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Algebraic de Rham theory for
weakly holomorphic modular forms of level one

Francis Brown and Richard Hain

We establish an Eichler–Shimura isomorphism for weakly modular forms of level one. We do this by
relating weakly modular forms with rational Fourier coefficients to the algebraic de Rham cohomology of
the modular curve with twisted coefficients. This leads to formulae for the periods and quasiperiods of
modular forms.

1. Introduction

Let Mn denote the Q-vector space of modular forms of weight n and level one with rational Fourier
coefficients. Let Sn ⊂ Mn denote the subspace of cusp forms. The Eichler–Shimura isomorphism [Eichler
1957; Shimura 1959] is usually expressed as a pair of isomorphisms

Mn+2⊗Q C−→∼ H 1(SL2(Z); V B
n )
+
⊗Q C,

Sn+2⊗Q C−→∼ H 1(SL2(Z); V B
n )
−
⊗Q C,

(1-1)

where the right-hand side denotes group cohomology with coefficients in V B
n = SymnV B, where V B

denotes the standard two-dimensional representation of SL2 over Q with basis a, b, and ± denote
eigenspaces with respect to the real Frobenius (complex conjugation). One wants to think of this theorem
as a special case of the comparison isomorphism between algebraic de Rham cohomology and Betti
cohomology, each of which has a natural Q-structure. The rational structures on these groups then enables
one to define periods. Each cuspidal Hecke eigenspace, like an elliptic curve, should have four periods
(two periods and two quasiperiods) corresponding to the entries of a 2× 2 period matrix. However, the
isomorphisms (1-1) do not generate enough periods since each one only produces a single period for
every modular form. To obtain a full set of periods, one needs to consider “modular forms of the second
kind.”

In this note, we compute the algebraic de Rham cohomology of the moduli stack M1,1 of elliptic
curves and relate it to weakly holomorphic modular forms (modular forms which are holomorphic on
the upper half plane but with poles at the cusp). From this, we deduce a Q-de Rham–Eichler–Shimura
isomorphism, and a definition of the period matrix of a Hecke eigenspace.
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Before stating the main results, it may be instructive to review the familiar case of an elliptic curve E
over Q with equation y2

= 4x3
− ux − v. The de Rham cohomology H 1

dR(E,Q) is a two-dimensional
vector space over Q, as is the Betti (singular) cohomology H 1(E(C);Q). The comparison isomorphism
is a canonical isomorphism

H 1
dR(E;Q)⊗Q C−→∼ H 1(E(C);Q)⊗Q C. (1-2)

On the other hand, the space F1 H 1
dR(E;Q) := H 0(E;�1

E/Q) is one-dimensional and spanned by the
holomorphic differential dx/y. The Betti cohomology H 1(E(C);Q) splits into two eigenspaces under the
action of complex conjugation, with eigenvalues ±1. The analogue of the Eichler–Shimura isomorphisms,
in this setting, are exactly the formulae

H 0(E;�1
E/Q)⊗Q C−→∼ H 1(E(C);Q)+⊗Q C,

H 0(E;�1
E/Q)⊗Q C−→∼ H 1(E(C);Q)−⊗Q C,

given by integrating the form dx/y over invariant and antiinvariant cycles in E(C) with respect to complex
conjugation, respectively. This is clearly a weaker statement than the comparison isomorphism (1-2).
To obtain all periods of the elliptic curve, one needs to consider, in addition, period integrals of the
differential xdx/y of the second kind, which provides an isomorphism

H 1
dR(E;Q)∼=Q

dx
y
⊕Q

xdx
y
. (1-3)

Remark 1.1. There is also an isomorphism of

H 1(E(C);C)/H 0(E;�1
E/Q)⊗Q C

with the space of antiholomorphic differentials on E(C). Since this isomorphism is only defined over C,
one loses the rational structure, and cannot define periods in this manner. The analogue for modular forms
is the isomorphism

(H 1(SL2(Z); V B
n )⊗Q C)/(Mn+2⊗Q C)

with the space of antiholomorphic cusp forms of weight n+ 2.

1A. Statement of the theorem. Let E denote the universal elliptic curve over the moduli stack M1,1

(over Q) of elliptic curves. It defines a rank two algebraic vector bundle V , equipped with the Gauss–Manin
connection ∇. For all n ≥ 1, set

Vn = SymnV

and denote the induced connection by ∇ also. Grothendieck defined algebraic de Rham cohomology,
which is a finite-dimensional Q-vector space:

H 1
dR(M1,1;Vn).
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In order to describe this space in terms of modular forms, for each n ∈ Z, let M !n denote the Q-vector
space of weakly holomorphic modular forms of weight n that have a Fourier expansion∑

k≥−N

akqk

with ak ∈Q. They can have negative weights. Such a form is called a cusp form if a0 = 0. Let S!n ⊂ M !n
denote the subspace of cusp forms. Now consider the differential operator

D = q d
dq
. (1-4)

It does not in general preserve modularity, but an identity due to Bol [1949] implies that its powers induce
a linear map

Dn+1
: M !
−n→ S!n+2

for every n ≥ 0. Our main theorem was inspired by the recent paper [Guerzhoy 2008]. After writing
this note, we learnt that similar results for modular curves of higher level were implicitly obtained by
Coleman [1996] in the p-adic setting, and independently by Scholl [1985]. As pointed out in the very
recent paper [Kazalicki and Scholl 2016], a description of algebraic de Rham cohomology in terms of
modular forms of the second kind seems not to have been stated explicitly anywhere in the literature up
until that point. An approach using the Cousin resolution was subsequently given in [Candelori 2014].
The following theorem can be indirectly deduced from the results of these papers by viewing a modular
form of level one as an invariant form of levels 3 and 4.

Theorem 1.2. For each n ≥ 0, there is a canonical isomorphism of Q-vector spaces

$ : M !n+2/D
n+1 M !

−n −→
∼ H 1

dR(M1,1;Vn).

The space on the left contains the space of holomorphic modular forms as a subspace:

Mn+2 ⊂ M !n+2/D
n+1 M !

−n.

More precisely, the group H 1
dR(M1,1;Vn) carries a natural Hodge filtration

H 1
dR(M1,1;Vn)= F0

⊃ F1
= · · · = Fn+1

⊃ Fn+2
= 0

and Fn+1 is the image of Mn+2 under $ . That is,

$ : Mn+2 −→
∼ Fn+1 H 1

dR(M1,1;Vn).

A splitting of the Hodge filtration is discussed in Section 6.

1B. Comparison isomorphism. Grothendieck’s algebraic de Rham theorem implies (see Section 3) that
there is a canonical isomorphism of complex vector spaces

H 1
dR(M1,1;Vn)⊗Q C−→∼ H 1(M1,1(C);V

B
n ),
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where the right-hand space is the Betti (singular) cohomology of M1,1(C) with coefficients in the complex
local system VB

n = Symn−1 R1π∗C, where π : E→M1,1 is the universal elliptic curve. Let V B
n denote

its fibre H 0(H,VB
n ) at the tangent vector ∂/∂q . Since M1,1(C) is the orbifold quotient of the upper half

plane by SL2(Z), its cohomology is computed by group cohomology of SL2(Z) and we immediately
deduce the following consequence of Grothendieck’s theorem:

Corollary 1.3. There is a canonical isomorphism

compB,dR : H
1
dR(M1,1;Vn)⊗Q C−→∼ H 1(SL2(Z); V B

n ⊗Q C).

Combined with the previous theorem, we deduce an algebraic de Rham version of the Eichler–Shimura
isomorphism. It is the analogue for modular forms of the isomorphism (1-2).

Corollary 1.4. There is a canonical isomorphism

M !n+2/D
n+1 M !

