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Giacomo Cherubini and João Guerreiro

We prove upper bounds for the mean square of the remainder in the prime geodesic theorem, for every
cofinite Fuchsian group, which improve on average on the best known pointwise bounds. The proof
relies on the Selberg trace formula. For the modular group we prove a refined upper bound by using the
Kuznetsov trace formula.

1. Introduction

There is a striking similarity between the distribution of lengths of primitive closed geodesics on the
modular surface and prime numbers. If we consider the asymptotic of the associated counting function, the
problem of finding optimal upper bounds on the remainder is intriguing, especially because the relevant
zeta function is known to satisfy the corresponding Riemann hypothesis.

We start with reviewing briefly the framework of the problem (for a more detailed introduction we
refer to [Sarnak 1980; Iwaniec 1995, §10.9]), and then state our results. Since the definitions extend to
every finite volume Riemann surface, we work in this generality, and only at a later point do we specialize
to the modular surface.

Every cofinite Fuchsian group 0 acts on the hyperbolic plane H by linear fractional transformations,
and every hyperbolic element g ∈ 0 is conjugated over SL2(R) to a matrix of the form(

λ1/2 0
0 λ−1/2

)
, λ ∈ R, λ > 1.

The trace of g is therefore Tr(g)= λ1/2
+ λ−1/2, and we define its norm to be N (g)= λ. Since the trace

and the norm are constant on the conjugacy class of g, if we set P = {γ gγ−1, γ ∈ 0}, we can define the
trace and the norm of P by Tr(P)= Tr(g) and NP = N (g). Moreover, we say that g (and P) is primitive
if g cannot be expressed as a positive power (greater than one) of another element g0 ∈ 0. Every class
P can then be written as P = Pν0 for some primitive conjugacy class P0 and some positive integer ν ≥ 1.

For X > 0 define the counting function

π0(X)= ]{P0 : NP0 ≤ X}. (1-1)
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A hyperbolic conjugacy class P determines a closed geodesic on the Riemann surface 0\H, and
its length is given exactly by log NP . For this reason we say that π0(X) in (1-1) counts primitive
hyperbolic conjugacy classes in 0, lengths of primitive geodesics on 0\H, or, by abusing language,
“prime” geodesics.

It is a result from the middle of the last century (see e.g., Huber [1961], although the result was already
known to Selberg) that as X→∞ we have the asymptotic formula

π0(X)∼ li(X), (1-2)

where li(X) is the logarithmic integral. The asymptotic coincides with that of the prime counting function,
since we have

π(X)= ]{p ≤ X : p prime} ∼ li(X) as X→∞. (1-3)

The structure of the two problems is also similar. The study of primes is strictly related to the study of
the zeros of the Riemann zeta function ζ(s); on the other hand, for primitive geodesics we need to study
the zeros of the Selberg zeta function Z0(s), which is defined for <(s) > 1 by

Z0(s)=
∏
P0

∞∏
ν=0

(1− (NP0)
−ν−s),

the outer product ranging over primitive hyperbolic classes in 0, and extends to a meromorphic function
on the complex plane.

It is an interesting question to determine the correct rate of the approximation in (1-2) and (1-3), namely
to prove optimal upper bounds on the differences

π(X)− li(X) and π0(X)− li(X). (1-4)

In the case of primes, the conjectural estimate |π(X)− li(X)| � X1/2 log X is equivalent to the Riemann
hypothesis (see e.g., [Ivić 1985, Theorem 12.3]).

To understand what type of control we should expect on the difference on the right in (1-4), we
introduce the weighted counting function

ψ0(X)=
∑

NP≤X

30(NP),

where 30(NP)= log(NP0) if P is a power of the primitive conjugacy class P0 and 30(x)= 0 otherwise.
The function ψ0(X) is the analogous of the classical summatory von Mangoldt function ψ(X) in the
theory of primes, and studying π0(X) is equivalent to study ψ0(X), but it is easier to work with the latter.

The asymptotic (1-2) for π0(X) translates into ψ0(X)∼ X as X tends to infinity. The spectral theory
of automorphic forms provides a finite number of additional secondary terms and we define the complete
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main term M0(X) to be the function

M0(X)=
∑

1
2<s j≤1

X s j

s j
, (1-5)

where s j is defined by λ j = s j (1− s j ), λ j are the eigenvalues of the Laplace operator 1 acting on
L2(0\H), and the sum is restricted to the small eigenvalues, that is, those satisfying 0≤ λ j <

1
4 . Since

the eigenvalues of 1 form a discrete set with no accumulation points, the sum in (1-5) is finite. The
remainder P0(X) is then defined as

P0(X)= ψ0(X)−M0(X).

Various types of pointwise upper bounds have been proved in the past years on P0(X), and we review
them in Remark 1.5 below. In a different direction, it is possible to study the moments of P0(X), and this
has been neglected so far.

In the case of the prime number theorem, it is a classical result (assuming the Riemann hypothesis)
that the normalized remainder

ψ(ey)− ey

ey/2

admits moments of every order and a limiting distribution with exponentially small tails (see [Wintner
1935, p. 242] and [Rubinstein and Sarnak 1994, Theorem 1.2]). The aim of this paper is to prove the
following estimate on the second moment of P0(X).

Theorem 1.1. Let 0 be a cofinite Fuchsian group. For A� 1 we have

1
A

∫ 2A

A
|P0(X)|2 d X � A4/3.

Remark 1.2. By construction the zeros of the Selberg zeta function correspond to the eigenvalues of 1.
The zeros corresponding to small eigenvalues give rise to the secondary terms in the definition of M0(X),
and there are no other zeros in the half plane <(s) > 1

2 . In this sense Z0(s) satisfies an analogous of the
Riemann hypothesis, and the fact suggests that we might have

P0(X)� X1/2+ε
∀ε > 0, (1-6)

since this is the case for the primes under RH. However, the same method of proof fails, due to the
abundance of zeros of Z0(s) (which in turn is related to the fact that Z0(s) is a function of order two,
while ζ(s) is of order one), and only gives

P0(X)� X3/4. (1-7)

For a proof we refer to [Iwaniec 1995, Theorem 10.5]. On the other hand, it is possible to prove that (1-6), if
true, is optimal, since we have the Omega result by Hejhal [1983, Theorem 3.8, p. 477, and note 18, p. 503]

P0(X)=�±(X1/2−δ) ∀δ > 0,
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which can be strengthened to �±(X1/2(log log X)1/2) for cocompact groups and congruence groups.

Remark 1.3. Recently Koyama [2016] and Avdispahić [2017; 2018] have tried an approach to find upper
bounds on P0(X) using a lemma of Gallagher [1970, Lemma 1]. Their results are of the type

P0(X)� Xη+ε
∀ε > 0,

where η = 7
10 or η = 3

4 for 0 cocompact or ordinary cofinite, respectively, and with X outside a set
B ⊆ [1,∞) of finite logarithmic measure, that is, such that

∫
B X−1 d X <∞. Theorem 1.1 improves on

this to the extent that η can be taken to be any number greater than 2
3 . Indeed, a direct consequence of

Theorem 1.1 is that for every cofinite Fuchsian group and for every ε > 0, the set

B = {X ≥ 1 : |P0(X)| ≥ X2/3(log X)1+ε}

has finite logarithmic measure. Iwaniec [1984a, p. 187] claims without proof that “it is easy to prove that
P0(X)� X2/3 for almost all X”. Theorem 1.1 proves his claim (up to ε) for X outside a set of finite
logarithmic measure.

In the case of the modular group we can prove a stronger bound than for the general cofinite case. In
this case we can exploit the Kuznetsov trace formula, obtaining the following.

Theorem 1.4. Let G = PSL(2,Z). For A� 1 and every ε > 0,

1
A

∫ 2A

A
|PG(X)|2 d X � A5/4+ε.

