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Elliptic quantum groups and Baxter relations
Huafeng Zhang

We introduce a category O of modules over the elliptic quantum group of slN with well-behaved
q-character theory. We construct asymptotic modules as analytic continuation of a family of finite-
dimensional modules, the Kirillov–Reshetikhin modules. In the Grothendieck ring of this category
we prove two types of identities: Generalized Baxter relations in the spirit of Frenkel–Hernandez
between finite-dimensional modules and asymptotic modules. Three-term Baxter TQ relations of infinite-
dimensional modules.
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Introduction

Fix slN a special linear Lie algebra, C/(Z+Zτ) an elliptic curve, and h̄ a complex number. Associated to
this triple is the elliptic quantum group Eτ,h̄(slN ) introduced by G. Felder [1995]. It is a Hopf algebroid
(neither commutative nor cocommutative) in the sense of Etingof and Varchenko [1998], so that the tensor
product of two Eτ,h̄(slN )-modules is naturally endowed with a module structure. In this paper we study
(finite- and infinite-dimensional) representations of the elliptic quantum group.

Suppose h̄ is a formal variable. Eτ,h̄(sl2) is an h̄-deformation [Enriquez and Felder 1998] of the
universal enveloping algebra of a Lie algebra sl2⊗ Rτ , where Rτ is an algebra of meromorphic functions
of z ∈ C built from the Jacobi theta function of the elliptic curve. For g an arbitrary finite-dimensional
simple Lie algebra, Eτ,h̄(g) is defined [Jimbo et al. 1999] to be a quasi-Hopf algebra twist of the affine
quantum group Uh̄(Lg), an h̄-deformation of the loop Lie algebra g⊗C[z, z−1

]. It admits a universal
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dynamical R-matrix in a completed tensor square, which provides solutions R(z; λ) ∈ End(V ⊗ V ), for
V a suitable Eτ,h̄(g)-module, to the quantum dynamical Yang–Baxter equation:

R12(z−w; λ+h̄h(3))R13(z; λ)R23(w; λ+h̄h(1))= R23(w; λ)R13(z; λ+h̄h(2))R12(z−w; λ)∈End(V⊗3).

Here z, w are complex spectral parameters, λ is the dynamical parameter lying in a Cartan subalgebra of g,
the subindices of R indicate the tensor factors of V⊗3 to be acted on, and the h(i) are grading operators
arising from the weight grading on V by the Cartan subalgebra. See the comments following (1.1).

Such R-matrices R(z; λ) appeared previously in face-type integrable models [Felder and Varchenko
1996a; Hou et al. 2003]; for instance, the R-matrix of the Andrews–Baxter–Forrester model comes from
two-dimensional irreducible modules of Eτ,h̄(sl2), as does the 6-vertex model from the affine quantum
group Uh̄(Lsl2). The definition of Eτ,h̄(slN ) in [Felder 1995], by RLL exchange relations, is in the spirit
of Faddeev, Reshetikhin and Takhatajan, originated from quantum inverse scattering method. We mention
that elliptic R-matrices describe the monodromy of the quantized Knizhnik–Zamolodchikov equation
associated with representations of affine quantum groups, e.g., [Frenkel and Reshetikhin 1992; Galleas
and Stokman 2015; Konno 2006; Tarasov and Varchenko 1997].

Recently Aganagic and Okounkov [2016] proposed the elliptic stable envelope in equivariant elliptic
cohomology, as a geometric framework to obtain elliptic R-matrices. This was made explicit [Felder
et al. 2017] for cotangent bundles of Grassmannians, resulting in tensor products of two-dimensional
irreducible representations of Eτ,h̄(sl2). The higher rank case of slN was studied later by H. Konno [2017].

Meanwhile, Nekrasov, Pestun and Shatashvili [2018] from the 6d quiver gauge theory predicted the
elliptic quantum group associated to an arbitrary Kac–Moody algebra, the precise definition of which (as
an associative algebra) was proposed by Gautam and Toledano Laredo [2017a]. See also [Yang and Zhao
2017] in the context of quiver geometry.

We are interested in the representation theory of Eτ,h̄(g) with h̄ ∈ C generic. The formal twist
constructions [Enriquez and Felder 1998; Jimbo et al. 1999] from Uh̄(Lg) might reduce the problem to
the representation theory of affine quantum groups, which is a subject developed intensively in the last
three decades from algebraic, geometric and combinatorial aspects. However their work involves formal
power series of h̄ and infinite products in the comultiplication of Eτ,h̄(g). Some of these divergence
issues were addressed by Etingof and Moura [2002], who defined a fully faithful tenor functor between
representation categories of BGG type for Uh̄(LslN ) and Eτ,h̄(slN ). Towards this functor not much is
known: its image, the induced homomorphism of Grothendieck rings, etc.

In this paper we study representations of Eτ,h̄(slN ) via the RLL presentation [Felder 1995] so as to
bypass affine quantum groups, yet along the way we borrow ideas from the affine case. Compared
to other works [Cavalli 2001; Etingof and Moura 2002; Felder and Varchenko 1996b; Gautam and
Toledano Laredo 2017a; Konno 2009; 2016; Tarasov and Varchenko 2001; Yang and Zhao 2017], our
approach emphasizes more on the Grothendieck ring structure of representation category. It is a higher
rank extension of a recent joint work with G. Felder [2017].
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The presence of the dynamical parameter λ is one of the technical difficulties of elliptic quantum
groups. To resolve this, we need a commuting family of elliptic Cartan currents φ j (z) ∈ Eτ,h̄(slN ) for
j ∈ J := {1, 2, . . . , N − 1}. They act as difference operators on an Eτ,h̄(slN )-module V , and their matrix
entries are meromorphic functions of (z, λ) ∈ C× h where h denotes the Cartan subalgebra of slN . As in
[Felder and Zhang 2017], we impose the following triangularity condition:1

(i) There exists a basis of V , with respect to which the matrices φ j (z) are upper triangular and their
diagonal entries are independent of λ.

Our category O is the full subcategory of category BGG [Etingof and Moura 2002] of Eτ,h̄(slN )-modules
subject to condition (i), see Definition 1.7. It is abelian and monoidal. It contains most of the modules in
[Cavalli 2001; Etingof and Moura 2002; Konno 2009; 2016; Tarasov and Varchenko 2001], although
the proof is rather indirect. (We believe category O to be the image of the functor [Etingof and Moura
2002].)

We extend the q-character of H. Knight [1995] and Frenkel and Reshetikhin [1999] to the elliptic case.
The q-character of a module V encodes the spectra of the φ j (z), which are meromorphic functions of z
thanks to condition (i). It distinguishes the isomorphism class [V ] in the Grothendieck ring K0(O), and
embeds K0(O) in a commutative ring. Our main results are summarized as follows:

(A) Proposition 4.10 on limit construction of infinite-dimensional asymptotic modules Wr,x , for r ∈ J and
x ∈ C, from a distinguished family of finite-dimensional modules, the Kirillov–Reshetikhin modules.

(B) Theorem 4.15 on generalized Baxter relations à la Frenkel and Hernandez [2015], the isomorphism
class of any finite-dimensional module is a polynomial of the [Wr,x ]/[Wr,y] for r ∈ J and x, y ∈ C.

(C) Corollary 5.2 relating an asymptotic module W to a module D and tensor products S′ and S′′ of
asymptotic modules such that [D][W] = [S′] + [S′′].

The above results are known in category HJ of Hernandez and Jimbo [2012] for representations over
a Borel subalgebra of an affine quantum group Uh̄(Lg). Category HJ contains the modules L±r,a for
a ∈ C and r a Dynkin node of g. The L±r,a are “prefundamental” in that their tensor products realize all
irreducible objects of HJ as subquotients, and they are not modules over Uh̄(Lg), which makes Borel
subalgebras indispensable. The Grothendieck ring of HJ is commutative.

Result (A) is the asymptotic limit construction [Hernandez and Jimbo 2012] of the L−r,a . Result (B) is
the relation [Frenkel and Hernandez 2015] between finite-dimensional modules and the L+r,a . Result (C)
is either Q Q∗-system [Feigin et al. 2017a; Hernandez and Leclerc 2016] or Q Q̃-system [Frenkel and
Hernandez 2016], as there are two choices of the modules D for W= L+r,a .

Hernandez and Leclerc [2016] interpreted the Q Q∗-system as cluster mutations of Fomin–Zelevinsky.
They provided conjectural monoidal categorifications of infinite rank cluster algebras by certain subcate-
gories of HJ.

1In terms of the Ki (z) from (1.8), we have φ j (z)= K j (z+ ` j h̄)K j+1(z+ ` j h̄)−1 where ` j = (N − j − 1)/2. These are
elliptic deformations of diagonal matrices in slN .
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In a quantum integrable system associated to Uh̄(Lg), the transfer-matrix construction defines an action
of the Grothendieck ring K0(HJ) on the quantum space; to an isomorphism class [V ] is attached a transfer
matrix tV (z).

Result (B) is one key step [Frenkel and Hernandez 2015] in solving the conjecture of Frenkel and
Reshetikhin [1999] on the spectra of the quantum integrable system, which connects the eigenvalues of
the tV (z) to the q-character of V by the so-called Baxter polynomials [Baxter 1972]. These polynomials
are eigenvalues of the tL+r,a (z) up to an overall factor [Frenkel and Hernandez 2015]. In this sense the
L+r,a have simpler structures than finite-dimensional modules, and the tL+r,a (z) are defined as Baxter Q
operators, as an extension of earlier works of V. Bazhanov et al. [1997; 1999; Bazhanov and Tsuboi
2008] for g a special linear Lie (super)algebra. Result (C) has as consequence the Bethe Ansatz equations
for the roots of Baxter polynomials [Feigin et al. 2017a; Frenkel and Hernandez 2016].

Recently category HJ was studied for quantum toroidal algebras [Feigin et al. 2017b].
For elliptic quantum groups there are no obvious Borel subalgebras. Our idea is to replace the L±r,a

over Borel subalgebras by the asymptotic modules W(r)
d,a (with a new parameter d ∈ C) over the entire

quantum group, which we now explain.
Let θ(z) := θ(z | τ) be the Jacobi theta function. For r ∈ J a Dynkin node, a ∈ C a spectral parameter,

and k a positive integer, by [Cavalli 2001; Tarasov and Varchenko 2001] there exists a unique finite-
dimensional irreducible module W (r)

k,a which contains a nonzero vector ω (highest weight with respect to
a triangular decomposition) such that:

φ j (z)ω = ω, if j 6= r and φr (z)ω =
θ(z+ ah̄+ kh̄)
θ(z+ ah̄)

ω.

This is a Kirillov–Reshetikhin (KR) module, a standard terminology for affine quantum groups and
Yangians once the θ symbol is removed.

The core of this paper (Section 4) is analytic continuation with respect to k. We modify the asymptotic
limits L−r,a of Hernandez and Jimbo [2012], as in [Felder and Zhang 2017; Zhang 2017].

Firstly the existence of the inductive system (W (r)
k,a)k>0 in [Hernandez and Jimbo 2012] relied on a

cyclicity property of M. Kashiwara, Varagnolo–Vasserot and V. Chari, which is unavailable in the elliptic
case. We reduce the problem to Eτ,h̄(sl2) by counting “dominant weights” in q-characters (Theorem 3.4),
as in the proofs of T -system of KR modules over affine quantum groups by H. Nakajima [2003] and D.
Hernandez [2006].

Secondly we express the matrix coefficients of any element of Eτ,h̄(slN ) acting on the W (r)
k,a , viewed

as functions of k ∈ Z>0, in products of the θ(kh̄+ c) where c ∈ C is independent of k; see Lemma 4.8.
In [Hernandez and Jimbo 2012] these are polynomials in k by induction. Our proof relies on the RLL
comultiplication and is explicit.

Since θ(kh̄+c) is an entire function of k, we take k in the matrix coefficients to be a fixed complex num-
ber d . This results in the asymptotic module W(r)

d,a on the inductive limit lim
→

W (r)
k,a . The module Wr,x in (A)

is W(r)
x,0. All irreducible modules of category O are subquotients of tensor products of asymptotic modules.



Elliptic quantum groups and Baxter relations 603

For g of general type (A)–(C) and their proofs can be adapted to affine quantum groups, whose
asymptotic modules appeared in the appendix of [Zhang 2017], as well as Yangians [Gautam and
Toledano Laredo 2016; 2017b]. Borel subalgebras or double Yangians are not needed.

Results (A)–(C) were established for affine quantum general linear Lie superalgebras [Zhang 2018];
their proofs require more than q-characters as counting dominant weights is inefficient [Zhang 2016]. It
is interesting to consider elliptic quantum supergroups [Galleas and Stokman 2015].

For elliptic quantum groups associated with other simple Lie algebras, one possible first step would be
to derive the RLL presentation; see [Guay et al. 2017; Jing et al. 2017] for Yangians.

The R-matrix of Baxter and Belavin is governed by the vertex-type elliptic quantum group [Jimbo et al.
1999]. The equivalence of representation categories between this elliptic algebra and Eτ,h̄(slN ) [Etingof
and Schiffmann 1998], a Vertex-IRF correspondence, might give a representation theory meaning to the
original Baxter Q operator of the 8-vertex model [Baxter 1972].

The paper is structured as follows. In Section 1 we review the theory of the elliptic quantum group
associated to slN and define category O of representations. We show that the q-character map is an injective
ring homomorphism from the Grothendieck ring K0(O) to a commutative ring Mt of meromorphic
functions. Then we present the q-character formula of finite-dimensional evaluation modules.

Section 2 is devoted to the proof of the q-character formula.
We derive in Section 3 basic facts on tensor products of KR modules (T -system, fusion) from the

q-character formula. They are needed in Section 4 to construct the inductive system of KR modules and
the asymptotic modules. We obtain a highest weight classification of irreducible modules in category O.
As a consequence, all standard irreducible evaluation modules of [Tarasov and Varchenko 2001] are in
category O.

In Section 5 we establish the three-term Baxter TQ relations in K0(O), which are infinite-dimensional
analogs of the T -system. These relations are interpreted as functional relations of transfer matrices in
Section 6.

1. Elliptic quantum groups and their representations

Let N ∈Z>0. We introduce a category O (abelian and monoidal) of representations of the elliptic quantum
group attached to the Lie algebra slN , and prove that its Grothendieck ring is commutative, based on
q-characters.

Fix a complex number τ ∈ C with Im(τ ) > 0. Define the Jacobi theta function

θ(z)= θ(z | τ) := −
∞∑

j=−∞

exp
(
iπ
(

j + 1
2

)2
τ + 2iπ

(
j + 1

2

)(
z+ 1

2

))
, i =

√
−1.

It is an entire function of z ∈ C with zeros lying on the lattice 0 := Z+Zτ and

θ(z+ 1)=−θ(z), θ(z+ τ)=−e−iπτ−2iπ zθ(z), θ(−z)=−θ(z).
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Fix a complex number h̄ ∈ C \ (Q+Qτ), which is the deformation parameter.
Let h be standard Cartan subalgebra of slN ; it is a complex vector space generated by the εi for

1≤ i ≤ N subject to the relation
∑N

i=1 εi = 0. Let CN
:=⊕

N
i=1Cvi and Ei j ∈EndC(C

N ) be the elementary
matrices: vk 7→ δ jkvi for 1≤ i, j, k ≤ N . Define the EndC(C

N
⊗CN )-valued meromorphic functions of

(z; λ) ∈ C× h by

R(z; λ)=
∑

i

E⊗2
i i +

∑
i 6= j

(
θ(z)θ(λi j − h̄)
θ(z+ h̄)θ(λi j )

Ei i ⊗ E j j +
θ(z+ λi j )θ(h̄)
θ(z+ h̄)θ(λi j )

Ei j ⊗ E j i

)
.

In the summations 1 ≤ i, j ≤ N , and λi j ∈ h∗ sends
∑N

i=1 ciεi ∈ h to ci − c j ∈ C. By [Felder 1995],
R(z; λ) satisfies the quantum dynamical Yang–Baxter equation:

R12(z−w; λ+ h̄h(3))R13(z; λ)R23(w; λ+ h̄h(1))

= R23(w; λ)R13(z; λ+ h̄h(2))R12(z−w; λ) ∈ EndC(C
N )⊗3. (1.1)

If R(z; λ)=
∑

p cp
λ x p⊗ yp with x p, yp ∈ EndC(C

N ), then

R13(z; λ+ h̄h(2)) : u⊗ v j ⊗w 7→
∑

p

cp
λ+h̄ε j

x p(u)⊗ v j ⊗ yp(w),

for u, w ∈ CN and 1≤ j ≤ N . The other symbols have a similar meaning.
Let M :=Mh be the field of meromorphic functions of λ ∈ h. It contains the subfield C of constant

functions. A C-linear map 8 of two M-vector spaces will sometimes be denoted by 8(λ) to emphasize
the dependence on λ.

1A. Algebraic notions. Since the elliptic quantum groups will act on M-vector spaces via difference
operators, which are in general not M-linear, we need to recall some basis constructions about difference
operators. Our exposition follows largely [Etingof and Varchenko 1998], with minor modifications as in
[Felder and Zhang 2017].

Define the category V as follows. An object is X =⊕α∈hX [α] where each X [α] is an M-vector space
and, if nonzero, is called a weight space of weight (or h-weight) α. Let wt(X)⊆ h be the set of weights
of X . Write wt(v)= α if v ∈ X [α].

A morphism f : X→ Y in V is an M-linear map which respects the weight gradings. Let Vft be the
full subcategory of V consisting of X whose weight spaces are finite-dimensional M-vector spaces (“ft”
means finite type in [Felder and Varchenko 1996b]).

Viewed as subcategories of the category of M-vector spaces, V and Vft are abelian.
Let X and Y be objects of V . Their dynamical tensor product X⊗Y is constructed as follows. For

α, β ∈ h, let X [α]⊗Y [β] be the quotient of the usual tensor product of C-vector spaces X [α]⊗C Y [β] by
the relation

g(λ)v⊗Cw = v⊗C g(λ+ h̄β)w, for v ∈ X [α], w ∈ Y [β], g(λ) ∈M.
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Let ⊗ denote the image of ⊗C under the quotient. X [α]⊗Y [β] becomes an M-vector space by setting
g(λ)(v⊗w)= v⊗g(λ)w. For γ ∈ h, the weight space (X⊗Y )[γ ] is then the direct sum of the X [α]⊗Y [β]
with α+β = γ .

For α, β ∈ h, a C-linear map 8 : X → Y is called a difference map of bidegree (α, β) [Etingof and
Varchenko 1998, §4.2] if it sends every weight space X [γ ] to Y [γ +β −α], and if

8(g(λ)v)= g(λ+β h̄)8(v) for g(λ) ∈M and v ∈ X.

Such a map can be recovered from its matrix as in the case of M-linear maps. Choose M-bases B and B′

for X and Y respectively. Define the B′ × B matrix [8] by taking its (b′, b)-entry [8]b′b(λ) ∈ M, for
b ∈ B and b′ ∈ B′, to be the coefficient of b′ in 8(b). Then for any vector v =

∑
b∈B gb(λ)b of X where

gb(λ) ∈M, we have2

8(v)=
∑
b′∈B′

b′
∑
b∈B

[8]b′b(λ)× gb(λ+ h̄β).