−n ⊗Q C−→∼ H 1(SL2(Z); V B
n ⊗Q C). (1-5)

The dimension of the space on the left-hand side was computed in [Guerzhoy 2008], the dimension of
the right-hand space by Eichler–Shimura: both are 1+ 2 dim Sn . Restricting the previous isomorphism to
the subspace Mn+2 of holomorphic modular forms, and projecting onto the positive or negative eigenspaces
with respect to complex conjugation on the right-hand space gives back the two isomorphisms (1-1).

For any weakly holomorphic modular form f ∈ M !n+2, its image under the comparison isomorphism is
given explicitly by the cohomology class of the cocycle:

γ 7→ (2π i)n+1
∫ z0

γ−1z0

f (z)(za− b)n dz, (1-6)

where a, b is a basis of V B, which we think of as the first rational Betti cohomology group of the elliptic
curve C/(Z⊕ zZ). Its cohomology class does not depend on the choice of basepoint z0 ∈ H. A different
version of this map (and without the rational structures) was described in [Bringmann et al. 2013]. See
also [Bruggeman et al. 2014, Theorem A].

1C. Periods. The isomorphism (1-5) is compatible with the action of Hecke operators. The action of
Hecke operators on the left-hand side was defined in [Guerzhoy 2008]. The eigenspace of an Eisenstein
series is one-dimensional, that corresponding to a cusp form is two-dimensional. Let f be a cusp Hecke
eigenform and K f ⊂ R the field generated by its Fourier coefficients. Let

V dR
f ⊂

(
M !n+2/Dn+1 M !

−n
)
⊗Q K f

denote the Hecke eigenspace generated by f . It is a two-dimensional K f -vector space. Let

V B
f ⊂ H 1(SL2(Z); V B

n ⊗Q K f
)

denote the corresponding Betti eigenspace. It is also a two-dimensional K f -vector space, and decomposes
into invariant and antiinvariant eigenspaces with respect to the real Frobenius. We deduce from (1-5) a
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canonical isomorphism
compB,dR : V

dR
f ⊗K f C−→∼ V B

f ⊗K f C.

Definition 1.5. Define a period matrix Pf of f to be the matrix of compB,dR written in a K f -basis of
V dR

f and V B
f . We can assume that the basis of V B

f is compatible with decomposition into eigenspaces for
the action of the real Frobenius. It is of the form

Pf =

(
η+f ω+f
iη−f iω−f

)
,

where ω±f , η
±

f ∈ R. It is well-defined up to right multiplication by a lower-triangular matrix with entries
in K f , and entries in K×f on the diagonal. The ω+f , iω−f are the holomorphic periods [Manin 1973].

Remark 1.6. Only the holomorphic periods ω+f , iω−f can be obtained from the classical Eichler–Shimura
isomorphisms (1-1).

Theorem 1.7. If f has weight 2n, then det(Pf ) ∈ (2π i)2n−1K×f .

2. Definitions and background

2A. Weakly holomorphic modular forms.

Definition 2.1. For every n ∈ Z, let M !n denote the Q-algebra of weakly holomorphic modular forms of
level 1 and weight n with rational Fourier coefficients. It is the Q-vector space of holomorphic functions
f : H→ C on the upper half plane H such that

f (γ z)= (cz+ d)n f (z) for all γ =

(
a b
c d

)
∈ SL2(Z) (2-1)

which admit a Fourier expansion of the form

f =
∑

k≥−N

akqk, ak ∈Q.

The space S!n ⊂ M !n of cusp forms is the subspace of functions satisfying a0 = 0.

Proposition 2.2 (Bol’s identity). For all n ≥ 0, there is a linear map

Dn+1
: M !
−n→ M !n+2.

Proof. This result follows automatically from our proof of Theorem 1.2. We provide a more direct proof
for completeness.

For f : H→ C a real analytic modular form of weight n ∈ Z define

dn f =
1

2π i

(
∂ f
∂z
+

n f
z− z̄

)
.

It is well-known by Maass, and easily verified, that this operator respects the transformation property
(2-1), and therefore dn f is a real analytic modular form of weight n+ 2.
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The proposition follows from the following identity, for all n ≥ 0:

Dn+1
= dndn−2 · · · d2−nd−n.

To verify this, write a real analytic function on H as a formal power series in (z− z̄) and z̄. It suffices to
verify the formula for

fa,b = (2π i(z− z̄))a(−2π i z̄)b,

where a, b ≥ 0. We check that dm fa,b = (a+m) fa−1,b, and hence

dndn−2 · · · d2−nd−n
(

fa,b
)
= a(a− 1) · · · (a− n) fa−n−1,b.

On the other hand, log q = 2π i z and log q̄ =−2π i z̄ and hence

fa,b = (log q + log q̄)a(log q̄)b.

Since D = q∂/∂q = ∂/∂(log q), the operator Dn+1 acts on fa,b in an identical manner. �

2B. Moduli of elliptic curves. Let k be a commutative ring with 6 ∈ k×. In much of this paper, k will
be either the universal such ring, k= Z

[ 1
6

]
, or k=Q. The formula

λ · u = λ4u, λ · v = λ6v

defines a left action

µ : Gm ×A2
→ A2 (2-2)

of the multiplicative group Gm on the affine plane A2
:= Spec k[u, v], and defines a grading on k[u, v]

called the weight. The discriminant function

1= u3
− 27v2

has weight 12 under this action, so that Gm also acts on the graded ring k[u, v][1−1
]. Let D be the

vanishing locus of the discriminant 1. Set

X = A2
− D := Spec k[u, v][1−1

].

Then X is the moduli scheme of elliptic curves over k together with a nonzero abelian differential, [Katz
and Mazur 1985, §(2.2.6)]. Its coordinate ring

O(X)= k[u, v][1−1
] =

⊕
m even

grmO(X)

is graded by the Gm action. The sheaf of regular functions on X will be denoted by OX .
The universal elliptic curve E over X is the subvariety of P2

×k X which is the Zariski closure of the
affine scheme defined by the equation

y2
= 4x3

− ux − v ∈O(X)[x, y].
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The universal abelian differential on E is dx/y. The multiplicative group Gm acts on (x, y) by λ · (x, y)=
(λ2x, λ3 y) and on the abelian differential by λ · dx/y = λ−1dx/y.

The moduli stack of elliptic curves over k is the stack quotient

M1,1/k= Gm\\X

of X by Gm . Its Deligne–Mumford compactification is

M1,1/k= Gm\\Y,

where Y = A2
−{0}. In down to earth terms, to work on M1,1/k is to work Gm-equivariantly on X , and

to work on M1,1/k is to work Gm-equivariantly on Y .

2C. Upper half plane description. When k=C, this description of M1,1 relates to the traditional upper
half plane model via Eisenstein series. Denote by G2n the normalised Eisenstein series

G2n(q)=−
B2n

4n
+

∞∑
m=1

σ2n−1(m)qm

of weight 2n where Bk is the k-th Bernoulli number, q = e2π i z , and σk(m)=
∑

d |m dk the divisor function.
Define a map ρ : H→ X (C) by ρ(z)= (u(z), v(z)), where

u = 20G4(z) and v = 7
3G6(z). (2-3)

The map ρ factors through the punctured q-disk and induces a graded ring isomorphism to the space of
holomorphic modular forms

ρ∗ :Q[u, v] −→∼
⊕

n even

Mn.

The pull-back of the discriminant 1 is the Ramanujan τ -function 1(z), which vanishes nowhere on H. It
follows that ρ induces a graded ring isomorphism

ρ∗ :O(X)−→∼
⊕

n even

M !n.

and that the image of ρ is indeed contained in X (C). The ring of weakly modular forms is therefore
nothing other than the affine ring of functions on X .