Remark 1.5. The estimate in (1-7) is currently the best known pointwise upper bound in the case of
general cofinite Fuchsian groups. For the modular group and congruence groups it is possible to prove
sharper estimates. Iwaniec [1984b, Theorem 2], Luo and Sarnak [1995, Theorem 1.4], Cai [2002, p. 62],
and Soundararajan and Young [2013, Theorem 1.1] have worked on reducing the exponent for the modular
group G = PSL(2,Z). The currently best known result is

PG(X)� Xη+ε, for η = 25
36 and every ε > 0,

due to Soundararajan and Young. The exponent 7
10 , proved by Luo and Sarnak, holds also for congruence

groups, see [Luo et al. 1995, Corollary 1.2], and for cocompact groups coming from quaternion algebras,
see [Koyama 1998].

Observe that not only is the exponent η = 1
2 out of reach, but it seems to be a hard problem reaching

and, afterwards, breaking the barrier η = 2
3 . Iwaniec [1984a, p. 188; 1984b, (12)] suggested that this

follows from the assumption of the Lindelöf hypothesis for Rankin L-functions. In Theorem 1.1 we
prove the bound with the exponent 2

3 on average, unconditionally, for every cofinite Fuchsian group.
Theorem 1.4 is saying that PG(X)� X5/8+ε on average. This goes halfway between the trivial bound
(1-7) and the conjectural estimate (1-6).
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In the proof of Theorem 1.4 we use a truncated formula for ψ0(X), proved by Iwaniec [1984b,
Lemma 1], condensing the analysis of the Selberg trace formula, and relating P0(X) to the spectral
exponential sum

R(X, T )=
∑
t j≤T

X i t j .

The trivial bound for this sum, in view of Weyl’s law (see e.g., [Iwaniec 1995, Corollary 11.2] or [Venkov
1990, Theorem 7.3]), is |R(X, T )| � T 2. Reducing the exponent of T is possible at the cost of some
power of X (see [Iwaniec 1984b; Luo and Sarnak 1995]), and Petridis and Risager conjectured [2017,
Conjecture 2.2] that we should have square root cancellation, that is,

R(X, T )� T 1+εX ε

for every ε > 0. This would give the conjectural bound (1-6) for the modular group. In the appendix to
[Petridis and Risager 2017] Laaksonen provides numerics that support this conjecture. In the proof of
Theorem 1.4 (see Proposition 4.5) we prove that we have

1
A

∫ 2A

A
|R(X, T )|2 d X � T 2+εA1/4+ε,

and hence |R(X, T )| � T 1+εX1/8+ε on average.
The mean square estimate in Theorem 1.4 reduces to proving a similar estimate for certain weighted

sums of Kloosterman sums. We obtain the desired bounds in a relatively clean way by applying the
Hardy–Littlewood–Pólya inequality [Hardy et al. 1934, Theorem 381, p. 288] in a special case: for
0< λ < 1, λ= 2(1− p−1), and {ar } a sequence of nonnegative numbers, then we have

∑
r,s

r 6=s

ar as

|r − s|λ
�λ

(∑
r

a p
r

)2/p

. (1-8)

With more work it is possible to sharpen Theorem 1.4 by replacing Aε by some power of log A. To do
this, one can use a version of (1-8) with explicit implied constant proved by Carneiro and Vaaler [2010,
Corollary 7.2, (7.20)], or the extremal case of (1-8) with (λ, p)= (1, 2), and a logarithmic correction,
proved by Li and Villavert [2011].

We also note that we simply use the Weil bound when estimating the weighted sums of Kloosterman
sums and we do not exploit any cancellation amongst the Kloosterman sums. Exploring this phenomenon
could lead to a power-saving improvement of Theorem 1.4.

For the proof of Theorem 1.1 we use the Selberg trace formula with a suitably chosen test function
that fulfills our needs. In the general case of 0 cofinite, unlike in the modular group case, Iwaniec’s
truncated formula for ψ0(X) is not available. It is probably possible to prove an analogous result, but we
preferred to work directly with the trace formula. In fact, in order to prove his formula, Iwaniec uses
some arithmetic information on the structure of the lengths of closed geodesics on the modular surface
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[Iwaniec 1984b, Lemma 4], namely their connection with primitive binary quadratic forms (proved by
Sarnak [1982, §1]), and it is unclear whether a similar argument works for the general cofinite case.

Remark 1.6. We do not discuss the first moment of P0(X). Following the argument of [Phillips and
Rudnick 1994, Theorems 1.1 and 1.4] it should be possible to prove that for every cofinite Fuchsian group
0 there exists a constant L0 such that we have

lim
A→∞

1
log A

∫ A

1

(
P0(X)
X1/2

)
d X
X
= L0.

2. Proof of Theorem 1.1

In this section we explain the structure of the proof of Theorem 1.1. We decided to keep this section to a
more colloquial tone, and to relegate the technical computations to the next section. Hence the proof of
the theorem is completed in Section 3.

The starting point of our analysis is the Selberg trace formula, that we recall from the book of Iwaniec
[1995, Theorem 10.2]. An even function g is said to be an admissible test function in the trace formula if
its Fourier transform h(t) (see (2-4) for the convention used to define the Fourier transform) satisfies the
conditions [Iwaniec 1995, (1.63)]

h(t) is even,

h(t) is holomorphic in the strip |=(t)| ≤ 1
2 + ε,

h(t)� (1+ |t |)−2−ε in the strip. (2-1)

For an admissible test function g, the Selberg trace formula is the identity

∑
P

g(log NP)
2 sinh((log NP)/2)

30(NP)= IE + EE + PE + DS+CS+ AL , (2-2)

where the sum on the left runs over hyperbolic conjugacy classes in 0, and the terms appearing on the
right are explained as follows.

The term IE denotes a contribution coming from the identity element, which forms a conjugacy class
on its own. We have

IE =−
vol(0\H)

4π

∫
+∞

−∞

th(t) tanh(π t) dt.

The term EE denotes a contribution from the elliptic conjugacy classes in 0 (there are only finitely many
such classes). Denote by R a primitive elliptic conjugacy class, and let m = mR > 1 be the order of R.
We have

EE =−
∑
R

∑
1≤`<m

(
2m sin

(
π`

m

))−1 ∫ +∞
−∞

h(t)
cosh

(
π
(
1− 2`

m

)
t
)

cosh(π t)
dt.
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The term PE denotes a contribution from the parabolic conjugacy classes, which are associated to the
cusps of 0. Let C denote the total number of inequivalent cusps. Then we have

PE =
C

2π

∫
+∞

−∞

h(t)ψ(1+ i t) dt +Cg(0) log 2.

Here ψ(z) is the digamma function, i.e., the logarithmic derivative of the gamma function, ψ(z) =
(0′/0)(z). The term DS corresponds to the discrete spectrum, and is given by

DS =
∑

t j

h(t j ),

where the sum runs over the spectral parameter t j , associated to the eigenvalue λ j of the Laplace operator
via the identity λ j =

1
4 + t2

j

(
here and in the following we assume that t j ∈

[
0, i

2

]
for λ j ∈

[
0, 1

4

]
, and

t j > 0 for λ j >
1
4

)
. The term CS comes from the continuous spectrum, and is given by

CS =
1

4π

∫
+∞

−∞

h(t)
−ϕ′

ϕ

( 1
2 + i t

)
dt,

where ϕ(s) is the scattering determinant for the group 0 [Iwaniec 1995, p. 140]. Finally, the term AL is a
single term that comes from a combination of the spectral part and the geometric part [Iwaniec 1995,
(10.11) and (10.17)], and it is defined by AL = 1

4 h(0)Tr
(
8
( 1

2

)
− I
)
, where 8(s) is the scattering matrix

associated to 0.
A first naive choice of test function in the Selberg trace formula (2-2) is

gρ(x)= 2 sinh
( 1

2 |x |
)
1[0,ρ](|x |), (2-3)

where ρ = log X . If we choose g(x) in this way, then the left hand side of (2-2) reduces exactly to the
function ψ0(X). Unfortunately the function gρ(x) in (2-3) is not an admissible test function, and we
need therefore to take a suitable approximation of it. An analysis of the right hand side in (2-2) then leads
to the desired results. To see that gρ is not admissible in the trace formula, consider its Fourier transform
hρ(t). We have

hρ(t)=
∫

R

gρ(x)e−i t x dx = 2
∫ ρ

0
sinh

( 1
2 x
)
(ei t x
+ e−i t x) dx . (2-4)

The integral can be computed directly, which gives, for t =± i
2 ,

hρ
(
±

1
2 i
)
= 4 sinh2( 1

2ρ
)
, (2-5)

and, for t 6= ± i
2 ,

hρ(t)=
2

1
2 + i t

cosh
(
ρ
( 1

2 + i t
))
+

2
1
2 − i t

cosh
(
ρ
( 1

2 − i t
))
−

2
1
4 + t2

. (2-6)

The last integral in (2-4) shows that hρ(t) is even and entire in t , but from (2-6) we see that we only have
hρ(t)� t−1 as t tends to infinity, and so we do not have sufficient decay as required in (2-1).
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We construct two functions g±(x) that approximate from above and below the function gρ , and are
admissible in the Selberg trace formula. Let q(x) be an even, smooth, nonnegative function on R with
compact support contained in [−1, 1] and unit mass (i.e., ‖q‖1 = 1). Let 0< δ < 1

4 and define

qδ(x)=
1
δ

q
(

x
δ

)
.

