BC F if and only if 0dim(B/A)= δ(B/A).

Proof. Since dBeF ⊆0clF (B), we have 0dim(B/A)=0dim(dBeF/A). Now it follows from the addition
formula that δ(dBeF/A)=min{δ(C/A) | B⊆C⊆ F}, so statement (1) reduces to the left-to-right direction
of statement (2). To prove that, first assume BC F .

Let n = 0dim(B/A) and let b1, . . . , bn be a 0cl-basis for B over A. Applying Lemma 4.13, we get
βi ∈ 0(F) in the closure of B with βi corresponding to bi . Let D be the 0-subfield of F generated by A
and β1, . . . , βn . Then δ(D/A)= n and DC F . Furthermore, 0clF (D)= 0clF (B).

Since D ⊆ 0clF (B), there is C ⊇ B ∪ D such that δ(C/B)= 0. Then

δ(B/A)= δ(C/A)− δ(C/B)= δ(C/A)> δ(D/A)= n,

using that DC F . Reversing the roles of B and D, the same argument shows that δ(B/A) 6 δ(D/A),
and so δ(B/A)= n = 0dim(B/A) as required.

The right-to-left direction of statement (2) now follows from statement (1) and the addition property. �

Remarks 4.16. (1) In the sense of the pregeometry 0cl, the set 0(F) is d-dimensional. Thus when d= 1
such as in pseudo-exponentiation and pseudo-℘, we actually get a pregeometry directly on 0(F).

(2) In the case of pseudo-exponentiation or a pseudo-℘-function, G1(F) = Ga(F) = F , and 0 is the
graph of a function exp, so we have a bijection ϕ : F → 0(F) given by x 7→ (x, exp(x)). The
predimension usually considered for exponentiation, for example in [Zilber 2005b], is a function
on tuples from the field sort, and in fact is just the composite δ ◦ ϕ of the predimension function
described here with ϕ.

(3) It is possible to define a predimension function directly on the field sort, even in our generality.
Given any subfield A of F we write 0(A) for 0(F)∩G(A). For any subset X of F (in the field
sort) we write X alg for the field-theoretic algebraic closure of Fbase(X) in F .

Given subsets X, Y of F , with trd((X ∪ Y )alg/X alg) <∞, define

η(Y/X)= trd((X ∪ Y )alg/X alg)− ldimkO(0((X ∪ Y )alg)/0(X alg)),

which takes values in Z∪ {−∞}.
The predimension functions η and δ are closely related, and we could write

η(Y/X)= δ((X ∪ Y )alg/X alg)

except that X alg usually fails to be a 0-subfield of F by our definition, because as a field it is not
usually generated by the coordinates of the points in 0(X alg). It may not even be algebraic over the
field generated by those points.
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It is possible to define the notion of strong embeddings of 0-fields using this predimension
function instead. Some things are easier with this approach, because the predimension is defined
on a 1-dimensional sort. However we choose to work in the sort 0 because it is a vector space and
hence has a modular geometry, which makes other things much easier.

4D. Full closures. The following theorem and proof follow [Kirby 2013, Theorem 2.18].

Theorem 4.17. If A is a 0-field then there is a full 0-field extension Afull of A such that AC Afull and
Afull is generated as a full 0-field by A. Furthermore, if A is essentially finitary then Afull is unique up to
isomorphism as an extension of A.

Proof. First we prove existence. Embed A in a large algebraically closed field F . Choose a point
a ∈ G1(F) which is algebraic over A and not in π1(0(A)), if such exists. Choose a division sequence
â ∈ Ĝ1(F) for a. Let b ∈ G2(F) be generic over A and choose a division system b̂ for it. (Up to
field isomorphism over A, b̂ is unique.) Let A′ be the field generated by A and the division sequences
â = (am)m∈N+ and b̂ = (bm)m∈N+ , and define 0(A′) to be the O-submodule of G(A′) generated by 0(A)
and the points (am, bm) for m ∈ N+. Since π1(0(A)) already contains the torsion of G1, the extension
preserves the kernels. So A′ is a 0-field extension of A. We have

δ(A′/A)= trd(b/A)− d ldimkO(b/A)= d − d = 0,

so it is a strong extension. Similarly, if there is b ∈ G2(F) which is algebraic over A but not in π2(0(A)),
we can form a similar strong extension. Iterating these constructions, a strong full extension Afull of A is
readily seen to exist.

Now we prove uniqueness under the additional hypothesis that A is essentially finitary. Suppose that
B and B ′ both satisfy the conditions for Afull. Since A is essentially finitary it is countable, and then the
construction above shows that we can take B to be countable as well. Enumerate 0(B) as (sn)n∈N+ such
that for each n, either π1(sn) or π2(sn) is algebraic over A∪ {s1, . . . , sn−1}. This is possible since B is
generated as a full 0-field by A.

We inductively construct a chain of strong 0-subfields An C B, each a finitely generated 0-field
extension of A such that A0 = A and sn ∈ 0(An). We also construct a chain of strong embeddings
θn : An

C
↪→ B ′. Assume we have An and θn . Let An+1 be the 0-subfield of B generated by An and sn+1. As

a field, An+1 is generated by An and the division points of sn+1. If sn+1 ∈0(An), then we have An+1= An

and can just take θn+1 = θn . Otherwise, we have ldimkO(0(An+1)/0(An))> 1. By hypothesis, one of
π1(sn+1) or π2(sn+1) is algebraic over An , say π1(sn+1). Thus trd(An+1/An) = trd(sn+1/An) 6 d. By
inductive hypothesis An C B, so we have δ(An+1/An)> 0. It follows that ldimkO(0(An+1)/0(An))= 1
and trd(An+1/An)= d, so δ(An+1/An)= 0. Thus by Lemma 4.8, An+1C B. Also, π2(sn+1) is generic
in G2 over An .

Since An is a finitely generated 0-field extension of A, by Proposition 3.22 there is m ∈ N such that
{sn+1/m} is a good basis for the extension An C An+1. Replacing sn+1 by sn+1/m, we may assume
m = 1. Now let W be the locus of π1(sn+1) over An (a variety of dimension 0, irreducible over An , but
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not necessarily absolutely irreducible), and let w be any point in W θn , the corresponding subvariety of
G1(B ′). Choose v ∈ G2(B ′) such that (w, v) ∈ 0(B ′). Since w is algebraic over θn(An), which is strong
in B ′, the same predimension argument as above shows that v is generic in G2 over θn(An), so

Loc(w, v/θn(An))=W θn ×G2 = (Loc(sn+1/An))
θn .

Since sn+1 is a good basis over An , we can extend θn to a field embedding θn+1 : An+1 → B ′ with
θ(sn+1) = (w, v), and using again that θn(An)C B ′ we get that 0(θn+1(An+1)) is generated by (w, v)
over 0(θn(An)), and hence θn+1 is a 0-field embedding.

Also, δ(θn+1(An+1)/θn(An))= 0 so θn+1 is a strong embedding by Lemma 4.8.
Now B =

⋃
{An | n ∈ N} and

⋃
{θn(An) | n ∈ N} is a full 0-subfield of B ′ containing A, so it must

be B ′. Hence
⋃
{θn | n ∈ N} is an isomorphism B ∼= B ′. So Afull is unique, up to isomorphism as an

extension of A. �

Proposition 4.18. Let A be a countable full 0-field. Then there are only countably many finitely generated
strong full 0-field extensions of A, up to isomorphism.

Proof. Let AC B be such an extension and let b be a finite tuple generating B over A as a full 0-field,
such that B0 := 〈Ab〉C B, and of minimal length such. Then by Proposition 3.22 we may replace b by
b/m for some m ∈ N+ to ensure that b is a good basis for the extension AC B0. Then B = Bfull

0 , which
by Theorem 4.17 is determined uniquely up to isomorphism by B0, and by Corollary 3.26 there are only
countably many choices for B0. �

5. The canonical countable model

5A. The amalgamation theorem. We use the definition of amalgamation category from [Kirby 2009],
slightly extending work of Droste and Göbel [1992], who were themselves abstracting from Fraïssé’s
amalgamation theorem. We restrict to the countable case. We will apply the general theory to various
categories of 0-fields with strong embeddings as morphisms. The notions of finitely generated, universal,
and saturated all have category-theoretic translations, which we give first.

Definition 5.1. Given a category K, an object A of K is said to be ℵ0-small if and only if for every
ω-chain (Zi , γi j ) in K with direct limit Zω, any arrow A f

−→ Zω factors through the chain, that is, there
are i < ω and A f ∗

−→ Zi such that f = γiω ◦ f ∗. We write K<ℵ0 for the full subcategory of ℵ0-small
objects of K and K6ℵ0 for the full subcategory of the limits of ω-chains of ℵ0-small objects of K.

Definition 5.2. Given a category K and a subcategory K′, an object U of K is said to be K′-universal if
for every object A of K′ there is an arrow A→U in K. U is K′-saturated if for every arrow A f

−→ B in K′

and every arrow A g
−→U in K, there is an arrow B h

−→U in K such that g = h ◦ f . U is K′-homogeneous
if for every object A of K′ and every pair of arrows A f,g

−−→U in K, there exists an isomorphism U h
−→U

in K such that g = h ◦ f .

Some authors refer to K′-saturation as richness with respect to the objects and arrows from K′.



516 Martin Bays and Jonathan Kirby

Definition 5.3. A category K is an amalgamation category if the following hold.

(AC1) Every arrow in K is a monomorphism.

(AC2) K has direct limits (unions) of ω-chains.

(AC3) K<ℵ0 has at most ℵ0 objects up to isomorphism.

(AC4) For each object A ∈ K<ℵ0 there are at most ℵ0 extensions of A in K<ℵ0 , up to isomorphism.

(AC5) K<ℵ0 has the amalgamation property (AP), that is, any diagram of the form

B1 B2

A

`` >>

can be completed to a commuting square

C

B1

>>

B2

``

A

`` >>

in K<ℵ0 .

(AC6) K<ℵ0 has the joint embedding property (JEP), that is, for every B1, B2 ∈ K<ℵ0 there is C ∈ K<ℵ0

and arrows
C

B1

>>

B2

``

in K<ℵ0 .

The point of the definition is that the following form of Fraïssé’s amalgamation theorem holds.

Theorem 5.4 [Kirby 2009, Theorem 2.18]. If K is an amalgamation category then there is an object
U ∈ K6ℵ0 , the “Fraïssé limit”, which is K6ℵ0-universal and K<ℵ0-saturated.

Furthermore, if A ∈ K6ℵ0 is K<ℵ0-saturated then A ∼=U.

Remark 5.5. It follows from saturation and a back-and-forth argument that U is also K<ℵ0-homogeneous.

5B. Amalgamation of 0-fields. We fix a 0-field Fbase which is either finitely generated as a 0-field, or
is a countable full 0-field.

The identity map on a 0-field is obviously a strong embedding; hence, from Lemma 4.4 we have a
category of strong 0-field extensions of Fbase, with strong embeddings as the arrows. We write C(Fbase)

for this category, but usually abbreviate it to C. We also consider the following full subcategories of C.
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Notation 5.6. • Cfull (or Cfull(Fbase)) consists of the full strong 0-field extensions of Fbase.

• Cfg consists of the strong 0-field extensions of Fbase which are finitely generated.

• Cfg-full consists of the strong 0-field extensions of Fbase which are full and finitely generated as full
extensions.

• C6ℵ0 consists of the strong 0-field extensions of Fbase which are countable.

• Cfull,6ℵ0 consists of the strong 0-field extensions of Fbase which are full and countable.

For our categories C and Cfull, it is immediate that ℵ0-small just means finitely generated in the
appropriate sense, and a (full) 0-field is the union of an ω-chain of finitely generated (full) 0-fields if and
only if it is countable.

We will construct our canonical model as the Fraïssé limit of Cfg. In fact it is also the Fraïssé limit
of Cfg-full.

In proving the amalgamation property we actually prove a stronger result, asymmetric amalgamation,
which will be necessary when we come to axiomatize our models. However, the asymmetric property
holds only in the case of full 0-fields, not for Cfg. We also observe that our amalgams are disjoint.

Proposition 5.7. The categories Cfull and Cfull,6ℵ0 have the disjoint asymmetric amalgamation property.
That is, given full 0-fields A0, AL , AR ∈ Cfull, an embedding A0 ↪→ AL and a strong embedding A0

C
↪→ AR ,

there exist A ∈ Cfull and dashed arrows making the following diagram commute:

AL � o
G

��

A0

. �

>>

� p

G
!!

A

AR

/ �

>>

Moreover, if the embedding A0 ↪→ AL is also strong, then so is the embedding AR ↪→ A; furthermore,
identifying A0, AL , and AR with their images in A, we have that AL ∩ AR = A0.