The elliptic curve C/(Z⊕ zZ) is mapped isomorphically to the elliptic curve

y2
= 4x3

− 20G4(z)− 7
3G6(z)

by w 7→ (℘z(w)/(2π i)2, ℘ ′z(w)/(2π i)3), where ℘z(w) denotes the Weierstrass ℘-function. The abelian
differential dx/y pulls back to 2π i dw. This implies that the map (2-3) induces an isomorphism

SL2(Z)\\H−→∼ (Gm\\X)(C)=M1,1(C)
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of analytic stacks, since ρ(γ z) = ((cz + d)4u(z), (cz + d)6v(z)) for γ ∈ SL2(Z) of the form (2-1), by
modularity of G4 and G6.

The following lemma motivates the choice of the basis of one-forms considered later.

Lemma 2.3. Pulling back along (2-3) we have

2udv−3vdu
1

=
2
3

dq
q
.

Proof. Formulae due to Ramanujan imply that

DE2 = (E2
2 − E4)/12, DE4 = (E2 E4− E6)/3, DE6 = (E2 E6− E2

4)/2,

where E2n=−(4n/B2n)G2n are the Eisenstein series normalised such that their constant Fourier coefficient
is 1. These are easily verified by computing the first few terms in their Fourier expansion [Zagier 2008,
Proposition 15]. It follows that

3E6 DE4− 2E4 DE6 = E3
4 − E2

6 = 17281.

Now substitute E4 = 240G4 = 12u and E6 =−504G6 =−216v. �

Remark 2.4. The functions u, v have the following q-expansions:

u = 20G4 =
1
12 + 20q + 180q2

+ 560q3
+ 1460q4

+ · · ·

v = 7
3 G6 =−

1
216 +

7
3q + 77q2

+
1708

3 q3
+

7399
3 q4
+ · · ·

They have coefficients in Z
[ 1

6

]
. Furthermore,

1−1
=

1
q
+ 24+ 324q + 3200q2

+ 25650q3
+ 176256q4

+ · · ·

has integer coefficients. It follows that
M !n+2

Dn+1 M !−n

has a natural Z
[ 1

6

]
-structure, given by series whose Fourier coefficients lie in Z

[ 1
6

]
. This is because the

operator D acts on the ring Z[[q]].

The Z
[1

6

]
structure on the affine ring of X/Z

[ 1
6

]
coincides, by Remark 2.4, with the Z

[ 1
6

]
structure on

Fourier expansions.

2D. Differential forms. The following one-forms play a special role:

ψ =
1
12

d1
1
, ω =

3
2

(2u dv−3v du
1

)
∈�1(X). (2-4)

They have weights 0 and −2, respectively. By Lemma 2.3, we have

ρ∗ω =
dq
q
.

Both ω and ψ have logarithmic singularities along the discriminant locus D.
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Lemma 2.5. If h ∈ grmO(X), then 1ψ ∧ω = 3
4 du ∧ dv and

dh
h
∧ω = mψ ∧ω, d(hω)= (m− 2)hψ ∧ω. (2-5)

Proof. Since d log(h1h2) = d log(h1)+ d log(h2), it suffices to verify the first equation for h = u and
h =1. For the second equation, use dω =−2ψ ∧ω to write

d(hω)= h
dh
h
∧ω− 2hψ ∧ω

and conclude using the first equation. �

In particular, since ψ and ω are pointwise linearly independent, we have

�1(X)=O(X)du⊕O(X)dv ∼=O(X)ψ ⊕O(X)ω.

Corollary 2.6. For every f ∈ grmO(X) we have

d f = ϑ( f )ω+m f ψ,

where ϑ :O(X)→O(X) is the derivation of weight two defined by

ϑ = 6v ∂
∂u
+

u2

3
∂

∂v
. (2-6)

Proof. There exist unique f0, f1 ∈O(X) such that

d f = f0ω+ f1ψ.

Use (2-5) to deduce that d f ∧ ω = m fψ ∧ ω, which yields f1 = m f . The linear map ϑ : f 7→ f0

is a derivation which necessarily satisfies ϑ(1) = 0. This is certainly true of the formula (2-6). It
therefore suffices to verify that ϑ(u)= 6v. For this, use the fact that d1= 3u2 du− 54v dv to deduce
that du ∧ψ = −9v

2 (du ∧ dv)/1. Comparing with ω∧ψ =−3
4(du ∧ dv)/1 implies that ϑ(u)= 6v as

required. �

Remark 2.7. The derivation ϑ is closely related to the Serre derivative [Zagier 2008, (53)].

Consider the pull-back along (2-2) followed by the natural map

�1
X
µ∗

−→�1
Gm×X →�1

(Gm×X)/X

to relative Kähler differentials. Taking global sections gives a natural O(X)-linear map

π∗ :�1(X)→O(X)⊗k�
1(Gm)=O(X)[λ±] d log λ,

where λ is the coordinate on Gm .
Say that an element of �1(X) is proportional to ω if it lies in the subspace O(X)ω of �1(X) spanned

by ω.

Lemma 2.8. A form η ∈�1(X) is proportional to ω if and only if π∗η = 0. Furthermore, π∗ψ = d log λ.
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Proof. Via the natural isomorphism of O(X)[λ±]-modules,(
�1(Gm)⊗k O(X)

)
⊕
(
�1(X)⊗k k[λ±]

)
→�1(Gm × X),

we can compute
µ∗(ω)= (0, λ−2ω) and µ∗(ψ)= (d log λ,ψ). (2-7)

This follows from calculating

µ∗(2u dv− 3v du)= 2λ4u d(λ6v)− 3λ6v d(λ4u)= λ10ω

and noting that the terms involving dλ cancel. More generally, we verify that for any h ∈ grmO(X), we
have

µ∗ dh = d(λmh)= λm dh+mλm−1h dλ

and therefore µ∗ d log h = (m d log λ, d log h). Setting h = 1 proves (2-7), from which the lemma
immediately follows. �

2E. Alternative description of M1,1/Q. A complementary approach to constructing M1,1 as a stack
over k is as a quotient of the affine subscheme Z of X defined by 1= 1. Its affine ring O(Z) is k[u, v]/I ,
where I is the graded ideal of k[u, v] generated by 1− 1, where k is any commutative ring with 6 ∈ k×.
Since 1 has weight 12, the affine group scheme

µ12 = Spec k[λ]/(λ12
− 1),

with λ group-like, acts on Z .

Remark 2.9. The affine scheme Z is isomorphic, over k, to the Fermat cubic minus its identity element.
In fact, the closure of the locus u3

− 27v2
= 1/4 is isomorphic to the Fermat cubic x3

+ y3
= 1, where

u = 1/(x + y) and v = (x − y)/6(x + y).

The inclusion µ12 ↪→ Gm induces an isomorphism of (the constant group scheme) Z/12Z with the
character group of µ12. Denote the congruence class of n mod 12 by [n]. The µ12 action on Z gives a
Z/12Z-grading of its coordinate ring:

O(Z)=
⊕

n mod 12

O(Z)[n].

If n is odd then O(Z)[n] = 0. Since the inclusion j : Z ↪→ X is µ12 equivariant, the restriction homomor-
phism induces a ring homomorphism

j∗ :O(X)Gm →O(Z)µ12 (2-8)

and, for each m ∈ Z, a homomorphism

j∗ : grmO(X)→O(Z)[m] (2-9)

of modules over (2-8).
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Lemma 2.10. The homomorphism (2-8) is an isomorphism, so that

j : µ12\\Z −→∼ Gm\\X

is an isomorphism of stacks. Moreover, for each m ∈ Z, (2-9) is an isomorphism.