For ρ > 1 define g± to be the convolution product of the shifted function gρ±δ with the function qδ,
namely

g±(x)= (gρ±δ ∗ qδ)(x)=
∫

R

gρ±δ(x − y)qδ(y) dy. (2-7)

Taking convolution products has the advantage that the Fourier transform of the convolution is the
pointwise product of the Fourier transforms of the two factors. Hence if we denote by q̂δ(t) the Fourier
transform of qδ, that is,

q̂δ(t)=
∫

R

qδ(x)e−i t x dx, (2-8)

and by h± the Fourier transform of g±, then we obtain

h±(t)= hρ±δ(t)q̂δ(t). (2-9)

Since the function q̂δ(t) is entire and satisfies, for |=(t)| ≤ M <∞,

q̂δ(t)�
1

1+ δk |t |k
∀k ≥ 0

(see Lemma 3.1), we conclude that h±(t) is an entire function and satisfies h±(t)� (1+|t |)−2−ε for some
ε > 0 in the strip |=(t)| ≤ 1

2 + ε, as required in (2-1). This shows that the function g± is an admissible
test function in the trace formula. By construction, the function g±(x) is supported on |x | ∈ [0, ρ+ δ± δ].
Moreover we have the inequalities (see Lemma 3.2), for x ≥ 0,

g−(x)+ O(δex/21[0,ρ](x))≤ gρ(x)≤ g+(x)+ O(δex/21[0,ρ](x)).

If we set

ψ±(X)=
∑

P

g±(log NP)
2 sinh((log NP)/2)

30(NP),

then using the asymptotic ψ0(X)∼ X we conclude that we have the inequalities

ψ−(X)+ O(δX)≤ ψ0(X)≤ ψ+(X)+ O(δX).

From this we deduce that we have

1
A

∫ 2A

A
|P(X)|2 d X � 1

A

∫ 2A

A
|ψ±(X)−M0(X)|2 d X + O(δ2 A2), (2-10)

and in order to prove Theorem 1.1 we give bounds on the right hand side in (2-10). We found convenient
to pass to the logarithmic variable ρ = log X , since this simplifies slightly the computations. Moreover,
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we insert a weight function in the integral to pass from the sharp mean square to a smooth one. Consider
a smooth, nonnegative real function w(ρ), compactly supported in [−ε, 1+ε], for 0< ε < 1

4 . In addition,
assume that 0≤ w(ρ)≤ 1, and that w(ρ)= 1 for ρ ∈ [0, 1]. Let

wR(ρ)= w(ρ− R). (2-11)

In view of the inequality

1
A

∫ 2A

A
|ψ±(X)−M0(X)|2 d X �

∫
R

|ψ±(eρ)−M0(eρ)|2wR(ρ) dρ, (2-12)

where R = log A, we see that in order to estimate the last integral in (2-10) it suffices to upper bound the
integral on the right in (2-12). In the following, abusing notation, we write ψ±(ρ) in place of ψ±(eρ),
and M0(ρ) in place of M0(eρ).

At this point we can exploit the Selberg trace formula to analyze ψ±. The terms of the discrete spectrum
DS associated to the small eigenvalues λ j ∈

[
0, 1

4

] (
corresponding to the spectral parameter t j in the

interval
[
0, i

2

]
, and for technical convenience we include the eigenvalue λ j =

1
4

)
need particular care. We

define M±(ρ) to be the sum of such terms, namely

M±(ρ) :=
∑

t j∈
[

0, i
2

] h±(t j ).

In view of the definition of the complete main term in (1-5) it is easy to prove (see Lemma 3.3) that we have

M±(ρ)= M0(ρ)+ O(δeρ + eρ/2).

Hence we have

ψ±(ρ)−M0(ρ)= ψ±(ρ)−M±(ρ)+ O(δeρ + eρ/2)

= IE±+ EE±+ PE±+ DS′
±
+CS±+ AL±+ O(δeρ + eρ/2), (2-13)

where the term DS′
±

denotes now the contribution from the discrete spectrum restricted to the eigenvalues
λ j >

1
4 . The first three terms and the term AL± in (2-13) can be bounded pointwise (see Lemma 3.5–3.7) by

|IE±| + |EE±| + |PE±| + |AL±| � eρ/2+ log(δ−1).

Squaring and integrating in (2-13) we obtain therefore∫
R

|ψ±(ρ)−M0(ρ)|
2wR(ρ) dρ

�

∫
R

|DS′
±
|
2wR(ρ) dρ+

∫
R

|CS±|2wR(ρ) dρ+ O(eR
+ δ2e2R

+ log2(δ−1)). (2-14)

In Propositions 3.10 and 3.11 we prove that the following estimate holds:∫
R

|DS′
±
|
2wR(ρ) dρ+

∫
R

|CS±|2wR(ρ) dρ�
eR

δ
+ eR/2 log2(δ−1). (2-15)
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Combining (2-14) and (2-15) we obtain∫
R

|ψ±(ρ)−M0(ρ)|
2wR(ρ) dρ�

eR

δ
+ eR/2 log2(δ−1)+ δ2e2R,

and choosing δ = e−R/3 to optimize the first and the last term, we arrive at the bound∫
R

|ψ±(s)−M0(s)|2wR(ρ) dρ� e4R/3.

Recalling (2-10) and (2-12), and setting R = log A, we conclude that we have

1
A

∫ 2A

A
|P(X)|2 d X �

∫
R

|ψ±(ρ)−M0(ρ)|
2wR(ρ) dρ+ O(δ2 A2)� A4/3.

This proves Theorem 1.1.

3. Technical lemmata

In this section we prove the auxiliary results needed in Section 2 to prove Theorem 1.1. We start with a
simple computation to bound the function q̂δ(t) and its derivatives.

Lemma 3.1. Let 0< δ < 1
4 , q̂δ(t) as in (2-8), and let t ∈ R. Let j, k ∈ N, j, k ≥ 0. We have∣∣∣∣d j q̂δ

dt j (t)
∣∣∣∣� δ j

1+ |δt |k
,

and the implied constant depends on j and k.

Proof. From the definition of q̂δ(t) we have

d j q̂δ
dt j (t)=

d j

dt j

∫
R

q(x)e−i tδx dx = (−iδ) j
∫

R

x j q(x)e−i tδx dx . (3-1)

Bounding in absolute value we get
d j q̂δ
dt j (t)� δ j . (3-2)

Integrating by parts in the last integral of (3-1), and using that q(x) is smooth and has compact support,
we obtain instead

d j q̂δ
dt j (t)= (−1)k

(−iδ) j

(−i tδ)k

∫
R

e−i tδx dk

dxk (x
j q(x)) dx �

δ j

|δt |k
. (3-3)

Combining (3-2) and (3-3) we obtain

d j q̂δ
dt j (t)� δ j min(1, |δt |−k)�

δ j

1+ |δt |k
.

This proves the lemma. �
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The function q̂δ(t) is used to construct the convolution product g± = gρ±δ ∗ qδ that approximate
the function gρ . In the next lemma we show that gρ is bounded from above and below by g+ and g−
respectively, up to a small error.