Proof. Since A0 is algebraically closed as a field, we may form the free amalgam A1 of AL and AR

over A0 as fields, that is, the unique (up to isomorphism) field compositum of AL and AR in which
they are algebraically independent over A0. We identify AL and AR as subfields of A1 so, in particular,
AL ∩ AR = A0. We make A1 into a 0-field by defining 0(A1) to be the O-submodule 0(AL)+0(AR)

of G(A1).
Then 0(AL) and 0(AR) are O-submodules of 0(A1).
Suppose that a∈ker1(A1), that is, (a,0)∈0(A1). Then there are (aL ,bL)∈0(AL) and (aR,bR)∈0(AR)

such that (a, 0)= (aL , bL)+ (aR, bR). Then bL =−bR , so

bL , bR ∈ 02(AL)∩02(AR)⊆ G2(AL)∩G2(AR)= G2(A0).
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Since A0 is a full 0-field there is a0 ∈ G1(A0) such that (a0, bL) ∈ 0(A0). Then aL − a0 ∈ ker1(AL)=

ker1(A0), so aL ∈ 01(A0). Similarly, aR ∈ 01(A0), so a ∈ 01(A0).
Thus ker1(A1) = ker1(A0). The same argument shows that ker2(A1) = ker2(A0), and hence the

inclusions of AL and AR into A1 preserve the kernels.
Let us check that the inclusion AL ↪→ A1 is strong. Let X be a 0-subfield of A1 which is finitely

generated over AL . Choose a basis b for the extension, say of length n. Translating by points in 0(AL), we
may assume that b ∈0(AR)

n . Now δ(b/A0)> 0 since A0C AR , so trd(b/A0)> d ldimkO(g/0(A0)= dn.
Since AR is ACF-independent from AL over A0, we have trd(b/AL)= trd(b/A0), and we also have

ldimkO(b/0(AL))= n by assumption, so

δ(X/AL)= trd(b/AL)− d ldimkO(b/0(AL))= δ(b/A0)> 0

as required. Thus AL C A1. The same argument shows that if the embedding A0 ↪→ AL is strong, then so
is the embedding AR ↪→ A1.

Now take A= Afull
1 , which exists and is a strong extension of A1, by the existence part of Theorem 4.17.

Note that if AL and AR are countable then so is A. �

Corollary 5.8. The category Cfg has the amalgamation property. That is, given A0, AL , AR ∈ Cfg and
strong embeddings A0

C
↪→ AL and A0

C
↪→ AR as in the following diagram, there exist A ∈ Cfg and dashed

arrows making the diagram commute.

AL � o
G

��

A0

. �

G

>>

� p

G
!!

A

AR

/ �
G

>>

Proof. Let A0, AL , AR be as in the statement. By the existence part of Theorem 4.17, we can extend each
of the three 0-fields to its full closure.

AL
� � G // Afull

L

A0

. �

G

>>

� p

G
  

� � G // Afull
0

AR
� �

G
// Afull

R

Then, because we have A0C Afull
L and A0C Afull

R , by the uniqueness part of the same theorem there are
embeddings as in the following diagram, which are strong by Lemma 4.8 and finite character of δ.
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AL
� � G // Afull

L

A0

. �

G

>>

� p

G
  

� � G // Afull
0

. �

G

==

� p

G
!!

AR
� �

G
// Afull

R

By Proposition 5.7, we can complete the diagram to

AL
� � G // Afull

L � o

G

  

A0

. �

G

>>

� p

G
  

� � G // Afull
0

. �

G

==

� p

G
!!

A′

AR
� �

G
// Afull

R

/ �
G

>>

and then we can take A to be the 0-subfield of A′ generated by AL ∪ AR , which is in Cfg. �

Theorem 5.9. The categories C and Cfull are amalgamation categories, with the same Fraïssé limit.

Proof. Strong embeddings are injective functions, so monomorphisms. Hence (AC1) holds. It is clear that
the union of a chain of (full) 0-fields is a (full) 0-field, so (AC2) holds. We get (AC4) from Corollary 3.26
for C and Proposition 4.18 for Cfg-full. The amalgamation property (AC5) is proved in Proposition 5.7
and Corollary 5.8. Since every 0-field in C is an extension of Fbase, and every full 0-field in Cfull is an
extension of (Fbase)

full, properties (AC3) and (AC6) follow from (AC4) and (AC5), respectively.
Thus, C and Cfull are both amalgamation categories. Let M be the Fraïssé limit of Cfull. If A ∈ C6ℵ0

then Afull
∈ Cfull,6ℵ0 , so as M is Cfull,6ℵ0-universal there is a strong embedding AfullCM , which restricts

to a strong embedding ACM . Hence M is C6ℵ0-universal. Similarly, using Theorem 4.17 and the Cfg-full-
saturation of M we can see that M is also Cfg-saturated. Hence M is also the Fraïssé limit of Cfg. �

Notation 5.10. We write M(Fbase) for the Fraïssé limit in C.

5C. 0-algebraic extensions.

Definition 5.11. Let AC B be a strong extension of 0-fields. The extension is 0-algebraic if for all finite
tuples b from 0(B) there is a finite tuple c ∈ 0(B) containing b such that δ(c/A)= 0.

Remark 5.12. From Lemma 4.15 we see that if F is a full 0-field such that BC F then the extension
AC B is 0-algebraic if and only if B ⊆ 0clF (A).

Let Calg be the subcategory of C consisting of the 0-algebraic extensions of Fbase.

Proposition 5.13. Calg is an amalgamation category.
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Proof. The proof of Theorem 5.9 goes through, except we also have to show that the amalgam of
0-algebraic extensions is 0-algebraic. So suppose we have the amalgamation square

AL � o
G

��

A0

. �

G
>>

� p

G !!

A

AR

/ � G

>>

as in Corollary 5.8 with AL and AR both 0-algebraic over A0, A′ a full 0-field, and A the 0-subfield of
A′ generated by AL ∪ AR . Then by Remark 5.12, we have AL ∪ AR ⊆ 0clA′(A0) and so A ⊆ 0clA′(A0),
so A0C A is 0-algebraic. �

Write M0 (or M0(Fbase)) for the Fraïssé limit of Calg.

Definition 5.14. A 0-field F strongly extending Fbase is ℵ0-saturated for 0-algebraic extensions over
Fbase if whenever FbaseC AC F with A finitely generated over Fbase and A

C
−→ B is a finitely generated

0-algebraic extension then B embeds (necessarily strongly) into F over A.

Proposition 5.15. M0(Fbase) is the unique countable full 0-field strongly extending Fbase which is 0-
algebraic over Fbase and ℵ0-saturated for 0-algebraic extensions.

Proof. Immediate from the uniqueness part of the amalgamation theorem and Proposition 5.13. �

5D. Purely 0-transcendental extensions. In contrast with 0-algebraic extensions are those we call
purely 0-transcendental extensions. We discuss amalgamation of these, which gives rise to some variant
constructions.

Definition 5.16. Let AC B be a strong extension of 0-fields. The extension is purely 0-transcendental
if for all tuples b from 0(B), either δ(b/A) > 0 or b ⊆ 0(A).

Remark 5.17. If AC B is an extension of full 0-fields then it is purely 0-transcendental if and only if A
is 0-closed in B.

Definition 5.18. When Fbase is a full countable 0-field, we define C0-tr(Fbase) (usually abbreviated to
C0-tr) to be the full subcategory of C consisting of the strong purely 0-transcendental extensions of Fbase.

Lemma 5.19. If A ∈ C0-tr then Afull
∈ C0-tr.

Proof. Consider the case when (a1, a2) ∈ 0(Afull)r0(A) with a1 ∈ G1(Afull) algebraic over A. Since
AC Afull we have trd(a2/A)= d . If δ((a1, a2)/Fbase)6 0 then trd(a1, a2/Fbase)6 d , which implies that
trd(a1/Fbase)= 0. Since Fbase is full, that implies (a1, a2) ∈ 0(Fbase), a contradiction.

Replacing A by the 0-subfield of Afull generated by A∪ {(a1, a2)} and iterating appropriately, we see
that Afull

∈ C0-tr. �
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We will show that C0-tr is an amalgamation category by showing that the free amalgam of purely
0-transcendental extensions is purely 0-transcendental, using a lemma on stable groups.

Lemma 5.20. Let H be a commutative algebraic group defined over an algebraically closed field C.
Suppose a1, a2, a3 ∈ H are pairwise algebraically independent over C and a1+ a2+ a3 = 0. Then there
is a connected algebraic subgroup U of H and cosets ci +U defined over C such that ai is a generic
point of ci +U over C , for each i = 1, 2, 3. In particular, trd(ai/C)= dim U for each i .

Proof. This is the special case for algebraic groups of a result about stable groups due to Ziegler [2006,
Theorem 1]. �

Theorem 5.21. If Fbase is a full countable 0-field then C0-tr and Cfull
0-tr are amalgamation categories.

Notation 5.22. We write M0-tr(Fbase) for the Fraïssé limit in C0-tr(Fbase).

Proof of Theorem 5.21. Axioms (AC1), (AC3), and (AC4) follow immediately from the fact that C0-tr and
Cfull
0-tr are full subcategories of C. Axioms (AC2) and (AC6) are also immediate. It remains to prove (AC5),

the amalgamation property.
Using Lemma 5.19, the same argument as for Corollary 5.8 allows us to reduce the amalgamation

property for C0-tr to the amalgamation property for Cfull
0-tr. So suppose we have full 0-fields

AL AR

A0

0 P

G
aa

. �
G
==

Fbase

?�
G

OO

with A0, AL , and AR all purely 0-transcendental extensions of Fbase. Let A1 be the free amalgam of AL

and AR over A0 as in the proof of Proposition 5.7. We must show that A1 is a purely 0-transcendental
extension of Fbase.

So let B be a 0-subfield of A1 properly containing Fbase and finitely generated over it. It remains to
show that δ(B/Fbase)> 1. If B ∧ AR 6= Fbase then we have

δ(B/Fbase)= δ(B/B ∧ AR)+ δ(B ∧ AR/Fbase)

> δ(BAR/AR)+ δ(B ∧ AR/Fbase) by submodularity

> 0+ 1= 1,

the last line because AR C A1 and AR is purely 0-transcendental over Fbase. So in this case we are done,
and similarly if B ∧ AL 6= Fbase.

So we may assume that B ∧ AR = B ∧ AL = Fbase. Choose a basis b = (b1, . . . , bn) of B over Fbase.
For each i , choose bi

L ∈ 0(AL) and bi
R ∈ 0(AR) such that bi

= bi
L + bi

R . Let BL and BR be the 0-field
extensions of Fbase generated by bL := (b1

L , . . . , bn
L) and bR := (b1

R, . . . , bn
R), respectively.
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We claim that BL ∧ AR = Fbase and that AL ∧ BR = Fbase. To see this, suppose that v ∈ 0(BL ∧ AR)=

0(BL)∩0(AR). Since v ∈ 0(BL) there are si ∈ kO and some a ∈ 0(Fbase) such that v =
∑n

i=1 si bi
L + a.

Let uL = v−a =
∑n

i=1 si bi
L , let u R =

∑n
i=1 si bi

R , and let u = uL +u R =
∑n

i=1 si bi . Then v, a ∈ 0(AR),
so uL ∈ 0(AR), and also u R ∈ 0(AR); hence u ∈ 0(AR). But u ∈ 0(B) and we have B∧ AR = Fbase. So
u ∈ 0(Fbase) and so each si = 0, and thus v ∈ 0(Fbase). So BL ∧ AR = Fbase. The same argument shows
that AL ∧ BR = Fbase, and in particular BL ∧ BR = Fbase.

Let C be the 0-subfield of A1 generated by B ∪ BL , and note that it is also generated by BL ∪ BR . We
have B ∧ BL = Fbase = BL ∧ BR , so applying modularity of linear dimension to the squares

C

B
. �

G

==

BL

0 P

G

bb

Fbase

0 P

G

``

. �
G
==

and

C

BL

. �
G

<<

BR

0 P

G

bb

Fbase

0 P

G
aa

. �
G
==

we get

ldimkO(0(BR)/0(Fbase))= ldimkO(0(C)/0(BL))= ldimkO(0(B)/0(Fbase))= n,

and so bR is kO-linearly independent over 0(Fbase), and hence over 0(A0), since BR ∧ A0 = Fbase. We
have

trd(b/Fbase)> trd(b/A0)> trd(b/A0bL)= trd(bR/A0bL)= trd(bR/A0)> dn

with the last three (in)equalities holding because b = bL + bR , because bR is algebraically independent
from bL over A0, and because A0 C A1 and bR is kO-linearly independent over 0(A0). Similarly,
trd(b/A0)> trd(bL/A0)> dn.