Proof. Since 1− 1 is µ12-invariant, it suffices for the first part to show that

O(X)Gm = k[u, v,1−1
]
Gm −→ k[ū, v̄]µ12/Iµ12 =O(Z)µ12

is an isomorphism, where ū = j∗(u) and v̄ = j∗(v) are the images of u, v. Since ū has weight 4 and v̄
has weight 6, it follows that k[ū, v̄]µ12 = k[ū3, v̄2

]. The inverse is induced by the map

k[ū3, v̄2
] → k[u, v,1−1

]
Gm

which sends ū3 to u31−1 and v̄2 to v21−1. It vanishes on Iµ12 . This proves that (2-8) is an isomorphism.
For all integers k, multiplication by 1k gives an isomorphism

grmO(X)−→∼ grm+12kO(X)

of gr0O(X) = O(X)Gm -modules. It therefore suffices to prove that (2-9) is an isomorphism for m =
0, 4, 6, 8, 10, 14, which form a complete set of representatives for even numbers modulo 12. But O(Z) is
isomorphic to the free Z/12Z-graded O(Z)µ12 ∼= k[ū3, v̄2

]-module generated by monomials in ū and v̄
that are of degree < 3 in ū and degree < 2 in v̄, where ū3

− 27v̄2
= 1. These are

1, ū, v̄, ū2, ūv̄, ū2v̄,

and have weights 0, 4, 6, 8, 10, 14, respectively. Similarly, grmO(X) is isomorphic to the free graded
O(X)Gm ∼= k[u31−1, v21−1

]-module generated by the monomials 1, u, v, u2, uv, u2v. �

2F. Gauss–Manin connection [Katz 1973, §A1]. The vector bundle V over X is defined to be the
restriction of the trivial rank 2 vector bundle

V :=OYS⊕OYT

on Y := A2
−{0} to X . The multiplicative group acts on it by

λ · S= λS, λ ·T= λ−1T.

So V can be regarded as a vector bundle on the moduli stack M1,1 and V as a vector bundle on M1,1.
Set Vn = Symn V for all n ≥ 1.

The connection on V , and its symmetric powers

V n := Symn V =
⊕

j+k=n

OYS
jTk
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is defined by

∇ = d +
(
S T

)( ψ ω

−
u
12
ω −ψ

)(
∂
∂S
∂
∂T

)
. (2-10)

It is Gm-invariant, and thus defines a rational connection on V n with regular singularities and nilpotent
residue along the discriminant divisor D.

Set V = R1π∗kX where π : E → X is the universal elliptic curve. It is proved in [Hain 2013,
Proposition 19.6] that when k⊂ C there is a natural isomorphism

VB
⊗k Oan

X
∼= V an

⊗k C

of bundles with connection over X (C), where the left hand bundle is endowed with the Gauss–Manin
connection. Under this isomorphism T corresponds to the section dx/y of (R1π∗CX )⊗C OX and S to
the section xdx/y. For later use, we set

VB
n = Symn VB. (2-11)

When pulled back to the upper half plane (and q-disk), the connection can also be written down in
terms of the frame A and T, where A is the section corresponding to the Poincaré dual of the element a of
H1(Z/(Z+ zZ)) corresponding to the curve from 0 to 1. The two framings are related by1

S= A+ 2G2(q)T. (2-12)

In this frame, the Gauss–Manin connection is given by

∇ = d +A
∂

∂T
⊗

dq
q
= 2π i

(
D+A

∂

∂T

)
⊗ dz, (2-13)

where, as above, D is the differential operator q∂/∂q = (2π i)−1∂/∂z.

Lemma 2.11. If f =
∑

j+k=n f j,kA jTk is a real analytic section of Vn , then

∇ f = 2π i
∑

j+k=n

(
D f j,k

+ (k+ 1) f j−1,k+1) dz⊗A jTk,

where we define f n+1,−1
= f −1,n+1

= 0.

Proof. Apply the connection (2-13) to the section f . �

Pulling back via the map π∗ defines a relative connection on Gm over OX , which by (2-7) is of the
form

π∗(∇)= d +
(
S T

)(dλ
λ

0
0 − dλ

λ

)( ∂
∂S
∂
∂T

)
(2-14)

A section of this relative connection is flat if and only if it is Gm-equivariant.

1 This follows from the formulas in [Hain 2013, §19.3]: T and S are obtained from T̂ and Ŝ there by setting ξ = (2π i)−1 and
taking A to be a.
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3. De Rham cohomology

In this section, we take k=Q. Since X is affine, it follows from the version of Grothendieck’s algebraic
de Rham theorem with coefficients in a connection [Deligne 1970, Corollary 6.3] that for each n ≥ 0,
H 1

dR(X,Vn) is computed by the complex

�•(X,Vn) :=
[
0(X,Vn)

∇
−→ 0(X, �1

X ⊗OX Vn)
∇
−→ 0(X, �2

X ⊗OX Vn)
]
.

Since ∇ is equivariant with respect to the action of Gm , we obtain the subcomplex

�•(X,Vn)
Gm =

[
0(X,Vn)

Gm ∇−→ 0(X, �1
X ⊗OX Vn)

Gm ∇−→ 0(X, �2
X ⊗OX Vn)

Gm
]

(3-1)

of invariant forms. Since Gm is connected, this also computes the de Rham cohomology of X with
coefficients in Vn . The Leray spectral sequence for the Gm-bundle p : X→M1,1

H j (M1,1, Rk p∗Vn)→ H j+k(X,Vn)

has only two nonvanishing rows, which implies that there is an exact sequence

0→ H j
dR(M1,1,Vn)

p∗
−→ H j

dR(X,Vn)→ H j−1
dR (M1,1, R1 p∗Vn)→ 0 (3-2)

for all j ≥ 0, where we recall that Vn denotes both the bundle p∗Vn on M1,1 and Vn on X . Since Vn is
trivial on the Gm orbits on X ,

H j−1
dR (M1,1, R1 p∗Vn)∼= H 1

dR(Gm;Q)⊗Q H j−1
dR (M1,1,Vn).

If n > 0, then H j (M1,1,Vn) vanishes when j 6= 1. We deduce natural isomorphisms

p∗ : H 1
dR(M1,1,Vn)−→

∼ H 1
dR(X,Vn)

for all n > 0 and

π∗ : H 1
dR(X;V0)−→

∼ H 1
dR(Gm;Q).

By computations in Section 2D, the left-hand side is generated by [ψ].

Remark 3.1. Since M1,1 = µ12\\Z , the homology of the complex �•(Z , j∗Vn)
µ12 is H •

dR(M1,1,Vn).
Below (see Proposition 3.8) we show that there is a canonical isomorphism

�•(X,Vn)
Gm ∼=�

•(Z , j∗Vn)
µ12 ⊕�•(Z , j∗Vn)

µ12[−1],

where the shift is given by multiplication by ψ . This gives a natural splitting of (3-2), where the shift
[−1] is given by cup product with [ψ]:

H •

dR(X,Vn)∼= H •

dR(M1,1,Vn)⊕ H •

dR(M1,1,Vn)[−1]. (3-3)
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3A. The subcomplex �•(X,Vn)
ω. Recall that we can identify grnO(X) with M !n via the isomorphism

ρ∗ : grnO(X)= grnQ[u, v][1−1
] −→∼ M !n

since every holomorphic modular form can be uniquely written as a polynomial in the Eisenstein series u
and v.

Definition 3.2. For each n ≥ 0, define

$ : M !n+2→ 0(X, �1
X ⊗OX Vn)

Gm (3-4)

to be the Q-linear map that takes f to ω f := f ωTn , where ω and T were defined in (2-4) and Section 2F.

The first task in proving Theorem 1.2 is to show that $ induces a linear map

$ : M !n+2/Dn+1 M !
−n→ H 1

dR(M1,1;Vn). (3-5)

Here we take the first steps in this direction. The following lemma implies that ω f is ∇-closed.

Lemma 3.3. For all j, k ≥ 0 and f ∈ M !k− j+2, the one-form

η = f ω S jTk
∈ 0(X, ω⊗V j+k)

is Gm-invariant and satisfies ∇η = 0. Consequently,

0(X, ω⊗V j+k)
Gm ⊂ ker∇. (3-6)

Proof. We have f ∈ grk− j+2O(X). By the Leibniz rule

∇η = d( f ω)S jTk
− f ω∧∇S jTk . (3-7)

From the connection formula (2-10), we have

∇S jTk
≡ ( j − k)ψ S jTk (mod ωO(X))

and therefore
f ω∧∇S jTk

= (k− j) fψ ∧ωS jTk .

