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To Alexander Kirillov, Jr. on his 50th birthday with admiration

We use a version of Haboush’s theorem over complete local Noetherian rings to prove faithfulness of the
lifting for semisimple cosemisimple Hopf algebras and separable (braided, symmetric) fusion categories
from characteristic p to characteristic zero, showing that, moreover, any isomorphism between such
structures can be reduced modulo p. This fills a gap in our earlier work. We also show that lifting
of semisimple cosemisimple Hopf algebras is a fully faithful functor, and prove that lifting induces
an isomorphism on Picard and Brauer–Picard groups. Finally, we show that a subcategory or quotient
category of a separable multifusion category is separable (resolving an open question from our earlier
work), and use this to show that certain classes of tensor functors between lifts of separable categories to
characteristic zero can be reduced modulo p.

1. Introduction

Let k be an algebraically closed field of characteristic p > 0 and let W (k) be its ring of Witt vectors,
I = (p)⊂W (k) the maximal ideal, K the fraction field of W (k), and K its algebraic closure. In [Etingof
and Gelaki 1998] it is shown that any semisimple cosemisimple Hopf algebra over k has a unique (up to
an isomorphism) lift over W (k). In [Etingof et al. 2005, Section 9], this result is extended to separable
(braided, symmetric) fusion categories, i.e., those of nonzero global dimension.1

Moreover, in [Etingof et al. 2005, Section 9.3], it is claimed that lifting is faithful, i.e., if liftings of
two Hopf algebras are isomorphic over K then these Hopf algebras are isomorphic, and similarly for
categories (Theorem 9.6, Corollary 9.10). This is used in a number of subsequent papers.

However, it recently came to my attention that the proofs given in that paper for those faithfulness
results are incomplete. Namely, the proof of Lemma 9.7 (used in the proof of Theorem 9.6) says that by
Nakayama’s lemma, it suffices to check the finiteness of a certain morphism φ of schemes over W (k)
modulo the maximal ideal I (i.e., over k). But it is, in fact, not clear how this follows from Nakayama’s
lemma. Namely, finiteness over k does imply finiteness over W (k)/I N for any N ≥ 1, but this is not

MSC2010: 16T05.
Keywords: lifting, Hopf algebra, tensor category, separable.

1In [Etingof et al. 2005], separable fusion categories are called nondegenerate. But this terminology is confusing since for
braided fusion categories, this term is also used in an entirely different sense: to refer to categories with trivial Müger center. For
this reason, we adopt a better term “separable” introduced in [Douglas et al. 2013].
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sufficient to conclude finiteness over W (k).2 In fact, the reductivity of the group of twists must be used
in the proof; see Remark 2.12.

The main goal of this paper is therefore to provide complete proofs of the results on faithfulness of
the lifting. This may be done by using results on geometric reductivity and power reductivity of reductive
groups over rings; see [Seshadri 1977; Franjou and van der Kallen 2010]. We also prove results on integral-
ity of stabilizers of liftings, and show that lifting is a fully faithful functor for semisimple cosemisimple
Hopf algebras, and defines an isomorphism of Brauer–Picard and Picard groups of (braided) separable
fusion categories. Finally, we prove that subcategories and quotient categories of separable categories
are separable (resolving a question from [Etingof et al. 2005, Section 9.4]), and use this to prove that
certain types of tensor functors between liftings of separable categories descend to positive characteristic.

The paper is organized as follows. In Section 2 we describe algebro-geometric preliminaries, i.e., the
results on geometric reductivity and power reductivity and their applications. In Section 3 we apply these
results to proving faithfulness of the lifting and integrality of stabilizers for semisimple cosemisimple
Hopf algebras and prove that lifting of such Hopf algebras is a fully faithful functor. In Section 4 we
generalize the results of Section 3 to tensor categories and tensor functors, thus providing complete proofs
of the results of [Etingof et al. 2005, Section 9.3] and [Etingof and Gelaki 2000, Theorem 6.1]. Also,
we apply these results to show that the Brauer–Picard and Picard groups of (braided) separable fusion
categories are preserved by lifting. Finally, in Section 5 we show that a subcategory and quotient category
of a separable category is separable, and apply it to prove a descent result for tensor functors between
liftings of separable categories.

2. Auxiliary results from algebraic geometry

In this section we collect some auxiliary results from algebraic geometry that we will use below.

2A. Power reductivity. Let k be an algebraically closed field of characteristic p > 0 and let W (k) be its
ring of Witt vectors, I = (p)⊂W (k) the maximal ideal, K the fraction field of W (k) and K its algebraic
closure.

If X is a scheme over a ring R and R′ is a commutative R-algebra, then X R′ will denote the base
change of X from R to R′.

By a reductive group over a commutative ring k we will mean a smooth affine group scheme with
connected fibers, as in [SGA 3 III 1970]. Such a group G is split when it contains a split fiberwise maximal
k-torus as a closed k-subgroup. In our applications, G will always be split, and, in fact, will be a quotient
of a product of general linear groups by a central torus.

We start with restating a result from [Franjou and van der Kallen 2010], which is a combination of
their Proposition 6 and Theorem 12.

2E.g., K is not module-finite over W (k), even though it becomes module-finite (in fact, zero) upon reduction modulo I N, and
is also finite over K.
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We call a ring homomorphism ψ : B→ C power-surjective if for any element c ∈ C, some positive
integer power cN belongs to Imψ .

Proposition 2.1. Let k be a commutative Noetherian ring and let G be a split reductive group over k.
Let A be a finitely generated commutative k-algebra on which G acts rationally through algebra auto-
morphisms. If J is a G-invariant ideal in A, then the map induced by reducing mod J : AG

→ (A/J )G is
power-surjective.

In [Franjou and van der Kallen 2010] this property of G is called power reductivity. It is not assumed
there that k is Noetherian, but we will use Proposition 2.1 only for Noetherian (in fact, complete local)
rings k.

Remark 2.2. It was explained to us by W. van der Kallen that power reductivity of G (i.e., Proposition 2.1)
over complete local Noetherian rings k follows from [Thomason 1987, Theorem 3.8]. Namely, from this
theorem one easily gets property (INT) of [Franjou and van der Kallen 2010] and then power reductivity.
This is discussed in Section 2.4 of that paper and in Theorem 2.2 of [van der Kallen 2007]. (The latter
paper assumes a base field, but this assumption is not essential.) Compare also with [Grosshans 1997,
Theorem 16.9] and [Springer 1977, Lemma 2.4.7].

2B. Faithfulness of lifting for reductive group actions. We will need the following proposition, which
is sufficient to justify the main results of [Etingof et al. 2005, Section 9.3].

Proposition 2.3. Let V be a rational representation of a split reductive group G on an affine space
defined over W (k). Let v1, v2 ∈ V (W (k)). Assume that the G-orbits of the reductions v0

1, v
0
2 ∈ V (k) are

closed and disjoint. Then v1, v2 are not conjugate under G(K ).