When X = Y , a difference map is also called a difference operator. To define its matrix, we always assume
B′ = B.

By an algebra we mean a unital associative algebra over C.
As in [Etingof and Varchenko 1998, Definition 4.1], an h-algebra is an algebra A, endowed with

h-bigrading A =⊕α,β∈hAα,β which respects the algebra structure and is called the weight decomposition,
and two algebra embeddings µl , µr : M→ A0,0 called the left and right moment maps, such that for
a ∈ Aα,β and g(λ) ∈M, we have

µl(g(λ))a = aµl(g(λ− h̄α)) and µr(g(λ))a = aµr(g(λ− h̄β)).

Call (α, β) the bidegree of elements in Aα,β . A morphism of h-algebras is an algebra morphism preserving
the moment maps and the weight decompositions.

From two h-algebras A and B we construct their tensor product A⊗̃B as follows. For α, β, γ ∈ h, let
Aα,β⊗̃Bβ,γ be Aα,β ⊗C Bβ,γ modulo the relation

µA
r (g(λ))a⊗C b = a⊗C µ

B
l (g(λ))b for a ∈ Aα,β, b ∈ Bβ,γ , g(λ) ∈M.

Let (A⊗̃B)α,γ be the direct sum of the Aα,β ⊗̃Bβ,γ over β ∈ h (⊗̃ denotes the image of ⊗C under the
quotient ⊗C→⊗̃). Multiplication in A⊗̃B is induced by (a⊗̃b)(a′⊗̃b′)= aa′⊗̃bb′. The moment maps
are given by

µA⊗̃B
l : g(λ) 7→ µA

l (g(λ))⊗̃1 and µA⊗̃B
r : g(λ) 7→ 1⊗̃µB

r (g(λ)) for g(λ) ∈M.

To an h-graded vector space one can attach naturally an h-algebra. Let X be an object of V . Let
DX
α,β denote the C-vector space of difference operators X→ X of bidegree (α, β). Then the direct sum

2 Note that difference maps of bidegree (α, α) make sense for arbitrary M-vector spaces.
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DX
:= ⊕α,β∈hDX

α,β is a subalgebra of EndC(X). It is an h-algebra structure with the moment maps

µr(g(λ))v = g(λ)v and µl(g(λ))v = g(λ+ h̄α)v for v ∈ X [α], g(λ) ∈M.

Tensor products of difference operators are also difference operators. To be precise, let X and Y be
two objects of V . Let 8 : X→ X and 9 : Y → Y be difference operators of bidegree (α, β) and (β, γ ),
respectively. The C-linear map

X ⊗C Y → X⊗Y, v⊗Cw 7→8(v)⊗9(w)

is easily seen to factor through X ⊗C Y → X⊗Y and induces the C-linear map 8⊗9 : X⊗Y → X⊗Y ,
which is shown to be a difference operator of bidegree (α, γ ). As in [Etingof and Varchenko 1998,
Lemma 4.3], the following defines a morphism of h-algebras

DX
⊗̃DY

→ DX⊗Y , 8⊗̃9 7→8⊗9.

1B. Elliptic quantum groups. For 1 ≤ i, j, p, q ≤ N let Ri j
pq(z; λ) be the coefficient of vp ⊗ vq in

R(z; λ)(vi ⊗ v j ); it can be viewed as an element of M after fixing z ∈ C. The elliptic quantum group
E := Eτ,h̄(slN ) is an h-algebra generated by3

L i j (z) ∈ Eεi ,ε j for 1≤ i, j ≤ N

subject to the dynamical RLL relation [Etingof and Varchenko 1998, §4.4]: for 1≤ i, j,m, n ≤ N ,

N∑
p,q=1

µl(R pq
mn(z−w; λ))L pi (z)Lq j (w)=

N∑
p,q=1

µr(Ri j
pq(z−w; λ))Lnq(w)Lmp(z). (1.2)

There is an h-algebra morphism [Etingof and Varchenko 1998; Felder and Varchenko 1996b]

1 : E→ E⊗̃E, L i j (z) 7→
N∑

k=1

L ik(z)⊗̃Lk j (z), for 1≤ i, j ≤ N (1.3)

which is coassociative (1⊗̃1)1= (1⊗̃1)1 and is called the coproduct. For u ∈ C,

8u : E→ E, L i j (z) 7→ L i j (z+ uh̄) for 1≤ i, j ≤ N (1.4)

extends uniquely to an h-algebra automorphism (spectral parameter shift).
Strictly speaking, E is not well-defined as an h-algebra because of the additional parameter z; this is

resolved in [Konno 2016] by viewing z, h̄ as formal variables. In this paper we are mainly concerned
with representations in which (1.2)–(1.4) make sense as identities of difference operators depending
analytically on z.

3We use slN , as in [Felder 1995; Felder and Varchenko 1996b], to emphasize that h is the Cartan subalgebra of slN . Other
works [Cavalli 2001; Konno 2016] use glN for the reason that the elliptic quantum determinant is not fixed to be 1.



Elliptic quantum groups and Baxter relations 607

Let SN be the group of permutations of {1, 2, . . . , N }. For 1 ≤ k ≤ N , let Sk be the subgroup of
permutations which fix the last k letters. The k-th fundamental weight $k and elliptic quantum minor
Dk(z) are defined by [Tarasov and Varchenko 2001, (2.5)]:

$k :=

k∑
i=1

εi ∈ h, (1.5)

2k(λ) :=
∏

N−k+1≤i< j≤N

θ(λi j ) ∈M×,

Dk(z) :=
µr(2k(λ))

µl(2k(λ))

∑
σ∈Sk

sign(σ )
N−k+1∏

i=N

Lσ(i),i (z+ (N − i)h̄) ∈ E . (1.6)

Here sign(σ ) ∈ {±1} denotes the signature of the permutation σ . We take the descending product over
N ≥ i ≥ N − k+ 1 in (1.6). Set $0 := 0.

We shall need the following elements L̂k(z) of Eεk ,εk as in [Tarasov and Varchenko 2001, (4.1)]:

L̂ N (z) := L N N (z) and L̂k(z)= Lkk(z)
N∏

j=k+1

µr(θ(λk j ))

µl(θ(λk j ))
. (1.7)

Theorem 1.1 [Tarasov and Varchenko 2001, Proposition 2.1] and [Konno 2016, (E.18)]. DN (z) is central
in E and grouplike: 1(DN (z))= DN (z)⊗̃DN (z).

The simple roots αi := εi − εi+1 for 1 ≤ i < N generate a free abelian subgroup Q of h, called the
root lattice. Let Q+ and Q− be submonoids of Q generated by the αi and −αi respectively. Define the
lexicographic partial ordering ≺ on h as follows:

α ≺ β if β −α = nlαl +

N−1∑
i=l+1

niαi ∈ Q with nl ∈ Z>0.

This is weaker than the standard ordering α ≤ β if β −α ∈ Q+.

Corollary 1.2. Dk(z) commutes with the L i j (w) for N − k < i, j ≤ N and 1(Dk(z))−Dk(z)⊗̃Dk(z) is
a finite sum

∑
α xα⊗̃yα over {α ∈ h | −$N−k ≺ α} where xα and yα are of bidegree (−$N−k, α) and

(α,−$N−k) respectively.

The proof of the corollary is postponed to Section 2A.

1C. Categories. From now on unless otherwise stated vector spaces, linear maps and bases are defined
over M. Let X be an object of Vft. A representation of E on X consists of difference operators L X

i j (z) :
X→ X of bidegree (εi , ε j ) for 1≤ i, j ≤ N depending on z ∈ C with the following properties:4

4This is called a representation of finite type in [Felder and Varchenko 1996b]. From condition (M1) it follows that the
coefficients of the L X

i j (z) are meromorphic functions with respect to any basis of X .



608 Huafeng Zhang

(M1) There exists a basis of X with respect to which all the matrix entries of the difference operators
L X

i j (z) are meromorphic functions of (z, λ) ∈ C× h.

(M2) Equation (1.2) holds in DX with µl and µr being moment maps in DX .

Call X an E-module. Property (M2) can be interpreted as an h-algebra morphism E→ DX sending
L i j (z)∈E to the difference operator L X

i j (z) on X . Applying ρ to the elements of (1.6)–(1.7), one gets differ-
ence operators DX

k (z) and L̂ X
k (z) acting on X with bidegree (−$N−k,−$N−k) and (εk, εk), respectively.

When no confusion arises, we shall drop the superscript X from L X , DX and L̂ X to simplify notations.
A morphism 8 : X→ Y of E-modules is a linear map which respects the h-gradings (so that 8 is a

morphism in category V) and satisfies 8L X
i j (z)= LY

i j (z)8 for 1≤ i, j ≤ N . The category of E-modules
is denoted by Rep. It is a subcategory of Vft and is abelian since the kernel and cokernel of a morphism
of E-modules, as h-graded M-vector spaces, are naturally E-modules.5

Definition 1.3 [Etingof and Moura 2002, §4]. Õ is the full subcategory of Rep whose objects X are such
that wt(X) is contained in a finite union of cones µ+ Q− with µ ∈ h.

For X and Y objects in category Õ, the L X⊗Y
i j (z) :=

∑N
k=1 L X

ik(z)⊗LY
k j (z) define a representation of E

on X⊗Y which is easily seen to be in category Õ. So Õ is a monoidal subcategory of V . Similarly, Õ is
an abelian subcategory of Rep.

Definition 1.4 [Felder and Zhang 2017, §2]. An object in Fmer consists of a finite-dimensional vector
space V equipped with difference operators Dl(z) : V→ V of bidegree (−$N−l,−$N−l) (see footnote 2)
for 1≤ l ≤ N depending on z ∈ C such that:

(M3) There exists an ordered basis of V with respect to which the matrices of the difference operators
Dl(z) are upper triangular, the diagonal entries are nonzero meromorphic functions of z ∈ C, and
the off-diagonal entries are meromorphic functions of (z, λ) ∈ C× h.

A morphism 8 : V → W in Fmer is a linear map commuting with the Dl(z). (Namely, 8DV
l (z) =

DW
l (z)8 : V → W for 1 ≤ l ≤ N . Here we add the superscripts V and W in the Dl(z) to indicate the

space on which they act.)

For V an object of Fmer, the operators Dl(z) being invertible because of the triangularity, one has a
unique factorization of operators for 1≤ l ≤ N :

Dl(z)= KN (z)KN−1(z+ h̄)KN−2(z+ 2h̄) · · · KN−l+1(z+ (l − 1)h̄). (1.8)

Notably Kl(z) : X→ X is a difference operator of bidegree (εl, εl). Property (M3) still holds if the Dl(z)
are replaced by the Kl(z).

5In other works [Cavalli 2001; Etingof and Moura 2002; Felder and Varchenko 1996b; Gautam and Toledano Laredo 2017a;
Konno 2009; 2016; Tarasov and Varchenko 2001; Yang and Zhao 2017] a module V is an h-graded C-vector space; morphisms
of modules depend on the dynamical parameter λ, so do their kernel and cokernel; the abelian category structure is nontrivial.
The scalar extension gives a module V ⊗C M in the present situation. Since our modules and morphisms are M-linear, the
dependence of kernels and images on the dynamical parameter does not matter.
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The forgetful functor from Fmer to the category of finite-dimensional vector spaces equips Fmer

with an abelian category structure. (For a proof, we refer to [Felder and Zhang 2017, §2.1] where
another characterization of category Fmer in terms of Jordan–Hölder series is given.) Let us describe its
Grothendieck group K0(Fmer).

The multiplicative group M×
C

of nonzero meromorphic functions of z ∈ C contains a subgroup C×

of nonzero constant functions. Let M be the quotient group of (M×
C
)N by its subgroup formed of

(c1, c2, . . . , cN ) ∈ (C
×)N such that c1c2 · · · cN = 1. We show that K0(Fmer) has a Z-basis indexed by M.

For f = ( f1(z), f2(z), . . . , fN (z))∈ (M×C )
N , the vector space M with the following difference operators

Dl(z) is an object in category Fmer denoted by M f :

g(λ) 7→ g(λ− h̄$N−l) fN (z) fN−1(z+ h̄) fN−2(z+ 2h̄) · · · fN−l+1(z+ (l − 1)h̄).

We have Kl(z)g(λ)= g(λ+ h̄εl) fl(z). As a consequence of (M3) in Definition 1.4, all irreducible objects
of category Fmer are of this form.

Lemma 1.5. Let e, f ∈ (M×
C
)N . The objects Me and M f are isomorphic in category Fmer if and only if

e, f have the same image under the quotient (M×
C
)N �M.

Proof. Write e= (e1(z), e2(z), . . . , eN (z)) and f = ( f1(z), f2(z), . . . , fN (z)).
Sufficiency: assume el(z)= fl(z)cl with cl ∈ C× and c1c2 · · · cN = 1. For 1≤ l < N , choose bl such

that cl = ebl h̄ . Set bN := −b1−b2−· · ·−bN−1. Then ebN h̄
= c−1

1 c−1
2 · · · c

−1
N−1 = cN and the following is

a well-defined element of M×:

ϕ(x1ε1+ x2ε2+ · · ·+ xNεN )= eb1x1+b2x2+···+bN xN for x1, x2, . . . , xN ∈ C.

Indeed ϕ(α+β)= ϕ(α)ϕ(β) and ϕ(xε1+ xε2+ · · ·+ xεN )= 1 for x ∈ C. Notably,

ϕ(λ+ h̄εl)= ϕ(λ)ϕ(h̄εl)= eh̄blϕ(λ)= clϕ(λ).

So Me→M f , g(λ) 7→ g(λ)ϕ(λ) is an isomorphism in category Fmer.
Let 8 :Me→M f be an isomorphism in category Fmer. Set ϕ(λ) :=8(1). Then ϕ(λ)∈M×. Applying

8Kl(z)= Kl(z)8 to 1 we get

ϕ(λ+ h̄εl) fl(z)= ϕ(λ)el(z).

So el(z)/ fl(z) = ϕ(λ+ h̄εl)/ϕ(λ), being independent of z, is a constant function cl ∈ C×. We have
el(z)= fl(z)cl and ϕ(λ+ h̄εl)= clϕ(λ). It follows that

ϕ(λ)= ϕ(λ+ h̄ε1+ h̄ε2+ · · ·+ h̄εN )= c1c2 · · · cNϕ(λ),

which implies c1c2 · · · cN = 1. So e and f have the same image in M. �

For each f ∈M, let us fix a preimage f ′ in (M×
C
)N and set M( f ) :=M f ′ . Then the isomorphism

classes [M( f )] for f ∈M form a Z-basis of K0(Fmer). When no confusion arises, we identify an element
of (M×

C
)N with its image in M.
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Lemma 1.6. Let V be in category Fmer. Assume B is an ordered basis of V with respect to which the
matrices of the difference operators Kl(z) are upper triangular. Then for b ∈ B and 1≤ l ≤ N there exist
ϕb(λ) ∈M× and fb,l(z) ∈M×

C
such that

[Kl]bb(z; λ)= fb,l(z)
ϕb(λ)

ϕb(λ+ h̄εl)
.

Recall that [Kl]bb(z; λ) is the coefficient of b in Kl(z)b. This lemma says that if the matrices of the
Kl(z) are upper triangular, then their diagonal entries must be of the form f (z)h(λ), and the h(λ) can be
gauged away uniformly.

More precisely, the new basis {ϕb(λ)b | b ∈ B} with the ordering induced from B satisfies (M3) in
Definition 1.4; the diagonal entry of Kl(z) associated to ϕb(λ)b is fb,l(z). This yields the following
identity in the Grothendieck group K0(Fmer):

[V ] =
∑
b∈B

[M( fb,1(z), fb,2(z), . . . , fb,N (z))].

Proof. Write B = {b1 < b2 < · · · < bm}. We proceed by induction on the dimension m = dim(V ). If
m = 1, then there exist f = ( f1(z), f2(z), . . . , fN (z)) ∈ (M×C )

N and an isomorphism 8 :M f → V in
category Fmer. Let 8(1)= ϕ(λ)b1. Then applying 8Kl(z)= Kl(z)8 to 1 we obtain the desired identity

fl(z)ϕ(λ)= [Kl]b1b1(z; λ)ϕ(λ+ h̄εl).

If m > 1, then the subspace V ′ of V spanned by (b1, b2, . . . , bm−1) is stable by the Kl(z) and Dl(z) by
the triangularity assumption. So V ′ is an object of category Fmer and we obtain a short exact sequence
0→ V ′→ V → V/V ′→ 0. The rest is clear by applying the induction hypothesis to V ′ and V/V ′,
which have ordered bases {b1 < b2 < · · ·< bm−1} and {bm + V ′} respectively. �

Definition 1.7. O is the full subcategory of Õ consisting of E-modules X such that X [µ] endowed with
the action of the Dl(z) belongs to Fmer for all µ ∈ wt(X).

The definition of Õ is standard as in the cases of Kac–Moody algebras [Kac 1990] and quantum
affinizations [Hernandez 2005]. Definition 1.7 is a special feature of elliptic quantum groups. It is meant
to loosen the dependence on the dynamical parameter λ.6

O is an abelian subcategory of Õ. For X in category O, (1.8) defines difference operators Kl(z) : X→ X
of bidegree (εl, εl) for 1≤ l ≤ N .7

Following [Cavalli 2001, Definition 2.1], a nonzero weight vector of a module X in category Õ is
called singular if it is annihilated by the L i j (z) for 1≤ j < i ≤ N .

Lemma 1.8. Let X be in category O. If v ∈ X is singular, then Ki (z)v = L̂ i (z)v for all 1≤ i ≤ N.
6For the elliptic quantum group associated to an arbitrary finite-dimensional simple Lie algebra, Gautam and Toledano Laredo

[2017a, §2.3] defined a category of integrable modules on which the action of the elliptic Cartan currents, analogs of Dk(z), is
independent of λ. The asymptotic modules that we will construct in Section 4 are not integrable.

7The Kl (z) do not come from the elliptic quantum group, yet formally they are elliptic Cartan currents K+l (z) in [Konno
2016, Corollary E.24], arising from a Gauss decomposition of an L̂-matrix [Ding and Frenkel 1993].
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Proof. Descending induction on i : for i = N we have KN (z)= L N N (z)= L̂ N (z). Assume the statement
for i > N − t where 1≤ t < N . We need to prove the case i = N − t . Let α be the weight of v and let Y
be the submodule of X generated by v. By [Cavalli 2001, Lemma 2.3], Y is linearly spanned by vectors
of the form

L p1q1(z1)L p2q2(z2) · · · L pnqn (zn)v,

where 1 ≤ pl ≤ ql ≤ N and zl ∈ C for 1 ≤ l ≤ n. So α+ εp − εq /∈ wt(Y ) for 1 ≤ p < q ≤ N , and any
nonzero vector ω ∈ Y [α] is singular. Apply Dk(z) to ω. At the right-hand side of (1.6) only the term
σ = Id is nonzero and equal to L̂ N (z)L̂ N−1(z+ h̄) · · · L̂ N−k+1(z+ (k− 1)h̄)ω by (1.7). It follows that

Dt+1(z)v = L̂ N (z)L̂ N−1(z+ h̄) · · · L̂ N−t+1(z+ (t − 1)h̄)L̂ N−t(z+ t h̄)v

= KN (z)L̂ N−1(z+ h̄) · · · L̂ N−t+1(z+ (t − 1)h̄)L̂ N−t(z+ t h̄)v

...