Suppose for a contradiction that δ(B/Fbase)6 0. Then we must have

trd(b/Fbase)= trd(b/A0)= trd(bL/A0)= trd(bR/A0)= dn,

and then we also have

trd(b, bL/A0)= trd(b, bR/A0)= trd(bL , bR/A0)= trd(b, bL , bR/A0)= 2dn,

so b, bL , bR are pairwise algebraically independent over A0.
We apply Lemma 5.20 with H = Gn

= Gn
1 ×Gn

2 , a1 =−b, a2 = bL , and a3 = bR to get a connected
algebraic subgroup U of Gn of dimension dn such that b is in an A0-coset of U . Since trd(b/Fbase)=

trd(b/A0)= dim U , and Fbase is an algebraically closed field, the coset is actually defined over Fbase.
G1 and G2 are nonisogenous and so U is of the form U1×U2 where each Ui is a connected subgroup

of Gn
i . Since dim U = dn, if U2=Gn

2 then U1 is the trivial subgroup of Gn
1 , so π1(b)∈Gn

1(A0). But A0 is
a full 0-field and so b ∈ 0(A0)

n , which contradicts trd(b/A0)= dn (and n > 0). So U2 must be a proper
subgroup of Gn

2 . Since G2 is simple, it follows that π2(b) satisfies an O-linear equation
∑n

i=1 siπ2(bi )= c
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with c ∈ G2(Fbase). Then, since b ∈ 0(B)n and Fbase is a full 0-field, we have
∑n

i=1 si bi
∈ 0(Fbase),

which contradicts b being a basis for B over Fbase.
So we have δ(B/Fbase)> 1, and thus A1 is a purely 0-transcendental extension of Fbase, as required. �

6. Categoricity

In this section we first introduce the abstract notion of a quasiminimal pregeometry structure, which is
a form of the technique of quasiminimal excellence, used to prove uncountable categoricity of a list of
axioms. We then prove that our 0-closed fields do satisfy the conditions to be quasiminimal pregeometry
structures. Later in Section 8 we will give axioms for the 0-closed fields, and then we can deduce
categoricity of this axiomatization.

6A. Quasiminimal pregeometry structures. This definition of quasiminimal pregeometry structures
comes from [Bays et al. 2014b].

Definition 6.1. Let M be an L-structure for a countable language L , equipped with a pregeometry cl
(or clM if it is necessary to specify M). Write qftp for the quantifier-free L-type. We say that M is a
quasiminimal pregeometry structure if the following hold:

(QM1) The pregeometry is determined by the language. That is, if a, a′ are singletons, b, b′ are tuples,
qftp(a, b)= qftp(a′, b′), and a ∈ cl(b), then a′ ∈ cl(b′).

(QM2) M is infinite-dimensional with respect to cl.

(QM3) Countable closure property:
If A ⊆ M is finite then cl(A) is countable.

(QM4) Uniqueness of the generic type:
Suppose that C,C ′⊆M are countable closed subsets, enumerated such that qftp(C)=qftp(C ′). If
a ∈MrC and a′ ∈MrC ′ then qftp(C, a)= qftp(C ′, a′) (with respect to the same enumerations
for C and C ′).

(QM5) ℵ0-homogeneity over closed sets and the empty set:
Let C,C ′ ⊆ M be countable closed subsets or empty, enumerated such that qftp(C)= qftp(C ′),
let b, b′ be finite tuples from M such that qftp(C, b)= qftp(C ′, b′), and let a ∈ cl(C, b). Then
there is a′ ∈ M such that qftp(C, b, a)= qftp(C ′, b′, a′).

We say M is a weakly quasiminimal pregeometry structure if it satisfies all the axioms except possibly
(QM2).

Definition 6.2. Given M1 and M2 both weakly quasiminimal pregeometry L-structures, we say that an
L-embedding θ : M1 ↪→ M2 is a closed embedding if for each A⊆ M1 we have θ(clM1(A))= clM2(θ(A)).
In particular, θ(M1) is closed in M2 with respect to clM2 . When θ is an inclusion map we say that M1 is
a closed substructure of M2. By axiom (QM1), closed substructures are the same as closed subsets.
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Definition 6.3. Given a quasiminimal pregeometry structure M , let K(M) be the smallest class of
L-structures which contains M and all its closed substructures and is closed under isomorphism and
under taking unions of directed systems of closed embeddings. We call any class of the form K(M) a
quasiminimal class.

The purpose of these definitions is the categoricity theorem, Theorem 2.3 in [Bays et al. 2014b].

Fact 6.4. If K is a quasiminimal class then every structure A ∈ K is a weakly quasiminimal pregeometry
structure, and up to isomorphism there is exactly one structure in K of each cardinal dimension. In
particular, K is uncountably categorical. Furthermore, K is the class of models of an Lω1,ω(Q) sentence.

We will verify axioms (QM1)–(QM5) for the Fraïssé limits we constructed. We first make some general
observations which simplify what we have to verify.

Proposition 6.5. Suppose that M is a countable L-structure. Then it satisfies (QM1)–(QM5) if and only
if it satisfies the following axioms:

(QM1′) If a and b are finite tuples and qftp(a)= qftp(b) then dim(a)= dim(b).

(QM2) M is infinite-dimensional with respect to cl.

(QM4) Uniqueness of the generic type.

(QM5a) ℵ0-homogeneity over the empty set:
If a and b are finite tuples from M and qftp(a) = qftp(b) then there is θ ∈ Aut(M) such that
θ(a)= b.

(QM5b) Nonsplitting over a finite set:
If C is a closed subset of M and b ∈ M is a finite tuple then there is a finite tuple c ∈C such that
qftp(b/C) does not split over c. That is, for all finite tuples a, a′ ∈ C, if qftp(a/c)= qftp(a′/c)
then qftp(a/cb)= qftp(a′/cb).

Proof. The first axiom (QM1′) is equivalent to (QM1), because a ∈ cl(b) if and only if dim(a, b)= dim(b),
so if quantifier-free types characterize the dimension they also characterize the closure operation, and
vice versa.

The countable closure property (QM3) is immediate for a countable M .
Axiom (QM5) with C =∅ gives a back-and-forth condition which is equivalent to ℵ0-homogeneity

using the standard back-and-forth argument together with (QM1) and (QM4). Since M is countable, the
back-and-forth construction gives (QM5a). The converse is immediate.

Finally, [Bays et al. 2014b, Corollary 5.3] shows that the case of (QM5) with C closed is equivalent
to (QM5b). �

Remark 6.6. All the axioms refer to quantifier-free types with respect to a particular language, and from
(QM5a) we get the conclusion that if two finite tuples from M have the same quantifier-free type then
they actually have the same complete type (even the same L∞,ω-type, and furthermore they lie in the
same automorphism orbit, that is, they have the same Galois-type). Since M is not necessarily a saturated
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model of its first-order theory, it does not follow that every definable set is quantifier-free definable.
Nonetheless, identifying the language which works allows us to understand the types which are realized
in M .

6B. Verification of the quasiminimal pregeometry axioms. Recall that our language of 0-fields is
L0 = 〈+ , · ,− , 0, (ca)a∈K0〉, where 0 is a relation symbol of suitable arity to denote a subset of G. We
start by defining the expansion LQE of L0 in which we have the form of quantifier-elimination described
in the previous remark.

Let W be any subvariety of Gn
×Ar defined over Fbase, for some n, r ∈ N. (It suffices to consider

those W which are the graphs of rational maps f : W ′→ Ar , with W ′ ⊆ Gn .) Let ϕW (x, y) name the
subset of G(M)n ×Mr given by

(x, y) ∈W and x ∈ 0n and x is O-linearly independent over 0(Fbase),

and let ψW (y) be the formula ∃x ϕW (x, y).

Definition 6.7. We define LQE to be the expansion of L0 by parameters for Fbase and relation symbols
for all the formulas ϕW (x, y) and ψW (y).

Remark 6.8. Note that the formulas ϕW (x, y) are always expressible in Lω1,ω(L0) (with parameters
in Fbase), so a priori this is an expansion of L0(Fbase) by Lω1,ω-definitions. However, if the ring O
and its action on G are definable and 0(Fbase) is either of finite rank (which is true for example in
pseudo-exponentiation) or is otherwise an L0-definable set, then LQE is just an expansion of L0(Fbase)

by first-order definitions.

For the rest of this section we use tuples both from the field sort of a model M and from 0(M), so to
distinguish them we will use Latin letters for tuples from M and Greek letters for tuples from 0(M).

Theorem 6.9. Take M to be either M(Fbase) or M0-tr(Fbase), the latter only if Fbase is a full 0-field. Then,
considered in the language LQE and equipped with 0cl, M is a quasiminimal pregeometry structure.

Proof. We verify the axioms from Proposition 6.5. The main difficulty is that the axioms refer to the field
sort whereas the construction of M was done in the sort 0, and there is no canonical way to go from one
sort to the other in either direction. However, the sort 0 has rank d with respect to the pregeometry 0cl,
so as we want to include the case d > 1 we have to verify the axioms with respect to the field sort.

First we prove (QM2). For any n ∈N, there is a strong 0-field extension An of Fbase generated by a
tuple α ∈0(An)

n such that α is generic in Gn over Fbase. Then δ(α/Fbase)= dn. This An embeds strongly
in M by the universality property of the Fraïssé limit, so 0dimM(α)= dn by Lemma 4.15. Hence M is
infinite-dimensional.

Now we prove (QM1′) and (QM5a) together. Suppose a, b ∈ Mr with qftpLQE(a) = qftpLQE(b).
Choose a strong 0-subfield ACM which is a finitely generated extension of Fbase such that a ∈ Ar and
δ(A/Fbase) is minimal such. Let α ∈ 0(A)n be a good basis for A over Fbase, such that a is in the field
Fbase(α), let W = Loc(α, a/Fbase), and let V = Loc(α/Fbase). Then M |H ψW (a), so also M |H ψW (b).
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So there is β ∈ 0(M)n such that M |H ϕW (β, b). In particular, β is in V ∩ 0(M)n and is kO-linearly
independent over 0(Fbase). We claim that W = Loc(β, b/Fbase). Suppose not, so W ′ := Loc(β, b/Fbase)

is a proper subvariety of W . We have M |H ψW ′(b), so since a and b have the same quantifier-free
LQE-type, M |H ψW ′(a). So there is some α′ ∈ 0(M)n such that M |H ϕW ′(α

′, a). W is irreducible
over Fbase, so dim W ′ < dim W . Since a is rational over Fbase(α), dim W = dim V , and so α′ lies in
a subvariety V ′ of V with dim V ′ < dim V . But then setting A′ = 〈Fbase, α

′
〉 we have a ∈ A′ r and

δ(A′/Fbase)= δ(α
′/Fbase)= dim V ′− ldimkO(α

′/0(Fbase)) < δ(A/Fbase), which contradicts the choice
of A. Thus Loc(β, b/Fbase) = W , and in particular Loc(β/Fbase) = V . Let B = 〈Fbase, β〉. We further
deduce that BCM , since if not, the same proof would show that δ(A/Fbase) would not be minimal.

By Lemma 4.15, we have 0dim(A)= δ(A/Fbase)= δ(B/Fbase)=0dim(B). Now 0dim(a)=0dim(A)
by the minimality of δ(A/Fbase), since A could be taken within 0cl(a), and 0dim(b) ≤ 0dim(B), so
0dim(b)≤ 0dim(a). By symmetry, 0dim(a)= 0dim(b), so (QM1′) is proved.

Since α is a good basis, there is an isomorphism of 0-fields θ0 : A→ B over Fbase, with θ0(α)= β.
Then also θ0(a)= b. Since M is Cfg-homogeneous (or Cfg

0-tr-homogeneous), θ0 extends to an automorphism
θ of M . That proves (QM5a).

For (QM4), suppose that C1,C2 Ccl M with the same quantifier-free LQE-type according to some
enumeration, and let θ : C1 ∼= C2 be the isomorphism given by the enumeration. Suppose also that
b1 ∈ M rC1 and b2 ∈ M rC2.

Using Lemma 4.13 we get β1, β2 ∈0(M) such that bi ∈Ci (βi ) and Loc(β1, b1/C1) is defined over K0

and is equal to Loc(β2, b2/C2). Also, setting Bi := 〈Ci , βi 〉 we have BiCM and βi is a good basis for Bi

over Ci . By the definition of a good basis, the isomorphism θ extends to θ1 : B1 ∼= B2 with θ1(β1)= β2

and hence θ1(b1)= b2.
Let FbaseC A1CC1 with A1 finitely generated over Fbase, and let A2 = θ(A1). Then θ1 restricts to

an isomorphism θ0 : 〈A1β1〉 ∼= 〈A2β2〉. Also 〈Aiβi 〉C M since δ(〈Aiβi 〉/Ai ) = 1 and βi /∈ 0cl(Ai ).
Since M is Cfg-homogeneous (or Cfg

0-tr-homogeneous), θ0 extends to an automorphism of M . So
qftpLQE(A1b1)= qftpLQE(A2b2) and thus, as A1 ranges over strong 0-subfields of C1 finitely generated
over Fbase, we deduce that qftpLQE(C1b1)= qftpLQE(C2b2) as required.