Proof. This follows from [Seshadri 1977, Theorem 3, part (ii)] for R =W (k), X = V and Y = V/G :=
SpecO(V )G . Namely, this theorem says that v0

1, v
0
2 are distinct points of Y (k). This implies that there

exists a G-invariant polynomial f ∈O(V ) such that f (v0
1) 6= f (v0

2) in k. But f (v0
i ) are the reductions of

f (vi ) mod I, so f (v1) 6= f (v2) in W (k). But then v1, v2 cannot be conjugate under G(K ).
Here is another proof, using Proposition 2.1, for k=W (k), A=O(V ) and J = IO(V ). Proposition 2.1

says that for any f ∈O(Vk)
G(k), some power f N of f lifts to a G-invariant h ∈O(V ). Now, by Haboush’s

theorem [1975], we can choose f so that f (v0
1)= 0 and f (v0

2)= 1. Then h(v1) ∈ I and h(v2) ∈ 1+ I,
hence h(v1) 6= h(v2), and v1, v2 cannot be conjugate under G(K ). �

Remark 2.4. The closedness assumption for G-orbits in Proposition 2.3 cannot be removed. For instance,
let G =Gm and V = A1 be the tautological representation of G. Take v1 = p and v2 = 1. Then v0

1 = 0
and v0

2 = 1, so their G-orbits are disjoint. On the other hand, v1 and v2 are conjugate by the element
p ∈ G. Note that the orbit of v0

2 is A1
\ {0}, hence not closed.

The reductivity assumption cannot be removed, either. Namely, let G =Ga be the group of translations
x 7→ x + b, and V be the 2-dimensional representation of G on linear (not necessarily homogeneous)
functions of x . Let v1 = px and v2 = 1+ px . Then v0

1 = 0, v0
2 = 1. These are G-invariant vectors, so

their orbits are closed and disjoint. Still, v1 is conjugate to v2 by the transformation x 7→ x + 1/p.
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2C. Integrality of the stabilizer. Let V be a rational representation of a split reductive group G on an
affine space defined over W (k). Let v ∈ V (W (k)) and v0

∈ V (k) be its reduction modulo p. Let S⊂ G
be the scheme-theoretic stabilizer of v, and S = S(K ) be the stabilizer of v in G(K ). Let S0 = Sk ⊂ Gk

be the scheme-theoretic stabilizer of v0, and S0 = S0(k)= S(k) be the stabilizer of v0 in G(k).

Proposition 2.5. Assume that

(i) the G-orbit of v0 is closed;

(ii) S0 is finite and reduced;

(iii) there is a lifting map i : S0→ S such that i(S0) ∈ G(W (k)) and the reduction of i(g0) modulo p
equals g0 for any g0 ∈ S0. In other words, the reduction map S(W (k))→ S(k)= S0 is surjective.

Then i is an isomorphism. In other words, all the natural maps in the diagram

S(k)← S(W (k)) ↪→ S(K ) ↪→ S(K )

are isomorphisms.

Proof. Let U be a defining representation of G, presenting it as a closed subgroup of GL(U). The main
part of the proof is showing that the matrix elements of any g ∈ S in some basis of U(W (k)) are integral
over W (k). To this end, we want to construct a lot of S-invariants in O(U), so that O(U) is integral over
the subalgebra generated by these invariants.

Let X = Gv0
⊂ Vk be the G-orbit of v0 over k, which is closed by (i). Since S0 is reduced by (ii),

the natural morphism Gk/S0→ Vk given by g 7→ gv0 defines an isomorphism Gk/S0 ∼= X. Therefore,
we have O(X ×Uk)

G(k)
= O(Uk)

S0. Thus, given a homogeneous f ∈ O(Uk)
S0 of some degree `, we

may view f as a G-invariant regular function on X ×Uk . By Proposition 2.1, some power f N lifts to a
G-invariant polynomial h f on V ×U, homogeneous of degree N` in the second variable (as O(X ×Uk)

is a quotient of O(V ×U) by a G-invariant ideal). Then h f (v, · ) is a lift over W (k) of f N (v0, · ), which
is an S-invariant element of O(U), homogeneous of degree N`.

Since by (ii) S0 is finite, Noether’s theorem allows us to pick a finite collection of homogeneous
generators f1,..., fm ∈O(Uk)

S0, of some degrees `1,...,`m . Let h f j be a lift of f Nj
j as above, j = 1,...,m.

Lemma 2.6. The algebra O(U) is module-finite over W (k)[h f1, . . . , h fm ].

Proof. First, O(Uk)
S0= k[ f1, . . . , fm] is module-finite over k[ f N1

1 , . . . , f Nm
m ]. Also, by Noether’s theorem,

O(Uk) is module-finite over O(Uk)
S0. Thus, O(Uk) is module-finite over k[ f N1

1 , . . . , f Nm
m ].

Let w0
1, . . . , w

0
r be homogeneous module generators of O(Uk) over k[ f N1

1 , . . . , f Nm
m ], of degrees

p1, . . . , pr . Letwj be any homogeneous lifts ofw0
j over W (k), j=1, . . . , r . We claim thatw1, . . . , wr are

module generators of O(U) over R :=W (k)[z1, . . . , zm], where z j acts by multiplication by h f j . Indeed,
set deg(z j )= Nj` j . For each degree s, we have a natural map ψs : R[s− p1]⊕· · ·⊕R[s− pr ]→O(U)[s],
where [s] denotes the degree s part; namely, ψs(b1, . . . , br )=

∑r
j=1 bjwj . The map ψs is a morphism of

free finite-rank W (k)-modules, and the reduction of ψs mod I is surjective, since w0
1, . . . , w

0
r generate

O(Uk) as a module over k[ f N1
1 , . . . , f Nm

m ]. Hence, ψs is surjective as well, which implies the lemma. �
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By Lemma 2.6, for any linear function F ∈ U∗(W (k)) (where U∗ is the dual representation to U),

Fn
+ a1 Fn−1

+ · · ·+ an = 0, (1)

where a j ∈W (k)[h f1, . . . , h fm ].
Let g ∈ S. Acting by g on equation (1), and using that ga j = a j (since by construction the h f j are

S-invariant), we get that gF also satisfies (1). This means that if u ∈U(W (k)), then gF(u)∈ K is integral
over W (k) (as a j (u) ∈ W (k)). Since the integral closure of W (k) in K is W (k), the ring of integers in
K , we get that gF(u) ∈W (k), hence gF ∈ U∗(W (k)). Thus gF ∈ U∗(Q), where Q ⊂W (k) is a finite
extension of W (k). So, the matrix elements of g in some free W (k)-basis of U belong to Q. Thus, g is a
lift of some g0 ∈ S0 over Q. Using (iii), consider the element g := gi(g0)

−1
∈ S∩G(Q)= S(Q), and let

gN ∈ S(Q/(pN )) be the reduction of g modulo pN. By construction, the image of g in G(k) is 1. Since
S0 is finite and reduced by (ii), this implies that gN = 1 for all N. Thus, g= 1 and g= i(g0), as desired. �

Remark 2.7. Condition (i) in Proposition 2.5 is essential. Indeed, take G=GL(2) acting on V = V2⊕V1,
where Vm is the natural representation of G on homogeneous polynomials of two variables x, y of
degree m. Take v= x1(y1− px1)+ y2 ∈ V (W (k)). Then v0

= x1 y1+ y2. If gv0
= v0 then g preserves y2,

hence y1, so it preserves x1. Thus g = 1, hence S0 = 1. On the other hand, S = {1, s}, where s(y)= y,
s(x)= (1/p)y− x .