= KN (z)KN−1(z+ h̄) · · · KN−t+1(z+ (t − 1)h̄)L̂ N−t(z+ t h̄)v.

Here we applied the induction hypothesis to N , N − 1, . . . , N − t + 1 successively to singular vectors to
the right of the underlines. Since the Kl(z) are invertible, in view of (1.8) we must have L̂ N−t(z+ t h̄)v =
KN−t(z+ t h̄)v. �

We extend the q-character theory of H. Knight and Frenkel and Reshetikhin to category O, as in [Felder
and Zhang 2017, §3]. Take the product group Mw :=M× h, by viewing h as an additive group. Let
$ :Mw� h be the projection to the second component.

As in [Hernandez and Leclerc 2016, §3.2], let Mt be the set of formal sums
∑

f∈Mw
c f f with

integer coefficients c f ∈ Z such that for µ ∈ h, all but finitely many c f with $( f )= µ is zero; the set
{$( f ) : c f 6= 0} is contained in a finite union of cones ν+ Q− with ν ∈ h. Make Mt into a ring; addition
is the usual one of formal sums and multiplication is induced from that of Mw.

Definition 1.9. Let X be in category O. For µ∈wt(X), since X [µ] equipped with the difference operators
Dk(z) is in category Fmer, in the Grothendieck group of which we have [X [µ]] =

∑dim X [µ]
i=1 [M( f µ,i )]

where f µ,i ∈M for 1 ≤ i ≤ dim X [µ]. Each of the ( f µ,i ;µ) ∈Mw is called an e-weigth of X . Let
wte(X) be the set of e-weigths of X . The q-character of X is defined to be

χq(X) :=
∑

µ∈wt(X)

dim X [µ]∑
i=1

( f µ,i ;µ) ∈Mt.

Proposition 1.10. Let X and Y be in category O. The E-module X⊗Y is also in category O and
χq(X⊗Y )= χq(X)χq(Y ).

Proof. Clearly X⊗Y is in category Õ. Let us verify property (M3) of Definition 1.4. The idea is almost
the same as that of [Felder and Zhang 2017, Proposition 3.9], which in turn followed [Frenkel and
Reshetikhin 1999, §2.4]. For α, β ∈ h, let us choose ordered bases (vαi )1≤i≤pα and (wβj )1≤ j≤qβ for X [α]
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and Y [β], respectively, satisfying (M3). Note that (vαi ⊗w
β

j )α,β,i, j forms a basis B of X⊗Y . Choose a
partial order E on B with the properties

vαi ⊗w
β

j E v
α
r ⊗w

β
s if i ≤ r and j ≤ s,

vαi ⊗w
β

j C v
γ
r ⊗w

δ
s if γ ≺ α and β ≺ δ.

For 1≤ k ≤ N , by Corollary 1.2, DX⊗Y
k (z)(vγr ⊗wδs )= DX

k (z)v
γ
r ⊗DY

k (z)w
δ
s + Z where Z is a finite sum

of vectors in X [γ +$N−k +η]⊗Y [δ−$N−k −η] for η ∈ h such that −$N−k ≺ η. So the ordered basis
B induces an upper triangular matrix for DX⊗Y

k (z) whose diagonal entry associated to vγr ⊗wδs is the
product of those associated to vγr and wδs . This implies (M3) for the weight spaces (X⊗Y )[α] with bases
B∩ (X⊗Y )[α] and the multiplicative formula of q-characters as well. �

For f (z) ∈M×
C

and α ∈ h we make the simplifications

f (z) := ( f (z), . . . , f (z); 0) and eα := (1, . . . , 1;α) ∈Mw.

Definition 1.11. Let 1 ≤ i, k ≤ N such that i 6= N . Set `k := (N − k − 1)/2. For a ∈ C, define the
following elements of Mw:

Ai,a :=

(
1, . . . , 1︸ ︷︷ ︸

i−1

,
θ(z+ (a− `i )h̄)

θ(z+ (a− `i − 1)h̄)
,

θ(z+ (a− `i )h̄)
θ(z+ (a− `i + 1)h̄)

, 1, . . . , 1︸ ︷︷ ︸
N−i−1

;αi

)
.

9k,a :=
(
θ(z+ (a− `k)h̄), . . . , θ(z+ (a− `k)h̄)︸ ︷︷ ︸

k

, 1, . . . , 1︸ ︷︷ ︸
N−k

; a$k
)
.

Yk,a :=

(
θ
(
z+

(
a− `k +

1
2

)
h̄
)

θ
(
z+

(
a− `k −

1
2

)
h̄
) , . . . , θ(z+ (a− `k +

1
2

)
h̄
)

θ
(
z+

(
a− `k −

1
2

)
h̄
)︸ ︷︷ ︸

k

, 1, . . . , 1︸ ︷︷ ︸
N−k

;$k

)
.

k a :=

(
θ(u+ h̄)θ(u− h̄)

θ(u)2
, . . . ,

θ(u+ h̄)θ(u− h̄)
θ(u)2︸ ︷︷ ︸

k−1

,
θ(u+ h̄)
θ(u)

, 1, . . . , 1︸ ︷︷ ︸
N−k

; εk

)∣∣∣∣
u=z+ah̄

.

Ai,a, Yk,a and 9k,a are elliptic analogs of generalized simple roots, fundamental `-weight [Frenkel and
Reshetikhin 1999] and prefundamental weight [Hernandez and Jimbo 2012]. Set ci j := 2δi j − δi, j±1 and
Y0,a =90,a := 1. Then (in the products 1≤ j ≤ N )

Yk,a =
9k,a+ 1

2

9k,a− 1
2

and Ai,a =
∏

j

9 j,a+
ci j
2

9 j,a−
ci j
2

= Yi,a− 1
2
Yi,a+ 1

2

∏
j=i±1

Y−1
j,a . (1.9)

The interplay of A, 9 is the source of the three-term Baxter’s Relation (5.32) in category O. Note that A
and Y can also be written in terms of k :
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Ai,a = i a−`i
i + 1

−1

a−`i
, Yk,a =

k∏
j=1

j
a−`k−

1
2+ j−k

, (1.10)

9N ,a = θ
(
z+

(
a+ 1

2

)
h̄
)
, YN ,a =

θ(z+ (a+ 1)h̄)
θ(z+ ah̄)

. (1.11)

1D. Vector representations. Let V := ⊕N
i=1Mvi with h-grading V [εi ] = Mvi . Rewriting (1.1) in the

form of (1.2), we obtain an E-module structure on V :

L i j (z)vk =

N∑
l=1

θ(z+ h̄)
θ(z)

R jk
il (z; λ)vl .

The factor θ(z+ h̄)/θ(z) is used to simplify the q-character, see (1.12).
If i ≤ N−k+1, since L pq(z)vi =0 for all N ≥ p>q> N−k, only the term σ = Id in (1.6) survives and

Dk(z)vi =
µr(2k(λ))

µl(2k(λ))

N−k+1∏
j=N

L j j (z+ (N − j)h̄)vi = gi
k(z; λ)vi ,

gi
k(z; λ)=

∏
j>N−k

θ(λi j + h̄)
θ(λi j )

for i ≤ N − k,

gN−k+1
k (z; λ)=

θ(z+ kh̄)
θ(z+ (k− 1)h̄)

.

If i > N−k+1, then L N−k+1,i (z)vN−k+1= θ(h̄)θ(z+λN−k+1,i )vi/(θ(z)θ(λN−k+1,i )). By Corollary 1.2,
Dk(z)vi = gN−k+1

k (z; λ)vi . Let us perform a change of basis (see [Konno 2016, (E.2)])

ṽi := vi

∏
l>i

θ(λil + h̄) ∈ V [εi ].

After a direct computation, we obtain

Dk(z)ṽi = ṽi ×

{ 1 for i ≤ N − k,
θ(z+kh̄)

θ(z+(k−1)h̄)
for i > N − k.

(1.12)

The basis {ṽ1 < ṽ2 < · · ·< ṽN } of V satisfies property (M3) of Definition 1.4, so V is in category O. For
a ∈ C, let V (a) be the pullback of V by the spectral parameter shift 8a in (1.4). Naturally V (a) is in
category O; it is called a vector representation. Combining with (1.8) we have

χq(V (a))= 1 a + 2 a + · · ·+ N a.

1E. Highest weight modules. Let X be in category Õ. A nonzero weight vector v ∈ X [α] is called a
highest weight vector if it is singular and L̂k(z)v = fk(z)v for 1 ≤ k ≤ N ; here the fk(z) ∈M×

C
. Call

( f1(z), f2(z), . . . , fN (z);α) ∈Mw the highest weight of v; by Lemma 1.8 it belongs to wte(X) if X is
in category O.
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If there is a highest weight vector v ∈ X [α] of X which also generates the whole module, then X
is called a highest weight module, see [Cavalli 2001, Definition 2.1]. In this case, by [Cavalli 2001,
Lemma 2.3], X [α] = Mv and wt(X) ⊆ α + Q−, so the highest weight vector is unique up to scalar
product. This implies that X admits a unique irreducible quotient. The highest weight of v is also called
the highest weight of X ; it is of multiplicity one in χq(X) if X is in category O.

All irreducible modules in category O are of highest weight.
By [Cavalli 2001, Theorem 2.8] two irreducible highest weight modules in category Õ are isomorphic

if and only if their highest weights are identical in Mw; all singular vectors of an irreducible highest
weight module in category Õ are proportional. It follows that the q-characters distinguish irreducible
modules in category O.

Let R be the set of d ∈Mw which appears as the highest weight of an irreducible module in category O.
For d ∈R, let us fix an irreducible module S(d) in category O of highest weight d. Let R0 and Rfd be
the set of d ∈R such that S(d) is one-dimensional and finite-dimensional, respectively.

We shall need the completed Grothendieck group K0(O). Its definition is the same as that in [Hernandez
and Leclerc 2016, §3.2]; elements are formal sums

∑
d∈R cd[S(d)] with integer coefficients cd ∈ Z such

that ⊕d S(d)⊕|cd | is in category O and addition is the usual one of formal sums. As in the case of
Kac–Moody algebras [Kac 1990, §9.6], for d ∈ R the multiplicity md,X of S(d) in any object X of
category O is well-defined due to Definition 1.7, and [X ] :=

∑
d md,X [S(d)] belongs to K0(O). In the

case X = S(d) the right-hand side is simply [S(d)] as me,S(d) = δd,e for e ∈R.
By Proposition 1.10, K0(O) is endowed with a ring structure with multiplication [X ][Y ] = [X⊗Y ] for

X and Y in category O. Together with Definition 1.9, we obtain

Corollary 1.12. The assignment [X ] 7→ χq(X) defines an injective morphism of rings χq : K0(O)→Mt.
In particular, K0(O) is commutative.

Let Ofd be the full subcategory of O consisting of finite-dimensional modules. It is abelian and
monoidal. Its Grothendieck ring K0(Ofd) admits a Z-basis [S(d)] for d ∈Rfd, and is commutative as a
subring of K0(O).

By Proposition 1.10, S(d)⊗S(e) admits an irreducible subquotient S(de), so the three sets R⊃Rfd⊃R0

are submonoids of Mw.

Lemma 1.13. Let d = (( fk(z))1≤k≤N ;µ) ∈Mw.

(i) Suppose d ∈R. Then for 1≤ k < N we have

fk(z)
fk+1(z)

= c
n∏

l=1

θ(z+ al h̄)
θ(z+ bl h̄)

and µk,k+1 =

n∑
l=1

(al − bl)

for certain a1, a2, . . . , an, b1, b2, . . . , bn ∈ C and c ∈ C×.

(ii) If d ∈Rfd, then (i) holds and after a rearrangement of the al, bl we have al − bl ∈ Z≥0+ h̄−10 for
all l.
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(iii) d ∈R0 if and only if (ii) holds with al − bl ∈ h̄−10 for all l.

Proof. Results (i) and (iii) are essentially [Felder and Varchenko 1996b, Theorems 6 and 9], which can be
proved as in [Felder and Zhang 2017, Theorem 4.1] by replacing L+−, L−+ therein with Lk,k+1, Lk+1,k .
Result (ii) comes from either [Cavalli 2001, Theorem 5.1] or [Felder and Zhang 2017, Corollary 4.6]. �

As examples YN ,a, 9N ,a ∈R0. Call an e-weigth e∈Mw dominant or rational if e= dm where d ∈R0

and m is a product of the Yi,a or the 9i,a9
−1
i,b , respectively with a, b ∈ C and 1 ≤ i ≤ N . Lemma 1.13

implies that all elements of Rfd or R are dominant or rational, respectively.

Theorem 1.14 [Cavalli 2001]. Rfd is the set of dominant e-weigths.

Proof. It suffices to prove Yn,a ∈ Rfd for 1 ≤ n < N . Note that V (w) and γ from [Cavalli 2001,
(1.19)] correspond to our V (−w/h̄)⊗S(θ(z−w)/θ(z−w− h̄)) and −h̄. Let us rephrase [Cavalli 2001,
Theorem 4.4] in terms of the V by replacing z and w in [loc. cit.] with −ah̄ and z.

The E-module V (a)⊗V (a+ 1)⊗ · · ·⊗V (a+ n− 1) admits an irreducible quotient S which contains
a singular vector ω of weight $n such that L̂k(z)ω =3k(z)gk(λ)ω where for 1≤ k ≤ N (set δk≤n = 1 if
1≤ k ≤ n and δk≤n = 0 if n < k ≤ N )

3k(z)=
θ(z+ (a+ 1)h̄)
θ(z+ ah̄)

θ(z+ (a+ n)h̄)
θ(z+ (a+ n− δk≤n)h̄)

for gk(λ) ∈M×.

As a subquotient of tensor products of vector representations, S belongs to category O. By Lemma 1.6,
the gk(λ) can be gauged away, and the highest weight of S is 3N (z)Yn,a−1+(N+n)/2 ∈Rfd. This implies
Yn,a−1+(N+n)/2 ∈Rfd. �

A sharp difference from the affine case [Hernandez and Jimbo 2012, Theorem 3.11] is that category O
does not admit prefundamental modules, i.e., 9r,a /∈R if r < N . One might want to introduce a larger
category with well-behaved q-character theory, so that modules of highest weight 9r,a exist. For this
purpose, the finite-dimensionality of weight spaces should be dropped because of [Felder and Varchenko
1996b, Theorem 9]. The recent work [Bittmann 2017] on representations of affine quantum groups is in
this direction.

1F. Young tableaux and q-character formula. Let P be the set partitions with at most N parts, i.e.,
N -tuples of nonnegative integers (µ1≥µ2≥ · · · ≥µN ). To such a partition we associate a Young diagram

Yµ := {(i, j) ∈ Z2
| 1≤ i ≤ N , 1≤ j ≤ µi },

and the set Bµ of Young tableaux of shape Yµ. We put the Young diagram at the northwest position so
that (i, j) ∈ Yµ corresponds to the box at the i-th row (from bottom to top) and j-th column (from right
to left). By a tableau we mean a function T : Yµ→ {1 < 2 < · · · < N } weakly increasing at each row
(from left to right) and strictly increasing at each column (from top to bottom).

For µ= (µ1 ≥ µ2 ≥ · · · ≥ µN ) ∈ P and a ∈ C, we have the dominant e-weigth

θµ,a :=

(
θ(z+ (a+µ1)h̄)

θ(z+ ah̄)
,
θ(z+ (a+µ2)h̄)

θ(z+ ah̄)
, . . . ,

θ(z+ (a+µN )h̄)
θ(z+ ah̄)

;

N∑
j=1

µ jε j

)
.
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The associated irreducible module in category Ofd is denoted by Sµ,a .

Theorem 1.15. Let µ ∈ P and a ∈ C. For the Eτ,h̄(slN )-module Sµ,a we have

χq(Sµ,a)=
∑

T∈Bµ

∏
(i, j)∈Yµ

T (i, j)
a+ j−i

∈Mt. (1.13)

For ν = (1≥ 0≥ 0≥ · · · ≥ 0), we have Sν,a ∼= V (a), and (1.13) specializes to the q-character formula
in Section 1D. As an illustration of the theorem, let N = 3 and µ= (2≥ 1≥ 0). Pictorially Bµ consists of

1
1 2 ,

1
1 3 ,

1
2 2 ,

1
2 3 ,

1
3 3 ,

2
1 3 ,

2
2 3 ,

2
3 3 .

The fourth tableau gives rise to the term 2 a+1 3 a 1 a−1 in χq(Sµ,a).

Remark 1.16. Theorem 1.15 is an elliptic analog of the q-character formula for affine quantum groups
[Frenkel and Mukhin 2002, Lemma 4.7]. In principle it can be deduced from the functor of Gautam
and Toledano Laredo [2017a, § 6]. This is a functor from finite-dimensional representations of affine
quantum groups to those of elliptic quantum groups (including our Sµ,a), and it respects affine and elliptic
q-characters.

The proof of Theorem 1.15 will be given in Section 2D. It is in the spirit of [Frenkel and Mukhin
2002], based on small elliptic quantum groups of Tarasov and Varchenko [2001].

2. Small elliptic quantum group and evaluation modules

The aim of this section is to prove Corollary 1.2 and Theorem 1.15.
Recall that h is the C-vector space generated by the εi for 1≤ i ≤ N subject to the relation

ε1+ ε2+ · · ·+ εN = 0.

For 1 ≤ k ≤ N , define the C-vector space hk to be the quotient of h by ε1 = ε2 = · · · = εN−k = 0. (By
convention hN = h.) The quotient h� hk induces an embedding Mhk ↪→M.

Let Eh
k and Ek be the h-algebra and hk-algebra, respectively, generated by the L i j (z) for N−k< i, j ≤ N

subject to relation (1.2) with summations N − k < p, q ≤ N . (This makes sense because the R pq
i j (z; λ)

for N − k < i, j, p, q ≤ N belong to Mhk .) The following defines an hk-algebra morphism

1k : Ek→ Ek⊗̃Ek and L i j (z) 7→
N∑

p=N−k+1

L i p(z)⊗̃L pj (z).

One has natural algebra morphisms Ek → Eh
k → E sending L i j (z) to itself; the second is an h-algebra

morphism. D1(z),D2(z), . . . ,Dk(z) from (1.6) are well-defined in Eh
k and Ek . Their images in E are the

first k elliptic quantum minors.
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2A. Proof of Corollary 1.2. The hk-algebra with coproduct (Ek,1k) is isomorphic to the usual elliptic
quantum group Eτ,h̄(slk); here we view hk as a Cartan subalgebra of slk so that Eτ,h̄(slk) is an hk-algebra.
Under this isomorphism, by (1.6), Dk(z) ∈ Ek corresponds to the k-th elliptic quantum minor of Eτ,h̄(slk).
So Theorem 1.1 can be applied to (Ek,Dk(z),1k) and then to the algebra morphism Ek→ E . The first
statement of the corollary is obvious, and the second is based on the fact that for i, j > N−k the difference
1−1k at L i j (z) is a finite sum over α∈h of elements in Eεi ,α⊗̃Eα,ε j with εN−k+1≺α and so εi , ε j ≺α. �

We believe 0 6= α+$N−k ∈ Q+ in Corollary 1.2, as in [Damiani 1998, §7] and [Zhang 2016, §3].