Finally, to prove (QM5b), let C Ccl M and let b ∈ M be a finite tuple. Let B be a finitely generated
0-field extension of C such that B C M and b ∈ B, and let β ∈ 0(B)n be a good basis for B over C
with b ∈ C(β). Now choose a finitely generated 0-field extension C0 of Fbase in C with C0CC , and a
good basis γ for C0, such that Loc(β, b/C) is defined over Fbase(γ ).

Suppose that finite tuples a, a′ ∈ C have qftpLQE(a/γ )= qftpLQE(a′/γ ). By (QM5a), there is a 0-field
automorphism θ ∈ Aut(M/Fbase(γ )) such that θ(a) = a′. Let A be a strong 0-subfield of 0cl(C0, a)
which is finitely generated over C0 and contains a, and let A′ = θ(A). Then A′CC .

Let V = Loc(β/C). Then Loc(β/A)= Loc(β/A′)= V because V is defined over Fbase(γ ). So, since
β is a good basis, the isomorphism θ0 : A ∼= A′ extends to θ1 : 〈Aβ〉 ∼= 〈A′β〉.

We claim that 〈Aβ〉C B. To see this, suppose that X ⊆ B is a finitely generated extension of 〈Aβ〉,
and let X0 = X ∧C . Let ξ be a basis of X0 over A. Then ξ ∪β is a basis for X over A, since β is a basis
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for B over C and hence for X over X ∧C = X0. So

δ(X/Aβ)= trd(ξ/Aβ)− d ldimkO(ξ/0(A), β)

= trd(ξ/A)− d ldimkO(ξ/0(A))

= δ(ξ/A)> 0

because β is algebraically and linearly independent from C over A and ξ ∈ C . Since B CM we have
〈Aβ〉CM . The same argument shows that 〈A′β〉CM .

Thus, since M is Cfg-homogeneous (or Cfg
0-tr-homogeneous), θ1 extends to an automorphism θ2 of M .

Now θ2 fixes b and γ and θ2(a)= a′, so qftpLQE(a/bγ )= qftpLQE(a′/bγ ). Taking c = γ , considered as
a tuple from the field sort of C , we see that tp(b/C) does not split over c, as required. �

Remark 6.10. A more complete analysis of splitting for pseudo-exponentiation was carried out in the
Ph.D. thesis of Robert Henderson [2014].

We conclude this section by showing that the 0-algebraic types over finite tuples are isolated.

Proposition 6.11. Suppose that a, b are finite tuples in M and that b ∈0clM(a). Then tp(b/a) is isolated
by an LQE-formula.

Proof. Choose a finitely generated 0-field BCM with B ⊆ 0cl(a), and a good basis β for B such that
a, b ∈ Fbase(β). Let W = Loc(β, a_b/Fbase).

Then M |H ϕW (β, a_b) and M |H ψW (a_b). Suppose M |H ψW (a_c). Then there is a tuple γ from
0(M) such that M |HϕW (γ, a_c). So Loc(γ /Fbase)⊆V but FbaseCM and ldimkO(γ /0(Fbase))=dim V
by the definition of ϕW , so γ is generic in V over Fbase. Thus Loc(γ /Fbase)= Loc(β/Fbase) so, since β
is a good basis, the 0-field C generated by γ is isomorphic to B via an isomorphism θ : B→ C such that
θ(β)= γ , and then necessarily θ(a)= a and θ(b)= c.

Using Lemma 4.15 repeatedly,

δ(C/Fbase)= δ(B/Fbase)= 0dim(B)= 0dim(a)6 0dim(C)

and so δ(C/Fbase)=0dim(C), and CCM . Thus θ extends to an automorphism of M , so tp(c/a)= tp(b/a),
so the formula ψW (a_x) isolates tp(b/a). �

7. Classification of strong extensions

We next give a classification of the finitely generated strong extensions. In the next section we will use
it to give axiomatizations of the classes of 0-closed fields we have constructed, generalizing Zilber’s
axioms for pseudo-exponentiation.

Since G is an O-module, each matrix M ∈Matn(O) defines an O-module homomorphism Gn M
−→ Gn

in the usual way. If V ⊆ Gn , we write M · V for its image. Note that if V is a subvariety of Gn then
M · V is a constructible set, and since the O-module structure is defined over K0, if V is defined over A
then M · V is defined over K0 ∪ A. If V is irreducible then M · V is also irreducible.
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We have Gn
= (G1×G2)

n and we write x1, . . . , xn for the coordinates in G1 and y1, . . . , yn for the
coordinates in G2.

Definition 7.1. Let V be an irreducible subvariety of Gn . Then V is G1-free if V does not lie inside any
subvariety defined by an equation

∑n
j=1 r j x j = c for any r j ∈O, not all zero, and any c ∈ G1. We define

G2-free the same way. We say V is free if it is both G1-free and G2-free.
V is rotund (for G as an O-module) if for every matrix M ∈Matn(O) we have

dim(M · V )> d rk M,

where dim means dimension as an algebraic variety or constructible set, rk M is the rank of the matrix M ,
and d = dim G1.

V is strongly rotund if for every nonzero matrix M ∈Matn(O) we have

dim(M · V ) > d rk M.

A reducible subvariety V of Gn is defined to be free, rotund, or strongly rotund if at least one of its
(absolutely) irreducible components is free, rotund, or strongly rotund, respectively. If we say that such a
V is free and (strongly) rotund then we mean that the same irreducible component is free and (strongly)
rotund.

So V is free if it is “free from O-linear dependencies”, and it is rotund if all its images under suitable
homomorphisms are of large dimension.

Lemma 7.2. An irreducible subvariety V ⊆ Gn is G2-free if and only if π2(V ) does not lie in a coset of a
proper algebraic subgroup of Gn

2 . If O = End(G1) then V is G1-free if and only if π1(V ) does not lie in a
coset of a proper algebraic subgroup of Gn

1 .

Proof. This is an immediate consequence of Lemma 2.1(i). �

Proposition 7.3. Suppose that A is a full 0-field, A ⊆ B is a finitely generated extension of 0-fields, and
b ∈ 0(B)n is a basis for the extension. Let V = Loc(b/A).

Then V is free. Furthermore, the extension is strong if and only if V is rotund, and it is purely
0-transcendental if and only if V is strongly rotund.

Proof. If V is not G1-free then, writing b = (b1
1, . . . , bn

1, b1
2, . . . , bn

2) ∈ Gn
1 ×Gn

2 we have
∑n

j=1 r j b
j
1 =

c1 ∈ G1(A). Let c2 =
∑n

j=1 r j b
j
2 . Then (c1, c2) ∈ 0(B) and since A is full and the extension preserves

the kernels we have (c1, c2) ∈ 0(A). That contradicts b being a basis for the extension. So V is G1-free
and, symmetrically, G2-free.

For M ∈Matn(O) we have M ·b ∈0(B)n with ldimkO(M ·b/0(A))= rk M . Furthermore, every finite
tuple from 0(B) generates the same 0-field extension of A as some tuple M · b, because b is a basis.
Thus the extension is strong if and only if for all M we have trd(M · b/A)> d rk M if and only if for all
M we have dim(M · V )Zar > d rk M if and only if V is rotund.
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Similarly any finite tuple from 0(B) which is not in 0(A) generates the same extension of A as a
tuple M · b for some nonzero matrix M , and V is strongly rotund if and only if all such tuples have
δ(M · b/A) > 0. �

Corollary 7.4. Suppose that AC B is a finitely generated strong extension of essentially finitary 0-fields,
that Afull

∧ B = A, that b ∈ 0(B)n is a basis for the extension, and that V = Loc(b/A). Then V is free
and rotund, and it is strongly rotund if and only if B is a purely 0-transcendental extension of A.

Proof. First note that, since A and B are essentially finitary, by Theorem 4.17, Bfull is uniquely determined
up to isomorphism and Afull is uniquely determined as a 0-subfield of Bfull, so the condition that
Afull
∧ B = A makes unambiguous sense. Now the proof of Proposition 7.3 goes through with this weaker

condition in place of A = Afull. �

8. Axiomatization of 0-closed fields

Recall that we have fixed a ring O and algebraic O-modules G1 and G2, both of dimension d, defined
over a countable field K0, we have the product G = G1×G2, and we consider structures in the language
L0 = 〈+ , · ,− , 0, (ca)a∈K0〉, where 0 is a relation symbol of appropriate arity to denote a subset of G.
We are given an essentially finitary 0-field Fbase containing K0, of type (EXP), (COR), or (DEQ). We add
parameters for Fbase to the language to get a language L Fbase . We also have an expanded language LQE.

Definition 8.1. A model in the quasiminimal class K(M(Fbase)) is called a 0-closed field (with the
countable closure property, on the base Fbase).

Theorem 8.2. An L Fbase structure F is a 0-closed field if and only if it satisfies the following list of axioms,
which we denote by 0CFCCP(Fbase).

(1) Full 0-field: F is an algebraically closed field containing K0 and 0(F) is an O-submodule of G(F)
such that the projections of 0(F) to G1(F) and G2(F) are surjective.

(2) Base and kernels: F satisfies the full atomic diagram of Fbase. (In some examples we will discuss
how this can be weakened.) Also keri (F)= keri (Fbase) for i = 1, 2.

(3) Predimension inequality (generalized Schanuel property): The predimension function

δ(x/Fbase) := trd(x/Fbase)− d ldimkO(x/0(Fbase))

satisfies δ(x/Fbase)> 0 for all tuples x from 0(F).

(4) Strong 0-closedness: For every irreducible subvariety V of Gn defined over F and of dimension dn
which is free and rotund for the O-module structure on G, and every finite tuple a from 0(F), there
is b ∈ V (F)∩0(F)n such that b is kO-linearly independent over 0(Fbase)∪ a (that is, no nonzero
kO-linear combination of the bi lies in the kO-linear span of 0(Fbase)∪ a).

(5) Countable closure property: For each finite subset X of F , the 0-closure 0clF (X) of X in F is
countable.
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Observe that if F is a 0-field for the O-module G, and in particular if it is full and so satisfies axiom
(1), then it satisfies axioms (2) and (3) if and only if FbaseC F .

Lemma 8.3. If F satisfies axioms (1)–(3) then it also satisfies axiom (4) if and only if it is ℵ0-saturated
for 0-algebraic extensions (in the sense of Definition 5.14).

Proof. First assume that F satisfies axioms (1)–(4). Suppose AC F is finitely generated over Fbase and
A
C
↪→ B is a finitely generated 0-algebraic extension. We have assumed that Fbase is essentially finitary,

so Afull and Bfull are unique up to isomorphism as extensions of A and B, respectively, so Afull embeds
(strongly) into Bfull. Choose an embedding. Since Afull embeds in F we have Afull

∧ B (the intersection
taken in Bfull) embedding (strongly) into F , as summarized in the diagram below:

Afull //

��

F

A

66

//

((

Afull
∧ B

==

""

Bfull

B

??

So it remains to embed B in F over Afull
∧ B, so we may assume A = Afull

∧ B. Let a be a basis
for A over Fbase and let b ∈ 0(B)n be a good basis for B over A, which exists by Proposition 3.22. Let
V = Loc(b/A), a subvariety of Gn . Then V is free and rotund by Corollary 7.4. Since B is 0-algebraic
over A we have δ(b/A)= 0, so dim V = dn.

Then, by axiom (4) applied to an irreducible component of V , there is c ∈ 0(F)n ∩ V (F), kO-linearly
independent over 0(Fbase)∪ {a}. Since AC F we have δ(c/A)> 0, so trd(c/A)= dn = dim V . Thus c
is generic in V over A. Let C be the 0-subfield of F generated by A and c. Then c is a good basis of C
over A because this is a property of Loc(c/A), that is, of V . So, by the definition of a good basis, C is
isomorphic to B over A. So F is ℵ0-saturated for 0-algebraic extensions over Fbase.

For the converse, suppose that F is ℵ0-saturated for 0-algebraic extensions over Fbase. Let V be a free
and rotund irreducible subvariety of Gn which is defined over F and of dimension dn, and let a be a
finite tuple from 0(F). Extending a if necessary, we may assume that A = 〈Fbase, a〉C F and that V is
defined over a.