The reductivity of G is essential as well. To see this, take G = Aff(1), the group of affine linear
transformations (a, b) given by x 7→ ax + b, a 6= 0, and take V = Q ⊕ U, where Q is the space of
quadratic (not necessarily homogeneous) functions of x , and U is the 1-dimensional representation with
basis vector z defined by (a, b)(z)= a2z. We can then take v= x(1− px)+z, so that v0

= x+z. Then, as
before, S0 = 1, but S = {1, s}, where s(x)=−x + 1/p. Note that the G-orbit of v0 is closed in this case.

2D. Finiteness of the orbit map. The results of this subsection are not needed for the proof of the main
results. They are only used in the proofs of Theorems 3.5 and 4.8 and are included mainly to justify
Lemma 9.7 of [Etingof et al. 2005], whose original proof is incomplete.

We keep the setting of Proposition 2.5.

Lemma 2.8. (i) For all r ≥ 1, O(S)/(pr ) is a free W (k)/(pr )-module of rank |S0|.

(ii) S is the lift of S0 to W (k), i.e., O(S) is a free W (k)-module of rank |S0|. Thus, the tautological
morphism π : G→ G/S is finite étale.3

Proof. (i) Let Fun(X, R) stand for the set of functions from X to R. We have a natural homomorphism
τ :O(S)→ Fun(S0,W (k)), given by τ( f )(g0)= f (i(g0)). Let τr :O(S)/(pr )→ Fun(S0,W (k)/(pr ))

be the reduction of τ modulo pr. Then τr is a homomorphism between finite W (k)/(pr )-modules (since
S0 is finite), and it is an isomorphism modulo p. Hence τr is surjective. Also, the length of O(S)/(pr ) is
at most r |S0| (as it has |S0| generators), while the length of Fun(S0,W (k)) equals r |S0| since it is a free
W (k)/(pr )-module of rank |S0|. This implies that τr is an isomorphism, giving (i).

3Note that the quotient G/S makes sense as a scheme of finite type over W (k).
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To prove (ii), note that τ is surjective, as it is surjective modulo p. Let J := Ker τ . Tensoring with K,
we get a short exact sequence of K -vector spaces

0→ K ⊗W (k) J →O(SK )→ Fun(S0, K )→ 0.

Since SK is automatically reduced, and S(K )= S is isomorphic to S0 by Proposition 2.5, we obtain by
counting dimensions that K ⊗W (k) J = 0, i.e., J is the torsion ideal in O(S). Since S is of finite type, J
is finitely generated, hence killed by pN for some N ≥ 1. Hence, if J 6= 0, then there exists f ∈ J such
that f /∈ pO(S). Since pN f = 0, this contradicts (i) for r > N, yielding the first statement of (ii). The
second statement (the étaleness of π ) follows since S0 is reduced. �

Consider the morphism φ : G→ V given by φ(g) = gv, which we call the orbit map. It induces a
natural morphism ν : G/S→ V such that φ = ν ◦π . It is easy to see that every scheme-theoretic fiber
of ν is either a point or empty. Hence, by [EGA IV4 1967, Proposition 17.2.6], ν is a monomorphism.

For a W (k)-scheme X and a closed point x ∈ X over k or K, denote by X̂x the formal neighborhood
of X. Namely, if R is a local Artinian W (k)-algebra with residue field k, respectively K, then X̂x(R) is
the set of homomorphisms O(X)→ R which lift x .

Let Y ⊂ V be a closed G-invariant subscheme such that ν factors through a morphism µ : G/S→ Y.

Proposition 2.9. Suppose that

(i) for any point g of G/S over k or K, the morphism of formal neighborhoods µg : Ĝ/Sg → Ŷµ(g)
induced by µ is an isomorphism; and

(ii) Y consists of finitely many closed G-orbits both over k and over K.

Then µ is a closed embedding. In particular, the morphisms µ, ν, φ are finite.

Proof. Let us cut down the target of µ. Pick a G-invariant polynomial b0 ∈O(Vk) such that b0(v
0)= 0

and b0 = 1 on all the other orbits of G in Yk . Since by (ii), Yk consists of finitely many closed G-orbits,
such b0 exists by Haboush’s theorem [1975].

Now use Proposition 2.1 to lift some power bN
0 of b0 to a G-invariant polynomial b ∈O(V ) such that

b(v)= 0 (namely, choose any lift b of bN
0 and then replace b with b−b(v)). Also, consider a polynomial

c′ ∈O(VK ) such that c′(v)= 0 but c′ 6= 0 on all other orbits of G on YK . Since by (ii), YK is a union of
finitely many closed G-orbits, c′ exists, and by setting c′ = pM c for sufficiently large M ∈ Z+, we obtain
a polynomial c ∈O(V ).

Now consider the closed subscheme Z ⊂ Y cut out by the equations b = 0, c = 0. Then the morphism
µ factors through a monomorphism µ : G/S→ Z, and it suffices to show that this morphism is a closed
embedding. We will do so by showing that, in fact, µ is an isomorphism.

Lemma 2.10. The morphism µ is surjective.

Proof. This follows since by construction, Z has only one G-orbit both over k and over K (namely, that
of v0, respectively v). �
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Lemma 2.11. The morphism µ is étale.

Proof. By (i), µ is a formally étale morphism between affine W (k)-schemes of finite type. This implies
the statement. �

Now the proposition follows from Lemmas 2.10 and 2.11, since a surjective étale monomorphism is
an isomorphism, [EGA IV4 1967, Theorem 17.9.1]. �

Remark 2.12. The reductivity of G is essential in Proposition 2.9. Namely, let p > 2 and consider the
action of G = Ga by translations x 7→ x + b on the 3-dimensional space V of quadratic polynomials
in x . Let v = x − px2. Then b ◦ v = x + b− p(x + b)2 = b− pb2

+ (1− 2pb)x − px2. Thus, the map
φ : G→ V, φ(g)= gv, is given by

φ(b)= (b− pb2, 1− 2pb,−p).

We have
O(φ−1(0,−1,−p))=W (k)[b]/(b− pb2, 2− 2pb)=W (k)[1/p] = K

(as pb = 1 in this ring). This implies that φ is not finite (as K is not a finitely generated W (k)-module),
even though it is finite over K and over W (k)/I N for each N.

We note that in this example the orbits of v over K and its reduction v0 over k are closed, and the
scheme-theoretic stabilizers S of v and S0 of v0 are both trivial. Also, one may take Y to be the curve
consisting of polynomials −px2

+ αx + β such that 4pβ = 1− α2. This curve is G-invariant, and the
map µ : G = G/S→ Y is a monomorphism which induces an isomorphism on formal neighborhoods.
However, Yk has two orbits, α = 1 and α = −1, and µ lands in the first one. We have a G-invariant
polynomial b0 on Vk separating these orbits, namely b0 =

1
2(1− α). But power reductivity does not

apply since G is not reductive, and no power of b0 lifts to a G-invariant in O(Y), since YK has only one
G-orbit, so the only invariant regular functions on Y are constants. As a result, we cannot define a closed
subscheme Z ⊂ Y such that µ factors through a surjective morphism µ : G/S→ Z.

3. Faithfulness of the lifting for Hopf algebras

3A. Faithfulness of the lifting. If H is a semisimple cosemisimple Hopf algebra over k, let H̃ denote
its lift over W (k) constructed in [Etingof and Gelaki 1998, Theorem 2.1], and let Ĥ := K ⊗W (k) H̃.

Let H1, H2 be semisimple cosemisimple Hopf algebras over k.