By the second equation of (2-5), we find that

d( f ω)= (k− j + 2− 2) f ψ ∧ω = (k− j) f ψ ∧ω.

Substituting the two previous expressions into (3-7) implies that ∇η = 0. �

Lemma 3.4. The image of ∇ : 0(X,Vn)
Gm → 0(X, �1

X ⊗Vn)
Gm lies in the subspace 0(X, ω⊗Vn)

Gm of
forms proportional to ω.

Proof. It suffices, by Lemma 2.8, to show that if

f =
∑

j+k=n

f j,kS jTk
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is Gm-equivariant, then π∗(∇ f )= 0. It follows from (2-14) that

π∗(∇ f )=
∑

j+k=n

(
π∗d f j,k

+ ( j − k)λk− j f j,k dλ
λ

)
S jTk .

Each term in brackets vanishes, since it expresses the fact that λ · f j,k
= λk− j f j,k , i.e., f j,k

∈ grk− jO,
which is equivalent to the Gm-equivariance of f since S has weight +1 and T has weight −1. �

This lemma implies that ∇ acts on 0(X,Vn)
Gm via the connection

∇
ω
= ωϑ +

(
S T

)( 0 ω

−
u
12
ω 0

)(
∂
∂S
∂
∂T

)
, (3-8)

where ϑ is the operator (2-6).
The following is an immediate consequence of Lemmas 3.3 and 3.4.

Corollary 3.5. For all n ≥ 0,

�•(X,Vn)
ω
:=
[
0(X,Vn)

Gm ∇
ω

−→ 0(X, ω⊗Vn)
Gm −→ 0

]
(3-9)

is a subcomplex of �•(X,Vn)
Gm .

The kernel of the restriction mapping

j∗ :�•(X,Vn)
Gm →�•(Z , j∗Vn)

µ12

contains the ideal generated by ψ . It therefore induces a homomorphism

j∗ :�•(X,Vn)
ω
→�•(Z , j∗Vn)

µ12 . (3-10)

Lemma 3.6. For all n ≥ 0, the restriction map (3-10) is an isomorphism.

Proof. Both complexes have length 2. That j∗ is an isomorphism in degree 0 follows directly from
Lemma 2.10. To prove the assertion in degree 1, note that elements of 0(X, ω⊗Vn)

Gm are of the form∑
k+l=n

f k,lωSkTl where f k,l
∈ grl−k+2O(X)

and elements of 0(Z , j∗Vn)
µ12 are of the form∑

k+l=n

gk,l j∗(ω)SkTl where gk,l
∈ gr[l−k+2]O(Z),

since j∗(ω) generates �1(Z), which follows from the fact that ω ∧ ψ 6= 0 and therefore j∗(ω) 6= 0.
Injectivity follows from Lemma 2.10: if j∗( f k,l) vanishes in gr[l−k+2]O(Z), it follows that f k,l

= 0. For
the surjectivity, observe that

j∗
( ∑

k+l=n

Gk,lωSkTl
)
=

∑
k+l=n

gk,l j∗(ω)SkTl,

where Gk,l
∈ grl−k+2O(X) is the unique preimage of gk,l

∈ gr[l−k+2]O(Z). �
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Since the map Z→ µ12\\Z =M1,1 is an étale map of stacks over Q, the complex

0(Z , �•Z ⊗ j∗Vn)
µ12 (3-11)

computes H •

dR(M1,1,Vn) for all n ≥ 0. Thus we have:

Corollary 3.7. The complex
(
�•(X,Vn)

ω,∇ω
)

computes H •

dR(M1,1,Vn) for all n ≥ 0.

We conclude this section by showing that the isomorphism (3-3) lifts to the level of de Rham complexes.

Proposition 3.8. There is a canonical isomorphism

�•(X,Vn)
Gm ∼=�

•(Z , j∗Vn)
µ12 ⊕�•(Z , j∗Vn)

µ12[−1]

of complexes.

Proof. The quotient of �•(X,Vn)
Gm by �•(X,Vn)

ω is ψ ⊗�•(X,Vn)
ω:

0 // 0(X,Vn)
Gm ∇

ω
// 0(X, ω⊗Vn)

Gm //

��

0

��

0 // 0(X,Vn)
Gm ∇

//

��

0(X, �1
X ⊗Vn)

Gm ∇
//

��

0(X, �2
X ⊗Vn)

Gm // 0

0 // 0 // ψ ⊗0(X,Vn)
Gm ∇

ω
// ψ ⊗0(X, ω⊗Vn)

Gm // 0

This exact sequence of complexes is naturally split since the third row defines a subcomplex of the second.
The result follows from Lemma 3.6 since ψ ⊗�•(X,Vn)

ω ∼=�•(X,Vn)
ω
[−1]. �

4. Proof of Theorem 1.2

In this section, we work over k=Q.

4A. Heads and tails. We show that the “head” of an element f of 0(X, ω⊗Vn)
Gm is related to the “tail”

of ∇ f by the Bol operator.

Lemma 4.1. For all n ≥ 0 there exists a unique Q-linear map

φ : M !
−n→ 0(X,Vn)

Gm

such that if we write
φ =

∑
j+k=n

φ j,kS jTk,

where φ j,k
∈ Hom(M !

−n, grk− jO(X)), then we have

φn,0( f )= f and ∇φ( f ) ∈ ωO(X)Tn. (4-1)

In other words, given a weakly holomorphic modular form f of weight −n, there is a unique section of Vn

which coincides with f in the first component, and whose image under ∇ vanishes in all components save
the last.
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Proof. Suppose that f ∈ M !
−n . We shall construct the components f j,k

:= φ j,k( f ) inductively in k. For
k = 0, we have f n,0

= f . The connection acts via (3-8) which we write

∇
ω
= ω

(
ϑ + S

∂

∂T
−

u
12

T
∂

∂S

)
.

Suppose that f a,b is defined for b ≤ k < n. The coefficient of S jTk in ∇ωφ( f ) is

ω
(
ϑ( f j,k)+ (k+ 1) f j−1,k+1

− ( j + 1) u
12

f j+1,k−1
)
.

There is a unique f j−1,k+1
∈ grk− j+2O(X) that makes this vanish; namely

f j−1,k+1
=

1
k+1

( j+1
12

u f j+1,k−1
−ϑ( f j,k)

)
.

By induction, these equations determine φ( f ) uniquely. �

Note that the inductive definition of φ involves dividing by k+ 1 for 1≤ k < n.

Lemma 4.2 (heads and tails). The diagram

M !
−n

φ
//

Dn+1/n!
��

0(X,Vn)
Gm

∇

��

M !n+2
$
// 0(X, ω⊗Vn)

Gm

commutes for all n ≥ 0, where Dn+1 is the Bol operator.

Proof. Let f ∈ M !
−n , and let φ( f ) be the unique section constructed in Lemma 4.1, whose coefficient of

Sn is f . Perform the change of gauge (2-12). In this gauge, the coefficient of An in φ( f ) is f :

φ( f )=
∑

j+k=n

F j,kA jTk, where Fn,0
= f.

The defining property of φ is that ∇φ( f ) is a multiple of ωTn. Let r( f ) ∈ O(X) be the coefficient.
That is,

∇φ( f )= r( f )ωTn.

This condition is preserved under the change of gauge (2-12), so that

∇φ( f )= r( f )ωTn
= r( f )

dq
q
Tn
= 2π ir( f ) dzTn.

By Lemma 2.11, we obtain the system of equations

Fn,0
= f, DF j,k

+ (k+ 1)F j−1,k+1
= 0, DF0,n

= r( f ).