Consider a 0-field extension B of A, generated by a tuple b ∈ 0(B)n such that Loc(b/A) = V .
By Proposition 7.3 the extension is strong. Since V is free, ldimkO(b/0(A)) = n and therefore
δ(b/A) = dim V − dn = 0. So B is a 0-algebraic extension. Thus B embeds into F over A and
so we have b ∈ V (F)∩0(F)n , which is kO-linearly independent over 0(Fbase)∪ {a} as required. �

Proof of Theorem 8.2. Suppose F is a 0-closed field. Then, by definition, F is (isomorphic to) a closed
substructure of the canonical model M or is obtained from M (and its closed substructures) as the union
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of a directed system of closed embeddings. If F is a closed substructure of M then certainly it is a full
0-field strongly extending Fbase, so it satisfies axioms (1)–(3), and it is countable so satisfies axiom (5).

For axiom (4), suppose AC F is finitely generated and A
C
−→ B is a finitely generated and 0-algebraic

extension. Since M is Cfg-saturated, B embeds strongly into M over A and since F is closed in M , B ⊆ F .
So by Lemma 8.3, F satisfies axiom (4).

So closed substructures of M satisfy axioms (1)–(5). Axioms (1)–(4) are preserved under unions of
directed systems of strong embeddings, and all the axioms are preserved under unions of directed systems
of closed embeddings. Hence all 0-closed fields satisfy all five axioms of 0CFCCP(Fbase).

Suppose now that F satisfies axioms (1)–(5). Since it satisfies axioms (1)–(3), we have the pregeometry
0clF on F . If F0 is a finite-dimensional substructure of F then F0 satisfies axioms (1)–(3) and (5)
immediately and, using Lemma 8.3, also axiom (4). Let ā be a 0clF -basis for F0. Using Lemma 4.13, for
each ai ∈ ā, choose αi ∈ 0(F0), interalgebraic with ai over Fbase. Let C = 〈Fbase, α1, . . . , αn〉. Then F0

is 0-algebraic over C and is saturated for 0-algebraic extensions so, by Proposition 5.15, F0 ∼= M0(C).
Now choose an embedding of C into M . Note that 0clM(C) is also 0-algebraic over C and is saturated
for 0-algebraic extensions so is also isomorphic to M0(C). Hence F0 is a 0-closed field.

Now F is the union of the directed system of all its finite-dimensional closed substructures, which by
CCP are countable, and the class of 0-closed fields is closed under such unions by definition; hence F is
a 0-closed field. �

We can now prove Theorem 1.7.

Proof of Theorem 1.7. By Theorem 6.9, M(Fbase) is a quasiminimal pregeometry structure, so by Fact 6.4
the class K(M(Fbase)) is uncountably categorical and every model is quasiminimal. By Theorem 8.2, the
list of axioms 0CFCCP(Fbase) axiomatizes the class K(M(Fbase)). �

Remarks 8.4. (1) It is easy to show that axioms (1)–(4) are Lω1,ω-expressible, and axiom (5) is express-
ible as an Lω1,ω(Q)-sentence.

(2) If we add an (Lω1,ω-expressible) axiom stating that F is infinite dimensional to axioms (1)–(4), the
only countable model is M and so we get an ℵ0-categorical, and hence complete, Lω1,ω-sentence.

9. Specific applications of the general construction

We list several instances of 0-fields that are of interest, starting with the original example.

9A. Pseudo-exponentiation. We take K0 =Q, G1 = Ga, and G2 = Gm. Set O = Z. Let τ be transcen-
dental, and take Fbase to be the field Qab(τ ), where Qab is the extension of Q by all roots of unity. For
each m ∈N+, choose a primitive m-th root of unity ωm such that for all m, n ∈N+ we have (ωmn)

n
= ωm .

We take 0(Fbase) to be the graph of a homomorphism from the Q-linear span of τ to the roots of unity
such that τ/m 7→ ωm for each m ∈ N+. (This Fbase is called SK in the paper [Kirby 2013].)

Then the construction gives a class of fields F with a predicate 0(F) defining the graph of a surjective
homomorphism from Ga(F) to Gm(F), with kernel τZ, which we denote by exp. The predimension
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inequality is precisely Schanuel’s conjecture, and the strong existential closedness axiom is known as
strong exponential-algebraic closedness. Thus we obtain a proof of Theorem 1.2, which we restate in
explicit form.

Theorem 9.1. Up to isomorphism, there is exactly one model 〈F;+ , · , exp〉 of each uncountable cardi-
nality of the following list ECFSK,CCP of axioms.

(1) ELA-field: F is an algebraically closed field of characteristic 0, and exp is a surjective homomor-
phism from Ga(F) to Gm(F).

(2) Standard kernel: The kernel of exp is an infinite cyclic group generated by a transcendental element τ .

(3) Schanuel property: The predimension function

δ(x̄) := trd(x̄, exp(x̄))− ldimQ(x̄)

satisfies δ(x̄)> 0 for all tuples x̄ from F.

(4) Strong exponential-algebraic closedness: If V is a rotund, additively and multiplicatively free
subvariety of Gn

a ×Gn
m defined over F and of dimension n, and ā is a finite tuple from F, then there

is x̄ in F such that (x̄, ex̄) ∈ V and x̄ is Q-linearly independent over ā (that is, no nonzero Q-linear
combination of the xi lies in the Q-linear span of the ai ).

(5) Countable closure property: For each finite subset X of F, the exponential algebraic closure eclF (X)
of X in F is countable.

Proof. We apply Theorem 1.7, but note that axioms (2) and (3) are slightly different from the axioms
given in the statement of Theorem 8.2. The Schanuel property holds on our choice of Fbase because τ
is transcendental, and it follows from the addition property for δ that the two versions of axiom 3 are
equivalent in this case. Since τ is transcendental and the kernel is standard, it follows that Fbase embeds
strongly in F, so the two versions of axiom (2) are also equivalent. �

We denote the canonical model of cardinality continuum by B.

9B. Incorporating a counterexample to Schanuel’s conjecture. We proceed as in the previous example,
except now we choose an irreducible polynomial P(x, y) ∈ Z[x, y] and take (ε, τ ) to be a generic zero
of the polynomial P(x, y). (We assume that P is such that neither ε nor τ is zero.) Choose a division
sequence (εm) for ε, that is, numbers such that ε1 = ε and (εmn)

n
= εm for all m, n ∈N+. Now take K to

be the field Qab(τ, (εm)m∈N+), and define 0(K ) to be the graph of a homomorphism from the Q-linear
span of τ and 1, with τ/m 7→ ωm as above and 1/m 7→ εm .

Now the construction gives us a canonical model BP , the unique model of cardinality continuum of
almost the same list of axioms as those for B, except that Schanuel’s conjecture has this exception with the
formal analogues ε and τ of e and 2πi being algebraically dependent via the polynomial P . More precisely,
the predimension axiom is replaced by an axiom scheme stating that exp(1) and τ are transcendental, that
P(exp(1), τ )= 0, and the condition that for all tuples ā, trd(ā, exp(ā)/τ, exp(1))− ldimQ(ā/τ, 1)> 0.
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More generally, we can take any finitely generated partial exponential field with standard kernel (that is,
a finitely generated 0-field for the appropriate groups and kernels) as Fbase and do the same construction to
build a quasiminimal exponential field M(Fbase) of size continuum with counterexamples to the Schanuel
property within a finite-dimensional Q-vector space, but with the Schanuel property holding over that
vector space. Each M(Fbase) is unique up to isomorphism as a model of appropriate axioms, just as
B is. One could conjecture that Cexp is isomorphic to one of these. Several people have asked us if it
might be possible to prove Schanuel’s conjecture easily by some method showing that Cexp must be
isomorphic to B, just because B is categorical. Examples such as these show that soft methods which
ignore transcendental number theory and analytic considerations cannot hope to work.

9C. Pseudo-Weierstrass ℘-functions. Let E be an elliptic curve over a number field K0. Choose a
Weierstrass equation for E ,

Y 2 Z = 4X3
− g2 XZ2

− g3 Z3

with g2, g3 ∈ K0, which fixes an embedding of E into projective space P2, with homogeneous coordinates
[X : Y : Z ]. Apart from the point O = [0 : 1 : 0] at infinity, we can identify E with its affine part, given by
solutions in A2 of the equation

y2
− 4x3

− g2x − g3 = 0.

For our construction we take G1 =Ga and G2 = E , and we take O = End(E), so O = Z if E does not
have complex multiplication (CM) and O = Z[τ ] if E has CM by the imaginary quadratic τ . In the CM
case, we assume that τ ∈ K0 (and adjoin it if not). Take ω1 transcendental over K0 and ω2 transcendental
over K0(ω1) if E does not have CM, or ω2 = τω1 if E has CM by τ .

As a field, we define Fbase = K0(Tor(E), ω1, ω2), where Tor(E) means the full torsion group of E ,
which is contained in E(Qalg). We define0(Fbase) to be the graph of a surjective O-module homomorphism
from Qω1 + Qω2 to Tor(E), with kernel 3 = Zω1 + Zω2. While this may not specify Fbase up to
isomorphism, we will see that Serre’s open image theorem allows us to specify Fbase with only a finite
amount of extra information.

In a model M , 0(M) is the graph of a surjective homomorphism expE,M : Ga(M)→ E(M) with
kernel 3. Using our chosen embedding of E into P2, we can identify the components of the function
expE,M with functions ℘,℘ ′ :M→M∪{∞}, where expE,M(a)= [℘(a) :℘

′(a) : 1]. We call the function
℘ a “pseudo-Weierstrass ℘-function”.

Note that in our model M , 3 is definable by the formula expE,M(x)= O . In the non-CM case, Z is
definable by the formula ∀y [y ∈3→ xy ∈3], so Q is also definable as the field of fractions. In the CM
case, these formulas define the rings Z[τ ] and Q[τ ].

Following [Gavrilovich 2008], we will apply the following version of Serre’s open image theorem to
show that only a finite amount of extra information is required to specify Fbase as a 0-field.

Fact 9.2. Let E be an elliptic curve defined over a number field K0. Then there exists an m ∈ N such that
every End(E)-module automorphism of the torsion Tor(E) which fixes the m-torsion E[m] pointwise is
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induced by a field automorphism over K0, that is, the natural homomorphism

Gal(K alg
0 /K0(E[m]))→ AutEnd(E)(Tor(E)/E[m])

is surjective.

Proof. When End(E)∼= Z, this is Serre’s open image theorem [Serre 1972, Introduction (3)]. When E
has complex multiplication, it is the analogous classical open image theorem [Serre 1972, Section 4.5,
Corollaire]. �

Unfortunately the proof does not give an effective bound for m, so given an explicit K0 and E we do
not know how to compute it.

We can now prove the first half of Theorem 1.6, which we restate precisely.

Theorem 9.3. Let E be an elliptic curve over a number field K0 ⊆C. Up to isomorphism, there is exactly
one model of each uncountable cardinality of the following list ℘CFSK,CCP(E) of axioms, and these
models are all quasiminimal.

(1) Full ℘-field: M is an algebraically closed field of characteristic 0, and 0 is the graph of a surjective
homomorphism from Ga(M) to E(M), which we denote by expE,M . We add parameters for the
number field K0.

(2) Kernel and base (non-CM case): There exist ω1, ω2 ∈ Ga(M), Q-linearly independent, such that the
kernel of expE,M is of the form Zω1+Zω2 and, for the number m specified by Fact 9.2, the algebraic
type of the pair (expE,M(ω1/m), expE,M(ω2/m)) ∈ E[m]2 over the parameters K0 is specified.

(2) Kernel and base (CM case): There exists a nonzeroω1∈Ga(M) such that the kernel of expE,M is of the
form Z[τ ]ω1, and for the number m specified by Fact 9.2, the algebraic type of expE,M(ω1/m)∈ E[m]
over the parameters K0 is specified.

(3) Predimension inequality: The predimension function

δ(x̄) := trd(x̄, expE,M(x̄))− ldimkO(x̄)

satisfies δ(x̄)> 0 for all tuples x̄ from M where kO =Q or Q(τ ), as appropriate.

(4) Strong ℘-algebraic closedness: M satisfies the specific case of strong 0-closedness from Theorem 8.2
for this choice of G, O, and Fbase.

(5) Countable closure property: As in Theorem 8.2.

Proof. Again we must show that these axioms are equivalent to those given in Theorem 8.2. As in the
exponential case, we have the absolute form of the predimension inequality here, which is equivalent
to the relative statement over the base together with the assertion that ω1 is transcendental and, in the
non-CM case, that ω2 is transcendental over K0(ω1). It remains to show that the axioms here specify the
atomic diagram of Fbase.