Lemma 3.2. Let ρ > 1 and 0< δ < 1
4 . Let gρ(x) and g±(x) as in (2-3) and (2-7) respectively. For x ≥ 0

we have
g−(x)+ O(δex/21[0,ρ](x))≤ gρ(x)≤ g+(x)+ O(δex/21[0,ρ](x)). (3-4)

Proof. Observe that g± = gρ ∗ qδ, and since both factors in the convolution product are nonnegative,
we conclude that g±(x) ≥ 0 for every x ∈ R. Observe also that g± is supported on the compact set
{|x | ≤ ρ+ δ± δ}. By definition of g± we can therefore write, for x ≥ 0,

g±(x)= 2
∫

R

1[0,ρ±δ](|x − y|) sinh
( 1

2 |x − y|
)
qδ(y) dy = 2 · 1[0,ρ+δ±δ](x)

∫
Q

sinh
( 1

2 |x − y|
)
qδ(y) dy,

where Q = [max{−δ, x − (ρ± δ)}, δ]. For 0≤ x ≤ δ we have

gρ(x)= O(δ) and g±(x)= O(δ),

so that (3-4) holds trivially.
For x > δ we have x − y > 0 for every y ∈ Q, and using the addition formula for the hyperbolic sine

we can write

g±(x)= 2 · 1[0,ρ+δ±δ](x)
∫

Q

[
cosh

( 1
2 y
)

sinh
( 1

2 x
)
− cosh

(1
2 x
)

sinh
( 1

2 y
)]

qδ(y) dy

= 2 · 1[0,ρ+δ±δ](x) sinh
( 1

2 x
) ∫

Q
qδ(y) dy+ O(δex/21[0,ρ+δ±δ](x)). (3-5)

Now for δ < x < ρ± δ− δ we have Q = [−δ, δ], so that (3-5) reduces to

g±(x)= gρ(x)+ O(δex/21[0,ρ+δ±δ](x)).

For ρ− 2δ ≤ x ≤ ρ we can bound by positivity in (3-5)

g−(x)≤ gρ(x)+ O(δex/21[0,ρ](x)),

so that the first inequality in (3-4) holds in this case. Finally for ρ ≤ x ≤ ρ+2δ we observe that gρ(x)= 0
and g+(x)≥ 0, and so we conclude that the second inequality in (3-4) holds in this case. This proves the
lemma. �

The function h±(t) associated to g±(x) gives, for t corresponding to small eigenvalues, the terms appear-
ing in the definition of the main term M0(X) in (1-5), up to small error. We prove this in the next lemma.

Lemma 3.3. Let ρ > 1, 0 < δ < 1
4 , and let h±(t) as in (2-9). Let t j ∈

(
0, i

2

]
be the spectral parameter

associated to the eigenvalue λ j ∈
[
0, 1

4

)
. There exists 0< ε0 < 1

4 such that

h±(t j )=
eρ(1/2+|t j |)

1
2 + |t j |

+ O(δeρ + eρ(1/2−ε0)). (3-6)
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Proof. Recall that there are only finitely many eigenvalues λ j in
(
0, 1

4

)
, and therefore there exists

0< ε0 < 1
4 such that |t j | ≥ ε0 for every λ j ∈

(
0, 1

4

)
. Observe that for |t | ≤ 1

2 we have

q̂δ(t)=
∫

R

q(x)e−i tδx dx = 1+ O(δ|t |).

The claim then follows from (2-5) and (2-6), and from the fact that h±(t)= hρ±δ(t)q̂δ(t). �

Remark 3.4. Equation (3-6) also holds for λ j =
1
4 , except that we have to multiply the first term by a

factor of 2.

The next three lemmata show that in the problem of estimating P0(X) using the Selberg trace formula
we can neglect the terms coming from the identity class, the elliptic classes, and the parabolic classes, as
they contribute a small quantity.

Lemma 3.5. Let ρ > 1, 0< δ < 1
4 , and let g± and h± as in (2-7) and (2-9) respectively. Then we have∫
+∞

−∞

th±(t) tanh(π t) dt �
eρ/2

ρ2 + log(δ−1).

Proof. Recall that we have h±(t)= hρ(t)q̂δ(t), and that by Lemma 3.1 we have q̂δ(t)� (1+|δt |k)−1 for
every k ≥ 0. Using (2-6) and the definition of the hyperbolic cosine we can write

hρ±δ(t)

=
2

1+ 2i t
(e(ρ±δ)(1/2+i t)

+ e−(ρ±δ)(1/2+i t))+
2

1− 2i t
(e(ρ±δ)(1/2−i t)

+ e−(ρ±δ)(1/2−i t))−
2

1
4 + t2

. (3-7)

Bounding in absolute value the integrand associated to the last term in (3-7), we obtain∫
R

∣∣∣∣ t q̂δ(t) tanh(π t)
1
4 + t2

∣∣∣∣ dt �
∫

R

dt
(1+ |t |)(1+ |δt |)

� log(δ−1)+ 1. (3-8)

Now consider the integrand associated to the first term in (3-7) We integrate by parts twice and obtain

I := 2
∫

R

t q̂δ(t) tanh(π t)e(ρ±δ)(1/2+i t)

1+ 2i t
dt

= 2
2∑

j=1

(−1) j−1 e(ρ±δ)(1/2+i t)

(i(ρ± δ)) j

d j−1

dt j−1

(
t q̂δ(t) tanh(π t)
(1+ 2i t)

)∣∣∣∣+∞
t=−∞

+ 2
∫

R

e(ρ±δ)(1/2+i t)

(i(ρ± δ))2
d2

dt2

(
t q̂δ(t) tanh(π t)
(1+ 2i t)

)
dt.

By Lemma 3.1 we see that the boundary terms vanish, and we can bound

d2

dt2

(
t q̂δ(t) tanh(π t)
(1+ 2i t)

)
�

1
(1+ |δt |k)

(
δ2
+

1
1+ |t |2

)
,

for every k ≥ 0, with implied constant depending on k. Fixing k > 1 we obtain

I �
eρ/2

ρ2

∫
R

1
(1+ |δt |k)

(
δ2
+

1
1+ |t |2

)
dt �

eρ/2

ρ2 . (3-9)
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The other terms in (3-7) are treated similarly, and are bounded by the same quantity. Adding (3-8) and
(3-9) we obtain the desired estimate. �

Lemma 3.6. Let ρ > 1, 0< δ < 1
4 , and h± as in (2-9). Let m, ` ∈ N, with m ≥ 2 and 1≤ ` < m. Then∫

R

h±(t)
cosh(π(1− 2`/m)t)

cosh(π t)
dt �

eρ/2

ρ2 ,

with implied constant that depends on m and `.

Proof. Recall that h±(t)= hρ±δ(t)q̂δ(t), and use (3-7) to express hρ±δ(t). The integrand associated to
the last term in (3-7) is bounded by∫

R

cosh(π(1− 2`/m)t)
(1+ t2) cosh(π t)

dt �
∫

R

dt
1+ t2 � 1.

Now consider the term exp
(
(ρ± δ)

( 1
2 + i t

))
in (3-7). The corresponding integral contributes

J := 2
∫

R

e(ρ±δ)(1/2+i t)q̂δ(t) cosh(π(1− 2`/m)t)
(1+ 2i t) cosh(π t)

dt

= 2
2∑

j=1

(−1) j−1 e(ρ±δ)(1/2+i t)

(i(ρ± δ)) j

d j−1

dt j−1

(
q̂δ(t) cosh(π t (1− 2`/m))

(1+ 2i t) cosh(π t)

)∣∣∣∣+∞
t=−∞

+2
∫

R

e(ρ±δ)(1/2+i t)

(i(ρ± δ))2
d2

dt2

(
q̂δ(t) cosh(π t (1− 2`/m))

(1+ 2i t) cosh(π t)

)
dt.