It follows that r( f )= (−1)nDn+1 f/n!. This proves the result since if f is nonzero n must be even and
(−1)n = 1. �

Remark 4.3. The previous two lemmas imply a relation between the Bol operator, multiplication by u,
and the Serre derivative ϑ. Compare [Swinnerton-Dyer 1973, (25)].
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We have therefore proved the existence of (3-5). It remains to prove that it is an isomorphism.

4B. Proof of injectivity of (3-5). Suppose that ωg ∈ 0(X, ω⊗ Vn)
Gm is exact. Write ωg = ∇ f , where

f ∈ 0(X,Vn)
Gm . Consider the linear map

0(X,Vn)
Gm → M !

−n,
∑

j+k=n

f j,kS jTk
7→ f n,0.

Since ωg has the property that all coefficients S jTk except for j = 0, k = n vanish, it follows from
the uniqueness in Lemma 4.1 that f = φ( f n,0). By Lemma 4.2, it follows that ωg is in the image of
Dn+1 M !

−n .

4C. Proof of surjectivity (3-5). To complete the proof, we must show that the map (3-5) is surjective.
By the algebraic de Rham Theorem (Section 3), every class in H 1

dR(M1,1;Vn) is represented by a section
of the form

η =
∑

j+k=n

f j,kω S jTk,

where f j,k
∈ grk− j+2O(X). We show by induction that such a form is equivalent, modulo the image

of ∇, to one in which f j,k vanishes for all j > 0. Suppose that 0 ≤ j ≤ n is largest such that f j,k is
nonzero. If j is zero then there is nothing to prove, so assume j > 0. It follows from the connection
formula (2-10) that

∇(gS j−1Tk+1)≡ (k+ 1)gωS jTk mod Tk+1

for any g ∈O(X) of weight k− j + 2. Therefore, by replacing η by

η−
1

(k+1)
∇( f j,k S j−1Tk+1),

we can assume that f j,k vanishes, since the second term lies in 0(X, ω⊗Vn)
Gm by Lemma 3.4. Proceeding

in this manner, we deduce that every cohomology class in H 1
dR(M1,1;Vn) is represented by a form in the

image of (3-4).

Remark 4.4. The above argument works in characteristic 0 or >max{3, n}.

5. Periods of Cusp Forms

Let f ∈ Sn and g ∈ S!n . Write f =
∑

m>0 amqm and g =
∑

m bmqm. In [Guerzhoy 2008, Theorem 1], a
Hecke-equivariant pairing is defined, up to a sign, by

{ f, g} =
∑
m∈Z

amb−m

mn−1 . (5-1)

In this section we show it extends to all f ∈ S!n and that it corresponds to the image of ω f ⊗ωg under the
de Rham incarnation of the cup product

H 1
cusp(M1,1,VB

n )⊗ H 1
cusp(M1,1,VB

n )→ H 2
cusp(M1,1,Q)−→∼ Q
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induced by the natural pairing VB
n ⊗VB

n →Q, where VB
n is the local system (2-11).

5A. Inner products. Let V dR
=QA⊕QT be the fibre of the vector bundle V over the cusp. At q = 0,

S= A+ 2G2(0)T= A− 1
12T

so V dR is also spanned by S and T. Define a skew symmetric inner product

〈 , 〉dR : V dR
⊗ V dR

→Q

by declaring that 〈T,A〉 = 1. This is the natural inner product on V dR and corresponds to the cup product
pairing on the first de Rham cohomology group of an elliptic curve (see [Hain 2013, Proposition 19.1]).
It extends to a (−1)n symmetric inner product on V dR

n := Symn V dR by

〈v1v2 · · · vn, w1w2 · · ·wn〉 =
∑
σ∈6n

n∏
j=1

〈v j , wσ( j)〉 v j , wk ∈ V dR.

In particular,

〈An,Tn
〉 = 〈Sn,Tn

〉 = (−1)nn! (5-2)

This inner product induces an inner product 〈 , 〉dR : V n ⊗V n→OX which is flat with respect to the
connection ∇.

There is also a Betti version. As in the introduction, we set

V B
=Qa⊕Qb

and V B
n = Symn VB. The unique skew symmetric inner product 〈 , 〉B on VB satisfying 〈a, b〉B = 1

induces a (−1)n symmetric inner product

〈 , 〉 : V B
n ⊗ V B

n →Q

satisfying 〈an, bn
〉 = n! as above.

For each tangent vector Ev = eλ∂/∂q of the origin of the q-disk there is a comparison isomorphism

compB,dR : V
dR
⊗C→ V B

⊗C,

which is defined by

compB,dR(A)= a, compB,dR(T)=−2π i b+ λa.

It corresponds to the limit mixed Hodge structure on the first cohomology of the first order smoothing of
the nodal cubic in the direction of Ev. Observe that, for all λ, two inner products are related by

comp∗B,dR〈 , 〉dR = (2π i)−n
〈 , 〉B (5-3)

via the comparison map compB,dR : V
dR
n ⊗C→ V B

n ⊗C.
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5B. Residue maps. The pullback of (Vn,∇) to a formal neighbourhood of the origin of the q-disk D∗

along the map

ρ : D∗→ X (C)

defined in Section 2C is the free Q[[q]]-module with basis {An,An−1T, . . . ,Tn
} endowed with the

connection (2-13). It can also be expressed in the frame {S jTk
} using the formal change of gauge (2-12).

The fraction field of Q[[q]] is the ring Q((q)) :=Q[[q]][q−1
] of Laurent series. Set

�1(D∗,Vn) :=Q((q))dq ⊗ V dR
n .

Define the local residue map �1(D∗,Vn)→Q to be the composite

Res :�1(D∗,Vn)→ V dR
n → V dR

n /AV dR
n−1 −→

∼ Q (5-4)

of the usual residue map with the map that sends A to 0 and T to 1. That is,

Res
( ∑

j+k=n

∑
m∈Z

a j,k
m qm dq

q
A jTk

)
= a0,n

0 .

Observe that if f ∈Q((q))⊗ Vn , then Res(∇ f )= 0, since by Equation (2-13), an exact section satisfies
∇ f ≡ 0 mod A.

The residue map

Res : 0(X, ω⊗Vn)
Gm →Q

is defined to be the composite of the restriction map

ρ∗ : 0(X, ω⊗Vn)
Gm →�1(D∗,Vn).

followed by the residue map (5-4).

5C. Cuspidal de Rham cohomology. Define the local cuspidal de Rham complex �•(D∗,Vn) by

�0
cusp(D

∗,Vn) :=

{ ∑
j+k=n

a j,k
m qmA jTk

: an,0
0 = 0

}

�1
cusp(D

∗,Vn) := ker
(

Res :Q((q))
dq
q
⊗ V dR

n →Q

)
.

It is closed under the differential∇. Since H 0(�•(D∗,Vn)) is spanned by An, we see that H 0(�•cusp(D
∗,Vn))

vanishes. The following lemma implies that this complex is acyclic. It is a local version of Lemma 4.2.
Its proof is similar.

Lemma 5.1 (local heads and tails). For all n≥0, every element of �1
cusp(D

∗,Vn) is exact in�•cusp(D
∗,Vn).

If

f =
∑

j+k=n

f j,kA jTk
∈Q((q))V dR

n and ∇( f )=
∑
k 6=0

akqk dq
q
Tn,
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then

(−1)nn!
(

q
d

dq

)n+1

f n,0
=

∑
k 6=0

akqk.

Consequently, the head f n,0 of f is

f n,0
=
(−1)n

n!

∑
k 6=0

akqk

kn+1 . �

The restriction mapping ρ :�•(X,Vn)
ω
→�•(D∗,Vn) commutes with ∇. Consequently,

�•cusp(X,Vn)
ω
:= ρ−1(�•cusp(D

∗,Vn)
)

is a subcomplex of �•(X,Vn)
ω.