So suppose that M and M ′ are both models of the axioms, and their bases, namely the 0-subfields gener-
ated by the kernels, are Fbase and Fbase

′. We have K0 as a common subfield, and the axioms give us kernel
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generators (ω1, ω2)∈M2 and (ω′1, ω
′

2)∈M ′2 such that (α1, α2) := (expE,M(ω1/m), expE,M(ω2/m)) and
(α′1, α

′

2) := (expE,M ′(ω
′

1/m), expE,M ′(ω
′

2/m)) have the same algebraic type over K0. (In the CM case we
define ω2 = τω1 and ω′2 = τω

′

1 to treat the two cases at the same time.) The points αi ∈ E generate the m-
torsion subgroup E[m] of E . So we can define a field isomorphism σ1 : K0(E[m](M))→ K0(E[m](M ′))
by αi 7→ α′i for i = 1, 2. Then we extend σ1 arbitrarily to a field isomorphism

σ2 : K0(Tor(E)(M))→ K0(Tor(E)(M ′)).

Now define an End(E)-module automorphism of Tor(E)(M) by

expE,M

(
ω1

n1
+
ω2

n2

)
7→ σ−1

2

(
expE,M ′

(
ω′1

n1
+
ω′2

n2

))
for all n1, n2 ∈Z. By construction of σ2 this automorphism fixes E[m] pointwise, so by Fact 9.2 it extends
to a field automorphism σ3 of K0(Tor(E)(M)). So, defining σ4 = σ2 ◦ σ3, we get a field isomorphism
σ4 : K0(Tor(E)(M))→ K0(Tor(E)(M ′)) such that

σ4

(
expE,M

(
ω1

n1
+
ω2

n2

))
= expE,M ′

(
ω′1

n1
+
ω′2

n2

)
for all n1, n2 ∈ Z.

The predimension inequality implies that (ω1, ω2) and (ω′1, ω
′

2) have the same field-theoretic type
over Qalg, so we can extend σ4 to a field isomorphism σ5 by defining σ5(ωi )= ω

′

i for i = 1, 2, and this
σ5 is a 0-field isomorphism Fbase→ Fbase

′ as required. �

Later in Proposition 10.1 we will show that the predimension inequality above is the appropriate form
of Schanuel’s conjecture for the ℘-functions, thereby completing the proof of Theorem 1.6.

9D. Variants on ℘-functions. As in the exponential case, we can do variant constructions by chang-
ing the base field Fbase to a different finitely generated 0-field, to incorporate some counterexamples
to the predimension inequality. We can also do constructions of “pseudo-analytic” homomorphisms
Ga(M)→ E(M) which have no complex-analytic analogue. For example, choose an elliptic curve E
without complex multiplication and take the kernel lattice 3=Zω1+Zω2 for ω1/ω2 ∈R totally real (that
is, algebraic and such that it and all its conjugates are real), for example real quadratic. The construction
still works perfectly well to produce a unique quasiminimal model, but no embedding of 3 into C can be
the kernel of a meromorphic homomorphism because it is dense on the line Rω1.

9E. Exponential maps of simple abelian varieties. This is the algebraic setup corresponding to the
complex example described in Definition 3.1. Take G1 = Gd

a and G2 a simple abelian variety of
dimension d , defined over a number field K0. Take O = End(G2), and suppose these endomorphisms are
also defined over K0. Fix an embedding of K0 into C.

Let ω1, . . . , ω2d ∈Cd be generators of a lattice 3 such that Cd/3 is isomorphic to G2(C) as a complex
O-module manifold.
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We take Fbase to be the field generated by the ωi together with Tor(G2), and 0(Fbase) to be the graph
of an O-module homomorphism from Q3 onto Tor(G2).

For abelian varieties of dimension greater than 1 there is no nonconjectural analogue of Serre’s open
image theorem, so we cannot be more specific about an axiomatization of the atomic diagram of the base.
So we have no improvement on the statement of Theorem 8.2 in this case.

9F. Factorizations via Gm of elliptic exponential maps. The examples so far have all been of the expo-
nential type, case (EXP). Here, we give an example in case (COR). Let G1 =Gm and G2 = E , an elliptic
curve without complex multiplication, defined over a number field K0. Let O = Z.

Let ω be transcendental. As a field, Fbase = K0(ω,Tor(Gm),Tor(E)), and we define 0(Fbase) to be
the graph of a surjective homomorphism from Qω+ Tor(Gm) onto Tor(E) with kernel Zω. Then for
M=M(Fbase), 0(M) is the graph of a surjective homomorphism θM : Gm(M)→ E(M).

In the complex case, the exponential map of E factors through the exponential map of Gm as

Ga(C)
[℘:℘′:1]

//

exp

��

E(C)

Gm(C)

θ

;;

and this pseudo-analytic map θM is an analogue of the complex map θ . Since E ×Gm is not simple, the
methods of this paper do not suffice to build a field F equipped with a map θ and pseudo-exponential maps
of Gm and E together, in which the analogue of the above commutative diagram would hold together with
a suitable predimension inequality and a categoricity theorem for a reasonable axiomatization. However,
it seems likely that this is achievable by combining the methods of this paper with those of [Kirby 2009].

Question 9.4. The main obstacle to stability for the first-order theory of B is the kernel. In this case
the kernel is just a cyclic subgroup of Gm, and it is known that Gm equipped with such a group is
superstable. So it is natural to ask whether the first-order theory of M in this case is actually superstable.
One could even ask if any construction of type (B), say with finite rank kernels, produces a structure with
a superstable first-order theory.

9G. Differential equations. We now give an example of type (DEQ). Let K0 be a countable field of
characteristic 0, let G2 be any simple semiabelian variety of dimension d defined over K0, and let G1=Gd

a .
Let O=End(G2). Let C be a countable algebraically closed field extending K0, and define 0(C)=G(C).

Now consider the amalgamation construction using C as the base but considering only purely 0-
transcendental extensions of C , that is, using the category C0-tr(C) in place of C(C). Theorem 6.9
shows we have a quasiminimal pregeometry structure, and hence a canonical model in each uncountable
cardinality. The models we obtain are quasiminimal and 0cl(∅)= C .

This construction is also considered in [Kirby 2009], where it is shown that the first-order theory of
these models is ℵ0-stable. In that paper it is also shown that if 〈F;+ , · , D〉 is a differentially closed field
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and we define 0(F) to be the solution set to the exponential differential equation for G2, then the reduct
〈F;+ , · , 0〉 is a model of the same first-order theory, and C is the field of constants for the differential
field. The paper [Kirby 2009] also considers the situation with several different groups 0S relating to the
exponential differential equations of different semiabelian varieties S, which do not have to be simple,
but they do have to be defined over the constant field C .

10. Comparison with the analytic models

Zilber conjectured that Cexp ∼= B and it seems reasonable to extend the conjecture to the exponential map
of any simple complex abelian variety, and indeed to other analytic functions such as the function θ from
Section 9F. In each example, axioms (1) and (2) are set up to describe properties we know about these
analytic functions, so verifying the conjecture amounts to verifying the other three axioms. We consider
the progress towards each of the axioms in turn.

10A. The predimension inequalities. For the usual exponential function, the predimension inequality
states that for all tuples a from C, trd(a, ea)> ldimQ(a). This is precisely Schanuel’s conjecture.

In the case of an elliptic curve E defined over a number field, the predimension inequality states that
for all tuples a from C, δE(a)= trd(a, expE,C(a))− ldimkO(a)> 0.

Proposition 10.1. The predimension inequality above for the exponential map of an elliptic curve follows
from the André–Grothendieck conjecture on the periods of 1-motives.

The following proof was explained to us by Juan Diego Caycedo, and follows the proof of a related
statement in Section 3 of [Caycedo and Zilber 2014].

Proof. By Théorème 1.2 of [Bertolin 2002], with s = 0 and n = 1, a special case of André’s conjecture
(building on Grothendieck’s earlier conjecture) states that if j (E) is the j-invariant of E , ω1 and ω2 are
the periods of E , η1 and η2 are the quasiperiods of E , P1, . . . , Pn ∈ E(C), ai is the integral of the first
kind associated with Pi , and di is the integral of the second kind associated with Pi , then

trd(2πi, j (E), ω1, ω2, η1, η2, P, a, d)> 2 ldimkO(a/ω1, ω2)+ 4[kO :Q]−1. (1)

In this case, we have that Pi = [℘(ai ) : ℘
′(ai ) : 1] = expE,C(ai ). Since our E is defined over a number

field, j (E) is algebraic. The Legendre relation states ω1η2 − ω2η1 = 2πi , so j (E) and 2πi do not
contribute to the above inequality.

If we assume that a1, . . . , an ∈C are kO-linearly independent over ω1, ω2, we can discard the integrals
of the second kind to get the bound

trd(ω1, ω2, η1, η2, a, expE,C(a))> ldimkO(a/ω1, ω2)+ 4[kO :Q]−1. (2)

Consider the case where there is no CM, so kO =Q. Throwing away η1 and η2 we get

trd(ω1, ω2, a, expE,C(a))> ldimkO(a/ω1, ω2)+ 2. (3)
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From the case n = 0 we see that trd(ω1, ω2) = 2 and since ω1 and ω2 are Q-linearly independent we
have δE(ω1, ω2)= 0. Then (3) implies that for any a we have δE(a/ω1, ω2)> 0, and putting these two
statements together we deduce that δE(a)> 0.

Where E does have CM (and is defined over a number field), Chudnovsky’s theorem [1980, Theorem 1
and Corollary 2] gives us trd(ω1, ω2, η1, η2)= trd(ω1, π)= 2, so in particular trd(ω1)= 1. We also have
kO =Q(τ ) with [kO :Q] = 2, and ω2 = ω1τ , so we can discard ω2, η1 and η2 from (2) to obtain

trd(ω1, a, expE,C(a))> ldimkO(a/ω1)+ 1. (4)

The same argument now shows that δE(a)> 0 for any tuple a. �

Proof of Theorem 1.6. Theorem 9.3 shows that the axioms ℘CFSK,CCP(E) are uncountably categorical
and that every model is quasiminimal. The analytic structure C℘ is a model of the first two axioms by
construction. Proposition 10.1 shows that the predimension inequality given in axiom (3) is the appropriate
analogue of Schanuel’s conjecture for ℘-functions. Axiom (5), the countable closure property, was proved
in this case in [Jones et al. 2016]. �

We will give another proof of the countable closure property in Theorem 1.8 in this paper.
Our understanding of the periods conjecture uses Bertolin’s translation to remove the motives, which

she did only in the cases of elliptic curves and Gm. For abelian varieties of dimension greater than 1
we suspect that the predimension inequality axiom again follows from the André–Grothendieck periods
conjecture, but there are more complications because the Mumford–Tate group plays a role and so we
have not been able to verify it.

10B. Strong 0-closedness. In the case of the usual exponentiation for Gm, Mantova [2016] currently
has the best result towards proving the strong 0-closedness in the complex case. They only consider the
case of a variety V ⊆ Gn where n = 1. A free and rotund V ⊆ G1 is just the solution set of an irreducible
polynomial p(x, y) ∈ C[x, y] which depends on both x and y, that is, the partial derivatives ∂p/∂x and
∂p/∂y are both nonzero.

Fact 10.2. Suppose p(x, y) ∈ C[x, y] depends on both x and y. Then there are infinitely many points
x ∈ C such that p(x, ex) = 0. Furthermore, suppose Schanuel’s conjecture is true and let a be a finite
tuple from C. Then there is x ∈ C such that (x, ex) is a generic zero of p over a.

The observation that there are infinitely many solutions, and the whole statement in the case that p
is defined over Qalg is due to Marker [2006]. The general case stated above is due to Mantova [2016,
Theorem 1.2].

10C. 0-closedness. In Section 11 we will see that for some purposes strong 0-closedness can be weak-
ened to 0-closedness.

Definition 10.3. A full 0-field F is 0-closed if for every irreducible subvariety V of Gn defined over F
and of dimension dn which is free and rotund, V (F)∩0(F)n is Zariski-dense in V .
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Using the classical Rabinovich trick, one can easily show this axiom scheme is equivalent to the
existence of a single point β ∈ V (F) ∩ 0(F)n , for every such V . For the usual exponentiation, 0-
closedness is known as exponential-algebraic closedness. In this direction, Brownawell and Masser [2017,
Proposition 2] have the following.

Fact 10.4. If V ⊆ (Ga×Gm)
n(C) is an algebraic subvariety of dimension n which projects dominantly to

Gn
a then there is a ∈ Cn such that (a, ea) ∈ V .

In this case V can be taken free without loss of generality, and the condition of projecting dominantly
to Gn

a implies rotundity. However it is much stronger than rotundity. Another exposition of this theorem
is given in [D’Aquino et al. 2018].

10D. The pregeometry and the countable closure property. To compare the pregeometry of our con-
structions such as B with the complex analytic models such as Cexp we have to define the appropriate
pregeometry on the complex field. Given a 0-field F , we defined a 0-subfield A of F to be 0-closed
in F if whenever A ⊆ B ⊆ F with δ(B/A)6 0 then B ⊆ A. One can construct 0-fields with no proper
0-closed subfields. Fortunately we are able to show unconditionally that there is a countable 0-subfield
of C which is 0-closed in C.