The boundary terms vanish, and by Lemma 3.1 we can bound

d2

dt2

(
q̂δ(t) cosh(π t (1− 2`/m))

(1+ 2i t) cosh(π t)

)
�

1
(1+ |t |)(1+ |δt |k)

(
1

1+ |t |2
+ δ2

)
where the implied constant depends on m and `. Hence we get

J �
eρ/2

ρ2

∫
R

1
(1+ |t |)(1+ |δt |k)

(
1

1+ |t |2
+ δ2

)
dt �

eρ/2

ρ2 .

The terms associated to the other exponentials in (3-7) are treated similarly, and are bounded by the same
quantity. �

Lemma 3.7. Let ρ > 1, 0< δ < 1
4 , and let g± and h± as in (2-7) and (2-9). Then

g±(0) log 2+
1

2π

∫
+∞

−∞

h±(t)ψ(1+ i t) dt � δeρ/2+ log(δ−1).

Proof. We use here the formula given in [Iwaniec 1995, (10.17)] to get back to an integral involving g±.
We have

g±(0) log 2+
1

2π

∫
+∞

−∞

h±(t)ψ(1+ i t) dt =
h±(0)

4
− γ g±(0)+

∫
∞

0
log
(
sinh

( 1
2 x
))

dg±(x). (3-10)
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By (3-7) we know that
h±(0)

4
= eρ/2+ O(δeρ/2+ 1), (3-11)

and by definition of g±(x) we have g±(x)= O(δ) for |x | ≤ δ. The last integral in (3-10) is analyzed as
follows. For x ∈ [0, δ] we bound

d
dx

g±(x)= (gρ±δ ∗ q ′δ)(x)�
∫ δ

−δ

sinh
( 1

2 |x − y|
)
|q ′δ(y)| dy� 1

δ
sinh(δ)‖q ′‖1� 1,

so that we have, uniformly in δ,∫ δ

0
log
(
sinh

( 1
2 x
))

dg±(x)�
∫ δ

0

∣∣log
(
sinh

( 1
2 x
))∣∣ dx � 1.

For x > δ we integrate by parts obtaining∫
∞

δ

log
(
sinh

( 1
2 x
))

dg±(x)=−g±(δ) log
(
sinh

( 1
2δ
))
−

1
2

∫
∞

δ

g±(x)

sinh
( 1

2 x
) cosh

( 1
2 x
)

dx .

Since g±(δ)� δ, the boundary term is bounded by O(δ log(δ−1)). If we write cosh
( x

2

)
= sinh

( x
2

)
+e−x/2,

the integral associated to e−x/2 can be bounded by∫
∞

δ

g±(x)e−x/2

sinh
( 1

2 x
) dx �

∫ 1

δ

dx
x
+

∫
∞

1
e−x/2 dx � log(δ−1)+ 1.

Finally we have

−
1
2

∫
∞

δ

g±(x) dx =−2 cosh
( 1

2(ρ± δ)
)
+ O(1)=−eρ/2+ O(δeρ/2+ 1).

The exponential cancels with the first term in (3-11), and combining the other estimates we obtain the
claim. �

We turn now our attention to finding upper bounds for the mean square of the spectral side in the
Selberg trace formula. We start with an estimate for the integral of h±(t1)h±(t2).

Lemma 3.8. Let 0 < δ < 1
4 , let hρ±δ(t) be as in (2-9), and let wR(ρ) be as in (2-11). Let R > 1, and

t1, t2 ∈ R. Then we have∫
R

hρ±δ(t1)hρ±δ(t2)wR(ρ) dρ�
eRv(t1)v(t2)
1+ |t1− t2|2

+
eRv(t1)v(t2)
1+ |t1+ t2|2

+ eR/2v(t2
1 )v(t

2
2 ),

where v(t)= (1+ |t |)−1, and the implied constant does not depend on δ.

Proof. In order to express hρ±δ we consider again (3-7).
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Multiplying hρ±δ(t1) with hρ±δ(t2), the product of the first exponential in (3-7) (from the factor
hρ±δ(t1)) and the last term from the factor hρ±δ(t2) contributes∫

R

4e(ρ±δ)(1/2+i t1)

(1+ 2i t1)
( 1

4 + t2
2

)wR(ρ) dρ =
∫

R

2e(ρ±δ)(1/2+i t1)w′R(ρ)( 1
2 + i t1

)2(1
4 + t2

2

) dρ� eR/2v(t2
1 )v(t

2
2 )‖w

′
‖1

� eR/2v(t2
1 )v(t

2
2 ). (3-12)

Now consider the product of the first exponential in (3-7) for hρ±δ(t1) and the same term for hρ±δ(t2).
This contributes∫

R

4e(ρ±δ)(1+i(t1+t2))

(1+ 2i t1)(1+ 2i t2)
wR(ρ)dρ� eRv(t1)v(t2)min(1, |t1+ t2|−2

‖w′′‖1)�
eRv(t1)v(t2)
1+ |t1+ t2|2

. (3-13)

The other terms in the product hρ±δ(t1)hρ±δ(t2) are bounded similarly by (3-12) and (3-13), except that
we need to replace |t1+ t2| by |t1− t2| when we integrate the product exp((ρ± δ)(±1± i(t1− t2)). This
concludes the proof. �

In order to exploit at best the bound proved in the previous lemma, we estimate the size of the spectrum
on unit intervals.

Lemma 3.9. Let 0 be a cofinite Fuchsian group, let ϕ(s) be the scattering determinant associated to 0,
and let T > 1. We have

]{T ≤ t j ≤ T + 1}+
∫

T≤|t |≤T+1

∣∣∣∣−ϕ′ϕ ( 1
2 + i t

)∣∣∣∣ dt � T .

Proof. Recall Weyl’s law in its strong form (see [Venkov 1990, Theorem 7.3])

]{t j ≤ T }+
1

4π

∫ T

−T

−ϕ′

ϕ

( 1
2 + i t

)
dt =

vol(0\H)
4π

T 2
+

C

π
T log T + O(T ),

where we recall that C is the number of inequivalent cusps of 0. Consider the equation above at
the point T + 1, and subtract from it the same quantity for T . In order to shorten notation we write
f (t)=−(ϕ′/ϕ)

( 1
2 + i t

)
. We get

]{T ≤ t j ≤ T + 1}+
1

4π

∫
−T

−T−1
f (t) dt +

1
4π

∫ T+1

T
f (t) dt = O(T ). (3-14)

The function f (t) is bounded from below by a constant k that depends on the group (this follows from
the Maass–Selberg relations, see [Iwaniec 1995, (10.9)]). Hence we have∫

−T

−T−1
f (t) dt ≥ k.

Since the number ]{T ≤ t j ≤ T + 1} is nonnegative, we can write∫ T+1

T
f (t) dt ≤

∫ T+1

T
f (t) dt +

∫
−T

−T−1
f (t) dt − k+ 4π · ]{T ≤ t j ≤ T + 1} = O(T )− k = O(T ).
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Again from the fact that f (t) is bounded from below by a constant, we infer that in fact we have∫ T+1

T
| f (t)| dt � T .

Similarly we find ∫
−T

−T−1
| f (t)| dt � T,

and from (3-14) we conclude that we also have ]{T ≤ t j ≤ T + 1} � T . This proves the lemma. �

At this point we can prove bounds on the mean square of the discrete and continuous spectrum in the
Selberg trace formula. We discuss first the discrete spectrum.

Proposition 3.10. Let 0< δ < 1
4 , let h± as in (2-9), and let R > 1. We have∫

R

∣∣∣∣∑
t j>0

h±(t j )

∣∣∣∣2wR(ρ)dρ�
eR

δ
+ eR/2 log2(δ−1).

Proof. Recall that h±(t)= hρ±δ(t)q̂δ(t), and that q̂δ(t)� (1+|δt |k)−1 for every k ≥ 0. Using Lemma 3.9
this implies that the series ∑

t j>0

h±(t j )

is absolutely convergent, and we can write∫
R

∣∣∣∣∑
t j>0

h±(t j )

∣∣∣∣2wR(ρ) dρ =
∑
t j>0

∑
t`>0

q̂δ(t j )q̂δ(t`)
∫

R

hρ±δ(t j )hρ±δ(t`)wR(ρ) dρ.