Lemma 5.2. The complex �•cusp(X,Vn)
ω computes the cuspidal de Rham cohomology of M1,1/Q. That

is, the comparison isomorphism

compB,dR : H
•

dR(M1,1,Vn)⊗C−→∼ H •(SL2(Z), V B
n )⊗C

restricts to an isomorphism

compB,dR : H
•

cusp,dR(M1,1,Vn)⊗C−→∼ H •

cusp(SL2(Z), V B
n )⊗C.

Proof. This follows directly from the exactness of the sequence

0→�•cusp(X,Vn)
ω
→�•(X,Vn)

ω
→

[
QAn 0
−→Q

dq
q
Tn
]
→ 0.

Alternatively, it can be deduced directly from Theorem 1.2. �

5D. The residue pairing. By Lemma 5.1, the first homology of �•cusp(D
∗,Vn) vanishes. Define the local

residue pairing

{ , } :�1
cusp(D

∗,Vn)⊗�
1(D∗,Vn)→Q

as follows. Lemma 5.1 implies that each ξ ∈ �1
cusp(D

∗,Vn) can be uniquely written ξ = ∇F, where
F ∈�0

cusp(D
∗,Vn). We set

{ξ, η} := {∇F, η} = Resq=0〈F, η〉.

Lemma 5.3. This pairing is well-defined. We have{∑
j 6=0

a j q j dq
q
Tn,

∑
k∈Z

bkqk dq
q
Tn
}
=

∑
k+l=0

akbl

kn+1 .

It is (−1)n+1 symmetric when restricted to �1
cusp(D

∗,Vn)
⊗2.
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Proof. That it is well-defined follows from the uniqueness of F. To see that it is (−1)n+1 symmetric on
�1

cusp(D
∗,Vn), write ξ =∇F and η=∇G, where F,G ∈�0

cusp(D
∗,Vn). By flatness of the inner product,

d〈F,G〉 = 〈∇F,G〉− (−1)n〈∇G, F〉.

The symmetry property follows as the left-hand side has vanishing residue.
The formula is an immediate consequence of Lemma 5.1 as{

∇

( ∑
j+k=n

f j,kA jTk
)
, g dq Tn

}
=

∑
j+k=n

Resq=0 f j,k g〈A jTk,Tn
〉

= (−1)nn!Resq=0 f n,0g. �

By composing with the restriction maps

�1
cusp(X,Vn)

ω
→�1

cusp(D
∗,Vn) and �1(M1,1,Vn)→�1(D∗,Vn)

we obtain a well defined pairing

{ , } :�1
cusp(X,Vn)

ω
⊗�1(M1,1,Vn)→Q. (5-5)

Lemma 5.4. The pairing (5-5) has the property that {∇ f, ξ} = 0 for all f ∈ �0(X,Vn)
ω and ξ ∈

�1(X,Vn)
ω. Consequently, it induces a well-defined pairing∫ dR

: H 1
cusp,dR(M1,1,Vn)⊗ H 1

dR(M1,1,Vn)→Q

such that the diagram

S!n ⊗M !n
{ , }

//

$⊗$

��

Q

H 1
cusp,dR(M1,1,Vn)⊗ H 1

dR(M1,1,Vn)

∫ dR

55

commutes.

Proof. The one-form 〈 f, ξ〉 is an element of 0(X, ω ⊗ V0)
Gm , and therefore defines a class in the

cohomology of the complex (3-9). We showed that the latter computes H 1
dR(M1,1;V0)= 0, and so 〈 f, ξ〉

is exact. Its residue therefore vanishes.
Since the pairing (5-5) is (−1)n+1 symmetric on �1

cusp(M1,1,Vn), and since ∇ f ∈ �1
cusp(M1,1,Vn)

for all f ∈ �0(X,Vn), this implies that {ξ,∇ f } = 0 for all ξ ∈ �1
cusp(M1,1,Vn) and that the pairing is

well-defined on cohomology.
The formula for the pairing is a direct consequence of Lemma 5.3. �

5E. Relation to cup product. Our final task is to determine how
∫ dR is related to the cup product. For

this we need to discuss relative cohomology and its relation to cuspidal cohomology. Let 0∞ be the
subgroup of SL2(Z) generated by

(
1 1
0 1

)
. Throughout this section, we assume that n > 0.
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We have the exact sequence

0→ H 0(0∞; V B
n )→ H 1(SL2(Z), 0∞; V B

n )→ H 1
cusp(SL2(Z); V B

n )→ 0, (5-6)

which is dual to the exact sequence

0→ H 1
cusp(SL2(Z); V B

n )→ H 1(SL2(Z); V B
n )→ H 1(0∞; V B

n )→ 0

under the cup product pairing∫ B
: H 1(SL2(Z), 0∞; V B

n )⊗ H 1(SL2(Z); V B
n )→ H 2(SL2(Z), 0∞;Q)∼=Q

induced by 〈 , 〉B.

Remark 5.5. It is helpful to note that H 0(0∞, V B
n )=Qan and H 1(0∞, V B

n )= V B
n /aV B

n−1
∼=Qbn.

The algebraic analogue of the relative cohomology group above is the de Rham cohomology

H •

dR(M1,1,D∗;Vn),

which is defined to be the cohomology of the complex

�•(X,D∗;Vn)
ω
:= cone

[
�•(X,Vn)

ω
→�•(D∗,Vn)

]
[−1].

There is a comparison isomorphism

compB,dR : H
1
dR(M1,1,D∗;Vn)⊗C→ H 1(SL2(Z), 0∞; V B

n )⊗C.

There is a short exact sequence

0→QAn
→ H 1

dR(M1,1,D∗;Vn)→ H 1
cusp,dR(M1,1,Vn)→ 0 (5-7)

which maps to (5-6) after tensoring both sequences with C.
In order to use the cup product to construct a pairing between H 1

cusp,dR(M1,1,Vn) and H 1
dR(M1,1,Vn),

we need to choose a splitting of (5-7). Here we use the splitting

s : H 1
cusp,dR(M1,1,Vn)→ H 1

dR(M1,1,D∗;Vn)

that is defined by taking the class of ξ ∈ �1
cusp(X,Vn)

ω to the class of (ξ, F), where F is the unique
element of �0

cusp(D
∗,Vn) whose derivative is the restriction of ξ to D∗.

Proposition 5.6. The diagram

H 1
cusp,dR(M1,1,Vn)⊗ H 1

dR(M1,1,Vn)⊗C

comp⊗2
B,dR ◦(s⊗1)

��

∫ dR

// C edR

��

H 1(SL2(Z), 0∞; Vn)⊗ H 1(Man
1,1;Vn)⊗C

∫ B

// C eB
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commutes, where edR
= (2π i)n+1eB and where

∫ B denotes the cup product induced by 〈 , 〉B evaluated
on the fundamental class of M1,1(C).

Proof. Suppose that ξ ∈�1
cusp(X;Vn) is cuspidal and η∈�1(X,Vn)

ω. They represent cohomology classes.
Let U be the analytic q-disk {q ∈ C : |q|< e−2π

} and U ′ =U −{0}. Since ξ is cuspidal, its restriction
to U ′ is exact. Choose a meromorphic section F̃ ∈ 0(U ′,V an

n ) such that ∇F̃ = ξ on U ′ and the image
F of F̃ in �0(D∗,Vn) is the unique element of F ∈�0

cusp(D
∗,Vn) such that ∇F is the q-expansion of ξ .