Theorem 3.1 [Etingof et al. 2005, Corollary 9.10]. If Ĥ1 is isomorphic to Ĥ2 then H1 is isomorphic
to H2.

Proof. By the assumption, dim H1 = dim H2 = d, a number coprime to p. Indeed, by Theorem 3.1 of
[Etingof and Gelaki 1998] in a semisimple cosemisimple Hopf algebra we have S2

= 1, where S is the
antipode, and by the Larson–Radford theorem [1988], we have Tr(S2) 6= 0.

Fix identifications H̃1∼=W (k)d, H̃2∼=W (k)d as W (k)-modules; they, in particular, define identifications
H1 ∼= kd, H2 ∼= kd as vector spaces over k.
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Let V be the space of all possible pre-Hopf structures, i.e., product, coproduct, unit, counit, and
antipode maps on the d-dimensional space, without any axioms, regarded as an affine scheme. In other
words, if E = Ad is the defining representation of G, then

V = E⊗ E⊗ E∗ ⊕ E⊗ E∗⊗ E∗ ⊕ E ⊕ E∗ ⊕ E⊗ E∗.

Then V is a rational representation of G=GL(d), and H̃1, H̃2 together with the above identifications give
rise to two vectors v1, v2 ∈ V (W (k)), while H1, H2 correspond to their reductions mod I, v0

1, v
0
2 ∈ V (k).

Moreover, by the assumption of the theorem, v1, v2 are conjugate under the action of G(K ). We are going
to show that the reductions v0

1, v
0
2 are conjugate under the action of G(k), i.e., H1 ∼= H2, as claimed.

Let H ∼= kd be a semisimple cosemisimple Hopf algebra over k, and u be the corresponding vector in
V (k).

Lemma 3.2 [Etingof et al. 2005, Section 9]. The G-orbit Gu of u is closed.

Proof. Let u′ ∈Gu. Then u′ corresponds to a d-dimensional Hopf algebra H ′ such that Tr |H ′(S2)= d 6= 0,
since this is so for all points of Gu. Hence H ′ is semisimple and cosemisimple by the Larson–Radford
theorem. But then the stabilizers of u, u′ in G(k), which are isomorphic to Aut(H),Aut(H ′), are finite;
see [Etingof and Gelaki 1998, Corollary 1.3]. Hence, dim Gu′ = dim Gu = dim G. This implies that
u′ ∈ Gu. Hence, Gu is closed. �

Thus, the orbits of v0
1, v

0
2 are closed. Hence, Theorem 3.1 follows from Proposition 2.3. �

3B. Integrality of the stabilizer.

Theorem 3.3. Let H1, H2 be semisimple cosemisimple Hopf algebras over k, and g : Ĥ1→ Ĥ2 be an
isomorphism. Then g maps H̃1 isomorphically to H̃2, i.e., it is a lift of an isomorphism g0 : H1→ H2

over W (k). In particular, for a semisimple cosemisimple Hopf algebra H over k, the lifting map
i : Aut(H)→ Aut(Ĥ) defined in [Etingof and Gelaki 1998, Theorem 2.2] is an isomorphism.

Proof. By Theorem 3.1, we may assume that H1= H2= H. Let v ∈ V (W (k)) be the vector corresponding
to H̃, and v0

∈ V (k) be its reduction mod I, corresponding to H. Let S := Aut(Ĥ) ⊂ G(K ) be the
stabilizer of v, S0 :=Aut(H)⊂G(k) be the stabilizer of v0, and S0 be the scheme-theoretic stabilizer of v0.

By Lemma 3.2, the G-orbit of v0 is closed. Also, by [Etingof and Gelaki 1998, Theorem 1.2,
Corollary 1.3], S0 is finite and reduced. Finally, by [Etingof and Gelaki 1998, Theorem 2.2], we have
a lifting map i : S0 ↪→ S such that for any g0 ∈ S0, i(g0) is integral, and the reduction modulo p of i(g0)

equals g0. Thus, Proposition 2.5 applies, and the result follows. �

Remark 3.4. Theorems 3.1, 3.3 also hold for quasitriangular and triangular Hopf algebras, with the same
proofs.

3C. Finiteness of the orbit map. We would now like to prove an analog of Lemma 9.7 of [Etingof et al.
2005] in the Hopf algebra setting.
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Theorem 3.5. Let H be a semisimple cosemisimple Hopf algebra over k, and v ∈ V (W (k)) be the vector
corresponding to H̃ . Then the morphism φ : G→ V defined by φ(g)= gv is finite.

Proof. Let S be the scheme-theoretic stabilizer of v. Theorem 3.3 and Lemma 2.8 imply that S is the
lift of S0 over W (k), and the tautological morphism π : G→ G/S is finite étale. We also have a natural
morphism ν : G/S→ V induced by φ, such that φ = ν ◦π .

Let Y ⊂ V be the closed subscheme of Hopf algebra structures with Tr(S2)= d. Then Y is a closed
G-invariant subscheme, and ν factors through a morphism µ : G/S→Y. By the Larson–Radford theorem,
d 6= 0 in k, so any Hopf algebra of dimension d over k or K is semisimple and cosemisimple. Hence, by
Ştefan’s theorem [1997] (restated in [Etingof and Gelaki 1998, Theorem 1.1]), Y consists of finitely many
orbits both over k and over K , which are closed by Lemma 3.2. Also, it follows from [Etingof and Gelaki
1998, Theorem 2.2], that µ induces an isomorphism on formal neighborhoods. Thus, Proposition 2.9
applies, and the statement follows. �

Remark 3.6. Theorems 3.1, 3.3, 3.5 are subsumed by the results of Section 4. However, we felt it was
useful to give independent direct proofs of these theorems which do not use tensor categories.

3D. Fullness of the lifting functor. Finally, let us prove the following result, which appears to be new.

Theorem 3.7. Let H1, H2 be semisimple cosemisimple Hopf algebras over k. Then any Hopf algebra
homomorphism θ : Ĥ1→ Ĥ2 is a lifting of some homomorphism θ0 : H1→ H2. In other words, the lifting
functor defined by [Etingof and Gelaki 1998, Corollary 2.4], is a fully faithful embedding from the category
of semisimple cosemisimple Hopf algebras over k to the category of semisimple (thus, cosemisimple) Hopf
algebras over K .

Proof. We first prove the following lemma.

Lemma 3.8. Let H be a semisimple cosemisimple Hopf algebra over k. Then lifting defines a bijection
between Hopf ideals of H and Hopf ideals of Ĥ . The same applies to Hopf subalgebras.

Proof. A Hopf ideal J ⊂ A of a semisimple Hopf algebra A corresponds to a full tensor subcategory
CJ ⊂ Rep H of objects annihilated by J, and this correspondence is a bijection. Full tensor subcategories,
in turn, correspond to fusion subrings of the Grothendieck ring of Rep A. So the first statement follows
from the fact that the Grothendieck rings of H and Ĥ are the same. The second statement is dual to the
first statement, since the orthogonal complement of a Hopf ideal in A is a Hopf subalgebra of A∗, and
vice versa. �

Now let B = Im θ ⊂ Ĥ2. Then by Lemma 3.8, B is a lifting of some Hopf subalgebra B0 ⊂ H2. Note
that B0 is semisimple, since its dimension divides the dimension of H2 by the Nichols–Zoeller theorem
[1989], hence is coprime to p. Thus, without loss of generality we may replace H2 with B0, i.e., assume
that θ is surjective.