For Cexp, this was done in [Kirby 2010a] by adapting the proof of Ax’s differential forms version of
Schanuel’s conjecture. A similar proof was given in [Jones et al. 2016] for elliptic curves. The same
method ought to work for any semiabelian varieties, but here we give a different approach, applying the
main result of [Ax 1972] directly to generalize a theorem of Zilber in the exponential case [Zilber 2005b,
Theorem 5.12].

Let C0 be an analytic 0-field, which we recall means a 0-field from Definition 3.1 or 3.2. Then 0
is a complex Lie subgroup of G(C), and L0 ≤ LG(C) is the graph of a C-linear isomorphism between
LG1(C) and LG2(C). Thus 0n is a complex Lie subgroup of Gn(C), so has a complex topology. It might
not be a closed subgroup, so the topology might not be the subspace topology.

Definition 10.5. Given an algebraic subvariety V ⊆ Gn , write V isol for the set of all isolated points of
V (C)∩0n with respect to the complex topology on 0n . For any subset A⊆C we define 0cl′(A) to be the
subfield of C generated by the union of all V isol, where V ranges over the algebraic subvarieties V ⊆ Gn

which are defined over K0(A). We consider 0cl′(A) as a 0-subfield of C by defining 0(0cl′(A)) :=
0 ∩G(0cl′(A)).

Lemma 10.6. 0cl′ is a closure operator on C and for any A ⊆ C, 0cl′(A) is a full 0-subfield of C of
cardinality |A| +ℵ0.

Proof. For transitivity, suppose x is a finite tuple from 0cl′(A) and y ∈ 0cl′(Ax). We may reduce to the
case that α ∈W (C)∩0n is isolated and the tuple x lists the coordinates of α, and β ∈ V (C)∩0m is isolated
and y is a coordinate of β, with W defined over K0(A) and V over K0(Ax). Then V can be written as a
fibre V ′(α) of a subvariety V ′ ⊆ Gm+n over K0(A) projecting to W ⊆ Gn . Then βα ∈ V ′ ∩0m+n is an
isolated point, so β ∈ 0cl′(A).
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Now let A ⊆ C, and set A′ := aclC(K0(A)). Let α0 ∈ G1(A′), let V0 ⊆ G1 be the set of its conjugates,
i.e., the 0-dimensional locus of α0 over K0(A), and let V := V0×G2 ⊆ G. Then V ∩0 is nonempty,
since π1 : 0� G1(C) is surjective, and it consists of isolated points since ker(π1) does. This shows that
A′ ⊆ 0cl′(A), and hence in particular that 0cl′ is a closure operator. Furthermore, this argument shows
that 0cl′(A) is full.

Finally, for the cardinality calculation, note there are only (|A| + ℵ0)-many algebraic varieties V
defined over A and for each there can be only countably many isolated points in V (C)∩0n . �

Proposition 10.7. For an analytic 0-field C0, the closure operators 0cl and 0cl′ are the same. In
particular, 0cl′ is a pregeometry on C.

To prove this we will use a lemma and Ax’s theorem on the transversality of intersections between
analytic subgroups and algebraic varieties.

Lemma 10.8. If H ≤ Gn is a connected algebraic subgroup which is free then the analytic subgroup
H(C)+0n is equal to Gn(C).

Proof. Since G2 is simple and not isogenous to G1, every algebraic subgroup of Gn is of the form H1×H2

with Hi a subgroup of Gn
i , and since H is free it is G2-free. Since O = End(G2) it follows that H is of

the form H1×Gn
2 . Now since π1(0

n)= Gn
1(C) we see H(C)+0n

= Gn(C). �

Fact 10.9 [Ax 1972, Corollary 1]. Suppose that G is a complex algebraic group, A is a connected analytic
subgroup of G, U is open in G, and X is an irreducible analytic subvariety of U such that X ⊆ A, XZar is
the Zariski closure of X , and H is the smallest algebraic subgroup of G containing X. Then

dim(H + A)6 dim XZar
+ dim A− dim X.

Proof of Proposition 10.7. Suppose that A⊆C is 0cl-closed. Let α ∈V isol for some V defined over K0(A).
Replacing α with a subtuple if necessary, we may assume α is kO-linearly independent over 0(A). Then
α is a smooth point of V and of 0n , so by considering tangent spaces we see that trd(α/A)6 dim V 6 nd ,
and hence δ(α/A)6 0. So α ∈ 0n(A) and hence A is 0cl′-closed.

Now suppose A is 0cl′-closed, and that A ⊆ B ⊆ C is a proper finitely generated 0-field extension
in C0 . Let b ∈ 0n(B) be a basis for the extension and let V = Loc(b/A). We will show that δ(b/A) > 0.

Let X be an irreducible analytic component containing b of the analytic subset V (C) ∩ 0n of the
complex Lie group 0n . Since A is 0cl′-closed and b /∈ A, dim X > 1.

We claim that X has some point in A. To see this, let e be a smooth point of X , and take regular local
coordinates ηi at e in Gn such that X is locally the graph of a function from the first dim X coordinates
to the rest. A is algebraically closed as a field, so is topologically dense in C. So there is a point a ∈ X
close to e such that the first dim X coordinates are in A. Let W be the intersection of V with ηi = ai

for i = 1, . . . , dim X . Then W is defined over A and a is an isolated point of W (C)∩0n; hence a is in
Gn(A) as required.

Suppose XZar is not G1-free, so say (x, y)∈ XZar implies a nontrivial O-linear equation
∑n

j=1 r j x j = c.
Then this equation holds for π1(a), so c ∈ G1(A). But then since b ∈ X , already (x, y) ∈ V implies this
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equation, so V is not G1-free, a contradiction since V is the locus of a basis over A. The same proof
shows that XZar is G2-free, so it is free.

Let H be the algebraic subgroup of Gn generated by XZar(C)− b. Then XZar(C)− b is free, so H is
free. So by Lemma 10.8, the subgroup H +0n is equal to Gn .

Applying Fact 10.9 we get

dim(H +0n)6 dim(XZar
− b)+ dim0n

− dim(X − b),

which gives
2dn 6 dim XZar

+ dn− dim X,

but dim X > 0 and XZar
⊆ V so we deduce that dim V > nd. Thus δ(b/A) > 0. So A is 0cl-closed, as

required. �

Proof of Theorem 1.8. Proposition 10.7 shows that 0cl= 0cl′, and so Lemma 10.6 shows that 0cl has
the countable closure property. �

Remark 10.10. In [Kirby 2010a], an algebraic version of the isolated points closure 0cl′ was given,
using the fact that a solution to a system of 2n equations of analytic functions in 2n variables is isolated
if and only if a certain Jacobian matrix does not vanish at the point. So this gives a definition of a
closure operator ecl which makes sense on any exponential field, and it was shown in [Kirby 2010a]
that ecl-closed sets are strong and agree with the 0cl-closed sets as we have defined them here, and in
particular that ecl is always a pregeometry. This algebraic definition of the closure operator was suggested
by Macintyre [1996], although it had previously been used in the real and complex cases by Khovanskii
and by Wilkie.

11. Generically 0-closed fields

In this section we consider 0-fields which may not be strongly 0-closed but are generically strongly
0-closed. Using the variant of the amalgamation construction from Section 5D, we show that such
0-fields are also quasiminimal and that the strong part of strong 0-closedness becomes redundant in this
generic case.

Let K be a full 0-field. Recall from Section 5D that an extension K ⊆ A of K is purely 0-transcendental
if and only if KCcl A if and only if for all tuples b from 0(A), either δ(b/K ) > 0 or b⊆0(K ). Clearly an
extension A of K is purely 0-transcendental if and only if all of its finitely generated subextensions are.

11A. Generic 0-closedness. Recall from Theorem 8.2 that a full 0-field F is strongly 0-closed if for
every irreducible subvariety V of Gn defined over F and of dimension dn which is free and rotund for
the O-module structure on G, and every finite tuple a from 0(F), there is b ∈ V (F)∩0(F)n such that b
is kO-linearly independent over 0(Fbase)∪ a.

Assuming the Schanuel property, that is, that FbaseC F , we can extend the tuple a to a finite tuple
a′ such that A := 〈Fbase, a′〉C F and V is defined over A. Then taking b ∈ V (F) ∩ 0(F)n which is



542 Martin Bays and Jonathan Kirby

kO-linearly independent over 0(Fbase)∪ a′, that is, over 0(A), we see that

06 δ(b/A)= trd(b/A)− d ldimkO(b/0(A))= trd(b/A)− dn.

So trd(b/A)> dn, but b ∈ V , V is defined over A, and dim(V )= dn. So b is generic in V over A, and
hence over Fbase(a). So it follows that in the presence of the Schanuel property, strong 0-closedness is
equivalent to the condition that for any V and a as above, there is b ∈ V (F)∩0(F)n which is generic in
V over Fbase(a).

Recall also the weaker property of 0-closedness from Definition 10.3: F is 0-closed if for every
irreducible subvariety V of Gn defined over F and of dimension dn which is free and rotund, V (F)∩0(F)n

is Zariski-dense in V .
For the concept of generic 0-closedness with respect to a subfield K , we need to consider extensions

of the form K Ccl AC B where A and B are finitely generated as extensions of the full 0-field K . Say α
is a basis of A over K and β is a basis of B over A, and that V := Loc(β/A) and W := Loc(α, β/K ).
We also assume that Afull

∧ B = A. Then by Corollary 7.4 both V and W are free, V is rotund, and W is
strongly rotund.

Definition 11.1 (generic 0-closedness). Let F be a full 0-field and K Ccl F , K 6= F . Suppose V ⊆ Gn

is free and rotund, irreducible, and of dimension dn. Suppose also that there is α ∈ 0(F)r , kO-linearly
independent over 0(K ) such that V is defined over K (α), and such that for β ∈ V , generic over K (α),
the variety W := Loc(α, β/K ) is strongly rotund.

We say that F is generically 0-closed over K (G0C over K ) if, for all such V , we have that
V (F)∩0n(F) is Zariski-dense in V .

F is generically strongly 0-closed over K (GS0C over K ) if, whenever V and α are as above, there is
γ ∈ V (F)∩0n(F), kO-linearly independent over 0(K )∪α.

We say F is G0C or GS0C without reference to K to mean G(S)0C over 0clF (∅).

Proposition 11.2. Suppose F is a full 0-field and K Ccl F , K 6= F. Then F is GSΓ C over K if and only
if F is ℵ0-saturated for 0-algebraic extensions which are purely 0-transcendental over K .

Proof. This is essentially the same as the proof of Lemma 8.3. �

It is immediate from the definitions that GS0C over K implies G0C over K . In [Kirby and Zilber 2014]
it was shown that if the conjecture on intersections with tori (CIT, now also known as the multiplicative
case of the Zilber–Pink conjecture) is true, then any exponential field satisfying the Schanuel property
which is exponentially-algebraically closed is also strongly exponentially algebraically closed. We use
similar ideas here to prove that G0C over K implies GS0C over K . The Schanuel property is replaced
by the assumption that K is 0-closed in F , and instead of the Zilber–Pink conjecture it is enough to use
the weak version, which is a theorem.

Given any variety S and subvarieties W, V ⊆ S, the typical dimension of W∩V is dim W+dim V−dim S.
If X is an irreducible component of W ∩ V it is said to have atypical dimension (for the intersection) if
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dim X > dim W + dim V − dim S.

We also say that X is an atypical component of the intersection. For the multiplicative group, the weak
Zilber–Pink theorem is known as weak CIT and is due to Zilber [2002, Corollary 3]. The semiabelian
form of the statement is the following theorem [Kirby 2009, Theorem 4.6].

Fact 11.3 (“semiabelian weak Zilber–Pink”, basic version). Let S be a semiabelian variety, defined over
an algebraically closed field of characteristic 0. Let (Wb)b∈B be a constructible family of constructible
subsets of S. That is, B is a constructible set and W is a constructible subset of B × S, with Wb the
obvious projection of a fibre. Then there is a finite set HW of connected proper algebraic subgroups of
S such that for any b ∈ B and any coset c+J of any connected algebraic subgroup J of S, if X is an
irreducible component of Wb ∩ c+J of atypical dimension with c ∈ X then there is H ∈ HW such that
X ⊆ c+H.

We also need a version for subvarieties not of S but of varieties of the form U × S, which is sometimes
called a “horizontal” family of semiabelian varieties.