By Lemma 3.8 we can estimate the integral and bound the double sum by

eR
∑

t j ,t`>0

|q̂δ(t j )q̂δ(t`)|v(t1)v(t2)
1+ |t j − t`|2

+ eR/2
∑

t j ,t`>0

|q̂δ(t j )q̂δ(t`)|v(t2
1 )v(t

2
2 ), (3-15)

where v(t) = (1+ |t |)−1. Using Lemma 3.1 to bound q̂δ(t)� (1+ |δt |k)−1 for every k ≥ 0, we can
estimate the second sum in (3-15) by

eR/2
( ∑

t j≤δ−1

1
t2

j
+

∑
t j>δ−1

1
δt3

j

)2

� eR/2(log2(δ−1)+ 1).

Now consider the first sum in (3-15). By symmetry and positivity, we can consider only the sum over
t`≥ t j . Moreover we split the sum in order to optimize the bounds available. Consider a unit neighborhood
of the diagonal t` = t j . Using Lemma 3.9 we can estimate

eR
∑
t j>0

∑
t j≤t`≤t j+1

|q̂δ(t j )q̂δ(t`)|
(1+ |t j |)(1+ |t`|)

� eR
∑

t j≤δ−1

1
t j

∑
t j≤t`≤t j+1

1
t`
+

eR

δ2

∑
t j>δ−1

1
t2

j

∑
t j≤t`≤t j+1

1
t2
`

�
eR

δ
.
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The tail of the double sum, that is, the range t j > δ
−1 and t` > t j +1, can be analyzed (we follow here the

same method as in Cramér [1922]) by using a unit interval decomposition for the sum over t`, together
with Lemma 3.9, to get

eR

δ2

∑
t j>δ−1

1
t2

j

∑
t`>t j+1

1
t2
` |t`− t j |

2
�

eR

δ2

∑
t j>δ−1

1
t2

j

∞∑
k=1

1
(t j + k)k2 �

eR

δ2

∑
t j>δ−1

1
t3

j

�
eR

δ
.

Finally, the range t j ≤ δ
−1 and t` > t j + 1 is bounded by

� eR
∑

t j≤δ−1

1
t j

∑
t`>t j+1

1
t`|t`− t j |

2 � eR
∑

t j≤δ−1

1
t j

∞∑
k=1

1
k2 �

eR

δ
.

We conclude that we have ∫
R

∣∣∣∣∑
t j>0

h±(t j )

∣∣∣∣2wR(ρ) dρ�
eR

δ
+ eR/2 log2(δ−1),

as claimed. �

The analysis of the continuous spectrum is similar, and we obtain the same bounds. With the proposition
below we conclude the list of auxiliary results needed to prove Theorem 1.1.

Proposition 3.11. Let 0< δ < 1
4 and h± be as in (2-9). Let R ≥ 1. Then∫

R

∣∣∣∣∫
R

h±(t)
−ϕ′

ϕ

( 1
2 + i t

)∣∣∣∣2wR(ρ) dρ�
eR

δ
+ eR/2 log2(δ−1). (3-16)

Proof. Recall that we have h±(t) = hρ±δ(t)q̂δ(t), and that q̂δ(t)� (1+ |δt |k)−1 for every k ≥ 0. For
simplicity we write

f (t)=
−ϕ′

ϕ

(1
2 + i t

)
.

Let J denote the integral in (3-16). Due to the decay properties of q̂δ and to Lemma 3.9, J is absolutely
convergent, and so we can write

J =
∫

R

∫
R

f (t1) f (t2)q̂δ(t1)q̂δ(t2)
∫

R

hρ±δ(t1)hρ±δ(t2)wR(ρ) dρdt1dt2.

The innermost integral is bounded using Lemma 3.8. This gives

J � eR
∫

R

∫
R

| f (t1) f (t2)q̂δ(t2)q̂δ(t2)|
(1+ |t1|)(1+ |t2|)(1+ |t1− t2|2)

dt1dt2+ eR/2
∫

R

∫
R

| f (t1) f (t2)q̂δ(t2)q̂δ(t2)|
(1+ t2

1 )(1+ t2
2 )

dt1dt2.

(3-17)
The second integral in (3-17) is bounded by(∫ δ−1

0

| f (t)|
1+ t2 dt +

∫
∞

δ−1

| f (t)|
δt3 dt

)2

� (log(δ−1)+ 1)2� log2(δ−1),



588 Giacomo Cherubini and João Guerreiro

where in the first inequality we have used a unit interval decomposition of the domain of integration, and
Lemma 3.9 to bound the integral of | f (t)| in unit intervals. Now consider the first integral in (3-17). By
symmetry and positivity we can consider only the integral over t2 ≥ t1 ≥ 0. A unit neighborhood of the
diagonal t1 = t2 gives∫ δ−1

0

| f (t1)|
1+ t1

∫ t1+1

t1

| f (t2)|
1+ t2

dt2dt1+
∫
∞

δ−1

| f (t1)|
δ2t3

1

∫ t1+1

t1

| f (t2)|
δ2t3

2

dt2dt1

�

∫ δ−1

0

| f (t1)|
1+ t1

dt1+
∫
∞

δ−1

| f (t1)|
δ4t4

1
dt1�

1
δ
.

The tail of the double integral, that is, the range t1 ≥ δ−1 and t2 ≥ t1+ 1, can be bounded as follows:∫
∞

δ−1

| f (t1)|
δ2t3

1

∫
∞

t1+1

| f (t2)|
δ2t3

2 |t2− t1|2
dt2dt1�

∫
∞

δ−1

| f (t1)|
δ4t5

1

dt1� 1.

The range t1 ≤ δ−1 and t2 ≥ t1+ 1 contributes∫ δ−1

0

| f (t1)|
1+ t1

∫
∞

t1+1

| f (t2)|
(1+ t2)(1+ δ2t2

2 )|t2− t1|2
dt2dt1�

∫ δ−1

0

| f (t1)|
1+ t1

dt1� δ−1.

Summarizing, we have showed that we have the bound

J �
eR

δ
+ eR/2 log2(δ−1),

which is what we wanted. This proves the proposition. �

4. Modular group

This section is devoted to the proof of Theorem 1.4, concerning the case G = PSL2(Z). Our approach
starts with a lemma of Iwaniec [1984b, Lemma 1], which gives

ψG(X)= X + 2<
(∑

t j≤T

X1/2+i t j

1
2 + i t j

)
+ O

(
X
T

log2 X
)
,

where 1 ≤ T ≤ X1/2(log X)−2 (and it is understood that the sum runs over t j > 0). Note that in this
case the only small eigenvalue of 1 is λ= 0, so that MG(X)= X and PG(X)= ψG(X)− X . From the
equation above we deduce that

1
A

∫ 2A

A
|PG(X)|2 d X � 1

A

∫ 2A

A

∣∣∣∣∣∑
t j≤T

X1/2+i t j

1
2 + i t j

∣∣∣∣∣
2

d X + A2

T 2 log2 A. (4-1)

We now describe the outline of the proof of Theorem 1.4. The main idea is to use the Kuznetsov trace
formula to estimate the mean square of ∑

t j≤T

X1/2+i t j

1
2 + i t j
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or, equivalently by partial summation, the mean square of

R(X, T )=
∑
t j≤T

X i t j . (4-2)

Therefore, we start by setting up the Kuznetsov trace formula with a test function that gives us a smooth
version of the sum in (4-2), and we estimate the mean square of the weighted sum of Kloosterman sums
that show up in its geometric side (Lemma 4.1). This allows us to bound the spectral side of the trace
formula (Lemma 4.2). In order to control the behavior of the Fourier coefficients in the spectral sums of
the trace formula we use a smoothed average of these sums. This way we obtain (Lemma 4.4) a mean
square estimate of a smoothed version of R(X, T ), from which we extract a mean square estimate for the
sharp sum (Proposition 4.5).