Now let J =Ker θ ⊂ Ĥ1. Then by Lemma 3.8, J is a lift of some Hopf ideal J0⊂ H1. Let C0= H1/J0.
Then C0 is cosemisimple, as it is a quotient of H1, so by the Nichols–Zoeller theorem, its dimension is
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coprime to p. Moreover, Ĉ ∼= Ĥ1/J. Thus, without loss of generality we may replace H1 with C0, i.e.,
assume that θ is an isomorphism.

But in this case the desired statement is Theorem 3.3. �

4. Faithfulness of the lifting for fusion categories

4A. Faithfulness of the lifting. Now we generalize the results of the previous section to separable fusion
categories. (For basics on tensor categories we refer the reader to [Etingof et al. 2015].) Most of the proofs
are parallel to the Hopf algebra case, and we will indicate the necessary modifications. We will develop
the theory for ordinary fusion categories; the case of braided and symmetric categories is completely
parallel.

We call a fusion category C separable if its global dimension is nonzero. This is equivalent to the
definition of [Douglas et al. 2013] by Theorem 3.6.7 in that paper.

If C is a (braided, symmetric) separable fusion category over k, let C̃ be its lift to W (k) constructed in
[Etingof et al. 2005, Theorem 9.3, Corollary 9.4], and let Ĉ := K ⊗W (k) C̃.

Let C1, C2 be (braided, symmetric) separable fusion categories over k. First we prove the following
theorem, which is Corollary 9.9(i) of [Etingof et al. 2005].

Theorem 4.1. If Ĉ1 is equivalent to Ĉ2 then C1 is equivalent to C2.

Proof. We will treat the fusion case; the braided and symmetric cases are similar.
We generalize the proof of Theorem 3.1. As in [Etingof et al. 2005, Section 9.3], we may assume that

C1 and C2 have the same underlying semisimple abelian category C with the tensor product functor ⊗,
a skeletal category with Grothendieck ring Gr(C). So it has simple objects X i , i ∈ I, with X0 = 1, and
X i⊗X j =

⊕
m k N m

i j Xm . We will also fix the unit morphism ι : 1⊗1→ 1, and the coevaluation morphisms.
Define a pretensor structure on C to be a triple (8,8′, ev), where 8 is an associativity morphism, 8′ an
“inverse” associativity morphism in the opposite direction, and ev is a collection of evaluation morphisms,
but without any axioms. Then a tensor structure on C is a pretensor structure such that8◦8′=8′◦8= Id
and (8, ev) satisfy the axioms of a rigid tensor category (with the fixed unit and coevaluation morphisms);
see [Etingof et al. 2015, Definitions 2.1.1 and 2.10.11].

Let
N s

i jl := [X i ⊗ X j ⊗ Xl : Xs] =
∑

m

N m
i j N s

ml =
∑

p

N s
ip N p

jl .

Let V be the space of all pretensor structures on C, which is an affine space over W (k) of dimension
2
∑

i, j,l,s(N
s
i jl)

2
+ rank Gr(C) (where the first summand corresponds to pairs (8,8′) and the second

summand to ev). Then the Ĉi give rise to vectors vi ∈ V (W (k)), and the Ci correspond to their reductions
v0

i modulo I.
Now let us define the relevant affine group scheme G. To this end, following [Etingof et al. 2005,

Section 9.3], let T = Aut(⊗) be the group of automorphisms of the tensor product functor on C. Then
T acts naturally on V by twisting (where after twisting we renormalize the coevaluation and unit
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morphisms to be the fixed ones). Let T0 ⊂ T be the subgroup of “trivial twists”, i.e., ones of the form
JX,Y = zX⊗Y (z−1

X ⊗ z−1
Y ), where z ∈ Aut(IdC) is an invertible element of the center of C. Then T0 is a

closed central subgroup of T which acts trivially on V. Let G := T/T0. Then G is an affine group scheme
acting rationally on V. Moreover, T =

∏
i, j,m GL(N m

i j ), and T0 is a central torus in T, hence G is a split
reductive group.

Let C be a separable fusion category over k of some global dimension d 6= 0, and u be the corresponding
vector in V (k). Let Aut(C) denote the group of isomorphism classes of tensor autoequivalences of C.

Lemma 4.2 [Etingof et al. 2005, Section 9]. The G-orbit Gu of u is closed.

Proof. Let u′ ∈ Gu. Then u′ corresponds to a fusion category C′. Moreover the global dimension of C′ is d ,
since this is so for all points of Gu, and the global dimension depends algebraically on 8,8′, ev. Thus, C′

is separable. But then the stabilizers of u, u′ in G(k), which are isomorphic to Aut(C), Aut(C′) are finite
by [Etingof et al. 2005, Theorem 2.31] (which applies in characteristic p for separable categories; see
[Etingof et al. 2005, Section 9]). Hence, dim Gu′ = dim Gu = dim G. This implies that u′ ∈ Gu. Hence,
Gu is closed. �

Thus, the orbits of v0
1, v

0
2 are closed. Hence, Theorem 4.1 follows from Proposition 2.3 and the fact

that the natural map T (W (k))→ (T/T0)(W (k)) is surjective. �

Remark 4.3. Note that Theorem 4.1 implies [Etingof et al. 2005, Theorem 9.6]; namely, the complete
local ring R in Theorem 9.6 without loss of generality may be replaced by W (k).

Remark 4.4. We can now complete the proof of [Etingof and Gelaki 2000, Theorem 6.1], which states,
essentially, that any semisimple cosemisimple triangular Hopf algebra over k is a twist of a group algebra.
The original proof of this theorem appearing in that work is incomplete (namely, it is not clear at the
end of this proof why F ◦ F ′ = Id). This is really a consequence of faithfulness of the lifting. Namely, if
(A, R) is a semisimple cosemisimple triangular Hopf algebra over k, and (A′, R′)= F ◦ F ′(A, R), then
(A, R) and (A′, R′) have isomorphic liftings over K; hence by Theorem 3.1 they are isomorphic.

Another proof of [Etingof and Gelaki 2000, Theorem 6.1] is obtained by using Theorem 4.1 for
symmetric tensor categories. Namely, consider the separable symmetric fusion category C := Rep(A, R).
Then Ĉ is a symmetric fusion category over K. Hence, by Deligne’s theorem [1990] (see also [Etingof
et al. 2015, Corollary 9.9.25]), Ĉ = RepK (G, z), where G is a finite group of order coprime to p and
z ∈ G is a central element of order ≤ 2 (the category of representations of G on superspaces with
parity defined by z). Thus, Ĉ ∼= D̂ as symmetric tensor categories, where D = Repk(G, z). Hence, by
Theorem 4.1, C ∼= D, i.e., (A, R) is obtained by twisting of (k[G], Rz), where Rz = 1⊗ 1 if z = 1 and
Rz=

1
2(1⊗1+1⊗z+z⊗1−z⊗z) if z 6=1 (note that if z 6=1 then |G| is necessarily even, so p>2 and 1

2 ∈k).