2B. Small elliptic quantum group of Tarasov–Varchenko. Let us define the linear form λi ∈ h∗ by
taking i-th component for 1≤ i ≤ N ,

x1ε1+ x2ε2+ · · ·+ xNεN 7→ xi −
1
N
(x1+ x2+ · · ·+ xN ).

The linear form λi j of Section 1 is λi −λ j . For γ ∈ h and 1≤ i, j ≤ N , set γi := λi (γ ) and γi j := γi −γ j

as complex numbers. We hope this is not to be confused with the previously defined vectors λi ∈ h
∗ and

εi , αi ,$i ∈ h.
Following [Tarasov and Varchenko 2001, §3], let M2 be the ring of meromorphic functions f (λ{1}, λ{2})

of (λ{1}, λ{2}) ∈ h⊕ h whose location of singularities in λ{1} does not depend on λ{2} and vice versa. For
brevity, we write f (λ{1}) or f (λ{2}) instead of f (λ{1}, λ{2}) if the function does not depend on the other
variable.

Definition 2.1 [Tarasov and Varchenko 2001]. The small elliptic quantum group e := eτ,h̄(slN ) is the
algebra with generators M2 and ti j for 1 ≤ i, j ≤ N and subject to relations: M2 is a subalgebra. For
f (λ{1}, λ{2}) ∈M2 and 1≤ i, j, k, l ≤ N ,

ti j f (λ{1}, λ{2})= f (λ{1}+ h̄εi , λ
{2}
+ h̄ε j )ti j ,

ti j tik = tik ti j ,

tik t jk =
θ(λ
{1}
i j − h̄)

θ(λ
{1}
i j + h̄)

t jk tik for i 6= j,

θ(λ
{2}
jl − h̄)

θ(λ
{2}
jl )

ti j tkl −
θ(λ
{1}
ik − h̄)

θ(λ
{1}
ik )

tkl ti j =
θ(λ
{1}
ik + λ

{2}
jl )θ(−h̄)

θ(λ
{1}
ik )θ(λ

{2}
jl )

til tk j for i 6= k and j 6= l.

Here λ{1}i j = λ
{1}
i − λ

{1}
j and λ{2}i j = λ

{2}
i − λ

{2}
j .

The small elliptic quantum group e is equipped with an h-algebra structure: Elements of M2 are of
bidegree (0, 0). ti j is of bidegree (ε j , εi ). The moment maps are given by

µl(g(λ))= g(λ{2}) and µr(g(λ))= g(λ{1}).
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Let X be an object of Vft. A representation ρ of e on X is a morphism of h-algebras ρ : e→DX such that
for f (λ{1}, λ{2}) ∈M2 and v ∈ X [γ ],

ρ( f (λ{1}, λ{2})) : v 7→ f (λ, λ+ h̄γ )v.

A morphism of two representations (ρ, X) and (σ, Y ) is a morphism 8 : X → Y in Vft such that
8ρ(ti j )= σ(ti j )8 for 1≤ i, j ≤ N . Let rep be the category of e-modules. The following result is [Tarasov
and Varchenko 2001, Corollary 3.4].

Corollary 2.2. Let (ρ, X) be a representation of e on X. Then, for a ∈ C,

L i j (z) 7→
θ(z+ ah̄+ λ{2}i − λ

{1}
j )

θ(z+ ah̄)
ρ(t j i )

defines a representation of E on X , called the evaluation module X (a).

There is a flip of the subscripts i and j because the bidegrees of L i j and ti j are flips of each other. See
also [Tarasov and Varchenko 2001, (3.6)] where Ti j (u) comes from t j i .

X 7→ X (a) defines a functor eva : rep→ Rep. Let F be the full subcategory of rep whose objects are
finite-dimensional e-modules X with X (x) being in category O. Then eva restricts to a functor of abelian
categories F→Ofd, and induces an injective morphism of Grothendieck groups K0(F) ↪→ K0(Ofd).

For 1≤ k ≤ N , define t̂k ∈ e in the same way as (1.7):8

t̂N (z) := tN N and t̂k(z)= tkk

N∏
j=k+1

µr(θ(λk j ))

µl(θ(λk j ))
.

Let µ ∈ h. There exists a unique (up to isomorphism) irreducible e-module Vµ with the property Vµ
admits a nonzero vector v of weight µ such that t̂kv = v, ti jv = 0 for 1 ≤ i, j, k ≤ N and j < k; it is
called standard in [Tarasov and Varchenko 2001, §4]. Let Lµ denote the complex irreducible module
over the simple Lie algebra slN of highest weight µ. For ν ∈ h, let dµ[ν] = dimC Lµ[ν] where Lµ[ν] is
the weight space of weight ν.

Theorem 2.3 [Tarasov and Varchenko 2001, Theorem 5.9]. The e-module Vµ is finite-dimensional if and
only if µi j ∈ Z≥0+ h̄−10 for 1 ≤ i < j ≤ N. If µ̃ ∈ h is such that µi j − µ̃i j ∈ h̄−10 and µ̃i j ∈ Z≥0 for
i < j , then dim Vµ[µ+ γ ] = dµ̃[µ̃+ γ ] for γ ∈ Q−.

In the theorem µ̃ is uniquely determined by µ since Z ∩ h−10 = {0}. Such an e-module Vµ is in
category F . Indeed, the evaluation module Vµ(a) is irreducible in category Õ of highest weight(

θ(z+ (µ1+ a)h̄)
θ(z+ ah̄)

,
θ(z+ (µ2+ a)h̄)

θ(z+ ah̄)
, . . . ,

θ(z+ (µN + a)h̄)
θ(z+ ah̄)

;µ

)
.

One checks that such an e-weigth is dominant. So Vµ(a) is in category Ofd by Theorem 1.14. The
character χ(Vµ) of Vµ is

∑
γ dµ̃[µ̃+ γ ]eµ+γ ∈Mt.

8The t̂a are slightly different from the t̂aa in [Tarasov and Varchenko 2001, (4.1)]. Yet they play the same role.
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The isomorphism classes [Vµ] where µ ∈ h and µi j ∈ Z≥0+ h̄−10 for i < j form a Z-basis of K0(F),
and [Vµ] 7→χ(Vµ) extends uniquely to a morphism of abelian groups χ : K0(F)→Mt, which is injective
thanks to the linear independence of characters of irreducible representations of the simple Lie algebra slN .

2C. Category O′
fd. We are going to prove Theorem 1.15 by induction on N . The idea is to view the

irreducible E-module Sµ,a as an Eh
N−1-module and to apply the induction hypothesis. For this purpose,

we need to adapt carefully the definitions of finite-dimensional module category Ofd and its q-characters
in Section 1C to Eh

N−1. To distinguish with E and to simplify notations, we shall add a prime (instead of
the index N−1) to objects related to Eh

N−1. Notably h′ := hN−1.
We define category O′fd. An object is a finite-dimensional h-graded vector space X (viewed as an object

of category Vft) endowed with difference operators L X
i j (z) : X→ X of bidegree (εi , ε j ) for 2≤ i, j ≤ N

depending on z ∈ C such that:

(M1’) There exists a basis of X with respect to which the matrix entries of the difference operators L X
i j (z)

are meromorphic functions of (z, λ) ∈ C× h.

(M2’) L i j (z) 7→ L X
i j (z) defines an h-algebra morphism Eh

N−1→ DX .

(M3’) X admits an ordered weight basis with respect to which the matrices of the difference operators
DX

l (z) for 1 ≤ l < N are upper triangular and their diagonal entries are nonzero meromorphic
functions of z ∈ C.

A morphism in category O′fd a linear map 8 : X→ Y such that 8L X
i j (z)= LY

i j (z)8 for 2≤ i, j ≤ N .
Category O′fd is an abelian subcategory of Vft.

The h-algebra morphism Eh
N−1→ E induces restriction functor Ofd→O′fd.

Let X be in category O′fd. Equation (1.8) defines difference operators K X
l (z) : X → X of bidegree

(εl, εl) for 2 ≤ l ≤ N . Condition (M3’) implies that for each weight α, the weight space X [α] admits
an ordered basis Bα with respect to which the matrix of K X

l (z) is upper triangular and has as diagonal
entries fb,l(z) ∈M×

C
for b ∈ Bα. Following Definition 1.9, we define the q-character of X to be

χ ′q(X)=
∑

α∈wt(X)

∑
b∈Bα

(1, fb,2(z), fb,3(z), . . . , fb,N (z);α) ∈Mt.

It is independent of the choice of the bases Bα, as one can use category Fmer to characterize the fb,l(z),
see the comments after Lemma 1.6.

Remark 2.4. Let X be in category Ofd, viewed as an object of O′fd. Then χ ′q(X) is obtained from χq(X)
by replacing each e-weigth g of the E-module X with g′; here for g = (g1(z), g2(z), . . . , gN (z);α) ∈Mt

we define

g′ := (1, g2(z), g3(z), . . . , gN (z);α) ∈Mt.

Reciprocally, if X is an irreducible E-module in Ofd of highest weight (e1(z), e2(z), . . . , eN (z);α) ∈Rfd,
then χq(X) can be recovered from χ ′q(X). Indeed, since the N -th elliptic quantum minor is central, by
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Schur’s lemma, it acts on X as a scalar. Each e-weigth ( f1(z), f2(z), . . . , fN (z);β) of the E-module X
is determined by the its last N components in χ ′q(X) as follows:

e1(z+ (N − 1)h̄)e2(z+ (N − 2)h̄) · · · eN (z)= f1(z+ (N − 1)h̄) f2(z+ (N − 2)h̄) · · · fN (z).

The highest weight theory in Section 1E carries over to category O′fd since L̂k(z)∈ E
h
N−1 for 2≤ k ≤ N .

Irreducible objects in O′fd are classified by their highest weight, and the q-character map is an injective
morphism from the Grothendieck group K0(O′fd) to the additive group Mt. Let P′ be the set of partitions
with at most N − 1 parts (ν2 ≥ ν3 ≥ · · · ≥ νN ). For such a partition and for c, a ∈ C,(

1,
θ(z+ (a+ ν2)h̄)
θ(z+ ah̄)

,
θ(z+ (a+ ν3)h̄)
θ(z+ ah̄)

, . . . ,
θ(z+ (a+ νN )h̄)

θ(z+ ah̄)
; cε1+

N∑
j=2

ν jε j

)

is the highest weight of an irreducible Eh
N−1-module in category O′fd, which is denoted by S′ν,c,a .

As in Section 1F, ν is identified with its Young diagram Yν . Let B′ν be the set of Young tableaux
Yν→ {2< 3< · · ·< N } of shape ν.

Lemma 2.5. Assume that Theorem 1.15 is true for Eτ,h̄(slN−1)-modules. Then for ν ∈ P′ and c, a ∈ C,
the q-character of the Eh

N−1-module S′ν,c,a is

χ ′q(S
′

ν,c,a)= ecε1
∑

T∈B′ν

∏
(i, j)∈Yν

T (i, j)
′

a+ j−i
∈Mt.

Proof. We shall need EN−1-modules which are h′-graded Mh′-vector spaces; similar category of finite-
dimensional modules and q-characters are defined, based on the h′-algebra isomorphism Eτ,h̄(slN−1)∼=EN−1

in Section 2A.
For ν := (ν2 ≥ ν3 ≥ · · · ≥ νN ) ∈ P′ and a ∈ C there exists a unique (up to isomorphism) irreducible

EN−1-module, denoted by S′ν,a , which contains a nonzero vector ω of h′-weight ν2ε2+ν3ε3+· · ·+νNεN

such that

L i j (z)ω = 0 and L̂k(z)ω =
θ(z+ (a+ νk)h̄)
θ(z+ ah̄)

ω

for 2≤ i, j, k ≤ N with j < i . We endow the M-vector space X :=M⊗Mh′
S′ν,a with an Eh

N−1-module
structure in category O′fd.

Let w be a nonzero weight vector in S′ν,a . Its h′-weight is written uniquely in the form

(ν2ε2+ ν3ε3+ · · ·+ νNεN )+ (x2α2+ x3α3+ · · ·+ xN−1αN−1) ∈ h
′,

where x j ∈ Z≤0. Define the h-weight of g(λ)⊗Mh′
w, for g(λ) ∈M×, to be

(cε1+ ν2ε2+ ν3ε3+ · · ·+ νNεN )+ (x2α2+ x3α3+ · · ·+ xN−1αN−1) ∈ h,

and define the action of L i j (z) for 2≤ i, j ≤ N by the formula

L i j (z)(g(λ)⊗Mh′
w)= g(λ+ h̄ε j )⊗Mh′

L i j (z)w.
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(M1’)–(M2’) are clear from the EN−1-module structure on S′ν,a . Choose an ordered weight basis B of S′ν,a
over Mh′ such that the matrices of Dk(z) for 1 ≤ k < N are upper triangular and their diagonal entries
belong to M×

C
. Then the ordered basis {1⊗Mh′

b |b∈ B}=: B ′ of X satisfies (M3’). So X is in category O′fd.
The matrices of Dk(z) with respect to the basis B ′ of X and the basis B of S′ν,a are the same. So χ ′q(X)

up to a normalization factor ecε1 , is equal to the q-character of the Eτ,h̄(slN−1)-module Sν,a . The latter
is given by (1.13).

X has a unique (up to scalar) singular vector and is of highest weight, so it is irreducible. A comparison
of highest weights shows that X ∼= S′ν,c,a . �

Fix µ ∈P a partition with at most N parts. Given a tableau T ∈Bµ, by deleting the boxes 1 in T , we
obtain a Young diagram T−1({2, 3, . . . , N }) with at most N − 1 rows, which corresponds to a partition
in P′, denoted by νT . Let Wµ be the set of all such νT with T ∈ Bµ. For ν ∈Wµ, define cν to be the
cardinal of the finite subset Yµ \ Yν of Z2.

Again take the example N = 3 and µ= (2≥ 1) after Theorem 1.15. The eight tableaux in Bµ with 1
deleted give four Young diagrams and partitions

= (1), = (2), = (1≥ 1), = (2≥ 1).

The corresponding integers cν are 2, 1, 1, 0.

Lemma 2.6. Let µ ∈ P and a ∈ C. In the Grothendieck group K0(O′fd)

[Sµ,a] =
∑
ν∈Wµ

[S′ν,cν ,a].

Proof. Let e′ be the subalgebra of e generated by M2 and the ti j for 2≤ i, j ≤ N . One can define similar
abelian category F ′ of e′-modules (which are h-graded M-vector spaces) equipped with:

(a) The evaluation functor ev′a : F ′→O′fd from e′-modules to Eh
N−1-modules.

(b) The injective character map χ : K0(F ′)→Mt from the h-grading.

Theorem 2.3 applied to the h′-algebra eτ,h̄(slN−1), from the scalar extension in the proof of Lemma 2.5,
one obtains an irreducible object V ′ν,c in category F ′ for ν = (ν2 ≥ ν3 ≥ · · · ≥ νN ) ∈ P′ and c ∈ C with
the following properties:

(c) V ′ν,c admits a nonzero vector v of weight cε1+ ν2ε2+ ν3ε3+ · · ·+ νNεN and t̂kv = v, ti jv = 0 for
2≤ i, j, k ≤ N and i < j .

(d) χ(V ′ν,c) is equal to the character of the irreducible sl′N−1-module of highest weight cε1 + ν2ε2 +

ν3ε3+· · ·+νNεN ; here sl′N−1 is the parabolic Lie subalgebra of slN (with the same Cartan algebra h)
associated to the simple roots α2, α3, . . . , αN−1.

By comparing highest weight we observe that ev′a(V
′
ν,c)
∼= S′ν,c,a in category O′fd.
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Let µ = (µ1 ≥ µ2 ≥ · · · ≥ µN ) ∈ P. Set µ := µ1ε1+µ2ε2+ · · · +µNεN . Then Sµ,a ∼= eva(Vµ) in
category Ofd. By diagram chasing

K0(Ofd)

Res
��

K0(F)
eva

oo

Res
��

χ
//Mt

K0(O′fd) K0(F ′)
ev′a

oo

χ

66

Lemma 2.6 is equivalent to the character identity χ(Vµ) =
∑

ν∈Wµ
χ(V ′ν,cν ). Since the left- and right-

hand sides are the character of a representations of slN by Theorem 2.3 and sl′N−1 by (d), respectively,
this identity is a consequence of the branching rule for representations of the reductive Lie algebras
slN ⊃ sl′N−1. �

2D. Proof of Theorem 1.15. We proceed by induction on N . For N = 1 and µ = (n), since Sµ,a is
one-dimensional, its q-character is equal to its highest weight(

θ(z+ (a+ n)h̄)
θ(z+ ah̄)

; nε1

)
=

n∏
j=1

1 a+ j−1.

Suppose N > 1. By Lemma 2.5, the induction hypothesis in the case of N − 1 gives the q-character
formula for all the Eh

N−1-modules S′ν,c,a where ν ∈ P′ and c ∈ C. So the q-character χ ′q(Sµ,a) of the
Eh

N−1-module Sµ,a is known by Lemma 2.6.
Since Sµ,a is an irreducible E-module in category Ofd, by Remark 2.4, χq(Sµ,a) can be recovered from

χ ′q(Sµ,a). Since Bµ is the disjoint union of the B′ν for ν ∈Wµ, it suffices to check that for each e-weigth
(mT

1 (z),mT
2 (z), . . . ,mT

N (z);α) at the right-hand side of (1.13), where T ∈Bµ, the following product

mT (z) := mT
1 (z+ (N − 1)h̄)mT

2 (z+ (N − 2)h̄) · · ·mT
N (z)

is the eigenvalue of scalar action of DN (z) on Sµ,a . Notice first that

N∏
p=1

θ(z+ (a+ N − p+µp)h̄)
θ(z+ (a+ N − p)h̄)

=

∏
(i, j)∈Yµ

θ(z+ (a+ j − i + N )h̄)
θ(z+ (a+ j − i + N − 1)h̄)

.

By (1.12), each box i x contributes to θ(z+ (x + N )h̄)/θ(z+ (x + N − 1)h̄), so the right-hand side of
the identity is exactly mT (z). By Remark 2.4, the left-hand side is the scalar of DN (z) acting on Sµ,a .
This completes the proof of Theorem 1.15. �

3. Kirillov–Reshetikhin modules

We study certain irreducible E-modules via q-characters.
Fix a ∈ C. For k ∈ C and 1≤ r ≤ N , define the asymptotic e-weigth

w
(r)
k,a :=9r,a+k9

−1
r,a ∈Mw. (3.14)
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Assume k ∈ Z≥0. We identify k$r with the partition (k ≥ k ≥ · · · ≥ k) where k appears r times. Then
w
(r)
k,a=Yr,a+ 1

2
Yr,a+ 3

2
· · · Yr,a+k− 1

2
= θk$r ,a by (1.9)–(1.10), and the finite-dimensional irreducible E-module

S(w(r)
k,a) in category Ofd is denoted by W (r)

k,a and called Kirillov–Reshetikhin module (KR module).
The Yi,a+m and Ai,a+m for 1≤ i ≤ N and m ∈ 1

2 Z are linearly independent in the abelian group Mw,
and generate the subgroups Pa and Qa and the submonoids P+a and Q+a , respectively. The inverses of
these submonoids are denoted by P−a and Q−a respectively. By (1.13) and (1.10),

wte(Sµ,a)⊂ θµ,aQ−a ⊂ Pa for µ ∈ P.