Theorem 11.4 (“horizontal semiabelian weak Zilber–Pink”). Let S be a semiabelian variety and let U be
any variety. Let (Wb)b∈B be a constructible family of constructible subsets of U × S. Then there is a finite
set HW of connected proper algebraic subgroups of S such that for any b ∈ B and any coset c+J of any
connected algebraic subgroup J of S, if X is an irreducible component of Wb ∩ (U × c+J ) of atypical
dimension with c ∈ X then there is H ∈HW such that X ⊆ U × c+H. Furthermore, H can be chosen
such that we have

dim X 6 dim(Wb ∩ (U × c+H))+ dim(H ∩ J )− dim H. (∗)

Proof. First suppose U is a point, so U × S ∼= S. The main part of the statement is then Fact 11.3. For the
“furthermore” part, suppose (∗) does not hold for the H we chose from HW . Then rename HW as H1

W . We
give an inductive argument to find a new HW which suffices. We have the irreducible X as a component
of the intersection (Wb∩c+H)∩c+(H ∩ J ), and the failure of (∗) says that X is atypical as a component
of this intersection considered as an intersection of subvarieties of c+H . Translating everything by c,
we get that X−c is an atypical component of the intersection (Wb−c ∩ H)∩ (H ∩ J ) inside H . Now
apply Fact 11.3 again with H in place of S to get a proper connected algebraic subgroup H ′ of H from
the finite set H2

W :=H1
W ∪

⋃
H∈H1

W
H(Wb−c∩H)b,c such that X ⊆ c+H ′. If necessary we can iterate this

construction and since dim H ′ < dim H it stops after finitely many steps, and the HW we eventually find
is still finite.

Now consider arbitrary U . Suppose first that all fibres of the coordinate projection π :Wb→ S have
the same dimension k, constant with respect to b. Take HW to be the finite set H(π(Wb))b∈B given by this
theorem with U a point. We will see that this works as required.

Indeed, let c+J be a coset in S, let X be an atypical component of Wb ∩ (U × c+J ), let Y be any
irreducible component of π(Wb)∩ c+J containing π(X), and let H ∈ H(π(Wb))b∈B be as given by the
theorem.
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Then by considering dimensions of fibres, we have

dim X = dim(π(X))+ k

6 dim Y + k

6 dim(π(Wb)∩ c+H)+ dim(H ∩ J )− dim H + k

= dim(Wb ∩ (U × c+H))+ dim(H ∩ J )− dim H.

Now for a general family W ⊆ B×U × S, write π :U × S→ S for the projection and define

W k
= {(b, u, s) ∈W | dim(Wb ∩π

−1(s))= k}

for each k = 0, . . . , dim W. By the definability of dimension, these W k are all constructible subsets
of W, partitioning it, and each W k satisfies the above constancy condition on fibres. For any c+J , any
component X of Wb ∩ (U × c+J ) contains a dense constructible subset which lies in some piece W k

b . So
we can take HW to be

⋃
k HW k . �

Now we can prove that GS0C and G0C are equivalent.

Proposition 11.5. Suppose F is a full 0-field and K Ccl F , K 6= F. Then F is GSΓ C over K if and only
if it is GΓC over K .

Proof. As remarked earlier, it is immediate that GS0C over K implies G0C over K . So assume F is
G0C over K . Let V , α, β, and W be as given in Definition 11.1. Let Vα,dep be the set of points of
V (F) which are kO-linearly dependent over 0(K )∪α. We shall find a proper Zariski-closed subset of V
containing Vα,dep.

We first work in case (EXP), so G2 is a simple semiabelian variety of dimension d and G1 = Gd
a ,

which we identify with the Lie algebra LG2 of G2.
For a d(r + n)-square matrix M and a d(r + n)-column vector c, let 3M,c ⊆ G

d(r+n)
a be given by

x ∈ 3M,c if and only if Mx = c. So as M and c vary, we get the family of all possible affine linear
subspaces. Let UM,c =W ∩ (3M,c×Gr+n

2 ).
Now suppose ξ ∈ Vα,dep∩0(F)n . Let ζ = (α, ξ)∈0(F)r+n . We also write ζ = (ζ1, ζ2)∈Gr+n

1 ×Gr+n
2 .

Let J be the smallest algebraic subgroup of Gr+n
2 such that ζ2 lies in a K -coset of J , say ζ2 ∈ c′2+ J

with c′2 ∈ G2(K )r+n . Since ξ ∈ Vα,dep, we see that J is a proper algebraic subgroup of Gr+n
2 .

By Lemma 2.1, there is M ∈Matr+n(O) such that J = (ker(M))o and LJ = ker(M). Since K is a full
0-field, there is c′1 ∈Gr+n

1 (K ) such that c′ := (c′1, c′2)∈0(K )
r+n . Then M(ζ−c′)∈0(K )r+n since K ≤ F

preserves the kernels. Now 0(K ) is a kO-subspace of 0(F), so in particular is existentially closed as an O-
submodule, so there exists c′′∈0(K )r+n such that Mc′′=M(ζ−c′). Set c= (c1, c2) := c′+c′′∈0(K )r+n ,
so M(ζ − c) = 0. Then ζ − c is divisible in ker(M), since 0(F) is divisible and torsion-free, so
ζ − c ∈ LJ × J .

Now we have ζ ∈ UM,c1 ∩ (G
r+n
1 × c2+J ). Let X be the irreducible component of this intersection

containing ζ .



Pseudo-exponential maps, variants, and quasiminimality 545

We next show that X has atypical dimension for the intersection. From the definition of the predimension
δ and its relationship with 0dim we have

dim X > trd(ζ/K )= δ(ζ/K )+ d ldimO(ζ/0(K ))

= δ(ζ/K )+ dim J

> 0dimF (ζ/K )+ dim J,

dim X > 0dimF (α/K )+ dim J. (5)

Since α ∈ 0(F)r was chosen kO-linearly independent over 0(K ) and such that 〈K , α〉C F , we have

0dimF (α/K )= δ(α/K )= trd(α/K )− d ldimO(α/0(K ))= trd(α/K )− dr. (6)

Since W = Loc(α, β/K ), and V = Loc(β/K (α)) has dimension dn, using (6) we have

dim W = dim V + trd(α/K )= d(r + n)+0dimF (α/K ). (7)

From (5) and (7),
dim X > dim W + dim J − d(r + n)

= dim W + (dim J + d(r + n))− 2d(r + n)

= dim W + dim(Gr+n
1 × c2+J )− dim(Gr+n),

but W is free, so dim UM,c1 < dim W and so

dim X > dim UM,c1 + dim(Gr+n
1 × c2+J )− dim(Gr+n). (8)

So X has atypical dimension.
Applying Theorem 11.4, there is a proper algebraic subgroup H of Gr+n

2 from the finite set HU such
that X ⊆ Gr+n

1 × c+H . We have ζ ∈ X , so ζ2 ∈ c+H . J was chosen as the smallest algebraic subgroup
of S such that ζ2 lies in a K -coset of J , so J ⊆ H and hence H ∩ J = J . So, from the “furthermore”
clause of Theorem 11.4 we have

dim X 6 dim(UM,c1 ∩ (G
r+n
1 × c2+J ))+ dim J − dim H. (9)

We write T J = LJ × J and TH = LH × H , thinking of them as the tangent bundles. Then we have

UM,c1 ∩ (G
r+n
1 × c2+J )=W ∩ (c1+LJ ×Gr+n

2 )∩ (Gr+n
1 × c2+J )

=W ∩ c+T J

=W ∩ ζ+T J

⊆W ∩ ζ+TH,

so
dim(UM,c1 ∩ (G

r+n
1 × c2+J ))6 dim(W ∩ ζ+TH). (10)
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Combining (9), (10), and (5) we get

0dimF (α/K )+ dim J 6 dim(W ∩ ζ+TH)+ dim J − dim H,

0dimF (α/K )+ dim H 6 dim(W ∩ ζ+TH). (11)

By Lemma 2.1, there is M ∈Matr+n(O) such that H = ker(M)o and LH = ker(M), so TH = ker(M)o

for the action of O on G. So M : Gr+n
→ Gr+n factors as Gr+n � Gr+n/TH → Gr+n , where the first

homomorphism is the quotient map, and the kernel of the second homomorphism is the finite group
ker(M)/ ker(M)o. Now let θH :W �W/TH be the restriction of the quotient map Gr+n � Gr+n/TH .
Then dim(W/TH)= dim(M ·W ). Now H is a proper subgroup of Gr+n

2 , and dim(H)= dim(ker(M))=
d(r + n− rk M), and so M is nonzero. Then since W is strongly rotund,

dim(W/TH)= dim(M ·W ) > d rk M = d(r + n)− dim H.

So using the fibre dimension theorem, the dimension of a typical fibre of θH is

dim(typical fibre)= dim W − dim(W/TH)

< (d(r + n)+0dimF (α/K ))− (d(r + n)− dim H)

= 0dimF (α/K )+ dim H. (12)

The fibre of θH in which ζ lies is W ∩ ζ+TH , so (11) says exactly that ζ lies in a fibre of θH of atypical
dimension. By the fibre dimension theorem, there is a proper Zariski-closed subset WH of W, defined
over K , containing all the fibres of θH of atypical dimension.

Since α is generic in the projection of W, and hence of WH , the subset VH,α := {y ∈ V | (α, y) ∈WH }

is proper Zariski-closed in V . Let Vα :=
⋃

H∈HW
HH,α. Then Vα is also a proper Zariski-closed subset

of V, and we have shown that Vα,dep ⊆ Vα.
So since F is G0C over K , there is a point β ∈ 0(F)n ∩ V (F)r Vα(F). Since β /∈ Vα,dep, β is

kO-linearly independent over 0(K )∪α. Hence F is GS0C over K as required.
The proof for case (COR) is very similar, but instead of ζ ∈ (c1+LJ )× (c2+J ) we have subgroups

J1 ⊆ Gr+n
1 and J2 ⊆ Gr+n

2 which correspond to each other in the sense that they are connected com-
ponents of solutions to the same system of O-linear equations. So we get ζ ∈ (c1+J1)× (c2+J2) with
dim J1= dim J2= ldimkO(ζ/0(K )) < r+n. Then a similar calculation shows that ζ lies in a component
of the intersection W ∩ c+(J1× J2) of atypical dimension, and we apply the weak Zilber–Pink for the
semiabelian variety Gr+n and proceed as in case (EXP). �

11B. Sufficient conditions for quasiminimality.

Theorem 11.6. Suppose F is a full 0-field with the countable closure property which is generically
0-closed over some countable K Ccl F. Then F is quasiminimal.

Proof. We take Fbase = K and consider the category C0-tr(K ). By Theorem 5.21 it is an amalgamation
category so we have a Fraïssé limit M0-tr(K ). By Theorem 6.9, M0-tr(K ) is a quasiminimal pregeometry
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structure, so defines a quasiminimal class K(M0-tr(K )). Substituting Proposition 11.2 for Lemma 8.3, the
proof of Theorem 8.2 shows that the models in this class are precisely the full 0-fields which are purely
0-transcendental extensions of K , are ℵ0-saturated with respect to the 0-algebraic extensions which are
purely 0-transcendental over K , and satisfy the countable closure property. Hence by Propositions 11.2
and 11.5, F is in K(M0-tr(K )) and hence is quasiminimal. �

If F is the complex field, in practice it might be difficult or impossible to identify a countable 0-closed
K and prove directly that F is generically 0-closed over K . Thus the following corollaries may be more
useful.

Corollary 11.7. Suppose F is a full 0-field with the countable closure property which is 0-closed. Then
F is quasiminimal.

Proof. Clearly 0-closedness implies generic 0-closedness. �

Since Cexp has the countable closure property by Theorem 1.8, this completes the proof of Theorem 1.5.
We can do slightly better.

Corollary 11.8. Suppose F is a full 0-field with the countable closure property which is almost 0-closed.
That is, for all but countably many free and rotund, irreducible subvarieties V ⊆ Gn of dimension dn,
0n(F)∩ V (F) is Zariski-dense in V . Then F is quasiminimal.

Proof. Suppose F is almost 0-closed, and take K1 to be a countable subfield of F over which all the
countably many exceptional varieties V are defined. Take K =0clF (K1). Then F is generically 0-closed
over K . �

Overall we have proved the following generalization of Theorem 1.5, which applies to the exponential
function, the Weierstrass ℘-functions, the exponential maps of simple abelian varieties, and more.

Theorem 11.9. Let C0 be an analytic 0-field. If C0 is almost 0-closed then it is quasiminimal.

Proof. Combine Corollary 11.8 with Theorem 1.8, which gives CCP. �

Since being 0-closed implies being almost 0-closed, Theorem 1.9 follows. Theorem 1.5 is a special
case.

Remark 11.10. We do not know if almost 0-closedness is a necessary condition for quasiminimality.
For example in the exponential case, is it possible to build an uncountable quasiminimal exponential
field F with a definable family (Vp)p∈P of rotund and free varieties such that for only countably many p
(perhaps none) there is (x̄, ex̄) ∈ Vp(F)?
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