We now start by setting up the Kuznetsov trace formula. Let φ(x) be a smooth function on [0,∞]
such that

|φ(x)| � x, x→ 0,

|φ(l)(x)| � x−3, x→∞,

for l = 0, 1, 2, 3. Define

φ0 =
1

2π

∫
∞

0
J0(y)φ(y) dy,

φB(x)=
∫ 1

0

∫
∞

0
ξ x J0(ξ x)J0(ξ y)φ(y) dydξ,

φH (x)=
∫
∞

1

∫
∞

0
ξ x J0(ξ x)J0(ξ y)φ(y) dydξ,

φ̂(t)=
π

2i sinhπ t

∫
∞

0
(J2i t(x)− J−2i t(x))φ(x)

dx
x
,

where Jν is the Bessel function of the first kind and order ν. By the properties of the Hankel transform
we have

φ(x)= φB(x)+φH (x).

We now choose φ as in [Luo and Sarnak 1995]. For X, T > 1 we set

φX,T (x)=
−sinhβ
π

x exp(i x coshβ),

2β = log X + i
T
,

and apply the Kuznetsov trace formula [1980, Theorem 1] with φX,T as the test function. Let { fi }
∞

i=1 be
an orthonormal basis of Maass cusp forms for SL2(Z), with eigenvalues λ j =

1
4 + t2

j . These cusp forms
have Fourier expansions [Kuznetsov 1980, (2.10)]

f j (z)=
√

y
∞∑

n=1

ρ j (n)Ki t j (2πny) cos(2πnx),
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where Kν(x) is the K -Bessel function. For l1, l2 ≥ 1 the trace formula reads∑
t j

φ̂(t j )ν j (l1)ν j (l2)+
2
π

∫
∞

0

φ̂(t)
|ζ(1+ 2i t)|2

di t(l1) di t(l2)dt = δl1,l2φ0+

∞∑
c=1

S(l1, l2, c)
c

φH

(
4π
√

l1l2

c

)
,

where ρ j (l)= ν j (l) cosh(π t j )
1/2, di t(l)=

∑
d1d2=l(d1/d2)

i t , and S(l1, l2, c) is the classical Kloostermann
sum. By [Luo and Sarnak 1995, p. 234] we have

φ̂X,T (t j )= X i t j e−t j/T
+ O(e−π t j ), (4-3)

(φX,T )0� X−1/2, (4-4)

2
π

∫
∞

0

φ̂X,T (t)
|ζ(1+ 2i t)|2

(di t(n))2dt � T log2 T d2(n), (4-5)

Sn((φX,T )B)� n1/2 X−1/2 log2 n, (4-6)

where

Sn(ψ)=

∞∑
c=1

S(n, n, c)
c

ψ

(
4πn

c

)
. (4-7)

Analyzing the right hand side of the Kuznetsov trace formula, we prove a bound for the mean square
of Sn(φX,T ) as follows.

Lemma 4.1. Let A, T > 2 and let n be a positive integer. Then, for any ε > 0,

1
A

∫ 2A

A
|Sn(φX,T )|

2 d X �ε (n A1/2
+ T 2)(An)ε.

We postpone the proof of Lemma 4.1 to the end of the section, and we show here how to recover a
similar bound on the spectral side of the Kuznetsov trace formula.

Lemma 4.2. Let A, T > 2 and let n be a positive integer. Then, for any ε > 0,

1
A

∫ 2A

A

∣∣∣∣∑
t j

|ν j (n)|2φ̂(t j )

∣∣∣∣2 d X �ε (n A1/2
+ T 2)(AnT )ε.

Proof. By the trace formula and the bounds in equations (4-4)–(4-6) we deduce

1
A

∫ 2A

A

∣∣∣∣∑
t j

|ν j (n)|2φ̂(t j )

∣∣∣∣2 d X � 1
A

∫ 2A

A
|Sn(φX,T )|

2 d X + T 2 log4 T d4(n)+
n log A log4 n

A
.

Observing that d4(n)� nε, the claim follows from Lemma 4.1. �

Once we have bounds for a fixed n, we average over n ∈ [N , 2N ]. Let h(ξ) be a smooth function
supported in [N , 2N ], whose derivatives satisfy

|h(p)(ξ)| � N−p for p = 0, 1, 2, . . .
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and such that ∫
+∞

−∞

h(ξ) dξ = N .

The next lemma is a result of Luo and Sarnak [1995].

Lemma 4.3. Let h be as above. Then∑
n

h(n)|ν j (n)|2 =
12
π2 N + r(t j , N ),∑

t j≤T

|r(t j , N )| � T 2 N 1/2 log2 T .

Proof. See [Luo and Sarnak 1995, p. 233]. �

Lemma 4.4. Let A, T > 2. Then, for any ε > 0,

1
A

∫ 2A

A

∣∣∣∣∑
t j

X i t j e−t j/T
∣∣∣∣2 d X �ε A1/4 T 2(AT )ε.

Proof. By the previous lemma

1
N

∑
n

h(n)
(∑

t j

|ν j (n)|2φ̂(t j )

)
=

1
N

∑
t j

(∑
n

|ν j (n)|2h(n)
)
φ̂(t j )

=
12
π2

∑
t j

φ̂(t j )+
1
N

∑
t j

r(t j , N )φ̂(t j )

=
12
π2

∑
t j

φ̂(t j )+ O(T 2 N−1/2 log2 T ), (4-8)

where the last step can be obtained by |φ̂(t j )| � e−t j/T and partial summation. Note now that from (4-3)
it follows that ∑

t j

φ̂(t j )=
∑

t j

X i t j e−t j/T
+ O(1). (4-9)

Combining (4-8) and (4-9) we deduce that∑
t j

X i t j e−t j/T
�

1
N

∑
n

h(n)
(∑

t j

|ν j (n)|2φ̂(t j )

)
+ T 2 N−1/2 log2 T .

Taking absolute value, squaring, and integrating over X , we infer that

1
A

∫ 2A

A

∣∣∣∣∑
t j

X i t j e−t j/T
∣∣∣∣2 d X � 1

A

∫ 2A

A

∣∣∣∣ 1
N

∑
n

h(n)
(∑

t j

|ν j (n)|2φ̂(t j )

)∣∣∣∣2 d X + T 4 N−1 log4 T .
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Moreover, by Cauchy–Schwarz and the properties of h, we have∣∣∣∣ 1
N

∑
n

h(n)
(∑

t j

|ν j (n)|2φ̂(t j )

)∣∣∣∣2� 1
N 2

( 2N∑
n=N

|h(n)|2
)( 2N∑

n=N

∣∣∣∣∑
t j

|ν j (n)|2φ̂(t j )

∣∣∣∣2)

�
1
N

2N∑
n=N

∣∣∣∣∑
t j

|ν j (n)|2φ̂(t j )

∣∣∣∣2
Finally, we obtain

1
A

∫ 2A

A

∣∣∣∣∑
t j

X i t j e−t j/T
∣∣∣∣2 d X �ε

1
N

2N∑
n=N

(
1
A

∫ 2A

A

∣∣∣∣∑
t j

|ν j (n)|2φ̂(t j )

∣∣∣∣2 d X
)
+

T 4+ε

N

�ε (N A1/2
+ T 2)(AN T )ε + T 4+ε

N
,

where the last inequality follows from Lemma 4.2. Choose N = A−1/4T 2 to complete the proof. �

The next step is to replace the smoothed sum
∑

X i t j e−t j/T with the truncated one. This gives us a
corresponding mean square estimate for R(X, T ).

Proposition 4.5. Let A, T > 2, and let R(X, T ) be as in (4-2). Then, for any ε > 0,

1
A

∫ 2A

A
|R(X, T )|2 d X �ε A1/4T 2(AT )ε.

Proof. We start by choosing a smooth function g that approximates the characteristic function of [1, T ].
Let g be a smooth function supported on

[ 1
2 , T + 1

2

]
such that 0≤ g(ξ)≤ 1, and g(ξ)= 1 when ξ ∈ [1, T ].

By the strong Weyl’s law we know that
∣∣{t j :U ≤ t j ≤U + 1}

∣∣�U , and so we have

R(X, T )=
∑

t j

g(t j )X i t j + O(T ).