Choose r, R ∈ R such that 0< r < R < e−2π. Choose a smooth function ρ :U→ R≥0 which vanishes
outside the annulus

A := {q ∈U : r ≤ |q| ≤ R}

and is equal to 1 identically when |q| ≤ r . Then ξ̃ := ξ −∇(ρF̃) extends by 0 to a smooth 1-form on the
orbifold Man

1,1 with values in Vn⊗C, which vanishes in a neighbourhood of the cusp and equals ξ on |q|> R.
Since ρF̃ is a smooth section of Vn⊗C over Man

1,1, ξ̃ is a smooth form that represents the same class in
H 1

cusp(M1,1,Vn) as ξ . Since ∇(ρF̃) is supported in the annulus A and since ξ ∧η= 0, ξ̃ ∧η is supported
in A. Using (5-3), we have∫ B

(ξ ⊗ η)=
∫
Man

1,1
〈ξ̃ , η〉B = (2π i)n

∫
Man

1,1

〈ξ̃ , η〉dR =−(2π i)n
∫

A
d〈ρF̃, η〉dR

=
(Stokes)

(2π i)n
∫
|q|=r
〈F̃, η〉dR = (2π i)n+1 Resq=0 F̃η

= (2π i)n+1
{ξ, η} = (2π i)n+1∫ dR

(ξ ⊗ η). �

Remark 5.7. The Hecke invariance of Guerzhoy’s inner product (5-1) on cusp forms follows directly
from this description of the inner product using the projection formula.2

Remark 5.8. The section s defined above cannot be Hecke invariant. If it were, the Eisenstein series
Gn+2 would be orthogonal to S!n+2 under the inner product { , }. However, this is not the case, since it
would contradict the discussion in Section 6: orthogonality with respect to Gn+2 and cuspidality are two
distinct linear conditions on the space of weakly holomorphic modular forms.

Consider, by way of example, the case n = 10. There is a unique Q-linear combination f−1 ∈ S!12 of
the weakly holomorphic modular forms G241

−1, G12 and 1 such that f−1 = q−1
+ O(q2). It is given

explicitly by

f−1 = q−1
+ 47709536 q2

+ 39862705122 q3
+ 7552626810624 q4

+ · · · .

Its class in S!12/D
11 M !

−10 is a Hecke eigenform, with the same eigenvalues as 1. Since the leading
coefficient of 1 is q, we have

{1, f−1} = 1.

2This states that if f : X → Y is a smooth proper morphism, then ( f∗a) · b = f∗(a · f ∗b), where a ∈ H •(X; f ∗V) and
b ∈ H •(Y,V).
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On the other hand, from the Fourier expansion

G12 =
691

65520 + q + 2049q2
+ 177148q3

+ · · · ,

we find that a naive application of the formula (5-1) to f−1 and G12 would give {G12, f−1} = 1, and hence
S!12 is not orthogonal to G12Q.

5F. Proof of Theorem 1.7. Suppose that f is a Hecke eigen cusp form of weight 2n. Denote the
associated 2-dimensional subspace of H 1(M1,1,V2n−2)⊗K f by Vf . It has Betti and de Rham realisations
V B

f and V dR
f related by the comparison isomorphism compB,dR : V dR

f ⊗K f C→ V B
f ⊗K f C. The cup

product induces a nondegenerate, skew-symmetric pairing

〈 , 〉 : Vf ⊗ Vf → K f (−2n+ 1).

It has Betti and de Rham realisations

〈 , 〉B =
∫ B
⊗ eB and 〈 , 〉dR =

∫ dR
⊗ edR.

Let α f , β f be a K f -de Rham basis of V dR
f . There is a K f basis r+f , r

−

f of V B
f with 〈r+f , r

−

f 〉B = eB. Then

(
α f β f

)
=

(
r+f r−f

)( η+f ω+f
iη−f iω−f

)
=

(
r+f r−f

)
Pf ,

where η±f and ω±f are real numbers. By Proposition 5.6,〈
compB,dR(ω f ), compB,dR(η f )

〉
B =

〈
η+f r+f + iη−f r−f , ω

+

f r+f + iω−f r−f
〉
B

= det(Pf )eB

= (2π i)−2n+1 det(Pf )edR.

Since 〈ω f , η f 〉dR ∈ K×f edR, this implies that det(Pf ) ∈ (2π i)2n−1K×f .

6. A Q-de Rham splitting of the Hodge filtration

Let `= dim Sn , so that

dim M !n/D
n−1 M !2−n = dim H 1

dR(M1,1,Vn−2)= 2`+ 1.

Let ord∞ denote the order of vanishing at the cusp. It follows from the Riemann–Roch formula, as noted
in [Duke and Jenkins 2008], that

ord∞ f ≤ `

for all f ∈ M !n . Furthermore, it was shown in [Guerzhoy 2008] that for any f ∈ M !n , there exists a unique
representative of f modulo Dn−1 M !2−n such that

ord∞ f ≥−`.
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Since the dimension of M !n/Dn−1 M !2−n is exactly 2`+1, it follows that such an f is uniquely determined
by its 2`+ 1 Fourier coefficients (a−`, . . . , a`) ∈Q2`+1, where

f =
∑

n≥−`

anqn,

and, conversely, any vector (a−`, . . . , a`) ∈Q2`+1 uniquely determines an element in M !n/Dn−1 M !2−n . It
follows that the functions f ∈ M !n of the form

fm = qm
+ O(q`+1)

for every −`≤ m ≤ `, are a Q-basis for H 1
dR(M1,1;Vn), by Theorem 1.2. These functions satisfy some

remarkable properties, studied in [Duke and Jenkins 2008].
This basis simultaneously gives a Q-de Rham splitting of the Hodge filtration

H 1
dR(M1,1,Vn−2)= F0

⊃ F1
= · · · = Fn−2

⊃ Fn−1
= Mn ⊃ Fn

= 0

and of the weight filtration

0=Wn−2 ⊂ H 1
cusp,dR(M1,1,Vn−2)=Wn−1 ⊂Wn = · · · =W2n−3 ⊂W2n−2 = H 1

dR(M1,1,Vn−2).

The splitting of

0→ Fn−1 H 1
cusp,dR(M1,1,Vn−2)→ H 1

cusp,dR(M1,1,Vn−2)→ grn−1
F H 1

cusp,dR(M1,1,Vn−2)→ 0

is given by lifting gr0
F H 1

cusp,dR(M1,1,Vn−2) to the subspace of M !n/Dn−1 M1
2−n consisting of those f

whose Fourier coefficients a j vanish when 0≤ j ≤ `. The splitting of the weight filtration is given by the
Eisenstein series.

Appendix: Framings

The aim of this appendix is to explain the choice of the power of 2π i in the cocycle formula (1-6). Here
we take k=Q.

Recall that π : E → X denotes the universal elliptic curve and that VB
n denotes the n-th symmetric

power of R1π∗Q. It underlies a variation of Hodge structure of weight n. To give a framing of VB
n , it

suffices to give a framing of VB
:= VB

1 .
The pullback of VB to H along ρ :H→ X is the trivial local system whose fibre over z ∈H is H 1(Ez),

where Ez := C/(Z⊕ zZ). We identify H 1(Ez) with its dual H1(Ez) ∼= Hom(H1(Ez),Z) by Poincaré
duality

P : H1(Ez)→ H 1(Ez), P(c) := 〈c, 〉,

where 〈 , 〉 denotes the intersection pairing. On the level of Hodge structures, Poincaré duality is an
isomorphism

P : H1(Ez,Q)→ H 1(Ez,Q(1)).
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Denote the standard basis of H1(Ez;Z) by a, b. These classes correspond to the lattice points 1 and z,
respectively. Denote the dual basis of H 1(Ez)∼= Hom(H1(Ez),Z) by ǎ, b̌. Then b̌= P(a) and ǎ = P(b).
We identify the (Betti) components of H1(E) and H 1(E) via P. With this identification

dw =−b+ za,

where w is the coordinate in the universal covering C of Ez . The abelian differential dx/y on the elliptic
curve corresponding to ρ(z) is 2π i dw. This is the section T of Vn . So T corresponds to the section

T= 2π i dw = 2π i(za− b)

of V an
:= V⊗O(H).

Each f ∈ M !n+2 corresponds to an element h(u, v)∈O(X). The corresponding 1-form ω f is hTnω. So

ρ∗ω f = (2π i)n f (z)(za− b)n
dq
q
= (2π i)n+1 f (z)(za− b)n dz.
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