Indeed, let Tµ ∈Bµ be such that the associated monomial in (1.13) is θµ,a . Then for S ∈Bµ, we must
have S(i, j)≥ Tµ(i, j) for all (i, j) ∈ Yµ.

Following [Frenkel and Mukhin 2001, § 6], we call f ∈ Pa right-negative if the factors Yi,a+m with
1≤ i < N appearing in f , for which m ∈ 1

2 Z is minimal, have negative powers.

Lemma 3.1 [Frenkel and Mukhin 2001]. Let e, f ∈ Pa . If e and f are right-negative, then so is e f .

All elements in Q−a different from 1 are right-negative by (1.9).

Lemma 3.2. Let k ∈ Z>0 and 1≤ r < N.

(1) For 1≤ l ≤ k, w
(r)
k,a A−1

r,a A−1
r,a+1 · · · A

−1
r,a+l−1 is an e-weigth of W (r)

k,a of multiplicity one in χq(W
(r)
k,a).

(2) An e-weigth of W (r)
k,a different from those in (1) and from w

(r)
k,a must belong to w

(r)
k,a A−1

r,a A−1
s,a− 1

2
Q−a for

certain 1≤ s < N with s = r ± 1.

(3) Any e-weigth of W (r)
k,a is either w

(r)
k,a or right-negative.

Proof. The Young diagram Yk$r is a rectangle of r rows and k columns. For (1)–(2) the proof of
[Zhang 2018, Lemma 3.4] works by applying Theorem 1.15 to W (r)

k,a
∼= Sk$r ,a−`r . For (3), w

(r)
k,a A−1

r,a is
right-negative, and so is any element of w

(r)
k,a A−1

r,aQ−a . �

For 1 ≤ r < N and k, t, a ∈ C, define as in [Frenkel and Hernandez 2016, §4.3] and [Zhang 2018,
Remark 3.2]

d(r,t)k,a :=
9r,a+t

9r,a

∏
s=r±1

9s,a− 1
2

9s,a− 1
2−k
= w

(r)
t,a

∏
s=r±1

w
(s)
k,a− 1

2−k
∈Mw. (3.15)

If k, t ∈ Z≥0, then d(r,t)k,a ∈Rfd and set D(r,t)
k,a := S(d(r,t)k,a ).

Lemma 3.3. Let 1≤ r < N and m, k ∈ Z>0.

(1) The dominant e-weigths of W (r)
k+m−1,1⊗W (r)

k,0 and W (r)
k−1,1⊗W (r)

k+m,0 are

w
(r)
k+m−1,1w

(r)
k,0 and w

(r)
k+m−1,1w

(r)
k,0 A−1

r,1 A−1
r,2 · · · A

−1
r,l for 1≤ l ≤ k,

w
(r)
k−1,1w

(r)
k+m,0 and w

(r)
k−1,1w

(r)
k+m,0 A−1

r,1 A−1
r,2 · · · A

−1
r,l for 1≤ l < k,

respectively. All such e-weigths are of multiplicity one.

(2) The module W (r)
k−1,1⊗W (r)

k+m,0 is irreducible.
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Proof. For (1), one can copy the last two paragraphs of the proof of [Fourier and Hernandez 2014,
Theorem 4.1], since the right-negativity property of KR modules in the elliptic case (Lemma 3.2) is the
same as in the affine case. Let T be the tensor product module of (2). Suppose T is not irreducible. Then
there exists 1≤ l ≤ k− 1 such that T admits an irreducible subquotient S ∼= S(dl) where by (1.9)

dl := w
(r)
k−1,1w

(r)
k+m,0

l∏
j=1

A−1
r, j =

9r,k9r,k+m

9r,l+19r,l

∏
s=r±1

9s,l+ 1
2

9s, 1
2

.

Set µ :=$(dl). The weight space S[µ−αr ] is nonzero since the 9r do not cancel in dl , and its possible
e-weigths are dl A−1

r,l , dl A−1
r,l+1 since S is a subquotient of W (r)

k−l−1,l+1⊗W (r)
k−l+m,l⊗(⊗s=r±1W (s)

l, 1
2
). If dl A−1

r,l

is an e-weigth of S, then

w
(r)
k−1,1w

(r)
k+m,0 A−1

r,1 A−1
r,2 · · · A

−1
r,l−1 A−2

r,l ∈ wte(T )= wte(W
(r)
k−1,1)wte(W

(r)
k+m,0)

which contradicts with the q-characters of KR modules in Lemma 3.2. So k> l+1 and S[µ−αr ]=Mv 6=0.
Let ω be a highest weight vector of S. Then

p := µr,r+1 = 2k− 2l +m− 1, Lr,r+1(z)ω = A(z; λ)v, Lr+1,r (z)v = B(z; λ)ω

for some meromorphic functions A and B of (z, λ) ∈ C × h. For 1 ≤ i ≤ N , let gi (z) ∈ M×
C

be
the i-th component of dl ∈Mw. Then L i i (z)ω = gi (z)ϕi (λ)ω for certain ϕi (λ) ∈ M× by (1.7). Set
h(z) := gr (z)/gr+1(z). We have

h(z)=
θ(z+ (k− `r )h̄)θ(z+ (k+m− `r )h̄)
θ(z+ (l + 1− `r )h̄)θ(z+ (l − `r )h̄)

=
θ(z−w1)θ(z−w2)

θ(z−w3)θ(z−w4)
,

where w1 := (`r − k)h̄, w2 := (`r − k−m)h̄ and so on. Applying (1.2) with (i, j)= (r + 1, r)= (n,m)
to ω, as in the proof of [Felder and Zhang 2017, Theorem 4.1], we obtain(
θ(z−w+λr,r+1+ ph̄)θ(h̄)
θ(z−w+h̄)θ(λr,r+1+ ph̄)

gr+1(z)gr (w)−
θ(z−w+λr,r+1)θ(h̄)
θ(z−w+h̄)θ(λr,r+1)

gr+1(w)gr (z)
)
ϕr (λ+h̄εr+1)ϕr+1(λ)

=
θ(z−w)θ(λr,r+1+h̄)
θ(z−w+h̄)θ(λr,r+1)

B(w; λ)A(z; λ+h̄εr ).

Multiplying both sides by θ(z−w+h̄)/(gr+1(z)gr+1(w)) and noticing gr+1(z)= θ(z−w3)/θ(z−w3−lh̄),
one can evaluate w at w1 and w2 to obtain identities of meromorphic functions of (z, λ):

Ã(z; λ)xi (λ)=
θ(z−wi + λr,r+1)

θ(z−wi )
f (λ)h(z) for i = 1, 2.

Here we set ϕ(λ) := ϕr (λ+ h̄εr+1)ϕr+1(λ) and

Ã(z; λ) :=
A(z; λ+ h̄εr )

gr+1(z)
, xi (λ) :=

B(wi ; λ)

gr+1(wi )
, f (λ) := −

θ(h̄)ϕ(λ)
θ(λr,r+1+ h̄)

.

Since f (λ)h(z) 6= 0, we have xi (λ) 6= 0 and so

θ(z−w1+ λr,r+1)θ(z−w2)

x1(λ)θ(z−w3)θ(z−w4)
=
θ(z−w2+ λr,r+1)θ(z−w1)

x2(λ)θ(z−w3)θ(z−w4)
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as nonzero meromorphic functions of (z, λ). This forces w1−w2 = mh̄ ∈ Z+Zτ , which certainly does
not hold. This proves (3). �

Theorem 3.4. For 1 ≤ r < N , t ∈ Z≥0 and k > 0, we have the following identities in the Grothendieck
ring of category Ofd:

[D(r,t)
k,k+1] + [W

(r)
k−1,1][W

(r)
k+t+1,0] = [W

(r)
k+t,1][W

(r)
k,0], (3.16)

[D(r,t+1)
k,k ][W (r)

k+t,0] = [D
(r,0)
k+t+1,k+t+1][W

(r)
k−1,0] + [D

(r,t)
k,k ][W

(r)
k+t+1,0]. (3.17)

Proof. Set T := W (r)
k+t,1⊗W (r)

k,0 and d := w
(r)
k+t,1w

(r)
k,0. Then S := S(d) is an irreducible subquotient of T

and by (3.14)–(3.15)

d = w
(r)
k−1,1w

(r)
k+t+1,0 and d(r,t)k,k+1 = A−1

r,1 A−1
r,2 · · · A

−1
r,k d.

Set m = t + 1 in Lemma 3.3. Then S ∼=W (r)
k−1,1⊗W (r)

k+t+1,0, and there is exactly one dominant e-weigth
(counted with multiplicity) in wte(T ) \wte(S), namely d(r,t)k,k+1. This proves (3.16), which implies after
taking spectral parameter shifts

[D(r,t+1)
k,k ] = [W (r)

k+t+1,0][W
(r)
k,−1] − [W

(r)
k−1,0][W

(r)
k+t+2,−1],

[D(r,0)
k+t+1,k+t+1] = [W

(r)
k+t+1,0][W

(r)
k+t+1,−1] − [W

(r)
k+t,0][W

(r)
k+t+2,−1],

[D(r,t)
k,k ] = [W

(r)
k+t,0][W

(r)
k,−1] − [W

(r)
k−1,0][W

(r)
k+t+1,−1].

Equation (3.17) becomes a trivial identity involving only KR modules. �

D(r,t)
k,k+1 is special in the sense of [Nakajima 2003] as it contains only one dominant e-weigth. For t = 0,

D(r,0)
k,k+1
∼=W (r−1)

k, 1
2
⊗W (r+1)

k, 1
2

by showing that the tensor product is special as in [Nakajima 2003], and (3.16)
is the T -system of KR modules.

Corollary 3.5. Let 1≤ r < N , a ∈ C and k, t ∈ Z>0.

(1) d(r,t)k,a A−1
r,a A−1

r,a+1 · · · A
−1
r,a+l−1 ∈ wte(D

(r,t)
k,a ) for 1≤ l ≤ t .

(2) Any e-weigth of D(r,t)
k,a different from those in (1) and d(r,d)k,a belongs to d(r,t)k,a {A

−1
r,a−k−1, A−1

s,a−k− 1
2
}Q−a ,

for certain 1≤ s < N with s = r ± 1.

Proof. This comes from Lemma 3.2 and Theorem 3.4. �

Lemma 3.6. Let 1≤ r < N and t ∈ Z≥0. There is a short exact sequence

0→ D(r,t)
1,a →W (r)

t+1,a−1⊗W (r)
1,a−2→W (r)

t+2,a−2→ 0

of E-modules in category Ofd.

Proof. Let T and S be the second and third terms above (zero excluded). Let ω1 and ω2 be highest weight
vectors of W (r)

t+1,a−1 and W (r)
1,a−2 respectively. Then ω1⊗ω2 is a highest weight vector of T and generates

a submodule T ′. Suppose T ′ = T . Then T is a highest weight module whose highest weight is equal to
that of the irreducible module S. There is a surjective morphism of modules T → S, the kernel of which
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is D(r,t)
1,a by (3.16) (one applies a spectral parameter shift 8a−2 to the equation with k = 1). This is the

desired short exact sequence.
Suppose T 6= T ′. Then [T ′] = [S] or [T ′] = [D(r,t)

k,a ]. By comparing highest weights, we have
[T ′] = [S]. So the weight space T ′[(t + 2)$r − αr ] is one-dimensional. Corollary 2.2 applied to
W (r)

t+1,a−1
∼= S(t+1)$r ,a−`r−1, one finds g(λ) ∈M× such that Lr+1,r+1(z)ω1 = ω1 and (set b := a− `r −1)

Lr,r+1(z)ω1 =
θ(z+ (b+ t)h̄+ λr,r+1)

θ(z+ bh̄)
ω′1 and Lrr (z)ω1 =

θ(z+ (b+ t + 1)h̄)
θ(z+ bh̄)

g(λ)ω1,

where 0 6= ω′1 is of weight (t + 1)$r −αr . Similarly Lr+1,r+1(z)ω2 = ω2 and

Lr,r+1(z)ω2 =
θ(z+ (b− 1)h̄+ λr,r+1)

θ(z+ (b− 1)h̄)
ω′2

with ω′2 6= 0 of weight $r −αr . Since ω1, ω2 are highest weight vectors, we have

Lr,r+1(z)(ω1⊗ω2)

= Lr,r+1(z)ω1⊗Lr+1,r+1(z)ω2+ Lrr (z)ω1⊗Lr,r+1(z)ω2

=

(
θ(z+ (b+ t)h̄+ λr,r+1)

θ(z+ bh̄)
ω′1

)
⊗ω2+

θ(z+ (b+ t + 1)h̄)
θ(z+ bh̄)

g1(λ)ω1⊗

(
θ(z+ (b− 1)h̄+ λr,r+1)

θ(z+ (b− 1)h̄)
ω′2

)
.

Setting z=−(b+t+1)h̄ we obtain ω′1⊗ω2 ∈ T ′, and so ω1⊗ω
′

2 ∈ T ′. The weight space T ′[(t+2)$r−αr ]

is at least two-dimensional, a contradiction. �

Lemma 3.6 is inspired by [Moura and Pereira 2017, § 5.3], to transform identities in the Grothendieck
group into exact sequences by restriction to sl2, see [Chari 2002]. More generally, we have the short
exact sequences in category Ofd by [Felder and Zhang 2017, Proposition 4.3 and Corollary 4.5]:9

0→ D(r,t)
k,k+1→W (r)

k+t,1⊗W (r)
k,0→W (r)

k−1,1⊗W (r)
k+t+1,0→ 0,

0→ D(r,0)
k+t+1,k+t+1⊗W (r)

k−1,0→ D(r,t+1)
k,k ⊗W (r)

k+t,0→ D(r,t)
k,k ⊗W (r)

k+t+1,0→ 0.

These exact sequences hold for affine quantum (super)groups [Fourier and Hernandez 2014; Zhang 2018].
In the super case the proof is more delicate since Lemma 3.2(3) fails.

4. Asymptotic representations

We construct infinite-dimensional modules in category O as inductive limits (k→∞) of the KR modules
W (r)

k,a for fixed 1≤ r < N and a := `r .
The general strategy follows that of Hernandez and Jimbo [2012]:

(i) Produce an inductive system of vector spaces W (r)
0,a ⊆W (r)

1,a ⊆W (r)
2,a ⊆ · · · .

(ii) Prove that the matrix entries of the L i j (z) are good functions of k ∈ Z≥0.

9The elliptic quantum group of [Felder and Zhang 2017] is slightly different as it is defined by another R-matrix, which is
gauge equivalent to the present R by [Enriquez and Felder 1998].
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(iii) Define the module structure on the inductive limit of (i).

Step (i) is done in Lemma 4.2, step (ii) in Lemma 4.8, and step (iii) in Proposition 4.10. We shall see that
the proofs in each step are different from [Hernandez and Jimbo 2012].

In what follows, by k> l we implicitly assume that k, l ∈Z≥0. For k> l, set Zkl :=W (r)
k−l,a+l

∼= S(k−l)$r ,l

and fix a highest weight vector ωkl ∈ Zkl . By (1.7), we have for 1≤ i ≤ r < j ≤ N ,

L i i (z)ωkl = ωkl
θ(z+ kh̄)
θ(z+ lh̄)

N∏
q=r+1

θ(λiq + (k− l + 1)h̄)
θ(λiq + h̄)

for L j j (z)ωkl = ωkl .

Note that Zk0 =W (r)
k,a , and we simply write ωk0 =: ωk .

Lemma 4.1. Let t > k > l > m. There exists a unique morphism of E-modules

Gl
k,m : Zkl⊗Zlm→ Zkm

such that Gl
k,m(ωkl⊗ωlm)= ωkm . Moreover the following diagram commutes:

Z tk⊗Zkl⊗Zlm
Gk

t,l⊗ Id
//

Id⊗Gl
k,m
��

Z tl⊗Zlm

Gl
t,m
��

Z tk⊗Zkm
Gk

t,m
// Z tm

(4.18)

Proof. (Uniqueness) Let F and G be two such morphisms and let X be the image of F − G. Then
ωkm /∈ X . If X 6= 0, then X has a highest weight vector v 6= 0, which is proportional to ωkm by the
irreducibility of Zkm , a contradiction. So X = 0 and F = G. The commutativity of (4.18) is proved in the
same way.

(Existence) Let b ∈ C and n ∈ Z>0. By Lemma 3.6 there exists a surjective E-linear map

W (r)
n−1,b+1⊗W (r)

1,b→W (r)
n,b.

An induction on n shows that the E-module W (r)
1,b+n−1⊗W (r)

1,b+n−2⊗ · · ·⊗W (r)
1,b+1⊗W (r)

1,b can be projected
onto W (r)

n,b. Setting (n, b)= (k−m, a+m) we obtain a surjective E-linear map

g : Zk,k−1⊗Zk−1,k−2⊗ · · ·⊗Zm+2,m+1⊗Zm+1,m =: T � Zkm .

Taking (n, b) to be (k−l, a+l) and (l−m, a+m), we project the first k−l and the last l−m tensor factors
of T onto Zkl and Zlm respectively. The tensor product of these projections gives f : T � Zkl⊗Zlm . Since
ωkl⊗ωlm, ωkm and ω := ωk,k−1⊗ωk−1,k−2⊗ · · ·⊗ωm+2,m+1⊗ωm+1,m ∈ T are highest weight vectors of
the same e-weigth, by surjectivity one can assume f (ω)= ωkl⊗ωlm and g(ω)= ωkm . It suffices to prove
that g factorizes through f , and so g = Gl

k,m f . Set Y := ker( f ) and Z := ker(g). The image of g being
irreducible, Z is a maximal submodule of T . Since ω /∈ Y + Z , we have Y + Z = Z and Y ⊆ Z . �
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We need two special cases of the G; for k > l and t − 1> l,

Fk,l = Gl
k,0 : Zkl⊗W (r)

l,a →W (r)
k,a and Gt,l = Gl+1

t,l : Z t,l+1⊗Zl+1,l→ Z tl .

As in [Hernandez and Jimbo 2012, §4.2], for k > l define the restriction map

Fk,l :W
(r)
l,a →W (r)

k,a, v 7→ Fk,l(ωkl⊗v).

It is a difference map of bidegree ((l − k)$r , 0).
Applying (4.18) with t > k > l > 0 to ωtk⊗ωkl⊗W (r)

l,a gives Ft,k Fk,l = Ft,l . So (W (r)
l,a , Fk,l) is an

inductive system of vector spaces.10

Applying (4.18) with k > l + 1> l > 0 to ωk,l+1⊗Zl+1,l⊗W (r)
l,a , we obtain

Fk,l(Gk,l(ωk,l+1⊗v)⊗w)= Fk,lFl+1,l(v⊗w) for v⊗w ∈ Zl+1,l⊗W (r)
l,a . (4.19)

Lemma 4.2. The linear maps Fk,l are injective.

Proof. Assume K := ker(Fk,l) 6= 0; it is a graded subspace of W (r)
l,a . Choose µ ∈ wt(K ) such that

µ+αi /∈wt(K ) for all 1≤ i < N and fix 0 6=w ∈ K [µ]. We show that w is a singular vector, so w ∈Mωl

and ωl ∈ K , a contradiction. It suffices to prove that L j i (z)w ∈ K for all 1 ≤ i < j ≤ N ; this implies
L j i (z)w = 0 because by assumption on µ the weight space K [µ+ εi − ε j ] vanishes.