Remark 4.5. Let G be a finite group. Recall from [Etingof et al. 2015] that categorifications of the
group ring ZG over a field F correspond to elements of H 3(G, F×). Hence, the lifting map for pointed
fusion categories which categorify ZG is the natural map α : H 3(G, k×)→ H 3(G, K×) arising from
the isomorphisms H i (G, K×) ∼= H i (G, K×f ) and H i (G, k×) ∼= H i (G, k×f ), where K×f is the group of
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elements of finite order (i.e., roots of unity) in K×, and k×f is the group of roots of unity in k×. The map
α is then induced by the Brauer lift map k×f → K×f , and is clearly injective since the Brauer lift identifies
k×f with a direct summand of K×f . Thus, for pointed categories faithfulness of the lifting is elementary.

Similarly, braided categorifications ZG over F (for abelian G) correspond to quadratic forms G→ F×

(see [Etingof et al. 2015]), and lifting for such categorifications is defined by the Brauer lift for quadratic
forms, hence is clearly faithful.

4B. Integrality of the stabilizer.

Theorem 4.6. Let C1, C2 be (braided, symmetric) separable fusion categories over k, and g : Ĉ1→ Ĉ2 be
an equivalence. Then g defines an equivalence C̃1→ C̃2, i.e., it is isomorphic to the lift of an equivalence
g0 : C1→ C2 over W (k).

Proof. As before, we treat only the fusion case; the braided and symmetric cases are similar. By
Theorem 4.1, we may assume that C1 = C2 = C. Let v ∈ V (W (k)) be the vector corresponding to C̃, and
v0
∈ V (k) be its reduction mod I, corresponding to C. Let S :=Aut(̂C) be the stabilizer of v, S0 :=Aut(C)

be the stabilizer of v0, and S0 the scheme-theoretic stabilizer of v0.
By Lemma 4.2, the G-orbit of v0 is closed. By Theorem 2.27 and Theorem 2.31 of [Etingof et al. 2005]

(both valid in characteristic p for separable fusion categories, see Section 9 of that paper), S0 is finite
and reduced. Finally, by Theorems 9.3 and 9.4 there, we have a lifting map i : S0 ↪→ S, such that for all
g0 ∈ G(k), i(g0) is integral and the reduction of i(g0) modulo p equals g0. Thus, Proposition 2.5 applies,
and the result follows (again using that the natural map T (W (k))→ (T/T0)(W (k)) is surjective). �

Remark 4.7. (1) Recall that a multifusion category is called separable if all of its component fusion
categories are separable; see [Etingof et al. 2005, Section 9] and [Douglas et al. 2013]. Theorems
4.9 and 4.11 extend to separable multifusion categories with similar proofs.

(2) Theorem 4.6 is not stated explicitly in [Etingof et al. 2005], but is claimed implicitly in the (incom-
plete) proof of Theorem 9.6 there.

4C. Finiteness of the orbit map. Let us now prove Lemma 9.7 of [Etingof et al. 2005] (which completes
the proofs in Section 9.3 of that paper).

Theorem 4.8. Let C be a (braided, symmetric) separable fusion category over k, and v ∈ V (W (k)) be
the vector corresponding to C̃. Then the morphism φ : G→ V defined by φ(g)= gv is finite.

Proof. We treat the case of fusion categories; the braided and symmetric cases are similar. The proof
is parallel to the proof of Theorem 3.5. Namely, let S be the scheme-theoretic stabilizer of v. Then
φ = ν ◦π , where π : G→ G/S is finite étale, and ν : G/S→ V. Let Y ⊂ V denote the closed subscheme
of vectors corresponding to fusion categories of global dimension d̃ := dim(̃C). Then ν factors through
µ : G/S→ Y. By [Etingof et al. 2005, Theorem 2.27], Y consists of finitely many G-orbits both over
k and over K. Also, these orbits are closed by Lemma 4.2. Finally, by Theorem 9.3 and Corollary 9.4
of the same paper, µ induces an isomorphism on formal neighborhoods. Thus, Proposition 2.9 applies,
and the statement follows. �
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4D. Faithfulness of the lifting and integrality of the stabilizer for tensor functors. Let us now prove
similar results for tensor functors, i.e., Theorem 9.8 and Corollary 9.9(ii) of [Etingof et al. 2005].

Theorem 4.9. Let C,D be two (braided, symmetric) separable fusion categories over k, and F1, F2 :C→D
two (braided) tensor functors. Let g : F̂1→ F̂2 be an isomorphism of lifts of F1, F2 over K . Then g is a
lift of an isomorphism g0 : F1→ F2. In particular, if F̂1, F̂2 are isomorphic then so are F1, F2.

Proof. The proof is similar to the proofs of Theorems 3.1, 3.3 and Theorems 4.1, 4.6. We treat the case of
tensor functors between fusion categories; the cases of braided and symmetric categories are similar.

We may assume that F1, F2 coincide with a given functor F as additive functors, and differ only by the
tensor structures. Let V be the space of pretensor structures on F, i.e., pairs (J, J ′) of endomorphisms of
the functor F( · ⊗ · ), without any axioms. Then a tensor structure on F is such a pair (J, J ′) for which
J ◦ J ′ = J ′ ◦ J = Id, and J satisfies the tensor structure axiom, [Etingof et al. 2015, Definition 2.4.1].
Let G be the group scheme of all automorphisms of the functor F. Then G is a split reductive group
(a product of general linear groups) which acts on V by “gauge transformations”. Moreover, the functors
F̃j , j = 1, 2, correspond to vectors vj ∈ V (W (k)), and the Fj correspond to their reductions v0

j modulo p.

Lemma 4.10. Let u ∈ V (k) be a vector representing a tensor functor F. Then the orbit Gu is closed.

Proof. Let u′ ∈ Gu. Then u′ corresponds to a tensor functor F ′. But the group of automorphisms of
a tensor functor between separable fusion categories is finite by [Etingof et al. 2005, Theorem 2.27].
Hence the stabilizers of u, u′ in G(k), which are isomorphic to Aut(F), Aut(F ′), are finite. Hence,
dim Gu′ = dim Gu = dim G. This implies that u′ ∈ Gu. Hence, Gu is closed. �

By Lemma 4.10, Proposition 2.3 applies. Thus, F1∼= F2 as tensor functors. So we may assume without
loss of generality that F1 = F2 = F for some tensor functor F.

Let v ∈ V (W (k)) and v0
∈ V (k) be its reduction modulo p. Let S0 = Aut(F) ⊂ G(k), S0 be the

scheme-theoretic stabilizer of v0, and S = Aut(F̂)⊂ G(K ). Then S0 is finite and reduced by [Etingof
et al. 2005, Theorem 2.27]. Also, by Theorem 9.3 and Corollary 9.4 of the same work, we have a lifting
map i : S0 ↪→ S such that for any g0 ∈ S0, i(g0) is integral and the reduction of i(g0) modulo p is g0.
Hence, Proposition 2.5 applies, and the result follows. �

Corollary 4.11. For a (braided, symmetric) separable fusion category C over k, the lifting map i :
Aut(C)→ Aut(̂C) defined in [Etingof et al. 2005, Theorem 9.3], is an isomorphism.

Proof. Theorem 4.9 implies that i is injective, and Theorem 4.6 implies that i is surjective. �

4E. Application to Brauer–Picard and Picard groups of tensor categories. Recall from [Etingof et al.
2010] that to any fusion category C one can attach its Brauer–Picard groupoid BrPic(C). This is a 3-group,
whose 1-morphisms are equivalence classes of invertible C-bimodule categories, 2-morphisms are bimodule
equivalences of such bimodule categories, and 3-morphisms are isomorphisms of such equivalences.
Similarly, if C is braided then one can define its Picard groupoid Pic(C), a 3-group whose 1-morphisms
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are equivalence classes of invertible C-module categories, 2-morphisms are module equivalences of such
module categories, and 3-morphisms are isomorphisms of such equivalences.