Define ĝ(ξ) to be the Fourier transform of g(ξ) exp(ξ/T ). By [Luo and Sarnak 1995, pp. 235–236] we
have that∑

t j

g(t j )X i t j

=

∫ 1

−1
ĝ(ξ)

(∑
t j

(Xe−2πξ )i t j e−t j/T
)

dξ + O
(∑

t j

e−t j/T

t j
+

e−t j/T

|T − t j | + 1
+

log(T + t j )e−t j/T

T

)
,

where the error term can be bounded by O(T log T ). Also note the estimate

ĝ(ξ)�min
(

T,
1
|x |

)
. (4-10)

Defining

k(X, T, ξ) :=
∑

t j

(Xe−2πξ )i t j e−t j/T ,
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we deduce that

1
A

∫ 2A

A
|R(X, T )|2 d X

�
1
A

∫ 2A

A

∣∣∣∣∫ 1

−1
ĝ(ξ)k(X, T, ξ) dξ

∣∣∣∣2 d X + T 2 log2 T

�
1
A

∫ 2A

A

∣∣∣∣∫
|ξ |≤δ

ĝ(ξ)k(X, T, ξ) dξ
∣∣∣∣2 d X + 1

A

∫ 2A

A

∣∣∣∣∫
δ<|ξ |≤1

ĝ(ξ)k(X, T, ξ)dξ
∣∣∣∣2 d X + T 2 log2 T .

The first term in the sum above we bound, using Lemma 4.4 and the first bound in (4-10), by∫
|ξ |≤δ

|ĝ(ξ)|2
∫
|ξ |≤δ

1
A

∫ 2A

A
|k(X, T, ξ)|2 d Xdξ �ε A1/4T 4(AT )εδ2,

and the second term, using again Lemma 4.4 and the second bound in (4-10), by∫
δ<|ξ |≤1

|ĝ(ξ)|2|ξ |
∫
δ<|ξ |≤1

1
|ξ |

1
A

∫ 2A

A
|k(X, T, ξ)|2 d Xdξ �ε A1/4T 2(AT )ε log(δ−1).

On taking δ = T−2 we obtain the claim. �

We are now able to conclude the proof of Theorem 1.4. Let 2 < T ≤ A1/2(log A)−2. By partial
summation, ∑

t j≤T

X1/2+i t j

1
2 + i t j

=
R(X, T )X1/2

1
2 + iT

+ i X1/2
∫ T

1

R(X,U )(1
2 + iU

)2 dU.

Therefore,

1
A

∫ 2A

A

∣∣∣∣∑
t j≤T

X1/2+i t j

1
2 + i t j

∣∣∣∣2 d X � 1
A

∫ 2A

A

∣∣∣∣ R(X, T )X1/2

1
2 + iT

∣∣∣∣2 d X + 1
A

∫ 2A

A

∣∣∣∣X1/2
∫ T

1

R(X,U )( 1
2 + iU

)2 dU
∣∣∣∣2 d X.

The first term on the right hand side is bounded, in view of Proposition 4.5, by O(A5/4+ε). The second
term can be bounded by using Cauchy–Schwarz inequality and again Proposition 4.5, giving

A(log T )
∫ T

1

1
U 3

(
1
A

∫ 2A

A
|R(X,U )|2 d X

)
dU �ε A5/4+ε

∫ T

1
U−1 dU �ε A5/4+ε.

Inserting these bounds in (4-1) we obtain

1
A

∫ 2A

A
|ψG(X)− X |2 d X �ε A5/4+ε

+
A2

T 2 log2 A.

Choosing T = A3/8 above concludes the proof of Theorem 1.4.
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Weighted sums of Kloosterman sums. In the remainder of the section we prove Lemma 4.1. Recall that
we want to estimate, on average, the following sum of Kloostermann sums

1
A

∫ 2A

A
|Sn(φX,T )|

2 d X,

where Sn(ψ) is the weighted sum of Kloosterman sums defined in (4-7), i.e.,

Sn(ψ)=

∞∑
c=1

S(n, n, c)
c

ψ

(
4πn

c

)
,

with n a (large) positive integer. The function φX,T carries some oscillation in X , that we exploit when
integrating over X ∈ [A, 2A].

Lemma 4.6. Let A, T > 2, and let z1, z2 be positive real numbers. Then

1
A

∫ 2A

A
φX,T (z1)φX,T (z2) d X � z1z2 A exp

(
−

A1/2(z1+ z2)

T

)
and

1
A

∫ 2A

A
φX,T (z1)φX,T (z2) d X �

z1z2 A1/2

|z1− z2|
.

For the last bound we assume z1 6= z2.

Proof. Inserting the definition of φX,T we can write the integral as

z1z2

π2

∫ 2A

A
|sinhβ|2 exp(i coshβz1+ i coshβz2) d X. (4-11)

Bounding the integrand uniformly using

|sinhβ|2� X and exp(i coshβz1+ i coshβz2)� exp
(
−

A1/2(z1+ z2)

T

)
,

we obtain the first bound

1
A

∫ 2A

A
φX,T (z1)φX,T (z2) d X � z1z2 A exp

(
−

A1/2(z1+ z2)

T

)
.

To obtain the second bound we use integration by parts in (4-11) to get

z1z2

π2 f (X) exp(i coshβz1+ i coshβz2)

∣∣∣∣2A

A
+

z1z2

π2

∫ 2A

A
f ′(X) exp(i coshβz1+ i coshβz2) d X,

where

f (X)=
2X |sinhβ|2

i sinhβz1+ i sinhβz2
.

We can bound these terms (up to a constant) by

z1z2 A3/2

|z1− z2|
,
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which gives us the second bound

1
A

∫ 2A

A
φX,T (z1)φX,T (z2) d X �

z1z2 A1/2

|z1− z2|
.

This proves the lemma. �

The lemma above will provide the necessary bounds to establish Lemma 4.1.

Proof of Lemma 4.1. We expand the square in the integrand and exchange the integral with the sums, so
that we can rewrite the integral as

∞∑
c1,c2=1

S(n, n, c1)S(n, n, c2)

c1c2

1
A

∫ 2A

A
φX,T

(
4πn
c1

)
φX,T

(
4πn
c2

)
d X. (4-12)

We now split the sum in (4-12) into two sums 6d and 6nd , where 6d is the sum over the diagonal terms
c1 = c2, and 6nd is the sum over the terms c1 6= c2. We shall make use of the Weil bound on Kloosterman
sums throughout the proof, namely

|S(n, n, c)| ≤ (n, c)1/2c1/2d(c). (4-13)

Moreover, we have ∑
c≤x

(n, c) d2(c)� x log3 x d(n).

We bound the diagonal terms using the first bound in Lemma 4.6 (with z1 = z2 = (4πn)/c), obtaining

6d � n2 A
∑

c

(n, c)d2(c)
c3 exp

(
−

A1/2n
T c

)
� T 2 log3(An) d(n).

To bound the nondiagonal terms we interpolate the two bounds in Lemma 4.6 to get, for 0< λ < 1,

1
A

∫ 2A

A
φX,T

(
4πn
c1

)
φX,T

(
4πn
c2

)
d X �

(
n2 A
c1c2

)1−λ( n A1/2

|c1− c2|

)λ
.

Therefore,

6nd �

∞∑
c1 6=c2=1

|S(n, n, c1)S(n, n, c2)|

c1c2

(
n2 A
c1c2

)1−λ( n A1/2

|c1− c2|

)λ

�λ (n A1/2)2−λ
( ∞∑

c=1

|S(n, n, c)|2/(2−λ)

c2

)2−λ

,
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where the last inequality follows from the Hardy–Littlewood–Pólya inequality (1-8). Applying the Weil
bound (4-13) we obtain

6nd �λ (n A1/2)2−λ
( ∞∑

c=1

((n, c)1/2d(c)
√

c)2/(2−λ)

c2

)2−λ

�λ (n A1/2)2−λ
( ∞∑

c=1

(n, c)d2(c)
c1+(1−λ)/(2−λ)

)2−λ

�λ (n A1/2d(n))2−λ.

Pick λ= 1− ε and note that d(n)�ε nε to finish the proof. �
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