Suppose j > r . If 1 ≤ p ≤ N and p 6= j , then (k − l)$r + εp − ε j /∈ wt(Zkl) by Theorem 1.15. It
follows that for v ∈W (r)

l,a we have in Zkl⊗W (r)
l,a ,

L j i (z)(ωkl⊗v)= L j j (z)ωkl⊗L j i (z)v = ωkl⊗L j i (z)v.

It follows that L j i (z)K ⊆ K because of the commutativity:

L j i (z)Fk,l = Fk,l L j i (z) for 1≤ i, j ≤ Nwith j > r. (4.20)

Suppose j ≤ r . For p > r since r ≥ j > r we have L pi (z)w ∈ K and so L pi (z)w = 0. For p ≤ r , by
Theorem 1.15, L j p(z)ωkl = 0 if p 6= j . This implies

L j i (z)(ωkl⊗w)= L j j (z)ωkl⊗L j i (z)w =
θ(z+ kh̄)
θ(z+ lh̄)

g(λ)(ωkl⊗L j i (z)w)

for certain g(λ) ∈M×. Applying Fk,l we obtain Fk,l L j i (z)w = 0, as desired. �

In what follows k and l denote positive integers, while i , j , m, n, p, q , s, t , u and v denote the integers
between 1 and N related to the Lie algebra slN .

Lemma 4.3. For k > l and 1≤ i ≤ N we have

Ki (z)Fk,l =

(
θ(z+ kh̄)
θ(z+ lh̄)

)δi≤r

Fk,l Ki (z). (4.21)

10In the affine case [Hernandez and Jimbo 2012, (4.26)] the structure map comes from the stronger fact that Zkl⊗Zlm is of
highest weight with Zkm being the irreducible quotient.
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Proof. We compute Di (z)(ωkl⊗v) for v ∈W (r)
l,a based on the coproduct of Corollary 1.2. If −$N−k ≺ α

then α+$N−k /∈ Q− and (k− l)ωkl +α+$N−k /∈wt(Zkl). The extra terms xα⊗̃yα in the coproduct do
not contribute, and so Di (z)(ωkl⊗v)= Di (z)ωkl⊗Di (z)v. By (1.8) a similar identity holds when Di (z)
is replaced by Ki (z), because Ki (z)ωkl = (θ(z+ kh̄)/θ(z+ lh̄))δi≤rωkl is independent of λ. By applying
Fk,l to the new identity involving Ki (z), we obtain (4.21). �

From now until Corollary 4.7, we shall fix integers j and p with the condition 1≤ j ≤ r < p ≤ N. By
Corollary 2.2, there are elements ω j p

kl ∈ Zkl for k > l such that

L j p(z)ωkl =
θ(z+ (k− 1)h̄+ λ j p)

θ(z+ lh̄)
ω

j p
kl .

Indeed ω j p
kl = tpjωkl in the evaluation module Zkl ∼= V(k−l)$r (l). Since Y(k−l)$r is a rectangle, Mω

j p
kl is

the weight space of weight (k− l)$r + εp − ε j .

Lemma 4.4. In the E-module Zkl we have ω j p
kl 6= 0 and

L pj (z)ω
j p
kl =−ωkl

θ(z+ lh̄− λ j p)θ((k− l)h̄)θ(h̄)
θ(z+ lh̄)θ(λ j p)θ(λ j p + h̄)

∏
r<q 6=p

θ(λ jq + (k− l + 1)h̄)
θ(λ jq + h̄)

.

The product is taken over integers q such that r + 1≤ q ≤ N and q 6= p.

Proof. The weight grading on Zkl = S(k−l)$r ,l indicates t j pω
j p
kl = g(λ)ωkl for certain g(λ) ∈M. The last

relation of Definition 2.1 with a = d = j and c = b = p is applied to the highest weight vector ωkl , the
second term vanishes and

θ(λ j p + (k− l + 1)h̄)
θ(λ j p + (k− l)h̄)

g(λ)=
θ((k− l)h̄)θ(−h̄)

θ(λ j p)θ(λ j p + (k− l)h̄)

∏
q>r

θ(λ jq + (k− l + 1)h̄)
θ(λ jq + h̄)

.

This implies ω j p
kl 6= 0. We conclude that L pj (z)ω

j p
kl = θ(z+ lh̄− λ j p)g(λ)ωkl/θ(z+ lh̄). �

Lemma 4.5. Let k− 1> l. In the E-module Zk,l+1⊗Zl+1,l we have

L pj (z)(a
(l)
j p(k; λ)(ωk,l+1⊗ω

j p
l+1,l)−ω

j p
k,l+1⊗ωl+1,l)= 0,

where

a(l)j p(k; λ) :=
θ((k− l − 1)h̄)θ(λ j p − h̄)

θ(h̄)θ(λ j p)

∏
r<q 6=p

θ(λ jq + (k− l)h̄)
θ(λ jq + h̄)

.

Furthermore Gk,l(a
(l)
j p(k; λ)(ωk,l+1⊗ω

j p
l+1,l)−ω

j p
k,l+1⊗ωl+1,l)= 0.

Proof. We compute L pj (z)(ω
j p
k,l+1⊗ωl+1,l)=

∑N
q=1 L pq(z)ω

j p
k,l+1⊗Lq j (z)ωl+1,l . Since ωl+1,l is a highest

weight vector, the terms with q > j vanish. The weight of Lq j (z)ω
j p
k,l+1 is (k− l−1)$r + εq − ε j , which
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does not belong to wt(Zk,l+1) for q < j . So only the term q = j survives. By Lemma 4.4

L pj (z)(ω
j p
k,l+1⊗ωl+1,l)

= L pj (z)ω
j p
k,l+1⊗L j j (z)ωl+1,l

=−
θ(z+ (l + 1)h̄− λ j p)θ((k− l − 1)h̄)θ(h̄)

θ(z+ (l + 1)h̄)θ(λ j p)θ(λ j p + h̄)

∏
r<q 6=p

θ(λ jq + (k− l)h̄)
θ(λ jq + h̄)

ωk,l+1

⊗
θ(z+ (l + 1)h̄)
θ(z+ lh̄)

∏
q>r

θ(λ jq + 2h̄)
θ(λ jq + h̄)

ωl+1,l

=−
θ(z+ lh̄− λ j p)θ((k− l − 1)h̄)θ(h̄)

θ(z+ lh̄)θ(λ j p + h̄)2
∏

r<q 6=p

θ(λ jq + (k− l + 1)h̄)
θ(λ jq + h̄)

(ωk,l+1⊗ωl+1,l).

Similar arguments lead to

L pj (z)(ωk,l+1⊗ω
j p
l+1,l)= L pp(z)ωk,l+1⊗L pj (z)ω

j p
l+1,l

=−
θ(z+ lh̄− λ j p)θ(h̄)2

θ(z+ lh̄)θ(λ j p)θ(λ j p + h̄)

∏
r<q 6=p

θ(λ jq + 2h̄)
θ(λ jq + h̄)

(ωk,l+1⊗ωl+1,l).

The ratio of the two coefficients of ωkl⊗ωl+1,l above is a(l)j p(k; λ + h̄ε j ), which is easily seen to be
independent of z. For the last identity, let x be the vector in the argument of Gk,l . Then both Gk,l(x) and
ω

j p
kl belong to the one-dimensional weight space of weight (k− l)$r + ε j − εp. These two vectors are

proportional, the first is annihilated by L pj (z), while the second is not. So Gk,l(x)= 0. �

Corollary 4.6. Let k− 1> l. In the E-module Zkl we have

L j p(z)ωkl = Gk,l(ωk,l+1⊗ω
j p
l+1,l)× b(l)j p(k, z; λ),

where

b(l)j p(k, z; λ) :=
θ(z+ (k− 1)h̄+ λ j p)θ((k− l)h̄)

θ(z+ lh̄)θ(h̄)

∏
r<q 6=p

θ(λ jq + (k− l)h̄)
θ(λ jq + h̄)

.

Proof. The idea is similar to [Zhang 2018, Lemma 7.6]. We compute L j p(z)(ωk,l+1⊗ωl+1,l). As in the
proof of Lemma 4.5, only two terms survive:

L j p(z)(ωk,l+1⊗ωl+1,l)= L j j (z)ωk,l+1⊗L j p(z)ωl+1,l + L j p(z)ωk,l+1⊗L pp(z)ωl+1,l

=
θ(z+ kh̄)

θ(z+ (l + 1)h̄)

∏
q>r

θ(λ jq + (k− l)h̄)
θ(λ jq + h̄)

ωk,l+1⊗
θ(z+ lh̄+ λ j p)

θ(z+ lh̄)
ω

j p
l+1,l

+
θ(z+ (k− 1)h̄+ λ j p)

θ(z+ (l + 1)h̄)
ω

j p
k,l+1⊗ωl+1,l

= e(l)j p(k, z; λ)(ωk,l+1⊗ω
j p
l+1,l)+

θ(z+ kh̄+ λ j p)

θ(z+ (l + 1)h̄)
(ω

j p
k,l+1⊗ωl+1,l).
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Here e(l)j p(k, z; λ) is the following meromorphic function of (k, z, λ) ∈ C×C× h:

θ(z+ kh̄)θ(z+ lh̄+ λ j p)

θ(z+ (l + 1)h̄)θ(z+ lh̄)
θ(λ j p + (k− l − 1)h̄)

θ(λ j p)

∏
r<q 6=p

θ(λ jq + (k− l)h̄)
θ(λ jq + h̄)

.

Set x := a(l)j p(k; λ)(ωk,l+1⊗ω
j p
l+1,l)− ω

j p
k,l+1⊗ωl+1,l , which is in the kernel of Gk,l by Lemma 4.5. It

follows that for any g(λ) ∈M we have

L j p(z)ωkl = L j p(z)Gk,l(ωk,l+1⊗ωl+1,l)= Gk,l(L j p(z)(ωk,l+1⊗ωl+1,l)+ g(λ)x).

Let us fix g(z; λ) := θ(z+ kh̄+λ j p)/θ(z+ (l + 1)h̄). Then L j p(z)(ωk,l+1⊗ωl+1,l)+ g(z; λ)x is propor-
tional to ωk,l+1⊗ω

j p
l+1,l and L j p(z)ωkl = Gk,l(ωk,l+1⊗ω

j p
l+1,l)× b(l)j p(k, z; λ) where

b(l)j p(k, z; λ) = e(l)j p(k, z; λ)+g(z; λ)a(l)j p(k; λ)

= b(k, z; λ)×
∏

r<q 6=p

θ(λ jq+(k−l)h̄)
θ(λ jq+h̄)

,

b(k, z; λ) :=
θ(z+kh̄)θ(z+lh̄+λ j p)

θ(z+(l+1)h̄)θ(z+lh̄)
θ(λ j p+(k−l−1)h̄)

θ(λ j p)
+
θ(z+kh̄+λ j p)θ((k−l−1)h̄)θ(λ j p−h̄)

θ(z+(l+1)h̄)θ(λ j p)θ(h̄)
.

The function b(k, z; λ), viewed as an entire function of k, satisfies the same double periodicity as
θ(kh̄)θ(kh̄+ z+ λ j p − (l + 1)h̄). One checks that b(l, z; λ)= 0. This implies

b(k, z; λ)= θ(kh̄+ z− h̄+ λ j p)θ(kh̄− lh̄) f (z; λ),

where f (z; λ) is a meromorphic function of (z; λ) ∈ C× h independent of k. Now setting kh̄ =−z, we
obtain f (z; λ)= 1/(θ(z+ lh̄)θ(h̄)). �

Corollary 4.7. Let 1≤ i, j ≤ N with j ≤ r . For k− 1> l and x ∈W (r)
l,a

L j i (z)Fk,l(x)= Fk,l
θ(z+ kh̄)
θ(z+ lh̄)

µl

( N∏
q=r+1

θ(λ jq + (k− l + 1)h̄)
θ(λ jq + h̄)

)
L j i (z)x

+ Fk,l+1Fl+1,l

( N∑
p=r+1

ω
j p
l+1,l⊗µl(b

(l)
j p(k, z; λ))L pi (z)x

)
. (4.22)

Proof. Consider L j i (z)Fk,l(x) = Fk,l
(∑N

p=1 L j p(z)ωkl⊗L pi (z)x
)
. As in the proof of Lemma 4.5,

L j p(z)ωkl = 0 if p /∈ { j, r + 1, r + 2, . . . , N }. For p = j , we obtain the first row of (4.22), while for
r < p ≤ N , Corollary 4.6 and (4.19) with v = ω j p

l+1,l give the second row. �

Fix weight bases Bl of W (r)
l,a for l > 0 uniformly so that Fk,l(Bl)⊆ Bk .
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We view b(l)j p(c, z; λ) in Corollary 4.6 as a meromorphic function of (c, z, λ)∈C2
×h. For 1≤ i, j ≤ N ,

l > 0 and c, z ∈ C, define L(l)
j i (c, z) :W (r)

l,a →W (r)
l+1,a by

L(l)
j i (c, z)x = Fl+1,l L j i (z)x =

θ(z+ (γ j + δi j − 1)h̄+ λ j i )

θ(z)
Fl+1,l ti j x for j > r,

L(l)
j i (c, z)x =

θ(z+ ch̄)
θ(z+ lh̄)

N∏
q=r+1

θ(λ jq + (c+ γ jq + δi j − δiq)h̄)
θ(λ jq + (l + γ jq + δi j − δiq)h̄)

Fl+1,l L j i (z)x

+

N∑
p=r+1

b(l)j p(c, z; λ+ (γ + l$r + εi − εp)h̄)Fl+1,l(ω
j p
l+1,l⊗L pi (z)x) for j ≤ r.

Here x ∈W (r)
l,a [γ + l$r ] and δi j is the usual Kronecker symbol. Corollary 2.2 applied to the evaluation

module W (r)
l,a
∼= Vl$r (0) indicates that for b′ ∈ Bl+1 and b ∈ Bl

L(l)
j i (c, z) is a difference map of bidegree (ε j − $r , εi ). Its matrix entry [L(l)

j i ]b′b(c, z; λ) is a
meromorphic function of (c, z, λ) ∈ C2

× h. Moreover, θ(z)θ(z+ lh̄)[L(l)
j i ]b′b(c, z; λ) is entire on

(c, z) for generic λ.

As a unification of (4.20) and (4.22), we have

L j i (z)Fk,l = Fk,l+1L(l)
j i (k, z) for k > l + 1. (4.23)

For k ∈ Z>0 and z ∈ C let 4(c; k, z) be the set of entire functions F(c) of c ∈ C with the following
double periodicity:

F(c+ h̄−1)= (−1)k F(c) and F(c+ τ h̄−1)= (−1)ke−kiπτ−2kiπch̄−2iπ z F(c).

A typical example is θ(ch̄)k−1θ(ch̄+z). Such a function is called homogeneous. If f (c), g(c)∈4(c; k, z),
then we write f (c)≈ g(c).

Note that 4(c; k, z)4(c; k ′, z′)⊆4(c; k+ k ′, z+ z′).

Lemma 4.8. Let b ∈ Bl be of weight γ + l$r and b′ ∈ Bl+1. For j > r the matrix entry [L(l)
j i ]b′b(c, z; λ)

is independent of c. For j ≤ r as entire functions of c

[L(l)
j i ]b′b(c, z; λ)≈ θ(z+ ch̄)

N∏
q=r+1

θ(λ jq + (c+ γ jq + δi j − δiq)h̄).

Moreover, θ(z)[L(l)
j i ]b′b(c, z; λ) is an entire function of (c, z) for generic λ.

Proof. In the case j > r , Corollary 2.2 is applied to W (r)
l,a
∼= Sl$r ,0, the matrix entry is of the form

θ(z+ (γ j + δi j − 1)h̄+ λ j i )g1(λ)/θ(z) for g1(λ) ∈M. Assume j ≤ r . By Corollary 4.6 the matrix entry
is of the form E(c, z; λ)g2(λ)/(θ(z)θ(z+ lh̄)), where g2(λ) ∈M and E(c, z; λ) is an entire function of
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(c, z, λ) ∈ C×C× h. As functions of z and c, respectively, we have

E(c, zh̄; λ) ∈4(z; 2, (c+ l + γ j + δi j − 1)h̄+ λ j i ),

E(c, z; λ) ∈4(c; N − r + 1,
N∑

q=r+1

(λ jq + (γ jq + δi j − δiq)h̄)+ z).

On the other hand, for k > l + 1 we have by Corollary 2.2 and (4.23),

Fk,l+1L(l)
j i (k, z)b = L j i (z)Fk,lv =

θ(z+ λ j i + (k+ γ j + δi j − 1)h̄)
θ(z)

ti j Fk,lb.

The right-hand side as a function of z is regular at z =−lh̄, so are any of the coefficients of the left-hand
side E(k, z; λ)g2(λ)/(θ(z)θ(z+ lh̄)). This forces E(k,−lh̄; λ)= 0 and

E(c, z; λ)= θ(z+ lh̄)θ(z+ (c+ γ j + δi j − 1)h̄+ λ j i )D(c; λ)g3(λ),

where g3(λ) ∈M and D(c; λ) is an entire function of (c, λ). Applying the double periodicity with respect
to c once more, we obtain the desired result. �

Lemma 4.9. Let f (c) be a homogeneous entire function. If f (k)= 0 for infinitely many integers k, then
f (c) is identically zero.

Proof. By definition the homogeneous entire function f (c), if nonzero, can be written as a product of
theta functions θ(ch̄+ z). Since h̄ /∈Q+Qτ , each of these theta functions of c can not have zeroes at
infinitely many integers. �

Let W∞ be the inductive limit of the inductive system (W (r)
l,a , Fk,l) of vector spaces (over M), with the

Fl :W
(r)
l,a →W∞ for l > 0 being the structural maps.

From now on fix d ∈ C. A vector 0 6= w ∈ W∞ is of weight d$r + γ if there exist l > 0 and
w′ ∈W (r)

l,a [l$r + γ ] such that w = Fl(w
′). The weight grading is independent of the choice of l because

Fk,l sends W (r)
l,a [l$r + γ ] to W (r)

k,a[k$r + γ ]. Let W d
∞

denote the resulting object of V . By construction
wt(W d

∞
)⊆ d$r + Q−, and Fl :W

(r)
l,a →W d

∞
is a difference map of bidegree ((l − d)$r , 0).

Let γ ∈ Q−. The injective maps Fk,l together with Theorems 1.15 and 2.3 imply that

dim(W (r)
k,a[k$r + γ ])= dk$r [k$r + γ ],

as k→∞, converges to an integer which is exactly dim(W d
∞
[d$r + γ ]). So W d

∞
is an object of Vft. Our

goal is to make W d
∞

into an E-module in category O with favorable q-character.11

11In the affine case, the matrix entries of analogs of L
(l)
j i (k, z) are Laurent polynomials of ekh̄ . Hernandez and Jimbo [2012]

proved this by using elimination theorems of q-characters, and then took the limit ekh̄
→ 0 as k→∞ to obtain modules over

Borel subalgebras of affine quantum groups. Later in [Zhang 2017; 2018] an elementary proof of polynomiality was given based
on sl2-representation theory, which by taking limit ekh̄

→ edh̄ as k→∞ (with d ∈ C a new parameter) resulted in modules over
affine quantum groups. Here we adapt the second approach to the elliptic case.
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For 1≤ i, j ≤ N and z ∈ C with θ(z) 6= 0, the L(l)
j i (d, z) constitute a morphism of inductive system of

C-vector spaces:

W (r)
l,a

L(l)
j i (d,z)

//

Fl′,l
��

W (r)
l+1,a

Fl′+1,l+1
��

W (r)
l ′,a

L(l′)
j i (d,z)

// W (r)
l ′+1,a

for l ′ > l.