Theorems 9.3 and 9.4 of [Etingof et al. 2005] then imply that if C is separable then we have the lifting
morphism i :BrPic(C)→BrPic(̂C) and (in the braided case) i :Pic(C)→Pic(̂C) of the underlying 2-groups.

Corollary 4.12. Let C be a separable fusion category over k.

(i) The lifting morphism i : BrPic(C)→ BrPic(̂C) is an isomorphism.

(ii) If C is braided then the lifting morphism i : Pic(C)→ Pic(̂C) is an isomorphism.

Proof. (i) By [Etingof et al. 2010, Theorem 1.1], for any separable fusion category D one has an isomor-
phism ξ : BrPic(D)∼=Autbr(Z(D)) of the Brauer–Picard group BrPic(D) with the group of isomorphism
classes of braided autoequivalences of the Drinfeld center of D. It is clear that this isomorphism is compati-
ble with lifting. Therefore, the statement at the level of 1-morphisms follows from Corollary 4.11. Also, re-
call that π2(BrPic(D))= Inv(Z(D)), the group of isomorphism classes of invertible objects of Z(D). Thus,
at the level of 2-morphisms i comes from the obvious isomorphism Inv(Z(C))∼= Inv(Z (̂C)), which gives (i).

(ii) By [Davydov and Nikshych 2013], if D is braided then Pic(D) is naturally identified with the subgroup
of Autbr(Z(D)) of elements that preserve D ⊂ Z(D) and have trivial restriction to D. Thus, (ii) follows
from (i) and Theorem 4.9. Also, recall that π2(Pic(D)) = Inv(D), the group of isomorphism classes
of invertible objects of D. Thus, at the level of 2-morphisms i comes from the obvious isomorphism
Inv(C)∼= Inv(̂C), which gives (ii). �

Note that in Corollary 4.12, i does not define an isomorphism of 3-groups, since π3 of these 3-groups
is the multiplicative group of the ground field, and k× � K×. However, we can lift i to an injection at
the level of 3-morphisms. For simplicity assume that k = Fp (this is not restrictive since by [Etingof
et al. 2005, Theorem 2.31], any separable fusion category in characteristic p is defined over Fp). Then by
Hensel’s lemma, the surjection W (k)×→ k× defined by reduction modulo p uniquely splits, since all
elements of k× are roots of unity of order coprime to p (the Brauer lift, see Remark 4.5). Then i extends
to a morphism of 3-groups using the corresponding splitting β : k×→W (k)× ⊂ K×. In particular, using
the main results of [Etingof et al. 2010], this implies the following result.

Theorem 4.13. Let G be a finite group and k = Fp. Then any G-extension of C canonically lifts to a
G-extension of Ĉ, and any braided G-crossed category D with D1 = C canonically lifts to a braided
G-crossed category D̂ with D̂1 = Ĉ.

Remark 4.14. One can propose the following definition (which we are not making completely precise
here). We recall (and refer, e.g., to the textbook [Yau and Johnson 2015] for details and some history)
that a linear algebraic structure is defined by a colored PROP P (say, over Z). Realizations of P over a
commutative ring R are then P-algebras over R. We call an algebraic structure P 3-separable if every
finite-dimensional realization A of P over a field k

(i) has a finite and reduced group of automorphisms (i.e., has no nontrivial derivations);
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(ii) has no nontrivial first order deformations;

(iii) has a vanishing space of obstructions to deformations.

These conditions should be expressed as requiring that H i (A) = 0 for i = 1, 2, 3 for an appropriate
cohomology theory, controlling deformations of A. Then A should admit a unique lifting from a field k of
characteristic p to W (k), and this lifting should have the faithfulness and stabilizer integrality properties
similar to Theorems 3.1, 3.3, 4.1, 4.6, 4.9: any isomorphism g of liftings of A1, A2 over K is defined
over W (k) and hence is a lifting of an isomorphism g0 : A1→ A2. We have seen a number of examples
of 3-separable structures: semisimple cosemisimple (quasitriangular, triangular) Hopf algebras, separable
(braided, symmetric) fusion categories, (braided) tensor functors between such categories.4 It would
therefore be interesting to make this notion more precise, and prove a general theorem on the existence
and faithfulness of the lifting for 3-separable structures, which would unify the results of [Etingof et al.
2005, Section 9], [Etingof and Gelaki 1998], and this paper. It would also be interesting to find other
examples of 3-separable structures.

5. Descent of tensor functors between separable fusion categories to characteristic p.

5A. Separability of subcategories and quotient categories. We will first prove separability of subcate-
gories and quotients of separable categories. First we need the following result, which is a generalization
of [Etingof and Ostrik 2004, Theorem 2.5].

Theorem 5.1. Let C be a finite tensor category and D a finite indecomposable multitensor category.
Let F : C → D be a quasitensor functor. If F is surjective (i.e., every object of D is a subquotient of
F(X), X ∈ C) then

(i) F maps projective objects to projective ones; and

(ii) D is an exact module category over C.

Proof. (i) The proof is almost identical to the proof of [Etingof and Gelaki 2017, Theorem 2.9]. We
reproduce it here for the convenience of the reader.

Let Pi be the indecomposable projectives of C. Write F(Pi )= Ti ⊕ Ni , where Ti is projective, and Ni

has no projective direct summands. Our job is to show that Ni = 0 for all i . So let us assume for the sake
of contradiction that Np 6= 0 for some p.

Let Pi⊗Pj =⊕r cr
i j Pr . Since the tensor product of a projective object with any object in D is projective,

the objects Ti ⊗ Tj , Ti ⊗ Nj , and Ni ⊗ Tj are projective. Thus,(⊕
i

Ni

)
⊗ Nj ⊃

⊕
r

(∑
i

cr
i j

)
Nr (2)

as a direct summand.

4Semisimplicity/cosemisimplicity for Hopf algebras and separability for fusion categories may be forced in the setting of
linear algebraic structures by adding an auxiliary variable x and the relation dx = 1, where d is the global dimension.
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Let 1 =
∑

l 1l be the irreducible decomposition of the unit object of D, and let s be such that
Y :=

∑
r dr Nr 1s is nonzero (it exists since Np 6= 0). Denote by X j the simples of C, and let d j be their

Frobenius–Perron dimensions. For any i , r , we have
∑

j d j cr
i j = Di dr , where Di := FPdim(Pi ). Thus,

tensoring inclusion (2) on the right by 1s , multiplying by d j and summing over j , we get a coefficientwise
inequality [⊕

i

Ni

]
[Y ] ≥

(∑
i

Di

)
[Y ]

in Gr(Ds), where Ds := D⊗ 1s . This implies that the largest eigenvalue of the matrix of
[⊕

i Ni
]

on
Gr(Ds) is at least

∑
i Di , which is the same as the largest eigenvalue of

[⊕
i F(Pi )

]
. Since F is surjective,

all the entries of
[⊕

i F(Pi )
]

are positive. Thus, by the Frobenius–Perron theorem (see Lemma 2.1 of
[Etingof and Gelaki 2017]),

[⊕
i Ni

]
=
[⊕

i F(Pi )
]
. This implies that Ni = F(Pi ) for all i . Thus, F(Pi )

has no nonzero projective direct summands for all i .
However, let Q be an indecomposable projective object in D. Then Q is injective by the quasi-Frobenius

property of finite multitensor categories. Since F is surjective, Q is a subquotient, hence a direct summand
of F(P) for some projective P ∈ C. Hence Q is a direct summand of F(Pi ) for some i , which gives the
desired contradiction.