Indeed, the matrix entries of Fl ′+1,l+1L(l)
j i (c, z) and L(l ′)

j i (c, z)Fl ′,l , as difference maps W (r)
l,a → W (r)

l ′+1,a ,
are homogeneous entire functions of c with the same double periodicity by Lemma 4.8 and are equal at
all integers c larger than l ′+ 1 by (4.23). By Lemma 4.9 these two maps coincide for all c ∈ C. Define

Ld
ji (z) := lim

→
L(l)

j i (d, z) ∈ HomC(W d
∞
,W d
∞
).

For x ∈W d
∞
[d$r + γ ] with x = Fl(x ′) and x ′ ∈W (r)

l,a [l$r + γ ], we have

Ld
ji (z)x = Fl+1L(l)

j i (d, z)x ′. (4.24)

The difference maps L(l)
j i (d, z) and Fl+1 are of bidegree (ε j −$r , εi ) and ((l+1−d)$r , 0) respectively.

So Ld
ji (z) is a difference operator of bidegree (ε j , εi ).

Proposition 4.10. (W d
∞
,Ld

ji (z)) is an E-module in category O. Moreover,

χq(W d
∞
,Ld

ji (z))= w
(r)
d,a × lim

k→∞
(w

(r)
k,a)
−1χq(W

(r)
k,a). (4.25)

Proof. We need to prove conditions (M1)–(M3) of Section 1C. First (M1) follows from (4.24) and from
the comments before (4.23). To prove (M2), let x ∈ W d

∞
[d$r + γ ] and x ′ ∈ W (r)

l,a [l$r + γ ] such that
x = Fl(x ′). We assume l so large that W d

∞
[d$r + γ ] and W (r)

l,a [l$r + γ ] have the same dimension.

Step I: Proof of (M2) We need to show that for 1≤ i, j,m, n ≤ N∑
p,q

R pq
mn(z−w; λ+ (εi + ε j + d$r + γ )h̄)Ld

pi (z)L
d
q j (w)x =

∑
s,t

Ri j
st (z−w; λ)L

d
nt(w)L

d
ms(z)x ∈W d

∞
.

Here at the right-hand side we have used R pq
mn(z; λ)= R pq

mn(z; λ+ h̄εp + h̄εq) to move R to the left. By
(4.24) it is enough to prove the equation∑
p,q

R pq
mn(z−w; λ+ (εi + ε j + c$r + γ )h̄)L

(l+1)
pi (c, z)L(l)

q j (c, w)x
′

=

∑
s,t

Ri j
st (z−w; λ)L

(l+1)
nt (c, w)L(l)

ms(c, z)x ′ ∈W (r)
l+2,a. (4.26)

Let A1(c, z, w) and A2(c, z, w) denote the left-hand side and the right-hand side of this equation without x ′.
These are difference maps W (r)

l,a → W (r)
l+2,a of bidegree (εm + εn − 2$r , εi + ε j ), as R pq

mn 6= 0 implies
εm + εn = εp + εq .
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Claim 1. For b ∈ Bl of weight l$r + γ and b′ ∈ Bl+2, as entire functions of c,

[A1]b′b(c, z, w; λ)≈ [A2]b′b(c, z, w; λ).

This is divided into four cases. For simplicity let us drop b′, b, z, w and λ from A1 and A2.

Case 1.1: m, n > r . A1(c) and A2(c) are independent of c by Lemma 4.8.

Case 1.2: m, n ≤ r . At the left-hand side of (4.26) we have {p, q} = {m, n} and so R pq
mn is independent

of c. At the right-hand side {s, t} = {i, j}. Therefore

A1(c)≈ θ(ch̄+ z)
∏
u>r

θ(λpu + (c+ γpu + δi p − δiu + δ j p − δ ju − δqp + δqu)h̄)

× θ(ch̄+w)
∏
v>r

θ(λqv + (c+ γqv + δ jq − δ jv + δiq − δiv)h̄),

A2(c)≈ θ(ch̄+w)
∏
u>r

θ(λnu + (c+ γnu + δtn − δtu + δsn − δsu − δmn + δmu)h̄)

× θ(ch̄+ z)
∏
v>r

θ(λmv + (c+ γmv + δsm − δsv + δtm − δtv)h̄).

These formulas are deduced from Lemma 4.8. One needs to take into account the shifts of γ and λ.
For example at the left-hand side of (4.26), the terms Lq j and Lpi shift γ and λ by ε j − εq and h̄εi ,
respectively. The right-hand sides of these two formulas lie in4(c; 2+2N−2r, e) with e∈C independent
of the choices of p, q, s and t .

Case 1.3: m ≤ r < n. At the right-hand side {s, t} = {i, j} and

A2(c)≈ θ(ch̄+ z)
∏
v>r

θ(λmv + (c+ γmv + δsm − δsv + δtm − δtv)h̄)

≈ θ(ch̄+ z)
∏
v>r

θ(λmv + (c+ γmv + δim − δiv + δ jm − δ jv)h̄).

The last term is independent of s and t . On the other hand A1(c)= E(c)+F(c) where E and F correspond
to (p, q)= (m, n) and (p, q)= (n,m) respectively and so

E(c)≈
θ( f − h̄)
θ( f )

θ(ch̄+ z)
∏
u>r

θ(λmu + (c+ γmu + δim − δiu + δ jm − δ ju + δnu)h̄),

F(c)≈
θ( f + z−w)

θ( f )
θ(ch̄+w)

∏
v>r

θ(λmv + (c+ γmv + δ jm − δ jv + δim − δiv)h̄).

Here f := ch̄+λmn + (γmn + δim − δin + δ jm − δ jn)h̄. We observe easily that A2(c)≈ E(c)≈ F(c) and
so A1(c)≈ A2(c) are homogeneous.

Case 1.4: n ≤ r < m. This is parallel to the third case.

Claim 2. In Claim 1 equality holds for c = k ∈ Z>l+2.

Let us apply Fk,l+2 to (4.26) with c = k and x ′ = b. By (4.23)

Fk,l+2L(l+1)
pi (k, z)L(l)

q j (k, w)= L pi (z)Fk,l+1L(l)
q j (k, w)x

′
= L pi (z)Lq j (w)Fk,l,
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and similarly Fk,l+2L(l+1)
nt (d, w)L(l)

ms(d, z)b = Lnt(w)Lms(z)Fk,lb. We obtain the defining relation
RL L = L L R of the E-module W (r)

k,a applied to the vector Fk,l(b). Since Fk,l+2 is injective, (4.26)
holds for c = k and x ′ = b. This proves Claim 2.

Together with Lemma 4.9, we obtain equality in Claim 1 for all c ∈ C. This proves (4.26).

Step II: Let 1≤ i ≤ N . We have by (1.6) and (4.26)

Di (z)x =
2i (λ)

2i (λ+ (d$r + γ )h̄)
Fl+i D

(l)
i (d, z)x ′. (4.27)

Here D(l)
i (c, z)=

∑
σ∈Si Tσ (c, z) and Tσ (c, z) :W (i)

l,a →W (i)
l+i,a , for σ ∈Si , is given by

sign(σ )L(l+i−1)
σ (N ),N (c, z)L(l+i−2)

σ (N−1),N−1(c, z+ h̄) · · ·L(l)
σ (N−i+1),N−i+1(c, z+ (i − 1)h̄).

Each Tσ (c, z) is a difference map of bidegree (−$N−i− i$r ,−$N−i ). Define the meromorphic function
of (c, z) ∈ C2 (note that l is fixed)

g(c, z)= 1 if i < N + 1− r and g(c, z)=
r∏

p=N−i+1

θ(z+ (N − p+ c)h̄)
θ(z+ (N − p+ l)h̄)

otherwise.

Claim 3. For b ∈ Bl of weight l$r + γ and b′ ∈ Bl+i , as entire functions of c ∈ C,

[Tσ ]b′b(c, z; λ)≈ gi (c, z)2i (λ+ (c$r + γ )h̄).

The idea is the same as Claim 1, based on Lemma 4.8. If N − i + 1 > r , then T b
σ (c, z; λ) and

2i (λ+ (c$r + γ )h̄) are independent of c, and we are done.
Assume N − i + 1≤ r . By (1.5) and Lemma 4.8,

2i (λ+ (c$r + γ )h̄)≈
r∏

p=N−i+1

N∏
u=r+1

θ(λpu + (c+ γpu)h̄),

[TId]b,b′(c, z; λ)≈
r∏

p=N−i+1

θ(z+ (c+ N − p)h̄)
N∏

u=r+1

θ(λ(p)pu + (c+ γpu + 1)h̄).

Here λ(p) = λ+ h̄
∑N

v=p+1 εv and so λ(p)pu = λpu − h̄ for p ≤ r < u. The case σ = Id in Claim 3 is
now obvious. It remains to show [Tσ ]b′b(c, z; λ)≈ [Tσ ′]b′b(c, z; λ) for all σ, σ ′ ∈Si . One can assume
σ ′ = σ s j where s j = ( j, j + 1) is a simple transposition with N − i + 1≤ j < N − 1. Let us define

p := σ( j + 1), q := σ( j), l ′ := l + i + j − 1− N , w := z+ (N − j)h̄.

Then we have the decomposition of difference maps

Tσ (c, z)= sign(σ )A(c, z)Upq(c, w)B(c, z) and Tσ ′(c, z)= sign(σ )A(c, z)Uqp(c, w)B(c, z).
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The difference maps A, B,U are defined by (descending order in the products)

A(c, z)=
j+2∏

u=N

L(l+i−1−N+u)
σ (u),u (c, z+ (N − u)h̄) :W (r)

l ′+2,a→W (r)
l+i−1,a,

B(c, z)=
N−i+1∏
u= j−1

L(l+i−1−N+u)
σ (u),u (c, z+ (N − u)h̄) :W (r)

l,a →W (r)
j−1,a,

Upq(c, w)= L(l ′+1)
p, j+1(c, w− h̄)L(l ′)

q j (c, w) :W
(r)
l ′,a→W (r)

l ′+2,a.

Flipping p and q one gets Uqp. Now [Tσ ]b′b(c, z; λ)≈ [Tσ ′]b′b(c, z; λ) is a consequence of the following
claim.

Claim 4. For y ∈ Bl ′ of weight l ′$r + η and y′ ∈ Bl ′+2, as entire functions of c,

[Upq ]y′y(c, w; λ)≈ [Uqp]y′y(c, w; λ).

If p, q ≤ r , then by Lemma 4.8 (setting η′ = η+ ε j − εq and λ′ = λ+ h̄ε j+1)

[Upq ]y′y(c, w; λ)≈ θ(w+ (c− 1)h̄)
N∏

u=r+1

θ(λpu + (c+ η′pu + δp, j+1− δu, j+1)h̄)

× θ(w+ ch̄)
N∏

v=r+1

θ(λ′qv + (c+ ηqv + δ jq − δ jv)h̄).

We have U b′
pq(c, w; λ)∈4(c; 2N−2r+2, e) with e= e(p, q) symmetric on p, q . So [Upq ]y′y(c, w; λ)≈

[Uqp]y′y(c, w; λ).
The other cases of p and q are proved in the same way as in Claim 1.

Step III: Proof of (M3) Let k > l + i . Notice that Di (z)ωkl = gi (k, z)ωkl . From the proof of Lemma 4.3
and from (4.23) and (4.27) we get

gi (k, z)Fk,lDi (z)x ′ = Di (z)Fk,l(x ′)= Fk,l+i
2i (λ)

2i (λ+ (k$r + γ )h̄)
D(l)

i (k, z)x ′.

Applying Fk to this identity and multiplying by 2i (λ+ (k$r + γ )h̄) we have

2i (λ+ (k$r + γ )h̄)gi (k, z)FlDi (z)x ′ =2i (λ)Fl+i D
(l)
i (k, z)x ′ for k > l + i.

Both sides after taking coefficients with respect to a basis of W d
∞
[d$r + γ ] can be viewed as entire

functions of k ∈ C, and they satisfy the same double periodicity by Claim 3. By Lemma 4.9, the above
identity holds for all k ∈ C. Taking k = d , by (4.27), we obtain Di (z)x = gi (d, z)FlDi (z)x ′.

Let B be a basis of W (r)
l,a [l$r + γ ] satisfying the upper triangular property of (M3). Then the basis

Fl(B) of W d
∞
[d$r + γ ] satisfies the same property. The E-module W d

∞
is in category O. The diagonal

entry of Di (z) associated to Fl(x ′) ∈ W d
∞

for x ′ ∈ B is equal to that of Di (z) associated to x ′ ∈ W (r)
l,a

multiplied by gi (d, z). The q-character formula in (4.25) follows from the explicit formula of gi (d, z). �
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Question 4.11. Let F(c) be a finite sum of homogeneous entire functions. If F(k) = 0 for infinitely
many integers k, then is F(c) identically zero?

If the answer to this question is affirmative, then the proof of Proposition 4.10 can be largely simplified,
Claims 1, 3 and 4 are not necessary.12

Remark 4.12. By Lemma 4.8, W d
∞
∼=W(0) with W an e-module of character lim

k→∞
e(d−k)$rχ(W (r)

k,a), so
it is in the image of the functor [Etingof and Moura 2002, Proposition 4.1]. By Lemma 4.2 and its
proof, W contains a unique highest weight vector up to scalar. Let Q be the quotient of standard Verma
module Md$r ,1 in [Tarasov and Varchenko 2001, Proposition 4.7] by ta+1,avd$r ,1 for a 6= r . Then W is
the contragradient module to Q in [Tarasov and Varchenko 2001, §6]. It is interesting to have a direct
proof of W(0) being in category O.

For x ∈ C let W(r)
d,x be the pullback of W d

∞
by 8x−a in (1.4); it is called an asymptotic module. Set

W(N )
d,x := S(w(N )

d,x ) and Ws,x :=W(s)
x,0 for 1≤ s ≤ N .

Corollary 4.13. (i) R is the set of rational e-weigths.

(ii) For any E-module M in category O, we have wte(M)⊂R.

(iii) For d, x ∈ C and 1≤ r ≤ N we have in Mt and K0(O) respectively

χq(W
(r)
d,x)= w

(r)
d,x ×χq(W

(r)
0,x) and [W(r)

d,0][W
(r)
0,x ] = [W

(r)
d−x,x ][W

(r)
x,0]. (4.28)

Proof. Conclusion (iii) comes from (4.25), as in the proof of [Felder and Zhang 2017, Theorem 3.11].
As a highest weight of W(r)

d,x , w
(r)
d,x belongs to R. Together with Lemma 1.13 we obtain (i). In (ii)

one may assume M irreducible. Then M is a subquotient of a tensor product of asymptotic modules.
Since e-weigths of an asymptotic module are rational, we conclude from the multiplicative structure of
q-characters in Proposition 1.10. �

In Section 2B the evaluation module Vµ(x) is an irreducible highest weight module in category Õ. Its
highest weight is easily shown to be rational.

Corollary 4.14. Vµ(x) is in category O for µ ∈ h and x ∈ C.

Finite-dimensional modules in category O are related to the asymptotic modules by generalized Baxter
relations in the sense of Frenkel and Hernandez [2015, Theorem 4.8]; see [Felder and Zhang 2017,
Corollary 4.7] and [Zhang 2017, Theorem 5.11] for a closer situation.

Theorem 4.15. Let V be a finite-dimensional E-module in category O. Then

[V ] =
dim V∑

j=1

[S(d j )]×m j (4.29)

12In the affine case, by footnote 11 the situation is much easier; a Laurent polynomial vanishing at infinitely many integers
must be zero, see [Zhang 2017, §2].
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in a fraction ring of the Grothendieck ring of O. Here d j ∈R0 and m j is a product of the [Wr,x ]/[Wr,y]

with x, y ∈ C and 1≤ r < N.

Proof. The idea is the same as [Frenkel and Hernandez 2015]. Since the q-character map is in-
jective, one can replace isomorphism classes with q-characters. χq(V ) is the sum of its e-weigths,
the number of which is dim V . By Corollary 4.13, any e-weigth e is of the form d

∏
9r,x/9r,y =

χq(S(d))
∏
χq(Wr,x)/χq(Wr,y), where d ∈ R0 and the product is over 1 ≤ r < N and x, y ∈ C. This

proves (4.29) in terms of q-characters. �

To compare with [Frenkel and Hernandez 2015, Theorem 4.8], one imagines that for 1≤ r < N and
x ∈ C there existed a positive prefundamental module L+r,x in category O with q-character χq(L+r,x) =
9r,x ×χ(L+r,0) as in [Frenkel and Hernandez 2015, Theorem 4.1]. Then [Wr,x ]/[Wr,y] = [L+r,x ]/[L

+
r,y].

Note that the q-character of W(r)
0,x in (4.28) is different from its character.

Example 4.16. Let N = 3. Consider the vector representation V of Section 1D:

1 0 =
91, 3

2

91, 1
2

, 2 0 =
91,− 1

2

91, 1
2

92,1

92,0
, 3 0 =

θ(z+ h̄)
θ(z)

92,−1

92,0
,

[V ] =
[W1, 3

2
]

[W1, 1
2
]
+

[W1,− 1
2
]

[W1, 1
2
]

[W2,1]

[W2,0]
+

[W3, 1
2
]

[W3,− 1
2
]

[W2,−1]

[W2,0]
.

Example 4.17. Let us construct the Eτ,h̄(sl2)-module W1,3 from [Felder and Varchenko 1996b, The-
orem 3]. As in [loc. cit.] set η = − 1

2 h̄, λ = λ12 and (a, b, c, d) = (L11, L12, L21, L22). For 3 ∈ Z>0,
consider the evaluation module L3((3− 1)η) with basis (ek)0≤k≤3. Note that k indicates the basis
vectors, while 3 the integer parameter of a KR module. Let us make a change of basis (the second
product is empty if k = 0)

vk := ek

3∏
i=1

θ(λ+ (i − k)h̄)
θ(h̄)

×

k∏
j=1

θ(λ− j h̄)
θ((3− k+ j)h̄)

for 0≤ k ≤3.

Tensoring L3((3−1)η) with the one-dimensional module of highest weight θ(w+3h̄)/θ(w), we obtain
another irreducible module V3 with basis (vk = vk⊗1)0≤k≤3; here to follow [loc. cit.] w denotes z. We
have wt(vk)= (3− k)ε1+ kε2 and

a(w)vk =
θ(w+ (3− k)h̄)

θ(w)

θ(λ+ (3− k+ 1)h̄)
θ(λ+ (1− k)h̄)

vk,

b(w)vk =
θ(w+ λ+ (3− k− 1)h̄)

θ(w)

θ((3− k)h̄)θ(h̄)
θ(λ− h̄)θ(λ)

vk+1,

c(w)vk =−
θ(w− λ+ (k− 1)h̄)

θ(w)

θ(kh̄)
θ(h̄)

vk−1,

d(w)vk =
θ(w+ kh̄)
θ(w)

θ(λ− (k+ 1)h̄)θ(λ− kh̄)
θ(λ− h̄)θ(λ)

vk .
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We have t12vk = −vk−1θ(kh̄)/θ(h̄) and v0 is of highest weight w
(1)
3,0, so V3 ∼= W (1)

3,0. The bases (vk)

trivialize the inductive system (V3) because the inductive maps commute with t12 by (4.20). For 3 ∈ C,
the above formulas define an Eτ,h̄(sl2)-module structure on ⊕∞k=0Mvk , with wt(vk) = (3− k)ε1+ kε2.
This is the desired W1,3.