(ii) This follows from (i) and the fact that in a multitensor category, the tensor product of a projective
object with any object is projective. �

Theorem 5.2. Let C, D be multitensor categories and let F : C→ D be a surjective tensor functor. If
C is separable, then so is D. In other words, a quotient category of a separable multifusion category is
separable.

Proof. Consider first the special case when C is a tensor category (i.e., 1 ∈ C is simple). Without loss
of generality, we may assume that D is indecomposable. By Theorem 5.1, D is an exact C-module
category, hence semisimple (as C is semisimple). Moreover, we have the surjective tensor functor
F � F : C � Cop

→ D�Dop. Let us take the dual of this functor with respect to D. By [Etingof et al.
2005, Proposition 5.3], we get an injective tensor functor (i.e., a fully faithful embedding)

(F � F)∗D : Z(D) ↪→ (C� Cop)∗D.

But the category (C� Cop)∗D is semisimple, since C is separable and D is semisimple. Hence, Z(D) is
semisimple. Thus, by Corollary 3.5.9 of [Douglas et al. 2013], D is separable.

The general case now follows by applying the above special case to the surjective tensor functors
Fi : Ci i → F(1i )⊗D⊗ F(1i ), where the 1i are the simple composition factors of 1 in C, and where
Ci i := 1i ⊗ C⊗ 1i . �

The following theorem resolves an open question in [Etingof et al. 2005, Section 9.4]:

Theorem 5.3. A (full) multitensor subcategory of a separable multifusion category is separable.
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Proof. Let F : C ↪→ D be an inclusion of C into a separable category D. Then by [Etingof et al. 2005,
Proposition 5.3], we have a surjective tensor functor F∗D : D→ C∗D, where C∗D is a multitensor category.
By Theorem 5.2, C∗D is separable. Hence D = (C∗D)

∗
D is separable as well. �

5B. Descent of tensor functors.

Theorem 5.4. Let C1, C2,D be separable multifusion categories over k. Let Fi : Ci→D be tensor functors.
Let F : Ĉ1→ Ĉ2 be a tensor functor such that F̂2 ◦ F ∼= F̂1. Then there exists a tensor functor F0 : C1→ C2

such that F2 ◦ F0 ∼= F1, and F ∼= F̂0. In other words, if tensor functors G and G ◦ F are integral then F is
integral.

Note that Theorem 3.7 is recovered from Theorem 5.4 when D = Veck (namely, Hi = Coend Fi ).
Moreover, if D = Rep A, where A is a semisimple k-algebra, then Theorem 5.4 gives a generalization of
Theorem 3.7 to weak Hopf algebras.

Proof. The proof is similar to the proof of Theorem 3.7. If C is a separable multifusion category over k,
there is a natural bijection between full tensor subcategories of C and Ĉ. In particular, Im F is a lift of
some multifusion subcategory E ⊂ C2. By Theorem 5.3, E is separable. Thus, we may replace C2 by E ,
i.e., we may assume without loss of generality that F is surjective.

Also, we may replace D with the image Im F2 of F2, which is separable by Theorem 5.2 (or
Theorem 5.3), i.e., we may assume without loss of generality that F2 (hence F̂2, hence F̂1, hence F1) is
surjective.

Consider the dual functor F∗D̂ : (̂C2)
∗

D̂→ (̂C1)
∗

D̂ = (̂C1)
∗
D, which is an inclusion of multifusion categories

by [Etingof et al. 2005, Proposition 5.3]. Thus, (̂C2)
∗

D̂ is a lift of some multifusion subcategory B of
(C1)

∗
D. Moreover, by Theorem 5.3, B is separable, so (̂C2)

∗

D̂ = (̂C2)
∗
D
∼= B̂. Let H : B ↪→ (C1)

∗
D be the

corresponding inclusion functor. Then the dual functor H∗D : C1→ B∗D is a surjection, and F ∼= F ′ ◦ Ĥ∗D,
where F ′ : B̂∗D ∼= Ĉ2 is an equivalence. By Theorem 4.6, F ′ is isomorphic to the lift F̂ ′0 of an equivalence
F ′0 : B

∗
D
∼= C2; hence F is isomorphic to the lift F̂0 of a tensor functor F0 = F ′0 ◦ H∗D : C1→ C2. This

proves the theorem. �

Theorem 5.5. Let C1, C2,D be separable multifusion categories over k. Let Fi :D→ Ci be tensor functors,
such that F1 is surjective. Let F : Ĉ1→ Ĉ2 be a tensor functor such that F ◦ F̂1 ∼= F̂2. Then there exists a
tensor functor F0 : C1→ C2 such that F0 ◦ F1 ∼= F2, and F ∼= F̂0. In other words, if tensor functors G and
F ◦G are integral and G is surjective then F is integral.

Proof. We may replace C2 with Im F2, which is separable by Theorems 5.2 or 5.3, and assume that
F2, F̂2, F are surjective. Then by [Etingof et al. 2005, Proposition 5.3], we have an inclusion (F̂1)

∗

Ĉ2
:

(Ĉ1)
∗

Ĉ2
↪→ D̂∗Ĉ2

= D̂∗C2
. The image of (F̂1)

∗

Ĉ2
is then a lift of some multifusion subcategory B ⊂ D∗C2

. By
Theorem 5.3, B is separable. Let H : B ↪→ D∗C2

be the corresponding inclusion functor. Then (F̂1)
∗

Ĉ2

defines an equivalence L : (Ĉ1)
∗

Ĉ2
∼= B̂ such that (F̂1)

∗

Ĉ2
= Ĥ ◦ L . Then

Ĥ ◦ L ◦ F∗Ĉ2
= (F̂1)

∗

Ĉ2
◦ F∗Ĉ2

= (F̂2)
∗

Ĉ2
= (̂F2)

∗
C2
.
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Thus, by Theorem 5.4, L ◦ F∗Ĉ2
= M̂ for some M : C2→ B. Dualizing, we get M̂∗C2

= F ◦ L∗Ĉ2
, where

L∗Ĉ2
: B̂∗C2
→ Ĉ1 is an equivalence. By Theorem 4.6, L∗Ĉ2

= N̂ for some equivalence N : B∗C2
→ C1. Thus,

F = F̂0, where F0 := M∗C2
◦ N−1. �

Remark 5.6. In spite of Theorems 5.4 and 5.5, in general we don’t know if any tensor functor F : Ĉ1→ Ĉ2

between liftings of separable (multi)fusion categories is always isomorphic to a lifting of a tensor functor
F0 : C1→ C2, even in the case when C2 = Veck and C1 = Rep H, where H is a semisimple cosemisimple
Hopf algebra over k. In this special case, this is the question whether any Drinfeld twist J for Ĥ is gauge
equivalent to a lifting of a twist J0 for H.

Likewise, we don’t know if any fusion category or semisimple cosemisimple Hopf algebra in charac-
teristic zero whose (global) dimension is coprime to p descends to characteristic p.
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