General formulas for the Eτ,h̄(slN )-module W1,3 can be found in [Cavalli 2001, §3.4].

5. Baxter TQ relations

We derive three-term relations in the Grothendieck ring K0(O) for the asymptotic modules. For 1≤ r < N
and k, x, t ∈ C, by Corollary 4.13, d(r,t)k,x ∈R and is the highest weight of an irreducible module D(r,t)

k,x in
category O.

Call a complex number c ∈ C generic if c /∈ 1
2 Z + 1

h̄ (Z + Zτ). This condition is equivalent to
Qa ∩Qa+c = {1} for all a ∈ C.

Theorem 5.1. Let 1≤ r < N , t ∈ Z>0 and k, a, b ∈ C with k generic. Then

χq(D
(r,t)
k,a )= d(r,t)k,a

(
1+

t∑
l=1

A−1
r,a A−1

r,a+1 · · · A
−1
r,a+l−1

) ∏
s=r±1

χq(W
(s)
0,a−k− 1

2
) (5.30)

and D(r,0)
k,a
∼=⊗s=r±1W(s)

k,a−k− 1
2
.

Proof. Set x := a− k− 1
2 . Define d := d(r,t)k,a and for 1≤ l ≤ t ,

ml := m0 A−1
r,a A−1

r,a+1 · · · A
−1
r+a+l−1 and m0 := d

t∏
j=1

w
(r)
k+ j− 1

2 ,x
.

By (1.9) and (3.14)–(3.15), we have for 0≤ l ≤ t

ml =

t∏
j=l+1

9r,a+ j

9r,x
×

l∏
j=1

9r,a+ j−2

9r,x
×

∏
s=r±1

9s,a+l− 1
2

9s,x
.

Let us introduce the tensor products for 0≤ l ≤ t ,

Sl
:= (⊗t

j=l+1W(r)
k+ j+ 1

2 ,x
)⊗(⊗l

j=1W(r)
k+ j− 3

2 ,x
)⊗(⊗s=r±1W(s)

k+l,x),

T := D(r,t)
k,a ⊗(⊗

t
j=1W(r)

k+ j− 1
2 ,x
).

Equation (5.30) is equivalent to χq(T )=
∑t

l=0 χq(Sl) in view of (4.28).
Given two elements χ =

∑
f c f f and χ ′ :=

∑
f c′f f of Mt, we say that χ is bounded above by χ ′ if

c f ≤ c′f for all f ∈Mw. When this is the case, χ ′ is bounded below by χ . If χ is bounded below and
above by χ ′, then χ = χ ′.

Claim 1. The Sl are irreducible. In particular, D(r,0)
k,a
∼=⊗s=r±1W(s)

k,x .
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Fix 0≤ l ≤ t . Let S′ := S(ml). For n ∈ Z>0, set

S′n := (W
(r)
n,x)
⊗t
⊗(⊗s=r±1W (s)

n,x) and s′n := (w
(r)
n,x)

t
∏

s=r±1

w(s)
n,x .

By Lemma 3.2, any e-weigth s′ne ∈ Px of S′n different from s′n is right-negative. So S′n is irreducible.
Viewing S′n as an irreducible subquotient of

S′⊗(⊗t
j=l+1W(r)

n−k− j− 1
2 ,a+ j

)⊗(⊗l
j=1W(r)

n−k− j+ 3
2 ,a+ j−2

)⊗(⊗s=r±1W(s)
n−k−l,a+l− 1

2
),

we have e = e′
∏t

j=1 e j
∏

s=r±1 e(s) where ml e′,w
(r)
n−k− j− 1

2 ,a+ j
e j for l < j ≤ t , w

(r)
n−k− j+ 3

2 ,a+ j−2
e j for

1≤ j ≤ l, and w
(s)
n−k−l,a+l− 1

2
e(s) are e-weigths of the corresponding tensor factors. By Lemma 3.2 and

Proposition 4.10,
e, e′ ∈Q−x and e j , e(s) ∈Q−a .

Since a−x = k+ 1
2 is generic, Q−a ∩Q−x = {1} and so e= e′. The normalized q-character of S′ is bounded

below by that of S′n for all n ∈ Z>0. On the other hand, viewing S′ as an irreducible subquotient of Sl and
applying (4.25) to Sl , we see that the normalized q-character of S′ is bounded above by the limit of that
of S′n as n→∞. Therefore Sl ∼= S′ is irreducible.

Claim 2. For 1≤ l ≤ t , we have d A−1
r,a A−1

r,a+1 · · · A
−1
r,a+l−1 ∈ wte(D

(r,t)
k,a ). It follows that ml ∈ wte(T ).

Let us view the KR module W (r)
t,a as an irreducible subquotient of

D(r,t)
k,a ⊗(⊗s=r±1W(s)

−k,a− 1
2
).

By Lemma 3.2, w
(r)
t,a A−1

r,a A−1
r,a+1 · · · A

−1
r,a+l−1 ∈ wte(W

(r)
t,a ). The A−1

r,a+ j must arise from wte(D
(r,t)
k,a ) instead

of any of the wte(W
(s)
−k,a− 1

2
) with s 6= r .

For 0 ≤ j, l ≤ t , since wte(Sl) ⊂ mlQ−x and m j ∈ mlQa , we have m j ∈ wte(Sl) if and only if l = j .
Therefore, all the Sl appear as irreducible subquotients of T , and they are mutually nonisomorphic. So
χq(T ) is bounded below by

∑t
l=0 χq(Sl).

Claim 3. χq(D
(r,t)
k,a ) is bounded above by

d
(

1+
t∑

l=1

A−1
r,a A−1

r,a+1 · · · A
−1
r+a+l−1

) ∏
s=r±1

χq(W
(s)
0,x).

Fix d f ∈ wte(D
(r,t)
k,a ). For n ∈ Z>0, viewing D(r,t)

k,a as a subquotient of

D(r,t)
n,a ⊗(⊗s=r±1W(s)

k−n,x)

gives f = fn
∏

s=r±1 f (s) where by Lemma 3.2 and Corollary 3.5

fn d(r,t)n,a ∈ wte(D(r,t)
n,a ) and f (s)w(s)

k−n,x ∈ wte(W
(s)
k−n,x)= w

(s)
k−n,x wte(W

(s)
0,x).

It follows that fn ∈Q−a , f s
∈Q−x and f ∈Q−a Q−x .
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Let n ∈ Z>0 be large enough so that f ∈Q−a;nQ
−
x where Q−a;n is the submonoid of Q−a generated by the

A−1
i,a+m for 1≤ i < N and m ∈ 1

2 Z with m >−n. Since a− x = k+ 1
2 is generic, Corollary 3.5 implies that

fn ∈ {1, A−1
r,a , A−1

r,a A−1
r,a+1, . . . , A−1

r,a A−1
r,a+1 · · · A

−1
r+a+t−1}

is uniquely determined by f . The coefficient of d f in χq(M
(r)
k,a) is bounded above by that of

∏
s=r±1 f (s)

in
∏

s=r±1 χq(W
(s)
0,x). This proves the claim.

It follows from Claim 3 that χq(T ) is bounded above by

m0

(
1+

t∑
l=1

A−1
r,a A−1

r,a+1 · · · A
−1
r+a+l−1

) ∏
s=r±1

χq(W
(s)
0,x)×

t∏
j=1

χq(W
(r)
0,x)=

t∑
l=0

χq(Sl).

Since “bounded below” also holds, we obtain the exact formula for χq(T ), which implies (5.30). This
completes the proof of the theorem. �

Claim 1 is in the spirit of [Frenkel and Hernandez 2015, Theorem 4.11], and Claim 3 [Hernandez and
Leclerc 2016, (6.14)], [Frenkel and Hernandez 2016, §4.3] and [Zhang 2018, Theorem 3.3], the main
difference being the nonexistence of prefundamental modules. If both k and t are generic, then χq(D

(r,t)
k,a )

is obtained from the right-hand side of (5.30) by replacing
∑t

l=1 therein with
∑
∞

l=1.

Corollary 5.2. Let k ∈ C be generic and 1≤ r < N. In K0(O) holds

[D(r,1)
k,k+ 1

2
][Wr,k+ 1

2
] = [Wr,k− 1

2
]

∏
s=r±1

[Ws,k+1] + [Wr,k+ 3
2
]

∏
s=r±1

[Ws,k]. (5.31)

Proof. From (5.30) and the injectivity of the q-character map we obtain

[D(r,t)
k,a ][W

(r)
a−b+t−1,b] = [D

(r,0)
k+t,a+t ][W

(r)
a−b−1,b] + [D

(r,t−1)
k,a ][W(r)

a−b+t,b] (5.32)

for a, b ∈ C and t ∈ Z>0. (5.31) is the special case (t, a, b)=
(
1, k+ 1

2 , 0
)

of this identity in view of the
tensor product decomposition of D(r,0)

k,a in Theorem 5.1. �

Equation (5.32) can be viewed as a generic version of (3.17).

6. Transfer matrices and Baxter operators

We have obtained three types of identities (4.28), (4.29), and (5.31) in the Grothendieck ring K0(O).
These are viewed as universal functional relations [Bazhanov et al. 1997; 1999; Bazhanov and Tsuboi
2008] in the sense that when specialized to quantum integrable systems they imply functional relations of
transfer matrices. In this section, we study one such example, with the quantum space being a tensor
product of vector representations [Hou et al. 2003].

Fix ` := Nκ with κ ∈ Z>0 and a1, a2, . . . , a` ∈ C \0. Set I := {1, 2, . . . , N }. Let I `0 be the subset
of I ` formed of i such that εi1 + εi2 + · · ·+ εi` = 0 ∈ h. Upon identification i := vi1⊗vi2⊗ · · ·⊗vi` , the
weight space V⊗`[0] has basis I `0 .
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Let Dp be the set of formal sums
∑

α∈h pαTα fα(z; λ) such that: The fα(z; λ) are meromorphic
functions of (z, λ) ∈C×h. The set {α : fα 6= 0} is contained in a finite union of cones ν+ Q− with ν ∈ h.
Make Dp into a ring: Addition is the usual one of formal sums. Multiplication is induced from

pαTα f (z; λ)× pβTβg(z; λ)= pα+βTα+β f (z; λ+ h̄β)g(z; λ). (6.33)

As in [Felder and Varchenko 1996a; Felder and Zhang 2017], we construct a ring morphism [X ] 7→ tX (z)
from K0(O) to the ring M(I `0 ;Dp) of I `0 × I `0 matrices with coefficients in Dp. (We think of M(I `0 ;Dp)

as a ring of formal difference operators on V⊗`[0].)
Let X be an object of category O. To i, j ∈ I `0 we associate

L X
i j (z) := L X

i1 j1(z+ a1)L X
i2 j2(z+ a2) · · · L X

i` j`(z+ a`) ∈ (DX )0,0.

Since (DX )0,0 ⊆ EndM(X), one can take trace of L X
i j (z) over weight spaces of X .

Definition 6.1. The transfer matrix associated to an object X in category O is the matrix tX (z)∈M(I `0 ;Dp)

whose (i, j)-th entry for i, j ∈ I `0 is∑
α∈wt(X)

pαTα ×TrX [α](L X
i j (z)|X [α]) ∈ Dp.

Almost all of the results and comments in [Felder and Zhang 2017, §5] hold true after slight modification
in our present situation. In the following, we focus on the modification of these results, referring to
[Felder and Zhang 2017] for their proofs.

We remark that tV (z)|p=1 can be identified with the transfer matrix T (z) in [Hou et al. 2003, (2.22)]
where the Eτ,η(sln)-module W is V31(a1)⊗ V31(a2)⊗ · · ·⊗ V31(a`).

The transfer matrix associated to the one-dimensional module of highest weight g(z) ∈ M×
C

is the
scalar matrix

∏`
i=1 g(z+ ai ).

For 1 ≤ r ≤ N and x ∈ C, consider the E-module W′r,x :=Wr,x⊗S(θ(z − `r h̄)) in category O. By
Lemma 4.8, the matrix entries of the difference operators L i j (z) for 1 ≤ i, j ≤ N , with respect to any
basis of W′r,x , are entire functions of z ∈ C.

Definition 6.2. The r -th Baxter Q-operator for 1≤ r ≤ N is defined to be

Qr (u) := tW′
r,uh̄−1

(z)|z=0 for u ∈ C. (6.34)

Since W′N ,x = S
(
θ
(
z+

(
x + 1

2

)
h̄
))

is one-dimensional, QN (z)=
∏`

i=1 θ
(
z+ ai +

1
2 h̄
)
.

Let 1 ≤ r < N . Then Qr (z) = pzh̄−1$r Tzh̄−1$r
Q̃(z) and Q̃(z) is a power series in the p−αi T−αi

for 1 ≤ i < N . The leading term Q̃0(z) of Q̃(z) is invertible. Indeed Q̃0(0) is the scalar matrix∏`
j=1 θ(a j )∈M(I`;C), which is invertible because θ(a j ) 6= 0 by assumption. (One can prove furthermore

that with respect to certain order on I `0 , the matrix Q̃0(z) is upper triangular, whose entries are meromorphic
functions of (z; λ) ∈ C× h and entire on z.) Therefore Qr (z) ∈ GL(I `0 ;Dp).

Similarly one can show that tW′r,x (z) is invertible for x ∈ C.
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Proposition 6.3. Let X and Y be in category O and let x, u ∈ C.

(i) t9∗u X (z)= tX (z+ uh̄).

(ii) tX (z)tY (z)= tX⊗Y (z).

(iii) tWr,x (z)tWr,0(z+ uh̄)= tWr,x−u (z+ uh̄)tWr,u (z).

(iv) tX (z)tY (w)= tY (w)tX (z).

In (iv), we replace one of the z in (6.33) with w to define the multiplication. It is proved as in [Frenkel
and Hernandez 2015, Theorem 5.3]; the commutativity of transfer matrices is a consequence of the
commutativity of the Grothendieck ring K0(O). The standard proof by using the Yang–Baxter equation
[Baxter 1972] would require braiding in category O, whose existence is not clear.

Conclusion (ii) and the fact that tX (z) only depends on the isomorphism class [X ] of X imply that
[X ] 7→ tX (z) is a ring homomorphism trp : K0(O)→M(I `0 ;Dp). Applying trp to (4.28) we obtain (iii).
Replace (W, x, u, z) with (W′, zh̄−1

+ x, zh̄−1, 0) in (iii) and take the inverse of Qr (z) and tW′r,0(z). We
have

tWr,x (z)
tWr,0(z)

=
tW′r,x (z)

tW′r,0(z)
=

Qr (z+ xh̄)
Qr (z)

, (6.35)

as in [Felder and Zhang 2017, Theorem 5.6(i)]. Now applying trp to (4.29), we obtain

Corollary 6.4. Let V be a finite-dimensional E-module in category O. Then in (4.29) replacing V, S(d j )

and the [Wr,a]/[Wr,b] with tV (z), tS(d j )(z) and Qr (z+ah̄)/Qr (z+ bh̄) respectively, we obtain an identity
in M(I `0 ;Dp).

This forms the generalized Baxter relations for transfer matrices. If the prefundamental modules L+r,a
before Example 4.16 existed, then we would have defined alternatively the r -th Baxter operator QFH

r (z)=
tL+r,0

(z) as a real transfer matrix [Frenkel and Hernandez 2015, §5.5] and so Qr (z+ ah̄)/Qr (z+ bh̄)=
QFH

r (z+ ah̄)/QFH
r (z+ bh̄) based on [Wr,a]/[Wr,b] = [L+r,a]/[L

+

r,b].
As an illustration of the corollary, let us be in the situation of Example 4.16:

tV (z)=
Q1
(
z+ 3

2 h̄
)

Q1
(
z+ 1

2 h̄
) + Q1

(
z− 1

2 h̄
)

Q1
(
z+ 1

2 h̄
) Q2(z+ h̄)

Q2(z)
+

Q2(z− h̄)
Q2(z)

∏̀
j=1

θ(z+ a j + h̄)
θ(z+ a j )

.

Apply trp to (5.31), divide both sides by the second term, and then perform the change of variable
z+

(
k+ 1

2

)
h̄ 7→ w. By (6.35) and Proposition 6.3(i)

X (r)
k (w)

Qr (w)

Qr (w− h̄)
= 1+

Qr (w+ h̄)
Qr (w− h̄)

∏
s=r±1

Qs
(
w− 1

2 h̄
)

Qs
(
w+ 1

2 h̄
) . (6.36)

This forms three-term Baxter TQ relations for transfer matrices, where

X (r)
k (w)= tD(r,1)

k,0
(w)

∏
s=r±1

t−1
Ws,k+1

(
w−

(
k+ 1

2

)
h̄
)
.

By (6.36), X (r)
k (z) ∈M(I `0 ;Dp) is independent of the choice of generic k ∈ C.
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In the homogeneous case a1 = a2 = · · · = a` = a, the entries of the matrix Q̃r (z), as entire functions
of z, in general do not satisfy the uniform double periodicity of [Felder and Zhang 2017, Theorem 5.6(ii)].
By “uniform” we mean the multipliers with respect to z + 1 and z + τ only depend on (a, z, `). This
is because the transfer matrix construction in [Felder and Zhang 2017] is based on a slightly different
elliptic quantum group; see footnote 9.

We follow [Frenkel and Hernandez 2016, §5] to derive the Bethe Ansatz equations from (6.36). Let u
be a zero of Qr (z). Suppose X (r)

k (z), Qr (z− h̄) and Qs
(
z+ 1

2 h̄
)

for s 6= r ± 1 have no poles at z = u.
(This is a genericity condition.) Then as in [Frenkel and Hernandez 2016, (5.16)]

Qr (u+ h̄)
Qr (u− h̄)

∏
s=r±1

Qs
(
u− 1

2 h̄
)

Qs
(
u+ 1

2 h̄
) =−1. (6.37)

To compare with [Frenkel and Hernandez 2016], we can assume furthermore that eigenvalues of Qr (z)
are of the form pzh̄−1$r

∏dr
i=1 θ(z− ur;i ) based on [Felder and Zhang 2017, Remark 5.8]. Then

pαr

dr∏
i=1

θ(ur;k + h̄− ur;i )

θ(ur;k − h̄− ur;i )

∏
s=r±1

ds∏
j=1

θ
(
ur;k +

1
2 h̄− us; j

)
θ
(
ur;k +

1
2 h̄− us; j

) =−1 for 1≤ k ≤ dr .

We remark that similar Bethe Ansatz equations for E appeared in [Hou et al. 2003, (3.45)].
For affine quantum groups and toroidal gl1, the genericity condition of Bethe Ansatz equations has

been dropped in [Feigin et al. 2017a; 2017b].
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